An Evaluation of Three Approximate Item Response Theory Models for Equating Test Scores.
ERIC Educational Resources Information Center
Marco, Gary L.; And Others
Three item response models were evaluated for estimating item parameters and equating test scores. The models, which approximated the traditional three-parameter model, included: (1) the Rasch one-parameter model, operationalized in the BICAL computer program; (2) an approximate three-parameter logistic model based on coarse group data divided…
Measures of GCM Performance as Functions of Model Parameters Affecting Clouds and Radiation
NASA Astrophysics Data System (ADS)
Jackson, C.; Mu, Q.; Sen, M.; Stoffa, P.
2002-05-01
This abstract is one of three related presentations at this meeting dealing with several issues surrounding optimal parameter and uncertainty estimation of model predictions of climate. Uncertainty in model predictions of climate depends in part on the uncertainty produced by model approximations or parameterizations of unresolved physics. Evaluating these uncertainties is computationally expensive because one needs to evaluate how arbitrary choices for any given combination of model parameters affects model performance. Because the computational effort grows exponentially with the number of parameters being investigated, it is important to choose parameters carefully. Evaluating whether a parameter is worth investigating depends on two considerations: 1) does reasonable choices of parameter values produce a large range in model response relative to observational uncertainty? and 2) does the model response depend non-linearly on various combinations of model parameters? We have decided to narrow our attention to selecting parameters that affect clouds and radiation, as it is likely that these parameters will dominate uncertainties in model predictions of future climate. We present preliminary results of ~20 to 30 AMIPII style climate model integrations using NCAR's CCM3.10 that show model performance as functions of individual parameters controlling 1) critical relative humidity for cloud formation (RHMIN), and 2) boundary layer critical Richardson number (RICR). We also explore various definitions of model performance that include some or all observational data sources (surface air temperature and pressure, meridional and zonal winds, clouds, long and short-wave cloud forcings, etc...) and evaluate in a few select cases whether the model's response depends non-linearly on the parameter values we have selected.
NASA Astrophysics Data System (ADS)
Cuntz, Matthias; Mai, Juliane; Zink, Matthias; Thober, Stephan; Kumar, Rohini; Schäfer, David; Schrön, Martin; Craven, John; Rakovec, Oldrich; Spieler, Diana; Prykhodko, Vladyslav; Dalmasso, Giovanni; Musuuza, Jude; Langenberg, Ben; Attinger, Sabine; Samaniego, Luis
2015-08-01
Environmental models tend to require increasing computational time and resources as physical process descriptions are improved or new descriptions are incorporated. Many-query applications such as sensitivity analysis or model calibration usually require a large number of model evaluations leading to high computational demand. This often limits the feasibility of rigorous analyses. Here we present a fully automated sequential screening method that selects only informative parameters for a given model output. The method requires a number of model evaluations that is approximately 10 times the number of model parameters. It was tested using the mesoscale hydrologic model mHM in three hydrologically unique European river catchments. It identified around 20 informative parameters out of 52, with different informative parameters in each catchment. The screening method was evaluated with subsequent analyses using all 52 as well as only the informative parameters. Subsequent Sobol's global sensitivity analysis led to almost identical results yet required 40% fewer model evaluations after screening. mHM was calibrated with all and with only informative parameters in the three catchments. Model performances for daily discharge were equally high in both cases with Nash-Sutcliffe efficiencies above 0.82. Calibration using only the informative parameters needed just one third of the number of model evaluations. The universality of the sequential screening method was demonstrated using several general test functions from the literature. We therefore recommend the use of the computationally inexpensive sequential screening method prior to rigorous analyses on complex environmental models.
NASA Astrophysics Data System (ADS)
Mai, Juliane; Cuntz, Matthias; Zink, Matthias; Thober, Stephan; Kumar, Rohini; Schäfer, David; Schrön, Martin; Craven, John; Rakovec, Oldrich; Spieler, Diana; Prykhodko, Vladyslav; Dalmasso, Giovanni; Musuuza, Jude; Langenberg, Ben; Attinger, Sabine; Samaniego, Luis
2016-04-01
Environmental models tend to require increasing computational time and resources as physical process descriptions are improved or new descriptions are incorporated. Many-query applications such as sensitivity analysis or model calibration usually require a large number of model evaluations leading to high computational demand. This often limits the feasibility of rigorous analyses. Here we present a fully automated sequential screening method that selects only informative parameters for a given model output. The method requires a number of model evaluations that is approximately 10 times the number of model parameters. It was tested using the mesoscale hydrologic model mHM in three hydrologically unique European river catchments. It identified around 20 informative parameters out of 52, with different informative parameters in each catchment. The screening method was evaluated with subsequent analyses using all 52 as well as only the informative parameters. Subsequent Sobol's global sensitivity analysis led to almost identical results yet required 40% fewer model evaluations after screening. mHM was calibrated with all and with only informative parameters in the three catchments. Model performances for daily discharge were equally high in both cases with Nash-Sutcliffe efficiencies above 0.82. Calibration using only the informative parameters needed just one third of the number of model evaluations. The universality of the sequential screening method was demonstrated using several general test functions from the literature. We therefore recommend the use of the computationally inexpensive sequential screening method prior to rigorous analyses on complex environmental models.
Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models
Rakovec, O.; Hill, Mary C.; Clark, M.P.; Weerts, A. H.; Teuling, A. J.; Uijlenhoet, R.
2014-01-01
This paper presents a hybrid local-global sensitivity analysis method termed the Distributed Evaluation of Local Sensitivity Analysis (DELSA), which is used here to identify important and unimportant parameters and evaluate how model parameter importance changes as parameter values change. DELSA uses derivative-based “local” methods to obtain the distribution of parameter sensitivity across the parameter space, which promotes consideration of sensitivity analysis results in the context of simulated dynamics. This work presents DELSA, discusses how it relates to existing methods, and uses two hydrologic test cases to compare its performance with the popular global, variance-based Sobol' method. The first test case is a simple nonlinear reservoir model with two parameters. The second test case involves five alternative “bucket-style” hydrologic models with up to 14 parameters applied to a medium-sized catchment (200 km2) in the Belgian Ardennes. Results show that in both examples, Sobol' and DELSA identify similar important and unimportant parameters, with DELSA enabling more detailed insight at much lower computational cost. For example, in the real-world problem the time delay in runoff is the most important parameter in all models, but DELSA shows that for about 20% of parameter sets it is not important at all and alternative mechanisms and parameters dominate. Moreover, the time delay was identified as important in regions producing poor model fits, whereas other parameters were identified as more important in regions of the parameter space producing better model fits. The ability to understand how parameter importance varies through parameter space is critical to inform decisions about, for example, additional data collection and model development. The ability to perform such analyses with modest computational requirements provides exciting opportunities to evaluate complicated models as well as many alternative models.
NASA Astrophysics Data System (ADS)
Halder, A.; Miller, F. J.
1982-03-01
A probabilistic model to evaluate the risk of liquefaction at a site and to limit or eliminate damage during earthquake induced liquefaction is proposed. The model is extended to consider three dimensional nonhomogeneous soil properties. The parameters relevant to the liquefaction phenomenon are identified, including: (1) soil parameters; (2) parameters required to consider laboratory test and sampling effects; and (3) loading parameters. The fundamentals of risk based design concepts pertient to liquefaction are reviewed. A detailed statistical evaluation of the soil parameters in the proposed liquefaction model is provided and the uncertainty associated with the estimation of in situ relative density is evaluated for both direct and indirect methods. It is found that the liquefaction potential the uncertainties in the load parameters could be higher than those in the resistance parameters.
Using Active Learning for Speeding up Calibration in Simulation Models.
Cevik, Mucahit; Ergun, Mehmet Ali; Stout, Natasha K; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan
2016-07-01
Most cancer simulation models include unobservable parameters that determine disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality, and their values are typically estimated via a lengthy calibration procedure, which involves evaluating a large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We developed an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs and therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using the previously developed University of Wisconsin breast cancer simulation model (UWBCS). In a recent study, calibration of the UWBCS required the evaluation of 378 000 input parameter combinations to build a race-specific model, and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378 000 combinations. Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. © The Author(s) 2015.
Using Active Learning for Speeding up Calibration in Simulation Models
Cevik, Mucahit; Ali Ergun, Mehmet; Stout, Natasha K.; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan
2015-01-01
Background Most cancer simulation models include unobservable parameters that determine the disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality and their values are typically estimated via lengthy calibration procedure, which involves evaluating large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Methods Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We develop an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs, therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using previously developed University of Wisconsin Breast Cancer Simulation Model (UWBCS). Results In a recent study, calibration of the UWBCS required the evaluation of 378,000 input parameter combinations to build a race-specific model and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378,000 combinations. Conclusion Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. PMID:26471190
Literature review of outcome parameters used in studies of Geriatric Fracture Centers.
Liem, I S L; Kammerlander, C; Suhm, N; Kates, S L; Blauth, M
2014-02-01
A variety of multidisciplinary treatment models have been described to improve outcome after osteoporotic hip fractures. There is a tendency toward better outcomes after implementation of the most sophisticated model with a shared leadership for orthopedic surgeons and geriatricians; the Geriatric Fracture Center. The purpose of this review is to evaluate the use of outcome parameters in published literature on the Geriatric Fracture Center evaluation studies. A literature search was performed using Medline and the Cochrane Library to identify Geriatric Fracture Center evaluation studies. The outcome parameters used in the included studies were evaluated. A total of 16 outcome parameters were used in 11 studies to evaluate patient outcome in 8 different Geriatric Fracture Centers. Two of these outcome parameters are patient-reported outcome measures and 14 outcome parameters were objective measures. In-hospital mortality, length of stay, time to surgery, place of residence and complication rate are the most frequently used outcome parameters. The patient-reported outcomes included activities of daily living and mobility scores. There is a need for generally agreed upon outcome measures to facilitate comparison of different care models.
NASA Astrophysics Data System (ADS)
Adams, Matthew P.; Collier, Catherine J.; Uthicke, Sven; Ow, Yan X.; Langlois, Lucas; O'Brien, Katherine R.
2017-01-01
When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (Topt) for maximum photosynthetic rate (Pmax). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike.
Adams, Matthew P; Collier, Catherine J; Uthicke, Sven; Ow, Yan X; Langlois, Lucas; O'Brien, Katherine R
2017-01-04
When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (T opt ) for maximum photosynthetic rate (P max ). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike.
Adams, Matthew P.; Collier, Catherine J.; Uthicke, Sven; Ow, Yan X.; Langlois, Lucas; O’Brien, Katherine R.
2017-01-01
When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (Topt) for maximum photosynthetic rate (Pmax). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike. PMID:28051123
SENSITIVE PARAMETER EVALUATION FOR A VADOSE ZONE FATE AND TRANSPORT MODEL
This report presents information pertaining to quantitative evaluation of the potential impact of selected parameters on output of vadose zone transport and fate models used to describe the behavior of hazardous chemicals in soil. The Vadose 2one Interactive Processes (VIP) model...
Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty
NASA Astrophysics Data System (ADS)
Kuczera, George
1983-10-01
A Bayesian methodology is developed to evaluate parameter uncertainty in catchment models fitted to a hydrologic response such as runoff, the goal being to improve the chance of successful regionalization. The catchment model is posed as a nonlinear regression model with stochastic errors possibly being both autocorrelated and heteroscedastic. The end result of this methodology, which may use Box-Cox power transformations and ARMA error models, is the posterior distribution, which summarizes what is known about the catchment model parameters. This can be simplified to a multivariate normal provided a linearization in parameter space is acceptable; means of checking and improving this assumption are discussed. The posterior standard deviations give a direct measure of parameter uncertainty, and study of the posterior correlation matrix can indicate what kinds of data are required to improve the precision of poorly determined parameters. Finally, a case study involving a nine-parameter catchment model fitted to monthly runoff and soil moisture data is presented. It is shown that use of ordinary least squares when its underlying error assumptions are violated gives an erroneous description of parameter uncertainty.
NASA Astrophysics Data System (ADS)
Hendricks Franssen, H. J.; Post, H.; Vrugt, J. A.; Fox, A. M.; Baatz, R.; Kumbhar, P.; Vereecken, H.
2015-12-01
Estimation of net ecosystem exchange (NEE) by land surface models is strongly affected by uncertain ecosystem parameters and initial conditions. A possible approach is the estimation of plant functional type (PFT) specific parameters for sites with measurement data like NEE and application of the parameters at other sites with the same PFT and no measurements. This upscaling strategy was evaluated in this work for sites in Germany and France. Ecosystem parameters and initial conditions were estimated with NEE-time series of one year length, or a time series of only one season. The DREAM(zs) algorithm was used for the estimation of parameters and initial conditions. DREAM(zs) is not limited to Gaussian distributions and can condition to large time series of measurement data simultaneously. DREAM(zs) was used in combination with the Community Land Model (CLM) v4.5. Parameter estimates were evaluated by model predictions at the same site for an independent verification period. In addition, the parameter estimates were evaluated at other, independent sites situated >500km away with the same PFT. The main conclusions are: i) simulations with estimated parameters reproduced better the NEE measurement data in the verification periods, including the annual NEE-sum (23% improvement), annual NEE-cycle and average diurnal NEE course (error reduction by factor 1,6); ii) estimated parameters based on seasonal NEE-data outperformed estimated parameters based on yearly data; iii) in addition, those seasonal parameters were often also significantly different from their yearly equivalents; iv) estimated parameters were significantly different if initial conditions were estimated together with the parameters. We conclude that estimated PFT-specific parameters improve land surface model predictions significantly at independent verification sites and for independent verification periods so that their potential for upscaling is demonstrated. However, simulation results also indicate that possibly the estimated parameters mask other model errors. This would imply that their application at climatic time scales would not improve model predictions. A central question is whether the integration of many different data streams (e.g., biomass, remotely sensed LAI) could solve the problems indicated here.
Vernon, Ian; Liu, Junli; Goldstein, Michael; Rowe, James; Topping, Jen; Lindsey, Keith
2018-01-02
Many mathematical models have now been employed across every area of systems biology. These models increasingly involve large numbers of unknown parameters, have complex structure which can result in substantial evaluation time relative to the needs of the analysis, and need to be compared to observed data of various forms. The correct analysis of such models usually requires a global parameter search, over a high dimensional parameter space, that incorporates and respects the most important sources of uncertainty. This can be an extremely difficult task, but it is essential for any meaningful inference or prediction to be made about any biological system. It hence represents a fundamental challenge for the whole of systems biology. Bayesian statistical methodology for the uncertainty analysis of complex models is introduced, which is designed to address the high dimensional global parameter search problem. Bayesian emulators that mimic the systems biology model but which are extremely fast to evaluate are embeded within an iterative history match: an efficient method to search high dimensional spaces within a more formal statistical setting, while incorporating major sources of uncertainty. The approach is demonstrated via application to a model of hormonal crosstalk in Arabidopsis root development, which has 32 rate parameters, for which we identify the sets of rate parameter values that lead to acceptable matches between model output and observed trend data. The multiple insights into the model's structure that this analysis provides are discussed. The methodology is applied to a second related model, and the biological consequences of the resulting comparison, including the evaluation of gene functions, are described. Bayesian uncertainty analysis for complex models using both emulators and history matching is shown to be a powerful technique that can greatly aid the study of a large class of systems biology models. It both provides insight into model behaviour and identifies the sets of rate parameters of interest.
Precipitation-runoff modeling system; user's manual
Leavesley, G.H.; Lichty, R.W.; Troutman, B.M.; Saindon, L.G.
1983-01-01
The concepts, structure, theoretical development, and data requirements of the precipitation-runoff modeling system (PRMS) are described. The precipitation-runoff modeling system is a modular-design, deterministic, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on streamflow, sediment yields, and general basin hydrology. Basin response to normal and extreme rainfall and snowmelt can be simulated to evaluate changes in water balance relationships, flow regimes, flood peaks and volumes, soil-water relationships, sediment yields, and groundwater recharge. Parameter-optimization and sensitivity analysis capabilites are provided to fit selected model parameters and evaluate their individual and joint effects on model output. The modular design provides a flexible framework for continued model system enhancement and hydrologic modeling research and development. (Author 's abstract)
Uncertainty in BMP evaluation and optimization for watershed management
NASA Astrophysics Data System (ADS)
Chaubey, I.; Cibin, R.; Sudheer, K.; Her, Y.
2012-12-01
Use of computer simulation models have increased substantially to make watershed management decisions and to develop strategies for water quality improvements. These models are often used to evaluate potential benefits of various best management practices (BMPs) for reducing losses of pollutants from sources areas into receiving waterbodies. Similarly, use of simulation models in optimizing selection and placement of best management practices under single (maximization of crop production or minimization of pollutant transport) and multiple objective functions has increased recently. One of the limitations of the currently available assessment and optimization approaches is that the BMP strategies are considered deterministic. Uncertainties in input data (e.g. precipitation, streamflow, sediment, nutrient and pesticide losses measured, land use) and model parameters may result in considerable uncertainty in watershed response under various BMP options. We have developed and evaluated options to include uncertainty in BMP evaluation and optimization for watershed management. We have also applied these methods to evaluate uncertainty in ecosystem services from mixed land use watersheds. In this presentation, we will discuss methods to to quantify uncertainties in BMP assessment and optimization solutions due to uncertainties in model inputs and parameters. We have used a watershed model (Soil and Water Assessment Tool or SWAT) to simulate the hydrology and water quality in mixed land use watershed located in Midwest USA. The SWAT model was also used to represent various BMPs in the watershed needed to improve water quality. SWAT model parameters, land use change parameters, and climate change parameters were considered uncertain. It was observed that model parameters, land use and climate changes resulted in considerable uncertainties in BMP performance in reducing P, N, and sediment loads. In addition, climate change scenarios also affected uncertainties in SWAT simulated crop yields. Considerable uncertainties in the net cost and the water quality improvements resulted due to uncertainties in land use, climate change, and model parameter values.
Models of Pilot Behavior and Their Use to Evaluate the State of Pilot Training
NASA Astrophysics Data System (ADS)
Jirgl, Miroslav; Jalovecky, Rudolf; Bradac, Zdenek
2016-07-01
This article discusses the possibilities of obtaining new information related to human behavior, namely the changes or progressive development of pilots' abilities during training. The main assumption is that a pilot's ability can be evaluated based on a corresponding behavioral model whose parameters are estimated using mathematical identification procedures. The mean values of the identified parameters are obtained via statistical methods. These parameters are then monitored and their changes evaluated. In this context, the paper introduces and examines relevant mathematical models of human (pilot) behavior, the pilot-aircraft interaction, and an example of the mathematical analysis.
NASA Astrophysics Data System (ADS)
Norton, P. A., II; Haj, A. E., Jr.
2014-12-01
The United States Geological Survey is currently developing a National Hydrologic Model (NHM) to support and facilitate coordinated and consistent hydrologic modeling efforts at the scale of the continental United States. As part of this effort, the Geospatial Fabric (GF) for the NHM was created. The GF is a database that contains parameters derived from datasets that characterize the physical features of watersheds. The GF was used to aggregate catchments and flowlines defined in the National Hydrography Dataset Plus dataset for more than 100,000 hydrologic response units (HRUs), and to establish initial parameter values for input to the Precipitation-Runoff Modeling System (PRMS). Many parameter values are adjusted in PRMS using an automated calibration process. Using these adjusted parameter values, the PRMS model estimated variables such as evapotranspiration (ET), potential evapotranspiration (PET), snow-covered area (SCA), and snow water equivalent (SWE). In order to evaluate the effectiveness of parameter calibration, and model performance in general, several satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) and Snow Data Assimilation System (SNODAS) gridded datasets including ET, PET, SCA, and SWE were compared to PRMS-simulated values. The MODIS and SNODAS data were spatially averaged for each HRU, and compared to PRMS-simulated ET, PET, SCA, and SWE values for each HRU in the Upper Missouri River watershed. Default initial GF parameter values and PRMS calibration ranges were evaluated. Evaluation results, and the use of MODIS and SNODAS datasets to update GF parameter values and PRMS calibration ranges, are presented and discussed.
Svolos, Patricia; Tsougos, Ioannis; Kyrgias, Georgios; Kappas, Constantine; Theodorou, Kiki
2011-04-01
In this study we sought to evaluate and accent the importance of radiobiological parameter selection and implementation to the normal tissue complication probability (NTCP) models. The relative seriality (RS) and the Lyman-Kutcher-Burman (LKB) models were studied. For each model, a minimum and maximum set of radiobiological parameter sets was selected from the overall published sets applied in literature and a theoretical mean parameter set was computed. In order to investigate the potential model weaknesses in NTCP estimation and to point out the correct use of model parameters, these sets were used as input to the RS and the LKB model, estimating radiation induced complications for a group of 36 breast cancer patients treated with radiotherapy. The clinical endpoint examined was Radiation Pneumonitis. Each model was represented by a certain dose-response range when the selected parameter sets were applied. Comparing the models with their ranges, a large area of coincidence was revealed. If the parameter uncertainties (standard deviation) are included in the models, their area of coincidence might be enlarged, constraining even greater their predictive ability. The selection of the proper radiobiological parameter set for a given clinical endpoint is crucial. Published parameter values are not definite but should be accompanied by uncertainties, and one should be very careful when applying them to the NTCP models. Correct selection and proper implementation of published parameters provides a quite accurate fit of the NTCP models to the considered endpoint.
NASA Astrophysics Data System (ADS)
Frost, Andrew J.; Thyer, Mark A.; Srikanthan, R.; Kuczera, George
2007-07-01
SummaryMulti-site simulation of hydrological data are required for drought risk assessment of large multi-reservoir water supply systems. In this paper, a general Bayesian framework is presented for the calibration and evaluation of multi-site hydrological data at annual timescales. Models included within this framework are the hidden Markov model (HMM) and the widely used lag-1 autoregressive (AR(1)) model. These models are extended by the inclusion of a Box-Cox transformation and a spatial correlation function in a multi-site setting. Parameter uncertainty is evaluated using Markov chain Monte Carlo techniques. Models are evaluated by their ability to reproduce a range of important extreme statistics and compared using Bayesian model selection techniques which evaluate model probabilities. The case study, using multi-site annual rainfall data situated within catchments which contribute to Sydney's main water supply, provided the following results: Firstly, in terms of model probabilities and diagnostics, the inclusion of the Box-Cox transformation was preferred. Secondly the AR(1) and HMM performed similarly, while some other proposed AR(1)/HMM models with regionally pooled parameters had greater posterior probability than these two models. The practical significance of parameter and model uncertainty was illustrated using a case study involving drought security analysis for urban water supply. It was shown that ignoring parameter uncertainty resulted in a significant overestimate of reservoir yield and an underestimation of system vulnerability to severe drought.
The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input ...
Population models for passerine birds: structure, parameterization, and analysis
Noon, B.R.; Sauer, J.R.; McCullough, D.R.; Barrett, R.H.
1992-01-01
Population models have great potential as management tools, as they use infonnation about the life history of a species to summarize estimates of fecundity and survival into a description of population change. Models provide a framework for projecting future populations, determining the effects of management decisions on future population dynamics, evaluating extinction probabilities, and addressing a variety of questions of ecological and evolutionary interest. Even when insufficient information exists to allow complete identification of the model, the modelling procedure is useful because it forces the investigator to consider the life history of the species when determining what parameters should be estimated from field studies and provides a context for evaluating the relative importance of demographic parameters. Models have been little used in the study of the population dynamics of passerine birds because of: (1) widespread misunderstandings of the model structures and parameterizations, (2) a lack of knowledge of life histories of many species, (3) difficulties in obtaining statistically reliable estimates of demographic parameters for most passerine species, and (4) confusion about functional relationships among demographic parameters. As a result, studies of passerine demography are often designed inappropriately and fail to provide essential data. We review appropriate models for passerine bird populations and illustrate their possible uses in evaluating the effects of management or other environmental influences on population dynamics. We identify environmental influences on population dynamics. We identify parameters that must be estimated from field data, briefly review existing statistical methods for obtaining valid estimates, and evaluate the present status of knowledge of these parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, J.K.; Smith, C.L.
The steps involved to incorporate parameter uncertainty into the Nuclear Regulatory Commission (NRC) accident sequence precursor (ASP) models is covered in this paper. Three different uncertainty distributions (i.e., lognormal, beta, gamma) were evaluated to Determine the most appropriate distribution. From the evaluation, it was Determined that the lognormal distribution will be used for the ASP models uncertainty parameters. Selection of the uncertainty parameters for the basic events is also discussed. This paper covers the process of determining uncertainty parameters for the supercomponent basic events (i.e., basic events that are comprised of more than one component which can have more thanmore » one failure mode) that are utilized in the ASP models. Once this is completed, the ASP model is ready to be utilized to propagate parameter uncertainty for event assessments.« less
Foglia, L.; Hill, Mary C.; Mehl, Steffen W.; Burlando, P.
2009-01-01
We evaluate the utility of three interrelated means of using data to calibrate the fully distributed rainfall‐runoff model TOPKAPI as applied to the Maggia Valley drainage area in Switzerland. The use of error‐based weighting of observation and prior information data, local sensitivity analysis, and single‐objective function nonlinear regression provides quantitative evaluation of sensitivity of the 35 model parameters to the data, identification of data types most important to the calibration, and identification of correlations among parameters that contribute to nonuniqueness. Sensitivity analysis required only 71 model runs, and regression required about 50 model runs. The approach presented appears to be ideal for evaluation of models with long run times or as a preliminary step to more computationally demanding methods. The statistics used include composite scaled sensitivities, parameter correlation coefficients, leverage, Cook's D, and DFBETAS. Tests suggest predictive ability of the calibrated model typical of hydrologic models.
NASA Astrophysics Data System (ADS)
de Saint Jean, C.; Habert, B.; Archier, P.; Noguere, G.; Bernard, D.; Tommasi, J.; Blaise, P.
2010-10-01
In the [eV;MeV] energy range, modelling of the neutron induced reactions are based on nuclear reaction models having parameters. Estimation of co-variances on cross sections or on nuclear reaction model parameters is a recurrent puzzle in nuclear data evaluation. Major breakthroughs were asked by nuclear reactor physicists to assess proper uncertainties to be used in applications. In this paper, mathematical methods developped in the CONRAD code[2] will be presented to explain the treatment of all type of uncertainties, including experimental ones (statistical and systematic) and propagate them to nuclear reaction model parameters or cross sections. Marginalization procedure will thus be exposed using analytical or Monte-Carlo solutions. Furthermore, one major drawback found by reactor physicist is the fact that integral or analytical experiments (reactor mock-up or simple integral experiment, e.g. ICSBEP, …) were not taken into account sufficiently soon in the evaluation process to remove discrepancies. In this paper, we will describe a mathematical framework to take into account properly this kind of information.
An evaluation of the hemiplegic subject based on the Bobath approach. Part I: The model.
Guarna, F; Corriveau, H; Chamberland, J; Arsenault, A B; Dutil, E; Drouin, G
1988-01-01
An evaluation, based on the Bobath approach to treatment has been developed. A model, substantiating this evaluation is presented. In this model, the three stages of motor recovery presented by Bobath have been extended to six, to better follow the progression of the patient. Six parameters have also been identified. These are the elements to be quantified so that the progress of the patient through the stages of motor recovery can be followed. Four of these parameters are borrowed from the Bobath approach, that is: postural reaction, muscle tone, reflex activity and active movement. Two have been added: sensorium and pain. An accompanying paper presents the evaluation protocol along with the operational definition of each of these parameters.
Reliability and performance evaluation of systems containing embedded rule-based expert systems
NASA Technical Reports Server (NTRS)
Beaton, Robert M.; Adams, Milton B.; Harrison, James V. A.
1989-01-01
A method for evaluating the reliability of real-time systems containing embedded rule-based expert systems is proposed and investigated. It is a three stage technique that addresses the impact of knowledge-base uncertainties on the performance of expert systems. In the first stage, a Markov reliability model of the system is developed which identifies the key performance parameters of the expert system. In the second stage, the evaluation method is used to determine the values of the expert system's key performance parameters. The performance parameters can be evaluated directly by using a probabilistic model of uncertainties in the knowledge-base or by using sensitivity analyses. In the third and final state, the performance parameters of the expert system are combined with performance parameters for other system components and subsystems to evaluate the reliability and performance of the complete system. The evaluation method is demonstrated in the context of a simple expert system used to supervise the performances of an FDI algorithm associated with an aircraft longitudinal flight-control system.
Advanced Method to Estimate Fuel Slosh Simulation Parameters
NASA Technical Reports Server (NTRS)
Schlee, Keith; Gangadharan, Sathya; Ristow, James; Sudermann, James; Walker, Charles; Hubert, Carl
2005-01-01
The nutation (wobble) of a spinning spacecraft in the presence of energy dissipation is a well-known problem in dynamics and is of particular concern for space missions. The nutation of a spacecraft spinning about its minor axis typically grows exponentially and the rate of growth is characterized by the Nutation Time Constant (NTC). For launch vehicles using spin-stabilized upper stages, fuel slosh in the spacecraft propellant tanks is usually the primary source of energy dissipation. For analytical prediction of the NTC this fuel slosh is commonly modeled using simple mechanical analogies such as pendulums or rigid rotors coupled to the spacecraft. Identifying model parameter values which adequately represent the sloshing dynamics is the most important step in obtaining an accurate NTC estimate. Analytic determination of the slosh model parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices and elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the equations of motion for the mechanical analog are hand-derived, evaluated, and their results are compared with the experimental results. The proposed research is an effort to automate the process of identifying the parameters of the slosh model using a MATLAB/SimMechanics-based computer simulation of the experimental setup. Different parameter estimation and optimization approaches are evaluated and compared in order to arrive at a reliable and effective parameter identification process. To evaluate each parameter identification approach, a simple one-degree-of-freedom pendulum experiment is constructed and motion is induced using an electric motor. By applying the estimation approach to a simple, accurately modeled system, its effectiveness and accuracy can be evaluated. The same experimental setup can then be used with fluid-filled tanks to further evaluate the effectiveness of the process. Ultimately, the proven process can be applied to the full-sized spinning experimental setup to quickly and accurately determine the slosh model parameters for a particular spacecraft mission. Automating the parameter identification process will save time, allow more changes to be made to proposed designs, and lower the cost in the initial design stages.
Tiedeman, C.R.; Hill, M.C.; D'Agnese, F. A.; Faunt, C.C.
2003-01-01
Calibrated models of groundwater systems can provide substantial information for guiding data collection. This work considers using such models to guide hydrogeologic data collection for improving model predictions by identifying model parameters that are most important to the predictions. Identification of these important parameters can help guide collection of field data about parameter values and associated flow system features and can lead to improved predictions. Methods for identifying parameters important to predictions include prediction scaled sensitivities (PSS), which account for uncertainty on individual parameters as well as prediction sensitivity to parameters, and a new "value of improved information" (VOII) method presented here, which includes the effects of parameter correlation in addition to individual parameter uncertainty and prediction sensitivity. In this work, the PSS and VOII methods are demonstrated and evaluated using a model of the Death Valley regional groundwater flow system. The predictions of interest are advective transport paths originating at sites of past underground nuclear testing. Results show that for two paths evaluated the most important parameters include a subset of five or six of the 23 defined model parameters. Some of the parameters identified as most important are associated with flow system attributes that do not lie in the immediate vicinity of the paths. Results also indicate that the PSS and VOII methods can identify different important parameters. Because the methods emphasize somewhat different criteria for parameter importance, it is suggested that parameters identified by both methods be carefully considered in subsequent data collection efforts aimed at improving model predictions.
Kumar, B Shiva; Venkateswarlu, Ch
2014-08-01
The complex nature of biological reactions in biofilm reactors often poses difficulties in analyzing such reactors experimentally. Mathematical models could be very useful for their design and analysis. However, application of biofilm reactor models to practical problems proves somewhat ineffective due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, we propose an inverse modeling approach based on tabu search (TS) to estimate the parameters of kinetic and film thickness models. TS is used to estimate these parameters as a consequence of the validation of the mathematical models of the process with the aid of measured data obtained from an experimental fixed-bed anaerobic biofilm reactor involving the treatment of pharmaceutical industry wastewater. The results evaluated for different modeling configurations of varying degrees of complexity illustrate the effectiveness of TS for accurate estimation of kinetic and film thickness model parameters of the biofilm process. The results show that the two-dimensional mathematical model with Edward kinetics (with its optimum parameters as mu(max)rho(s)/Y = 24.57, Ks = 1.352 and Ki = 102.36) and three-parameter film thickness expression (with its estimated parameters as a = 0.289 x 10(-5), b = 1.55 x 10(-4) and c = 15.2 x 10(-6)) better describes the biofilm reactor treating the industry wastewater.
The purpose of this report is to develop a database of physiological parameters needed for understanding and evaluating performance of the APEX and SHEDS exposure/intake dose rate model used by the Environmental Protection Agency (EPA) as part of its regulatory activities. The A...
Ramsay-Curve Item Response Theory for the Three-Parameter Logistic Item Response Model
ERIC Educational Resources Information Center
Woods, Carol M.
2008-01-01
In Ramsay-curve item response theory (RC-IRT), the latent variable distribution is estimated simultaneously with the item parameters of a unidimensional item response model using marginal maximum likelihood estimation. This study evaluates RC-IRT for the three-parameter logistic (3PL) model with comparisons to the normal model and to the empirical…
Sample Size and Item Parameter Estimation Precision When Utilizing the One-Parameter "Rasch" Model
ERIC Educational Resources Information Center
Custer, Michael
2015-01-01
This study examines the relationship between sample size and item parameter estimation precision when utilizing the one-parameter model. Item parameter estimates are examined relative to "true" values by evaluating the decline in root mean squared deviation (RMSD) and the number of outliers as sample size increases. This occurs across…
NASA Astrophysics Data System (ADS)
Demaria, Eleonora M.; Nijssen, Bart; Wagener, Thorsten
2007-06-01
Current land surface models use increasingly complex descriptions of the processes that they represent. Increase in complexity is accompanied by an increase in the number of model parameters, many of which cannot be measured directly at large spatial scales. A Monte Carlo framework was used to evaluate the sensitivity and identifiability of ten parameters controlling surface and subsurface runoff generation in the Variable Infiltration Capacity model (VIC). Using the Monte Carlo Analysis Toolbox (MCAT), parameter sensitivities were studied for four U.S. watersheds along a hydroclimatic gradient, based on a 20-year data set developed for the Model Parameter Estimation Experiment (MOPEX). Results showed that simulated streamflows are sensitive to three parameters when evaluated with different objective functions. Sensitivity of the infiltration parameter (b) and the drainage parameter (exp) were strongly related to the hydroclimatic gradient. The placement of vegetation roots played an important role in the sensitivity of model simulations to the thickness of the second soil layer (thick2). Overparameterization was found in the base flow formulation indicating that a simplified version could be implemented. Parameter sensitivity was more strongly dictated by climatic gradients than by changes in soil properties. Results showed how a complex model can be reduced to a more parsimonious form, leading to a more identifiable model with an increased chance of successful regionalization to ungauged basins. Although parameter sensitivities are strictly valid for VIC, this model is representative of a wider class of macroscale hydrological models. Consequently, the results and methodology will have applicability to other hydrological models.
NASA Astrophysics Data System (ADS)
Beck, Hylke; de Roo, Ad; van Dijk, Albert; McVicar, Tim; Miralles, Diego; Schellekens, Jaap; Bruijnzeel, Sampurno; de Jeu, Richard
2015-04-01
Motivated by the lack of large-scale model parameter regionalization studies, a large set of 3328 small catchments (< 10000 km2) around the globe was used to set up and evaluate five model parameterization schemes at global scale. The HBV-light model was chosen because of its parsimony and flexibility to test the schemes. The catchments were calibrated against observed streamflow (Q) using an objective function incorporating both behavioral and goodness-of-fit measures, after which the catchment set was split into subsets of 1215 donor and 2113 evaluation catchments based on the calibration performance. The donor catchments were subsequently used to derive parameter sets that were transferred to similar grid cells based on a similarity measure incorporating climatic and physiographic characteristics, thereby producing parameter maps with global coverage. Overall, there was a lack of suitable donor catchments for mountainous and tropical environments. The schemes with spatially-uniform parameter sets (EXP2 and EXP3) achieved the worst Q estimation performance in the evaluation catchments, emphasizing the importance of parameter regionalization. The direct transfer of calibrated parameter sets from donor catchments to similar grid cells (scheme EXP1) performed best, although there was still a large performance gap between EXP1 and HBV-light calibrated against observed Q. The schemes with parameter sets obtained by simultaneously calibrating clusters of similar donor catchments (NC10 and NC58) performed worse than EXP1. The relatively poor Q estimation performance achieved by two (uncalibrated) macro-scale hydrological models suggests there is considerable merit in regionalizing the parameters of such models. The global HBV-light parameter maps and ancillary data are freely available via http://water.jrc.ec.europa.eu.
NASA Astrophysics Data System (ADS)
Capote, R.; Herman, M.; Obložinský, P.; Young, P. G.; Goriely, S.; Belgya, T.; Ignatyuk, A. V.; Koning, A. J.; Hilaire, S.; Plujko, V. A.; Avrigeanu, M.; Bersillon, O.; Chadwick, M. B.; Fukahori, T.; Ge, Zhigang; Han, Yinlu; Kailas, S.; Kopecky, J.; Maslov, V. M.; Reffo, G.; Sin, M.; Soukhovitskii, E. Sh.; Talou, P.
2009-12-01
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released in January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and γ-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from 51V to 239Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capote, R.; Herman, M.; Oblozinsky, P.
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through (http://www-nds.iaea.org/RIPL-3/). This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capote, R.; Herman, M.; Capote,R.
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less
ERIC Educational Resources Information Center
Karkee, Thakur B.; Wright, Karen R.
2004-01-01
Different item response theory (IRT) models may be employed for item calibration. Change of testing vendors, for example, may result in the adoption of a different model than that previously used with a testing program. To provide scale continuity and preserve cut score integrity, item parameter estimates from the new model must be linked to the…
NASA Astrophysics Data System (ADS)
Di, Zhenhua; Duan, Qingyun; Wang, Chen; Ye, Aizhong; Miao, Chiyuan; Gong, Wei
2018-03-01
Forecasting skills of the complex weather and climate models have been improved by tuning the sensitive parameters that exert the greatest impact on simulated results based on more effective optimization methods. However, whether the optimal parameter values are still work when the model simulation conditions vary, which is a scientific problem deserving of study. In this study, a highly-effective optimization method, adaptive surrogate model-based optimization (ASMO), was firstly used to tune nine sensitive parameters from four physical parameterization schemes of the Weather Research and Forecasting (WRF) model to obtain better summer precipitation forecasting over the Greater Beijing Area in China. Then, to assess the applicability of the optimal parameter values, simulation results from the WRF model with default and optimal parameter values were compared across precipitation events, boundary conditions, spatial scales, and physical processes in the Greater Beijing Area. The summer precipitation events from 6 years were used to calibrate and evaluate the optimal parameter values of WRF model. Three boundary data and two spatial resolutions were adopted to evaluate the superiority of the calibrated optimal parameters to default parameters under the WRF simulations with different boundary conditions and spatial resolutions, respectively. Physical interpretations of the optimal parameters indicating how to improve precipitation simulation results were also examined. All the results showed that the optimal parameters obtained by ASMO are superior to the default parameters for WRF simulations for predicting summer precipitation in the Greater Beijing Area because the optimal parameters are not constrained by specific precipitation events, boundary conditions, and spatial resolutions. The optimal values of the nine parameters were determined from 127 parameter samples using the ASMO method, which showed that the ASMO method is very highly-efficient for optimizing WRF model parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Huiying; Hou, Zhangshuan; Huang, Maoyi
The Community Land Model (CLM) represents physical, chemical, and biological processes of the terrestrial ecosystems that interact with climate across a range of spatial and temporal scales. As CLM includes numerous sub-models and associated parameters, the high-dimensional parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system predictions needed to assess environmental changes and risks. This study aims to evaluate the potential of transferring hydrologic model parameters in CLM through sensitivity analyses and classification across watersheds from the Model Parameter Estimation Experiment (MOPEX) in the United States. The sensitivity of CLM-simulated water and energy fluxes to hydrologicalmore » parameters across 431 MOPEX basins are first examined using an efficient stochastic sampling-based sensitivity analysis approach. Linear, interaction, and high-order nonlinear impacts are all identified via statistical tests and stepwise backward removal parameter screening. The basins are then classified accordingly to their parameter sensitivity patterns (internal attributes), as well as their hydrologic indices/attributes (external hydrologic factors) separately, using a Principal component analyses (PCA) and expectation-maximization (EM) –based clustering approach. Similarities and differences among the parameter sensitivity-based classification system (S-Class), the hydrologic indices-based classification (H-Class), and the Koppen climate classification systems (K-Class) are discussed. Within each S-class with similar parameter sensitivity characteristics, similar inversion modeling setups can be used for parameter calibration, and the parameters and their contribution or significance to water and energy cycling may also be more transferrable. This classification study provides guidance on identifiable parameters, and on parameterization and inverse model design for CLM but the methodology is applicable to other models. Inverting parameters at representative sites belonging to the same class can significantly reduce parameter calibration efforts.« less
NASA Astrophysics Data System (ADS)
Luke, Adam; Vrugt, Jasper A.; AghaKouchak, Amir; Matthew, Richard; Sanders, Brett F.
2017-07-01
Nonstationary extreme value analysis (NEVA) can improve the statistical representation of observed flood peak distributions compared to stationary (ST) analysis, but management of flood risk relies on predictions of out-of-sample distributions for which NEVA has not been comprehensively evaluated. In this study, we apply split-sample testing to 1250 annual maximum discharge records in the United States and compare the predictive capabilities of NEVA relative to ST extreme value analysis using a log-Pearson Type III (LPIII) distribution. The parameters of the LPIII distribution in the ST and nonstationary (NS) models are estimated from the first half of each record using Bayesian inference. The second half of each record is reserved to evaluate the predictions under the ST and NS models. The NS model is applied for prediction by (1) extrapolating the trend of the NS model parameters throughout the evaluation period and (2) using the NS model parameter values at the end of the fitting period to predict with an updated ST model (uST). Our analysis shows that the ST predictions are preferred, overall. NS model parameter extrapolation is rarely preferred. However, if fitting period discharges are influenced by physical changes in the watershed, for example from anthropogenic activity, the uST model is strongly preferred relative to ST and NS predictions. The uST model is therefore recommended for evaluation of current flood risk in watersheds that have undergone physical changes. Supporting information includes a MATLAB® program that estimates the (ST/NS/uST) LPIII parameters from annual peak discharge data through Bayesian inference.
Liu, Feng; Chen, Long; Rao, Hui-Ying; Teng, Xiao; Ren, Ya-Yun; Lu, Yan-Qiang; Zhang, Wei; Wu, Nan; Liu, Fang-Fang; Wei, Lai
2017-01-01
Animal models provide a useful platform for developing and testing new drugs to treat liver fibrosis. Accordingly, we developed a novel automated system to evaluate liver fibrosis in rodent models. This system uses second-harmonic generation (SHG)/two-photon excited fluorescence (TPEF) microscopy to assess a total of four mouse and rat models, using chemical treatment with either thioacetamide (TAA) or carbon tetrachloride (CCl 4 ), and a surgical method, bile duct ligation (BDL). The results obtained by the new technique were compared with that using Ishak fibrosis scores and two currently used quantitative methods for determining liver fibrosis: the collagen proportionate area (CPA) and measurement of hydroxyproline (HYP) content. We show that 11 shared morphological parameters faithfully recapitulate Ishak fibrosis scores in the models, with high area under the receiver operating characteristic (ROC) curve (AUC) performance. The AUC values of 11 shared parameters were greater than that of the CPA (TAA: 0.758-0.922 vs 0.752-0.908; BDL: 0.874-0.989 vs 0.678-0.966) in the TAA mice and BDL rat models and similar to that of the CPA in the TAA rat and CCl 4 mouse models. Similarly, based on the trends in these parameters at different time points, 9, 10, 7, and 2 model-specific parameters were selected for the TAA rats, TAA mice, CCl 4 mice, and BDL rats, respectively. These parameters identified differences among the time points in the four models, with high AUC accuracy, and the corresponding AUC values of these parameters were greater compared with those of the CPA in the TAA rat and mouse models (rats: 0.769-0.894 vs 0.64-0.799; mice: 0.87-0.93 vs 0.739-0.836) and similar to those of the CPA in the CCl 4 mouse and BDL rat models. Similarly, the AUC values of 11 shared parameters and model-specific parameters were greater than those of HYP in the TAA rats, TAA mice, and CCl 4 mouse models and were similar to those of HYP in the BDL rat models. The automated evaluation system, combined with 11 shared parameters and model-specific parameters, could specifically, accurately, and quantitatively stage liver fibrosis in animal models.
Doherty, John E.; Hunt, Randall J.; Tonkin, Matthew J.
2010-01-01
Analysis of the uncertainty associated with parameters used by a numerical model, and with predictions that depend on those parameters, is fundamental to the use of modeling in support of decisionmaking. Unfortunately, predictive uncertainty analysis with regard to models can be very computationally demanding, due in part to complex constraints on parameters that arise from expert knowledge of system properties on the one hand (knowledge constraints) and from the necessity for the model parameters to assume values that allow the model to reproduce historical system behavior on the other hand (calibration constraints). Enforcement of knowledge and calibration constraints on parameters used by a model does not eliminate the uncertainty in those parameters. In fact, in many cases, enforcement of calibration constraints simply reduces the uncertainties associated with a number of broad-scale combinations of model parameters that collectively describe spatially averaged system properties. The uncertainties associated with other combinations of parameters, especially those that pertain to small-scale parameter heterogeneity, may not be reduced through the calibration process. To the extent that a prediction depends on system-property detail, its postcalibration variability may be reduced very little, if at all, by applying calibration constraints; knowledge constraints remain the only limits on the variability of predictions that depend on such detail. Regrettably, in many common modeling applications, these constraints are weak. Though the PEST software suite was initially developed as a tool for model calibration, recent developments have focused on the evaluation of model-parameter and predictive uncertainty. As a complement to functionality that it provides for highly parameterized inversion (calibration) by means of formal mathematical regularization techniques, the PEST suite provides utilities for linear and nonlinear error-variance and uncertainty analysis in these highly parameterized modeling contexts. Availability of these utilities is particularly important because, in many cases, a significant proportion of the uncertainty associated with model parameters-and the predictions that depend on them-arises from differences between the complex properties of the real world and the simplified representation of those properties that is expressed by the calibrated model. This report is intended to guide intermediate to advanced modelers in the use of capabilities available with the PEST suite of programs for evaluating model predictive error and uncertainty. A brief theoretical background is presented on sources of parameter and predictive uncertainty and on the means for evaluating this uncertainty. Applications of PEST tools are then discussed for overdetermined and underdetermined problems, both linear and nonlinear. PEST tools for calculating contributions to model predictive uncertainty, as well as optimization of data acquisition for reducing parameter and predictive uncertainty, are presented. The appendixes list the relevant PEST variables, files, and utilities required for the analyses described in the document.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansourekidou, P; Allen, C
2015-06-15
Purpose: To evaluate the Raystation v4.51 Electron Monte Carlo algorithm for Varian Trilogy, IX and 2100 series linear accelerators and commission for clinical use. Methods: Seventy two water and forty air scans were acquired with a water tank in the form of profiles and depth doses, as requested by vendor. Data was imported into Rayphysics beam modeling module. Energy spectrum was modeled using seven parameters. Contamination photons were modeled using five parameters. Source phase space was modeled using six parameters. Calculations were performed in clinical version 4.51 and percent depth dose curves and profiles were extracted to be compared tomore » water tank measurements. Sensitivity tests were performed for all parameters. Grid size and particle histories were evaluated per energy for statistical uncertainty performance. Results: Model accuracy for air profiles is poor in the shoulder and penumbra region. However, model accuracy for water scans is acceptable. All energies and cones are within 2%/2mm for 90% of the points evaluated. Source phase space parameters have a cumulative effect. To achieve distributions with satisfactory smoothness level a 0.1cm grid and 3,000,000 particle histories were used for commissioning calculations. Calculation time was approximately 3 hours per energy. Conclusion: Raystation electron Monte Carlo is acceptable for clinical use for the Varian accelerators listed. Results are inferior to Elekta Electron Monte Carlo modeling. Known issues were reported to Raysearch and will be resolved in upcoming releases. Auto-modeling is limited to open cone depth dose curves and needs expansion.« less
Yang, Huan; Meijer, Hil G E; Buitenweg, Jan R; van Gils, Stephan A
2016-01-01
Healthy or pathological states of nociceptive subsystems determine different stimulus-response relations measured from quantitative sensory testing. In turn, stimulus-response measurements may be used to assess these states. In a recently developed computational model, six model parameters characterize activation of nerve endings and spinal neurons. However, both model nonlinearity and limited information in yes-no detection responses to electrocutaneous stimuli challenge to estimate model parameters. Here, we address the question whether and how one can overcome these difficulties for reliable parameter estimation. First, we fit the computational model to experimental stimulus-response pairs by maximizing the likelihood. To evaluate the balance between model fit and complexity, i.e., the number of model parameters, we evaluate the Bayesian Information Criterion. We find that the computational model is better than a conventional logistic model regarding the balance. Second, our theoretical analysis suggests to vary the pulse width among applied stimuli as a necessary condition to prevent structural non-identifiability. In addition, the numerically implemented profile likelihood approach reveals structural and practical non-identifiability. Our model-based approach with integration of psychophysical measurements can be useful for a reliable assessment of states of the nociceptive system.
Evaluation of Potential Evapotranspiration from a Hydrologic Model on a National Scale
NASA Astrophysics Data System (ADS)
Hakala, K. A.; Hay, L.; Markstrom, S. L.
2014-12-01
The US Geological Survey has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development and facilitate the application of simulations on the scale of the continental US. The NHM has a consistent geospatial fabric for modeling, consisting of over 100,000 hydrologic response units (HRUs). Each HRU requires accurate parameter estimates, some of which are attained from automated calibration. However, improved calibration can be achieved by initially utilizing as many parameters as possible from national data sets. This presentation investigates the effectiveness of calculating potential evapotranspiration (PET) parameters based on mean monthly values from the NOAA PET Atlas. Additional PET products are then used to evaluate the PET parameters. Effectively utilizing existing national-scale data sets can simplify the effort in establishing a robust NHM.
NASA Astrophysics Data System (ADS)
Moon, Byung-Young
2005-12-01
The hybrid neural-genetic multi-model parameter estimation algorithm was demonstrated. This method can be applied to structured system identification of electro-hydraulic servo system. This algorithms consist of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. To evaluate the proposed method, electro-hydraulic servo system was designed and manufactured. The experiment was carried out to figure out the hybrid neural-genetic multi-model parameter estimation algorithm. As a result, the dynamic characteristics were obtained such as the parameters(mass, damping coefficient, bulk modulus, spring coefficient), which minimize total square error. The result of this study can be applied to hydraulic systems in industrial fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Raymond H.; Truax, Ryan A.; Lankford, David A.
Solid-phase iron concentrations and generalized composite surface complexation models were used to evaluate procedures in determining uranium sorption on oxidized aquifer material at a proposed U in situ recovery (ISR) site. At the proposed Dewey Burdock ISR site in South Dakota, USA, oxidized aquifer material occurs downgradient of the U ore zones. Solid-phase Fe concentrations did not explain our batch sorption test results,though total extracted Fe appeared to be positively correlated with overall measured U sorption. Batch sorption test results were used to develop generalized composite surface complexation models that incorporated the full genericsorption potential of each sample, without detailedmore » mineralogiccharacterization. The resultant models provide U sorption parameters (site densities and equilibrium constants) for reactive transport modeling. The generalized composite surface complexation sorption models were calibrated to batch sorption data from three oxidized core samples using inverse modeling, and gave larger sorption parameters than just U sorption on the measured solidphase Fe. These larger sorption parameters can significantly influence reactive transport modeling, potentially increasing U attenuation. Because of the limited number of calibration points, inverse modeling required the reduction of estimated parameters by fixing two parameters. The best-fit models used fixed values for equilibrium constants, with the sorption site densities being estimated by the inversion process. While these inverse routines did provide best-fit sorption parameters, local minima and correlated parameters might require further evaluation. Despite our limited number of proxy samples, the procedures presented provide a valuable methodology to consider for sites where metal sorption parameters are required. Furthermore, these sorption parameters can be used in reactive transport modeling to assess downgradient metal attenuation, especially when no other calibration data are available, such as at proposed U ISR sites.« less
Johnson, Raymond H.; Truax, Ryan A.; Lankford, David A.; ...
2016-02-03
Solid-phase iron concentrations and generalized composite surface complexation models were used to evaluate procedures in determining uranium sorption on oxidized aquifer material at a proposed U in situ recovery (ISR) site. At the proposed Dewey Burdock ISR site in South Dakota, USA, oxidized aquifer material occurs downgradient of the U ore zones. Solid-phase Fe concentrations did not explain our batch sorption test results,though total extracted Fe appeared to be positively correlated with overall measured U sorption. Batch sorption test results were used to develop generalized composite surface complexation models that incorporated the full genericsorption potential of each sample, without detailedmore » mineralogiccharacterization. The resultant models provide U sorption parameters (site densities and equilibrium constants) for reactive transport modeling. The generalized composite surface complexation sorption models were calibrated to batch sorption data from three oxidized core samples using inverse modeling, and gave larger sorption parameters than just U sorption on the measured solidphase Fe. These larger sorption parameters can significantly influence reactive transport modeling, potentially increasing U attenuation. Because of the limited number of calibration points, inverse modeling required the reduction of estimated parameters by fixing two parameters. The best-fit models used fixed values for equilibrium constants, with the sorption site densities being estimated by the inversion process. While these inverse routines did provide best-fit sorption parameters, local minima and correlated parameters might require further evaluation. Despite our limited number of proxy samples, the procedures presented provide a valuable methodology to consider for sites where metal sorption parameters are required. Furthermore, these sorption parameters can be used in reactive transport modeling to assess downgradient metal attenuation, especially when no other calibration data are available, such as at proposed U ISR sites.« less
Towards a covariance matrix of CAB model parameters for H(H2O)
NASA Astrophysics Data System (ADS)
Scotta, Juan Pablo; Noguere, Gilles; Damian, José Ignacio Marquez
2017-09-01
Preliminary results on the uncertainties of hydrogen into light water thermal scattering law of the CAB model are presented. It was done through a coupling between the nuclear data code CONRAD and the molecular dynamic simulations code GROMACS. The Generalized Least Square method was used to adjust the model parameters on evaluated data and generate covariance matrices between the CAB model parameters.
A preliminary evaluation of an F100 engine parameter estimation process using flight data
NASA Technical Reports Server (NTRS)
Maine, Trindel A.; Gilyard, Glenn B.; Lambert, Heather H.
1990-01-01
The parameter estimation algorithm developed for the F100 engine is described. The algorithm is a two-step process. The first step consists of a Kalman filter estimation of five deterioration parameters, which model the off-nominal behavior of the engine during flight. The second step is based on a simplified steady-state model of the compact engine model (CEM). In this step, the control vector in the CEM is augmented by the deterioration parameters estimated in the first step. The results of an evaluation made using flight data from the F-15 aircraft are presented, indicating that the algorithm can provide reasonable estimates of engine variables for an advanced propulsion control law development.
A preliminary evaluation of an F100 engine parameter estimation process using flight data
NASA Technical Reports Server (NTRS)
Maine, Trindel A.; Gilyard, Glenn B.; Lambert, Heather H.
1990-01-01
The parameter estimation algorithm developed for the F100 engine is described. The algorithm is a two-step process. The first step consists of a Kalman filter estimation of five deterioration parameters, which model the off-nominal behavior of the engine during flight. The second step is based on a simplified steady-state model of the 'compact engine model' (CEM). In this step the control vector in the CEM is augmented by the deterioration parameters estimated in the first step. The results of an evaluation made using flight data from the F-15 aircraft are presented, indicating that the algorithm can provide reasonable estimates of engine variables for an advanced propulsion-control-law development.
Evaluating the 239Pu prompt fission neutron spectrum induced by thermal to 30 MeV neutrons
Neudecker, Denise; Talou, Patrick; Kawano, Toshihiko; ...
2016-03-15
We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS) induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. In conclusion, selected evaluation results and first benchmarkmore » calculations using this evaluation are briefly discussed.« less
Implementation of an Integrated On-Board Aircraft Engine Diagnostic Architecture
NASA Technical Reports Server (NTRS)
Armstrong, Jeffrey B.; Simon, Donald L.
2012-01-01
An on-board diagnostic architecture for aircraft turbofan engine performance trending, parameter estimation, and gas-path fault detection and isolation has been developed and evaluated in a simulation environment. The architecture incorporates two independent models: a realtime self-tuning performance model providing parameter estimates and a performance baseline model for diagnostic purposes reflecting long-term engine degradation trends. This architecture was evaluated using flight profiles generated from a nonlinear model with realistic fleet engine health degradation distributions and sensor noise. The architecture was found to produce acceptable estimates of engine health and unmeasured parameters, and the integrated diagnostic algorithms were able to perform correct fault isolation in approximately 70 percent of the tested cases
Alikhani, Jamal; Takacs, Imre; Al-Omari, Ahmed; Murthy, Sudhir; Massoudieh, Arash
2017-03-01
A parameter estimation framework was used to evaluate the ability of observed data from a full-scale nitrification-denitrification bioreactor to reduce the uncertainty associated with the bio-kinetic and stoichiometric parameters of an activated sludge model (ASM). Samples collected over a period of 150 days from the effluent as well as from the reactor tanks were used. A hybrid genetic algorithm and Bayesian inference were used to perform deterministic and parameter estimations, respectively. The main goal was to assess the ability of the data to obtain reliable parameter estimates for a modified version of the ASM. The modified ASM model includes methylotrophic processes which play the main role in methanol-fed denitrification. Sensitivity analysis was also used to explain the ability of the data to provide information about each of the parameters. The results showed that the uncertainty in the estimates of the most sensitive parameters (including growth rate, decay rate, and yield coefficients) decreased with respect to the prior information.
A new multistage groundwater transport inverse method: presentation, evaluation, and implications
Anderman, Evan R.; Hill, Mary C.
1999-01-01
More computationally efficient methods of using concentration data are needed to estimate groundwater flow and transport parameters. This work introduces and evaluates a three‐stage nonlinear‐regression‐based iterative procedure in which trial advective‐front locations link decoupled flow and transport models. Method accuracy and efficiency are evaluated by comparing results to those obtained when flow‐ and transport‐model parameters are estimated simultaneously. The new method is evaluated as conclusively as possible by using a simple test case that includes distinct flow and transport parameters, but does not include any approximations that are problem dependent. The test case is analytical; the only flow parameter is a constant velocity, and the transport parameters are longitudinal and transverse dispersivity. Any difficulties detected using the new method in this ideal situation are likely to be exacerbated in practical problems. Monte‐Carlo analysis of observation error ensures that no specific error realization obscures the results. Results indicate that, while this, and probably other, multistage methods do not always produce optimal parameter estimates, the computational advantage may make them useful in some circumstances, perhaps as a precursor to using a simultaneous method.
An Evaluation of Hierarchical Bayes Estimation for the Two- Parameter Logistic Model.
ERIC Educational Resources Information Center
Kim, Seock-Ho
Hierarchical Bayes procedures for the two-parameter logistic item response model were compared for estimating item parameters. Simulated data sets were analyzed using two different Bayes estimation procedures, the two-stage hierarchical Bayes estimation (HB2) and the marginal Bayesian with known hyperparameters (MB), and marginal maximum…
The input variables for a numerical model of reactive solute transport in groundwater include both transport parameters, such as hydraulic conductivity and infiltration, and reaction parameters that describe the important chemical and biological processes in the system. These pa...
External Evaluation of Two Fluconazole Infant Population Pharmacokinetic Models
Hwang, Michael F.; Beechinor, Ryan J.; Wade, Kelly C.; Benjamin, Daniel K.; Smith, P. Brian; Hornik, Christoph P.; Capparelli, Edmund V.; Duara, Shahnaz; Kennedy, Kathleen A.; Cohen-Wolkowiez, Michael
2017-01-01
ABSTRACT Fluconazole is an antifungal agent used for the treatment of invasive candidiasis, a leading cause of morbidity and mortality in premature infants. Population pharmacokinetic (PK) models of fluconazole in infants have been previously published by Wade et al. (Antimicrob Agents Chemother 52:4043–4049, 2008, https://doi.org/10.1128/AAC.00569-08) and Momper et al. (Antimicrob Agents Chemother 60:5539–5545, 2016, https://doi.org/10.1128/AAC.00963-16). Here we report the results of the first external evaluation of the predictive performance of both models. We used patient-level data from both studies to externally evaluate both PK models. The predictive performance of each model was evaluated using the model prediction error (PE), mean prediction error (MPE), mean absolute prediction error (MAPE), prediction-corrected visual predictive check (pcVPC), and normalized prediction distribution errors (NPDE). The values of the parameters of each model were reestimated using both the external and merged data sets. When evaluated with the external data set, the model proposed by Wade et al. showed lower median PE, MPE, and MAPE (0.429 μg/ml, 41.9%, and 57.6%, respectively) than the model proposed by Momper et al. (2.45 μg/ml, 188%, and 195%, respectively). The values of the majority of reestimated parameters were within 20% of their respective original parameter values for all model evaluations. Our analysis determined that though both models are robust, the model proposed by Wade et al. had greater accuracy and precision than the model proposed by Momper et al., likely because it was derived from a patient population with a wider age range. This study highlights the importance of the external evaluation of infant population PK models. PMID:28893774
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiali; Han, Yuefeng; Stein, Michael L.
2016-02-10
The Weather Research and Forecast (WRF) model downscaling skill in extreme maximum daily temperature is evaluated by using the generalized extreme value (GEV) distribution. While the GEV distribution has been used extensively in climatology and meteorology for estimating probabilities of extreme events, accurately estimating GEV parameters based on data from a single pixel can be difficult, even with fairly long data records. This work proposes a simple method assuming that the shape parameter, the most difficult of the three parameters to estimate, does not vary over a relatively large region. This approach is applied to evaluate 31-year WRF-downscaled extreme maximummore » temperature through comparison with North American Regional Reanalysis (NARR) data. Uncertainty in GEV parameter estimates and the statistical significance in the differences of estimates between WRF and NARR are accounted for by conducting bootstrap resampling. Despite certain biases over parts of the United States, overall, WRF shows good agreement with NARR in the spatial pattern and magnitudes of GEV parameter estimates. Both WRF and NARR show a significant increase in extreme maximum temperature over the southern Great Plains and southeastern United States in January and over the western United States in July. The GEV model shows clear benefits from the regionally constant shape parameter assumption, for example, leading to estimates of the location and scale parameters of the model that show coherent spatial patterns.« less
Evaluation of Potential Evapotranspiration from a Hydrologic Model on a National Scale
NASA Astrophysics Data System (ADS)
Hakala, Kirsti; Markstrom, Steven; Hay, Lauren
2015-04-01
The U.S. Geological Survey has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development and facilitate the application of simulations on the scale of the continental U.S. The NHM has a consistent geospatial fabric for modeling, consisting of over 100,000 hydrologic response units HRUs). Each HRU requires accurate parameter estimates, some of which are attained from automated calibration. However, improved calibration can be achieved by initially utilizing as many parameters as possible from national data sets. This presentation investigates the effectiveness of calculating potential evapotranspiration (PET) parameters based on mean monthly values from the NOAA PET Atlas. Additional PET products are then used to evaluate the PET parameters. Effectively utilizing existing national-scale data sets can simplify the effort in establishing a robust NHM.
Quality of traffic flow on urban arterial streets and its relationship with safety.
Dixit, Vinayak V; Pande, Anurag; Abdel-Aty, Mohamed; Das, Abhishek; Radwan, Essam
2011-09-01
The two-fluid model for vehicular traffic flow explains the traffic on arterials as a mix of stopped and running vehicles. It describes the relationship between the vehicles' running speed and the fraction of running vehicles. The two parameters of the model essentially represent 'free flow' travel time and level of interaction among vehicles, and may be used to evaluate urban roadway networks and urban corridors with partially limited access. These parameters are influenced by not only the roadway characteristics but also by behavioral aspects of driver population, e.g., aggressiveness. Two-fluid models are estimated for eight arterial corridors in Orlando, FL for this study. The parameters of the two-fluid model were used to evaluate corridor level operations and the correlations of these parameters' with rates of crashes having different types/severity. Significant correlations were found between two-fluid parameters and rear-end and angle crash rates. Rate of severe crashes was also found to be significantly correlated with the model parameter signifying inter-vehicle interactions. While there is need for further analysis, the findings suggest that the two-fluid model parameters may have potential as surrogate measures for traffic safety on urban arterial streets. Copyright © 2011 Elsevier Ltd. All rights reserved.
A probabilistic model framework for evaluating year-to-year variation in crop productivity
NASA Astrophysics Data System (ADS)
Yokozawa, M.; Iizumi, T.; Tao, F.
2008-12-01
Most models describing the relation between crop productivity and weather condition have so far been focused on mean changes of crop yield. For keeping stable food supply against abnormal weather as well as climate change, evaluating the year-to-year variations in crop productivity rather than the mean changes is more essential. We here propose a new framework of probabilistic model based on Bayesian inference and Monte Carlo simulation. As an example, we firstly introduce a model on paddy rice production in Japan. It is called PRYSBI (Process- based Regional rice Yield Simulator with Bayesian Inference; Iizumi et al., 2008). The model structure is the same as that of SIMRIW, which was developed and used widely in Japan. The model includes three sub- models describing phenological development, biomass accumulation and maturing of rice crop. These processes are formulated to include response nature of rice plant to weather condition. This model inherently was developed to predict rice growth and yield at plot paddy scale. We applied it to evaluate the large scale rice production with keeping the same model structure. Alternatively, we assumed the parameters as stochastic variables. In order to let the model catch up actual yield at larger scale, model parameters were determined based on agricultural statistical data of each prefecture of Japan together with weather data averaged over the region. The posterior probability distribution functions (PDFs) of parameters included in the model were obtained using Bayesian inference. The MCMC (Markov Chain Monte Carlo) algorithm was conducted to numerically solve the Bayesian theorem. For evaluating the year-to-year changes in rice growth/yield under this framework, we firstly iterate simulations with set of parameter values sampled from the estimated posterior PDF of each parameter and then take the ensemble mean weighted with the posterior PDFs. We will also present another example for maize productivity in China. The framework proposed here provides us information on uncertainties, possibilities and limitations on future improvements in crop model as well.
Performance Model and Sensitivity Analysis for a Solar Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Rehman, Naveed Ur; Siddiqui, Mubashir Ali
2017-03-01
In this paper, a regression model for evaluating the performance of solar concentrated thermoelectric generators (SCTEGs) is established and the significance of contributing parameters is discussed in detail. The model is based on several natural, design and operational parameters of the system, including the thermoelectric generator (TEG) module and its intrinsic material properties, the connected electrical load, concentrator attributes, heat transfer coefficients, solar flux, and ambient temperature. The model is developed by fitting a response curve, using the least-squares method, to the results. The sample points for the model were obtained by simulating a thermodynamic model, also developed in this paper, over a range of values of input variables. These samples were generated employing the Latin hypercube sampling (LHS) technique using a realistic distribution of parameters. The coefficient of determination was found to be 99.2%. The proposed model is validated by comparing the predicted results with those in the published literature. In addition, based on the elasticity for parameters in the model, sensitivity analysis was performed and the effects of parameters on the performance of SCTEGs are discussed in detail. This research will contribute to the design and performance evaluation of any SCTEG system for a variety of applications.
NASA Astrophysics Data System (ADS)
Hameed, M.; Demirel, M. C.; Moradkhani, H.
2015-12-01
Global Sensitivity Analysis (GSA) approach helps identify the effectiveness of model parameters or inputs and thus provides essential information about the model performance. In this study, the effects of the Sacramento Soil Moisture Accounting (SAC-SMA) model parameters, forcing data, and initial conditions are analysed by using two GSA methods: Sobol' and Fourier Amplitude Sensitivity Test (FAST). The simulations are carried out over five sub-basins within the Columbia River Basin (CRB) for three different periods: one-year, four-year, and seven-year. Four factors are considered and evaluated by using the two sensitivity analysis methods: the simulation length, parameter range, model initial conditions, and the reliability of the global sensitivity analysis methods. The reliability of the sensitivity analysis results is compared based on 1) the agreement between the two sensitivity analysis methods (Sobol' and FAST) in terms of highlighting the same parameters or input as the most influential parameters or input and 2) how the methods are cohered in ranking these sensitive parameters under the same conditions (sub-basins and simulation length). The results show the coherence between the Sobol' and FAST sensitivity analysis methods. Additionally, it is found that FAST method is sufficient to evaluate the main effects of the model parameters and inputs. Another conclusion of this study is that the smaller parameter or initial condition ranges, the more consistency and coherence between the sensitivity analysis methods results.
Meloni, Gregory R; Fisher, Matthew B; Stoeckl, Brendan D; Dodge, George R; Mauck, Robert L
2017-07-01
Cartilage tissue engineering is emerging as a promising treatment for osteoarthritis, and the field has progressed toward utilizing large animal models for proof of concept and preclinical studies. Mechanical testing of the regenerative tissue is an essential outcome for functional evaluation. However, testing modalities and constitutive frameworks used to evaluate in vitro grown samples differ substantially from those used to evaluate in vivo derived samples. To address this, we developed finite element (FE) models (using FEBio) of unconfined compression and indentation testing, modalities commonly used for such samples. We determined the model sensitivity to tissue radius and subchondral bone modulus, as well as its ability to estimate material parameters using the built-in parameter optimization tool in FEBio. We then sequentially tested agarose gels of 4%, 6%, 8%, and 10% weight/weight using a custom indentation platform, followed by unconfined compression. Similarly, we evaluated the ability of the model to generate material parameters for living constructs by evaluating engineered cartilage. Juvenile bovine mesenchymal stem cells were seeded (2 × 10 7 cells/mL) in 1% weight/volume hyaluronic acid hydrogels and cultured in a chondrogenic medium for 3, 6, and 9 weeks. Samples were planed and tested sequentially in indentation and unconfined compression. The model successfully completed parameter optimization routines for each testing modality for both acellular and cell-based constructs. Traditional outcome measures and the FE-derived outcomes showed significant changes in material properties during the maturation of engineered cartilage tissue, capturing dynamic changes in functional tissue mechanics. These outcomes were significantly correlated with one another, establishing this FE modeling approach as a singular method for the evaluation of functional engineered and native tissue regeneration, both in vitro and in vivo.
Liu, Peigui; Elshall, Ahmed S.; Ye, Ming; ...
2016-02-05
Evaluating marginal likelihood is the most critical and computationally expensive task, when conducting Bayesian model averaging to quantify parametric and model uncertainties. The evaluation is commonly done by using Laplace approximations to evaluate semianalytical expressions of the marginal likelihood or by using Monte Carlo (MC) methods to evaluate arithmetic or harmonic mean of a joint likelihood function. This study introduces a new MC method, i.e., thermodynamic integration, which has not been attempted in environmental modeling. Instead of using samples only from prior parameter space (as in arithmetic mean evaluation) or posterior parameter space (as in harmonic mean evaluation), the thermodynamicmore » integration method uses samples generated gradually from the prior to posterior parameter space. This is done through a path sampling that conducts Markov chain Monte Carlo simulation with different power coefficient values applied to the joint likelihood function. The thermodynamic integration method is evaluated using three analytical functions by comparing the method with two variants of the Laplace approximation method and three MC methods, including the nested sampling method that is recently introduced into environmental modeling. The thermodynamic integration method outperforms the other methods in terms of their accuracy, convergence, and consistency. The thermodynamic integration method is also applied to a synthetic case of groundwater modeling with four alternative models. The application shows that model probabilities obtained using the thermodynamic integration method improves predictive performance of Bayesian model averaging. As a result, the thermodynamic integration method is mathematically rigorous, and its MC implementation is computationally general for a wide range of environmental problems.« less
da Silveira, Christian L; Mazutti, Marcio A; Salau, Nina P G
2016-07-08
Process modeling can lead to of advantages such as helping in process control, reducing process costs and product quality improvement. This work proposes a solid-state fermentation distributed parameter model composed by seven differential equations with seventeen parameters to represent the process. Also, parameters estimation with a parameters identifyability analysis (PIA) is performed to build an accurate model with optimum parameters. Statistical tests were made to verify the model accuracy with the estimated parameters considering different assumptions. The results have shown that the model assuming substrate inhibition better represents the process. It was also shown that eight from the seventeen original model parameters were nonidentifiable and better results were obtained with the removal of these parameters from the estimation procedure. Therefore, PIA can be useful to estimation procedure, since it may reduce the number of parameters that can be evaluated. Further, PIA improved the model results, showing to be an important procedure to be taken. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:905-917, 2016. © 2016 American Institute of Chemical Engineers.
Exploring Several Methods of Groundwater Model Selection
NASA Astrophysics Data System (ADS)
Samani, Saeideh; Ye, Ming; Asghari Moghaddam, Asghar
2017-04-01
Selecting reliable models for simulating groundwater flow and solute transport is essential to groundwater resources management and protection. This work is to explore several model selection methods for avoiding over-complex and/or over-parameterized groundwater models. We consider six groundwater flow models with different numbers (6, 10, 10, 13, 13 and 15) of model parameters. These models represent alternative geological interpretations, recharge estimates, and boundary conditions at a study site in Iran. The models were developed with Model Muse, and calibrated against observations of hydraulic head using UCODE. Model selection was conducted by using the following four approaches: (1) Rank the models using their root mean square error (RMSE) obtained after UCODE-based model calibration, (2) Calculate model probability using GLUE method, (3) Evaluate model probability using model selection criteria (AIC, AICc, BIC, and KIC), and (4) Evaluate model weights using the Fuzzy Multi-Criteria-Decision-Making (MCDM) approach. MCDM is based on the fuzzy analytical hierarchy process (AHP) and fuzzy technique for order performance, which is to identify the ideal solution by a gradual expansion from the local to the global scale of model parameters. The KIC and MCDM methods are superior to other methods, as they consider not only the fit between observed and simulated data and the number of parameter, but also uncertainty in model parameters. Considering these factors can prevent from occurring over-complexity and over-parameterization, when selecting the appropriate groundwater flow models. These methods selected, as the best model, one with average complexity (10 parameters) and the best parameter estimation (model 3).
NASA Astrophysics Data System (ADS)
Post, Hanna; Vrugt, Jasper A.; Fox, Andrew; Vereecken, Harry; Hendricks Franssen, Harrie-Jan
2017-03-01
The Community Land Model (CLM) contains many parameters whose values are uncertain and thus require careful estimation for model application at individual sites. Here we used Bayesian inference with the DiffeRential Evolution Adaptive Metropolis (DREAM(zs)) algorithm to estimate eight CLM v.4.5 ecosystem parameters using 1 year records of half-hourly net ecosystem CO2 exchange (NEE) observations of four central European sites with different plant functional types (PFTs). The posterior CLM parameter distributions of each site were estimated per individual season and on a yearly basis. These estimates were then evaluated using NEE data from an independent evaluation period and data from "nearby" FLUXNET sites at 600 km distance to the original sites. Latent variables (multipliers) were used to treat explicitly uncertainty in the initial carbon-nitrogen pools. The posterior parameter estimates were superior to their default values in their ability to track and explain the measured NEE data of each site. The seasonal parameter values reduced with more than 50% (averaged over all sites) the bias in the simulated NEE values. The most consistent performance of CLM during the evaluation period was found for the posterior parameter values of the forest PFTs, and contrary to the C3-grass and C3-crop sites, the latent variables of the initial pools further enhanced the quality-of-fit. The carbon sink function of the forest PFTs significantly increased with the posterior parameter estimates. We thus conclude that land surface model predictions of carbon stocks and fluxes require careful consideration of uncertain ecological parameters and initial states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, Peter
2014-01-24
This report describes the sensitivity of predicted nuclear fallout to a variety of model input parameters, including yield, height of burst, particle and activity size distribution parameters, wind speed, wind direction, topography, and precipitation. We investigate sensitivity over a wide but plausible range of model input parameters. In addition, we investigate a specific example with a relatively narrow range to illustrate the potential for evaluating uncertainties in predictions when there are more precise constraints on model parameters.
A Formal Approach to Empirical Dynamic Model Optimization and Validation
NASA Technical Reports Server (NTRS)
Crespo, Luis G; Morelli, Eugene A.; Kenny, Sean P.; Giesy, Daniel P.
2014-01-01
A framework was developed for the optimization and validation of empirical dynamic models subject to an arbitrary set of validation criteria. The validation requirements imposed upon the model, which may involve several sets of input-output data and arbitrary specifications in time and frequency domains, are used to determine if model predictions are within admissible error limits. The parameters of the empirical model are estimated by finding the parameter realization for which the smallest of the margins of requirement compliance is as large as possible. The uncertainty in the value of this estimate is characterized by studying the set of model parameters yielding predictions that comply with all the requirements. Strategies are presented for bounding this set, studying its dependence on admissible prediction error set by the analyst, and evaluating the sensitivity of the model predictions to parameter variations. This information is instrumental in characterizing uncertainty models used for evaluating the dynamic model at operating conditions differing from those used for its identification and validation. A practical example based on the short period dynamics of the F-16 is used for illustration.
Sensitivity Analysis of the Land Surface Model NOAH-MP for Different Model Fluxes
NASA Astrophysics Data System (ADS)
Mai, Juliane; Thober, Stephan; Samaniego, Luis; Branch, Oliver; Wulfmeyer, Volker; Clark, Martyn; Attinger, Sabine; Kumar, Rohini; Cuntz, Matthias
2015-04-01
Land Surface Models (LSMs) use a plenitude of process descriptions to represent the carbon, energy and water cycles. They are highly complex and computationally expensive. Practitioners, however, are often only interested in specific outputs of the model such as latent heat or surface runoff. In model applications like parameter estimation, the most important parameters are then chosen by experience or expert knowledge. Hydrologists interested in surface runoff therefore chose mostly soil parameters while biogeochemists interested in carbon fluxes focus on vegetation parameters. However, this might lead to the omission of parameters that are important, for example, through strong interactions with the parameters chosen. It also happens during model development that some process descriptions contain fixed values, which are supposedly unimportant parameters. However, these hidden parameters remain normally undetected although they might be highly relevant during model calibration. Sensitivity analyses are used to identify informative model parameters for a specific model output. Standard methods for sensitivity analysis such as Sobol indexes require large amounts of model evaluations, specifically in case of many model parameters. We hence propose to first use a recently developed inexpensive sequential screening method based on Elementary Effects that has proven to identify the relevant informative parameters. This reduces the number parameters and therefore model evaluations for subsequent analyses such as sensitivity analysis or model calibration. In this study, we quantify parametric sensitivities of the land surface model NOAH-MP that is a state-of-the-art LSM and used at regional scale as the land surface scheme of the atmospheric Weather Research and Forecasting Model (WRF). NOAH-MP contains multiple process parameterizations yielding a considerable amount of parameters (˜ 100). Sensitivities for the three model outputs (a) surface runoff, (b) soil drainage and (c) latent heat are calculated on twelve Model Parameter Estimation Experiment (MOPEX) catchments ranging in size from 1020 to 4421 km2. This allows investigation of parametric sensitivities for distinct hydro-climatic characteristics, emphasizing different land-surface processes. The sequential screening identifies the most informative parameters of NOAH-MP for different model output variables. The number of parameters is reduced substantially for all of the three model outputs to approximately 25. The subsequent Sobol method quantifies the sensitivities of these informative parameters. The study demonstrates the existence of sensitive, important parameters in almost all parts of the model irrespective of the considered output. Soil parameters, e.g., are informative for all three output variables whereas plant parameters are not only informative for latent heat but also for soil drainage because soil drainage is strongly coupled to transpiration through the soil water balance. These results contrast to the choice of only soil parameters in hydrological studies and only plant parameters in biogeochemical ones. The sequential screening identified several important hidden parameters that carry large sensitivities and have hence to be included during model calibration.
NASA Astrophysics Data System (ADS)
Bhattacharjya, Rajib Kumar
2018-05-01
The unit hydrograph and the infiltration parameters of a watershed can be obtained from observed rainfall-runoff data by using inverse optimization technique. This is a two-stage optimization problem. In the first stage, the infiltration parameters are obtained and the unit hydrograph ordinates are estimated in the second stage. In order to combine this two-stage method into a single stage one, a modified penalty parameter approach is proposed for converting the constrained optimization problem to an unconstrained one. The proposed approach is designed in such a way that the model initially obtains the infiltration parameters and then searches the optimal unit hydrograph ordinates. The optimization model is solved using Genetic Algorithms. A reduction factor is used in the penalty parameter approach so that the obtained optimal infiltration parameters are not destroyed during subsequent generation of genetic algorithms, required for searching optimal unit hydrograph ordinates. The performance of the proposed methodology is evaluated by using two example problems. The evaluation shows that the model is superior, simple in concept and also has the potential for field application.
Evaluation of parameters of color profile models of LCD and LED screens
NASA Astrophysics Data System (ADS)
Zharinov, I. O.; Zharinov, O. O.
2017-12-01
The purpose of the research relates to the problem of parametric identification of the color profile model of LCD (liquid crystal display) and LED (light emitting diode) screens. The color profile model of a screen is based on the Grassmann’s Law of additive color mixture. Mathematically the problem is to evaluate unknown parameters (numerical coefficients) of the matrix transformation between different color spaces. Several methods of evaluation of these screen profile coefficients were developed. These methods are based either on processing of some colorimetric measurements or on processing of technical documentation data.
JUPITER PROJECT - JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY
The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project builds on the technology of two widely used codes for sensitivity analysis, data assessment, calibration, and uncertainty analysis of environmental models: PEST and UCODE.
Compressed Sensing for Metrics Development
NASA Astrophysics Data System (ADS)
McGraw, R. L.; Giangrande, S. E.; Liu, Y.
2012-12-01
Models by their very nature tend to be sparse in the sense that they are designed, with a few optimally selected key parameters, to provide simple yet faithful representations of a complex observational dataset or computer simulation output. This paper seeks to apply methods from compressed sensing (CS), a new area of applied mathematics currently undergoing a very rapid development (see for example Candes et al., 2006), to FASTER needs for new approaches to model evaluation and metrics development. The CS approach will be illustrated for a time series generated using a few-parameter (i.e. sparse) model. A seemingly incomplete set of measurements, taken at a just few random sampling times, is then used to recover the hidden model parameters. Remarkably there is a sharp transition in the number of required measurements, beyond which both the model parameters and time series are recovered exactly. Applications to data compression, data sampling/collection strategies, and to the development of metrics for model evaluation by comparison with observation (e.g. evaluation of model predictions of cloud fraction using cloud radar observations) are presented and discussed in context of the CS approach. Cited reference: Candes, E. J., Romberg, J., and Tao, T. (2006), Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, 52, 489-509.
NASA Astrophysics Data System (ADS)
Khan, Tanvir R.; Perlinger, Judith A.
2017-10-01
Despite considerable effort to develop mechanistic dry particle deposition parameterizations for atmospheric transport models, current knowledge has been inadequate to propose quantitative measures of the relative performance of available parameterizations. In this study, we evaluated the performance of five dry particle deposition parameterizations developed by Zhang et al. (2001) (Z01), Petroff and Zhang (2010) (PZ10), Kouznetsov and Sofiev (2012) (KS12), Zhang and He (2014) (ZH14), and Zhang and Shao (2014) (ZS14), respectively. The evaluation was performed in three dimensions: model ability to reproduce observed deposition velocities, Vd (accuracy); the influence of imprecision in input parameter values on the modeled Vd (uncertainty); and identification of the most influential parameter(s) (sensitivity). The accuracy of the modeled Vd was evaluated using observations obtained from five land use categories (LUCs): grass, coniferous and deciduous forests, natural water, and ice/snow. To ascertain the uncertainty in modeled Vd, and quantify the influence of imprecision in key model input parameters, a Monte Carlo uncertainty analysis was performed. The Sobol' sensitivity analysis was conducted with the objective to determine the parameter ranking from the most to the least influential. Comparing the normalized mean bias factors (indicators of accuracy), we find that the ZH14 parameterization is the most accurate for all LUCs except for coniferous forest, for which it is second most accurate. From Monte Carlo simulations, the estimated mean normalized uncertainties in the modeled Vd obtained for seven particle sizes (ranging from 0.005 to 2.5 µm) for the five LUCs are 17, 12, 13, 16, and 27 % for the Z01, PZ10, KS12, ZH14, and ZS14 parameterizations, respectively. From the Sobol' sensitivity results, we suggest that the parameter rankings vary by particle size and LUC for a given parameterization. Overall, for dp = 0.001 to 1.0 µm, friction velocity was one of the three most influential parameters in all parameterizations. For giant particles (dp = 10 µm), relative humidity was the most influential parameter. Because it is the least complex of the five parameterizations, and it has the greatest accuracy and least uncertainty, we propose that the ZH14 parameterization is currently superior for incorporation into atmospheric transport models.
Bradshaw, Richard T; Essex, Jonathan W
2016-08-09
Hydration free energy (HFE) calculations are often used to assess the performance of biomolecular force fields and the quality of assigned parameters. The AMOEBA polarizable force field moves beyond traditional pairwise additive models of electrostatics and may be expected to improve upon predictions of thermodynamic quantities such as HFEs over and above fixed-point-charge models. The recent SAMPL4 challenge evaluated the AMOEBA polarizable force field in this regard but showed substantially worse results than those using the fixed-point-charge GAFF model. Starting with a set of automatically generated AMOEBA parameters for the SAMPL4 data set, we evaluate the cumulative effects of a series of incremental improvements in parametrization protocol, including both solute and solvent model changes. Ultimately, the optimized AMOEBA parameters give a set of results that are not statistically significantly different from those of GAFF in terms of signed and unsigned error metrics. This allows us to propose a number of guidelines for new molecule parameter derivation with AMOEBA, which we expect to have benefits for a range of biomolecular simulation applications such as protein-ligand binding studies.
Jurgens, Bryant C.; Böhlke, J.K.; Eberts, Sandra M.
2012-01-01
TracerLPM is an interactive Excel® (2007 or later) workbook program for evaluating groundwater age distributions from environmental tracer data by using lumped parameter models (LPMs). Lumped parameter models are mathematical models of transport based on simplified aquifer geometry and flow configurations that account for effects of hydrodynamic dispersion or mixing within the aquifer, well bore, or discharge area. Five primary LPMs are included in the workbook: piston-flow model (PFM), exponential mixing model (EMM), exponential piston-flow model (EPM), partial exponential model (PEM), and dispersion model (DM). Binary mixing models (BMM) can be created by combining primary LPMs in various combinations. Travel time through the unsaturated zone can be included as an additional parameter. TracerLPM also allows users to enter age distributions determined from other methods, such as particle tracking results from numerical groundwater-flow models or from other LPMs not included in this program. Tracers of both young groundwater (anthropogenic atmospheric gases and isotopic substances indicating post-1940s recharge) and much older groundwater (carbon-14 and helium-4) can be interpreted simultaneously so that estimates of the groundwater age distribution for samples with a wide range of ages can be constrained. TracerLPM is organized to permit a comprehensive interpretive approach consisting of hydrogeologic conceptualization, visual examination of data and models, and best-fit parameter estimation. Groundwater age distributions can be evaluated by comparing measured and modeled tracer concentrations in two ways: (1) multiple tracers analyzed simultaneously can be evaluated against each other for concordance with modeled concentrations (tracer-tracer application) or (2) tracer time-series data can be evaluated for concordance with modeled trends (tracer-time application). Groundwater-age estimates can also be obtained for samples with a single tracer measurement at one point in time; however, prior knowledge of an appropriate LPM is required because the mean age is often non-unique. LPM output concentrations depend on model parameters and sample date. All of the LPMs have a parameter for mean age. The EPM, PEM, and DM have an additional parameter that characterizes the degree of age mixing in the sample. BMMs have a parameter for the fraction of the first component in the mixture. An LPM, together with its parameter values, provides a description of the age distribution or the fractional contribution of water for every age of recharge contained within a sample. For the PFM, the age distribution is a unit pulse at one distinct age. For the other LPMs, the age distribution can be much broader and span decades, centuries, millennia, or more. For a sample with a mixture of groundwater ages, the reported interpretation of tracer data includes the LPM name, the mean age, and the values of any other independent model parameters. TracerLPM also can be used for simulating the responses of wells, springs, streams, or other groundwater discharge receptors to nonpoint-source contaminants that are introduced in recharge, such as nitrate. This is done by combining an LPM or user-defined age distribution with information on contaminant loading at the water table. Information on historic contaminant loading can be used to help evaluate a model's ability to match real world conditions and understand observed contaminant trends, while information on future contaminant loading scenarios can be used to forecast potential contaminant trends.
Three-dimensional deformable-model-based localization and recognition of road vehicles.
Zhang, Zhaoxiang; Tan, Tieniu; Huang, Kaiqi; Wang, Yunhong
2012-01-01
We address the problem of model-based object recognition. Our aim is to localize and recognize road vehicles from monocular images or videos in calibrated traffic scenes. A 3-D deformable vehicle model with 12 shape parameters is set up as prior information, and its pose is determined by three parameters, which are its position on the ground plane and its orientation about the vertical axis under ground-plane constraints. An efficient local gradient-based method is proposed to evaluate the fitness between the projection of the vehicle model and image data, which is combined into a novel evolutionary computing framework to estimate the 12 shape parameters and three pose parameters by iterative evolution. The recovery of pose parameters achieves vehicle localization, whereas the shape parameters are used for vehicle recognition. Numerous experiments are conducted in this paper to demonstrate the performance of our approach. It is shown that the local gradient-based method can evaluate accurately and efficiently the fitness between the projection of the vehicle model and the image data. The evolutionary computing framework is effective for vehicles of different types and poses is robust to all kinds of occlusion.
Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring.
Najah, A; El-Shafie, A; Karim, O A; El-Shafie, Amr H
2014-02-01
We discuss the accuracy and performance of the adaptive neuro-fuzzy inference system (ANFIS) in training and prediction of dissolved oxygen (DO) concentrations. The model was used to analyze historical data generated through continuous monitoring of water quality parameters at several stations on the Johor River to predict DO concentrations. Four water quality parameters were selected for ANFIS modeling, including temperature, pH, nitrate (NO3) concentration, and ammoniacal nitrogen concentration (NH3-NL). Sensitivity analysis was performed to evaluate the effects of the input parameters. The inputs with the greatest effect were those related to oxygen content (NO3) or oxygen demand (NH3-NL). Temperature was the parameter with the least effect, whereas pH provided the lowest contribution to the proposed model. To evaluate the performance of the model, three statistical indices were used: the coefficient of determination (R (2)), the mean absolute prediction error, and the correlation coefficient. The performance of the ANFIS model was compared with an artificial neural network model. The ANFIS model was capable of providing greater accuracy, particularly in the case of extreme events.
On the Influence of Material Parameters in a Complex Material Model for Powder Compaction
NASA Astrophysics Data System (ADS)
Staf, Hjalmar; Lindskog, Per; Andersson, Daniel C.; Larsson, Per-Lennart
2016-10-01
Parameters in a complex material model for powder compaction, based on a continuum mechanics approach, are evaluated using real insert geometries. The parameter sensitivity with respect to density and stress after compaction, pertinent to a wide range of geometries, is studied in order to investigate completeness and limitations of the material model. Finite element simulations with varied material parameters are used to build surrogate models for the sensitivity study. The conclusion from this analysis is that a simplification of the material model is relevant, especially for simple insert geometries. Parameters linked to anisotropy and the plastic strain evolution angle have a small impact on the final result.
Rapid performance modeling and parameter regression of geodynamic models
NASA Astrophysics Data System (ADS)
Brown, J.; Duplyakin, D.
2016-12-01
Geodynamic models run in a parallel environment have many parameters with complicated effects on performance and scientifically-relevant functionals. Manually choosing an efficient machine configuration and mapping out the parameter space requires a great deal of expert knowledge and time-consuming experiments. We propose an active learning technique based on Gaussion Process Regression to automatically select experiments to map out the performance landscape with respect to scientific and machine parameters. The resulting performance model is then used to select optimal experiments for improving the accuracy of a reduced order model per unit of computational cost. We present the framework and evaluate its quality and capability using popular lithospheric dynamics models.
A COMPUTATIONAL FRAMEWORK FOR EVALUATION OF NPS MANAGEMENT SCENARIOS: ROLE OF PARAMETER UNCERTAINTY
Utility of complex distributed-parameter watershed models for evaluation of the effectiveness of non-point source sediment and nutrient abatement scenarios such as Best Management Practices (BMPs) often follows the traditional {calibrate ---> validate ---> predict} procedure. Des...
Multi-objective optimization of GENIE Earth system models.
Price, Andrew R; Myerscough, Richard J; Voutchkov, Ivan I; Marsh, Robert; Cox, Simon J
2009-07-13
The tuning of parameters in climate models is essential to provide reliable long-term forecasts of Earth system behaviour. We apply a multi-objective optimization algorithm to the problem of parameter estimation in climate models. This optimization process involves the iterative evaluation of response surface models (RSMs), followed by the execution of multiple Earth system simulations. These computations require an infrastructure that provides high-performance computing for building and searching the RSMs and high-throughput computing for the concurrent evaluation of a large number of models. Grid computing technology is therefore essential to make this algorithm practical for members of the GENIE project.
1988-12-01
PERFORMANCE IN REAL TIME* Dr. James A. Barnes Austron Boulder, Co. Abstract Kalman filters and ARIMA models provide optimum control and evaluation tech...estimates of the model parameters (e.g., the phi’s and theta’s for an ARIMA model ). These model parameters are often evaluated in a batch mode on a...random walk FM, and linear frequency drift. In ARIMA models , this is equivalent to an ARIMA (0,2,2) with a non-zero average sec- ond difference. Using
Two-dimensional advective transport in ground-water flow parameter estimation
Anderman, E.R.; Hill, M.C.; Poeter, E.P.
1996-01-01
Nonlinear regression is useful in ground-water flow parameter estimation, but problems of parameter insensitivity and correlation often exist given commonly available hydraulic-head and head-dependent flow (for example, stream and lake gain or loss) observations. To address this problem, advective-transport observations are added to the ground-water flow, parameter-estimation model MODFLOWP using particle-tracking methods. The resulting model is used to investigate the importance of advective-transport observations relative to head-dependent flow observations when either or both are used in conjunction with hydraulic-head observations in a simulation of the sewage-discharge plume at Otis Air Force Base, Cape Cod, Massachusetts, USA. The analysis procedure for evaluating the probable effect of new observations on the regression results consists of two steps: (1) parameter sensitivities and correlations calculated at initial parameter values are used to assess the model parameterization and expected relative contributions of different types of observations to the regression; and (2) optimal parameter values are estimated by nonlinear regression and evaluated. In the Cape Cod parameter-estimation model, advective-transport observations did not significantly increase the overall parameter sensitivity; however: (1) inclusion of advective-transport observations decreased parameter correlation enough for more unique parameter values to be estimated by the regression; (2) realistic uncertainties in advective-transport observations had a small effect on parameter estimates relative to the precision with which the parameters were estimated; and (3) the regression results and sensitivity analysis provided insight into the dynamics of the ground-water flow system, especially the importance of accurate boundary conditions. In this work, advective-transport observations improved the calibration of the model and the estimation of ground-water flow parameters, and use of regression and related techniques produced significant insight into the physical system.
Wang, Yong; Ma, Xiaolei; Liu, Yong; Gong, Ke; Henricakson, Kristian C.; Xu, Maozeng; Wang, Yinhai
2016-01-01
This paper proposes a two-stage algorithm to simultaneously estimate origin-destination (OD) matrix, link choice proportion, and dispersion parameter using partial traffic counts in a congested network. A non-linear optimization model is developed which incorporates a dynamic dispersion parameter, followed by a two-stage algorithm in which Generalized Least Squares (GLS) estimation and a Stochastic User Equilibrium (SUE) assignment model are iteratively applied until the convergence is reached. To evaluate the performance of the algorithm, the proposed approach is implemented in a hypothetical network using input data with high error, and tested under a range of variation coefficients. The root mean squared error (RMSE) of the estimated OD demand and link flows are used to evaluate the model estimation results. The results indicate that the estimated dispersion parameter theta is insensitive to the choice of variation coefficients. The proposed approach is shown to outperform two established OD estimation methods and produce parameter estimates that are close to the ground truth. In addition, the proposed approach is applied to an empirical network in Seattle, WA to validate the robustness and practicality of this methodology. In summary, this study proposes and evaluates an innovative computational approach to accurately estimate OD matrices using link-level traffic flow data, and provides useful insight for optimal parameter selection in modeling travelers’ route choice behavior. PMID:26761209
Wang, Juan; Wang, Jian Lin; Liu, Jia Bin; Jiang, Wen; Zhao, Chang Xing
2017-06-18
The dynamic variations of evapotranspiration (ET) and weather data during summer maize growing season in 2013-2015 were monitored with eddy covariance system, and the applicability of two operational models (FAO-PM model and KP-PM model) based on the Penman-Monteith model were analyzed. Firstly, the key parameters in the two models were calibrated with the measured data in 2013 and 2014; secondly, the daily ET in 2015 calculated by the FAO-PM model and KP-PM model was compared to the observed ET, respectively. Finally, the coefficients in the KP-PM model were further revised with the coefficients calculated according to the different growth stages, and the performance of the revised KP-PM model was also evaluated. These statistical parameters indicated that the calculated daily ET for 2015 by the FAO-PM model was closer to the observed ET than that by the KP-PM model. The daily ET calculated from the revised KP-PM model for daily ET was more accurate than that from the FAO-PM model. It was also found that the key parameters in the two models were correlated with weather conditions, so the calibration was necessary before using the models to predict the ET. The above results could provide some guidelines on predicting ET with the two models.
An automatic and effective parameter optimization method for model tuning
NASA Astrophysics Data System (ADS)
Zhang, T.; Li, L.; Lin, Y.; Xue, W.; Xie, F.; Xu, H.; Huang, X.
2015-05-01
Physical parameterizations in General Circulation Models (GCMs), having various uncertain parameters, greatly impact model performance and model climate sensitivity. Traditional manual and empirical tuning of these parameters is time consuming and ineffective. In this study, a "three-step" methodology is proposed to automatically and effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. Different from the traditional optimization methods, two extra steps, one determines parameter sensitivity and the other chooses the optimum initial value of sensitive parameters, are introduced before the downhill simplex method to reduce the computational cost and improve the tuning performance. Atmospheric GCM simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9%. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameters tuning during the model development stage.
NASA Astrophysics Data System (ADS)
Arsenault, Richard; Poissant, Dominique; Brissette, François
2015-11-01
This paper evaluated the effects of parametric reduction of a hydrological model on five regionalization methods and 267 catchments in the province of Quebec, Canada. The Sobol' variance-based sensitivity analysis was used to rank the model parameters by their influence on the model results and sequential parameter fixing was performed. The reduction in parameter correlations improved parameter identifiability, however this improvement was found to be minimal and was not transposed in the regionalization mode. It was shown that 11 of the HSAMI models' 23 parameters could be fixed with little or no loss in regionalization skill. The main conclusions were that (1) the conceptual lumped models used in this study did not represent physical processes sufficiently well to warrant parameter reduction for physics-based regionalization methods for the Canadian basins examined and (2) catchment descriptors did not adequately represent the relevant hydrological processes, namely snow accumulation and melt.
Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Curtis, Gary P.; Lane, John W.
2013-01-01
Anomalous solute transport, modeled as rate-limited mass transfer, has an observable geoelectrical signature that can be exploited to infer the controlling parameters. Previous experiments indicate the combination of time-lapse geoelectrical and fluid conductivity measurements collected during ionic tracer experiments provides valuable insight into the exchange of solute between mobile and immobile porosity. Here, we use geoelectrical measurements to monitor tracer experiments at a former uranium mill tailings site in Naturita, Colorado. We use nonlinear regression to calibrate dual-domain mass transfer solute-transport models to field data. This method differs from previous approaches by calibrating the model simultaneously to observed fluid conductivity and geoelectrical tracer signals using two parameter scales: effective parameters for the flow path upgradient of the monitoring point and the parameters local to the monitoring point. We use regression statistics to rigorously evaluate the information content and sensitivity of fluid conductivity and geophysical data, demonstrating multiple scales of mass transfer parameters can simultaneously be estimated. Our results show, for the first time, field-scale spatial variability of mass transfer parameters (i.e., exchange-rate coefficient, porosity) between local and upgradient effective parameters; hence our approach provides insight into spatial variability and scaling behavior. Additional synthetic modeling is used to evaluate the scope of applicability of our approach, indicating greater range than earlier work using temporal moments and a Lagrangian-based Damköhler number. The introduced Eulerian-based Damköhler is useful for estimating tracer injection duration needed to evaluate mass transfer exchange rates that range over several orders of magnitude.
Dynamic Factor Analysis Models with Time-Varying Parameters
ERIC Educational Resources Information Center
Chow, Sy-Miin; Zu, Jiyun; Shifren, Kim; Zhang, Guangjian
2011-01-01
Dynamic factor analysis models with time-varying parameters offer a valuable tool for evaluating multivariate time series data with time-varying dynamics and/or measurement properties. We use the Dynamic Model of Activation proposed by Zautra and colleagues (Zautra, Potter, & Reich, 1997) as a motivating example to construct a dynamic factor…
2017-05-01
ER D C/ EL T R- 17 -7 Environmental Security Technology Certification Program (ESTCP) Evaluation of Uncertainty in Constituent Input...Environmental Security Technology Certification Program (ESTCP) ERDC/EL TR-17-7 May 2017 Evaluation of Uncertainty in Constituent Input Parameters...Environmental Evaluation and Characterization Sys- tem (TREECS™) was applied to a groundwater site and a surface water site to evaluate the sensitivity
An automatic and effective parameter optimization method for model tuning
NASA Astrophysics Data System (ADS)
Zhang, T.; Li, L.; Lin, Y.; Xue, W.; Xie, F.; Xu, H.; Huang, X.
2015-11-01
Physical parameterizations in general circulation models (GCMs), having various uncertain parameters, greatly impact model performance and model climate sensitivity. Traditional manual and empirical tuning of these parameters is time-consuming and ineffective. In this study, a "three-step" methodology is proposed to automatically and effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. Different from the traditional optimization methods, two extra steps, one determining the model's sensitivity to the parameters and the other choosing the optimum initial value for those sensitive parameters, are introduced before the downhill simplex method. This new method reduces the number of parameters to be tuned and accelerates the convergence of the downhill simplex method. Atmospheric GCM simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9 %. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameter tuning during the model development stage.
NASA Astrophysics Data System (ADS)
Liang, Wei; Yu, Xuchao; Zhang, Laibin; Lu, Wenqing
2018-05-01
In oil transmission station, the operating condition (OC) of an oil pump unit sometimes switches accordingly, which will lead to changes in operating parameters. If not taking the switching of OCs into consideration while performing a state evaluation on the pump unit, the accuracy of evaluation would be largely influenced. Hence, in this paper, a self-organization Comprehensive Real-Time State Evaluation Model (self-organization CRTSEM) is proposed based on OC classification and recognition. However, the underlying model CRTSEM is built through incorporating the advantages of Gaussian Mixture Model (GMM) and Fuzzy Comprehensive Evaluation Model (FCEM) first. That is to say, independent state models are established for every state characteristic parameter according to their distribution types (i.e. the Gaussian distribution and logistic regression distribution). Meanwhile, Analytic Hierarchy Process (AHP) is utilized to calculate the weights of state characteristic parameters. Then, the OC classification is determined by the types of oil delivery tasks, and CRTSEMs of different standard OCs are built to constitute the CRTSEM matrix. On the other side, the OC recognition is realized by a self-organization model that is established on the basis of Back Propagation (BP) model. After the self-organization CRTSEM is derived through integration, real-time monitoring data can be inputted for OC recognition. At the end, the current state of the pump unit can be evaluated by using the right CRTSEM. The case study manifests that the proposed self-organization CRTSEM can provide reasonable and accurate state evaluation results for the pump unit. Besides, the assumption that the switching of OCs will influence the results of state evaluation is also verified.
Estimating skin blood saturation by selecting a subset of hyperspectral imaging data
NASA Astrophysics Data System (ADS)
Ewerlöf, Maria; Salerud, E. Göran; Strömberg, Tomas; Larsson, Marcus
2015-03-01
Skin blood haemoglobin saturation (?b) can be estimated with hyperspectral imaging using the wavelength (λ) range of 450-700 nm where haemoglobin absorption displays distinct spectral characteristics. Depending on the image size and photon transport algorithm, computations may be demanding. Therefore, this work aims to evaluate subsets with a reduced number of wavelengths for ?b estimation. White Monte Carlo simulations are performed using a two-layered tissue model with discrete values for epidermal thickness (?epi) and the reduced scattering coefficient (μ's ), mimicking an imaging setup. A detected intensity look-up table is calculated for a range of model parameter values relevant to human skin, adding absorption effects in the post-processing. Skin model parameters, including absorbers, are; μ's (λ), ?epi, haemoglobin saturation (?b), tissue fraction blood (?b) and tissue fraction melanin (?mel). The skin model paired with the look-up table allow spectra to be calculated swiftly. Three inverse models with varying number of free parameters are evaluated: A(?b, ?b), B(?b, ?b, ?mel) and C(all parameters free). Fourteen wavelength candidates are selected by analysing the maximal spectral sensitivity to ?b and minimizing the sensitivity to ?b. All possible combinations of these candidates with three, four and 14 wavelengths, as well as the full spectral range, are evaluated for estimating ?b for 1000 randomly generated evaluation spectra. The results show that the simplified models A and B estimated ?b accurately using four wavelengths (mean error 2.2% for model B). If the number of wavelengths increased, the model complexity needed to be increased to avoid poor estimations.
An improved swarm optimization for parameter estimation and biological model selection.
Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail
2013-01-01
One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.
NASA Astrophysics Data System (ADS)
Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.
2016-12-01
Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.
Equifinality and process-based modelling
NASA Astrophysics Data System (ADS)
Khatami, S.; Peel, M. C.; Peterson, T. J.; Western, A. W.
2017-12-01
Equifinality is understood as one of the fundamental difficulties in the study of open complex systems, including catchment hydrology. A review of the hydrologic literature reveals that the term equifinality has been widely used, but in many cases inconsistently and without coherent recognition of the various facets of equifinality, which can lead to ambiguity but also methodological fallacies. Therefore, in this study we first characterise the term equifinality within the context of hydrological modelling by reviewing the genesis of the concept of equifinality and then presenting a theoretical framework. During past decades, equifinality has mainly been studied as a subset of aleatory (arising due to randomness) uncertainty and for the assessment of model parameter uncertainty. Although the connection between parameter uncertainty and equifinality is undeniable, we argue there is more to equifinality than just aleatory parameter uncertainty. That is, the importance of equifinality and epistemic uncertainty (arising due to lack of knowledge) and their implications is overlooked in our current practice of model evaluation. Equifinality and epistemic uncertainty in studying, modelling, and evaluating hydrologic processes are treated as if they can be simply discussed in (or often reduced to) probabilistic terms (as for aleatory uncertainty). The deficiencies of this approach to conceptual rainfall-runoff modelling are demonstrated for selected Australian catchments by examination of parameter and internal flux distributions and interactions within SIMHYD. On this basis, we present a new approach that expands equifinality concept beyond model parameters to inform epistemic uncertainty. The new approach potentially facilitates the identification and development of more physically plausible models and model evaluation schemes particularly within the multiple working hypotheses framework, and is generalisable to other fields of environmental modelling as well.
Automated palpation for breast tissue discrimination based on viscoelastic biomechanical properties.
Tsukune, Mariko; Kobayashi, Yo; Miyashita, Tomoyuki; Fujie, G Masakatsu
2015-05-01
Accurate, noninvasive methods are sought for breast tumor detection and diagnosis. In particular, a need for noninvasive techniques that measure both the nonlinear elastic and viscoelastic properties of breast tissue has been identified. For diagnostic purposes, it is important to select a nonlinear viscoelastic model with a small number of parameters that highly correlate with histological structure. However, the combination of conventional viscoelastic models with nonlinear elastic models requires a large number of parameters. A nonlinear viscoelastic model of breast tissue based on a simple equation with few parameters was developed and tested. The nonlinear viscoelastic properties of soft tissues in porcine breast were measured experimentally using fresh ex vivo samples. Robotic palpation was used for measurements employed in a finite element model. These measurements were used to calculate nonlinear viscoelastic parameters for fat, fibroglandular breast parenchyma and muscle. The ability of these parameters to distinguish the tissue types was evaluated in a two-step statistical analysis that included Holm's pairwise [Formula: see text] test. The discrimination error rate of a set of parameters was evaluated by the Mahalanobis distance. Ex vivo testing in porcine breast revealed significant differences in the nonlinear viscoelastic parameters among combinations of three tissue types. The discrimination error rate was low among all tested combinations of three tissue types. Although tissue discrimination was not achieved using only a single nonlinear viscoelastic parameter, a set of four nonlinear viscoelastic parameters were able to reliably and accurately discriminate fat, breast fibroglandular tissue and muscle.
NASA Astrophysics Data System (ADS)
Derieppe, M.; Bos, C.; de Greef, M.; Moonen, C.; de Senneville, B. Denis
2016-01-01
We have previously demonstrated the feasibility of monitoring ultrasound-mediated uptake of a hydrophilic model drug in real time with dynamic confocal fluorescence microscopy. In this study, we evaluate and correct the impact of photobleaching to improve the accuracy of pharmacokinetic parameter estimates. To model photobleaching of the fluorescent model drug SYTOX Green, a photobleaching process was added to the current two-compartment model describing cell uptake. After collection of the uptake profile, a second acquisition was performed when SYTOX Green was equilibrated, to evaluate the photobleaching rate experimentally. Photobleaching rates up to 5.0 10-3 s-1 were measured when applying power densities up to 0.2 W.cm-2. By applying the three-compartment model, the model drug uptake rate of 6.0 10-3 s-1 was measured independent of the applied laser power. The impact of photobleaching on uptake rate estimates measured by dynamic fluorescence microscopy was evaluated. Subsequent compensation improved the accuracy of pharmacokinetic parameter estimates in the cell population subjected to sonopermeabilization.
Study of some chaotic inflationary models in f(R) gravity
NASA Astrophysics Data System (ADS)
Sharif, M.; Nawazish, Iqra
2018-04-01
In this paper, we discuss an inflationary scenario via scalar field and fluid cosmology for an anisotropic homogeneous universe model in f(R) gravity. We consider an equation of state which corresponds to a quasi-de Sitter expansion and investigate the effect of the anisotropy parameter for different values of the deviation parameter. We evaluate potential models like linear, quadratic and quartic models which correspond to chaotic inflation. We construct the observational parameters for a power-law model of f(R) gravity and construct the graphical analysis of tensor-scalar ratio and spectral index which indicates the consistency of these parameters with Planck 2015 data.
Analysis of the sensitivity properties of a model of vector-borne bubonic plague.
Buzby, Megan; Neckels, David; Antolin, Michael F; Estep, Donald
2008-09-06
Model sensitivity is a key to evaluation of mathematical models in ecology and evolution, especially in complex models with numerous parameters. In this paper, we use some recently developed methods for sensitivity analysis to study the parameter sensitivity of a model of vector-borne bubonic plague in a rodent population proposed by Keeling & Gilligan. The new sensitivity tools are based on a variational analysis involving the adjoint equation. The new approach provides a relatively inexpensive way to obtain derivative information about model output with respect to parameters. We use this approach to determine the sensitivity of a quantity of interest (the force of infection from rats and their fleas to humans) to various model parameters, determine a region over which linearization at a specific parameter reference point is valid, develop a global picture of the output surface, and search for maxima and minima in a given region in the parameter space.
Multi-frequency parameter mapping of electrical impedance scanning using two kinds of circuit model.
Liu, Ruigang; Dong, Xiuzhen; Fu, Feng; You, Fusheng; Shi, Xuetao; Ji, Zhenyu; Wang, Kan
2007-07-01
Electrical impedance scanning (EIS) is a kind of potential bio-impedance measurement technology, especially aiding the diagnosis of breast cancer in women. By changing the frequency of the driving signal in turn while keeping the other conditions stable, multi-frequency measurement results on the object can be obtained. According to the least square method and circuit theory, the parameters in two models are deduced when measured with data at multiple driving frequencies. The arcs, in the real and imaginary parts of a trans-admittance coordinate, made by the evaluated parameters fit well the realistic data measured by our EIS device on female subjects. The Cole-Cole model in the form of admittance is closer to the measured data than the three-element model. Based on the evaluation of the multi-frequency parameters, we presented parameter mapping of EIS using two kinds of circuit model: one is the three-element model in the form of admittance and the other is the Cole-Cole model in the form of admittance. Comparing with classical admittance mapping at a single frequency, the multi-frequency parameter mapping will provide a novel vision to study EIS. The multi-frequency approach can provide the mappings of four parameters, which is helpful to identify different diseases with a similar characteristic in classical EIS mapping. From plots of the real and imaginary parts of the admittance, it is easy to make sure whether there exists abnormal tissue.
NASA Astrophysics Data System (ADS)
Shaw, Jeremy A.; Daescu, Dacian N.
2017-08-01
This article presents the mathematical framework to evaluate the sensitivity of a forecast error aspect to the input parameters of a weak-constraint four-dimensional variational data assimilation system (w4D-Var DAS), extending the established theory from strong-constraint 4D-Var. Emphasis is placed on the derivation of the equations for evaluating the forecast sensitivity to parameters in the DAS representation of the model error statistics, including bias, standard deviation, and correlation structure. A novel adjoint-based procedure for adaptive tuning of the specified model error covariance matrix is introduced. Results from numerical convergence tests establish the validity of the model error sensitivity equations. Preliminary experiments providing a proof-of-concept are performed using the Lorenz multi-scale model to illustrate the theoretical concepts and potential benefits for practical applications.
Estimation of pharmacokinetic parameters from non-compartmental variables using Microsoft Excel.
Dansirikul, Chantaratsamon; Choi, Malcolm; Duffull, Stephen B
2005-06-01
This study was conducted to develop a method, termed 'back analysis (BA)', for converting non-compartmental variables to compartment model dependent pharmacokinetic parameters for both one- and two-compartment models. A Microsoft Excel spreadsheet was implemented with the use of Solver and visual basic functions. The performance of the BA method in estimating pharmacokinetic parameter values was evaluated by comparing the parameter values obtained to a standard modelling software program, NONMEM, using simulated data. The results show that the BA method was reasonably precise and provided low bias in estimating fixed and random effect parameters for both one- and two-compartment models. The pharmacokinetic parameters estimated from the BA method were similar to those of NONMEM estimation.
Evaluating performances of simplified physically based landslide susceptibility models.
NASA Astrophysics Data System (ADS)
Capparelli, Giovanna; Formetta, Giuseppe; Versace, Pasquale
2015-04-01
Rainfall induced shallow landslides cause significant damages involving loss of life and properties. Prediction of shallow landslides susceptible locations is a complex task that involves many disciplines: hydrology, geotechnical science, geomorphology, and statistics. Usually to accomplish this task two main approaches are used: statistical or physically based model. This paper presents a package of GIS based models for landslide susceptibility analysis. It was integrated in the NewAge-JGrass hydrological model using the Object Modeling System (OMS) modeling framework. The package includes three simplified physically based models for landslides susceptibility analysis (M1, M2, and M3) and a component for models verifications. It computes eight goodness of fit indices (GOF) by comparing pixel-by-pixel model results and measurements data. Moreover, the package integration in NewAge-JGrass allows the use of other components such as geographic information system tools to manage inputs-output processes, and automatic calibration algorithms to estimate model parameters. The system offers the possibility to investigate and fairly compare the quality and the robustness of models and models parameters, according a procedure that includes: i) model parameters estimation by optimizing each of the GOF index separately, ii) models evaluation in the ROC plane by using each of the optimal parameter set, and iii) GOF robustness evaluation by assessing their sensitivity to the input parameter variation. This procedure was repeated for all three models. The system was applied for a case study in Calabria (Italy) along the Salerno-Reggio Calabria highway, between Cosenza and Altilia municipality. The analysis provided that among all the optimized indices and all the three models, Average Index (AI) optimization coupled with model M3 is the best modeling solution for our test case. This research was funded by PON Project No. 01_01503 "Integrated Systems for Hydrogeological Risk Monitoring, Early Warning and Mitigation Along the Main Lifelines", CUP B31H11000370005, in the framework of the National Operational Program for "Research and Competitiveness" 2007-2013.
Lutchen, K R
1990-08-01
A sensitivity analysis based on weighted least-squares regression is presented to evaluate alternative methods for fitting lumped-parameter models to respiratory impedance data. The goal is to maintain parameter accuracy simultaneously with practical experiment design. The analysis focuses on predicting parameter uncertainties using a linearized approximation for joint confidence regions. Applications are with four-element parallel and viscoelastic models for 0.125- to 4-Hz data and a six-element model with separate tissue and airway properties for input and transfer impedance data from 2-64 Hz. The criterion function form was evaluated by comparing parameter uncertainties when data are fit as magnitude and phase, dynamic resistance and compliance, or real and imaginary parts of input impedance. The proper choice of weighting can make all three criterion variables comparable. For the six-element model, parameter uncertainties were predicted when both input impedance and transfer impedance are acquired and fit simultaneously. A fit to both data sets from 4 to 64 Hz could reduce parameter estimate uncertainties considerably from those achievable by fitting either alone. For the four-element models, use of an independent, but noisy, measure of static compliance was assessed as a constraint on model parameters. This may allow acceptable parameter uncertainties for a minimum frequency of 0.275-0.375 Hz rather than 0.125 Hz. This reduces data acquisition requirements from a 16- to a 5.33- to 8-s breath holding period. These results are approximations, and the impact of using the linearized approximation for the confidence regions is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgensen, S.
Testing the behavior of metals in extreme environments is not always feasible, so material scientists use models to try and predict the behavior. To achieve accurate results it is necessary to use the appropriate model and material-specific parameters. This research evaluated the performance of six material models available in the MIDAS database [1] to determine at which temperatures and strain-rates they perform best, and to determine to which experimental data their parameters were optimized. Additionally, parameters were optimized for the Johnson-Cook model using experimental data from Lassila et al [2].
Global Parameter Optimization of CLM4.5 Using Sparse-Grid Based Surrogates
NASA Astrophysics Data System (ADS)
Lu, D.; Ricciuto, D. M.; Gu, L.
2016-12-01
Calibration of the Community Land Model (CLM) is challenging because of its model complexity, large parameter sets, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time. The goal of this study is to calibrate some of the CLM parameters in order to improve model projection of carbon fluxes. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first use advanced sparse grid (SG) interpolation to construct a surrogate system of the actual CLM model, and then we calibrate the surrogate model in the optimization process. As the surrogate model is a polynomial whose evaluation is fast, it can be efficiently evaluated with sufficiently large number of times in the optimization, which facilitates the global search. We calibrate five parameters against 12 months of GPP, NEP, and TLAI data from the U.S. Missouri Ozark (US-MOz) tower. The results indicate that an accurate surrogate model can be created for the CLM4.5 with a relatively small number of SG points (i.e., CLM4.5 simulations), and the application of the optimized parameters leads to a higher predictive capacity than the default parameter values in the CLM4.5 for the US-MOz site.
Parameter estimation of variable-parameter nonlinear Muskingum model using excel solver
NASA Astrophysics Data System (ADS)
Kang, Ling; Zhou, Liwei
2018-02-01
Abstract . The Muskingum model is an effective flood routing technology in hydrology and water resources Engineering. With the development of optimization technology, more and more variable-parameter Muskingum models were presented to improve effectiveness of the Muskingum model in recent decades. A variable-parameter nonlinear Muskingum model (NVPNLMM) was proposed in this paper. According to the results of two real and frequently-used case studies by various models, the NVPNLMM could obtain better values of evaluation criteria, which are used to describe the superiority of the estimated outflows and compare the accuracies of flood routing using various models, and the optimal estimated outflows by the NVPNLMM were closer to the observed outflows than the ones by other models.
NASA Astrophysics Data System (ADS)
Paul, M.; Negahban-Azar, M.
2017-12-01
The hydrologic models usually need to be calibrated against observed streamflow at the outlet of a particular drainage area through a careful model calibration. However, a large number of parameters are required to fit in the model due to their unavailability of the field measurement. Therefore, it is difficult to calibrate the model for a large number of potential uncertain model parameters. This even becomes more challenging if the model is for a large watershed with multiple land uses and various geophysical characteristics. Sensitivity analysis (SA) can be used as a tool to identify most sensitive model parameters which affect the calibrated model performance. There are many different calibration and uncertainty analysis algorithms which can be performed with different objective functions. By incorporating sensitive parameters in streamflow simulation, effects of the suitable algorithm in improving model performance can be demonstrated by the Soil and Water Assessment Tool (SWAT) modeling. In this study, the SWAT was applied in the San Joaquin Watershed in California covering 19704 km2 to calibrate the daily streamflow. Recently, sever water stress escalating due to intensified climate variability, prolonged drought and depleting groundwater for agricultural irrigation in this watershed. Therefore it is important to perform a proper uncertainty analysis given the uncertainties inherent in hydrologic modeling to predict the spatial and temporal variation of the hydrologic process to evaluate the impacts of different hydrologic variables. The purpose of this study was to evaluate the sensitivity and uncertainty of the calibrated parameters for predicting streamflow. To evaluate the sensitivity of the calibrated parameters three different optimization algorithms (Sequential Uncertainty Fitting- SUFI-2, Generalized Likelihood Uncertainty Estimation- GLUE and Parameter Solution- ParaSol) were used with four different objective functions (coefficient of determination- r2, Nash-Sutcliffe efficiency- NSE, percent bias- PBIAS, and Kling-Gupta efficiency- KGE). The preliminary results showed that using the SUFI-2 algorithm with the objective function NSE and KGE has improved significantly the calibration (e.g. R2 and NSE is found 0.52 and 0.47 respectively for daily streamflow calibration).
Impact of the hard-coded parameters on the hydrologic fluxes of the land surface model Noah-MP
NASA Astrophysics Data System (ADS)
Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Attinger, Sabine; Thober, Stephan
2016-04-01
Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The process descriptions contain a number of parameters that can be soil or plant type dependent and are typically read from tabulated input files. Land surface models may have, however, process descriptions that contain fixed, hard-coded numbers in the computer code, which are not identified as model parameters. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the importance of the fixed values on restricting the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options, which are mostly spatially constant values. This is in addition to the 71 standard parameters of Noah-MP, which mostly get distributed spatially by given vegetation and soil input maps. We performed a Sobol' global sensitivity analysis of Noah-MP to variations of the standard and hard-coded parameters for a specific set of process options. 42 standard parameters and 75 hard-coded parameters were active with the chosen process options. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated. These sensitivities were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the calculation of hydrologic signatures of the runoff data. Latent heat and total runoff exhibit very similar sensitivities towards standard and hard-coded parameters in Noah-MP because of their tight coupling via the water balance. It should therefore be comparable to calibrate Noah-MP either against latent heat observations or against river runoff data. Latent heat and total runoff are sensitive to both, plant and soil parameters. Calibrating only a parameter sub-set of only soil parameters, for example, thus limits the ability to derive realistic model parameters. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.
Evaluation of a hydrological model based on Bidirectional Reach (BReach)
NASA Astrophysics Data System (ADS)
Van Eerdenbrugh, Katrien; Van Hoey, Stijn; Verhoest, Niko E. C.
2016-04-01
Evaluation and discrimination of model structures is crucial to ensure an appropriate use of hydrological models. When evaluating model results by aggregating their quality in (a subset of) individual observations, overall results of this analysis sometimes conceal important detailed information about model structural deficiencies. Analyzing model results within their local (time) context can uncover this detailed information. In this research, a methodology called Bidirectional Reach (BReach) is proposed to evaluate and analyze results of a hydrological model by assessing the maximum left and right reach in each observation point that is used for model evaluation. These maximum reaches express the capability of the model to describe a subset of the evaluation data both in the direction of the previous (left) and of the following data (right). This capability is evaluated on two levels. First, on the level of individual observations, the combination of a parameter set and an observation is classified as non-acceptable if the deviation between the accompanying model result and the measurement exceeds observational uncertainty. Second, the behavior in a sequence of observations is evaluated by means of a tolerance degree. This tolerance degree expresses the condition for satisfactory model behavior in a data series and is defined by the percentage of observations within this series that can have non-acceptable model results. Based on both criteria, the maximum left and right reaches of a model in an observation represent the data points in the direction of the previous respectively the following observations beyond which none of the sampled parameter sets both are satisfactory and result in an acceptable deviation. After assessing these reaches for a variety of tolerance degrees, results can be plotted in a combined BReach plot that show temporal changes in the behavior of model results. The methodology is applied on a Probability Distributed Model (PDM) of the river Grote Nete upstream of Geel-Zammel with 1 106 randomly sampled parameter sets for three separate years. Acceptable model results must fit in the 95 % uncertainty bounds of observed discharges and tolerance degrees of 0 %, 5 %, 10 %, 20 % and 40 % are applied. An evaluation of BReach results with regard to other variables, such as the magnitude and the rate of change of the observed discharges enables to detect recurring patterns in model errors. This results in an augmented understanding of the model's structural deficiencies, revealing the incapability of the PDM model to simulate both high and low flow simulations with a single parameter set for this catchment. As the methodology can be applied for different hydrological model structures, it is a useful tool to gain understanding of the difference in behavior of competing models.
Measuring Success: Evaluating Educational Programs
ERIC Educational Resources Information Center
Fisher, Yael
2010-01-01
This paper reveals a new evaluation model, which enables educational program and project managers to evaluate their programs with a simple and easy to understand approach. The "index of success model" is comprised of five parameters that enable to focus on and evaluate both the implementation and results of an educational program. The…
NASA Astrophysics Data System (ADS)
Harshan, Suraj
The main objective of the present thesis is the improvement of the TEB/ISBA (SURFEX) urban land surface model (ULSM) through comprehensive evaluation, sensitivity analysis, and optimization experiments using energy balance and radiative and air temperature data observed during 11 months at a tropical sub-urban site in Singapore. Overall the performance of the model is satisfactory, with a small underestimation of net radiation and an overestimation of sensible heat flux. Weaknesses in predicting the latent heat flux are apparent with smaller model values during daytime and the model also significantly underpredicts both the daytime peak and nighttime storage heat. Surface temperatures of all facets are generally overpredicted. Significant variation exists in the model behaviour between dry and wet seasons. The vegetation parametrization used in the model is inadequate to represent the moisture dynamics, producing unrealistically low latent heat fluxes during a particularly dry period. The comprehensive evaluation of the USLM shows the need for accurate estimation of input parameter values for present site. Since obtaining many of these parameters through empirical methods is not feasible, the present study employed a two step approach aimed at providing information about the most sensitive parameters and an optimized parameter set from model calibration. Two well established sensitivity analysis methods (global: Sobol and local: Morris) and a state-of-the-art multiobjective evolutionary algorithm (Borg) were employed for sensitivity analysis and parameter estimation. Experiments were carried out for three different weather periods. The analysis indicates that roof related parameters are the most important ones in controlling the behaviour of the sensible heat flux and net radiation flux, with roof and road albedo as the most influential parameters. Soil moisture initialization parameters are important in controlling the latent heat flux. The built (town) fraction has a significant influence on all fluxes considered. Comparison between the Sobol and Morris methods shows similar sensitivities, indicating the robustness of the present analysis and that the Morris method can be employed as a computationally cheaper alternative of Sobol's method. Optimization as well as the sensitivity experiments for the three periods (dry, wet and mixed), show a noticeable difference in parameter sensitivity and parameter convergence, indicating inadequacies in model formulation. Existence of a significant proportion of less sensitive parameters might be indicating an over-parametrized model. Borg MOEA showed great promise in optimizing the input parameters set. The optimized model modified using the site specific values for thermal roughness length parametrization shows an improvement in the performances of outgoing longwave radiation flux, overall surface temperature, heat storage flux and sensible heat flux.
Evaluation of the IRT Parameter Invariance Property for the MCAT.
ERIC Educational Resources Information Center
Kelkar, Vinaya; Wightman, Linda F.; Luecht, Richard M.
The purpose of this study was to investigate the viability of the property of parameter invariance for the one-parameter (1P), two-parameter (2P), and three-parameter (3P) item response theory (IRT) models for the Medical College Admissions Tests (MCAT). Invariance of item parameters across different gender, ethnic, and language groups and the…
NASA Astrophysics Data System (ADS)
Shafii, M.; Tolson, B.; Matott, L. S.
2012-04-01
Hydrologic modeling has benefited from significant developments over the past two decades. This has resulted in building of higher levels of complexity into hydrologic models, which eventually makes the model evaluation process (parameter estimation via calibration and uncertainty analysis) more challenging. In order to avoid unreasonable parameter estimates, many researchers have suggested implementation of multi-criteria calibration schemes. Furthermore, for predictive hydrologic models to be useful, proper consideration of uncertainty is essential. Consequently, recent research has emphasized comprehensive model assessment procedures in which multi-criteria parameter estimation is combined with statistically-based uncertainty analysis routines such as Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling. Such a procedure relies on the use of formal likelihood functions based on statistical assumptions, and moreover, the Bayesian inference structured on MCMC samplers requires a considerably large number of simulations. Due to these issues, especially in complex non-linear hydrological models, a variety of alternative informal approaches have been proposed for uncertainty analysis in the multi-criteria context. This study aims at exploring a number of such informal uncertainty analysis techniques in multi-criteria calibration of hydrological models. The informal methods addressed in this study are (i) Pareto optimality which quantifies the parameter uncertainty using the Pareto solutions, (ii) DDS-AU which uses the weighted sum of objective functions to derive the prediction limits, and (iii) GLUE which describes the total uncertainty through identification of behavioral solutions. The main objective is to compare such methods with MCMC-based Bayesian inference with respect to factors such as computational burden, and predictive capacity, which are evaluated based on multiple comparative measures. The measures for comparison are calculated both for calibration and evaluation periods. The uncertainty analysis methodologies are applied to a simple 5-parameter rainfall-runoff model, called HYMOD.
New approach to effective diffusion coefficient evaluation in the nanostructured two-phase media
NASA Astrophysics Data System (ADS)
Lyashenko, Yu. O.; Liashenko, O. Y.; Morozovich, V. V.
2018-03-01
Most widely used basic and combined models for evaluation of the effective diffusion parameters of inhomogeneous two-phase zone are reviewed. A new combined model of effective medium is analyzed for the description of diffusion processes in the two-phase zones. In this model the effective diffusivity depends on the growth kinetic coefficients of each phase, the volume fractions of phases and on the additional parameter that generally characterizes the structure type of the two-phase zone. Our combined model describes two-phase zone evolution in the binary systems based on consideration of the diffusion fluxes through both phases. The Lattice Monte Carlo method was used to test the validity of different phenomenological models for evaluation of the effective diffusivity in nanostructured two-phase zones with different structural morphology.
A Mathematical Evaluation of the Core Conductor Model
Clark, John; Plonsey, Robert
1966-01-01
This paper is a mathematical evaluation of the core conductor model where its three dimensionality is taken into account. The problem considered is that of a single, active, unmyelinated nerve fiber situated in an extensive, homogeneous, conducting medium. Expressions for the various core conductor parameters have been derived in a mathematically rigorous manner according to the principles of electromagnetic theory. The purpose of employing mathematical rigor in this study is to bring to light the inherent assumptions of the one dimensional core conductor model, providing a method of evaluating the accuracy of this linear model. Based on the use of synthetic squid axon data, the conclusion of this study is that the linear core conductor model is a good approximation for internal but not external parameters. PMID:5903155
An Evaluation of a Markov Chain Monte Carlo Method for the Two-Parameter Logistic Model.
ERIC Educational Resources Information Center
Kim, Seock-Ho; Cohen, Allan S.
The accuracy of the Markov Chain Monte Carlo (MCMC) procedure Gibbs sampling was considered for estimation of item parameters of the two-parameter logistic model. Data for the Law School Admission Test (LSAT) Section 6 were analyzed to illustrate the MCMC procedure. In addition, simulated data sets were analyzed using the MCMC, marginal Bayesian…
ERIC Educational Resources Information Center
Tian, Wei; Cai, Li; Thissen, David; Xin, Tao
2013-01-01
In item response theory (IRT) modeling, the item parameter error covariance matrix plays a critical role in statistical inference procedures. When item parameters are estimated using the EM algorithm, the parameter error covariance matrix is not an automatic by-product of item calibration. Cai proposed the use of Supplemented EM algorithm for…
Boehm, Udo; Steingroever, Helen; Wagenmakers, Eric-Jan
2018-06-01
An important tool in the advancement of cognitive science are quantitative models that represent different cognitive variables in terms of model parameters. To evaluate such models, their parameters are typically tested for relationships with behavioral and physiological variables that are thought to reflect specific cognitive processes. However, many models do not come equipped with the statistical framework needed to relate model parameters to covariates. Instead, researchers often revert to classifying participants into groups depending on their values on the covariates, and subsequently comparing the estimated model parameters between these groups. Here we develop a comprehensive solution to the covariate problem in the form of a Bayesian regression framework. Our framework can be easily added to existing cognitive models and allows researchers to quantify the evidential support for relationships between covariates and model parameters using Bayes factors. Moreover, we present a simulation study that demonstrates the superiority of the Bayesian regression framework to the conventional classification-based approach.
Rolland, Y; Bézy-Wendling, J; Duvauferrier, R; Coatrieux, J L
1999-03-01
To demonstrate the usefulness of a model of the parenchymous vascularization to evaluate texture analysis methods. Slices with thickness varying from 1 to 4 mm were reformatted from a 3D vascular model corresponding to either normal tissue perfusion or local hypervascularization. Parameters of statistical methods were measured on 16128x128 regions of interest, and mean values and standard deviation were calculated. For each parameter, the performances (discrimination power and stability) were evaluated. Among 11 calculated statistical parameters, three (homogeneity, entropy, mean of gradients) were found to have a good discriminating power to differentiate normal perfusion from hypervascularization, but only the gradient mean was found to have a good stability with respect to the thickness. Five parameters (run percentage, run length distribution, long run emphasis, contrast, and gray level distribution) were found to have intermediate results. In the remaining three, curtosis and correlation was found to have little discrimination power, skewness none. This 3D vascular model, which allows the generation of various examples of vascular textures, is a powerful tool to assess the performance of texture analysis methods. This improves our knowledge of the methods and should contribute to their a priori choice when designing clinical studies.
Guan, Zheng; Zhang, Guan-min; Ma, Ping; Liu, Li-hong; Zhou, Tian-yan; Lu, Wei
2010-07-01
In this study, we evaluated the influence of different variance from each of the parameters on the output of tacrolimus population pharmacokinetic (PopPK) model in Chinese healthy volunteers, using Fourier amplitude sensitivity test (FAST). Besides, we estimated the index of sensitivity within whole course of blood sampling, designed different sampling times, and evaluated the quality of parameters' and the efficiency of prediction. It was observed that besides CL1/F, the index of sensitivity for all of the other four parameters (V1/F, V2/F, CL2/F and k(a)) in tacrolimus PopPK model showed relatively high level and changed fast with the time passing. With the increase of the variance of k(a), its indices of sensitivity increased obviously, associated with significant decrease in sensitivity index for the other parameters, and obvious change in peak time as well. According to the simulation of NONMEM and the comparison among different fitting results, we found that the sampling time points designed according to FAST surpassed the other time points. It suggests that FAST can access the sensitivities of model parameters effectively, and assist the design of clinical sampling times and the construction of PopPK model.
Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?
NASA Technical Reports Server (NTRS)
Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander
2016-01-01
Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.
NASA Astrophysics Data System (ADS)
Zhang, Yong; Papelis, Charalambos; Sun, Pengtao; Yu, Zhongbo
2013-08-01
Particle-based models and continuum models have been developed to quantify mixing-limited bimolecular reactions for decades. Effective model parameters control reaction kinetics, but the relationship between the particle-based model parameter (such as the interaction radius R) and the continuum model parameter (i.e., the effective rate coefficient Kf) remains obscure. This study attempts to evaluate and link R and Kf for the second-order bimolecular reaction in both the bulk and the sharp-concentration-gradient (SCG) systems. First, in the bulk system, the agent-based method reveals that R remains constant for irreversible reactions and decreases nonlinearly in time for a reversible reaction, while mathematical analysis shows that Kf transitions from an exponential to a power-law function. Qualitative link between R and Kf can then be built for the irreversible reaction with equal initial reactant concentrations. Second, in the SCG system with a reaction interface, numerical experiments show that when R and Kf decline as t-1/2 (for example, to account for the reactant front expansion), the two models capture the transient power-law growth of product mass, and their effective parameters have the same functional form. Finally, revisiting of laboratory experiments further shows that the best fit factor in R and Kf is on the same order, and both models can efficiently describe chemical kinetics observed in the SCG system. Effective model parameters used to describe reaction kinetics therefore may be linked directly, where the exact linkage may depend on the chemical and physical properties of the system.
Arnold, Matthias
2017-12-02
The economic evaluation of stratified breast cancer screening gains momentum, but produces also very diverse results. Systematic reviews so far focused on modeling techniques and epidemiologic assumptions. However, cost and utility parameters received only little attention. This systematic review assesses simulation models for stratified breast cancer screening based on their cost and utility parameters in each phase of breast cancer screening and care. A literature review was conducted to compare economic evaluations with simulation models of personalized breast cancer screening. Study quality was assessed using reporting guidelines. Cost and utility inputs were extracted, standardized and structured using a care delivery framework. Studies were then clustered according to their study aim and parameters were compared within the clusters. Eighteen studies were identified within three study clusters. Reporting quality was very diverse in all three clusters. Only two studies in cluster 1, four studies in cluster 2 and one study in cluster 3 scored high in the quality appraisal. In addition to the quality appraisal, this review assessed if the simulation models were consistent in integrating all relevant phases of care, if utility parameters were consistent and methodological sound and if cost were compatible and consistent in the actual parameters used for screening, diagnostic work up and treatment. Of 18 studies, only three studies did not show signs of potential bias. This systematic review shows that a closer look into the cost and utility parameter can help to identify potential bias. Future simulation models should focus on integrating all relevant phases of care, using methodologically sound utility parameters and avoiding inconsistent cost parameters.
Seismic activity prediction using computational intelligence techniques in northern Pakistan
NASA Astrophysics Data System (ADS)
Asim, Khawaja M.; Awais, Muhammad; Martínez-Álvarez, F.; Iqbal, Talat
2017-10-01
Earthquake prediction study is carried out for the region of northern Pakistan. The prediction methodology includes interdisciplinary interaction of seismology and computational intelligence. Eight seismic parameters are computed based upon the past earthquakes. Predictive ability of these eight seismic parameters is evaluated in terms of information gain, which leads to the selection of six parameters to be used in prediction. Multiple computationally intelligent models have been developed for earthquake prediction using selected seismic parameters. These models include feed-forward neural network, recurrent neural network, random forest, multi layer perceptron, radial basis neural network, and support vector machine. The performance of every prediction model is evaluated and McNemar's statistical test is applied to observe the statistical significance of computational methodologies. Feed-forward neural network shows statistically significant predictions along with accuracy of 75% and positive predictive value of 78% in context of northern Pakistan.
Patyk, Kelly A; Helm, Julie; Martin, Michael K; Forde-Folle, Kimberly N; Olea-Popelka, Francisco J; Hokanson, John E; Fingerlin, Tasha; Reeves, Aaron
2013-07-01
Epidemiologic simulation modeling of highly pathogenic avian influenza (HPAI) outbreaks provides a useful conceptual framework with which to estimate the consequences of HPAI outbreaks and to evaluate disease control strategies. The purposes of this study were to establish detailed and informed input parameters for an epidemiologic simulation model of the H5N1 strain of HPAI among commercial and backyard poultry in the state of South Carolina in the United States using a highly realistic representation of this poultry population; to estimate the consequences of an outbreak of HPAI in this population with a model constructed from these parameters; and to briefly evaluate the sensitivity of model outcomes to several parameters. Parameters describing disease state durations; disease transmission via direct contact, indirect contact, and local-area spread; and disease detection, surveillance, and control were established through consultation with subject matter experts, a review of the current literature, and the use of several computational tools. The stochastic model constructed from these parameters produced simulated outbreaks ranging from 2 to 111 days in duration (median 25 days), during which 1 to 514 flocks were infected (median 28 flocks). Model results were particularly sensitive to the rate of indirect contact that occurs among flocks. The baseline model established in this study can be used in the future to evaluate various control strategies, as a tool for emergency preparedness and response planning, and to assess the costs associated with disease control and the economic consequences of a disease outbreak. Published by Elsevier B.V.
Evaluation of FEM engineering parameters from insitu tests
DOT National Transportation Integrated Search
2001-12-01
The study looked critically at insitu test methods (SPT, CPT, DMT, and PMT) as a means for developing finite element constitutive model input parameters. The first phase of the study examined insitu test derived parameters with laboratory triaxial te...
NASA Astrophysics Data System (ADS)
Gordeev, E.; Sergeev, V.; Honkonen, I.; Kuznetsova, M.; Rastätter, L.; Palmroth, M.; Janhunen, P.; Tóth, G.; Lyon, J.; Wiltberger, M.
2015-12-01
Global magnetohydrodynamic (MHD) modeling is a powerful tool in space weather research and predictions. There are several advanced and still developing global MHD (GMHD) models that are publicly available via Community Coordinated Modeling Center's (CCMC) Run on Request system, which allows the users to simulate the magnetospheric response to different solar wind conditions including extraordinary events, like geomagnetic storms. Systematic validation of GMHD models against observations still continues to be a challenge, as well as comparative benchmarking of different models against each other. In this paper we describe and test a new approach in which (i) a set of critical large-scale system parameters is explored/tested, which are produced by (ii) specially designed set of computer runs to simulate realistic statistical distributions of critical solar wind parameters and are compared to (iii) observation-based empirical relationships for these parameters. Being tested in approximately similar conditions (similar inputs, comparable grid resolution, etc.), the four models publicly available at the CCMC predict rather well the absolute values and variations of those key parameters (magnetospheric size, magnetic field, and pressure) which are directly related to the large-scale magnetospheric equilibrium in the outer magnetosphere, for which the MHD is supposed to be a valid approach. At the same time, the models have systematic differences in other parameters, being especially different in predicting the global convection rate, total field-aligned current, and magnetic flux loading into the magnetotail after the north-south interplanetary magnetic field turning. According to validation results, none of the models emerges as an absolute leader. The new approach suggested for the evaluation of the models performance against reality may be used by model users while planning their investigations, as well as by model developers and those interesting to quantitatively evaluate progress in magnetospheric modeling.
Metal mixture modeling evaluation project: 2. Comparison of four modeling approaches.
Farley, Kevin J; Meyer, Joseph S; Balistrieri, Laurie S; De Schamphelaere, Karel A C; Iwasaki, Yuichi; Janssen, Colin R; Kamo, Masashi; Lofts, Stephen; Mebane, Christopher A; Naito, Wataru; Ryan, Adam C; Santore, Robert C; Tipping, Edward
2015-04-01
As part of the Metal Mixture Modeling Evaluation (MMME) project, models were developed by the National Institute of Advanced Industrial Science and Technology (Japan), the US Geological Survey (USA), HDR|HydroQual (USA), and the Centre for Ecology and Hydrology (United Kingdom) to address the effects of metal mixtures on biological responses of aquatic organisms. A comparison of the 4 models, as they were presented at the MMME workshop in Brussels, Belgium (May 2012), is provided in the present study. Overall, the models were found to be similar in structure (free ion activities computed by the Windermere humic aqueous model [WHAM]; specific or nonspecific binding of metals/cations in or on the organism; specification of metal potency factors or toxicity response functions to relate metal accumulation to biological response). Major differences in modeling approaches are attributed to various modeling assumptions (e.g., single vs multiple types of binding sites on the organism) and specific calibration strategies that affected the selection of model parameters. The models provided a reasonable description of additive (or nearly additive) toxicity for a number of individual toxicity test results. Less-than-additive toxicity was more difficult to describe with the available models. Because of limitations in the available datasets and the strong interrelationships among the model parameters (binding constants, potency factors, toxicity response parameters), further evaluation of specific model assumptions and calibration strategies is needed. © 2014 SETAC.
Dynamic Modeling from Flight Data with Unknown Time Skews
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2016-01-01
A method for estimating dynamic model parameters from flight data with unknown time skews is described and demonstrated. The method combines data reconstruction, nonlinear optimization, and equation-error parameter estimation in the frequency domain to accurately estimate both dynamic model parameters and the relative time skews in the data. Data from a nonlinear F-16 aircraft simulation with realistic noise, instrumentation errors, and arbitrary time skews were used to demonstrate the approach. The approach was further evaluated using flight data from a subscale jet transport aircraft, where the measured data were known to have relative time skews. Comparison of modeling results obtained from time-skewed and time-synchronized data showed that the method accurately estimates both dynamic model parameters and relative time skew parameters from flight data with unknown time skews.
NASA Astrophysics Data System (ADS)
Engeland, Kolbjørn; Steinsland, Ingelin; Johansen, Stian Solvang; Petersen-Øverleir, Asgeir; Kolberg, Sjur
2016-05-01
In this study, we explore the effect of uncertainty and poor observation quality on hydrological model calibration and predictions. The Osali catchment in Western Norway was selected as case study and an elevation distributed HBV-model was used. We systematically evaluated the effect of accounting for uncertainty in parameters, precipitation input, temperature input and streamflow observations. For precipitation and temperature we accounted for the interpolation uncertainty, and for streamflow we accounted for rating curve uncertainty. Further, the effects of poorer quality of precipitation input and streamflow observations were explored. Less information about precipitation was obtained by excluding the nearest precipitation station from the analysis, while reduced information about the streamflow was obtained by omitting the highest and lowest streamflow observations when estimating the rating curve. The results showed that including uncertainty in the precipitation and temperature inputs has a negligible effect on the posterior distribution of parameters and for the Nash-Sutcliffe (NS) efficiency for the predicted flows, while the reliability and the continuous rank probability score (CRPS) improves. Less information in precipitation input resulted in a shift in the water balance parameter Pcorr, a model producing smoother streamflow predictions, giving poorer NS and CRPS, but higher reliability. The effect of calibrating the hydrological model using streamflow observations based on different rating curves is mainly seen as variability in the water balance parameter Pcorr. When evaluating predictions, the best evaluation scores were not achieved for the rating curve used for calibration, but for rating curves giving smoother streamflow observations. Less information in streamflow influenced the water balance parameter Pcorr, and increased the spread in evaluation scores by giving both better and worse scores.
Evaluation of Uncertainty in Constituent Input Parameters for Modeling the Fate of RDX
2015-07-01
exercise was to evaluate the importance of chemical -specific model input parameters, the impacts of their uncertainty, and the potential benefits of... chemical -specific inputs for RDX that were determined to be sensitive with relatively high uncertainty: these included the soil-water linear...Koc for organic chemicals . The EFS values provided for log Koc of RDX were 1.72 and 1.95. OBJECTIVE: TREECS™ (http://el.erdc.usace.army.mil/treecs
Modeling polyvinyl chloride Plasma Modification by Neural Networks
NASA Astrophysics Data System (ADS)
Wang, Changquan
2018-03-01
Neural networks model were constructed to analyze the connection between dielectric barrier discharge parameters and surface properties of material. The experiment data were generated from polyvinyl chloride plasma modification by using uniform design. Discharge voltage, discharge gas gap and treatment time were as neural network input layer parameters. The measured values of contact angle were as the output layer parameters. A nonlinear mathematical model of the surface modification for polyvinyl chloride was developed based upon the neural networks. The optimum model parameters were obtained by the simulation evaluation and error analysis. The results of the optimal model show that the predicted value is very close to the actual test value. The prediction model obtained here are useful for discharge plasma surface modification analysis.
FracFit: A Robust Parameter Estimation Tool for Anomalous Transport Problems
NASA Astrophysics Data System (ADS)
Kelly, J. F.; Bolster, D.; Meerschaert, M. M.; Drummond, J. D.; Packman, A. I.
2016-12-01
Anomalous transport cannot be adequately described with classical Fickian advection-dispersion equations (ADE). Rather, fractional calculus models may be used, which capture non-Fickian behavior (e.g. skewness and power-law tails). FracFit is a robust parameter estimation tool based on space- and time-fractional models used to model anomalous transport. Currently, four fractional models are supported: 1) space fractional advection-dispersion equation (sFADE), 2) time-fractional dispersion equation with drift (TFDE), 3) fractional mobile-immobile equation (FMIE), and 4) tempered fractional mobile-immobile equation (TFMIE); additional models may be added in the future. Model solutions using pulse initial conditions and continuous injections are evaluated using stable distribution PDFs and CDFs or subordination integrals. Parameter estimates are extracted from measured breakthrough curves (BTCs) using a weighted nonlinear least squares (WNLS) algorithm. Optimal weights for BTCs for pulse initial conditions and continuous injections are presented, facilitating the estimation of power-law tails. Two sample applications are analyzed: 1) continuous injection laboratory experiments using natural organic matter and 2) pulse injection BTCs in the Selke river. Model parameters are compared across models and goodness-of-fit metrics are presented, assisting model evaluation. The sFADE and time-fractional models are compared using space-time duality (Baeumer et. al., 2009), which links the two paradigms.
NASA Technical Reports Server (NTRS)
Smith, O. E.; Adelfang, S. I.; Tubbs, J. D.
1982-01-01
A five-parameter gamma distribution (BGD) having two shape parameters, two location parameters, and a correlation parameter is investigated. This general BGD is expressed as a double series and as a single series of the modified Bessel function. It reduces to the known special case for equal shape parameters. Practical functions for computer evaluations for the general BGD and for special cases are presented. Applications to wind gust modeling for the ascent flight of the space shuttle are illustrated.
Metal Mixture Modeling Evaluation project: 2. Comparison of four modeling approaches
Farley, Kevin J.; Meyer, Joe; Balistrieri, Laurie S.; DeSchamphelaere, Karl; Iwasaki, Yuichi; Janssen, Colin; Kamo, Masashi; Lofts, Steve; Mebane, Christopher A.; Naito, Wataru; Ryan, Adam C.; Santore, Robert C.; Tipping, Edward
2015-01-01
As part of the Metal Mixture Modeling Evaluation (MMME) project, models were developed by the National Institute of Advanced Industrial Science and Technology (Japan), the U.S. Geological Survey (USA), HDR⎪HydroQual, Inc. (USA), and the Centre for Ecology and Hydrology (UK) to address the effects of metal mixtures on biological responses of aquatic organisms. A comparison of the 4 models, as they were presented at the MMME Workshop in Brussels, Belgium (May 2012), is provided herein. Overall, the models were found to be similar in structure (free ion activities computed by WHAM; specific or non-specific binding of metals/cations in or on the organism; specification of metal potency factors and/or toxicity response functions to relate metal accumulation to biological response). Major differences in modeling approaches are attributed to various modeling assumptions (e.g., single versus multiple types of binding site on the organism) and specific calibration strategies that affected the selection of model parameters. The models provided a reasonable description of additive (or nearly additive) toxicity for a number of individual toxicity test results. Less-than-additive toxicity was more difficult to describe with the available models. Because of limitations in the available datasets and the strong inter-relationships among the model parameters (log KM values, potency factors, toxicity response parameters), further evaluation of specific model assumptions and calibration strategies is needed.
NASA Astrophysics Data System (ADS)
Fan, Qiang; Huang, Zhenyu; Zhang, Bing; Chen, Dayue
2013-02-01
Properties of discontinuities, such as bolt joints and cracks in the waveguide structures, are difficult to evaluate by either analytical or numerical methods due to the complexity and uncertainty of the discontinuities. In this paper, the discontinuity in a Timoshenko beam is modeled with high-order parameters and then these parameters are identified by using reflection coefficients at the discontinuity. The high-order model is composed of several one-order sub-models in series and each sub-model consists of inertia, stiffness and damping components in parallel. The order of the discontinuity model is determined based on the characteristics of the reflection coefficient curve and the accuracy requirement of the dynamic modeling. The model parameters are identified through the least-square fitting iteration method, of which the undetermined model parameters are updated in iteration to fit the dynamic reflection coefficient curve with the wave-based one. By using the spectral super-element method (SSEM), simulation cases, including one-order discontinuities on infinite- and finite-beams and a two-order discontinuity on an infinite beam, were employed to evaluate both the accuracy of the discontinuity model and the effectiveness of the identification method. For practical considerations, effects of measurement noise on the discontinuity parameter identification are investigated by adding different levels of noise to the simulated data. The simulation results were then validated by the corresponding experiments. Both the simulation and experimental results show that (1) the one-order discontinuities can be identified accurately with the maximum errors of 6.8% and 8.7%, respectively; (2) and the high-order discontinuities can be identified with the maximum errors of 15.8% and 16.2%, respectively; and (3) the high-order model can predict the complex discontinuity much more accurately than the one-order discontinuity model.
Elaborate SMART MCNP Modelling Using ANSYS and Its Applications
NASA Astrophysics Data System (ADS)
Song, Jaehoon; Surh, Han-bum; Kim, Seung-jin; Koo, Bonsueng
2017-09-01
An MCNP 3-dimensional model can be widely used to evaluate various design parameters such as a core design or shielding design. Conventionally, a simplified 3-dimensional MCNP model is applied to calculate these parameters because of the cumbersomeness of modelling by hand. ANSYS has a function for converting the CAD `stp' format into an MCNP input in the geometry part. Using ANSYS and a 3- dimensional CAD file, a very detailed and sophisticated MCNP 3-dimensional model can be generated. The MCNP model is applied to evaluate the assembly weighting factor at the ex-core detector of SMART, and the result is compared with a simplified MCNP SMART model and assembly weighting factor calculated by DORT, which is a deterministic Sn code.
A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system.
Kim, Joo H; Roberts, Dustyn
2015-09-01
Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle-space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi-objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint-space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non-periodic tasks that may not be experimentally verifiable. This model also enables real-time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
North, M. R.; Petropoulos, G. P.; Ireland, G.; McCalmont, J. P.
2015-02-01
In this present study the ability of the SimSphere Soil Vegetation Atmosphere Transfer (SVAT) model in estimating key parameters characterising land surface interactions was evaluated. Specifically, SimSphere's performance in predicting Net Radiation (Rnet), Latent Heat (LE), Sensible Heat (H) and Air Temperature (Tair) at 1.3 and 50 m was examined. Model simulations were validated by ground-based measurements of the corresponding parameters for a total of 70 days of the year 2011 from 7 CarboEurope network sites. These included a variety of biomes, environmental and climatic conditions in the models evaluation. Overall, model performance can largely be described as satisfactory for most of the experimental sites and evaluated parameters. For all model parameters compared, predicted H fluxes consistently obtained the highest agreement to the in-situ data in all ecosystems, with an average RMSD of 55.36 W m-2. LE fluxes and Rnet also agreed well with the in-situ data with RSMDs of 62.75 and 64.65 W m-2 respectively. A good agreement between modelled and measured LE and H fluxes was found, especially for smoothed daily flux trends. For both Tair 1.3 m and Tair 50 m a mean RMSD of 4.14 and 3.54 °C was reported respectively. This work presents the first all-inclusive evaluation of SimSphere, particularly so in a European setting. Results of this study contribute decisively towards obtaining a better understanding of the model's structure and its correspondence to the real world system. Findings also further establish the model's capability as a useful teaching and research tool in modelling Earth's land surface interactions. This is of considerable importance in the light of the rapidly expanding use of the model worldwide, including ongoing research by various Space Agencies examining its synergistic use with Earth Observation data towards the development of operational products at a global scale.
MMA, A Computer Code for Multi-Model Analysis
Poeter, Eileen P.; Hill, Mary C.
2007-01-01
This report documents the Multi-Model Analysis (MMA) computer code. MMA can be used to evaluate results from alternative models of a single system using the same set of observations for all models. As long as the observations, the observation weighting, and system being represented are the same, the models can differ in nearly any way imaginable. For example, they may include different processes, different simulation software, different temporal definitions (for example, steady-state and transient models could be considered), and so on. The multiple models need to be calibrated by nonlinear regression. Calibration of the individual models needs to be completed before application of MMA. MMA can be used to rank models and calculate posterior model probabilities. These can be used to (1) determine the relative importance of the characteristics embodied in the alternative models, (2) calculate model-averaged parameter estimates and predictions, and (3) quantify the uncertainty of parameter estimates and predictions in a way that integrates the variations represented by the alternative models. There is a lack of consensus on what model analysis methods are best, so MMA provides four default methods. Two are based on Kullback-Leibler information, and use the AIC (Akaike Information Criterion) or AICc (second-order-bias-corrected AIC) model discrimination criteria. The other two default methods are the BIC (Bayesian Information Criterion) and the KIC (Kashyap Information Criterion) model discrimination criteria. Use of the KIC criterion is equivalent to using the maximum-likelihood Bayesian model averaging (MLBMA) method. AIC, AICc, and BIC can be derived from Frequentist or Bayesian arguments. The default methods based on Kullback-Leibler information have a number of theoretical advantages, including that they tend to favor more complicated models as more data become available than do the other methods, which makes sense in many situations. Many applications of MMA will be well served by the default methods provided. To use the default methods, the only required input for MMA is a list of directories where the files for the alternate models are located. Evaluation and development of model-analysis methods are active areas of research. To facilitate exploration and innovation, MMA allows the user broad discretion to define alternatives to the default procedures. For example, MMA allows the user to (a) rank models based on model criteria defined using a wide range of provided and user-defined statistics in addition to the default AIC, AICc, BIC, and KIC criteria, (b) create their own criteria using model measures available from the code, and (c) define how each model criterion is used to calculate related posterior model probabilities. The default model criteria rate models are based on model fit to observations, the number of observations and estimated parameters, and, for KIC, the Fisher information matrix. In addition, MMA allows the analysis to include an evaluation of estimated parameter values. This is accomplished by allowing the user to define unreasonable estimated parameter values or relative estimated parameter values. An example of the latter is that it may be expected that one parameter value will be less than another, as might be the case if two parameters represented the hydraulic conductivity of distinct materials such as fine and coarse sand. Models with parameter values that violate the user-defined conditions are excluded from further consideration by MMA. Ground-water models are used as examples in this report, but MMA can be used to evaluate any set of models for which the required files have been produced. MMA needs to read files from a separate directory for each alternative model considered. The needed files are produced when using the Sensitivity-Analysis or Parameter-Estimation mode of UCODE_2005, or, possibly, the equivalent capability of another program. MMA is constructed using
Performance Evaluation and Parameter Identification on DROID III
NASA Technical Reports Server (NTRS)
Plumb, Julianna J.
2011-01-01
The DROID III project consisted of two main parts. The former, performance evaluation, focused on the performance characteristics of the aircraft such as lift to drag ratio, thrust required for level flight, and rate of climb. The latter, parameter identification, focused on finding the aerodynamic coefficients for the aircraft using a system that creates a mathematical model to match the flight data of doublet maneuvers and the aircraft s response. Both portions of the project called for flight testing and that data is now available on account of this project. The conclusion of the project is that the performance evaluation data is well-within desired standards but could be improved with a thrust model, and that parameter identification is still in need of more data processing but seems to produce reasonable results thus far.
A method of evaluating quantitative magnetospheric field models by an angular parameter alpha
NASA Technical Reports Server (NTRS)
Sugiura, M.; Poros, D. J.
1979-01-01
The paper introduces an angular parameter, termed alpha, which represents the angular difference between the observed, or model, field and the internal model field. The study discusses why this parameter is chosen and demonstrates its usefulness by applying it to both observations and models. In certain areas alpha is more sensitive than delta-B (the difference between the magnitude of the observed magnetic field and that of the earth's internal field calculated from a spherical harmonic expansion) in expressing magnetospheric field distortions. It is recommended to use both alpha and delta-B in comparing models with observations.
Gorniak, Stacey L.; McIntyre, Cameron C.; Alberts, Jay L.
2013-01-01
Objective Studies of bimanual actions similar to activities of daily living (ADLs) are currently lacking in evaluating fine motor control in Parkinson’s disease patients implanted with bilateral subthalamic deep brain stimulators. We investigated basic time and force characteristics of a bimanual task that resembles performance of ADLs in a group of bilateral subthalamic deep brain stimulation (DBS) patients. Methods Patients were evaluated in three different DBS parameter conditions off stimulation, on clinically derived stimulation parameters, and on settings derived from a patient-specific computational model. Model-based parameters were computed as a means to minimize spread of current to non-motor regions of the subthalamic nucleus via Cicerone Deep Brain Stimulation software. Patients were evaluated off parkinsonian medications in each stimulation condition. Results The data indicate that DBS parameter state does not affect most aspects of fine motor control in ADL-like tasks; however, features such as increased grip force and grip symmetry varied with the stimulation state. In the absence of DBS parameters, patients exhibited significant grip force asymmetry. Overall UPDRS-III and UPDRS-III scores associated with hand function were lower while patients were experiencing clinically-derived or model-based parameters, as compared to the off-stimulation condition. Conclusion While bilateral subthalamic DBS has been shown to alleviate gross motor dysfunction, our results indicate that DBS may not provide the same magnitude of benefit to fine motor coordination. PMID:24244388
Interactive model evaluation tool based on IPython notebook
NASA Astrophysics Data System (ADS)
Balemans, Sophie; Van Hoey, Stijn; Nopens, Ingmar; Seuntjes, Piet
2015-04-01
In hydrological modelling, some kind of parameter optimization is mostly performed. This can be the selection of a single best parameter set, a split in behavioural and non-behavioural parameter sets based on a selected threshold or a posterior parameter distribution derived with a formal Bayesian approach. The selection of the criterion to measure the goodness of fit (likelihood or any objective function) is an essential step in all of these methodologies and will affect the final selected parameter subset. Moreover, the discriminative power of the objective function is also dependent from the time period used. In practice, the optimization process is an iterative procedure. As such, in the course of the modelling process, an increasing amount of simulations is performed. However, the information carried by these simulation outputs is not always fully exploited. In this respect, we developed and present an interactive environment that enables the user to intuitively evaluate the model performance. The aim is to explore the parameter space graphically and to visualize the impact of the selected objective function on model behaviour. First, a set of model simulation results is loaded along with the corresponding parameter sets and a data set of the same variable as the model outcome (mostly discharge). The ranges of the loaded parameter sets define the parameter space. A selection of the two parameters visualised can be made by the user. Furthermore, an objective function and a time period of interest need to be selected. Based on this information, a two-dimensional parameter response surface is created, which actually just shows a scatter plot of the parameter combinations and assigns a color scale corresponding with the goodness of fit of each parameter combination. Finally, a slider is available to change the color mapping of the points. Actually, the slider provides a threshold to exclude non behaviour parameter sets and the color scale is only attributed to the remaining parameter sets. As such, by interactively changing the settings and interpreting the graph, the user gains insight in the model structural behaviour. Moreover, a more deliberate choice of objective function and periods of high information content can be identified. The environment is written in an IPython notebook and uses the available interactive functions provided by the IPython community. As such, the power of the IPython notebook as a development environment for scientific computing is illustrated (Shen, 2014).
Uncertainty Evaluation and Appropriate Distribution for the RDHM in the Rockies
NASA Astrophysics Data System (ADS)
Kim, J.; Bastidas, L. A.; Clark, E. P.
2010-12-01
The problems that hydrologic models have in properly reproducing the processes involved in mountainous areas, and in particular the Rocky Mountains, are widely acknowledged. Herein, we present an application of the National Weather Service RDHM distributed model over the Durango River basin in Colorado. We focus primarily in the assessment of the model prediction uncertainty associated with the parameter estimation and the comparison of the model performance using parameters obtained with a priori estimation following the procedure of Koren et al., and those obtained via inverse modeling using a variety of Markov chain Monte Carlo based optimization algorithms. The model evaluation is based on traditional procedures as well as non-traditional ones based on the use of shape matching functions, which are more appropriate for the evaluation of distributed information (e.g. Hausdorff distance, earth movers distance). The variables used for the model performance evaluation are discharge (with internal nodes), snow cover and snow water equivalent. An attempt to establish the proper degree of distribution, for the Durango basin with the RDHM model, is also presented.
Temporal variation and scaling of parameters for a monthly hydrologic model
NASA Astrophysics Data System (ADS)
Deng, Chao; Liu, Pan; Wang, Dingbao; Wang, Weiguang
2018-03-01
The temporal variation of model parameters is affected by the catchment conditions and has a significant impact on hydrological simulation. This study aims to evaluate the seasonality and downscaling of model parameter across time scales based on monthly and mean annual water balance models with a common model framework. Two parameters of the monthly model, i.e., k and m, are assumed to be time-variant at different months. Based on the hydrological data set from 121 MOPEX catchments in the United States, we firstly analyzed the correlation between parameters (k and m) and catchment properties (NDVI and frequency of rainfall events, α). The results show that parameter k is positively correlated with NDVI or α, while the correlation is opposite for parameter m, indicating that precipitation and vegetation affect monthly water balance by controlling temporal variation of parameters k and m. The multiple linear regression is then used to fit the relationship between ε and the means and coefficient of variations of parameters k and m. Based on the empirical equation and the correlations between the time-variant parameters and NDVI, the mean annual parameter ε is downscaled to monthly k and m. The results show that it has lower NSEs than these from model with time-variant k and m being calibrated through SCE-UA, while for several study catchments, it has higher NSEs than that of the model with constant parameters. The proposed method is feasible and provides a useful tool for temporal scaling of model parameter.
Ma, Yuntao; Li, Baoguo; Zhan, Zhigang; Guo, Yan; Luquet, Delphine; de Reffye, Philippe; Dingkuhn, Michael
2007-01-01
Background and Aims It is increasingly accepted that crop models, if they are to simulate genotype-specific behaviour accurately, should simulate the morphogenetic process generating plant architecture. A functional–structural plant model, GREENLAB, was previously presented and validated for maize. The model is based on a recursive mathematical process, with parameters whose values cannot be measured directly and need to be optimized statistically. This study aims at evaluating the stability of GREENLAB parameters in response to three types of phenotype variability: (1) among individuals from a common population; (2) among populations subjected to different environments (seasons); and (3) among different development stages of the same plants. Methods Five field experiments were conducted in the course of 4 years on irrigated fields near Beijing, China. Detailed observations were conducted throughout the seasons on the dimensions and fresh biomass of all above-ground plant organs for each metamer. Growth stage-specific target files were assembled from the data for GREENLAB parameter optimization. Optimization was conducted for specific developmental stages or the entire growth cycle, for individual plants (replicates), and for different seasons. Parameter stability was evaluated by comparing their CV with that of phenotype observation for the different sources of variability. A reduced data set was developed for easier model parameterization using one season, and validated for the four other seasons. Key Results and Conclusions The analysis of parameter stability among plants sharing the same environment and among populations grown in different environments indicated that the model explains some of the inter-seasonal variability of phenotype (parameters varied less than the phenotype itself), but not inter-plant variability (parameter and phenotype variability were similar). Parameter variability among developmental stages was small, indicating that parameter values were largely development-stage independent. The authors suggest that the high level of parameter stability observed in GREENLAB can be used to conduct comparisons among genotypes and, ultimately, genetic analyses. PMID:17158141
2014-01-01
This paper examined the efficiency of multivariate linear regression (MLR) and artificial neural network (ANN) models in prediction of two major water quality parameters in a wastewater treatment plant. Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) as well as indirect indicators of organic matters are representative parameters for sewer water quality. Performance of the ANN models was evaluated using coefficient of correlation (r), root mean square error (RMSE) and bias values. The computed values of BOD and COD by model, ANN method and regression analysis were in close agreement with their respective measured values. Results showed that the ANN performance model was better than the MLR model. Comparative indices of the optimized ANN with input values of temperature (T), pH, total suspended solid (TSS) and total suspended (TS) for prediction of BOD was RMSE = 25.1 mg/L, r = 0.83 and for prediction of COD was RMSE = 49.4 mg/L, r = 0.81. It was found that the ANN model could be employed successfully in estimating the BOD and COD in the inlet of wastewater biochemical treatment plants. Moreover, sensitive examination results showed that pH parameter have more effect on BOD and COD predicting to another parameters. Also, both implemented models have predicted BOD better than COD. PMID:24456676
NASA Astrophysics Data System (ADS)
Chen, X.; Huang, G.
2017-12-01
In recent years, distributed hydrological models have been widely used in storm water management, water resources protection and so on. Therefore, how to evaluate the uncertainty of the model reasonably and efficiently becomes a hot topic today. In this paper, the soil and water assessment tool (SWAT) model is constructed for the study area of China's Feilaixia watershed, and the uncertainty of the runoff simulation is analyzed by GLUE method deeply. Taking the initial parameter range of GLUE method as the research core, the influence of different initial parameter ranges on model uncertainty is studied. In this paper, two sets of parameter ranges are chosen as the object of study, the first one (range 1) is recommended by SWAT-CUP and the second one (range 2) is calibrated by SUFI-2. The results showed that under the same number of simulations (10,000 times), the overall uncertainty obtained by the range 2 is less than the range 1. Specifically, the "behavioral" parameter sets for the range 2 is 10000 and for the range 1 is 4448. In the calibration and the validation, the ratio of P-factor to R-factor for range 1 is 1.387 and 1.391, and for range 2 is 1.405 and 1.462 respectively. In addition, the simulation result of range 2 is better with the NS and R2 slightly higher than range 1. Therefore, it can be concluded that using the parameter range calibrated by SUFI-2 as the initial parameter range for the GLUE is a way to effectively capture and evaluate the simulation uncertainty.
Comparison of Development Test and Evaluation and Overall Program Estimate at Completion
2011-03-01
of the overall model and parameter. In addition to 36 the Shapiro-Wilkes test , and Cook’s Distance overlay plot we used the Breusch - Pagan test to...Transformed Model Finally, we evaluated our log transformed model using the Breusch - Pagan test . The results return a value of .51, thus confirming our...COMPARISON OF DEVELOPMENT TEST AND EVALUATION AND OVERALL
Iterative integral parameter identification of a respiratory mechanics model.
Schranz, Christoph; Docherty, Paul D; Chiew, Yeong Shiong; Möller, Knut; Chase, J Geoffrey
2012-07-18
Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual's model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients. The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.
An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection
Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail
2013-01-01
One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data. PMID:23593445
Evaluation of the biophysical limitations on photosynthesis of four varietals of Brassica rapa
NASA Astrophysics Data System (ADS)
Pleban, J. R.; Mackay, D. S.; Aston, T.; Ewers, B.; Weinig, C.
2014-12-01
Evaluating performance of agricultural varietals can support the identification of genotypes that will increase yield and can inform management practices. The biophysical limitations of photosynthesis are amongst the key factors that necessitate evaluation. This study evaluated how four biophysical limitations on photosynthesis, stomatal response to vapor pressure deficit, maximum carboxylation rate by Rubisco (Ac), rate of photosynthetic electron transport (Aj) and triose phosphate use (At) vary between four Brassica rapa genotypes. Leaf gas exchange data was used in an ecophysiological process model to conduct this evaluation. The Terrestrial Regional Ecosystem Exchange Simulator (TREES) integrates the carbon uptake and utilization rate limiting factors for plant growth. A Bayesian framework integrated in TREES here used net A as the target to estimate the four limiting factors for each genotype. As a first step the Bayesian framework was used for outlier detection, with data points outside the 95% confidence interval of model estimation eliminated. Next parameter estimation facilitated the evaluation of how the limiting factors on A different between genotypes. Parameters evaluated included maximum carboxylation rate (Vcmax), quantum yield (ϕJ), the ratio between Vc-max and electron transport rate (J), and trios phosphate utilization (TPU). Finally, as trios phosphate utilization has been shown to not play major role in the limiting A in many plants, the inclusion of At in models was evaluated using deviance information criteria (DIC). The outlier detection resulted in a narrowing in the estimated parameter distributions allowing for greater differentiation of genotypes. Results show genotypes vary in the how limitations shape assimilation. The range in Vc-max , a key parameter in Ac, was 203.2 - 223.9 umol m-2 s-1 while the range in ϕJ, a key parameter in AJ, was 0.463 - 0.497 umol m-2 s-1. The added complexity of the TPU limitation did not improve model performance in the genotypes assessed based on DIC. By identifying how varietals differ in their biophysical limitations on photosynthesis genotype selection can be informed for agricultural goals. Further work aims at applying this approach to a fifth limiting factor on photosynthesis, mesophyll conductance.
Factorial Design Approach in Proportioning Prestressed Self-Compacting Concrete.
Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Xing, Feng; Wang, Wei-Lun
2015-03-13
In order to model the effect of mixture parameters and material properties on the hardened properties of, prestressed self-compacting concrete (SCC), and also to investigate the extensions of the statistical models, a factorial design was employed to identify the relative significance of these primary parameters and their interactions in terms of the mechanical and visco-elastic properties of SCC. In addition to the 16 fractional factorial mixtures evaluated in the modeled region of -1 to +1, eight axial mixtures were prepared at extreme values of -2 and +2 with the other variables maintained at the central points. Four replicate central mixtures were also evaluated. The effects of five mixture parameters, including binder type, binder content, dosage of viscosity-modifying admixture (VMA), water-cementitious material ratio (w/cm), and sand-to-total aggregate ratio (S/A) on compressive strength, modulus of elasticity, as well as autogenous and drying shrinkage are discussed. The applications of the models to better understand trade-offs between mixture parameters and carry out comparisons among various responses are also highlighted. A logical design approach would be to use the existing model to predict the optimal design, and then run selected tests to quantify the influence of the new binder on the model.
Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18
NASA Technical Reports Server (NTRS)
Burkholder, J. B.; Sander, S. P.; Abbatt, J. P. D.; Barker, J. R.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Orkin, V. L.; Wilmouth, D. M.; Wine, P. H.
2015-01-01
This is the eighteenth in a series of evaluated sets of rate constants, photochemical cross sections, heterogeneous parameters, and thermochemical parameters compiled by the NASA Panel for Data Evaluation. The data are used primarily to model stratospheric and upper tropospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. The evaluation is available in electronic form from the following Internet URL: http://jpldataeval.jpl.nasa.gov/
To facilitate evaluation of existing site characterization data, ORD has developed on-line tools and models that integrate data and models into innovative applications. Forty calculators have been developed in four groups: parameter estimators, models, scientific demos and unit ...
Y. He; Q. Zhuang; A.D. McGuire; Y. Liu; M. Chen
2013-01-01
Model-data fusion is a process in which field observations are used to constrain model parameters. How observations are used to constrain parameters has a direct impact on the carbon cycle dynamics simulated by ecosystem models. In this study, we present an evaluation of several options for the use of observations inmodeling regional carbon dynamics and explore the...
Experimental analysis of green roof substrate detention characteristics.
Yio, Marcus H N; Stovin, Virginia; Werdin, Jörg; Vesuviano, Gianni
2013-01-01
Green roofs may make an important contribution to urban stormwater management. Rainfall-runoff models are required to evaluate green roof responses to specific rainfall inputs. The roof's hydrological response is a function of its configuration, with the substrate - or growing media - providing both retention and detention of rainfall. The objective of the research described here is to quantify the detention effects due to green roof substrates, and to propose a suitable hydrological modelling approach. Laboratory results from experimental detention tests on green roof substrates are presented. It is shown that detention increases with substrate depth and as a result of increasing substrate organic content. Model structures based on reservoir routing are evaluated, and it is found that a one-parameter reservoir routing model coupled with a parameter that describes the delay to start of runoff best fits the observed data. Preliminary findings support the hypothesis that the reservoir routing parameter values can be defined from the substrate's physical characteristics.
Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations
NASA Astrophysics Data System (ADS)
Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.
2014-02-01
The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.
Identification of hydrological model parameter variation using ensemble Kalman filter
NASA Astrophysics Data System (ADS)
Deng, Chao; Liu, Pan; Guo, Shenglian; Li, Zejun; Wang, Dingbao
2016-12-01
Hydrological model parameters play an important role in the ability of model prediction. In a stationary context, parameters of hydrological models are treated as constants; however, model parameters may vary with time under climate change and anthropogenic activities. The technique of ensemble Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter monthly water balance model (TWBM) by assimilating the runoff observations. Through a synthetic experiment, the proposed method is evaluated with time-invariant (i.e., constant) parameters and different types of parameter variations, including trend, abrupt change and periodicity. Various levels of observation uncertainty are designed to examine the performance of the EnKF. The results show that the EnKF can successfully capture the temporal variations of the model parameters. The application to the Wudinghe basin shows that the water storage capacity (SC) of the TWBM model has an apparent increasing trend during the period from 1958 to 2000. The identified temporal variation of SC is explained by land use and land cover changes due to soil and water conservation measures. In contrast, the application to the Tongtianhe basin shows that the estimated SC has no significant variation during the simulation period of 1982-2013, corresponding to the relatively stationary catchment properties. The evapotranspiration parameter (C) has temporal variations while no obvious change patterns exist. The proposed method provides an effective tool for quantifying the temporal variations of the model parameters, thereby improving the accuracy and reliability of model simulations and forecasts.
Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing
2017-01-01
Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries. PMID:28212405
Eaglen, Sophie A E; Coffey, Mike P; Woolliams, John A; Wall, Eileen
2012-07-28
The focus in dairy cattle breeding is gradually shifting from production to functional traits and genetic parameters of calving traits are estimated more frequently. However, across countries, various statistical models are used to estimate these parameters. This study evaluates different models for calving ease and stillbirth in United Kingdom Holstein-Friesian cattle. Data from first and later parity records were used. Genetic parameters for calving ease, stillbirth and gestation length were estimated using the restricted maximum likelihood method, considering different models i.e. sire (-maternal grandsire), animal, univariate and bivariate models. Gestation length was fitted as a correlated indicator trait and, for all three traits, genetic correlations between first and later parities were estimated. Potential bias in estimates was avoided by acknowledging a possible environmental direct-maternal covariance. The total heritable variance was estimated for each trait to discuss its theoretical importance and practical value. Prediction error variances and accuracies were calculated to compare the models. On average, direct and maternal heritabilities for calving traits were low, except for direct gestation length. Calving ease in first parity had a significant and negative direct-maternal genetic correlation. Gestation length was maternally correlated to stillbirth in first parity and directly correlated to calving ease in later parities. Multi-trait models had a slightly greater predictive ability than univariate models, especially for the lowly heritable traits. The computation time needed for sire (-maternal grandsire) models was much smaller than for animal models with only small differences in accuracy. The sire (-maternal grandsire) model was robust when additional genetic components were estimated, while the equivalent animal model had difficulties reaching convergence. For the evaluation of calving traits, multi-trait models show a slight advantage over univariate models. Extended sire models (-maternal grandsire) are more practical and robust than animal models. Estimated genetic parameters for calving traits of UK Holstein cattle are consistent with literature. Calculating an aggregate estimated breeding value including direct and maternal values should encourage breeders to consider both direct and maternal effects in selection decisions.
2012-01-01
Background The focus in dairy cattle breeding is gradually shifting from production to functional traits and genetic parameters of calving traits are estimated more frequently. However, across countries, various statistical models are used to estimate these parameters. This study evaluates different models for calving ease and stillbirth in United Kingdom Holstein-Friesian cattle. Methods Data from first and later parity records were used. Genetic parameters for calving ease, stillbirth and gestation length were estimated using the restricted maximum likelihood method, considering different models i.e. sire (−maternal grandsire), animal, univariate and bivariate models. Gestation length was fitted as a correlated indicator trait and, for all three traits, genetic correlations between first and later parities were estimated. Potential bias in estimates was avoided by acknowledging a possible environmental direct-maternal covariance. The total heritable variance was estimated for each trait to discuss its theoretical importance and practical value. Prediction error variances and accuracies were calculated to compare the models. Results and discussion On average, direct and maternal heritabilities for calving traits were low, except for direct gestation length. Calving ease in first parity had a significant and negative direct-maternal genetic correlation. Gestation length was maternally correlated to stillbirth in first parity and directly correlated to calving ease in later parities. Multi-trait models had a slightly greater predictive ability than univariate models, especially for the lowly heritable traits. The computation time needed for sire (−maternal grandsire) models was much smaller than for animal models with only small differences in accuracy. The sire (−maternal grandsire) model was robust when additional genetic components were estimated, while the equivalent animal model had difficulties reaching convergence. Conclusions For the evaluation of calving traits, multi-trait models show a slight advantage over univariate models. Extended sire models (−maternal grandsire) are more practical and robust than animal models. Estimated genetic parameters for calving traits of UK Holstein cattle are consistent with literature. Calculating an aggregate estimated breeding value including direct and maternal values should encourage breeders to consider both direct and maternal effects in selection decisions. PMID:22839757
Launch Vehicle Propulsion Design with Multiple Selection Criteria
NASA Technical Reports Server (NTRS)
Shelton, Joey D.; Frederick, Robert A.; Wilhite, Alan W.
2005-01-01
The approach and techniques described herein define an optimization and evaluation approach for a liquid hydrogen/liquid oxygen single-stage-to-orbit system. The method uses Monte Carlo simulations, genetic algorithm solvers, a propulsion thermo-chemical code, power series regression curves for historical data, and statistical models in order to optimize a vehicle system. The system, including parameters for engine chamber pressure, area ratio, and oxidizer/fuel ratio, was modeled and optimized to determine the best design for seven separate design weight and cost cases by varying design and technology parameters. Significant model results show that a 53% increase in Design, Development, Test and Evaluation cost results in a 67% reduction in Gross Liftoff Weight. Other key findings show the sensitivity of propulsion parameters, technology factors, and cost factors and how these parameters differ when cost and weight are optimized separately. Each of the three key propulsion parameters; chamber pressure, area ratio, and oxidizer/fuel ratio, are optimized in the seven design cases and results are plotted to show impacts to engine mass and overall vehicle mass.
Cognitive diagnosis modelling incorporating item response times.
Zhan, Peida; Jiao, Hong; Liao, Dandan
2018-05-01
To provide more refined diagnostic feedback with collateral information in item response times (RTs), this study proposed joint modelling of attributes and response speed using item responses and RTs simultaneously for cognitive diagnosis. For illustration, an extended deterministic input, noisy 'and' gate (DINA) model was proposed for joint modelling of responses and RTs. Model parameter estimation was explored using the Bayesian Markov chain Monte Carlo (MCMC) method. The PISA 2012 computer-based mathematics data were analysed first. These real data estimates were treated as true values in a subsequent simulation study. A follow-up simulation study with ideal testing conditions was conducted as well to further evaluate model parameter recovery. The results indicated that model parameters could be well recovered using the MCMC approach. Further, incorporating RTs into the DINA model would improve attribute and profile correct classification rates and result in more accurate and precise estimation of the model parameters. © 2017 The British Psychological Society.
Poeter, Eileen E.; Hill, Mary C.; Banta, Edward R.; Mehl, Steffen; Christensen, Steen
2006-01-01
This report documents the computer codes UCODE_2005 and six post-processors. Together the codes can be used with existing process models to perform sensitivity analysis, data needs assessment, calibration, prediction, and uncertainty analysis. Any process model or set of models can be used; the only requirements are that models have numerical (ASCII or text only) input and output files, that the numbers in these files have sufficient significant digits, that all required models can be run from a single batch file or script, and that simulated values are continuous functions of the parameter values. Process models can include pre-processors and post-processors as well as one or more models related to the processes of interest (physical, chemical, and so on), making UCODE_2005 extremely powerful. An estimated parameter can be a quantity that appears in the input files of the process model(s), or a quantity used in an equation that produces a value that appears in the input files. In the latter situation, the equation is user-defined. UCODE_2005 can compare observations and simulated equivalents. The simulated equivalents can be any simulated value written in the process-model output files or can be calculated from simulated values with user-defined equations. The quantities can be model results, or dependent variables. For example, for ground-water models they can be heads, flows, concentrations, and so on. Prior, or direct, information on estimated parameters also can be considered. Statistics are calculated to quantify the comparison of observations and simulated equivalents, including a weighted least-squares objective function. In addition, data-exchange files are produced that facilitate graphical analysis. UCODE_2005 can be used fruitfully in model calibration through its sensitivity analysis capabilities and its ability to estimate parameter values that result in the best possible fit to the observations. Parameters are estimated using nonlinear regression: a weighted least-squares objective function is minimized with respect to the parameter values using a modified Gauss-Newton method or a double-dogleg technique. Sensitivities needed for the method can be read from files produced by process models that can calculate sensitivities, such as MODFLOW-2000, or can be calculated by UCODE_2005 using a more general, but less accurate, forward- or central-difference perturbation technique. Problems resulting from inaccurate sensitivities and solutions related to the perturbation techniques are discussed in the report. Statistics are calculated and printed for use in (1) diagnosing inadequate data and identifying parameters that probably cannot be estimated; (2) evaluating estimated parameter values; and (3) evaluating how well the model represents the simulated processes. Results from UCODE_2005 and codes RESIDUAL_ANALYSIS and RESIDUAL_ANALYSIS_ADV can be used to evaluate how accurately the model represents the processes it simulates. Results from LINEAR_UNCERTAINTY can be used to quantify the uncertainty of model simulated values if the model is sufficiently linear. Results from MODEL_LINEARITY and MODEL_LINEARITY_ADV can be used to evaluate model linearity and, thereby, the accuracy of the LINEAR_UNCERTAINTY results. UCODE_2005 can also be used to calculate nonlinear confidence and predictions intervals, which quantify the uncertainty of model simulated values when the model is not linear. CORFAC_PLUS can be used to produce factors that allow intervals to account for model intrinsic nonlinearity and small-scale variations in system characteristics that are not explicitly accounted for in the model or the observation weighting. The six post-processing programs are independent of UCODE_2005 and can use the results of other programs that produce the required data-exchange files. UCODE_2005 and the other six codes are intended for use on any computer operating system. The programs con
Modelling the growth of Populus species using Ecosystem Demography (ED) model
NASA Astrophysics Data System (ADS)
Wang, D.; Lebauer, D. S.; Feng, X.; Dietze, M. C.
2010-12-01
Hybrid poplar plantations are an important source being evaluated for biomass production. Effective management of such plantations requires adequate growth and yield models. The Ecosystem Demography model (ED) makes predictions about the large scales of interest in above- and belowground ecosystem structure and the fluxes of carbon and water from a description of the fine-scale physiological processes. In this study, we used a workflow management tool, the Predictive Ecophysiological Carbon flux Analyzer (PECAn), to integrate literature data, field measurement and the ED model to provide predictions of ecosystem functioning. Parameters for the ED ensemble runs were sampled from the posterior distribution of ecophysiological traits of Populus species compiled from the literature using a Bayesian meta-analysis approach. Sensitivity analysis was performed to identify the parameters which contribute the most to the uncertainties of the ED model output. Model emulation techniques were used to update parameter posterior distributions using field-observed data in northern Wisconsin hybrid poplar plantations. Model results were evaluated with 5-year field-observed data in a hybrid poplar plantation at New Franklin, MO. ED was then used to predict the spatial variability of poplar yield in the coterminous United States (United States minus Alaska and Hawaii). Sensitivity analysis showed that root respiration, dark respiration, growth respiration, stomatal slope and specific leaf area contribute the most to the uncertainty, which suggests that our field measurements and data collection should focus on these parameters. The ED model successfully captured the inter-annual and spatial variability of the yield of poplar. Analyses in progress with the ED model focus on evaluating the ecosystem services of short-rotation woody plantations, such as impacts on soil carbon storage, water use, and nutrient retention.
Zou, Yun; Han, Qing; Weng, Xisheng; Zou, Yongwei; Yang, Yingying; Zhang, Kesong; Yang, Kerong; Xu, Xiaolin; Wang, Chenyu; Qin, Yanguo; Wang, Jincheng
2018-01-01
Abstract Recently, clinical application of 3D printed model was increasing. However, there was no systemic study for confirming the precision and reliability of 3D printed model. Some senior clinical doctors mistrusted its reliability in clinical application. The purpose of this study was to evaluate the precision and reliability of stereolithography appearance (SLA) 3D printed model. Some related parameters were selected to research the reliability of SLA 3D printed model. The computed tomography (CT) data of bone/prosthesis and model were collected and 3D reconstructed. Some anatomical parameters were measured and statistical analysis was performed; the intraclass correlation coefficient (ICC) was used to was used to evaluate the similarity between the model and real bone/prosthesis. the absolute difference (mm) and relative difference (%) were conducted. For prosthesis model, the 3-dimensional error was measured. There was no significant difference in the anatomical parameters except max height (MH) of long bone. All the ICCs were greater than 0.990. The maximum absolute and relative difference were 0.45 mm and 1.10%; The 3-dimensional error analysis showed that positive/minus distance were 0.273 mm/0.237 mm. The application of SLA 3D printed model in diagnosis and treatment process of complex orthopedic disease was reliable and precise. PMID:29419675
Zou, Yun; Han, Qing; Weng, Xisheng; Zou, Yongwei; Yang, Yingying; Zhang, Kesong; Yang, Kerong; Xu, Xiaolin; Wang, Chenyu; Qin, Yanguo; Wang, Jincheng
2018-02-01
Recently, clinical application of 3D printed model was increasing. However, there was no systemic study for confirming the precision and reliability of 3D printed model. Some senior clinical doctors mistrusted its reliability in clinical application. The purpose of this study was to evaluate the precision and reliability of stereolithography appearance (SLA) 3D printed model.Some related parameters were selected to research the reliability of SLA 3D printed model. The computed tomography (CT) data of bone/prosthesis and model were collected and 3D reconstructed. Some anatomical parameters were measured and statistical analysis was performed; the intraclass correlation coefficient (ICC) was used to was used to evaluate the similarity between the model and real bone/prosthesis. the absolute difference (mm) and relative difference (%) were conducted. For prosthesis model, the 3-dimensional error was measured.There was no significant difference in the anatomical parameters except max height (MH) of long bone. All the ICCs were greater than 0.990. The maximum absolute and relative difference were 0.45 mm and 1.10%; The 3-dimensional error analysis showed that positive/minus distance were 0.273 mm/0.237 mm.The application of SLA 3D printed model in diagnosis and treatment process of complex orthopedic disease was reliable and precise.
Davidson, Ross S; McKendrick, Iain J; Wood, Joanna C; Marion, Glenn; Greig, Alistair; Stevenson, Karen; Sharp, Michael; Hutchings, Michael R
2012-09-10
A common approach to the application of epidemiological models is to determine a single (point estimate) parameterisation using the information available in the literature. However, in many cases there is considerable uncertainty about parameter values, reflecting both the incomplete nature of current knowledge and natural variation, for example between farms. Furthermore model outcomes may be highly sensitive to different parameter values. Paratuberculosis is an infection for which many of the key parameter values are poorly understood and highly variable, and for such infections there is a need to develop and apply statistical techniques which make maximal use of available data. A technique based on Latin hypercube sampling combined with a novel reweighting method was developed which enables parameter uncertainty and variability to be incorporated into a model-based framework for estimation of prevalence. The method was evaluated by applying it to a simulation of paratuberculosis in dairy herds which combines a continuous time stochastic algorithm with model features such as within herd variability in disease development and shedding, which have not been previously explored in paratuberculosis models. Generated sample parameter combinations were assigned a weight, determined by quantifying the model's resultant ability to reproduce prevalence data. Once these weights are generated the model can be used to evaluate other scenarios such as control options. To illustrate the utility of this approach these reweighted model outputs were used to compare standard test and cull control strategies both individually and in combination with simple husbandry practices that aim to reduce infection rates. The technique developed has been shown to be applicable to a complex model incorporating realistic control options. For models where parameters are not well known or subject to significant variability, the reweighting scheme allowed estimated distributions of parameter values to be combined with additional sources of information, such as that available from prevalence distributions, resulting in outputs which implicitly handle variation and uncertainty. This methodology allows for more robust predictions from modelling approaches by allowing for parameter uncertainty and combining different sources of information, and is thus expected to be useful in application to a large number of disease systems.
NASA Astrophysics Data System (ADS)
Demuzere, Matthias; Harshan, Suraj; Järvi, Leena; Roth, Matthias; Betham Grimmond, Christine Susan; Masson, Valéry; Oleson, Keith; Velasco Saldana, Hector Erik; Wouters, Hendrik
2017-04-01
This paper provides the first comparative evaluation of four urban land surface models for a tropical residential neighbourhood in Singapore. The simulations are performed offline, for an 11-month period, using the bulk scheme TERRA_URB and three models of intermediate complexity (CLM, SURFEX and SUEWS). In addition, information from three different parameter lists are added to quantify the impact (interaction) of (between) external parameter settings and model formulations on the modelled urban energy balance components. Overall, the models' performance using the reference parameters aligns well with previous findings for mid- and high-latitude sites against (for) which the models are generally optimised (evaluated). The various combinations of models and different parameter values suggest that error statistics tend to be more dominated by the choice of the latter than the choice of model. Stratifying the observation period into dry / wet periods and hours since selected precipitation events reveals that the models' skill generally deteriorates during dry periods while e.g. CLM/SURFEX has a positive bias in the latent heat flux directly after a precipitation event. It is shown that the latter is due to simple representation of water intercepted on the impervious surfaces. In addition, the positive bias in modelled outgoing longwave radiation is attributed to neglecting the interactions between water vapor and radiation between the surface and the tower sensor. These findings suggest that future developments in urban climate research should continue the integration of more physically-based processes in urban canopy models, ensure the consistency between the observed and modelled atmospheric properties and focus on the correct representation of urban morphology and thermal and radiative characteristics.
NASA Astrophysics Data System (ADS)
Öktem, H.
2012-01-01
Plastic injection molding plays a key role in the production of high-quality plastic parts. Shrinkage is one of the most significant problems of a plastic part in terms of quality in the plastic injection molding. This article focuses on the study of the modeling and analysis of the effects of process parameters on the shrinkage by evaluating the quality of the plastic part of a DVD-ROM cover made with Acrylonitrile Butadiene Styrene (ABS) polymer material. An effective regression model was developed to determine the mathematical relationship between the process parameters (mold temperature, melt temperature, injection pressure, injection time, and cooling time) and the volumetric shrinkage by utilizing the analysis data. Finite element (FE) analyses designed by Taguchi (L27) orthogonal arrays were run in the Moldflow simulation program. Analysis of variance (ANOVA) was then performed to check the adequacy of the regression model and to determine the effect of the process parameters on the shrinkage. Experiments were conducted to control the accuracy of the regression model with the FE analyses obtained from Moldflow. The results show that the regression model agrees very well with the FE analyses and the experiments. From this, it can be concluded that this study succeeded in modeling the shrinkage problem in our application.
NASA Astrophysics Data System (ADS)
Rasa, E.; Foglia, L.; Mackay, D. M.; Ginn, T. R.; Scow, K. M.
2009-12-01
A numerical groundwater fate and transport model was developed for analyses of data from field experiments evaluating the impacts of ethanol on the natural attenuation of benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl tert-butyl ether (MTBE) at Vandenberg Air Force Base, Site 60. We used the U.S. Geological Survey (USGS) groundwater flow (MODFLOW2000) and transport (MT3DMS) models in conjunction with the USGS universal inverse modeling code (UCODE) to jointly determine flow and transport parameters using bromide tracer data from multiple experiments in the same location. The key flow and transport parameters include hydraulic conductivity of aquifer and aquitard layers, porosity, and transverse and longitudinal dispersivity. Aquifer and aquitard layers were assumed homogenous in this study. Therefore, the calibration parameters were not spatially variable within each layer. A total of 162 monitoring wells in seven transects perpendicular to the mean flow direction were monitored over the course of ten months, resulting in 1,766 bromide concentration data points and 149 head values used as observations for the inverse modeling. The results showed the significance of the concentration observation data in predicting the flow model parameters and indicated the sensitivity of the hydraulic conductivity of different zones in the aquifer including the excavated former contaminant zone. The model has already been used to evaluate alternative designs for further experiments on in situ bioremediation of the tert-butyl alcohol (TBA) plume remaining at the site. We describe the recent applications of the model and future work, including adding reaction submodels to the calibrated flow model.
Bayes Factor Covariance Testing in Item Response Models.
Fox, Jean-Paul; Mulder, Joris; Sinharay, Sandip
2017-12-01
Two marginal one-parameter item response theory models are introduced, by integrating out the latent variable or random item parameter. It is shown that both marginal response models are multivariate (probit) models with a compound symmetry covariance structure. Several common hypotheses concerning the underlying covariance structure are evaluated using (fractional) Bayes factor tests. The support for a unidimensional factor (i.e., assumption of local independence) and differential item functioning are evaluated by testing the covariance components. The posterior distribution of common covariance components is obtained in closed form by transforming latent responses with an orthogonal (Helmert) matrix. This posterior distribution is defined as a shifted-inverse-gamma, thereby introducing a default prior and a balanced prior distribution. Based on that, an MCMC algorithm is described to estimate all model parameters and to compute (fractional) Bayes factor tests. Simulation studies are used to show that the (fractional) Bayes factor tests have good properties for testing the underlying covariance structure of binary response data. The method is illustrated with two real data studies.
DeSmitt, Holly J; Domire, Zachary J
2016-12-01
Biomechanical models are sensitive to the choice of model parameters. Therefore, determination of accurate subject specific model parameters is important. One approach to generate these parameters is to optimize the values such that the model output will match experimentally measured strength curves. This approach is attractive as it is inexpensive and should provide an excellent match to experimentally measured strength. However, given the problem of muscle redundancy, it is not clear that this approach generates accurate individual muscle forces. The purpose of this investigation is to evaluate this approach using simulated data to enable a direct comparison. It is hypothesized that the optimization approach will be able to recreate accurate muscle model parameters when information from measurable parameters is given. A model of isometric knee extension was developed to simulate a strength curve across a range of knee angles. In order to realistically recreate experimentally measured strength, random noise was added to the modeled strength. Parameters were solved for using a genetic search algorithm. When noise was added to the measurements the strength curve was reasonably recreated. However, the individual muscle model parameters and force curves were far less accurate. Based upon this examination, it is clear that very different sets of model parameters can recreate similar strength curves. Therefore, experimental variation in strength measurements has a significant influence on the results. Given the difficulty in accurately recreating individual muscle parameters, it may be more appropriate to perform simulations with lumped actuators representing similar muscles.
NASA Astrophysics Data System (ADS)
de Santana, Felipe Bachion; de Souza, André Marcelo; Poppi, Ronei Jesus
2018-02-01
This study evaluates the use of visible and near infrared spectroscopy (Vis-NIRS) combined with multivariate regression based on random forest to quantify some quality soil parameters. The parameters analyzed were soil cation exchange capacity (CEC), sum of exchange bases (SB), organic matter (OM), clay and sand present in the soils of several regions of Brazil. Current methods for evaluating these parameters are laborious, timely and require various wet analytical methods that are not adequate for use in precision agriculture, where faster and automatic responses are required. The random forest regression models were statistically better than PLS regression models for CEC, OM, clay and sand, demonstrating resistance to overfitting, attenuating the effect of outlier samples and indicating the most important variables for the model. The methodology demonstrates the potential of the Vis-NIR as an alternative for determination of CEC, SB, OM, sand and clay, making possible to develop a fast and automatic analytical procedure.
NASA Astrophysics Data System (ADS)
Reyes, J. J.; Adam, J. C.; Tague, C.
2016-12-01
Grasslands play an important role in agricultural production as forage for livestock; they also provide a diverse set of ecosystem services including soil carbon (C) storage. The partitioning of C between above and belowground plant compartments (i.e. allocation) is influenced by both plant characteristics and environmental conditions. The objectives of this study are to 1) develop and evaluate a hybrid C allocation strategy suitable for grasslands, and 2) apply this strategy to examine the importance of various parameters related to biogeochemical cycling, photosynthesis, allocation, and soil water drainage on above and belowground biomass. We include allocation as an important process in quantifying the model parameter uncertainty, which identifies the most influential parameters and what processes may require further refinement. For this, we use the Regional Hydro-ecologic Simulation System, a mechanistic model that simulates coupled water and biogeochemical processes. A Latin hypercube sampling scheme was used to develop parameter sets for calibration and evaluation of allocation strategies, as well as parameter uncertainty analysis. We developed the hybrid allocation strategy to integrate both growth-based and resource-limited allocation mechanisms. When evaluating the new strategy simultaneously for above and belowground biomass, it produced a larger number of less biased parameter sets: 16% more compared to resource-limited and 9% more compared to growth-based. This also demonstrates its flexible application across diverse plant types and environmental conditions. We found that higher parameter importance corresponded to sub- or supra-optimal resource availability (i.e. water, nutrients) and temperature ranges (i.e. too hot or cold). For example, photosynthesis-related parameters were more important at sites warmer than the theoretical optimal growth temperature. Therefore, larger values of parameter importance indicate greater relative sensitivity in adequately representing the relevant process to capture limiting resources or manage atypical environmental conditions. These results may inform future experimental work by focusing efforts on quantifying specific parameters under various environmental conditions or across diverse plant functional types.
NASA Technical Reports Server (NTRS)
Johnson, R. W.
1974-01-01
A mathematical model of an ecosystem is developed. Secondary productivity is evaluated in terms of man related and controllable factors. Information from an existing physical parameters model is used as well as pertinent biological measurements. Predictive information of value to estuarine management is presented. Biological, chemical, and physical parameters measured in order to develop models of ecosystems are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Jack, E-mail: jack.wallace@ce.queensu.ca; Champagne, Pascale, E-mail: champagne@civil.queensu.ca; Monnier, Anne-Charlotte, E-mail: anne-charlotte.monnier@insa-lyon.fr
Highlights: • Performance of a hybrid passive landfill leachate treatment system was evaluated. • 33 Water chemistry parameters were sampled for 21 months and statistically analyzed. • Parameters were strongly linked and explained most (>40%) of the variation in data. • Alkalinity, ammonia, COD, heavy metals, and iron were criteria for performance. • Eight other parameters were key in modeling system dynamics and criteria. - Abstract: A pilot-scale hybrid-passive treatment system operated at the Merrick Landfill in North Bay, Ontario, Canada, treats municipal landfill leachate and provides for subsequent natural attenuation. Collected leachate is directed to a hybrid-passive treatment system,more » followed by controlled release to a natural attenuation zone before entering the nearby Little Sturgeon River. The study presents a comprehensive evaluation of the performance of the system using multivariate statistical techniques to determine the interactions between parameters, major pollutants in the leachate, and the biological and chemical processes occurring in the system. Five parameters (ammonia, alkalinity, chemical oxygen demand (COD), “heavy” metals of interest, with atomic weights above calcium, and iron) were set as criteria for the evaluation of system performance based on their toxicity to aquatic ecosystems and importance in treatment with respect to discharge regulations. System data for a full range of water quality parameters over a 21-month period were analyzed using principal components analysis (PCA), as well as principal components (PC) and partial least squares (PLS) regressions. PCA indicated a high degree of association for most parameters with the first PC, which explained a high percentage (>40%) of the variation in the data, suggesting strong statistical relationships among most of the parameters in the system. Regression analyses identified 8 parameters (set as independent variables) that were most frequently retained for modeling the five criteria parameters (set as dependent variables), on a statistically significant level: conductivity, dissolved oxygen (DO), nitrite (NO{sub 2}{sup −}), organic nitrogen (N), oxidation reduction potential (ORP), pH, sulfate and total volatile solids (TVS). The criteria parameters and the significant explanatory parameters were most important in modeling the dynamics of the passive treatment system during the study period. Such techniques and procedures were found to be highly valuable and could be applied to other sites to determine parameters of interest in similar naturalized engineered systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neary, Vincent Sinclair; Yang, Zhaoqing; Wang, Taiping
A wave model test bed is established to benchmark, test and evaluate spectral wave models and modeling methodologies (i.e., best practices) for predicting the wave energy resource parameters recommended by the International Electrotechnical Commission, IEC TS 62600-101Ed. 1.0 ©2015. Among other benefits, the model test bed can be used to investigate the suitability of different models, specifically what source terms should be included in spectral wave models under different wave climate conditions and for different classes of resource assessment. The overarching goal is to use these investigations to provide industry guidance for model selection and modeling best practices depending onmore » the wave site conditions and desired class of resource assessment. Modeling best practices are reviewed, and limitations and knowledge gaps in predicting wave energy resource parameters are identified.« less
NASA Astrophysics Data System (ADS)
Engeland, Kolbjorn; Steinsland, Ingelin
2016-04-01
The aim of this study is to investigate how the inclusion of uncertainties in inputs and observed streamflow influence the parameter estimation, streamflow predictions and model evaluation. In particular we wanted to answer the following research questions: • What is the effect of including a random error in the precipitation and temperature inputs? • What is the effect of decreased information about precipitation by excluding the nearest precipitation station? • What is the effect of the uncertainty in streamflow observations? • What is the effect of reduced information about the true streamflow by using a rating curve where the measurement of the highest and lowest streamflow is excluded when estimating the rating curve? To answer these questions, we designed a set of calibration experiments and evaluation strategies. We used the elevation distributed HBV model operating on daily time steps combined with a Bayesian formulation and the MCMC routine Dream for parameter inference. The uncertainties in inputs was represented by creating ensembles of precipitation and temperature. The precipitation ensemble were created using a meta-gaussian random field approach. The temperature ensembles were created using a 3D Bayesian kriging with random sampling of the temperature laps rate. The streamflow ensembles were generated by a Bayesian multi-segment rating curve model. Precipitation and temperatures were randomly sampled for every day, whereas the streamflow ensembles were generated from rating curve ensembles, and the same rating curve was always used for the whole time series in a calibration or evaluation run. We chose a catchment with a meteorological station measuring precipitation and temperature, and a rating curve of relatively high quality. This allowed us to investigate and further test the effect of having less information on precipitation and streamflow during model calibration, predictions and evaluation. The results showed that including uncertainty in the precipitation and temperature input has a negligible effect on the posterior distribution of parameters and for the Nash-Sutcliffe (NS) efficiency for the predicted flows, while the reliability and the continuous rank probability score (CRPS) improves. Reduced information in precipitation input resulted in a and a shift in the water balance parameter Pcorr, a model producing smoother streamflow predictions giving poorer NS and CRPS, but higher reliability. The effect of calibrating the hydrological model using wrong rating curves is mainly seen as variability in the water balance parameter Pcorr. When evaluating predictions obtained using a wrong rating curve, the evaluation scores varies depending on the true rating curve. Generally, the best evaluation scores were not achieved for the rating curve used for calibration, but for a rating curves giving low variance in streamflow observations. Reduced information in streamflow influenced the water balance parameter Pcorr, and increased the spread in evaluation scores giving both better and worse scores. This case study shows that estimating the water balance is challenging since both precipitation inputs and streamflow observations have pronounced systematic component in their uncertainties.
Surgical stent planning: simulation parameter study for models based on DICOM standards.
Scherer, S; Treichel, T; Ritter, N; Triebel, G; Drossel, W G; Burgert, O
2011-05-01
Endovascular Aneurysm Repair (EVAR) can be facilitated by a realistic simulation model of stent-vessel-interaction. Therefore, numerical feasibility and integrability in the clinical environment was evaluated. The finite element method was used to determine necessary simulation parameters for stent-vessel-interaction in EVAR. Input variables and result data of the simulation model were examined for their standardization using DICOM supplements. The study identified four essential parameters for the stent-vessel simulation: blood pressure, intima constitution, plaque occurrence and the material properties of vessel and plaque. Output quantities such as radial force of the stent and contact pressure between stent/vessel can help the surgeon to evaluate implant fixation and sealing. The model geometry can be saved with DICOM "Surface Segmentation" objects and the upcoming "Implant Templates" supplement. Simulation results can be stored using the "Structured Report". A standards-based general simulation model for optimizing stent-graft selection may be feasible. At present, there are limitations due to specification of individual vessel material parameters and for simulating the proximal fixation of stent-grafts with hooks. Simulation data with clinical relevance for documentation and presentation can be stored using existing or new DICOM extensions.
NASA Astrophysics Data System (ADS)
Ye, M.; Chen, Z.; Shi, L.; Zhu, Y.; Yang, J.
2017-12-01
Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. While global sensitivity analysis is a vital tool for identifying the parameters important to nitrogen reactive transport, conventional global sensitivity analysis only considers parametric uncertainty. This may result in inaccurate selection of important parameters, because parameter importance may vary under different models and modeling scenarios. By using a recently developed variance-based global sensitivity analysis method, this paper identifies important parameters with simultaneous consideration of parametric uncertainty, model uncertainty, and scenario uncertainty. In a numerical example of nitrogen reactive transport modeling, a combination of three scenarios of soil temperature and two scenarios of soil moisture leads to a total of six scenarios. Four alternative models are used to evaluate reduction functions used for calculating actual rates of nitrification and denitrification. The model uncertainty is tangled with scenario uncertainty, as the reduction functions depend on soil temperature and moisture content. The results of sensitivity analysis show that parameter importance varies substantially between different models and modeling scenarios, which may lead to inaccurate selection of important parameters if model and scenario uncertainties are not considered. This problem is avoided by using the new method of sensitivity analysis in the context of model averaging and scenario averaging. The new method of sensitivity analysis can be applied to other problems of contaminant transport modeling when model uncertainty and/or scenario uncertainty are present.
NASA Astrophysics Data System (ADS)
de Lavenne, Alban; Thirel, Guillaume; Andréassian, Vazken; Perrin, Charles; Ramos, Maria-Helena
2016-04-01
Semi-distributed hydrological models aim to provide useful information to understand and manage the spatial distribution of water resources. However, their evaluation is often limited to independent and single evaluations at each sub-catchment within larger catchments. This enables to qualify model performance at different points, but does not provide a coherent assessment of the overall spatial consistency of the model. To cope with these methodological deficiencies, we propose a two-step strategy. First, we apply a sequential spatial calibration procedure to define spatially consistent model parameters. Secondly, we evaluate the hydrological simulations using variables that involve some dependency between sub-catchments to evaluate the overall coherence of model outputs. In this study, we particularly choose to look at the simulated Intercatchment Groundwater Flows (IGF). The idea is that the water that is lost in one place should be recovered somewhere else within the catchment to guarantee a spatially coherent water balance in time. The model used is a recently developed daily semi-distributed model, which is based on a spatial distribution of the lumped GR5J model. The model has five parameters for each sub-catchments and a streamflow velocity parameter for flow routing between them. It implements two reservoirs, one for production and one for routing, and estimates IGF according to the level of the second in a way that catchment can release water to IGF during high flows and receive water through IGF during low flows. The calibration of the model is performed from upstream to downstream, making an efficient use of spatially distributed streamflow measurements. To take model uncertainty into account, we implemented three variants of the original model structure, each one computing in a different way the IGF in each sub-catchment. The study is applied on over 1000 catchments in France. By exploring a wide area and a variability of hydrometeorological conditions, we aim to detect IGF even between catchments which can be quite distant from one another.
Estimation of suspended-sediment rating curves and mean suspended-sediment loads
Crawford, Charles G.
1991-01-01
A simulation study was done to evaluate: (1) the accuracy and precision of parameter estimates for the bias-corrected, transformed-linear and non-linear models obtained by the method of least squares; (2) the accuracy of mean suspended-sediment loads calculated by the flow-duration, rating-curve method using model parameters obtained by the alternative methods. Parameter estimates obtained by least squares for the bias-corrected, transformed-linear model were considerably more precise than those obtained for the non-linear or weighted non-linear model. The accuracy of parameter estimates obtained for the biascorrected, transformed-linear and weighted non-linear model was similar and was much greater than the accuracy obtained by non-linear least squares. The improved parameter estimates obtained by the biascorrected, transformed-linear or weighted non-linear model yield estimates of mean suspended-sediment load calculated by the flow-duration, rating-curve method that are more accurate and precise than those obtained for the non-linear model.
Tomlinson, Ryan E.; Silva, Matthew J.; Shoghi, Kooresh I.
2013-01-01
Purpose Blood flow is an important factor in bone production and repair, but its role in osteogenesis induced by mechanical loading is unknown. Here, we present techniques for evaluating blood flow and fluoride metabolism in a pre-clinical stress fracture model of osteogenesis in rats. Procedures Bone formation was induced by forelimb compression in adult rats. 15O water and 18F fluoride PET imaging were used to evaluate blood flow and fluoride kinetics 7 days after loading. 15O water was modeled using a one-compartment, two-parameter model, while a two-compartment, three-parameter model was used to model 18F fluoride. Input functions were created from the heart, and a stochastic search algorithm was implemented to provide initial parameter values in conjunction with a Levenberg–Marquardt optimization algorithm. Results Loaded limbs are shown to have a 26% increase in blood flow rate, 113% increase in fluoride flow rate, 133% increase in fluoride flux, and 13% increase in fluoride incorporation into bone as compared to non-loaded limbs (p < 0.05 for all results). Conclusions The results shown here are consistent with previous studies, confirming this technique is suitable for evaluating the vascular response and mineral kinetics of osteogenic mechanical loading. PMID:21785919
Tominaga, Koji; Aherne, Julian; Watmough, Shaun A; Alveteg, Mattias; Cosby, Bernard J; Driscoll, Charles T; Posch, Maximilian; Pourmokhtarian, Afshin
2010-12-01
The performance and prediction uncertainty (owing to parameter and structural uncertainties) of four dynamic watershed acidification models (MAGIC, PnET-BGC, SAFE, and VSD) were assessed by systematically applying them to data from the Hubbard Brook Experimental Forest (HBEF), New Hampshire, where long-term records of precipitation and stream chemistry were available. In order to facilitate systematic evaluation, Monte Carlo simulation was used to randomly generate common model input data sets (n = 10,000) from parameter distributions; input data were subsequently translated among models to retain consistency. The model simulations were objectively calibrated against observed data (streamwater: 1963-2004, soil: 1983). The ensemble of calibrated models was used to assess future response of soil and stream chemistry to reduced sulfur deposition at the HBEF. Although both hindcast (1850-1962) and forecast (2005-2100) predictions were qualitatively similar across the four models, the temporal pattern of key indicators of acidification recovery (stream acid neutralizing capacity and soil base saturation) differed substantially. The range in predictions resulted from differences in model structure and their associated posterior parameter distributions. These differences can be accommodated by employing multiple models (ensemble analysis) but have implications for individual model applications.
NASA Astrophysics Data System (ADS)
Wentworth, Mami Tonoe
Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification techniques for model calibration. For Bayesian model calibration, we employ adaptive Metropolis algorithms to construct densities for input parameters in the heat model and the HIV model. To quantify the uncertainty in the parameters, we employ two MCMC algorithms: Delayed Rejection Adaptive Metropolis (DRAM) [33] and Differential Evolution Adaptive Metropolis (DREAM) [66, 68]. The densities obtained using these methods are compared to those obtained through the direct numerical evaluation of the Bayes' formula. We also combine uncertainties in input parameters and measurement errors to construct predictive estimates for a model response. A significant emphasis is on the development and illustration of techniques to verify the accuracy of sampling-based Metropolis algorithms. We verify the accuracy of DRAM and DREAM by comparing chains, densities and correlations obtained using DRAM, DREAM and the direct evaluation of Bayes formula. We also perform similar analysis for credible and prediction intervals for responses. Once the parameters are estimated, we employ energy statistics test [63, 64] to compare the densities obtained by different methods for the HIV model. The energy statistics are used to test the equality of distributions. We also consider parameter selection and verification techniques for models having one or more parameters that are noninfluential in the sense that they minimally impact model outputs. We illustrate these techniques for a dynamic HIV model but note that the parameter selection and verification framework is applicable to a wide range of biological and physical models. To accommodate the nonlinear input to output relations, which are typical for such models, we focus on global sensitivity analysis techniques, including those based on partial correlations, Sobol indices based on second-order model representations, and Morris indices, as well as a parameter selection technique based on standard errors. A significant objective is to provide verification strategies to assess the accuracy of those techniques, which we illustrate in the context of the HIV model. Finally, we examine active subspace methods as an alternative to parameter subset selection techniques. The objective of active subspace methods is to determine the subspace of inputs that most strongly affect the model response, and to reduce the dimension of the input space. The major difference between active subspace methods and parameter selection techniques is that parameter selection identifies influential parameters whereas subspace selection identifies a linear combination of parameters that impacts the model responses significantly. We employ active subspace methods discussed in [22] for the HIV model and present a verification that the active subspace successfully reduces the input dimensions.
NASA Astrophysics Data System (ADS)
Gao, X.; Li, T.; Zhang, X.; Geng, X.
2018-04-01
In this paper, we proposed the stochastic model of InSAR height measurement by considering the interferometric geometry of InSAR height measurement. The model directly described the relationship between baseline error and height measurement error. Then the simulation analysis in combination with TanDEM-X parameters was implemented to quantitatively evaluate the influence of baseline error to height measurement. Furthermore, the whole emulation validation of InSAR stochastic model was performed on the basis of SRTM DEM and TanDEM-X parameters. The spatial distribution characteristics and error propagation rule of InSAR height measurement were fully evaluated.
NASA Technical Reports Server (NTRS)
Mccutcheon, Kimble D.; Gordon, Stephen S.; Thompson, Paul A.
1992-01-01
NASA uses the Variable Polarity Plasma Arc Welding (VPPAW) process extensively for fabrication of Space Shuttle External Tanks. This welding process has been in use at NASA since the late 1970's but the physics of the process have never been satisfactorily modeled and understood. In an attempt to advance the level of understanding of VPPAW, Dr. Arthur C. Nunes, Jr., (NASA) has developed a mathematical model of the process. The work described in this report evaluated and used two versions (level-0 and level-1) of Dr. Nunes' model, and a model derived by the University of Alabama at Huntsville (UAH) from Dr. Nunes' level-1 model. Two series of VPPAW experiments were done, using over 400 different combinations of welding parameters. Observations were made of VPPAW process behavior as a function of specific welding parameter changes. Data from these weld experiments was used to evaluate and suggest improvements to Dr. Nunes' model. Experimental data and correlations with the model were used to develop a multi-variable control algorithm for use with a future VPPAW controller. This algorithm is designed to control weld widths (both on the crown and root of the weld) based upon the weld parameters, base metal properties, and real-time observation of the crown width. The algorithm exhibited accuracy comparable to that of the weld width measurements for both aluminum and mild steel welds.
Regionalizing nonparametric models of precipitation amounts on different temporal scales
NASA Astrophysics Data System (ADS)
Mosthaf, Tobias; Bárdossy, András
2017-05-01
Parametric distribution functions are commonly used to model precipitation amounts corresponding to different durations. The precipitation amounts themselves are crucial for stochastic rainfall generators and weather generators. Nonparametric kernel density estimates (KDEs) offer a more flexible way to model precipitation amounts. As already stated in their name, these models do not exhibit parameters that can be easily regionalized to run rainfall generators at ungauged locations as well as at gauged locations. To overcome this deficiency, we present a new interpolation scheme for nonparametric models and evaluate it for different temporal resolutions ranging from hourly to monthly. During the evaluation, the nonparametric methods are compared to commonly used parametric models like the two-parameter gamma and the mixed-exponential distribution. As water volume is considered to be an essential parameter for applications like flood modeling, a Lorenz-curve-based criterion is also introduced. To add value to the estimation of data at sub-daily resolutions, we incorporated the plentiful daily measurements in the interpolation scheme, and this idea was evaluated. The study region is the federal state of Baden-Württemberg in the southwest of Germany with more than 500 rain gauges. The validation results show that the newly proposed nonparametric interpolation scheme provides reasonable results and that the incorporation of daily values in the regionalization of sub-daily models is very beneficial.
Cheng, Xiaoyin; Li, Zhoulei; Liu, Zhen; Navab, Nassir; Huang, Sung-Cheng; Keller, Ulrich; Ziegler, Sibylle; Shi, Kuangyu
2015-02-12
The separation of multiple PET tracers within an overlapping scan based on intrinsic differences of tracer pharmacokinetics is challenging, due to limited signal-to-noise ratio (SNR) of PET measurements and high complexity of fitting models. In this study, we developed a direct parametric image reconstruction (DPIR) method for estimating kinetic parameters and recovering single tracer information from rapid multi-tracer PET measurements. This is achieved by integrating a multi-tracer model in a reduced parameter space (RPS) into dynamic image reconstruction. This new RPS model is reformulated from an existing multi-tracer model and contains fewer parameters for kinetic fitting. Ordered-subsets expectation-maximization (OSEM) was employed to approximate log-likelihood function with respect to kinetic parameters. To incorporate the multi-tracer model, an iterative weighted nonlinear least square (WNLS) method was employed. The proposed multi-tracer DPIR (MTDPIR) algorithm was evaluated on dual-tracer PET simulations ([18F]FDG and [11C]MET) as well as on preclinical PET measurements ([18F]FLT and [18F]FDG). The performance of the proposed algorithm was compared to the indirect parameter estimation method with the original dual-tracer model. The respective contributions of the RPS technique and the DPIR method to the performance of the new algorithm were analyzed in detail. For the preclinical evaluation, the tracer separation results were compared with single [18F]FDG scans of the same subjects measured 2 days before the dual-tracer scan. The results of the simulation and preclinical studies demonstrate that the proposed MT-DPIR method can improve the separation of multiple tracers for PET image quantification and kinetic parameter estimations.
Seo, Nieun; Chung, Yong Eun; Park, Yung Nyun; Kim, Eunju; Hwang, Jinwoo; Kim, Myeong-Jin
2018-07-01
To compare the ability of diffusion-weighted imaging (DWI) parameters acquired from three different models for the diagnosis of hepatic fibrosis (HF). Ninety-five patients underwent DWI using nine b values at 3 T magnetic resonance. The hepatic apparent diffusion coefficient (ADC) from a mono-exponential model, the true diffusion coefficient (D t ), pseudo-diffusion coefficient (D p ) and perfusion fraction (f) from a biexponential model, and the distributed diffusion coefficient (DDC) and intravoxel heterogeneity index (α) from a stretched exponential model were compared with the pathological HF stage. For the stretched exponential model, parameters were also obtained using a dataset of six b values (DDC # , α # ). The diagnostic performances of the parameters for HF staging were evaluated with Obuchowski measures and receiver operating characteristics (ROC) analysis. The measurement variability of DWI parameters was evaluated using the coefficient of variation (CoV). Diagnostic accuracy for HF staging was highest for DDC # (Obuchowski measures, 0.770 ± 0.03), and it was significantly higher than that of ADC (0.597 ± 0.05, p < 0.001), D t (0.575 ± 0.05, p < 0.001) and f (0.669 ± 0.04, p = 0.035). The parameters from stretched exponential DWI and D p showed higher areas under the ROC curve (AUCs) for determining significant fibrosis (≥F2) and cirrhosis (F = 4) than other parameters. However, D p showed significantly higher measurement variability (CoV, 74.6%) than DDC # (16.1%, p < 0.001) and α # (15.1%, p < 0.001). Stretched exponential DWI is a promising method for HF staging with good diagnostic performance and fewer b-value acquisitions, allowing shorter acquisition time. • Stretched exponential DWI provides a precise and accurate model for HF staging. • Stretched exponential DWI parameters are more reliable than D p from bi-exponential DWI model • Acquisition of six b values is sufficient to obtain accurate DDC and α.
NASA Astrophysics Data System (ADS)
Kim, G.; Che, I. Y.
2017-12-01
We evaluated relationship among source parameters of underground nuclear tests in northern Korean Peninsula using regional seismic data. Dense global and regional seismic networks are incorporated to measure locations and origin times precisely. Location analyses show that distance among the locations is tiny on a regional scale. The tiny location-differences validate a linear model assumption. We estimated source spectral ratios by excluding path effects based spectral ratios of the observed seismograms. We estimated empirical relationship among depth of burials and yields based on theoretical source models.
Study on degenerate coefficient and degeneration evaluation of lithium-ion battery
NASA Astrophysics Data System (ADS)
Li, Bei; Li, Xiaopeng
2017-07-01
Some characteristic parameters were epurated in this paper by analyzing internal and external factors of the degradation degree of lithium-ion battery. These characteristic parameters include open circuit voltage (OCV), state of charge (SOC) and ambient temperature. The degradation degree was evaluated by discrete degree of the array, which is composed of the above parameters. The epurated parameters were verified through adaptive neuro-fuzzy inference system (ANFIS) model building. The expression of degradation coefficient was finally determined. The simulation results show that the expression is reasonable and precise to describe the degradation degree.
Data error and highly parameterized groundwater models
Hill, M.C.
2008-01-01
Strengths and weaknesses of highly parameterized models, in which the number of parameters exceeds the number of observations, are demonstrated using a synthetic test case. Results suggest that the approach can yield close matches to observations but also serious errors in system representation. It is proposed that avoiding the difficulties of highly parameterized models requires close evaluation of: (1) model fit, (2) performance of the regression, and (3) estimated parameter distributions. Comparisons to hydrogeologic information are expected to be critical to obtaining credible models. Copyright ?? 2008 IAHS Press.
Towards systematic evaluation of crop model outputs for global land-use models
NASA Astrophysics Data System (ADS)
Leclere, David; Azevedo, Ligia B.; Skalský, Rastislav; Balkovič, Juraj; Havlík, Petr
2016-04-01
Land provides vital socioeconomic resources to the society, however at the cost of large environmental degradations. Global integrated models combining high resolution global gridded crop models (GGCMs) and global economic models (GEMs) are increasingly being used to inform sustainable solution for agricultural land-use. However, little effort has yet been done to evaluate and compare the accuracy of GGCM outputs. In addition, GGCM datasets require a large amount of parameters whose values and their variability across space are weakly constrained: increasing the accuracy of such dataset has a very high computing cost. Innovative evaluation methods are required both to ground credibility to the global integrated models, and to allow efficient parameter specification of GGCMs. We propose an evaluation strategy for GGCM datasets in the perspective of use in GEMs, illustrated with preliminary results from a novel dataset (the Hypercube) generated by the EPIC GGCM and used in the GLOBIOM land use GEM to inform on present-day crop yield, water and nutrient input needs for 16 crops x 15 management intensities, at a spatial resolution of 5 arc-minutes. We adopt the following principle: evaluation should provide a transparent diagnosis of model adequacy for its intended use. We briefly describe how the Hypercube data is generated and how it articulates with GLOBIOM in order to transparently identify the performances to be evaluated, as well as the main assumptions and data processing involved. Expected performances include adequately representing the sub-national heterogeneity in crop yield and input needs: i) in space, ii) across crop species, and iii) across management intensities. We will present and discuss measures of these expected performances and weight the relative contribution of crop model, input data and data processing steps in performances. We will also compare obtained yield gaps and main yield-limiting factors against the M3 dataset. Next steps include iterative improvement of parameter assumptions and evaluation of implications of GGCM performances for intended use in the IIASA EPIC-GLOBIOM model cluster. Our approach helps targeting future efforts at improving GGCM accuracy and would achieve highest efficiency if combined with traditional field-scale evaluation and sensitivity analysis.
Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine
2016-01-01
A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement. PMID:26799483
Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine
2016-01-01
A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanemoto, S.; Andoh, Y.; Sandoz, S.A.
1984-10-01
A method for evaluating reactor stability in boiling water reactors has been developed. The method is based on multivariate autoregressive (M-AR) modeling of steady-state neutron and process noise signals. In this method, two kinds of power spectral densities (PSDs) for the measured neutron signal and the corresponding noise source signal are separately identified by the M-AR modeling. The closed- and open-loop stability parameters are evaluated from these PSDs. The method is applied to actual plant noise data that were measured together with artificial perturbation test data. Stability parameters identified from noise data are compared to those from perturbation test data,more » and it is shown that both results are in good agreement. In addition to these stability estimations, driving noise sources for the neutron signal are evaluated by the M-AR modeling. Contributions from void, core flow, and pressure noise sources are quantitatively evaluated, and the void noise source is shown to be the most dominant.« less
[Simulation and data analysis of stereological modeling based on virtual slices].
Wang, Hao; Shen, Hong; Bai, Xiao-yan
2008-05-01
To establish a computer-assisted stereological model for simulating the process of slice section and evaluate the relationship between section surface and estimated three-dimensional structure. The model was designed by mathematic method as a win32 software based on the MFC using Microsoft visual studio as IDE for simulating the infinite process of sections and analysis of the data derived from the model. The linearity of the fitting of the model was evaluated by comparison with the traditional formula. The win32 software based on this algorithm allowed random sectioning of the particles distributed randomly in an ideal virtual cube. The stereological parameters showed very high throughput (>94.5% and 92%) in homogeneity and independence tests. The data of density, shape and size of the section were tested to conform to normal distribution. The output of the model and that from the image analysis system showed statistical correlation and consistency. The algorithm we described can be used for evaluating the stereologic parameters of the structure of tissue slices.
NASA Technical Reports Server (NTRS)
Zaychik, Kirill; Cardullo, Frank; George, Gary; Kelly, Lon C.
2009-01-01
In order to use the Hess Structural Model to predict the need for certain cueing systems, George and Cardullo significantly expanded it by adding motion feedback to the model and incorporating models of the motion system dynamics, motion cueing algorithm and a vestibular system. This paper proposes a methodology to evaluate effectiveness of these innovations by performing a comparison analysis of the model performance with and without the expanded motion feedback. The proposed methodology is composed of two stages. The first stage involves fine-tuning parameters of the original Hess structural model in order to match the actual control behavior recorded during the experiments at NASA Visual Motion Simulator (VMS) facility. The parameter tuning procedure utilizes a new automated parameter identification technique, which was developed at the Man-Machine Systems Lab at SUNY Binghamton. In the second stage of the proposed methodology, an expanded motion feedback is added to the structural model. The resulting performance of the model is then compared to that of the original one. As proposed by Hess, metrics to evaluate the performance of the models include comparison against the crossover models standards imposed on the crossover frequency and phase margin of the overall man-machine system. Preliminary results indicate the advantage of having the model of the motion system and motion cueing incorporated into the model of the human operator. It is also demonstrated that the crossover frequency and the phase margin of the expanded model are well within the limits imposed by the crossover model.
An important factor in evaluating health risk of near-road air pollution is to accurately estimate the traffic-related vehicle emission of air pollutants. Inclusion of traffic parameters such as road length/area, distance to roads, and traffic volume/intensity into models such as...
2014-09-01
has highlighted the need for physically consistent radiation pressure and Bidirectional Reflectance Distribution Function ( BRDF ) models . This paper...seeks to evaluate the impact of BRDF -consistent radiation pres- sure models compared to changes in the other BRDF parameters. The differences in...orbital position arising because of changes in the shape, attitude, angular rates, BRDF parameters, and radiation pressure model are plotted as a
Computer-Based Model Calibration and Uncertainty Analysis: Terms and Concepts
2015-07-01
uncertainty analyses throughout the lifecycle of planning, designing, and operating of Civil Works flood risk management projects as described in...value 95% of the time. In the frequentist approach to PE, model parameters area regarded as having true values, and their estimate is based on the...in catchment models. 1. Evaluating parameter uncertainty. Water Resources Research 19(5):1151–1172. Lee, P. M. 2012. Bayesian statistics: An
Factorial Design Approach in Proportioning Prestressed Self-Compacting Concrete
Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Xing, Feng; Wang, Wei-Lun
2015-01-01
In order to model the effect of mixture parameters and material properties on the hardened properties of, prestressed self-compacting concrete (SCC), and also to investigate the extensions of the statistical models, a factorial design was employed to identify the relative significance of these primary parameters and their interactions in terms of the mechanical and visco-elastic properties of SCC. In addition to the 16 fractional factorial mixtures evaluated in the modeled region of −1 to +1, eight axial mixtures were prepared at extreme values of −2 and +2 with the other variables maintained at the central points. Four replicate central mixtures were also evaluated. The effects of five mixture parameters, including binder type, binder content, dosage of viscosity-modifying admixture (VMA), water-cementitious material ratio (w/cm), and sand-to-total aggregate ratio (S/A) on compressive strength, modulus of elasticity, as well as autogenous and drying shrinkage are discussed. The applications of the models to better understand trade-offs between mixture parameters and carry out comparisons among various responses are also highlighted. A logical design approach would be to use the existing model to predict the optimal design, and then run selected tests to quantify the influence of the new binder on the model. PMID:28787990
NASA Astrophysics Data System (ADS)
Snow, Michael G.; Bajaj, Anil K.
2015-08-01
This work presents an uncertainty quantification (UQ) analysis of a comprehensive model for an electrostatically actuated microelectromechanical system (MEMS) switch. The goal is to elucidate the effects of parameter variations on certain key performance characteristics of the switch. A sufficiently detailed model of the electrostatically actuated switch in the basic configuration of a clamped-clamped beam is developed. This multi-physics model accounts for various physical effects, including the electrostatic fringing field, finite length of electrodes, squeeze film damping, and contact between the beam and the dielectric layer. The performance characteristics of immediate interest are the static and dynamic pull-in voltages for the switch. Numerical approaches for evaluating these characteristics are developed and described. Using Latin Hypercube Sampling and other sampling methods, the model is evaluated to find these performance characteristics when variability in the model's geometric and physical parameters is specified. Response surfaces of these results are constructed via a Multivariate Adaptive Regression Splines (MARS) technique. Using a Direct Simulation Monte Carlo (DSMC) technique on these response surfaces gives smooth probability density functions (PDFs) of the outputs characteristics when input probability characteristics are specified. The relative variation in the two pull-in voltages due to each of the input parameters is used to determine the critical parameters.
NASA Astrophysics Data System (ADS)
Nesti, Alice; Mediero, Luis; Garrote, Luis; Caporali, Enrica
2010-05-01
An automatic probabilistic calibration method for distributed rainfall-runoff models is presented. The high number of parameters in hydrologic distributed models makes special demands on the optimization procedure to estimate model parameters. With the proposed technique it is possible to reduce the complexity of calibration while maintaining adequate model predictions. The first step of the calibration procedure of the main model parameters is done manually with the aim to identify their variation range. Afterwards a Monte-Carlo technique is applied, which consists on repetitive model simulations with randomly generated parameters. The Monte Carlo Analysis Toolbox (MCAT) includes a number of analysis methods to evaluate the results of these Monte Carlo parameter sampling experiments. The study investigates the use of a global sensitivity analysis as a screening tool to reduce the parametric dimensionality of multi-objective hydrological model calibration problems, while maximizing the information extracted from hydrological response data. The method is applied to the calibration of the RIBS flood forecasting model in the Harod river basin, placed on Israel. The Harod basin has an extension of 180 km2. The catchment has a Mediterranean climate and it is mainly characterized by a desert landscape, with a soil that is able to absorb large quantities of rainfall and at the same time is capable to generate high peaks of discharge. Radar rainfall data with 6 minute temporal resolution are available as input to the model. The aim of the study is the validation of the model for real-time flood forecasting, in order to evaluate the benefits of improved precipitation forecasting within the FLASH European project.
A Systematic Approach to Sensor Selection for Aircraft Engine Health Estimation
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Garg, Sanjay
2009-01-01
A systematic approach for selecting an optimal suite of sensors for on-board aircraft gas turbine engine health estimation is presented. The methodology optimally chooses the engine sensor suite and the model tuning parameter vector to minimize the Kalman filter mean squared estimation error in the engine s health parameters or other unmeasured engine outputs. This technique specifically addresses the underdetermined estimation problem where there are more unknown system health parameters representing degradation than available sensor measurements. This paper presents the theoretical estimation error equations, and describes the optimization approach that is applied to select the sensors and model tuning parameters to minimize these errors. Two different model tuning parameter vector selection approaches are evaluated: the conventional approach of selecting a subset of health parameters to serve as the tuning parameters, and an alternative approach that selects tuning parameters as a linear combination of all health parameters. Results from the application of the technique to an aircraft engine simulation are presented, and compared to those from an alternative sensor selection strategy.
Evaluation for Bearing Wear States Based on Online Oil Multi-Parameters Monitoring
Hu, Hai-Feng
2018-01-01
As bearings are critical components of a mechanical system, it is important to characterize their wear states and evaluate health conditions. In this paper, a novel approach for analyzing the relationship between online oil multi-parameter monitoring samples and bearing wear states has been proposed based on an improved gray k-means clustering model (G-KCM). First, an online monitoring system with multiple sensors for bearings is established, obtaining oil multi-parameter data and vibration signals for bearings through the whole lifetime. Secondly, a gray correlation degree distance matrix is generated using a gray correlation model (GCM) to express the relationship of oil monitoring samples at different times and then a KCM is applied to cluster the matrix. Analysis and experimental results show that there is an obvious correspondence that state changing coincides basically in time between the lubricants’ multi-parameters and the bearings’ wear states. It also has shown that online oil samples with multi-parameters have early wear failure prediction ability for bearings superior to vibration signals. It is expected to realize online oil monitoring and evaluation for bearing health condition and to provide a novel approach for early identification of bearing-related failure modes. PMID:29621175
Evaluation for Bearing Wear States Based on Online Oil Multi-Parameters Monitoring.
Wang, Si-Yuan; Yang, Ding-Xin; Hu, Hai-Feng
2018-04-05
As bearings are critical components of a mechanical system, it is important to characterize their wear states and evaluate health conditions. In this paper, a novel approach for analyzing the relationship between online oil multi-parameter monitoring samples and bearing wear states has been proposed based on an improved gray k-means clustering model (G-KCM). First, an online monitoring system with multiple sensors for bearings is established, obtaining oil multi-parameter data and vibration signals for bearings through the whole lifetime. Secondly, a gray correlation degree distance matrix is generated using a gray correlation model (GCM) to express the relationship of oil monitoring samples at different times and then a KCM is applied to cluster the matrix. Analysis and experimental results show that there is an obvious correspondence that state changing coincides basically in time between the lubricants' multi-parameters and the bearings' wear states. It also has shown that online oil samples with multi-parameters have early wear failure prediction ability for bearings superior to vibration signals. It is expected to realize online oil monitoring and evaluation for bearing health condition and to provide a novel approach for early identification of bearing-related failure modes.
An evaluative model of system performance in manned teleoperational systems
NASA Technical Reports Server (NTRS)
Haines, Richard F.
1989-01-01
Manned teleoperational systems are used in aerospace operations in which humans must interact with machines remotely. Manual guidance of remotely piloted vehicles, controling a wind tunnel, carrying out a scientific procedure remotely are examples of teleoperations. A four input parameter throughput (Tp) model is presented which can be used to evaluate complex, manned, teleoperations-based systems and make critical comparisons among candidate control systems. The first two parameters of this model deal with nominal (A) and off-nominal (B) predicted events while the last two focus on measured events of two types, human performance (C) and system performance (D). Digital simulations showed that the expression A(1-B)/C+D) produced the greatest homogeneity of variance and distribution symmetry. Results from a recently completed manned life science telescience experiment will be used to further validate the model. Complex, interacting teleoperational systems may be systematically evaluated using this expression much like a computer benchmark is used.
Evaluation of a methodology for model identification in the time domain
NASA Technical Reports Server (NTRS)
Beck, R. T.; Beck, J. L.
1988-01-01
A model identification methodology for structural dynamics has been applied to simulated vibrational data as a first step in evaluating its accuracy. The evaluation has taken into account a wide variety of factors which affect the accuracy of the procedure. The effects of each of these factors were observed in both the response time histories and the estimates of the parameters of the model by comparing them with the exact values of the system. Each factor was varied independently but combinations of these have also been considered in an effort to simulate real situations. The results of the tests have shown that for the chain model, the procedure yields robust estimates of the stiffness parameters under the conditions studied whenever uniqueness is ensured. When inaccuracies occur in the results, they are intimately related to non-uniqueness conditions inherent in the inverse problem and not to shortcomings in the methodology.
An information theoretic approach to use high-fidelity codes to calibrate low-fidelity codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Allison, E-mail: lewis.allison10@gmail.com; Smith, Ralph; Williams, Brian
For many simulation models, it can be prohibitively expensive or physically infeasible to obtain a complete set of experimental data to calibrate model parameters. In such cases, one can alternatively employ validated higher-fidelity codes to generate simulated data, which can be used to calibrate the lower-fidelity code. In this paper, we employ an information-theoretic framework to determine the reduction in parameter uncertainty that is obtained by evaluating the high-fidelity code at a specific set of design conditions. These conditions are chosen sequentially, based on the amount of information that they contribute to the low-fidelity model parameters. The goal is tomore » employ Bayesian experimental design techniques to minimize the number of high-fidelity code evaluations required to accurately calibrate the low-fidelity model. We illustrate the performance of this framework using heat and diffusion examples, a 1-D kinetic neutron diffusion equation, and a particle transport model, and include initial results from the integration of the high-fidelity thermal-hydraulics code Hydra-TH with a low-fidelity exponential model for the friction correlation factor.« less
Luo, Chuan; Li, Zhaofu; Li, Hengpeng; Chen, Xiaomin
2015-09-02
The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict runoff, total nitrogen (TN) and total phosphorus (TP) loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds.
NWP model forecast skill optimization via closure parameter variations
NASA Astrophysics Data System (ADS)
Järvinen, H.; Ollinaho, P.; Laine, M.; Solonen, A.; Haario, H.
2012-04-01
We present results of a novel approach to tune predictive skill of numerical weather prediction (NWP) models. These models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. The current practice is to specify manually the numerical parameter values, based on expert knowledge. We developed recently a concept and method (QJRMS 2011) for on-line estimation of the NWP model parameters via closure parameter variations. The method called EPPES ("Ensemble prediction and parameter estimation system") utilizes ensemble prediction infra-structure for parameter estimation in a very cost-effective way: practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating an ensemble of predictions so that each member uses different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In this presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an ensemble prediction system emulator, based on the ECHAM5 atmospheric GCM show that the model tuning capability of EPPES scales up to realistic models and ensemble prediction systems. Finally, preliminary results of EPPES in the context of ECMWF forecasting system are presented.
Estimating varying coefficients for partial differential equation models.
Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J
2017-09-01
Partial differential equations (PDEs) are used to model complex dynamical systems in multiple dimensions, and their parameters often have important scientific interpretations. In some applications, PDE parameters are not constant but can change depending on the values of covariates, a feature that we call varying coefficients. We propose a parameter cascading method to estimate varying coefficients in PDE models from noisy data. Our estimates of the varying coefficients are shown to be consistent and asymptotically normally distributed. The performance of our method is evaluated by a simulation study and by an empirical study estimating three varying coefficients in a PDE model arising from LIDAR data. © 2017, The International Biometric Society.
Solid phase extraction of copper(II) by fixed bed procedure on cation exchange complexing resins.
Pesavento, Maria; Sturini, Michela; D'Agostino, Girolamo; Biesuz, Raffaela
2010-02-19
The efficiency of the metal ion recovery by solid phase extraction (SPE) in complexing resins columns is predicted by a simple model based on two parameters reflecting the sorption equilibria and kinetics of the metal ion on the considered resin. The parameter related to the adsorption equilibria was evaluated by the Gibbs-Donnan model, and that related to the kinetics by assuming that the ion exchange is the adsorption rate determining step. The predicted parameters make it possible to evaluate the breakthrough volume of the considered metal ion, Cu(II), from different kinds of complexing resins, and at different conditions, such as acidity and ionic composition. Copyright 2009. Published by Elsevier B.V.
Estimating standard errors in feature network models.
Frank, Laurence E; Heiser, Willem J
2007-05-01
Feature network models are graphical structures that represent proximity data in a discrete space while using the same formalism that is the basis of least squares methods employed in multidimensional scaling. Existing methods to derive a network model from empirical data only give the best-fitting network and yield no standard errors for the parameter estimates. The additivity properties of networks make it possible to consider the model as a univariate (multiple) linear regression problem with positivity restrictions on the parameters. In the present study, both theoretical and empirical standard errors are obtained for the constrained regression parameters of a network model with known features. The performance of both types of standard error is evaluated using Monte Carlo techniques.
Model-based estimation for dynamic cardiac studies using ECT.
Chiao, P C; Rogers, W L; Clinthorne, N H; Fessler, J A; Hero, A O
1994-01-01
The authors develop a strategy for joint estimation of physiological parameters and myocardial boundaries using ECT (emission computed tomography). They construct an observation model to relate parameters of interest to the projection data and to account for limited ECT system resolution and measurement noise. The authors then use a maximum likelihood (ML) estimator to jointly estimate all the parameters directly from the projection data without reconstruction of intermediate images. They also simulate myocardial perfusion studies based on a simplified heart model to evaluate the performance of the model-based joint ML estimator and compare this performance to the Cramer-Rao lower bound. Finally, the authors discuss model assumptions and potential uses of the joint estimation strategy.
Metzger, Gregory J; Kalavagunta, Chaitanya; Spilseth, Benjamin; Bolan, Patrick J; Li, Xiufeng; Hutter, Diane; Nam, Jung W; Johnson, Andrew D; Henriksen, Jonathan C; Moench, Laura; Konety, Badrinath; Warlick, Christopher A; Schmechel, Stephen C; Koopmeiners, Joseph S
2016-06-01
Purpose To develop multiparametric magnetic resonance (MR) imaging models to generate a quantitative, user-independent, voxel-wise composite biomarker score (CBS) for detection of prostate cancer by using coregistered correlative histopathologic results, and to compare performance of CBS-based detection with that of single quantitative MR imaging parameters. Materials and Methods Institutional review board approval and informed consent were obtained. Patients with a diagnosis of prostate cancer underwent multiparametric MR imaging before surgery for treatment. All MR imaging voxels in the prostate were classified as cancer or noncancer on the basis of coregistered histopathologic data. Predictive models were developed by using more than one quantitative MR imaging parameter to generate CBS maps. Model development and evaluation of quantitative MR imaging parameters and CBS were performed separately for the peripheral zone and the whole gland. Model accuracy was evaluated by using the area under the receiver operating characteristic curve (AUC), and confidence intervals were calculated with the bootstrap procedure. The improvement in classification accuracy was evaluated by comparing the AUC for the multiparametric model and the single best-performing quantitative MR imaging parameter at the individual level and in aggregate. Results Quantitative T2, apparent diffusion coefficient (ADC), volume transfer constant (K(trans)), reflux rate constant (kep), and area under the gadolinium concentration curve at 90 seconds (AUGC90) were significantly different between cancer and noncancer voxels (P < .001), with ADC showing the best accuracy (peripheral zone AUC, 0.82; whole gland AUC, 0.74). Four-parameter models demonstrated the best performance in both the peripheral zone (AUC, 0.85; P = .010 vs ADC alone) and whole gland (AUC, 0.77; P = .043 vs ADC alone). Individual-level analysis showed statistically significant improvement in AUC in 82% (23 of 28) and 71% (24 of 34) of patients with peripheral-zone and whole-gland models, respectively, compared with ADC alone. Model-based CBS maps for cancer detection showed improved visualization of cancer location and extent. Conclusion Quantitative multiparametric MR imaging models developed by using coregistered correlative histopathologic data yielded a voxel-wise CBS that outperformed single quantitative MR imaging parameters for detection of prostate cancer, especially when the models were assessed at the individual level. (©) RSNA, 2016 Online supplemental material is available for this article.
Fast Prediction and Evaluation of Gravitational Waveforms Using Surrogate Models
NASA Astrophysics Data System (ADS)
Field, Scott E.; Galley, Chad R.; Hesthaven, Jan S.; Kaye, Jason; Tiglio, Manuel
2014-07-01
We propose a solution to the problem of quickly and accurately predicting gravitational waveforms within any given physical model. The method is relevant for both real-time applications and more traditional scenarios where the generation of waveforms using standard methods can be prohibitively expensive. Our approach is based on three offline steps resulting in an accurate reduced order model in both parameter and physical dimensions that can be used as a surrogate for the true or fiducial waveform family. First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis representation is constructed. Second, these m parameters induce the selection of m time values for interpolating a waveform time series using an empirical interpolant that is built for the fiducial waveform family. Third, a fit in the parameter dimension is performed for the waveform's value at each of these m times. The cost of predicting L waveform time samples for a generic parameter choice is of order O(mL+mcfit) online operations, where cfit denotes the fitting function operation count and, typically, m ≪L. The result is a compact, computationally efficient, and accurate surrogate model that retains the original physics of the fiducial waveform family while also being fast to evaluate. We generate accurate surrogate models for effective-one-body waveforms of nonspinning binary black hole coalescences with durations as long as 105M, mass ratios from 1 to 10, and for multiple spherical harmonic modes. We find that these surrogates are more than 3 orders of magnitude faster to evaluate as compared to the cost of generating effective-one-body waveforms in standard ways. Surrogate model building for other waveform families and models follows the same steps and has the same low computational online scaling cost. For expensive numerical simulations of binary black hole coalescences, we thus anticipate extremely large speedups in generating new waveforms with a surrogate. As waveform generation is one of the dominant costs in parameter estimation algorithms and parameter space exploration, surrogate models offer a new and practical way to dramatically accelerate such studies without impacting accuracy. Surrogates built in this paper, as well as others, are available from GWSurrogate, a publicly available python package.
NASA Astrophysics Data System (ADS)
Bachmann-Machnik, Anna; Meyer, Daniel; Waldhoff, Axel; Fuchs, Stephan; Dittmer, Ulrich
2018-04-01
Retention Soil Filters (RSFs), a form of vertical flow constructed wetlands specifically designed for combined sewer overflow (CSO) treatment, have proven to be an effective tool to mitigate negative impacts of CSOs on receiving water bodies. Long-term hydrologic simulations are used to predict the emissions from urban drainage systems during planning of stormwater management measures. So far no universally accepted model for RSF simulation exists. When simulating hydraulics and water quality in RSFs, an appropriate level of detail must be chosen for reasonable balancing between model complexity and model handling, considering the model input's level of uncertainty. The most crucial parameters determining the resultant uncertainties of the integrated sewer system and filter bed model were identified by evaluating a virtual drainage system with a Retention Soil Filter for CSO treatment. To determine reasonable parameter ranges for RSF simulations, data of 207 events from six full-scale RSF plants in Germany were analyzed. Data evaluation shows that even though different plants with varying loading and operation modes were examined, a simple model is sufficient to assess relevant suspended solids (SS), chemical oxygen demand (COD) and NH4 emissions from RSFs. Two conceptual RSF models with different degrees of complexity were assessed. These models were developed based on evaluation of data from full scale RSF plants and column experiments. Incorporated model processes are ammonium adsorption in the filter layer and degradation during subsequent dry weather period, filtration of SS and particulate COD (XCOD) to a constant background concentration and removal of solute COD (SCOD) by a constant removal rate during filter passage as well as sedimentation of SS and XCOD in the filter overflow. XCOD, SS and ammonium loads as well as ammonium concentration peaks are discharged primarily via RSF overflow not passing through the filter bed. Uncertainties of the integrated simulation of the sewer system and RSF model mainly originate from the model parameters of the hydrologic sewer system model.
Covey, Curt; Lucas, Donald D.; Tannahill, John; ...
2013-07-01
Modern climate models contain numerous input parameters, each with a range of possible values. Since the volume of parameter space increases exponentially with the number of parameters N, it is generally impossible to directly evaluate a model throughout this space even if just 2-3 values are chosen for each parameter. Sensitivity screening algorithms, however, can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination.This can aid both model development and the uncertainty quantification (UQ) process. Here we report results from a parameter sensitivity screening algorithm hitherto untested in climate modeling,more » the Morris one-at-a-time (MOAT) method. This algorithm drastically reduces the computational cost of estimating sensitivities in a high dimensional parameter space because the sample size grows linearly rather than exponentially with N. It nevertheless samples over much of the N-dimensional volume and allows assessment of parameter interactions, unlike traditional elementary one-at-a-time (EOAT) parameter variation. We applied both EOAT and MOAT to the Community Atmosphere Model (CAM), assessing CAM’s behavior as a function of 27 uncertain input parameters related to the boundary layer, clouds, and other subgrid scale processes. For radiation balance at the top of the atmosphere, EOAT and MOAT rank most input parameters similarly, but MOAT identifies a sensitivity that EOAT underplays for two convection parameters that operate nonlinearly in the model. MOAT’s ranking of input parameters is robust to modest algorithmic variations, and it is qualitatively consistent with model development experience. Supporting information is also provided at the end of the full text of the article.« less
Development and evaluation of a musculoskeletal model of the elbow joint complex
NASA Technical Reports Server (NTRS)
Gonzalez, Roger V.; Hutchins, E. L.; Barr, Ronald E.; Abraham, Lawrence D.
1993-01-01
This paper describes the development and evaluation of a musculoskeletal model that represents human elbow flexion-extension and forearm pronation-supination. The length, velocity, and moment arm for each of the eight musculotendon actuators were based on skeletal anatomy and position. Musculotendon parameters were determined for each actuator and verified by comparing analytical torque-angle curves with experimental joint torque data. The parameters and skeletal geometry were also utilized in the musculoskeletal model for the analysis of ballistic elbow joint complex movements. The key objective was to develop a computational model, guided by parameterized optimal control, to investigate the relationship among patterns of muscle excitation, individual muscle forces, and movement kinematics. The model was verified using experimental kinematic, torque, and electromyographic data from volunteer subjects performing ballistic elbow joint complex movements.
Systematic Uncertainties in High-Energy Hadronic Interaction Models
NASA Astrophysics Data System (ADS)
Zha, M.; Knapp, J.; Ostapchenko, S.
2003-07-01
Hadronic interaction models for cosmic ray energies are uncertain since our knowledge of hadronic interactions is extrap olated from accelerator experiments at much lower energies. At present most high-energy models are based on Grib ov-Regge theory of multi-Pomeron exchange, which provides a theoretical framework to evaluate cross-sections and particle production. While experimental data constrain some of the model parameters, others are not well determined and are therefore a source of systematic uncertainties. In this paper we evaluate the variation of results obtained with the QGSJET model, when modifying parameters relating to three ma jor sources of uncertainty: the form of the parton structure function, the role of diffractive interactions, and the string hadronisation. Results on inelastic cross sections, on secondary particle production and on the air shower development are discussed.
Doble, Brett; Tan, Marcus; Harris, Anthony; Lorgelly, Paula
2015-02-01
The successful use of a targeted therapy is intrinsically linked to the ability of a companion diagnostic to correctly identify patients most likely to benefit from treatment. The aim of this study was to review the characteristics of companion diagnostics that are of importance for inclusion in an economic evaluation. Approaches for including these characteristics in model-based economic evaluations are compared with the intent to describe best practice methods. Five databases and government agency websites were searched to identify model-based economic evaluations comparing a companion diagnostic and subsequent treatment strategy to another alternative treatment strategy with model parameters for the sensitivity and specificity of the companion diagnostic (primary synthesis). Economic evaluations that limited model parameters for the companion diagnostic to only its cost were also identified (secondary synthesis). Quality was assessed using the Quality of Health Economic Studies instrument. 30 studies were included in the review (primary synthesis n = 12; secondary synthesis n = 18). Incremental cost-effectiveness ratios may be lower when the only parameter for the companion diagnostic included in a model is the cost of testing. Incorporating the test's accuracy in addition to its cost may be a more appropriate methodological approach. Altering the prevalence of the genetic biomarker, specific population tested, type of test, test accuracy and timing/sequence of multiple tests can all impact overall model results. The impact of altering a test's threshold for positivity is unknown as it was not addressed in any of the included studies. Additional quality criteria as outlined in our methodological checklist should be considered due to the shortcomings of standard quality assessment tools in differentiating studies that incorporate important test-related characteristics and those that do not. There is a need to refine methods for incorporating the characteristics of companion diagnostics into model-based economic evaluations to ensure consistent and transparent reimbursement decisions are made.
Flexibility evaluation of multiechelon supply chains.
Almeida, João Flávio de Freitas; Conceição, Samuel Vieira; Pinto, Luiz Ricardo; de Camargo, Ricardo Saraiva; Júnior, Gilberto de Miranda
2018-01-01
Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain flexibility. However, under uncertainty, supply chain models become complex and the scope of flexibility analysis is generally reduced. This paper presents a unified approach that can evaluate the flexibility of a four-echelon supply chain via a robust stochastic programming model. The model simultaneously considers the plans of multiple business divisions such as marketing, logistics, manufacturing, and procurement, whose goals are often conflicting. A numerical example with deterministic parameters is presented to introduce the analysis, and then, the model stochastic parameters are considered to evaluate flexibility. The results of the analysis on supply, manufacturing, and distribution flexibility are presented. Tradeoff analysis of demand variability and service levels is also carried out. The proposed approach facilitates the adoption of different management styles, thus improving supply chain resilience. The model can be extended to contexts pertaining to supply chain disruptions; for example, the model can be used to explore operation strategies when subtle events disrupt supply, manufacturing, or distribution.
Flexibility evaluation of multiechelon supply chains
Conceição, Samuel Vieira; Pinto, Luiz Ricardo; de Camargo, Ricardo Saraiva; Júnior, Gilberto de Miranda
2018-01-01
Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain flexibility. However, under uncertainty, supply chain models become complex and the scope of flexibility analysis is generally reduced. This paper presents a unified approach that can evaluate the flexibility of a four-echelon supply chain via a robust stochastic programming model. The model simultaneously considers the plans of multiple business divisions such as marketing, logistics, manufacturing, and procurement, whose goals are often conflicting. A numerical example with deterministic parameters is presented to introduce the analysis, and then, the model stochastic parameters are considered to evaluate flexibility. The results of the analysis on supply, manufacturing, and distribution flexibility are presented. Tradeoff analysis of demand variability and service levels is also carried out. The proposed approach facilitates the adoption of different management styles, thus improving supply chain resilience. The model can be extended to contexts pertaining to supply chain disruptions; for example, the model can be used to explore operation strategies when subtle events disrupt supply, manufacturing, or distribution. PMID:29584755
An improved Rosetta pedotransfer function and evaluation in earth system models
NASA Astrophysics Data System (ADS)
Zhang, Y.; Schaap, M. G.
2017-12-01
Soil hydraulic parameters are often difficult and expensive to measure, leading to the pedotransfer functions (PTFs) an alternative to predict those parameters. Rosetta (Schaap et al., 2001, denoted as Rosetta1) are widely used PTFs, which is based on artificial neural network (ANN) analysis coupled with the bootstrap re-sampling method, allowing the estimation of van Genuchten water retention parameters (van Genuchten, 1980, abbreviated here as VG), saturated hydraulic conductivity (Ks), as well as their uncertainties. We present an improved hierarchical pedotransfer functions (Rosetta3) that unify the VG water retention and Ks submodels into one, thus allowing the estimation of uni-variate and bi-variate probability distributions of estimated parameters. Results show that the estimation bias of moisture content was reduced significantly. Rosetta1 and Posetta3 were implemented in the python programming language, and the source code are available online. Based on different soil water retention equations, there are diverse PTFs used in different disciplines of earth system modelings. PTFs based on Campbell [1974] or Clapp and Hornberger [1978] are frequently used in land surface models and general circulation models, while van Genuchten [1980] based PTFs are more widely used in hydrology and soil sciences. We use an independent global scale soil database to evaluate the performance of diverse PTFs used in different disciplines of earth system modelings. PTFs are evaluated based on different soil characteristics and environmental characteristics, such as soil textural data, soil organic carbon, soil pH, as well as precipitation and soil temperature. This analysis provides more quantitative estimation error information for PTF predictions in different disciplines of earth system modelings.
UCODE, a computer code for universal inverse modeling
Poeter, E.P.; Hill, M.C.
1999-01-01
This article presents the US Geological Survey computer program UCODE, which was developed in collaboration with the US Army Corps of Engineers Waterways Experiment Station and the International Ground Water Modeling Center of the Colorado School of Mines. UCODE performs inverse modeling, posed as a parameter-estimation problem, using nonlinear regression. Any application model or set of models can be used; the only requirement is that they have numerical (ASCII or text only) input and output files and that the numbers in these files have sufficient significant digits. Application models can include preprocessors and postprocessors as well as models related to the processes of interest (physical, chemical and so on), making UCODE extremely powerful for model calibration. Estimated parameters can be defined flexibly with user-specified functions. Observations to be matched in the regression can be any quantity for which a simulated equivalent value can be produced, thus simulated equivalent values are calculated using values that appear in the application model output files and can be manipulated with additive and multiplicative functions, if necessary. Prior, or direct, information on estimated parameters also can be included in the regression. The nonlinear regression problem is solved by minimizing a weighted least-squares objective function with respect to the parameter values using a modified Gauss-Newton method. Sensitivities needed for the method are calculated approximately by forward or central differences and problems and solutions related to this approximation are discussed. Statistics are calculated and printed for use in (1) diagnosing inadequate data or identifying parameters that probably cannot be estimated with the available data, (2) evaluating estimated parameter values, (3) evaluating the model representation of the actual processes and (4) quantifying the uncertainty of model simulated values. UCODE is intended for use on any computer operating system: it consists of algorithms programmed in perl, a freeware language designed for text manipulation and Fortran90, which efficiently performs numerical calculations.
Multi-criteria evaluation of wastewater treatment plant control strategies under uncertainty.
Flores-Alsina, Xavier; Rodríguez-Roda, Ignasi; Sin, Gürkan; Gernaey, Krist V
2008-11-01
The evaluation of activated sludge control strategies in wastewater treatment plants (WWTP) via mathematical modelling is a complex activity because several objectives; e.g. economic, environmental, technical and legal; must be taken into account at the same time, i.e. the evaluation of the alternatives is a multi-criteria problem. Activated sludge models are not well characterized and some of the parameters can present uncertainty, e.g. the influent fractions arriving to the facility and the effect of either temperature or toxic compounds on the kinetic parameters, having a strong influence in the model predictions used during the evaluation of the alternatives and affecting the resulting rank of preferences. Using a simplified version of the IWA Benchmark Simulation Model No. 2 as a case study, this article shows the variations in the decision making when the uncertainty in activated sludge model (ASM) parameters is either included or not during the evaluation of WWTP control strategies. This paper comprises two main sections. Firstly, there is the evaluation of six WWTP control strategies using multi-criteria decision analysis setting the ASM parameters at their default value. In the following section, the uncertainty is introduced, i.e. input uncertainty, which is characterized by probability distribution functions based on the available process knowledge. Next, Monte Carlo simulations are run to propagate input through the model and affect the different outcomes. Thus (i) the variation in the overall degree of satisfaction of the control objectives for the generated WWTP control strategies is quantified, (ii) the contributions of environmental, legal, technical and economic objectives to the existing variance are identified and finally (iii) the influence of the relative importance of the control objectives during the selection of alternatives is analyzed. The results show that the control strategies with an external carbon source reduce the output uncertainty in the criteria used to quantify the degree of satisfaction of environmental, technical and legal objectives, but increasing the economical costs and their variability as a trade-off. Also, it is shown how a preliminary selected alternative with cascade ammonium controller becomes less desirable when input uncertainty is included, having simpler alternatives more chance of success.
Model Performance Evaluation and Scenario Analysis ...
This tool consists of two parts: model performance evaluation and scenario analysis (MPESA). The model performance evaluation consists of two components: model performance evaluation metrics and model diagnostics. These metrics provides modelers with statistical goodness-of-fit measures that capture magnitude only, sequence only, and combined magnitude and sequence errors. The performance measures include error analysis, coefficient of determination, Nash-Sutcliffe efficiency, and a new weighted rank method. These performance metrics only provide useful information about the overall model performance. Note that MPESA is based on the separation of observed and simulated time series into magnitude and sequence components. The separation of time series into magnitude and sequence components and the reconstruction back to time series provides diagnostic insights to modelers. For example, traditional approaches lack the capability to identify if the source of uncertainty in the simulated data is due to the quality of the input data or the way the analyst adjusted the model parameters. This report presents a suite of model diagnostics that identify if mismatches between observed and simulated data result from magnitude or sequence related errors. MPESA offers graphical and statistical options that allow HSPF users to compare observed and simulated time series and identify the parameter values to adjust or the input data to modify. The scenario analysis part of the too
Numerical weather prediction model tuning via ensemble prediction system
NASA Astrophysics Data System (ADS)
Jarvinen, H.; Laine, M.; Ollinaho, P.; Solonen, A.; Haario, H.
2011-12-01
This paper discusses a novel approach to tune predictive skill of numerical weather prediction (NWP) models. NWP models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. Currently, numerical values of these parameters are specified manually. In a recent dual manuscript (QJRMS, revised) we developed a new concept and method for on-line estimation of the NWP model parameters. The EPPES ("Ensemble prediction and parameter estimation system") method requires only minimal changes to the existing operational ensemble prediction infra-structure and it seems very cost-effective because practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating each member of the ensemble of predictions using different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In the presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an atmospheric general circulation model based ensemble prediction system show that the NWP model tuning capacity of EPPES scales up to realistic models and ensemble prediction systems. Finally, a global top-end NWP model tuning exercise with preliminary results is published.
NASA Astrophysics Data System (ADS)
Imvitthaya, Chomchid; Honda, Kiyoshi; Lertlum, Surat; Tangtham, Nipon
2011-01-01
In this paper, we present the results of a net primary production (NPP) modeling of teak (Tectona grandis Lin F.), an important species in tropical deciduous forests. The biome-biogeochemical cycles or Biome-BGC model was calibrated to estimate net NPP through the inverse modeling approach. A genetic algorithm (GA) was linked with Biome-BGC to determine the optimal ecophysiological model parameters. The Biome-BGC was calibrated by adjusting the ecophysiological model parameters to fit the simulated LAI to the satellite LAI (SPOT-Vegetation), and the best fitness confirmed the high accuracy of generated ecophysioligical parameter from GA. The modeled NPP, using optimized parameters from GA as input data, was evaluated using daily NPP derived by the MODIS satellite and the annual field data in northern Thailand. The results showed that NPP obtained using the optimized ecophysiological parameters were more accurate than those obtained using default literature parameterization. This improvement occurred mainly because the model's optimized parameters reduced the bias by reducing systematic underestimation in the model. These Biome-BGC results can be effectively applied in teak forests in tropical areas. The study proposes a more effective method of using GA to determine ecophysiological parameters at the site level and represents a first step toward the analysis of the carbon budget of teak plantations at the regional scale.
NASA Astrophysics Data System (ADS)
Zhao, Fengjun; Liu, Junting; Qu, Xiaochao; Xu, Xianhui; Chen, Xueli; Yang, Xiang; Cao, Feng; Liang, Jimin; Tian, Jie
2014-12-01
To solve the multicollinearity issue and unequal contribution of vascular parameters for the quantification of angiogenesis, we developed a quantification evaluation method of vascular parameters for angiogenesis based on in vivo micro-CT imaging of hindlimb ischemic model mice. Taking vascular volume as the ground truth parameter, nine vascular parameters were first assembled into sparse principal components (PCs) to reduce the multicolinearity issue. Aggregated boosted trees (ABTs) were then employed to analyze the importance of vascular parameters for the quantification of angiogenesis via the loadings of sparse PCs. The results demonstrated that vascular volume was mainly characterized by vascular area, vascular junction, connectivity density, segment number and vascular length, which indicated they were the key vascular parameters for the quantification of angiogenesis. The proposed quantitative evaluation method was compared with both the ABTs directly using the nine vascular parameters and Pearson correlation, which were consistent. In contrast to the ABTs directly using the vascular parameters, the proposed method can select all the key vascular parameters simultaneously, because all the key vascular parameters were assembled into the sparse PCs with the highest relative importance.
Clark, D Angus; Nuttall, Amy K; Bowles, Ryan P
2018-01-01
Latent change score models (LCS) are conceptually powerful tools for analyzing longitudinal data (McArdle & Hamagami, 2001). However, applications of these models typically include constraints on key parameters over time. Although practically useful, strict invariance over time in these parameters is unlikely in real data. This study investigates the robustness of LCS when invariance over time is incorrectly imposed on key change-related parameters. Monte Carlo simulation methods were used to explore the impact of misspecification on parameter estimation, predicted trajectories of change, and model fit in the dual change score model, the foundational LCS. When constraints were incorrectly applied, several parameters, most notably the slope (i.e., constant change) factor mean and autoproportion coefficient, were severely and consistently biased, as were regression paths to the slope factor when external predictors of change were included. Standard fit indices indicated that the misspecified models fit well, partly because mean level trajectories over time were accurately captured. Loosening constraint improved the accuracy of parameter estimates, but estimates were more unstable, and models frequently failed to converge. Results suggest that potentially common sources of misspecification in LCS can produce distorted impressions of developmental processes, and that identifying and rectifying the situation is a challenge.
Sun, Xiaodian; Jin, Li; Xiong, Momiao
2008-01-01
It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks. PMID:19018286
Chapter 8: Demographic characteristics and population modeling
Scott H. Stoleson; Mary J. Whitfield; Mark K. Sogge
2000-01-01
An understanding of the basic demography of a species is necessary to estimate and evaluate population trends. The relative impact of different demographic parameters on growth rates can be assessed through a sensitivity analysis, in which different parameters are altered singly to assess the effect on population growth. Identification of critical parameters can allow...
ASCAL: A Microcomputer Program for Estimating Logistic IRT Item Parameters.
ERIC Educational Resources Information Center
Vale, C. David; Gialluca, Kathleen A.
ASCAL is a microcomputer-based program for calibrating items according to the three-parameter logistic model of item response theory. It uses a modified multivariate Newton-Raphson procedure for estimating item parameters. This study evaluated this procedure using Monte Carlo Simulation Techniques. The current version of ASCAL was then compared to…
NASA Astrophysics Data System (ADS)
Zhang, Hongjuan; Hendricks Franssen, Harrie-Jan; Han, Xujun; Vrugt, Jasper A.; Vereecken, Harry
2017-09-01
Land surface models (LSMs) use a large cohort of parameters and state variables to simulate the water and energy balance at the soil-atmosphere interface. Many of these model parameters cannot be measured directly in the field, and require calibration against measured fluxes of carbon dioxide, sensible and/or latent heat, and/or observations of the thermal and/or moisture state of the soil. Here, we evaluate the usefulness and applicability of four different data assimilation methods for joint parameter and state estimation of the Variable Infiltration Capacity Model (VIC-3L) and the Community Land Model (CLM) using a 5-month calibration (assimilation) period (March-July 2012) of areal-averaged SPADE soil moisture measurements at 5, 20, and 50 cm depths in the Rollesbroich experimental test site in the Eifel mountain range in western Germany. We used the EnKF with state augmentation or dual estimation, respectively, and the residual resampling PF with a simple, statistically deficient, or more sophisticated, MCMC-based parameter resampling method. The performance of the calibrated
LSM models was investigated using SPADE water content measurements of a 5-month evaluation period (August-December 2012). As expected, all DA methods enhance the ability of the VIC and CLM models to describe spatiotemporal patterns of moisture storage within the vadose zone of the Rollesbroich site, particularly if the maximum baseflow velocity (VIC) or fractions of sand, clay, and organic matter of each layer (CLM) are estimated jointly with the model states of each soil layer. The differences between the soil moisture simulations of VIC-3L and CLM are much larger than the discrepancies among the four data assimilation methods. The EnKF with state augmentation or dual estimation yields the best performance of VIC-3L and CLM during the calibration and evaluation period, yet results are in close agreement with the PF using MCMC resampling. Overall, CLM demonstrated the best performance for the Rollesbroich site. The large systematic underestimation of water storage at 50 cm depth by VIC-3L during the first few months of the evaluation period questions, in part, the validity of its fixed water table depth at the bottom of the modeled soil domain.
Modeling CO{sub 2} and H{sub 2}S solubility in MDEA and DEA: Design implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rochelle, G.T.; Posey, M.
1996-12-31
The solubility of H{sub 2}S and CO{sub 2} in aqueous alkanolamines affects solution capacity and the required circulation rate for acid gas absorption. These thermodynamics also determine the relationship of steam rate and the lean loading of the solution which in turn sets the leak of acid gas from the top of the absorber. Finally, the mechanisms of mass transfer and the role of kinetics, especially in stripping, depend on the vapor/liquid equilibria. Published measurements of CO{sub 2} and H{sub 2}S solubility in methyldiethanolamine (MDEA) and diethanolamine (DEA) are not in general agreement, especially at low loading of acid gas.more » The available sets of solubility data have been regressed with the AspenPlus electrolyte/NRTL model. All of the parameters and constants that make up this model have been carefully evaluated. Independent thermodynamic data such as freezing point and heat of mixing have been included in the regression to strengthen the estimates of model parameters. The parameters for each set of solubility data have been evaluated in an attempt to determine which set is correct. Each evaluated model has been used to calculate the acid gas capacity and minimum stripping steam rate for several industrial cases of acid gas absorption/stripping.« less
Simulations of Control Schemes for Inductively Coupled Plasma Sources
NASA Astrophysics Data System (ADS)
Ventzek, P. L. G.; Oda, A.; Shon, J. W.; Vitello, P.
1997-10-01
Process control issues are becoming increasingly important in plasma etching. Numerical experiments are an excellent test-bench for evaluating a proposed control system. Models are generally reliable enough to provide information about controller robustness, fitness of diagnostics. We will present results from a two dimensional plasma transport code with a multi-species plasma chemstry obtained from a global model. [1-2] We will show a correlation of external etch parameters (e.g. input power) with internal plasma parameters (e.g. species fluxes) which in turn are correlated with etch results (etch rate, uniformity, and selectivity) either by comparison to experiment or by using a phenomenological etch model. After process characterization, a control scheme can be evaluated since the relationship between the variable to be controlled (e.g. uniformity) is related to the measurable variable (e.g. a density) and external parameter (e.g. coil current). We will present an evaluation using the HBr-Cl2 system as an example. [1] E. Meeks and J. W. Shon, IEEE Trans. on Plasma Sci., 23, 539, 1995. [2] P. Vitello, et al., IEEE Trans. on Plasma Sci., 24, 123, 1996.
Kalra, Tarandeep S.; Aretxabaleta, Alfredo; Seshadri, Pranay; Ganju, Neil K.; Beudin, Alexis
2017-01-01
Coastal hydrodynamics can be greatly affected by the presence of submerged aquatic vegetation. The effect of vegetation has been incorporated into the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. The vegetation implementation includes the plant-induced three-dimensional drag, in-canopy wave-induced streaming, and the production of turbulent kinetic energy by the presence of vegetation. In this study, we evaluate the sensitivity of the flow and wave dynamics to vegetation parameters using Sobol' indices and a least squares polynomial approach referred to as Effective Quadratures method. This method reduces the number of simulations needed for evaluating Sobol' indices and provides a robust, practical, and efficient approach for the parameter sensitivity analysis. The evaluation of Sobol' indices shows that kinetic energy, turbulent kinetic energy, and water level changes are affected by plant density, height, and to a certain degree, diameter. Wave dissipation is mostly dependent on the variation in plant density. Performing sensitivity analyses for the vegetation module in COAWST provides guidance for future observational and modeling work to optimize efforts and reduce exploration of parameter space.
Liu, S.; Anderson, P.; Zhou, G.; Kauffman, B.; Hughes, F.; Schimel, D.; Watson, Vicente; Tosi, Joseph
2008-01-01
Objectively assessing the performance of a model and deriving model parameter values from observations are critical and challenging in landscape to regional modeling. In this paper, we applied a nonlinear inversion technique to calibrate the ecosystem model CENTURY against carbon (C) and nitrogen (N) stock measurements collected from 39 mature tropical forest sites in seven life zones in Costa Rica. Net primary productivity from the Moderate-Resolution Imaging Spectroradiometer (MODIS), C and N stocks in aboveground live biomass, litter, coarse woody debris (CWD), and in soils were used to calibrate the model. To investigate the resolution of available observations on the number of adjustable parameters, inversion was performed using nine setups of adjustable parameters. Statistics including observation sensitivity, parameter correlation coefficient, parameter sensitivity, and parameter confidence limits were used to evaluate the information content of observations, resolution of model parameters, and overall model performance. Results indicated that soil organic carbon content, soil nitrogen content, and total aboveground biomass carbon had the highest information contents, while measurements of carbon in litter and nitrogen in CWD contributed little to the parameter estimation processes. The available information could resolve the values of 2-4 parameters. Adjusting just one parameter resulted in under-fitting and unacceptable model performance, while adjusting five parameters simultaneously led to over-fitting. Results further indicated that the MODIS NPP values were compressed as compared with the spatial variability of net primary production (NPP) values inferred from inverse modeling. Using inverse modeling to infer NPP and other sensitive model parameters from C and N stock observations provides an opportunity to utilize data collected by national to regional forest inventory systems to reduce the uncertainties in the carbon cycle and generate valuable databases to validate and improve MODIS NPP algorithms.
NASA Astrophysics Data System (ADS)
Balthazar, Vincent; Vanacker, Veerle; Lambin, Eric F.
2012-08-01
A topographic correction of optical remote sensing data is necessary to improve the quality of quantitative forest cover change analyses in mountainous terrain. The implementation of semi-empirical correction methods requires the calibration of model parameters that are empirically defined. This study develops a method to improve the performance of topographic corrections for forest cover change detection in mountainous terrain through an iterative tuning method of model parameters based on a systematic evaluation of the performance of the correction. The latter was based on: (i) the general matching of reflectances between sunlit and shaded slopes and (ii) the occurrence of abnormal reflectance values, qualified as statistical outliers, in very low illuminated areas. The method was tested on Landsat ETM+ data for rough (Ecuadorian Andes) and very rough mountainous terrain (Bhutan Himalayas). Compared to a reference level (no topographic correction), the ATCOR3 semi-empirical correction method resulted in a considerable reduction of dissimilarities between reflectance values of forested sites in different topographic orientations. Our results indicate that optimal parameter combinations are depending on the site, sun elevation and azimuth and spectral conditions. We demonstrate that the results of relatively simple topographic correction methods can be greatly improved through a feedback loop between parameter tuning and evaluation of the performance of the correction model.
Huijbregts, Mark A J; Gilijamse, Wim; Ragas, Ad M J; Reijnders, Lucas
2003-06-01
The evaluation of uncertainty is relatively new in environmental life-cycle assessment (LCA). It provides useful information to assess the reliability of LCA-based decisions and to guide future research toward reducing uncertainty. Most uncertainty studies in LCA quantify only one type of uncertainty, i.e., uncertainty due to input data (parameter uncertainty). However, LCA outcomes can also be uncertain due to normative choices (scenario uncertainty) and the mathematical models involved (model uncertainty). The present paper outlines a new methodology that quantifies parameter, scenario, and model uncertainty simultaneously in environmental life-cycle assessment. The procedure is illustrated in a case study that compares two insulation options for a Dutch one-family dwelling. Parameter uncertainty was quantified by means of Monte Carlo simulation. Scenario and model uncertainty were quantified by resampling different decision scenarios and model formulations, respectively. Although scenario and model uncertainty were not quantified comprehensively, the results indicate that both types of uncertainty influence the case study outcomes. This stresses the importance of quantifying parameter, scenario, and model uncertainty simultaneously. The two insulation options studied were found to have significantly different impact scores for global warming, stratospheric ozone depletion, and eutrophication. The thickest insulation option has the lowest impact on global warming and eutrophication, and the highest impact on stratospheric ozone depletion.
Petersson, K J F; Friberg, L E; Karlsson, M O
2010-10-01
Computer models of biological systems grow more complex as computing power increase. Often these models are defined as differential equations and no analytical solutions exist. Numerical integration is used to approximate the solution; this can be computationally intensive, time consuming and be a large proportion of the total computer runtime. The performance of different integration methods depend on the mathematical properties of the differential equations system at hand. In this paper we investigate the possibility of runtime gains by calculating parts of or the whole differential equations system at given time intervals, outside of the differential equations solver. This approach was tested on nine models defined as differential equations with the goal to reduce runtime while maintaining model fit, based on the objective function value. The software used was NONMEM. In four models the computational runtime was successfully reduced (by 59-96%). The differences in parameter estimates, compared to using only the differential equations solver were less than 12% for all fixed effects parameters. For the variance parameters, estimates were within 10% for the majority of the parameters. Population and individual predictions were similar and the differences in OFV were between 1 and -14 units. When computational runtime seriously affects the usefulness of a model we suggest evaluating this approach for repetitive elements of model building and evaluation such as covariate inclusions or bootstraps.
Analysis of Brown camera distortion model
NASA Astrophysics Data System (ADS)
Nowakowski, Artur; Skarbek, Władysław
2013-10-01
Contemporary image acquisition devices introduce optical distortion into image. It results in pixel displacement and therefore needs to be compensated for many computer vision applications. The distortion is usually modeled by the Brown distortion model, which parameters can be included in camera calibration task. In this paper we describe original model, its dependencies and analyze orthogonality with regard to radius for its decentering distortion component. We also report experiments with camera calibration algorithm included in OpenCV library, especially a stability of distortion parameters estimation is evaluated.
NASA Astrophysics Data System (ADS)
Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Branch, Oliver; Attinger, Sabine; Thober, Stephan
2016-09-01
Land surface models incorporate a large number of process descriptions, containing a multitude of parameters. These parameters are typically read from tabulated input files. Some of these parameters might be fixed numbers in the computer code though, which hinder model agility during calibration. Here we identified 139 hard-coded parameters in the model code of the Noah land surface model with multiple process options (Noah-MP). We performed a Sobol' global sensitivity analysis of Noah-MP for a specific set of process options, which includes 42 out of the 71 standard parameters and 75 out of the 139 hard-coded parameters. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated at 12 catchments within the United States with very different hydrometeorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its applicable standard parameters (i.e., Sobol' indexes above 1%). The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for direct evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the calculation of hydrologic signatures of the runoff data. Latent heat and total runoff exhibit very similar sensitivities because of their tight coupling via the water balance. A calibration of Noah-MP against either of these fluxes should therefore give comparable results. Moreover, these fluxes are sensitive to both plant and soil parameters. Calibrating, for example, only soil parameters hence limit the ability to derive realistic model parameters. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.
NASA Astrophysics Data System (ADS)
Hejri, Mohammad; Mokhtari, Hossein; Azizian, Mohammad Reza; Söder, Lennart
2016-04-01
Parameter extraction of the five-parameter single-diode model of solar cells and modules from experimental data is a challenging problem. These parameters are evaluated from a set of nonlinear equations that cannot be solved analytically. On the other hand, a numerical solution of such equations needs a suitable initial guess to converge to a solution. This paper presents a new set of approximate analytical solutions for the parameters of a five-parameter single-diode model of photovoltaic (PV) cells and modules. The proposed solutions provide a good initial point which guarantees numerical analysis convergence. The proposed technique needs only a few data from the PV current-voltage characteristics, i.e. open circuit voltage Voc, short circuit current Isc and maximum power point current and voltage Im; Vm making it a fast and low cost parameter determination technique. The accuracy of the presented theoretical I-V curves is verified by experimental data.
Evaluation of the precipitation-runoff modeling system, Beaver Creek basin, Kentucky
Bower, D.E.
1985-01-01
The Precipitation Runoff Modeling System (PRMS) was evaluated with data from Cane branch and Helton Branch in the Beaver Creek basin of Kentucky. Because of previous studies, 10.6 years of record were available to establish a data base for the basin including 60 storms for Cane Branch and 50 storms for Helton Branch. The model was calibrated initially using data from the 1956-58 water years. Runoff predicted by the model was 94.7% of the observed runoff at Cane Branch (mined area) and 96.9% at Helton Branch (unmined area). After the model and data base were modified, the model was refitted to the 1956-58 data for Helton Branch. It then predicted 98.6% of the runoff for the 10.6-year period. The model parameters from Helton Branch were then used to simulate the Cane Branch runoff and discharge. The model predicted 102.6% of the observed runoff at Cane Branch for the 10.6 years. The simulations produced reasonable storm volumes and peak discharges. Sensitivity analysis of model parameters indicated the parameters associated with soil moisture are the most sensitive. The model was used to predict sediment concentration and daily sediment load for selected storm periods. The sediment computations indicated the model can be used to predict sediment concentrations during storm events. (USGS)
Taimouri, Vahid; Afacan, Onur; Perez-Rossello, Jeannette M.; Callahan, Michael J.; Mulkern, Robert V.; Warfield, Simon K.; Freiman, Moti
2015-01-01
Purpose: To evaluate the effect of the spatially constrained incoherent motion (SCIM) method on improving the precision and robustness of fast and slow diffusion parameter estimates from diffusion-weighted MRI in liver and spleen in comparison to the independent voxel-wise intravoxel incoherent motion (IVIM) model. Methods: We collected diffusion-weighted MRI (DW-MRI) data of 29 subjects (5 healthy subjects and 24 patients with Crohn’s disease in the ileum). We evaluated parameters estimates’ robustness against different combinations of b-values (i.e., 4 b-values and 7 b-values) by comparing the variance of the estimates obtained with the SCIM and the independent voxel-wise IVIM model. We also evaluated the improvement in the precision of parameter estimates by comparing the coefficient of variation (CV) of the SCIM parameter estimates to that of the IVIM. Results: The SCIM method was more robust compared to IVIM (up to 70% in liver and spleen) for different combinations of b-values. Also, the CV values of the parameter estimations using the SCIM method were significantly lower compared to repeated acquisition and signal averaging estimated using IVIM, especially for the fast diffusion parameter in liver (CVIV IM = 46.61 ± 11.22, CVSCIM = 16.85 ± 2.160, p < 0.001) and spleen (CVIV IM = 95.15 ± 19.82, CVSCIM = 52.55 ± 1.91, p < 0.001). Conclusions: The SCIM method characterizes fast and slow diffusion more precisely compared to the independent voxel-wise IVIM model fitting in the liver and spleen. PMID:25832079
ERIC Educational Resources Information Center
Wang, Wen-Chung; Huang, Sheng-Yun
2011-01-01
The one-parameter logistic model with ability-based guessing (1PL-AG) has been recently developed to account for effect of ability on guessing behavior in multiple-choice items. In this study, the authors developed algorithms for computerized classification testing under the 1PL-AG and conducted a series of simulations to evaluate their…
Sepehrinezhad, Alireza; Toufigh, Vahab
2018-05-25
Ultrasonic wave attenuation is an effective descriptor of distributed damage in inhomogeneous materials. Methods developed to measure wave attenuation have the potential to provide an in-site evaluation of existing concrete structures insofar as they are accurate and time-efficient. In this study, material classification and distributed damage evaluation were investigated based on the sinusoidal modeling of the response from the through-transmission ultrasonic tests on polymer concrete specimens. The response signal was modeled as single or the sum of damping sinusoids. Due to the inhomogeneous nature of concrete materials, model parameters may vary from one specimen to another. Therefore, these parameters are not known in advance and should be estimated while the response signal is being received. The modeling procedure used in this study involves a data-adaptive algorithm to estimate the parameters online. Data-adaptive algorithms are used due to a lack of knowledge of the model parameters. The damping factor was estimated as a descriptor of the distributed damage. The results were compared in two different cases as follows: (1) constant excitation frequency with varying concrete mixtures and (2) constant mixture with varying excitation frequencies. The specimens were also loaded up to their ultimate compressive strength to investigate the effect of distributed damage in the response signal. The results of the estimation indicated that the damping was highly sensitive to the change in material inhomogeneity, even in comparable mixtures. In addition to the proposed method, three methods were employed to compare the results based on their accuracy in the classification of materials and the evaluation of the distributed damage. It is shown that the estimated damping factor is not only sensitive to damage in the final stages of loading, but it is also applicable in evaluating micro damages in the earlier stages providing a reliable descriptor of damage. In addition, the modified amplitude ratio method is introduced as an improvement of the classical method. The proposed methods were validated to be effective descriptors of distributed damage. The presented models were also in good agreement with the experimental data. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.
2018-01-01
Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection
Evaluation of gamma dose effect on PIN photodiode using analytical model
NASA Astrophysics Data System (ADS)
Jafari, H.; Feghhi, S. A. H.; Boorboor, S.
2018-03-01
The PIN silicon photodiodes are widely used in the applications which may be found in radiation environment such as space mission, medical imaging and non-destructive testing. Radiation-induced damage in these devices causes to degrade the photodiode parameters. In this work, we have used new approach to evaluate gamma dose effects on a commercial PIN photodiode (BPX65) based on an analytical model. In this approach, the NIEL parameter has been calculated for gamma rays from a 60Co source by GEANT4. The radiation damage mechanisms have been considered by solving numerically the Poisson and continuity equations with the appropriate boundary conditions, parameters and physical models. Defects caused by radiation in silicon have been formulated in terms of the damage coefficient for the minority carriers' lifetime. The gamma induced degradation parameters of the silicon PIN photodiode have been analyzed in detail and the results were compared with experimental measurements and as well as the results of ATLAS semiconductor simulator to verify and parameterize the analytical model calculations. The results showed reasonable agreement between them for BPX65 silicon photodiode irradiated by 60Co gamma source at total doses up to 5 kGy under different reverse voltages.
A Bayesian approach for parameter estimation and prediction using a computationally intensive model
Higdon, Dave; McDonnell, Jordan D.; Schunck, Nicolas; ...
2015-02-05
Bayesian methods have been successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based modelmore » $$\\eta (\\theta )$$, where θ denotes the uncertain, best input setting. Hence the statistical model is of the form $$y=\\eta (\\theta )+\\epsilon ,$$ where $$\\epsilon $$ accounts for measurement, and possibly other, error sources. When nonlinearity is present in $$\\eta (\\cdot )$$, the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and nonstandard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. Although generally applicable, MCMC requires thousands (or even millions) of evaluations of the physics model $$\\eta (\\cdot )$$. This requirement is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory model, using experimental mass/binding energy measurements from a collection of atomic nuclei. Lastly, we also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory.« less
An improved state-parameter analysis of ecosystem models using data assimilation
Chen, M.; Liu, S.; Tieszen, L.L.; Hollinger, D.Y.
2008-01-01
Much of the effort spent in developing data assimilation methods for carbon dynamics analysis has focused on estimating optimal values for either model parameters or state variables. The main weakness of estimating parameter values alone (i.e., without considering state variables) is that all errors from input, output, and model structure are attributed to model parameter uncertainties. On the other hand, the accuracy of estimating state variables may be lowered if the temporal evolution of parameter values is not incorporated. This research develops a smoothed ensemble Kalman filter (SEnKF) by combining ensemble Kalman filter with kernel smoothing technique. SEnKF has following characteristics: (1) to estimate simultaneously the model states and parameters through concatenating unknown parameters and state variables into a joint state vector; (2) to mitigate dramatic, sudden changes of parameter values in parameter sampling and parameter evolution process, and control narrowing of parameter variance which results in filter divergence through adjusting smoothing factor in kernel smoothing algorithm; (3) to assimilate recursively data into the model and thus detect possible time variation of parameters; and (4) to address properly various sources of uncertainties stemming from input, output and parameter uncertainties. The SEnKF is tested by assimilating observed fluxes of carbon dioxide and environmental driving factor data from an AmeriFlux forest station located near Howland, Maine, USA, into a partition eddy flux model. Our analysis demonstrates that model parameters, such as light use efficiency, respiration coefficients, minimum and optimum temperatures for photosynthetic activity, and others, are highly constrained by eddy flux data at daily-to-seasonal time scales. The SEnKF stabilizes parameter values quickly regardless of the initial values of the parameters. Potential ecosystem light use efficiency demonstrates a strong seasonality. Results show that the simultaneous parameter estimation procedure significantly improves model predictions. Results also show that the SEnKF can dramatically reduce the variance in state variables stemming from the uncertainty of parameters and driving variables. The SEnKF is a robust and effective algorithm in evaluating and developing ecosystem models and in improving the understanding and quantification of carbon cycle parameters and processes. ?? 2008 Elsevier B.V.
Hill, Mary C.; Banta, E.R.; Harbaugh, A.W.; Anderman, E.R.
2000-01-01
This report documents the Observation, Sensitivity, and Parameter-Estimation Processes of the ground-water modeling computer program MODFLOW-2000. The Observation Process generates model-calculated values for comparison with measured, or observed, quantities. A variety of statistics is calculated to quantify this comparison, including a weighted least-squares objective function. In addition, a number of files are produced that can be used to compare the values graphically. The Sensitivity Process calculates the sensitivity of hydraulic heads throughout the model with respect to specified parameters using the accurate sensitivity-equation method. These are called grid sensitivities. If the Observation Process is active, it uses the grid sensitivities to calculate sensitivities for the simulated values associated with the observations. These are called observation sensitivities. Observation sensitivities are used to calculate a number of statistics that can be used (1) to diagnose inadequate data, (2) to identify parameters that probably cannot be estimated by regression using the available observations, and (3) to evaluate the utility of proposed new data. The Parameter-Estimation Process uses a modified Gauss-Newton method to adjust values of user-selected input parameters in an iterative procedure to minimize the value of the weighted least-squares objective function. Statistics produced by the Parameter-Estimation Process can be used to evaluate estimated parameter values; statistics produced by the Observation Process and post-processing program RESAN-2000 can be used to evaluate how accurately the model represents the actual processes; statistics produced by post-processing program YCINT-2000 can be used to quantify the uncertainty of model simulated values. Parameters are defined in the Ground-Water Flow Process input files and can be used to calculate most model inputs, such as: for explicitly defined model layers, horizontal hydraulic conductivity, horizontal anisotropy, vertical hydraulic conductivity or vertical anisotropy, specific storage, and specific yield; and, for implicitly represented layers, vertical hydraulic conductivity. In addition, parameters can be defined to calculate the hydraulic conductance of the River, General-Head Boundary, and Drain Packages; areal recharge rates of the Recharge Package; maximum evapotranspiration of the Evapotranspiration Package; pumpage or the rate of flow at defined-flux boundaries of the Well Package; and the hydraulic head at constant-head boundaries. The spatial variation of model inputs produced using defined parameters is very flexible, including interpolated distributions that require the summation of contributions from different parameters. Observations can include measured hydraulic heads or temporal changes in hydraulic heads, measured gains and losses along head-dependent boundaries (such as streams), flows through constant-head boundaries, and advective transport through the system, which generally would be inferred from measured concentrations. MODFLOW-2000 is intended for use on any computer operating system. The program consists of algorithms programmed in Fortran 90, which efficiently performs numerical calculations and is fully compatible with the newer Fortran 95. The code is easily modified to be compatible with FORTRAN 77. Coordination for multiple processors is accommodated using Message Passing Interface (MPI) commands. The program is designed in a modular fashion that is intended to support inclusion of new capabilities.
The Impact of Parametric Uncertainties on Biogeochemistry in the E3SM Land Model
NASA Astrophysics Data System (ADS)
Ricciuto, Daniel; Sargsyan, Khachik; Thornton, Peter
2018-02-01
We conduct a global sensitivity analysis (GSA) of the Energy Exascale Earth System Model (E3SM), land model (ELM) to calculate the sensitivity of five key carbon cycle outputs to 68 model parameters. This GSA is conducted by first constructing a Polynomial Chaos (PC) surrogate via new Weighted Iterative Bayesian Compressive Sensing (WIBCS) algorithm for adaptive basis growth leading to a sparse, high-dimensional PC surrogate with 3,000 model evaluations. The PC surrogate allows efficient extraction of GSA information leading to further dimensionality reduction. The GSA is performed at 96 FLUXNET sites covering multiple plant functional types (PFTs) and climate conditions. About 20 of the model parameters are identified as sensitive with the rest being relatively insensitive across all outputs and PFTs. These sensitivities are dependent on PFT, and are relatively consistent among sites within the same PFT. The five model outputs have a majority of their highly sensitive parameters in common. A common subset of sensitive parameters is also shared among PFTs, but some parameters are specific to certain types (e.g., deciduous phenology). The relative importance of these parameters shifts significantly among PFTs and with climatic variables such as mean annual temperature.
Milly, P.C.D.; Shmakin, A.B.
2002-01-01
Land water and energy balances vary around the globe because of variations in amount and temporal distribution of water and energy supplies and because of variations in land characteristics. The former control (water and energy supplies) explains much more variance in water and energy balances than the latter (land characteristics). A largely untested hypothesis underlying most global models of land water and energy balance is the assumption that parameter values based on estimated geographic distributions of soil and vegetation characteristics improve the performance of the models relative to the use of globally constant land parameters. This hypothesis is tested here through an evaluation of the improvement in performance of one land model associated with the introduction of geographic information on land characteristics. The capability of the model to reproduce annual runoff ratios of large river basins, with and without information on the global distribution of albedo, rooting depth, and stomatal resistance, is assessed. To allow a fair comparison, the model is calibrated in both cases by adjusting globally constant scale factors for snow-free albedo, non-water-stressed bulk stomatal resistance, and critical root density (which is used to determine effective root-zone depth). The test is made in stand-alone mode, that is, using prescribed radiative and atmospheric forcing. Model performance is evaluated by comparing modeled runoff ratios with observed runoff ratios for a set of basins where precipitation biases have been shown to be minimal. The withholding of information on global variations in these parameters leads to a significant degradation of the capability of the model to simulate the annual runoff ratio. An additional set of optimization experiments, in which the parameters are examined individually, reveals that the stomatal resistance is, by far, the parameter among these three whose spatial variations add the most predictive power to the model in stand-alone mode. Further single-parameter experiments with surface roughness length, available water capacity, thermal conductivity, and thermal diffusivity show very little sensitivity to estimated global variations in these parameters. Finally, it is found that even the constant-parameter model performance exceeds that of the Budyko and generalized Turc-Pike water-balance equations, suggesting that the model benefits also from information on the geographic variability of the temporal structure of forcing.
The Rangeland Hydrology and Erosion Model: A Dynamic Approach for Predicting Soil Loss on Rangelands
NASA Astrophysics Data System (ADS)
Hernandez, Mariano; Nearing, Mark A.; Al-Hamdan, Osama Z.; Pierson, Frederick B.; Armendariz, Gerardo; Weltz, Mark A.; Spaeth, Kenneth E.; Williams, C. Jason; Nouwakpo, Sayjro K.; Goodrich, David C.; Unkrich, Carl L.; Nichols, Mary H.; Holifield Collins, Chandra D.
2017-11-01
In this study, we present the improved Rangeland Hydrology and Erosion Model (RHEM V2.3), a process-based erosion prediction tool specific for rangeland application. The article provides the mathematical formulation of the model and parameter estimation equations. Model performance is assessed against data collected from 23 runoff and sediment events in a shrub-dominated semiarid watershed in Arizona, USA. To evaluate the model, two sets of primary model parameters were determined using the RHEM V2.3 and RHEM V1.0 parameter estimation equations. Testing of the parameters indicated that RHEM V2.3 parameter estimation equations provided a 76% improvement over RHEM V1.0 parameter estimation equations. Second, the RHEM V2.3 model was calibrated to measurements from the watershed. The parameters estimated by the new equations were within the lowest and highest values of the calibrated parameter set. These results suggest that the new parameter estimation equations can be applied for this environment to predict sediment yield at the hillslope scale. Furthermore, we also applied the RHEM V2.3 to demonstrate the response of the model as a function of foliar cover and ground cover for 124 data points across Arizona and New Mexico. The dependence of average sediment yield on surface ground cover was moderately stronger than that on foliar cover. These results demonstrate that RHEM V2.3 predicts runoff volume, peak runoff, and sediment yield with sufficient accuracy for broad application to assess and manage rangeland systems.
Determining fundamental properties of matter created in ultrarelativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Novak, J.; Novak, K.; Pratt, S.; Vredevoogd, J.; Coleman-Smith, C. E.; Wolpert, R. L.
2014-03-01
Posterior distributions for physical parameters describing relativistic heavy-ion collisions, such as the viscosity of the quark-gluon plasma, are extracted through a comparison of hydrodynamic-based transport models to experimental results from 100AGeV+100AGeV Au +Au collisions at the Relativistic Heavy Ion Collider. By simultaneously varying six parameters and by evaluating several classes of observables, we are able to explore the complex intertwined dependencies of observables on model parameters. The methods provide a full multidimensional posterior distribution for the model output, including a range of acceptable values for each parameter, and reveal correlations between them. The breadth of observables and the number of parameters considered here go beyond previous studies in this field. The statistical tools, which are based upon Gaussian process emulators, are tested in detail and should be extendable to larger data sets and a higher number of parameters.
NASA Astrophysics Data System (ADS)
Yang, Guijun; Yang, Hao; Jin, Xiuliang; Pignatti, Stefano; Casa, Faffaele; Silverstro, Paolo Cosmo
2016-08-01
Drought is the most costly natural disasters in China and all over the world. It is very important to evaluate the drought-induced crop yield losses and further improve water use efficiency at regional scale. Firstly, crop biomass was estimated by the combined use of Synthetic Aperture Radar (SAR) and optical remote sensing data. Then the estimated biophysical variable was assimilated into crop growth model (FAO AquaCrop) by the Particle Swarm Optimization (PSO) method from farmland scale to regional scale.At farmland scale, the most important crop parameters of AquaCrop model were determined to reduce the used parameters in assimilation procedure. The Extended Fourier Amplitude Sensitivity Test (EFAST) method was used for assessing the contribution of different crop parameters to model output. Moreover, the AquaCrop model was calibrated using the experiment data in Xiaotangshan, Beijing.At regional scale, spatial application of our methods were carried out and validated in the rural area of Yangling, Shaanxi Province, in 2014. This study will provide guideline to make irrigation decision of balancing of water consumption and yield loss.
NASA Astrophysics Data System (ADS)
Morandage, Shehan; Schnepf, Andrea; Vanderborght, Jan; Javaux, Mathieu; Leitner, Daniel; Laloy, Eric; Vereecken, Harry
2017-04-01
Root traits are increasingly important in breading of new crop varieties. E.g., longer and fewer lateral roots are suggested to improve drought resistance of wheat. Thus, detailed root architectural parameters are important. However, classical field sampling of roots only provides more aggregated information such as root length density (coring), root counts per area (trenches) or root arrival curves at certain depths (rhizotubes). We investigate the possibility of obtaining the information about root system architecture of plants using field based classical root sampling schemes, based on sensitivity analysis and inverse parameter estimation. This methodology was developed based on a virtual experiment where a root architectural model was used to simulate root system development in a field, parameterized for winter wheat. This information provided the ground truth which is normally unknown in a real field experiment. The three sampling schemes coring, trenching, and rhizotubes where virtually applied to and aggregated information computed. Morris OAT global sensitivity analysis method was then performed to determine the most sensitive parameters of root architecture model for the three different sampling methods. The estimated means and the standard deviation of elementary effects of a total number of 37 parameters were evaluated. Upper and lower bounds of the parameters were obtained based on literature and published data of winter wheat root architectural parameters. Root length density profiles of coring, arrival curve characteristics observed in rhizotubes, and root counts in grids of trench profile method were evaluated statistically to investigate the influence of each parameter using five different error functions. Number of branches, insertion angle inter-nodal distance, and elongation rates are the most sensitive parameters and the parameter sensitivity varies slightly with the depth. Most parameters and their interaction with the other parameters show highly nonlinear effect to the model output. The most sensitive parameters will be subject to inverse estimation from the virtual field sampling data using DREAMzs algorithm. The estimated parameters can then be compared with the ground truth in order to determine the suitability of the sampling schemes to identify specific traits or parameters of the root growth model.
Validation and upgrading of physically based mathematical models
NASA Technical Reports Server (NTRS)
Duval, Ronald
1992-01-01
The validation of the results of physically-based mathematical models against experimental results was discussed. Systematic techniques are used for: (1) isolating subsets of the simulator mathematical model and comparing the response of each subset to its experimental response for the same input conditions; (2) evaluating the response error to determine whether it is the result of incorrect parameter values, incorrect structure of the model subset, or unmodeled external effects of cross coupling; and (3) modifying and upgrading the model and its parameter values to determine the most physically appropriate combination of changes.
NASA Astrophysics Data System (ADS)
Hancock, G. R.; Webb, A. A.; Turner, L.
2017-11-01
Sediment transport and soil erosion can be determined by a variety of field and modelling approaches. Computer based soil erosion and landscape evolution models (LEMs) offer the potential to be reliable assessment and prediction tools. An advantage of such models is that they provide both erosion and deposition patterns as well as total catchment sediment output. However, before use, like all models they require calibration and validation. In recent years LEMs have been used for a variety of both natural and disturbed landscape assessment. However, these models have not been evaluated for their reliability in steep forested catchments. Here, the SIBERIA LEM is calibrated and evaluated for its reliability for two steep forested catchments in south-eastern Australia. The model is independently calibrated using two methods. Firstly, hydrology and sediment transport parameters are inferred from catchment geomorphology and soil properties and secondly from catchment sediment transport and discharge data. The results demonstrate that both calibration methods provide similar parameters and reliable modelled sediment transport output. A sensitivity study of the input parameters demonstrates the model's sensitivity to correct parameterisation and also how the model could be used to assess potential timber harvesting as well as the removal of vegetation by fire.
NASA Astrophysics Data System (ADS)
Li, Ning; McLaughlin, Dennis; Kinzelbach, Wolfgang; Li, WenPeng; Dong, XinGuang
2015-10-01
Model uncertainty needs to be quantified to provide objective assessments of the reliability of model predictions and of the risk associated with management decisions that rely on these predictions. This is particularly true in water resource studies that depend on model-based assessments of alternative management strategies. In recent decades, Bayesian data assimilation methods have been widely used in hydrology to assess uncertain model parameters and predictions. In this case study, a particular data assimilation algorithm, the Ensemble Smoother with Multiple Data Assimilation (ESMDA) (Emerick and Reynolds, 2012), is used to derive posterior samples of uncertain model parameters and forecasts for a distributed hydrological model of Yanqi basin, China. This model is constructed using MIKESHE/MIKE11software, which provides for coupling between surface and subsurface processes (DHI, 2011a-d). The random samples in the posterior parameter ensemble are obtained by using measurements to update 50 prior parameter samples generated with a Latin Hypercube Sampling (LHS) procedure. The posterior forecast samples are obtained from model runs that use the corresponding posterior parameter samples. Two iterative sample update methods are considered: one based on an a perturbed observation Kalman filter update and one based on a square root Kalman filter update. These alternatives give nearly the same results and converge in only two iterations. The uncertain parameters considered include hydraulic conductivities, drainage and river leakage factors, van Genuchten soil property parameters, and dispersion coefficients. The results show that the uncertainty in many of the parameters is reduced during the smoother updating process, reflecting information obtained from the observations. Some of the parameters are insensitive and do not benefit from measurement information. The correlation coefficients among certain parameters increase in each iteration, although they generally stay below 0.50.
Li, Wei Bo; Greiter, Matthias; Oeh, Uwe; Hoeschen, Christoph
2011-12-01
The reliability of biokinetic models is essential in internal dose assessments and radiation risk analysis for the public, occupational workers, and patients exposed to radionuclides. In this paper, a method for assessing the reliability of biokinetic models by means of uncertainty and sensitivity analysis was developed. The paper is divided into two parts. In the first part of the study published here, the uncertainty sources of the model parameters for zirconium (Zr), developed by the International Commission on Radiological Protection (ICRP), were identified and analyzed. Furthermore, the uncertainty of the biokinetic experimental measurement performed at the Helmholtz Zentrum München-German Research Center for Environmental Health (HMGU) for developing a new biokinetic model of Zr was analyzed according to the Guide to the Expression of Uncertainty in Measurement, published by the International Organization for Standardization. The confidence interval and distribution of model parameters of the ICRP and HMGU Zr biokinetic models were evaluated. As a result of computer biokinetic modelings, the mean, standard uncertainty, and confidence interval of model prediction calculated based on the model parameter uncertainty were presented and compared to the plasma clearance and urinary excretion measured after intravenous administration. It was shown that for the most important compartment, the plasma, the uncertainty evaluated for the HMGU model was much smaller than that for the ICRP model; that phenomenon was observed for other organs and tissues as well. The uncertainty of the integral of the radioactivity of Zr up to 50 y calculated by the HMGU model after ingestion by adult members of the public was shown to be smaller by a factor of two than that of the ICRP model. It was also shown that the distribution type of the model parameter strongly influences the model prediction, and the correlation of the model input parameters affects the model prediction to a certain extent depending on the strength of the correlation. In the case of model prediction, the qualitative comparison of the model predictions with the measured plasma and urinary data showed the HMGU model to be more reliable than the ICRP model; quantitatively, the uncertainty model prediction by the HMGU systemic biokinetic model is smaller than that of the ICRP model. The uncertainty information on the model parameters analyzed in this study was used in the second part of the paper regarding a sensitivity analysis of the Zr biokinetic models.
Model-based estimation for dynamic cardiac studies using ECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiao, P.C.; Rogers, W.L.; Clinthorne, N.H.
1994-06-01
In this paper, the authors develop a strategy for joint estimation of physiological parameters and myocardial boundaries using ECT (Emission Computed Tomography). The authors construct an observation model to relate parameters of interest to the projection data and to account for limited ECT system resolution and measurement noise. The authors then use a maximum likelihood (ML) estimator to jointly estimate all the parameters directly from the projection data without reconstruction of intermediate images. The authors also simulate myocardial perfusion studies based on a simplified heart model to evaluate the performance of the model-based joint ML estimator and compare this performancemore » to the Cramer-Rao lower bound. Finally, model assumptions and potential uses of the joint estimation strategy are discussed.« less
Naghibi Beidokhti, Hamid; Janssen, Dennis; van de Groes, Sebastiaan; Hazrati, Javad; Van den Boogaard, Ton; Verdonschot, Nico
2017-12-08
In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models. Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysis of the Impact of Realistic Wind Size Parameter on the Delft3D Model
NASA Astrophysics Data System (ADS)
Washington, M. H.; Kumar, S.
2017-12-01
The wind size parameter, which is the distance from the center of the storm to the location of the maximum winds, is currently a constant in the Delft3D model. As a result, the Delft3D model's output prediction of the water levels during a storm surge are inaccurate compared to the observed data. To address these issues, an algorithm to calculate a realistic wind size parameter for a given hurricane was designed and implemented using the observed water-level data for Hurricane Matthew. A performance evaluation experiment was conducted to demonstrate the accuracy of the model's prediction of water levels using the realistic wind size input parameter compared to the default constant wind size parameter for Hurricane Matthew, with the water level data observed from October 4th, 2016 to October 9th, 2016 from National Oceanic and Atmospheric Administration (NOAA) as a baseline. The experimental results demonstrate that the Delft3D water level output for the realistic wind size parameter, compared to the default constant size parameter, matches more accurately with the NOAA reference water level data.
Quasar microlensing models with constraints on the Quasar light curves
NASA Astrophysics Data System (ADS)
Tie, S. S.; Kochanek, C. S.
2018-01-01
Quasar microlensing analyses implicitly generate a model of the variability of the source quasar. The implied source variability may be unrealistic yet its likelihood is generally not evaluated. We used the damped random walk (DRW) model for quasar variability to evaluate the likelihood of the source variability and applied the revized algorithm to a microlensing analysis of the lensed quasar RX J1131-1231. We compared estimates of the size of the quasar disc and the average stellar mass of the lens galaxy with and without applying the DRW likelihoods for the source variability model and found no significant effect on the estimated physical parameters. The most likely explanation is that unreliastic source light-curve models are generally associated with poor microlensing fits that already make a negligible contribution to the probability distributions of the derived parameters.
An efficient soil water balance model based on hybrid numerical and statistical methods
NASA Astrophysics Data System (ADS)
Mao, Wei; Yang, Jinzhong; Zhu, Yan; Ye, Ming; Liu, Zhao; Wu, Jingwei
2018-04-01
Most soil water balance models only consider downward soil water movement driven by gravitational potential, and thus cannot simulate upward soil water movement driven by evapotranspiration especially in agricultural areas. In addition, the models cannot be used for simulating soil water movement in heterogeneous soils, and usually require many empirical parameters. To resolve these problems, this study derives a new one-dimensional water balance model for simulating both downward and upward soil water movement in heterogeneous unsaturated zones. The new model is based on a hybrid of numerical and statistical methods, and only requires four physical parameters. The model uses three governing equations to consider three terms that impact soil water movement, including the advective term driven by gravitational potential, the source/sink term driven by external forces (e.g., evapotranspiration), and the diffusive term driven by matric potential. The three governing equations are solved separately by using the hybrid numerical and statistical methods (e.g., linear regression method) that consider soil heterogeneity. The four soil hydraulic parameters required by the new models are as follows: saturated hydraulic conductivity, saturated water content, field capacity, and residual water content. The strength and weakness of the new model are evaluated by using two published studies, three hypothetical examples and a real-world application. The evaluation is performed by comparing the simulation results of the new model with corresponding results presented in the published studies, obtained using HYDRUS-1D and observation data. The evaluation indicates that the new model is accurate and efficient for simulating upward soil water flow in heterogeneous soils with complex boundary conditions. The new model is used for evaluating different drainage functions, and the square drainage function and the power drainage function are recommended. Computational efficiency of the new model makes it particularly suitable for large-scale simulation of soil water movement, because the new model can be used with coarse discretization in space and time.
NASA Astrophysics Data System (ADS)
Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby
2013-12-01
This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.
Zimmer, Christoph
2016-01-01
Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models.
Model verification of mixed dynamic systems. [POGO problem in liquid propellant rockets
NASA Technical Reports Server (NTRS)
Chrostowski, J. D.; Evensen, D. A.; Hasselman, T. K.
1978-01-01
A parameter-estimation method is described for verifying the mathematical model of mixed (combined interactive components from various engineering fields) dynamic systems against pertinent experimental data. The model verification problem is divided into two separate parts: defining a proper model and evaluating the parameters of that model. The main idea is to use differences between measured and predicted behavior (response) to adjust automatically the key parameters of a model so as to minimize response differences. To achieve the goal of modeling flexibility, the method combines the convenience of automated matrix generation with the generality of direct matrix input. The equations of motion are treated in first-order form, allowing for nonsymmetric matrices, modeling of general networks, and complex-mode analysis. The effectiveness of the method is demonstrated for an example problem involving a complex hydraulic-mechanical system.
NASA Astrophysics Data System (ADS)
Thober, S.; Cuntz, M.; Mai, J.; Samaniego, L. E.; Clark, M. P.; Branch, O.; Wulfmeyer, V.; Attinger, S.
2016-12-01
Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The agility of the models to react to different meteorological conditions is artificially constrained by having hard-coded parameters in their equations. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options in addition to the 71 standard parameters. We performed a Sobol' global sensitivity analysis to variations of the standard and hard-coded parameters. The sensitivities of the hydrologic output fluxes latent heat and total runoff, their component fluxes, as well as photosynthesis and sensible heat were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Latent heat and total runoff show very similar sensitivities towards standard and hard-coded parameters. They are sensitive to both soil and plant parameters, which means that model calibrations of hydrologic or land surface models should take both soil and plant parameters into account. Sensible and latent heat exhibit almost the same sensitivities so that calibration or sensitivity analysis can be performed with either of the two. Photosynthesis has almost the same sensitivities as transpiration, which are different from the sensitivities of latent heat. Including photosynthesis and latent heat in model calibration might therefore be beneficial. Surface runoff is sensitive to almost all hard-coded snow parameters. These sensitivities get, however, diminished in total runoff. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.
Chow, Steven Kwok Keung; Yeung, David Ka Wai; Ahuja, Anil T; King, Ann D
2012-01-01
Purpose To quantitatively evaluate the kinetic parameter estimation for head and neck (HN) dynamic contrast-enhanced (DCE) MRI with dual-flip-angle (DFA) T1 mapping. Materials and methods Clinical DCE-MRI datasets of 23 patients with HN tumors were included in this study. T1 maps were generated based on multiple-flip-angle (MFA) method and different DFA combinations. Tofts model parameter maps of kep, Ktrans and vp based on MFA and DFAs were calculated and compared. Fitted parameter by MFA and DFAs were quantitatively evaluated in primary tumor, salivary gland and muscle. Results T1 mapping deviations by DFAs produced remarkable kinetic parameter estimation deviations in head and neck tissues. In particular, the DFA of [2º, 7º] overestimated, while [7º, 12º] and [7º, 15º] underestimated Ktrans and vp, significantly (P<0.01). [2º, 15º] achieved the smallest but still statistically significant overestimation for Ktrans and vp in primary tumors, 32.1% and 16.2% respectively. kep fitting results by DFAs were relatively close to the MFA reference compared to Ktrans and vp. Conclusions T1 deviations induced by DFA could result in significant errors in kinetic parameter estimation, particularly Ktrans and vp, through Tofts model fitting. MFA method should be more reliable and robust for accurate quantitative pharmacokinetic analysis in head and neck. PMID:23289084
NASA Astrophysics Data System (ADS)
O'Shaughnessy, Richard; Blackman, Jonathan; Field, Scott E.
2017-07-01
The recent direct observation of gravitational waves has further emphasized the desire for fast, low-cost, and accurate methods to infer the parameters of gravitational wave sources. Due to expense in waveform generation and data handling, the cost of evaluating the likelihood function limits the computational performance of these calculations. Building on recently developed surrogate models and a novel parameter estimation pipeline, we show how to quickly generate the likelihood function as an analytic, closed-form expression. Using a straightforward variant of a production-scale parameter estimation code, we demonstrate our method using surrogate models of effective-one-body and numerical relativity waveforms. Our study is the first time these models have been used for parameter estimation and one of the first ever parameter estimation calculations with multi-modal numerical relativity waveforms, which include all \\ell ≤slant 4 modes. Our grid-free method enables rapid parameter estimation for any waveform with a suitable reduced-order model. The methods described in this paper may also find use in other data analysis studies, such as vetting coincident events or the computation of the coalescing-compact-binary detection statistic.
Techniques for evaluating optimum data center operation
Hamann, Hendrik F.; Rodriguez, Sergio Adolfo Bermudez; Wehle, Hans-Dieter
2017-06-14
Techniques for modeling a data center are provided. In one aspect, a method for determining data center efficiency is provided. The method includes the following steps. Target parameters for the data center are obtained. Technology pre-requisite parameters for the data center are obtained. An optimum data center efficiency is determined given the target parameters for the data center and the technology pre-requisite parameters for the data center.
GROWTH AND INEQUALITY: MODEL EVALUATION BASED ON AN ESTIMATION-CALIBRATION STRATEGY
Jeong, Hyeok; Townsend, Robert
2010-01-01
This paper evaluates two well-known models of growth with inequality that have explicit micro underpinnings related to household choice. With incomplete markets or transactions costs, wealth can constrain investment in business and the choice of occupation and also constrain the timing of entry into the formal financial sector. Using the Thai Socio-Economic Survey (SES), we estimate the distribution of wealth and the key parameters that best fit cross-sectional data on household choices and wealth. We then simulate the model economies for two decades at the estimated initial wealth distribution and analyze whether the model economies at those micro-fit parameter estimates can explain the observed macro and sectoral aspects of income growth and inequality change. Both models capture important features of Thai reality. Anomalies and comparisons across the two distinct models yield specific suggestions for improved research on the micro foundations of growth and inequality. PMID:20448833
Modelling and tuning for a time-delayed vibration absorber with friction
NASA Astrophysics Data System (ADS)
Zhang, Xiaoxu; Xu, Jian; Ji, Jinchen
2018-06-01
This paper presents an integrated analytical and experimental study to the modelling and tuning of a time-delayed vibration absorber (TDVA) with friction. In system modelling, this paper firstly applies the method of averaging to obtain the frequency response function (FRF), and then uses the derived FRF to evaluate the fitness of different friction models. After the determination of the system model, this paper employs the obtained FRF to evaluate the vibration absorption performance with respect to tunable parameters. A significant feature of the TDVA with friction is that its stability is dependent on the excitation parameters. To ensure the stability of the time-delayed control, this paper defines a sufficient condition for stability estimation. Experimental measurements show that the dynamic response of the TDVA with friction can be accurately predicted and the time-delayed control can be precisely achieved by using the modelling and tuning technique provided in this paper.
Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Fredriksson, Ingemar; Larsson, Marcus; Strömberg, Tomas
2012-04-01
Model based data analysis of diffuse reflectance spectroscopy data enables the estimation of optical and structural tissue parameters. The aim of this study was to present an inverse Monte Carlo method based on spectra from two source-detector distances (0.4 and 1.2 mm), using a multilayered tissue model. The tissue model variables include geometrical properties, light scattering properties, tissue chromophores such as melanin and hemoglobin, oxygen saturation and average vessel diameter. The method utilizes a small set of presimulated Monte Carlo data for combinations of different levels of epidermal thickness and tissue scattering. The path length distributions in the different layers are stored and the effect of the other parameters is added in the post-processing. The accuracy of the method was evaluated using Monte Carlo simulations of tissue-like models containing discrete blood vessels, evaluating blood tissue fraction and oxygenation. It was also compared to a homogeneous model. The multilayer model performed better than the homogeneous model and all tissue parameters significantly improved spectral fitting. Recorded in vivo spectra were fitted well at both distances, which we previously found was not possible with a homogeneous model. No absolute intensity calibration is needed and the algorithm is fast enough for real-time processing.
Deter, Russell L.; Lee, Wesley; Yeo, Lami; Romero, Roberto
2012-01-01
Objectives To characterize 2nd and 3rd trimester fetal growth using Individualized Growth Assessment in a large cohort of fetuses with normal growth outcomes. Methods A prospective longitudinal study of 119 pregnancies was carried out from 18 weeks, MA, to delivery. Measurements of eleven fetal growth parameters were obtained from 3D scans at 3–4 week intervals. Regression analyses were used to determine Start Points [SP] and Rossavik model [P = c (t) k + st] coefficients c, k and s for each parameter in each fetus. Second trimester growth model specification functions were re-established. These functions were used to generate individual growth models and determine predicted s and s-residual [s = pred s + s-resid] values. Actual measurements were compared to predicted growth trajectories obtained from the growth models and Percent Deviations [% Dev = {{actual − predicted}/predicted} × 100] calculated. Age-specific reference standards for this statistic were defined using 2-level statistical modeling for the nine directly measured parameters and estimated weight. Results Rossavik models fit the data for all parameters very well [R2: 99%], with SP’s and k values similar to those found in a much smaller cohort. The c values were strongly related to the 2nd trimester slope [R2: 97%] as was predicted s to estimated c [R2: 95%]. The latter was negative for skeletal parameters and positive for soft tissue parameters. The s-residuals were unrelated to estimated c’s [R2: 0%], and had mean values of zero. Rossavik models predicted 3rd trimester growth with systematic errors close to 0% and random errors [95% range] of 5.7 – 10.9% and 20.0 – 24.3% for one and three dimensional parameters, respectively. Moderate changes in age-specific variability were seen in the 3rd trimester.. Conclusions IGA procedures for evaluating 2nd and 3rd trimester growth are now established based on a large cohort [4–6 fold larger than those used previously], thus permitting more reliable growth assessment with each fetus acting as its own control. New, more rigorously defined, age-specific standards for the evaluation of 3rd trimester growth deviations are now available for 10 anatomical parameters. Our results are also consistent with the predicted s and s-residual being representatives of growth controllers operating through the insulin-like growth factor [IGF] axis. PMID:23962305
Parameter estimation for groundwater models under uncertain irrigation data
Demissie, Yonas; Valocchi, Albert J.; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen
2015-01-01
The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p < 0.05) bias in estimated parameters and model predictions that persist despite calibrating the models to different calibration data and sample sizes. However, by directly accounting for the irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.
Luo, Chuan; Li, Zhaofu; Li, Hengpeng; Chen, Xiaomin
2015-01-01
The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict runoff, total nitrogen (TN) and total phosphorus (TP) loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds. PMID:26364642
Ward, Adam S.; Kelleher, Christa A.; Mason, Seth J. K.; Wagener, Thorsten; McIntyre, Neil; McGlynn, Brian L.; Runkel, Robert L.; Payn, Robert A.
2017-01-01
Researchers and practitioners alike often need to understand and characterize how water and solutes move through a stream in terms of the relative importance of in-stream and near-stream storage and transport processes. In-channel and subsurface storage processes are highly variable in space and time and difficult to measure. Storage estimates are commonly obtained using transient-storage models (TSMs) of the experimentally obtained solute-tracer test data. The TSM equations represent key transport and storage processes with a suite of numerical parameters. Parameter values are estimated via inverse modeling, in which parameter values are iteratively changed until model simulations closely match observed solute-tracer data. Several investigators have shown that TSM parameter estimates can be highly uncertain. When this is the case, parameter values cannot be used reliably to interpret stream-reach functioning. However, authors of most TSM studies do not evaluate or report parameter certainty. Here, we present a software tool linked to the One-dimensional Transport with Inflow and Storage (OTIS) model that enables researchers to conduct uncertainty analyses via Monte-Carlo parameter sampling and to visualize uncertainty and sensitivity results. We demonstrate application of our tool to 2 case studies and compare our results to output obtained from more traditional implementation of the OTIS model. We conclude by suggesting best practices for transient-storage modeling and recommend that future applications of TSMs include assessments of parameter certainty to support comparisons and more reliable interpretations of transport processes.
Evaluation of Reliability Coefficients for Two-Level Models via Latent Variable Analysis
ERIC Educational Resources Information Center
Raykov, Tenko; Penev, Spiridon
2010-01-01
A latent variable analysis procedure for evaluation of reliability coefficients for 2-level models is outlined. The method provides point and interval estimates of group means' reliability, overall reliability of means, and conditional reliability. In addition, the approach can be used to test simple hypotheses about these parameters. The…
NASA Technical Reports Server (NTRS)
Dupnick, E.; Wiggins, D.
1980-01-01
The scheduling algorithm for mission planning and logistics evaluation (SAMPLE) is presented. Two major subsystems are included: The mission payloads program; and the set covering program. Formats and parameter definitions for the payload data set (payload model), feasible combination file, and traffic model are documented.
USDA-ARS?s Scientific Manuscript database
The parameters used for passive soil moisture retrieval algorithms reported in the literature encompass a wide range, leading to a large uncertainty in the applicability of those values. This paper presents an evaluation of the proposed parameterizations of the tau-omega model from 1) SMAP ATBD for ...
Properties of added variable plots in Cox's regression model.
Lindkvist, M
2000-03-01
The added variable plot is useful for examining the effect of a covariate in regression models. The plot provides information regarding the inclusion of a covariate, and is useful in identifying influential observations on the parameter estimates. Hall et al. (1996) proposed a plot for Cox's proportional hazards model derived by regarding the Cox model as a generalized linear model. This paper proves and discusses properties of this plot. These properties make the plot a valuable tool in model evaluation. Quantities considered include parameter estimates, residuals, leverage, case influence measures and correspondence to previously proposed residuals and diagnostics.
NASA Astrophysics Data System (ADS)
Mao, Hanling; Zhang, Yuhua; Mao, Hanying; Li, Xinxin; Huang, Zhenfeng
2018-06-01
This paper presents the study of applying the nonlinear ultrasonic wave to evaluate the stress state of metallic materials under steady state. The pre-stress loading method is applied to guarantee components with steady stress. Three kinds of nonlinear ultrasonic experiments based on critically refracted longitudinal wave are conducted on components which the critically refracted longitudinal wave propagates along x, x1 and x2 direction. Experimental results indicate the second and third order relative nonlinear coefficients monotonically increase with stress, and the normalized relationship is consistent with simplified dislocation models, which indicates the experimental result is logical. The combined ultrasonic nonlinear parameter is proposed, and three stress evaluation models at x direction are established based on three ultrasonic nonlinear parameters, which the estimation error is below 5%. Then two stress detection models at x1 and x2 direction are built based on combined ultrasonic nonlinear parameter, the stress synthesis method is applied to calculate the magnitude and direction of principal stress. The results show the prediction error is within 5% and the angle deviation is within 1.5°. Therefore the nonlinear ultrasonic technique based on LCR wave could be applied to nondestructively evaluate the stress of metallic materials under steady state which the magnitude and direction are included.
Pérez-López, Paula; Montazeri, Mahdokht; Feijoo, Gumersindo; Moreira, María Teresa; Eckelman, Matthew J
2018-06-01
The economic and environmental performance of microalgal processes has been widely analyzed in recent years. However, few studies propose an integrated process-based approach to evaluate economic and environmental indicators simultaneously. Biodiesel is usually the single product and the effect of environmental benefits of co-products obtained in the process is rarely discussed. In addition, there is wide variation of the results due to inherent variability of some parameters as well as different assumptions in the models and limited knowledge about the processes. In this study, two standardized models were combined to provide an integrated simulation tool allowing the simultaneous estimation of economic and environmental indicators from a unique set of input parameters. First, a harmonized scenario was assessed to validate the joint environmental and techno-economic model. The findings were consistent with previous assessments. In a second stage, a Monte Carlo simulation was applied to evaluate the influence of variable and uncertain parameters in the model output, as well as the correlations between the different outputs. The simulation showed a high probability of achieving favorable environmental performance for the evaluated categories and a minimum selling price ranging from $11gal -1 to $106gal -1 . Greenhouse gas emissions and minimum selling price were found to have the strongest positive linear relationship, whereas eutrophication showed weak correlations with the other indicators (namely greenhouse gas emissions, cumulative energy demand and minimum selling price). Process parameters (especially biomass productivity and lipid content) were the main source of variation, whereas uncertainties linked to the characterization methods and economic parameters had limited effect on the results. Copyright © 2018 Elsevier B.V. All rights reserved.
Sherzer, Gili; Gao, Peng; Schlangen, Erik; Ye, Guang; Gal, Erez
2017-02-28
Modeling the complex behavior of concrete for a specific mixture is a challenging task, as it requires bridging the cement scale and the concrete scale. We describe a multiscale analysis procedure for the modeling of concrete structures, in which material properties at the macro scale are evaluated based on lower scales. Concrete may be viewed over a range of scale sizes, from the atomic scale (10 -10 m), which is characterized by the behavior of crystalline particles of hydrated Portland cement, to the macroscopic scale (10 m). The proposed multiscale framework is based on several models, including chemical analysis at the cement paste scale, a mechanical lattice model at the cement and mortar scales, geometrical aggregate distribution models at the mortar scale, and the Lattice Discrete Particle Model (LDPM) at the concrete scale. The analysis procedure starts from a known chemical and mechanical set of parameters of the cement paste, which are then used to evaluate the mechanical properties of the LDPM concrete parameters for the fracture, shear, and elastic responses of the concrete. Although a macroscopic validation study of this procedure is presented, future research should include a comparison to additional experiments in each scale.
Sherzer, Gili; Gao, Peng; Schlangen, Erik; Ye, Guang; Gal, Erez
2017-01-01
Modeling the complex behavior of concrete for a specific mixture is a challenging task, as it requires bridging the cement scale and the concrete scale. We describe a multiscale analysis procedure for the modeling of concrete structures, in which material properties at the macro scale are evaluated based on lower scales. Concrete may be viewed over a range of scale sizes, from the atomic scale (10−10 m), which is characterized by the behavior of crystalline particles of hydrated Portland cement, to the macroscopic scale (10 m). The proposed multiscale framework is based on several models, including chemical analysis at the cement paste scale, a mechanical lattice model at the cement and mortar scales, geometrical aggregate distribution models at the mortar scale, and the Lattice Discrete Particle Model (LDPM) at the concrete scale. The analysis procedure starts from a known chemical and mechanical set of parameters of the cement paste, which are then used to evaluate the mechanical properties of the LDPM concrete parameters for the fracture, shear, and elastic responses of the concrete. Although a macroscopic validation study of this procedure is presented, future research should include a comparison to additional experiments in each scale. PMID:28772605
Generation of High Resolution Land Surface Parameters in the Community Land Model
NASA Astrophysics Data System (ADS)
Ke, Y.; Coleman, A. M.; Wigmosta, M. S.; Leung, L.; Huang, M.; Li, H.
2010-12-01
The Community Land Model (CLM) is the land surface model used for the Community Atmosphere Model (CAM) and the Community Climate System Model (CCSM). It examines the physical, chemical, and biological processes across a variety of spatial and temporal scales. Currently, efforts are being made to improve the spatial resolution of the CLM, in part, to represent finer scale hydrologic characteristics. Current land surface parameters of CLM4.0, in particular plant functional types (PFT) and leaf area index (LAI), are generated from MODIS and calculated at a 0.05 degree resolution. These MODIS-derived land surface parameters have also been aggregated to coarser resolutions (e.g., 0.5, 1.0 degrees). To evaluate the response of CLM across various spatial scales, higher spatial resolution land surface parameters need to be generated. In this study we examine the use of Landsat TM/ETM+ imagery and data fusion techniques for generating land surface parameters at a 1km resolution within the Pacific Northwest United States. . Land cover types and PFTs are classified based on Landsat multi-season spectral information, DEM, National Land Cover Database (NLCD) and the USDA-NASS Crop Data Layer (CDL). For each PFT, relationships between MOD15A2 high quality LAI values, Landsat-based vegetation indices, climate variables, terrain, and laser-altimeter derived vegetation height are used to generate monthly LAI values at a 30m resolution. The high-resolution PFT and LAI data are aggregated to create a 1km model grid resolution. An evaluation and comparison of CLM land surface response at both fine and moderate scale is presented.
NASA Data Evaluation (2015): Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies
NASA Astrophysics Data System (ADS)
Burkholder, J. B.; Sander, S. P.; Abbatt, J.; Barker, J. R.; Huie, R. E.; Kolb, C. E., Jr.; Kurylo, M. J., III; Orkin, V. L.; Wilmouth, D. M.; Wine, P. H.
2015-12-01
Atmospheric chemistry models must include a large number of processes to accurately describe the temporal and spatial behavior of atmospheric composition. They require a wide range of chemical and physical data (parameters) that describe elementary gas-phase and heterogeneous processes. The review and evaluation of chemical and physical data has, therefore, played an important role in the development of chemical models and in their use in environmental assessment activities. The NASA data panel evaluation has a broad atmospheric focus that includes Ox, O(1D), singlet O2, HOx, NOx, Organic, FOx, ClOx, BrOx, IOx, SOx, and Na reactions, three-body reactions, equilibrium constants, photochemistry, Henry's Law coefficients, aqueous chemistry, heterogeneous chemistry and processes, and thermodynamic parameters. The 2015 evaluation includes critical coverage of ~700 bimolecular reactions, 86 three-body reactions, 33 equilibrium constants, ~220 photochemical species, ~360 aqueous and heterogeneous processes, and thermodynamic parameters for ~800 species with over 5000 literature citations reviewed. Each evaluation includes (1) recommended values (e.g. rate coefficients, absorption cross sections, solubilities, and uptake coefficients) with estimated uncertainty factors and (2) a note describing the available experimental and theoretical data and an explanation for the recommendation. This presentation highlights some of the recent additions to the evaluation that include: (1) expansion of thermochemical parameters, including Hg species, (2) CH2OO (Criegee) chemistry, (3) Isoprene and its major degradation product chemistry, (4) halocarbon chemistry, (5) Henry's law solubility data, and (6) uptake coefficients. In addition, a listing of complete references with the evaluation notes has been implemented. Users of the data evaluation are encouraged to suggest potential improvements and ways that the evaluation can better serve the atmospheric chemistry community.
Systematic parameter inference in stochastic mesoscopic modeling
NASA Astrophysics Data System (ADS)
Lei, Huan; Yang, Xiu; Li, Zhen; Karniadakis, George Em
2017-02-01
We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are "sparse". The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yu; Hou, Zhangshuan; Huang, Maoyi
2013-12-10
This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Two inversion strategies, the deterministic least-square fitting and stochastic Markov-Chain Monte-Carlo (MCMC) - Bayesian inversion approaches, are evaluated by applying them to CLM4 at selected sites. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find thatmore » using model parameters calibrated by the least-square fitting provides little improvements in the model simulations but the sampling-based stochastic inversion approaches are consistent - as more information comes in, the predictive intervals of the calibrated parameters become narrower and the misfits between the calculated and observed responses decrease. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to the different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.« less
NASA Astrophysics Data System (ADS)
Christensen, H. M.; Moroz, I.; Palmer, T.
2015-12-01
It is now acknowledged that representing model uncertainty in atmospheric simulators is essential for the production of reliable probabilistic ensemble forecasts, and a number of different techniques have been proposed for this purpose. Stochastic convection parameterization schemes use random numbers to represent the difference between a deterministic parameterization scheme and the true atmosphere, accounting for the unresolved sub grid-scale variability associated with convective clouds. An alternative approach varies the values of poorly constrained physical parameters in the model to represent the uncertainty in these parameters. This study presents new perturbed parameter schemes for use in the European Centre for Medium Range Weather Forecasts (ECMWF) convection scheme. Two types of scheme are developed and implemented. Both schemes represent the joint uncertainty in four of the parameters in the convection parametrisation scheme, which was estimated using the Ensemble Prediction and Parameter Estimation System (EPPES). The first scheme developed is a fixed perturbed parameter scheme, where the values of uncertain parameters are changed between ensemble members, but held constant over the duration of the forecast. The second is a stochastically varying perturbed parameter scheme. The performance of these schemes was compared to the ECMWF operational stochastic scheme, Stochastically Perturbed Parametrisation Tendencies (SPPT), and to a model which does not represent uncertainty in convection. The skill of probabilistic forecasts made using the different models was evaluated. While the perturbed parameter schemes improve on the stochastic parametrisation in some regards, the SPPT scheme outperforms the perturbed parameter approaches when considering forecast variables that are particularly sensitive to convection. Overall, SPPT schemes are the most skilful representations of model uncertainty due to convection parametrisation. Reference: H. M. Christensen, I. M. Moroz, and T. N. Palmer, 2015: Stochastic and Perturbed Parameter Representations of Model Uncertainty in Convection Parameterization. J. Atmos. Sci., 72, 2525-2544.
Xi, Qing; Li, Zhao-Fu; Luo, Chuan
2014-05-01
Sensitivity analysis of hydrology and water quality parameters has a great significance for integrated model's construction and application. Based on AnnAGNPS model's mechanism, terrain, hydrology and meteorology, field management, soil and other four major categories of 31 parameters were selected for the sensitivity analysis in Zhongtian river watershed which is a typical small watershed of hilly region in the Taihu Lake, and then used the perturbation method to evaluate the sensitivity of the parameters to the model's simulation results. The results showed that: in the 11 terrain parameters, LS was sensitive to all the model results, RMN, RS and RVC were generally sensitive and less sensitive to the output of sediment but insensitive to the remaining results. For hydrometeorological parameters, CN was more sensitive to runoff and sediment and relatively sensitive for the rest results. In field management, fertilizer and vegetation parameters, CCC, CRM and RR were less sensitive to sediment and particulate pollutants, the six fertilizer parameters (FR, FD, FID, FOD, FIP, FOP) were particularly sensitive for nitrogen and phosphorus nutrients. For soil parameters, K is quite sensitive to all the results except the runoff, the four parameters of the soil's nitrogen and phosphorus ratio (SONR, SINR, SOPR, SIPR) were less sensitive to the corresponding results. The simulation and verification results of runoff in Zhongtian watershed show a good accuracy with the deviation less than 10% during 2005- 2010. Research results have a direct reference value on AnnAGNPS model's parameter selection and calibration adjustment. The runoff simulation results of the study area also proved that the sensitivity analysis was practicable to the parameter's adjustment and showed the adaptability to the hydrology simulation in the Taihu Lake basin's hilly region and provide reference for the model's promotion in China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, P.J.
1996-07-01
A simplified method for determining the reactive rate parameters for the ignition and growth model is presented. This simplified ignition and growth (SIG) method consists of only two adjustable parameters, the ignition (I) and growth (G) rate constants. The parameters are determined by iterating these variables in DYNA2D hydrocode simulations of the failure diameter and the gap test sensitivity until the experimental values are reproduced. Examples of four widely different explosives were evaluated using the SIG model. The observed embedded gauge stress-time profiles for these explosives are compared to those calculated by the SIG equation and the results are described.
Transport Properties for Combustion Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, N.J.; Bastein, L.; Price, P.N.
This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to intermolecularmore » forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/{var_epsilon}, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure substances and binary mixtures are less than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity in most cases; (4) performing more transport property measurements for mixtures that include radical species, an important but neglected area; (5) using the TRANLIB approach for treating polar molecules and (6) performing more accurate measurements of the molecular parameters used to evaluate the molecular heat capacity, since it affects thermal conductivity, which is important in predicting flame development.« less
Henriksson, Mikael; Corino, Valentina D A; Sornmo, Leif; Sandberg, Frida
2016-09-01
The atrioventricular (AV) node plays a central role in atrial fibrillation (AF), as it influences the conduction of impulses from the atria into the ventricles. In this paper, the statistical dual pathway AV node model, previously introduced by us, is modified so that it accounts for atrial impulse pathway switching even if the preceding impulse did not cause a ventricular activation. The proposed change in model structure implies that the number of model parameters subjected to maximum likelihood estimation is reduced from five to four. The model is evaluated using the data acquired in the RATe control in atrial fibrillation (RATAF) study, involving 24-h ECG recordings from 60 patients with permanent AF. When fitting the models to the RATAF database, similar results were obtained for both the present and the previous model, with a median fit of 86%. The results show that the parameter estimates characterizing refractory period prolongation exhibit considerably lower variation when using the present model, a finding that may be ascribed to fewer model parameters. The new model maintains the capability to model RR intervals, while providing more reliable parameters estimates. The model parameters are expected to convey novel clinical information, and may be useful for predicting the effect of rate control drugs.
Cameron, Donnie; Bouhrara, Mustapha; Reiter, David A; Fishbein, Kenneth W; Choi, Seongjin; Bergeron, Christopher M; Ferrucci, Luigi; Spencer, Richard G
2017-07-01
This work characterizes the effect of lipid and noise signals on muscle diffusion parameter estimation in several conventional and non-Gaussian models, the ultimate objectives being to characterize popular fat suppression approaches for human muscle diffusion studies, to provide simulations to inform experimental work and to report normative non-Gaussian parameter values. The models investigated in this work were the Gaussian monoexponential and intravoxel incoherent motion (IVIM) models, and the non-Gaussian kurtosis and stretched exponential models. These were evaluated via simulations, and in vitro and in vivo experiments. Simulations were performed using literature input values, modeling fat contamination as an additive baseline to data, whereas phantom studies used a phantom containing aliphatic and olefinic fats and muscle-like gel. Human imaging was performed in the hamstring muscles of 10 volunteers. Diffusion-weighted imaging was applied with spectral attenuated inversion recovery (SPAIR), slice-select gradient reversal and water-specific excitation fat suppression, alone and in combination. Measurement bias (accuracy) and dispersion (precision) were evaluated, together with intra- and inter-scan repeatability. Simulations indicated that noise in magnitude images resulted in <6% bias in diffusion coefficients and non-Gaussian parameters (α, K), whereas baseline fitting minimized fat bias for all models, except IVIM. In vivo, popular SPAIR fat suppression proved inadequate for accurate parameter estimation, producing non-physiological parameter estimates without baseline fitting and large biases when it was used. Combining all three fat suppression techniques and fitting data with a baseline offset gave the best results of all the methods studied for both Gaussian diffusion and, overall, for non-Gaussian diffusion. It produced consistent parameter estimates for all models, except IVIM, and highlighted non-Gaussian behavior perpendicular to muscle fibers (α ~ 0.95, K ~ 3.1). These results show that effective fat suppression is crucial for accurate measurement of non-Gaussian diffusion parameters, and will be an essential component of quantitative studies of human muscle quality. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Modeling of Carbon Mortar Color Expression Using Artificial Neural Network.
Jang, Hong-Seok; Kim, Ju-Hee; Shuli, Xing; So, Seung-Young
2018-09-01
Colored concrete uses pigments and white Portland cement (WPC) to perform decorative functions together with structural function. Pigments are used in permanent coloring of concrete with colors different from the natural color of the cement or the aggregates with mixing WPC. In this study, an artificial neural networks study was carried out to predict the color evaluation of black mortar using pigment and carbon black. A data set of a laboratory work, in which a total of 9 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were nine different pigment and carbon black ratios. Each mortar was measured at ten locations on the surface and averaged. Color can be evaluated by measurements of tristimulus values L* , a* and b* , represented in the chromatic space CIELAB. The L* value is a measure of luminosity (0 darkness), from completely opaque (0) to completely transparent (100); a* is a measure of redness (-a* greenness) and b* of yellowness (-b* blueness). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of three input parameters that cover the pigment, carbon black and WPC and, an output parameter which is the color parameters of the black colored mortar. The results showed that ANN can be an alternative approach for the predicting the color parameters using mortar ingredients as input parameters.
Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; ...
2015-12-04
Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less
Comparison of chiller models for use in model-based fault detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreedharan, Priya; Haves, Philip
Selecting the model is an important and essential step in model based fault detection and diagnosis (FDD). Factors that are considered in evaluating a model include accuracy, training data requirements, calibration effort, generality, and computational requirements. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression chillers. Three different models were studied: the Gordon and Ng Universal Chiller model (2nd generation) and a modified version of the ASHRAE Primary Toolkit model, which are both based on first principles, and the DOE-2 chiller model, as implemented in CoolTools{trademark}, which ismore » empirical. The models were compared in terms of their ability to reproduce the observed performance of an older, centrifugal chiller operating in a commercial office building and a newer centrifugal chiller in a laboratory. All three models displayed similar levels of accuracy. Of the first principles models, the Gordon-Ng model has the advantage of being linear in the parameters, which allows more robust parameter estimation methods to be used and facilitates estimation of the uncertainty in the parameter values. The ASHRAE Toolkit Model may have advantages when refrigerant temperature measurements are also available. The DOE-2 model can be expected to have advantages when very limited data are available to calibrate the model, as long as one of the previously identified models in the CoolTools library matches the performance of the chiller in question.« less
Evaluation of the BioVapor Model
The BioVapor model addresses transport and biodegradation of petroleum vapors in the subsurface. This presentation describes basic background on the nature and scientific basis of environmental transport models. It then describes a series of parameter uncertainty runs of the Bi...
Allen Li, X; Alber, Markus; Deasy, Joseph O; Jackson, Andrew; Ken Jee, Kyung-Wook; Marks, Lawrence B; Martel, Mary K; Mayo, Charles; Moiseenko, Vitali; Nahum, Alan E; Niemierko, Andrzej; Semenenko, Vladimir A; Yorke, Ellen D
2012-03-01
Treatment planning tools that use biologically related models for plan optimization and/or evaluation are being introduced for clinical use. A variety of dose-response models and quantities along with a series of organ-specific model parameters are included in these tools. However, due to various limitations, such as the limitations of models and available model parameters, the incomplete understanding of dose responses, and the inadequate clinical data, the use of biologically based treatment planning system (BBTPS) represents a paradigm shift and can be potentially dangerous. There will be a steep learning curve for most planners. The purpose of this task group is to address some of these relevant issues before the use of BBTPS becomes widely spread. In this report, the authors (1) discuss strategies, limitations, conditions, and cautions for using biologically based models and parameters in clinical treatment planning; (2) demonstrate the practical use of the three most commonly used commercially available BBTPS and potential dosimetric differences between biologically model based and dose-volume based treatment plan optimization and evaluation; (3) identify the desirable features and future directions in developing BBTPS; and (4) provide general guidelines and methodology for the acceptance testing, commissioning, and routine quality assurance (QA) of BBTPS.
Constructing optimal ensemble projections for predictive environmental modelling in Northern Eurasia
NASA Astrophysics Data System (ADS)
Anisimov, Oleg; Kokorev, Vasily
2013-04-01
Large uncertainties in climate impact modelling are associated with the forcing climate data. This study is targeted at the evaluation of the quality of GCM-based climatic projections in the specific context of predictive environmental modelling in Northern Eurasia. To accomplish this task, we used the output from 36 CMIP5 GCMs from the IPCC AR-5 data base for the control period 1975-2005 and calculated several climatic characteristics and indexes that are most often used in the impact models, i.e. the summer warmth index, duration of the vegetation growth period, precipitation sums, dryness index, thawing degree-day sums, and the annual temperature amplitude. We used data from 744 weather stations in Russia and neighbouring countries to analyze the spatial patterns of modern climatic change and to delineate 17 large regions with coherent temperature changes in the past few decades. GSM results and observational data were averaged over the coherent regions and compared with each other. Ultimately, we evaluated the skills of individual models, ranked them in the context of regional impact modelling and identified top-end GCMs that "better than average" reproduce modern regional changes of the selected meteorological parameters and climatic indexes. Selected top-end GCMs were used to compose several ensembles, each combining results from the different number of models. Ensembles were ranked using the same algorithm and outliers eliminated. We then used data from top-end ensembles for the 2000-2100 period to construct the climatic projections that are likely to be "better than average" in predicting climatic parameters that govern the state of environment in Northern Eurasia. The ultimate conclusions of our study are the following. • High-end GCMs that demonstrate excellent skills in conventional atmospheric model intercomparison experiments are not necessarily the best in replicating climatic characteristics that govern the state of environment in Northern Eurasia, and independent model evaluation on regional level is necessary to identify "better than average" GCMs. • Each of the ensembles combining results from several "better than average" models replicate selected meteorological parameters and climatic indexes better than any single GCM. The ensemble skills are parameter-specific and depend on models it consists of. The best results are not necessarily those based on the ensemble comprised by all "better than average" models. • Comprehensive evaluation of climatic scenarios using specific criteria narrows the range of uncertainties in environmental projections.
Regional flow simulation in fractured aquifers using stress-dependent parameters.
Preisig, Giona; Joel Cornaton, Fabien; Perrochet, Pierre
2012-01-01
A model function relating effective stress to fracture permeability is developed from Hooke's law, implemented in the tensorial form of Darcy's law, and used to evaluate discharge rates and pressure distributions at regional scales. The model takes into account elastic and statistical fracture parameters, and is able to simulate real stress-dependent permeabilities from laboratory to field studies. This modeling approach gains in phenomenology in comparison to the classical ones because the permeability tensors may vary in both strength and principal directions according to effective stresses. Moreover this method allows evaluation of the fracture porosity changes, which are then translated into consolidation of the medium. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Ford, Eric B.
2009-05-01
We present the results of a highly parallel Kepler equation solver using the Graphics Processing Unit (GPU) on a commercial nVidia GeForce 280GTX and the "Compute Unified Device Architecture" (CUDA) programming environment. We apply this to evaluate a goodness-of-fit statistic (e.g., χ2) for Doppler observations of stars potentially harboring multiple planetary companions (assuming negligible planet-planet interactions). Given the high-dimensionality of the model parameter space (at least five dimensions per planet), a global search is extremely computationally demanding. We expect that the underlying Kepler solver and model evaluator will be combined with a wide variety of more sophisticated algorithms to provide efficient global search, parameter estimation, model comparison, and adaptive experimental design for radial velocity and/or astrometric planet searches. We tested multiple implementations using single precision, double precision, pairs of single precision, and mixed precision arithmetic. We find that the vast majority of computations can be performed using single precision arithmetic, with selective use of compensated summation for increased precision. However, standard single precision is not adequate for calculating the mean anomaly from the time of observation and orbital period when evaluating the goodness-of-fit for real planetary systems and observational data sets. Using all double precision, our GPU code outperforms a similar code using a modern CPU by a factor of over 60. Using mixed precision, our GPU code provides a speed-up factor of over 600, when evaluating nsys > 1024 models planetary systems each containing npl = 4 planets and assuming nobs = 256 observations of each system. We conclude that modern GPUs also offer a powerful tool for repeatedly evaluating Kepler's equation and a goodness-of-fit statistic for orbital models when presented with a large parameter space.
A multibody knee model with discrete cartilage prediction of tibio-femoral contact mechanics.
Guess, Trent M; Liu, Hongzeng; Bhashyam, Sampath; Thiagarajan, Ganesh
2013-01-01
Combining musculoskeletal simulations with anatomical joint models capable of predicting cartilage contact mechanics would provide a valuable tool for studying the relationships between muscle force and cartilage loading. As a step towards producing multibody musculoskeletal models that include representation of cartilage tissue mechanics, this research developed a subject-specific multibody knee model that represented the tibia plateau cartilage as discrete rigid bodies that interacted with the femur through deformable contacts. Parameters for the compliant contact law were derived using three methods: (1) simplified Hertzian contact theory, (2) simplified elastic foundation contact theory and (3) parameter optimisation from a finite element (FE) solution. The contact parameters and contact friction were evaluated during a simulated walk in a virtual dynamic knee simulator, and the resulting kinematics were compared with measured in vitro kinematics. The effects on predicted contact pressures and cartilage-bone interface shear forces during the simulated walk were also evaluated. The compliant contact stiffness parameters had a statistically significant effect on predicted contact pressures as well as all tibio-femoral motions except flexion-extension. The contact friction was not statistically significant to contact pressures, but was statistically significant to medial-lateral translation and all rotations except flexion-extension. The magnitude of kinematic differences between model formulations was relatively small, but contact pressure predictions were sensitive to model formulation. The developed multibody knee model was computationally efficient and had a computation time 283 times faster than a FE simulation using the same geometries and boundary conditions.
NASA Astrophysics Data System (ADS)
Choudhury, Anustup; Farrell, Suzanne; Atkins, Robin; Daly, Scott
2017-09-01
We present an approach to predict overall HDR display quality as a function of key HDR display parameters. We first performed subjective experiments on a high quality HDR display that explored five key HDR display parameters: maximum luminance, minimum luminance, color gamut, bit-depth and local contrast. Subjects rated overall quality for different combinations of these display parameters. We explored two models | a physical model solely based on physically measured display characteristics and a perceptual model that transforms physical parameters using human vision system models. For the perceptual model, we use a family of metrics based on a recently published color volume model (ICT-CP), which consists of the PQ luminance non-linearity (ST2084) and LMS-based opponent color, as well as an estimate of the display point spread function. To predict overall visual quality, we apply linear regression and machine learning techniques such as Multilayer Perceptron, RBF and SVM networks. We use RMSE and Pearson/Spearman correlation coefficients to quantify performance. We found that the perceptual model is better at predicting subjective quality than the physical model and that SVM is better at prediction than linear regression. The significance and contribution of each display parameter was investigated. In addition, we found that combined parameters such as contrast do not improve prediction. Traditional perceptual models were also evaluated and we found that models based on the PQ non-linearity performed better.
2014-01-01
The single parameter hyperbolic model has been frequently used to describe value discounting as a function of time and to differentiate substance abusers and non-clinical participants with the model's parameter k. However, k says little about the mechanisms underlying the observed differences. The present study evaluates several alternative models with the purpose of identifying whether group differences stem from differences in subjective valuation, and/or time perceptions. Using three two-parameter models, plus secondary data analyses of 14 studies with 471 indifference point curves, results demonstrated that adding a valuation, or a time perception function led to better model fits. However, the gain in fit due to the flexibility granted by a second parameter did not always lead to a better understanding of the data patterns and corresponding psychological processes. The k parameter consistently indexed group and context (magnitude) differences; it is thus a mixed measure of person and task level effects. This was similar for a parameter meant to index payoff devaluation. A time perception parameter, on the other hand, fluctuated with contexts in a non-predicted fashion and the interpretation of its values was inconsistent with prior findings that supported enlarged perceived delays for substance abusers compared to controls. Overall, the results provide mixed support for hyperbolic models of intertemporal choice in terms of the psychological meaning afforded by their parameters. PMID:25390941
Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0
NASA Astrophysics Data System (ADS)
Raoult, Nina M.; Jupp, Tim E.; Cox, Peter M.; Luke, Catherine M.
2016-08-01
Land-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate-carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimation system has been developed to search for locally optimum parameters by calibrating against observations. This paper describes adJULES in a data assimilation framework and demonstrates its ability to improve the model-data fit using eddy-covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85 % of the sites used in the study, at both the calibration and evaluation stages. The new improved parameters for JULES are presented along with the associated uncertainties for each parameter.
Evaluation of weather-based rice yield models in India.
Sudharsan, D; Adinarayana, J; Reddy, D Raji; Sreenivas, G; Ninomiya, S; Hirafuji, M; Kiura, T; Tanaka, K; Desai, U B; Merchant, S N
2013-01-01
The objective of this study was to compare two different rice simulation models--standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])--with agrometeorological data and agronomic parameters for estimation of rice crop production in southern semi-arid tropics of India. Studies were carried out on the BPT5204 rice variety to evaluate two crop simulation models. Long-term experiments were conducted in a research farm of Acharya N G Ranga Agricultural University (ANGRAU), Hyderabad, India. Initially, the results were obtained using 4 years (1994-1997) of data with weather parameters from a local weather station to evaluate DSSAT simulated results with observed values. Linear regression models used for the purpose showed a close relationship between DSSAT and observed yield. Subsequently, yield comparisons were also carried out with SIMRIW and DSSAT, and validated with actual observed values. Realizing the correlation coefficient values of SIMRIW simulation values in acceptable limits, further rice experiments in monsoon (Kharif) and post-monsoon (Rabi) agricultural seasons (2009, 2010 and 2011) were carried out with a location-specific distributed sensor network system. These proximal systems help to simulate dry weight, leaf area index and potential yield by the Java based SIMRIW on a daily/weekly/monthly/seasonal basis. These dynamic parameters are useful to the farming community for necessary decision making in a ubiquitous manner. However, SIMRIW requires fine tuning for better results/decision making.
A review of the physics and response models for burnout of semiconductor devices
NASA Astrophysics Data System (ADS)
Orvis, W. J.; Khanaka, G. H.; Yee, J. H.
1984-12-01
Physical mechanisms that cause semiconductor devices to fail from electrical overstress--particularly, EMP-induced electrical stress--are described in light of the current literature and the authors' own research. A major concern is the cause and effects of second breakdown phenomena in p-n junction devices. Models of failure thresholds are evaluated for their inherent errors and for their ability to represent the relevant physics. Finally, the response models that relate electromagnetic stress parameters to appropriate failure-threshold parameters are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, Troy Michael; Kress, Joel David; Bhat, Kabekode Ghanasham
Year 1 Objectives (August 2016 – December 2016) – The original Independence model is a sequentially regressed set of parameters from numerous data sets in the Aspen Plus modeling framework. The immediate goal with the basic data model is to collect and evaluate those data sets relevant to the thermodynamic submodels (pure substance heat capacity, solvent mixture heat capacity, loaded solvent heat capacities, and volatility data). These data are informative for the thermodynamic parameters involved in both vapor-liquid equilibrium, and in the chemical equilibrium of the liquid phase.
NASA Technical Reports Server (NTRS)
Orme, John S.; Gilyard, Glenn B.
1992-01-01
Integrated engine-airframe optimal control technology may significantly improve aircraft performance. This technology requires a reliable and accurate parameter estimator to predict unmeasured variables. To develop this technology base, NASA Dryden Flight Research Facility (Edwards, CA), McDonnell Aircraft Company (St. Louis, MO), and Pratt & Whitney (West Palm Beach, FL) have developed and flight-tested an adaptive performance seeking control system which optimizes the quasi-steady-state performance of the F-15 propulsion system. This paper presents flight and ground test evaluations of the propulsion system parameter estimation process used by the performance seeking control system. The estimator consists of a compact propulsion system model and an extended Kalman filter. The extended Laman filter estimates five engine component deviation parameters from measured inputs. The compact model uses measurements and Kalman-filter estimates as inputs to predict unmeasured propulsion parameters such as net propulsive force and fan stall margin. The ability to track trends and estimate absolute values of propulsion system parameters was demonstrated. For example, thrust stand results show a good correlation, especially in trends, between the performance seeking control estimated and measured thrust.
Beatty, William; Jay, Chadwick V.; Fischbach, Anthony S.
2016-01-01
State-space models offer researchers an objective approach to modeling complex animal location data sets, and state-space model behavior classifications are often assumed to have a link to animal behavior. In this study, we evaluated the behavioral classification accuracy of a Bayesian state-space model in Pacific walruses using Argos satellite tags with sensors to detect animal behavior in real time. We fit a two-state discrete-time continuous-space Bayesian state-space model to data from 306 Pacific walruses tagged in the Chukchi Sea. We matched predicted locations and behaviors from the state-space model (resident, transient behavior) to true animal behavior (foraging, swimming, hauled out) and evaluated classification accuracy with kappa statistics (κ) and root mean square error (RMSE). In addition, we compared biased random bridge utilization distributions generated with resident behavior locations to true foraging behavior locations to evaluate differences in space use patterns. Results indicated that the two-state model fairly classified true animal behavior (0.06 ≤ κ ≤ 0.26, 0.49 ≤ RMSE ≤ 0.59). Kernel overlap metrics indicated utilization distributions generated with resident behavior locations were generally smaller than utilization distributions generated with true foraging behavior locations. Consequently, we encourage researchers to carefully examine parameters and priors associated with behaviors in state-space models, and reconcile these parameters with the study species and its expected behaviors.
NASA Astrophysics Data System (ADS)
Pankow, C.; Brady, P.; Ochsner, E.; O'Shaughnessy, R.
2015-07-01
We introduce a highly parallelizable architecture for estimating parameters of compact binary coalescence using gravitational-wave data and waveform models. Using a spherical harmonic mode decomposition, the waveform is expressed as a sum over modes that depend on the intrinsic parameters (e.g., masses) with coefficients that depend on the observer dependent extrinsic parameters (e.g., distance, sky position). The data is then prefiltered against those modes, at fixed intrinsic parameters, enabling efficiently evaluation of the likelihood for generic source positions and orientations, independent of waveform length or generation time. We efficiently parallelize our intrinsic space calculation by integrating over all extrinsic parameters using a Monte Carlo integration strategy. Since the waveform generation and prefiltering happens only once, the cost of integration dominates the procedure. Also, we operate hierarchically, using information from existing gravitational-wave searches to identify the regions of parameter space to emphasize in our sampling. As proof of concept and verification of the result, we have implemented this algorithm using standard time-domain waveforms, processing each event in less than one hour on recent computing hardware. For most events we evaluate the marginalized likelihood (evidence) with statistical errors of ≲5 %, and even smaller in many cases. With a bounded runtime independent of the waveform model starting frequency, a nearly unchanged strategy could estimate neutron star (NS)-NS parameters in the 2018 advanced LIGO era. Our algorithm is usable with any noise curve and existing time-domain model at any mass, including some waveforms which are computationally costly to evolve.
Assessment of municipal solid waste settlement models based on field-scale data analysis.
Bareither, Christopher A; Kwak, Seungbok
2015-08-01
An evaluation of municipal solid waste (MSW) settlement model performance and applicability was conducted based on analysis of two field-scale datasets: (1) Yolo and (2) Deer Track Bioreactor Experiment (DTBE). Twelve MSW settlement models were considered that included a range of compression behavior (i.e., immediate compression, mechanical creep, and biocompression) and range of total (2-22) and optimized (2-7) model parameters. A multi-layer immediate settlement analysis developed for Yolo provides a framework to estimate initial waste thickness and waste thickness at the end-of-immediate compression. Model application to the Yolo test cells (conventional and bioreactor landfills) via least squares optimization yielded high coefficient of determinations for all settlement models (R(2)>0.83). However, empirical models (i.e., power creep, logarithmic, and hyperbolic models) are not recommended for use in MSW settlement modeling due to potential non-representative long-term MSW behavior, limited physical significance of model parameters, and required settlement data for model parameterization. Settlement models that combine mechanical creep and biocompression into a single mathematical function constrain time-dependent settlement to a single process with finite magnitude, which limits model applicability. Overall, all models evaluated that couple multiple compression processes (immediate, creep, and biocompression) provided accurate representations of both Yolo and DTBE datasets. A model presented in Gourc et al. (2010) included the lowest number of total and optimized model parameters and yielded high statistical performance for all model applications (R(2)⩾0.97). Copyright © 2015 Elsevier Ltd. All rights reserved.
Identification of Linear and Nonlinear Sensory Processing Circuits from Spiking Neuron Data.
Florescu, Dorian; Coca, Daniel
2018-03-01
Inferring mathematical models of sensory processing systems directly from input-output observations, while making the fewest assumptions about the model equations and the types of measurements available, is still a major issue in computational neuroscience. This letter introduces two new approaches for identifying sensory circuit models consisting of linear and nonlinear filters in series with spiking neuron models, based only on the sampled analog input to the filter and the recorded spike train output of the spiking neuron. For an ideal integrate-and-fire neuron model, the first algorithm can identify the spiking neuron parameters as well as the structure and parameters of an arbitrary nonlinear filter connected to it. The second algorithm can identify the parameters of the more general leaky integrate-and-fire spiking neuron model, as well as the parameters of an arbitrary linear filter connected to it. Numerical studies involving simulated and real experimental recordings are used to demonstrate the applicability and evaluate the performance of the proposed algorithms.
A simple hyperbolic model for communication in parallel processing environments
NASA Technical Reports Server (NTRS)
Stoica, Ion; Sultan, Florin; Keyes, David
1994-01-01
We introduce a model for communication costs in parallel processing environments called the 'hyperbolic model,' which generalizes two-parameter dedicated-link models in an analytically simple way. Dedicated interprocessor links parameterized by a latency and a transfer rate that are independent of load are assumed by many existing communication models; such models are unrealistic for workstation networks. The communication system is modeled as a directed communication graph in which terminal nodes represent the application processes that initiate the sending and receiving of the information and in which internal nodes, called communication blocks (CBs), reflect the layered structure of the underlying communication architecture. The direction of graph edges specifies the flow of the information carried through messages. Each CB is characterized by a two-parameter hyperbolic function of the message size that represents the service time needed for processing the message. The parameters are evaluated in the limits of very large and very small messages. Rules are given for reducing a communication graph consisting of many to an equivalent two-parameter form, while maintaining an approximation for the service time that is exact in both large and small limits. The model is validated on a dedicated Ethernet network of workstations by experiments with communication subprograms arising in scientific applications, for which a tight fit of the model predictions with actual measurements of the communication and synchronization time between end processes is demonstrated. The model is then used to evaluate the performance of two simple parallel scientific applications from partial differential equations: domain decomposition and time-parallel multigrid. In an appropriate limit, we also show the compatibility of the hyperbolic model with the recently proposed LogP model.
Comparative Model Evaluation Studies of Biogenic Trace Gas Fluxes in Tropical Forests
NASA Technical Reports Server (NTRS)
Potter, C. S.; Peterson, David L. (Technical Monitor)
1997-01-01
Simulation modeling can play a number of important roles in large-scale ecosystem studies, including synthesis of patterns and changes in carbon and nutrient cycling dynamics, scaling up to regional estimates, and formulation of testable hypotheses for process studies. Recent comparative studies have shown that ecosystem models of soil trace gas exchange with the atmosphere are evolving into several distinct simulation approaches. Different levels of detail exist among process models in the treatment of physical controls on ecosystem nutrient fluxes and organic substrate transformations leading to gas emissions. These differences are is in part from distinct objectives of scaling and extrapolation. Parameter requirements for initialization scalings, boundary conditions, and time-series driven therefore vary among ecosystem simulation models, such that the design of field experiments for integration with modeling should consider a consolidated series of measurements that will satisfy most of the various model requirements. For example, variables that provide information on soil moisture holding capacity, moisture retention characteristics, potential evapotranspiration and drainage rates, and rooting depth appear to be of the first order in model evaluation trials for tropical moist forest ecosystems. The amount and nutrient content of labile organic matter in the soil, based on accurate plant production estimates, are also key parameters that determine emission model response. Based on comparative model results, it is possible to construct a preliminary evaluation matrix along categories of key diagnostic parameters and temporal domains. Nevertheless, as large-scale studied are planned, it is notable that few existing models age designed to simulate transient states of ecosystem change, a feature which will be essential for assessment of anthropogenic disturbance on regional gas budgets, and effects of long-term climate variability on biosphere-atmosphere exchange.
Reference tissue modeling with parameter coupling: application to a study of SERT binding in HIV
NASA Astrophysics Data System (ADS)
Endres, Christopher J.; Hammoud, Dima A.; Pomper, Martin G.
2011-04-01
When applicable, it is generally preferred to evaluate positron emission tomography (PET) studies using a reference tissue-based approach as that avoids the need for invasive arterial blood sampling. However, most reference tissue methods have been shown to have a bias that is dependent on the level of tracer binding, and the variability of parameter estimates may be substantially affected by noise level. In a study of serotonin transporter (SERT) binding in HIV dementia, it was determined that applying parameter coupling to the simplified reference tissue model (SRTM) reduced the variability of parameter estimates and yielded the strongest between-group significant differences in SERT binding. The use of parameter coupling makes the application of SRTM more consistent with conventional blood input models and reduces the total number of fitted parameters, thus should yield more robust parameter estimates. Here, we provide a detailed evaluation of the application of parameter constraint and parameter coupling to [11C]DASB PET studies. Five quantitative methods, including three methods that constrain the reference tissue clearance (kr2) to a common value across regions were applied to the clinical and simulated data to compare measurement of the tracer binding potential (BPND). Compared with standard SRTM, either coupling of kr2 across regions or constraining kr2 to a first-pass estimate improved the sensitivity of SRTM to measuring a significant difference in BPND between patients and controls. Parameter coupling was particularly effective in reducing the variance of parameter estimates, which was less than 50% of the variance obtained with standard SRTM. A linear approach was also improved when constraining kr2 to a first-pass estimate, although the SRTM-based methods yielded stronger significant differences when applied to the clinical study. This work shows that parameter coupling reduces the variance of parameter estimates and may better discriminate between-group differences in specific binding.
Uncertainty Estimation in Elastic Full Waveform Inversion by Utilising the Hessian Matrix
NASA Astrophysics Data System (ADS)
Hagen, V. S.; Arntsen, B.; Raknes, E. B.
2017-12-01
Elastic Full Waveform Inversion (EFWI) is a computationally intensive iterative method for estimating elastic model parameters. A key element of EFWI is the numerical solution of the elastic wave equation which lies as a foundation to quantify the mismatch between synthetic (modelled) and true (real) measured seismic data. The misfit between the modelled and true receiver data is used to update the parameter model to yield a better fit between the modelled and true receiver signal. A common approach to the EFWI model update problem is to use a conjugate gradient search method. In this approach the resolution and cross-coupling for the estimated parameter update can be found by computing the full Hessian matrix. Resolution of the estimated model parameters depend on the chosen parametrisation, acquisition geometry, and temporal frequency range. Although some understanding has been gained, it is still not clear which elastic parameters can be reliably estimated under which conditions. With few exceptions, previous analyses have been based on arguments using radiation pattern analysis. We use the known adjoint-state technique with an expansion to compute the Hessian acting on a model perturbation to conduct our study. The Hessian is used to infer parameter resolution and cross-coupling for different selections of models, acquisition geometries, and data types, including streamer and ocean bottom seismic recordings. Information about the model uncertainty is obtained from the exact Hessian, and is essential when evaluating the quality of estimated parameters due to the strong influence of source-receiver geometry and frequency content. Investigation is done on both a homogeneous model and the Gullfaks model where we illustrate the influence of offset on parameter resolution and cross-coupling as a way of estimating uncertainty.
Schmidt, Philip J; Pintar, Katarina D M; Fazil, Aamir M; Topp, Edward
2013-09-01
Dose-response models are the essential link between exposure assessment and computed risk values in quantitative microbial risk assessment, yet the uncertainty that is inherent to computed risks because the dose-response model parameters are estimated using limited epidemiological data is rarely quantified. Second-order risk characterization approaches incorporating uncertainty in dose-response model parameters can provide more complete information to decisionmakers by separating variability and uncertainty to quantify the uncertainty in computed risks. Therefore, the objective of this work is to develop procedures to sample from posterior distributions describing uncertainty in the parameters of exponential and beta-Poisson dose-response models using Bayes's theorem and Markov Chain Monte Carlo (in OpenBUGS). The theoretical origins of the beta-Poisson dose-response model are used to identify a decomposed version of the model that enables Bayesian analysis without the need to evaluate Kummer confluent hypergeometric functions. Herein, it is also established that the beta distribution in the beta-Poisson dose-response model cannot address variation among individual pathogens, criteria to validate use of the conventional approximation to the beta-Poisson model are proposed, and simple algorithms to evaluate actual beta-Poisson probabilities of infection are investigated. The developed MCMC procedures are applied to analysis of a case study data set, and it is demonstrated that an important region of the posterior distribution of the beta-Poisson dose-response model parameters is attributable to the absence of low-dose data. This region includes beta-Poisson models for which the conventional approximation is especially invalid and in which many beta distributions have an extreme shape with questionable plausibility. © Her Majesty the Queen in Right of Canada 2013. Reproduced with the permission of the Minister of the Public Health Agency of Canada.
Scalar field cosmology in f(R,T) gravity via Noether symmetry
NASA Astrophysics Data System (ADS)
Sharif, M.; Nawazish, Iqra
2018-04-01
This paper investigates the existence of Noether symmetries of isotropic universe model in f(R,T) gravity admitting minimal coupling of matter and scalar fields. The scalar field incorporates two dark energy models such as quintessence and phantom models. We determine symmetry generators and corresponding conserved quantities for two particular f(R,T) models. We also evaluate exact solutions and investigate their physical behavior via different cosmological parameters. For the first model, the graphical behavior of these parameters indicate consistency with recent observations representing accelerated expansion of the universe. For the second model, these parameters identify a transition form accelerated to decelerated expansion of the universe. The potential function is found to be constant for the first model while it becomes V(φ )≈ φ 2 for the second model. We conclude that the Noether symmetry generators and corresponding conserved quantities appear in all cases.
Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan
2017-05-08
As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB) and Fatemi-Socie (FS) models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT) model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.
The Impact of Parametric Uncertainties on Biogeochemistry in the E3SM Land Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricciuto, Daniel; Sargsyan, Khachik; Thornton, Peter
We conduct a global sensitivity analysis (GSA) of the Energy Exascale Earth System Model (E3SM), land model (ELM) to calculate the sensitivity of five key carbon cycle outputs to 68 model parameters. This GSA is conducted by first constructing a Polynomial Chaos (PC) surrogate via new Weighted Iterative Bayesian Compressive Sensing (WIBCS) algorithm for adaptive basis growth leading to a sparse, high-dimensional PC surrogate with 3,000 model evaluations. The PC surrogate allows efficient extraction of GSA information leading to further dimensionality reduction. The GSA is performed at 96 FLUXNET sites covering multiple plant functional types (PFTs) and climate conditions. Aboutmore » 20 of the model parameters are identified as sensitive with the rest being relatively insensitive across all outputs and PFTs. These sensitivities are dependent on PFT, and are relatively consistent among sites within the same PFT. The five model outputs have a majority of their highly sensitive parameters in common. A common subset of sensitive parameters is also shared among PFTs, but some parameters are specific to certain types (e.g., deciduous phenology). In conclusion, the relative importance of these parameters shifts significantly among PFTs and with climatic variables such as mean annual temperature.« less
The Impact of Parametric Uncertainties on Biogeochemistry in the E3SM Land Model
Ricciuto, Daniel; Sargsyan, Khachik; Thornton, Peter
2018-02-27
We conduct a global sensitivity analysis (GSA) of the Energy Exascale Earth System Model (E3SM), land model (ELM) to calculate the sensitivity of five key carbon cycle outputs to 68 model parameters. This GSA is conducted by first constructing a Polynomial Chaos (PC) surrogate via new Weighted Iterative Bayesian Compressive Sensing (WIBCS) algorithm for adaptive basis growth leading to a sparse, high-dimensional PC surrogate with 3,000 model evaluations. The PC surrogate allows efficient extraction of GSA information leading to further dimensionality reduction. The GSA is performed at 96 FLUXNET sites covering multiple plant functional types (PFTs) and climate conditions. Aboutmore » 20 of the model parameters are identified as sensitive with the rest being relatively insensitive across all outputs and PFTs. These sensitivities are dependent on PFT, and are relatively consistent among sites within the same PFT. The five model outputs have a majority of their highly sensitive parameters in common. A common subset of sensitive parameters is also shared among PFTs, but some parameters are specific to certain types (e.g., deciduous phenology). In conclusion, the relative importance of these parameters shifts significantly among PFTs and with climatic variables such as mean annual temperature.« less
Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan
2017-01-01
As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB) and Fatemi-Socie (FS) models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT) model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models. PMID:28772873
A Framework for Multifaceted Evaluation of Student Models
ERIC Educational Resources Information Center
Huang, Yun; González-Brenes, José P.; Kumar, Rohit; Brusilovsky, Peter
2015-01-01
Latent variable models, such as the popular Knowledge Tracing method, are often used to enable adaptive tutoring systems to personalize education. However, finding optimal model parameters is usually a difficult non-convex optimization problem when considering latent variable models. Prior work has reported that latent variable models obtained…
Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks.
Rumschinski, Philipp; Borchers, Steffen; Bosio, Sandro; Weismantel, Robert; Findeisen, Rolf
2010-05-25
Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the understanding of the considered process, and to benefit from the analytical tools at hand. In this work we present a set-based framework that allows to discriminate between competing model hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy to balance solution accuracy and computational effort. The practicability of our approach is illustrated with two case studies. The first study shows that our approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading to improved parameter estimates.
Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks
2010-01-01
Background Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the understanding of the considered process, and to benefit from the analytical tools at hand. Results In this work we present a set-based framework that allows to discriminate between competing model hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy to balance solution accuracy and computational effort. Conclusions The practicability of our approach is illustrated with two case studies. The first study shows that our approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading to improved parameter estimates. PMID:20500862
NASA Astrophysics Data System (ADS)
Kalra, Tarandeep S.; Aretxabaleta, Alfredo; Seshadri, Pranay; Ganju, Neil K.; Beudin, Alexis
2017-12-01
Coastal hydrodynamics can be greatly affected by the presence of submerged aquatic vegetation. The effect of vegetation has been incorporated into the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. The vegetation implementation includes the plant-induced three-dimensional drag, in-canopy wave-induced streaming, and the production of turbulent kinetic energy by the presence of vegetation. In this study, we evaluate the sensitivity of the flow and wave dynamics to vegetation parameters using Sobol' indices and a least squares polynomial approach referred to as the Effective Quadratures method. This method reduces the number of simulations needed for evaluating Sobol' indices and provides a robust, practical, and efficient approach for the parameter sensitivity analysis. The evaluation of Sobol' indices shows that kinetic energy, turbulent kinetic energy, and water level changes are affected by plant stem density, height, and, to a lesser degree, diameter. Wave dissipation is mostly dependent on the variation in plant stem density. Performing sensitivity analyses for the vegetation module in COAWST provides guidance to optimize efforts and reduce exploration of parameter space for future observational and modeling work.
Statistical error model for a solar electric propulsion thrust subsystem
NASA Technical Reports Server (NTRS)
Bantell, M. H.
1973-01-01
The solar electric propulsion thrust subsystem statistical error model was developed as a tool for investigating the effects of thrust subsystem parameter uncertainties on navigation accuracy. The model is currently being used to evaluate the impact of electric engine parameter uncertainties on navigation system performance for a baseline mission to Encke's Comet in the 1980s. The data given represent the next generation in statistical error modeling for low-thrust applications. Principal improvements include the representation of thrust uncertainties and random process modeling in terms of random parametric variations in the thrust vector process for a multi-engine configuration.
Controlling Microbial Byproducts using Model-Based Substrate Monitoring and Control Strategies
NASA Technical Reports Server (NTRS)
Smernoff, David T.; Blackwell, Charles; Mancinelli, Rocco L.; DeVincenzi, Donald (Technical Monitor)
2000-01-01
We have developed a computer-controlled bioreactor system to study various aspects of microbially-mediated nitrogen cycling. The system has been used to investigate methods for controlling microbial denitrification (the dissimilatory reduction of nitrate to N2O and N2) in hydroponic plant growth chambers. Such chambers are key elements of advanced life support systems being designed for use on long duration space missions, but nitrogen use efficiency in them is reduced by denitrification. Control software architecture was designed which permits the heterogeneous control of system hardware using traditional feedback control, and quantitative and qualitative models of various system features. Model-based feed forward control entails prediction of future systems in states and automated regulation of system parameters to achieve desired and avoid undesirable system states. A bacterial growth rate model based on the classic Monod model of saturation kinetics was used to evaluate the response of several individual denitrifying species to varying environmental conditions. The system and models are now being applied to mixed microbial communities harvested from the root zone of a hydroponic growth chamber. The use of a modified Monod organism interaction model was evaluated as a means of achieving more accurate description of the dynamic behavior of the communities. A minimum variance parameter estimation routine was also' used to calibrate the constant parameters in the model by iterative evaluation of substrate (nitrate) uptake and growth kinetics. This representation of processes and interactions aids in the formulation of control laws. The feed forward control strategy being developed will increase system autonomy, reduce crew intervention and limit the accumulation of undesirable waste products (NOx).
Dynamic Modelling under Uncertainty: The Case of Trypanosoma brucei Energy Metabolism
Achcar, Fiona; Kerkhoven, Eduard J.; Bakker, Barbara M.; Barrett, Michael P.; Breitling, Rainer
2012-01-01
Kinetic models of metabolism require detailed knowledge of kinetic parameters. However, due to measurement errors or lack of data this knowledge is often uncertain. The model of glycolysis in the parasitic protozoan Trypanosoma brucei is a particularly well analysed example of a quantitative metabolic model, but so far it has been studied with a fixed set of parameters only. Here we evaluate the effect of parameter uncertainty. In order to define probability distributions for each parameter, information about the experimental sources and confidence intervals for all parameters were collected. We created a wiki-based website dedicated to the detailed documentation of this information: the SilicoTryp wiki (http://silicotryp.ibls.gla.ac.uk/wiki/Glycolysis). Using information collected in the wiki, we then assigned probability distributions to all parameters of the model. This allowed us to sample sets of alternative models, accurately representing our degree of uncertainty. Some properties of the model, such as the repartition of the glycolytic flux between the glycerol and pyruvate producing branches, are robust to these uncertainties. However, our analysis also allowed us to identify fragilities of the model leading to the accumulation of 3-phosphoglycerate and/or pyruvate. The analysis of the control coefficients revealed the importance of taking into account the uncertainties about the parameters, as the ranking of the reactions can be greatly affected. This work will now form the basis for a comprehensive Bayesian analysis and extension of the model considering alternative topologies. PMID:22379410
NASA Astrophysics Data System (ADS)
Becker, R.; Usman, M.
2017-12-01
A SWAT (Soil Water Assessment Tool) model is applied in the semi-arid Punjab region in Pakistan. The physically based hydrological model is set up to simulate hydrological processes and water resources demands under future land use, climate change and irrigation management scenarios. In order to successfully run the model, detailed focus is laid on the calibration procedure of the model. The study deals with the following calibration issues:i. lack of reliable calibration/validation data, ii. difficulty to accurately model a highly managed system with a physically based hydrological model and iii. use of alternative and spatially distributed data sets for model calibration. In our study area field observations are rare and the entirely human controlled irrigation system renders central calibration parameters (e.g. runoff/curve number) unsuitable, as it can't be assumed that they represent the natural behavior of the hydrological system. From evapotranspiration (ET) however principal hydrological processes can still be inferred. Usman et al. (2015) derived satellite based monthly ET data for our study area based on SEBAL (Surface Energy Balance Algorithm) and created a reliable ET data set which we use in this study to calibrate our SWAT model. The initial SWAT model performance is evaluated with respect to the SEBAL results using correlation coefficients, RMSE, Nash-Sutcliffe efficiencies and mean differences. Particular focus is laid on the spatial patters, investigating the potential of a spatially differentiated parameterization instead of just using spatially uniform calibration data. A sensitivity analysis reveals the most sensitive parameters with respect to changes in ET, which are then selected for the calibration process.Using the SEBAL-ET product we calibrate the SWAT model for the time period 2005-2006 using a dynamically dimensioned global search algorithm to minimize RMSE. The model improvement after the calibration procedure is finally evaluated based on the previously chosen evaluation criteria for the time period 2007-2008. The study reveals the sensitivity of SWAT model parameters to changes in ET in a semi-arid and human controlled system and the potential of calibrating those parameters using satellite derived ET data.
VISCOPLASTIC FLUID MODEL FOR DEBRIS FLOW ROUTING.
Chen, Cheng-lung
1986-01-01
This paper describes how a generalized viscoplastic fluid model, which was developed based on non-Newtonian fluid mechanics, can be successfully applied to routing a debris flow down a channel. The one-dimensional dynamic equations developed for unsteady clear-water flow can be used for debris flow routing if the flow parameters, such as the momentum (or energy) correction factor and the resistance coefficient, can be accurately evaluated. The writer's generalized viscoplastic fluid model can be used to express such flow parameters in terms of the rheological parameters for debris flow in wide channels. A preliminary analysis of the theoretical solutions reveals the importance of the flow behavior index and the so-called modified Froude number for uniformly progressive flow in snout profile modeling.
Methods for evaluating the predictive accuracy of structural dynamic models
NASA Technical Reports Server (NTRS)
Hasselman, T. K.; Chrostowski, Jon D.
1990-01-01
Uncertainty of frequency response using the fuzzy set method and on-orbit response prediction using laboratory test data to refine an analytical model are emphasized with respect to large space structures. Two aspects of the fuzzy set approach were investigated relative to its application to large structural dynamics problems: (1) minimizing the number of parameters involved in computing possible intervals; and (2) the treatment of extrema which may occur in the parameter space enclosed by all possible combinations of the important parameters of the model. Extensive printer graphics were added to the SSID code to help facilitate model verification, and an application of this code to the LaRC Ten Bay Truss is included in the appendix to illustrate this graphics capability.
NASA Astrophysics Data System (ADS)
Asgari, Ali; Dehestani, Pouya; Poruraminaie, Iman
2018-02-01
Shot peening is a well-known process in applying the residual stress on the surface of industrial parts. The induced residual stress improves fatigue life. In this study, the effects of shot peening parameters such as shot diameter, shot speed, friction coefficient, and the number of impacts on the applied residual stress will be evaluated. To assess these parameters effect, firstly the shot peening process has been simulated by finite element method. Then, effects of the process parameters on the residual stress have been evaluated by response surface method as a statistical approach. Finally, a strong model is presented to predict the maximum residual stress induced by shot peening process in AISI 4340 steel. Also, the optimum parameters for the maximum residual stress are achieved. The results indicate that effect of shot diameter on the induced residual stress is increased by increasing the shot speed. Also, enhancing the friction coefficient magnitude always cannot lead to increase in the residual stress.
Metric Calibration of a Focused Plenoptic Camera Based on a 3d Calibration Target
NASA Astrophysics Data System (ADS)
Zeller, N.; Noury, C. A.; Quint, F.; Teulière, C.; Stilla, U.; Dhome, M.
2016-06-01
In this paper we present a new calibration approach for focused plenoptic cameras. We derive a new mathematical projection model of a focused plenoptic camera which considers lateral as well as depth distortion. Therefore, we derive a new depth distortion model directly from the theory of depth estimation in a focused plenoptic camera. In total the model consists of five intrinsic parameters, the parameters for radial and tangential distortion in the image plane and two new depth distortion parameters. In the proposed calibration we perform a complete bundle adjustment based on a 3D calibration target. The residual of our optimization approach is three dimensional, where the depth residual is defined by a scaled version of the inverse virtual depth difference and thus conforms well to the measured data. Our method is evaluated based on different camera setups and shows good accuracy. For a better characterization of our approach we evaluate the accuracy of virtual image points projected back to 3D space.
Use of LANDSAT 8 images for depth and water quality assessment of El Guájaro reservoir, Colombia
NASA Astrophysics Data System (ADS)
González-Márquez, Luis Carlos; Torres-Bejarano, Franklin M.; Torregroza-Espinosa, Ana Carolina; Hansen-Rodríguez, Ivette Renée; Rodríguez-Gallegos, Hugo B.
2018-03-01
The aim of this study was to evaluate the viability of using Landsat 8 spectral images to estimate water quality parameters and depth in El Guájaro Reservoir. On February and March 2015, two samplings were carried out in the reservoir, coinciding with the Landsat 8 images. Turbidity, dissolved oxygen, electrical conductivity, pH and depth were evaluated. Through multiple regression analysis between measured water quality parameters and the reflectance of the pixels corresponding to the sampling stations, statistical models with determination coefficients between 0.6249 and 0.9300 were generated. Results indicate that from a small number of measured parameters we can generate reliable models to estimate the spatial variation of turbidity, dissolved oxygen, pH and depth, as well the temporal variation of electrical conductivity, so models generated from Landsat 8 can be used as a tool to facilitate the environmental, economic and social management of the reservoir.
Vibroacoustic test plan evaluation: Parameter variation study
NASA Technical Reports Server (NTRS)
Stahle, C. V.; Gongloef, H. R.
1976-01-01
Statistical decision models are shown to provide a viable method of evaluating the cost effectiveness of alternate vibroacoustic test plans and the associated test levels. The methodology developed provides a major step toward the development of a realistic tool to quantitatively tailor test programs to specific payloads. Testing is considered at the no test, component, subassembly, or system level of assembly. Component redundancy and partial loss of flight data are considered. Most and probabilistic costs are considered, and incipient failures resulting from ground tests are treated. Optimums defining both component and assembly test levels are indicated for the modified test plans considered. modeling simplifications must be considered in interpreting the results relative to a particular payload. New parameters introduced were a no test option, flight by flight failure probabilities, and a cost to design components for higher vibration requirements. Parameters varied were the shuttle payload bay internal acoustic environment, the STS launch cost, the component retest/repair cost, and the amount of redundancy in the housekeeping section of the payload reliability model.
In this study, the ability of the Eta-CMAQ forecast model to represent the vertical profiles of O3, related chemical species (CO, NO, NO2, H2O2, CH2O, HNO3, SO2, PAN, isoprene, toluene), and meteorological paramete...
Understanding identifiability as a crucial step in uncertainty assessment
NASA Astrophysics Data System (ADS)
Jakeman, A. J.; Guillaume, J. H. A.; Hill, M. C.; Seo, L.
2016-12-01
The topic of identifiability analysis offers concepts and approaches to identify why unique model parameter values cannot be identified, and can suggest possible responses that either increase uniqueness or help to understand the effect of non-uniqueness on predictions. Identifiability analysis typically involves evaluation of the model equations and the parameter estimation process. Non-identifiability can have a number of undesirable effects. In terms of model parameters these effects include: parameters not being estimated uniquely even with ideal data; wildly different values being returned for different initialisations of a parameter optimisation algorithm; and parameters not being physically meaningful in a model attempting to represent a process. This presentation illustrates some of the drastic consequences of ignoring model identifiability analysis. It argues for a more cogent framework and use of identifiability analysis as a way of understanding model limitations and systematically learning about sources of uncertainty and their importance. The presentation specifically distinguishes between five sources of parameter non-uniqueness (and hence uncertainty) within the modelling process, pragmatically capturing key distinctions within existing identifiability literature. It enumerates many of the various approaches discussed in the literature. Admittedly, improving identifiability is often non-trivial. It requires thorough understanding of the cause of non-identifiability, and the time, knowledge and resources to collect or select new data, modify model structures or objective functions, or improve conditioning. But ignoring these problems is not a viable solution. Even simple approaches such as fixing parameter values or naively using a different model structure may have significant impacts on results which are too often overlooked because identifiability analysis is neglected.
On the estimation algorithm used in adaptive performance optimization of turbofan engines
NASA Technical Reports Server (NTRS)
Espana, Martin D.; Gilyard, Glenn B.
1993-01-01
The performance seeking control algorithm is designed to continuously optimize the performance of propulsion systems. The performance seeking control algorithm uses a nominal model of the propulsion system and estimates, in flight, the engine deviation parameters characterizing the engine deviations with respect to nominal conditions. In practice, because of measurement biases and/or model uncertainties, the estimated engine deviation parameters may not reflect the engine's actual off-nominal condition. This factor has a necessary impact on the overall performance seeking control scheme exacerbated by the open-loop character of the algorithm. The effects produced by unknown measurement biases over the estimation algorithm are evaluated. This evaluation allows for identification of the most critical measurements for application of the performance seeking control algorithm to an F100 engine. An equivalence relation between the biases and engine deviation parameters stems from an observability study; therefore, it is undecided whether the estimated engine deviation parameters represent the actual engine deviation or whether they simply reflect the measurement biases. A new algorithm, based on the engine's (steady-state) optimization model, is proposed and tested with flight data. When compared with previous Kalman filter schemes, based on local engine dynamic models, the new algorithm is easier to design and tune and it reduces the computational burden of the onboard computer.
A Path Model for Evaluating Dosing Parameters for Children With Cerebral Palsy
Christy, Jennifer B.; Heathcock, Jill C.; Kolobe, Thubi H.A.
2014-01-01
Dosing of pediatric rehabilitation services for children with cerebral palsy (CP) has been identified as a national priority. Establishing dosing parameters for pediatric physical therapy interventions is critical for informing clinical decision making, health policy, and guidelines for reimbursement. The purpose of this perspective article is to describe a path model for evaluating dosing parameters of interventions for children with CP. The model is intended for dose-related and effectiveness studies of pediatric physical therapy interventions. The premise of the model is: Intervention type (focus on body structures, activity, or the environment) acts on a child first through the family, then through the dose (frequency, intensity, time), to yield structural and behavioral changes. As a result, these changes are linked to improvements in functional independence. Community factors affect dose as well as functional independence (performance and capacity), influencing the relationships between type of intervention and intervention responses. The constructs of family characteristics; child characteristics (eg, age, level of severity, comorbidities, readiness to change, preferences); plastic changes in bone, muscle, and brain; motor skill acquisition; and community access warrant consideration from researchers who are designing intervention studies. Multiple knowledge gaps are identified, and a framework is provided for conceptualizing dosing parameters for children with CP. PMID:24231231
Single neuron modeling and data assimilation in BNST neurons
NASA Astrophysics Data System (ADS)
Farsian, Reza
Neurons, although tiny in size, are vastly complicated systems, which are responsible for the most basic yet essential functions of any nervous system. Even the most simple models of single neurons are usually high dimensional, nonlinear, and contain many parameters and states which are unobservable in a typical neurophysiological experiment. One of the most fundamental problems in experimental neurophysiology is the estimation of these parameters and states, since knowing their values is essential in identification, model construction, and forward prediction of biological neurons. Common methods of parameter and state estimation do not perform well for neural models due to their high dimensionality and nonlinearity. In this dissertation, two alternative approaches for parameters and state estimation of biological neurons have been demonstrated: dynamical parameter estimation (DPE) and a Markov Chain Monte Carlo (MCMC) method. The first method uses elements of chaos control and synchronization theory for parameter and state estimation. MCMC is a statistical approach which uses a path integral formulation to evaluate a mean and an error bound for these unobserved parameters and states. These methods have been applied to biological system of neurons in Bed Nucleus of Stria Termialis neurons (BNST) of rats. State and parameters of neurons in both systems were estimated, and their value were used for recreating a realistic model and predicting the behavior of the neurons successfully. The knowledge of biological parameters can ultimately provide a better understanding of the internal dynamics of a neuron in order to build robust models of neuron networks.
Comprehensive Electricity Competition Act: A Comparison of Model Results, The
1999-01-01
This report describes the Energy Information Administration's use of the National Energy Modeling System (NEMS) to evaluate the effects of the Administration's restructuring proposal using the parameter settings and assumptions from the Policy Office Electricity Modeling System (POEMS) analysis.
BioVapor Model Evaluation (St. Louis, MO)
The BioVapor model addresses transport and biodegradation of petroleum vapors in the subsurface. This presentation describes basic background on the nature and scientific basis of environmental transport models. It then describes a series of parameter uncertainty runs of the Bi...
DOT National Transportation Integrated Search
2006-01-01
A previous study developed a procedure for microscopic simulation model calibration and validation and evaluated the procedure via two relatively simple case studies using three microscopic simulation models. Results showed that default parameters we...
PDF investigations of turbulent non-premixed jet flames with thin reaction zones
NASA Astrophysics Data System (ADS)
Wang, Haifeng; Pope, Stephen
2012-11-01
PDF (probability density function) modeling studies are carried out for the Sydney piloted jet flames. These Sydney flames feature much thinner reaction zones in the mixture fraction space compared to those in the well-studied Sandia piloted jet flames. The performance of the different turbulent combustion models in the Sydney flames with thin reaction zones has not been examined extensively before, and this work aims at evaluating the capability of the PDF method to represent the thin turbulent flame structures in the Sydney piloted flames. Parametric and sensitivity PDF studies are performed with respect to the different models and model parameters. A global error parameter is defined to quantify the departure of the simulation results from the experimental data, and is used to assess the performance of the different set of models and model parameters.
Predicting mining activity with parallel genetic algorithms
Talaie, S.; Leigh, R.; Louis, S.J.; Raines, G.L.; Beyer, H.G.; O'Reilly, U.M.; Banzhaf, Arnold D.; Blum, W.; Bonabeau, C.; Cantu-Paz, E.W.; ,; ,
2005-01-01
We explore several different techniques in our quest to improve the overall model performance of a genetic algorithm calibrated probabilistic cellular automata. We use the Kappa statistic to measure correlation between ground truth data and data predicted by the model. Within the genetic algorithm, we introduce a new evaluation function sensitive to spatial correctness and we explore the idea of evolving different rule parameters for different subregions of the land. We reduce the time required to run a simulation from 6 hours to 10 minutes by parallelizing the code and employing a 10-node cluster. Our empirical results suggest that using the spatially sensitive evaluation function does indeed improve the performance of the model and our preliminary results also show that evolving different rule parameters for different regions tends to improve overall model performance. Copyright 2005 ACM.
Part-to-itself model inversion in process compensated resonance testing
NASA Astrophysics Data System (ADS)
Mayes, Alexander; Jauriqui, Leanne; Biedermann, Eric; Heffernan, Julieanne; Livings, Richard; Aldrin, John C.; Goodlet, Brent; Mazdiyasni, Siamack
2018-04-01
Process Compensated Resonance Testing (PCRT) is a non-destructive evaluation (NDE) method involving the collection and analysis of a part's resonance spectrum to characterize its material or damage state. Prior work used the finite element method (FEM) to develop forward modeling and model inversion techniques. In many cases, the inversion problem can become confounded by multiple parameters having similar effects on a part's resonance frequencies. To reduce the influence of confounding parameters and isolate the change in a part (e.g., creep), a part-to-itself (PTI) approach can be taken. A PTI approach involves inverting only the change in resonance frequencies from the before and after states of a part. This approach reduces the possible inversion parameters to only those that change in response to in-service loads and damage mechanisms. To evaluate the effectiveness of using a PTI inversion approach, creep strain and material properties were estimated in virtual and real samples using FEM inversion. Virtual and real dog bone samples composed of nickel-based superalloy Mar-M-247 were examined. Virtual samples were modeled with typically observed variations in material properties and dimensions. Creep modeling was verified with the collected resonance spectra from an incrementally crept physical sample. All samples were inverted against a model space that allowed for change in the creep damage state and the material properties but was blind to initial part dimensions. Results quantified the capabilities of PTI inversion in evaluating creep strain and material properties, as well as its sensitivity to confounding initial dimensions.
Liang, Zhengzhao; Gong, Bin; Tang, Chunan; Zhang, Yongbin; Ma, Tianhui
2014-01-01
The right bank high slope of the Dagangshan Hydroelectric Power Station is located in complicated geological conditions with deep fractures and unloading cracks. How to obtain the mechanical parameters and then evaluate the safety of the slope are the key problems. This paper presented a displacement back analysis for the slope using an artificial neural network model (ANN) and particle swarm optimization model (PSO). A numerical model was established to simulate the displacement increment results, acquiring training data for the artificial neural network model. The backpropagation ANN model was used to establish a mapping function between the mechanical parameters and the monitoring displacements. The PSO model was applied to initialize the weights and thresholds of the backpropagation (BP) network model and determine suitable values of the mechanical parameters. Then the elastic moduli of the rock masses were obtained according to the monitoring displacement data at different excavation stages, and the BP neural network model was proved to be valid by comparing the measured displacements, the displacements predicted by the BP neural network model, and the numerical simulation using the back-analyzed parameters. The proposed model is useful for rock mechanical parameters determination and instability investigation of rock slopes.
Liang, Zhengzhao; Gong, Bin; Tang, Chunan; Zhang, Yongbin; Ma, Tianhui
2014-01-01
The right bank high slope of the Dagangshan Hydroelectric Power Station is located in complicated geological conditions with deep fractures and unloading cracks. How to obtain the mechanical parameters and then evaluate the safety of the slope are the key problems. This paper presented a displacement back analysis for the slope using an artificial neural network model (ANN) and particle swarm optimization model (PSO). A numerical model was established to simulate the displacement increment results, acquiring training data for the artificial neural network model. The backpropagation ANN model was used to establish a mapping function between the mechanical parameters and the monitoring displacements. The PSO model was applied to initialize the weights and thresholds of the backpropagation (BP) network model and determine suitable values of the mechanical parameters. Then the elastic moduli of the rock masses were obtained according to the monitoring displacement data at different excavation stages, and the BP neural network model was proved to be valid by comparing the measured displacements, the displacements predicted by the BP neural network model, and the numerical simulation using the back-analyzed parameters. The proposed model is useful for rock mechanical parameters determination and instability investigation of rock slopes. PMID:25140345
Uchida, Takashi; Yakumaru, Masafumi; Nishioka, Keisuke; Higashi, Yoshihiro; Sano, Tomohiko; Todo, Hiroaki; Sugibayashi, Kenji
2016-01-01
We evaluated the effectiveness of a silicone membrane as an alternative to human skin using the skin permeation parameters of chemical compounds. An in vitro permeation study using 15 model compounds was conducted, and permeation parameters comprising permeability coefficient (P), diffusion parameter (DL(-2)), and partition parameter (KL) were calculated from each permeation profile. Significant correlations were obtained in log P, log DL(-2), and log KL values between the silicone membrane and human skin. DL(-2) values of model compounds, except flurbiprofen, in the silicone membrane were independent of the lipophilicity of the model compounds and were 100-fold higher than those in human skin. For antipyrine and caffeine, which are hydrophilic, KL values in the silicone membrane were 100-fold lower than those in human skin, and P values, calculated as the product of a DL(-2) and KL, were similar. For lipophilic compounds, such as n-butyl paraben and flurbiprofen, KL values for silicone were similar to or 10-fold higher than those in human skin, and P values for silicone were 100-fold higher than those in human skin. Furthermore, for amphiphilic compounds with log Ko/w values from 0.5 to 3.5, KL values in the silicone membrane were 10-fold lower than those in human skin, and P values for silicone were 10-fold higher than those in human skin. The silicone membrane was useful as a human skin alternative in an in vitro skin permeation study. However, depending on the lipophilicity of the model compounds, some parameters may be over- or underestimated.
A validation of dynamic causal modelling for 7T fMRI.
Tak, S; Noh, J; Cheong, C; Zeidman, P; Razi, A; Penny, W D; Friston, K J
2018-07-15
There is growing interest in ultra-high field magnetic resonance imaging (MRI) in cognitive and clinical neuroscience studies. However, the benefits offered by higher field strength have not been evaluated in terms of effective connectivity and dynamic causal modelling (DCM). In this study, we address the validity of DCM for 7T functional MRI data at two levels. First, we evaluate the predictive validity of DCM estimates based upon 3T and 7T in terms of reproducibility. Second, we assess improvements in the efficiency of DCM estimates at 7T, in terms of the entropy of the posterior distribution over model parameters (i.e., information gain). Using empirical data recorded during fist-closing movements with 3T and 7T fMRI, we found a high reproducibility of average connectivity and condition-specific changes in connectivity - as quantified by the intra-class correlation coefficient (ICC = 0.862 and 0.936, respectively). Furthermore, we found that the posterior entropy of 7T parameter estimates was substantially less than that of 3T parameter estimates; suggesting the 7T data are more informative - and furnish more efficient estimates. In the framework of DCM, we treated field-dependent parameters for the BOLD signal model as free parameters, to accommodate fMRI data at 3T and 7T. In addition, we made the resting blood volume fraction a free parameter, because different brain regions can differ in their vascularization. In this paper, we showed DCM enables one to infer changes in effective connectivity from 7T data reliably and efficiently. Copyright © 2018 Elsevier B.V. All rights reserved.
Lothe, Anjali G; Sinha, Alok
2017-05-01
Leachate pollution index (LPI) is an environmental index which quantifies the pollution potential of leachate generated in landfill site. Calculation of Leachate pollution index (LPI) is based on concentration of 18 parameters present in leachate. However, in case of non-availability of all 18 parameters evaluation of actual values of LPI becomes difficult. In this study, a model has been developed to predict the actual values of LPI in case of partial availability of parameters. This model generates eleven equations that helps in determination of upper and lower limit of LPI. The geometric mean of these two values results in LPI value. Application of this model to three landfill site results in LPI value with an error of ±20% for ∑ i n w i ⩾0.6. Copyright © 2016 Elsevier Ltd. All rights reserved.
Generalized ghost pilgrim dark energy in F(T,TG) cosmology
NASA Astrophysics Data System (ADS)
Sharif, M.; Nazir, Kanwal
2016-07-01
This paper is devoted to study the generalized ghost pilgrim dark energy (PDE) model in F(T,TG) gravity with flat Friedmann-Robertson-Walker (FRW) universe. In this scenario, we reconstruct F(T,TG) models and evaluate the corresponding equation of state (EoS) parameter for different choices of the scale factors. We assume power-law scale factor, scale factor for unification of two phases, intermediate and bouncing scale factor. We study the behavior of reconstructed models and EoS parameters graphically. It is found that all the reconstructed models show decreasing behavior for PDE parameter u = -2. On the other hand, the EoS parameter indicates transition from dust-like matter to phantom era for all choices of the scale factor except intermediate for which this is less than - 1. We conclude that all the results are in agreement with PDE phenomenon.
Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
Kaltenbacher, Barbara; Hasenauer, Jan
2017-01-01
Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model parameters from experimental data is computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for parameter estimation in large scale biochemical reaction networks. We present the approach for time-discrete measurement and compare it to state-of-the-art methods used in systems and computational biology. Our comparison reveals a significantly improved computational efficiency and a superior scalability of adjoint sensitivity analysis. The computational complexity is effectively independent of the number of parameters, enabling the analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a fraction of the computation time of established methods. The proposed method will facilitate mechanistic modeling of genome-scale cellular processes, as required in the age of omics. PMID:28114351
Jiao, Y.; Lapointe, N.W.R.; Angermeier, P.L.; Murphy, B.R.
2009-01-01
Models of species' demographic features are commonly used to understand population dynamics and inform management tactics. Hierarchical demographic models are ideal for the assessment of non-indigenous species because our knowledge of non-indigenous populations is usually limited, data on demographic traits often come from a species' native range, these traits vary among populations, and traits are likely to vary considerably over time as species adapt to new environments. Hierarchical models readily incorporate this spatiotemporal variation in species' demographic traits by representing demographic parameters as multi-level hierarchies. As is done for traditional non-hierarchical matrix models, sensitivity and elasticity analyses are used to evaluate the contributions of different life stages and parameters to estimates of population growth rate. We applied a hierarchical model to northern snakehead (Channa argus), a fish currently invading the eastern United States. We used a Monte Carlo approach to simulate uncertainties in the sensitivity and elasticity analyses and to project future population persistence under selected management tactics. We gathered key biological information on northern snakehead natural mortality, maturity and recruitment in its native Asian environment. We compared the model performance with and without hierarchy of parameters. Our results suggest that ignoring the hierarchy of parameters in demographic models may result in poor estimates of population size and growth and may lead to erroneous management advice. In our case, the hierarchy used multi-level distributions to simulate the heterogeneity of demographic parameters across different locations or situations. The probability that the northern snakehead population will increase and harm the native fauna is considerable. Our elasticity and prognostic analyses showed that intensive control efforts immediately prior to spawning and/or juvenile-dispersal periods would be more effective (and probably require less effort) than year-round control efforts. Our study demonstrates the importance of considering the hierarchy of parameters in estimating population growth rate and evaluating different management strategies for non-indigenous invasive species. ?? 2009 Elsevier B.V.
A surface hydrology model for regional vector borne disease models
NASA Astrophysics Data System (ADS)
Tompkins, Adrian; Asare, Ernest; Bomblies, Arne; Amekudzi, Leonard
2016-04-01
Small, sun-lit temporary pools that form during the rainy season are important breeding sites for many key mosquito vectors responsible for the transmission of malaria and other diseases. The representation of this surface hydrology in mathematical disease models is challenging, due to their small-scale, dependence on the terrain and the difficulty of setting soil parameters. Here we introduce a model that represents the temporal evolution of the aggregate statistics of breeding sites in a single pond fractional coverage parameter. The model is based on a simple, geometrical assumption concerning the terrain, and accounts for the processes of surface runoff, pond overflow, infiltration and evaporation. Soil moisture, soil properties and large-scale terrain slope are accounted for using a calibration parameter that sets the equivalent catchment fraction. The model is calibrated and then evaluated using in situ pond measurements in Ghana and ultra-high (10m) resolution explicit simulations for a village in Niger. Despite the model's simplicity, it is shown to reproduce the variability and mean of the pond aggregate water coverage well for both locations and validation techniques. Example malaria simulations for Uganda will be shown using this new scheme with a generic calibration setting, evaluated using district malaria case data. Possible methods for implementing regional calibration will be briefly discussed.
Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands
Syphard, A.D.; Yang, J.; Franklin, J.; He, H.S.; Keeley, J.E.
2007-01-01
In Mediterranean-type ecosystems (MTEs), fire disturbance influences the distribution of most plant communities, and altered fire regimes may be more important than climate factors in shaping future MTE vegetation dynamics. Models that simulate the high-frequency fire and post-fire response strategies characteristic of these regions will be important tools for evaluating potential landscape change scenarios. However, few existing models have been designed to simulate these properties over long time frames and broad spatial scales. We refined a landscape disturbance and succession (LANDIS) model to operate on an annual time step and to simulate altered fire regimes in a southern California Mediterranean landscape. After developing a comprehensive set of spatial and non-spatial variables and parameters, we calibrated the model to simulate very high fire frequencies and evaluated the simulations under several parameter scenarios representing hypotheses about system dynamics. The goal was to ensure that observed model behavior would simulate the specified fire regime parameters, and that the predictions were reasonable based on current understanding of community dynamics in the region. After calibration, the two dominant plant functional types responded realistically to different fire regime scenarios. Therefore, this model offers a new alternative for simulating altered fire regimes in MTE landscapes. ?? 2007 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Zhuowei; Shi, Liangsheng; Ye, Ming; Zhu, Yan; Yang, Jinzhong
2018-06-01
Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. By using a new variance-based global sensitivity analysis method, this paper identifies important parameters for nitrogen reactive transport with simultaneous consideration of these three uncertainties. A combination of three scenarios of soil temperature and two scenarios of soil moisture creates a total of six scenarios. Four alternative models describing the effect of soil temperature and moisture content are used to evaluate the reduction functions used for calculating actual reaction rates. The results show that for nitrogen reactive transport problem, parameter importance varies substantially among different models and scenarios. Denitrification and nitrification process is sensitive to soil moisture content status rather than to the moisture function parameter. Nitrification process becomes more important at low moisture content and low temperature. However, the changing importance of nitrification activity with respect to temperature change highly relies on the selected model. Model-averaging is suggested to assess the nitrification (or denitrification) contribution by reducing the possible model error. Despite the introduction of biochemical heterogeneity or not, fairly consistent parameter importance rank is obtained in this study: optimal denitrification rate (Kden) is the most important parameter; reference temperature (Tr) is more important than temperature coefficient (Q10); empirical constant in moisture response function (m) is the least important one. Vertical distribution of soil moisture but not temperature plays predominant role controlling nitrogen reaction. This study provides insight into the nitrogen reactive transport modeling and demonstrates an effective strategy of selecting the important parameters when future temperature and soil moisture carry uncertainties or when modelers face with multiple ways of establishing nitrogen models.
A new UK fission yield evaluation UKFY3.7
NASA Astrophysics Data System (ADS)
Mills, Robert William
2017-09-01
The JEFF neutron induced and spontaneous fission product yield evaluation is currently unchanged from JEFF-3.1.1, also known by its UK designation UKFY3.6A. It is based upon experimental data combined with empirically fitted mass, charge and isomeric state models which are then adjusted within the experimental and model uncertainties to conform to the physical constraints of the fission process. A new evaluation has been prepared for JEFF, called UKFY3.7, that incorporates new experimental data and replaces the current empirical models (multi-Gaussian fits of mass distribution and Wahl Zp model for charge distribution combined with parameter extrapolation), with predictions from GEF. The GEF model has the advantage that one set of parameters allows the prediction of many different fissioning nuclides at different excitation energies unlike previous models where each fissioning nuclide at a specific excitation energy had to be fitted individually to the relevant experimental data. The new UKFY3.7 evaluation, submitted for testing as part of JEFF-3.3, is described alongside initial results of testing. In addition, initial ideas for future developments allowing inclusion of new measurements types and changing from any neutron spectrum type to true neutron energy dependence are discussed. Also, a method is proposed to propagate uncertainties of fission product yields based upon the experimental data that underlies the fission yield evaluation. The covariance terms being determined from the evaluated cumulative and independent yields combined with the experimental uncertainties on the cumulative yield measurements.
Zimmer, Christoph
2016-01-01
Background Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. Methods The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. Results The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models. PMID:27583802
The Personnel Effectiveness Grid (PEG): A New Tool for Estimating Personnel Department Effectiveness
ERIC Educational Resources Information Center
Petersen, Donald J.; Malone, Robert L.
1975-01-01
Examines the difficulties inherent in attempting a formal personnel evaluation system, the major formal methods currently used for evaluating personnel department accountabilities, some parameters that should be part of a valid evaluation program, and a model for conducting the evaluation. (Available from Office of Publications, Graduate School of…
Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Manajit; Gotseff, Peter
2013-12-01
This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear skymore » model performance.« less
Li, Chen; Nagasaki, Masao; Koh, Chuan Hock; Miyano, Satoru
2011-05-01
Mathematical modeling and simulation studies are playing an increasingly important role in helping researchers elucidate how living organisms function in cells. In systems biology, researchers typically tune many parameters manually to achieve simulation results that are consistent with biological knowledge. This severely limits the size and complexity of simulation models built. In order to break this limitation, we propose a computational framework to automatically estimate kinetic parameters for a given network structure. We utilized an online (on-the-fly) model checking technique (which saves resources compared to the offline approach), with a quantitative modeling and simulation architecture named hybrid functional Petri net with extension (HFPNe). We demonstrate the applicability of this framework by the analysis of the underlying model for the neuronal cell fate decision model (ASE fate model) in Caenorhabditis elegans. First, we built a quantitative ASE fate model containing 3327 components emulating nine genetic conditions. Then, using our developed efficient online model checker, MIRACH 1.0, together with parameter estimation, we ran 20-million simulation runs, and were able to locate 57 parameter sets for 23 parameters in the model that are consistent with 45 biological rules extracted from published biological articles without much manual intervention. To evaluate the robustness of these 57 parameter sets, we run another 20 million simulation runs using different magnitudes of noise. Our simulation results concluded that among these models, one model is the most reasonable and robust simulation model owing to the high stability against these stochastic noises. Our simulation results provide interesting biological findings which could be used for future wet-lab experiments.
Logistic regression for dichotomized counts.
Preisser, John S; Das, Kalyan; Benecha, Habtamu; Stamm, John W
2016-12-01
Sometimes there is interest in a dichotomized outcome indicating whether a count variable is positive or zero. Under this scenario, the application of ordinary logistic regression may result in efficiency loss, which is quantifiable under an assumed model for the counts. In such situations, a shared-parameter hurdle model is investigated for more efficient estimation of regression parameters relating to overall effects of covariates on the dichotomous outcome, while handling count data with many zeroes. One model part provides a logistic regression containing marginal log odds ratio effects of primary interest, while an ancillary model part describes the mean count of a Poisson or negative binomial process in terms of nuisance regression parameters. Asymptotic efficiency of the logistic model parameter estimators of the two-part models is evaluated with respect to ordinary logistic regression. Simulations are used to assess the properties of the models with respect to power and Type I error, the latter investigated under both misspecified and correctly specified models. The methods are applied to data from a randomized clinical trial of three toothpaste formulations to prevent incident dental caries in a large population of Scottish schoolchildren. © The Author(s) 2014.
Physiologically based pharmacokinetic (PBPK) models are compartmental models that describe the uptake and distribution of drugs and chemicals throughout the body. They can be structured so that model parameters (i.e., physiological and chemical-specific) reflect biological charac...
Evaluating the Community Land Model in a pine stand with shading manipulations and 13CO 2 labeling
Mao, Jiafu; Ricciuto, Daniel M.; Thornton, Peter E.; ...
2016-02-03
Carbon partitioning and flow through ecosystems regulates land surface atmosphere CO 2 exchange and thus is a key, albeit uncertain component of mechanistic models. The Partitioning in Trees and Soil (PiTS) experiment-model project tracked C partitioning through a young Pinus taeda stand following pulse-labeling with 13CO 2 and two levels of shading. The field component of this project provided process-oriented data that was used to evaluate and improve terrestrial biosphere model simulations of rapid shifts in carbon partitioning and hydrological dynamics under varying environmental conditions. Here we tested the performance of the Community Land Model version 4 (CLM4) in capturingmore » short-term carbon and water dynamics in relation to manipulative shading treatments, and the timing and magnitude of carbon fluxes through various compartments of the ecosystem. To constrain CLM4 to closely simulate pretreatment conditions, we calibrated select model parameters with the pretreatment observational data. Compared to CLM4 simulations with default parameters, CLM4 with calibrated model parameters was better able to simulate pretreatment vegetation carbon pools, light response curves, and other initial states and fluxes of carbon and water. Over a 3-week treatment period, the calibrated CLM4 generally reproduced the impacts of shading on average soil moisture at 15-95 cm depth, transpiration, relative change in stem carbon, and soil CO 2 efflux rate, although some discrepancies in the estimation of magnitudes and temporal evolutions existed. CLM4, however, was not able to track the progression of the 13CO 2 label from the atmosphere through foliage, phloem, roots or surface soil CO 2 efflux, even when optimized model parameters were used. This model bias arises, in part, from the lack of a short-term non-structural carbohydrate storage pool and progressive timing of within-plant transport, thus indicating a need for future work to improve the allocation routines in CLM4. Overall, these types of detailed evaluations of CLM4, paired with intensive field manipulations, can help to identify model strengths and weaknesses, model uncertainties, and additional observations necessary for future model development.« less
Lai, Keke; Kelley, Ken
2011-06-01
In addition to evaluating a structural equation model (SEM) as a whole, often the model parameters are of interest and confidence intervals for those parameters are formed. Given a model with a good overall fit, it is entirely possible for the targeted effects of interest to have very wide confidence intervals, thus giving little information about the magnitude of the population targeted effects. With the goal of obtaining sufficiently narrow confidence intervals for the model parameters of interest, sample size planning methods for SEM are developed from the accuracy in parameter estimation approach. One method plans for the sample size so that the expected confidence interval width is sufficiently narrow. An extended procedure ensures that the obtained confidence interval will be no wider than desired, with some specified degree of assurance. A Monte Carlo simulation study was conducted that verified the effectiveness of the procedures in realistic situations. The methods developed have been implemented in the MBESS package in R so that they can be easily applied by researchers. © 2011 American Psychological Association
Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants
Yu, Zheng-Yong; Liu, Qiang; Liu, Yunhan
2017-01-01
Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi–Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings. PMID:28792487
Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants.
Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan
2017-08-09
Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi-Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings.
Quantifying parameter uncertainty in stochastic models using the Box Cox transformation
NASA Astrophysics Data System (ADS)
Thyer, Mark; Kuczera, George; Wang, Q. J.
2002-08-01
The Box-Cox transformation is widely used to transform hydrological data to make it approximately Gaussian. Bayesian evaluation of parameter uncertainty in stochastic models using the Box-Cox transformation is hindered by the fact that there is no analytical solution for the posterior distribution. However, the Markov chain Monte Carlo method known as the Metropolis algorithm can be used to simulate the posterior distribution. This method properly accounts for the nonnegativity constraint implicit in the Box-Cox transformation. Nonetheless, a case study using the AR(1) model uncovered a practical problem with the implementation of the Metropolis algorithm. The use of a multivariate Gaussian jump distribution resulted in unacceptable convergence behaviour. This was rectified by developing suitable parameter transformations for the mean and variance of the AR(1) process to remove the strong nonlinear dependencies with the Box-Cox transformation parameter. Applying this methodology to the Sydney annual rainfall data and the Burdekin River annual runoff data illustrates the efficacy of these parameter transformations and demonstrate the value of quantifying parameter uncertainty.
Yen, Haw; Bailey, Ryan T; Arabi, Mazdak; Ahmadi, Mehdi; White, Michael J; Arnold, Jeffrey G
2014-09-01
Watershed models typically are evaluated solely through comparison of in-stream water and nutrient fluxes with measured data using established performance criteria, whereas processes and responses within the interior of the watershed that govern these global fluxes often are neglected. Due to the large number of parameters at the disposal of these models, circumstances may arise in which excellent global results are achieved using inaccurate magnitudes of these "intra-watershed" responses. When used for scenario analysis, a given model hence may inaccurately predict the global, in-stream effect of implementing land-use practices at the interior of the watershed. In this study, data regarding internal watershed behavior are used to constrain parameter estimation to maintain realistic intra-watershed responses while also matching available in-stream monitoring data. The methodology is demonstrated for the Eagle Creek Watershed in central Indiana. Streamflow and nitrate (NO) loading are used as global in-stream comparisons, with two process responses, the annual mass of denitrification and the ratio of NO losses from subsurface and surface flow, used to constrain parameter estimation. Results show that imposing these constraints not only yields realistic internal watershed behavior but also provides good in-stream comparisons. Results further demonstrate that in the absence of incorporating intra-watershed constraints, evaluation of nutrient abatement strategies could be misleading, even though typical performance criteria are satisfied. Incorporating intra-watershed responses yields a watershed model that more accurately represents the observed behavior of the system and hence a tool that can be used with confidence in scenario evaluation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Ahn, Jaeil; Morita, Satoshi; Wang, Wenyi; Yuan, Ying
2017-01-01
Analyzing longitudinal dyadic data is a challenging task due to the complicated correlations from repeated measurements and within-dyad interdependence, as well as potentially informative (or non-ignorable) missing data. We propose a dyadic shared-parameter model to analyze longitudinal dyadic data with ordinal outcomes and informative intermittent missing data and dropouts. We model the longitudinal measurement process using a proportional odds model, which accommodates the within-dyad interdependence using the concept of the actor-partner interdependence effects, as well as dyad-specific random effects. We model informative dropouts and intermittent missing data using a transition model, which shares the same set of random effects as the longitudinal measurement model. We evaluate the performance of the proposed method through extensive simulation studies. As our approach relies on some untestable assumptions on the missing data mechanism, we perform sensitivity analyses to evaluate how the analysis results change when the missing data mechanism is misspecified. We demonstrate our method using a longitudinal dyadic study of metastatic breast cancer.
On the Complexity of Item Response Theory Models.
Bonifay, Wes; Cai, Li
2017-01-01
Complexity in item response theory (IRT) has traditionally been quantified by simply counting the number of freely estimated parameters in the model. However, complexity is also contingent upon the functional form of the model. We examined four popular IRT models-exploratory factor analytic, bifactor, DINA, and DINO-with different functional forms but the same number of free parameters. In comparison, a simpler (unidimensional 3PL) model was specified such that it had 1 more parameter than the previous models. All models were then evaluated according to the minimum description length principle. Specifically, each model was fit to 1,000 data sets that were randomly and uniformly sampled from the complete data space and then assessed using global and item-level fit and diagnostic measures. The findings revealed that the factor analytic and bifactor models possess a strong tendency to fit any possible data. The unidimensional 3PL model displayed minimal fitting propensity, despite the fact that it included an additional free parameter. The DINA and DINO models did not demonstrate a proclivity to fit any possible data, but they did fit well to distinct data patterns. Applied researchers and psychometricians should therefore consider functional form-and not goodness-of-fit alone-when selecting an IRT model.
Advanced approach to the analysis of a series of in-situ nuclear forward scattering experiments
NASA Astrophysics Data System (ADS)
Vrba, Vlastimil; Procházka, Vít; Smrčka, David; Miglierini, Marcel
2017-03-01
This study introduces a sequential fitting procedure as a specific approach to nuclear forward scattering (NFS) data evaluation. Principles and usage of this advanced evaluation method are described in details and its utilization is demonstrated on NFS in-situ investigations of fast processes. Such experiments frequently consist of hundreds of time spectra which need to be evaluated. The introduced procedure allows the analysis of these experiments and significantly decreases the time needed for the data evaluation. The key contributions of the study are the sequential use of the output fitting parameters of a previous data set as the input parameters for the next data set and the model suitability crosscheck option of applying the procedure in ascending and descending directions of the data sets. Described fitting methodology is beneficial for checking of model validity and reliability of obtained results.
NASA Astrophysics Data System (ADS)
Khorashadi Zadeh, Farkhondeh; Nossent, Jiri; van Griensven, Ann; Bauwens, Willy
2017-04-01
Parameter estimation is a major concern in hydrological modeling, which may limit the use of complex simulators with a large number of parameters. To support the selection of parameters to include in or exclude from the calibration process, Global Sensitivity Analysis (GSA) is widely applied in modeling practices. Based on the results of GSA, the influential and the non-influential parameters are identified (i.e. parameters screening). Nevertheless, the choice of the screening threshold below which parameters are considered non-influential is a critical issue, which has recently received more attention in GSA literature. In theory, the sensitivity index of a non-influential parameter has a value of zero. However, since numerical approximations, rather than analytical solutions, are utilized in GSA methods to calculate the sensitivity indices, small but non-zero indices may be obtained for the indices of non-influential parameters. In order to assess the threshold that identifies non-influential parameters in GSA methods, we propose to calculate the sensitivity index of a "dummy parameter". This dummy parameter has no influence on the model output, but will have a non-zero sensitivity index, representing the error due to the numerical approximation. Hence, the parameters whose indices are above the sensitivity index of the dummy parameter can be classified as influential, whereas the parameters whose indices are below this index are within the range of the numerical error and should be considered as non-influential. To demonstrated the effectiveness of the proposed "dummy parameter approach", 26 parameters of a Soil and Water Assessment Tool (SWAT) model are selected to be analyzed and screened, using the variance-based Sobol' and moment-independent PAWN methods. The sensitivity index of the dummy parameter is calculated from sampled data, without changing the model equations. Moreover, the calculation does not even require additional model evaluations for the Sobol' method. A formal statistical test validates these parameter screening results. Based on the dummy parameter screening, 11 model parameters are identified as influential. Therefore, it can be denoted that the "dummy parameter approach" can facilitate the parameter screening process and provide guidance for GSA users to define a screening-threshold, with only limited additional resources. Key words: Parameter screening, Global sensitivity analysis, Dummy parameter, Variance-based method, Moment-independent method
Ely, D. Matthew
2006-01-01
Recharge is a vital component of the ground-water budget and methods for estimating it range from extremely complex to relatively simple. The most commonly used techniques, however, are limited by the scale of application. One method that can be used to estimate ground-water recharge includes process-based models that compute distributed water budgets on a watershed scale. These models should be evaluated to determine which model parameters are the dominant controls in determining ground-water recharge. Seven existing watershed models from different humid regions of the United States were chosen to analyze the sensitivity of simulated recharge to model parameters. Parameter sensitivities were determined using a nonlinear regression computer program to generate a suite of diagnostic statistics. The statistics identify model parameters that have the greatest effect on simulated ground-water recharge and that compare and contrast the hydrologic system responses to those parameters. Simulated recharge in the Lost River and Big Creek watersheds in Washington State was sensitive to small changes in air temperature. The Hamden watershed model in west-central Minnesota was developed to investigate the relations that wetlands and other landscape features have with runoff processes. Excess soil moisture in the Hamden watershed simulation was preferentially routed to wetlands, instead of to the ground-water system, resulting in little sensitivity of any parameters to recharge. Simulated recharge in the North Fork Pheasant Branch watershed, Wisconsin, demonstrated the greatest sensitivity to parameters related to evapotranspiration. Three watersheds were simulated as part of the Model Parameter Estimation Experiment (MOPEX). Parameter sensitivities for the MOPEX watersheds, Amite River, Louisiana and Mississippi, English River, Iowa, and South Branch Potomac River, West Virginia, were similar and most sensitive to small changes in air temperature and a user-defined flow routing parameter. Although the primary objective of this study was to identify, by geographic region, the importance of the parameter value to the simulation of ground-water recharge, the secondary objectives proved valuable for future modeling efforts. The value of a rigorous sensitivity analysis can (1) make the calibration process more efficient, (2) guide additional data collection, (3) identify model limitations, and (4) explain simulated results.
Improved test methods for determining lightning-induced voltages in aircraft
NASA Technical Reports Server (NTRS)
Crouch, K. E.; Plumer, J. A.
1980-01-01
A lumped parameter transmission line with a surge impedance matching that of the aircraft and its return lines was evaluated as a replacement for earlier current generators. Various test circuit parameters were evaluated using a 1/10 scale relative geometric model. Induced voltage response was evaluated by taking measurements on the NASA-Dryden Digital Fly by Wire F-8 aircraft. Return conductor arrangements as well as other circuit changes were also evaluated, with all induced voltage measurements being made on the same circuit for comparison purposes. The lumped parameter transmission line generates a concave front current wave with the peak di/dt near the peak of the current wave which is more representative of lightning. However, the induced voltage measurements when scaled by appropriate scale factors (peak current or di/dt) resulting from both techniques yield comparable results.
USDA-ARS?s Scientific Manuscript database
The estimation of parameters of a flow-depth dependent furrow infiltration model and of hydraulic resistance, using irrigation evaluation data, was investigated. The estimated infiltration parameters are the saturated hydraulic conductivity and the macropore volume per unit area. Infiltration throu...
NASA Astrophysics Data System (ADS)
Patnaik, S.; Biswal, B.; Sharma, V. C.
2017-12-01
River flow varies greatly in space and time, and the single biggest challenge for hydrologists and ecologists around the world is the fact that most rivers are either ungauged or poorly gauged. Although it is relatively easier to predict long-term average flow of a river using the `universal' zero-parameter Budyko model, lack of data hinders short-term flow prediction at ungauged locations using traditional hydrological models as they require observed flow data for model calibration. Flow prediction in ungauged basins thus requires a dynamic 'zero-parameter' hydrological model. One way to achieve this is to regionalize a dynamic hydrological model's parameters. However, a regionalization method based zero-parameter dynamic hydrological model is not `universal'. An alternative attempt was made recently to develop a zero-parameter dynamic model by defining an instantaneous dryness index as a function of antecedent rainfall and solar energy inputs with the help of a decay function and using the original Budyko function. The model was tested first in 63 US catchments and later in 50 Indian catchments. The median Nash-Sutcliffe efficiency (NSE) was found to be close to 0.4 in both the cases. Although improvements need to be incorporated in order to use the model for reliable prediction, the main aim of this study was to rather understand hydrological processes. The overall results here seem to suggest that the dynamic zero-parameter Budyko model is `universal.' In other words natural catchments around the world are strikingly similar to each other in the way they respond to hydrologic inputs; we thus need to focus more on utilizing catchment similarities in hydrological modelling instead of over parameterizing our models.
EPR, optical and modeling of Mn(2+) doped sarcosinium oxalate monohydrate.
Kripal, Ram; Singh, Manju
2015-01-25
Electron paramagnetic resonance (EPR) study of Mn(2+) ions doped in sarcosinium oxalate monohydrate (SOM) single crystal is done at liquid nitrogen temperature (LNT). EPR spectrum shows a bunch of five fine structure lines and further they split into six hyperfine components. Only one interstitial site was observed. With the help of EPR spectra the spin Hamiltonian parameters including zero field splitting (ZFS) parameters are evaluated. The optical absorption study at room temperature is also done in the wavelength range 195-1100 nm. From this study cubic crystal field splitting parameter, Dq=730 cm(-1) and Racah inter-electronic repulsion parameters B=792 cm(-1), C=2278 cm(-1) are determined. ZFS parameters D and E are also calculated using crystal field parameters from superposition model and microscopic spin Hamiltonian theory. The calculated ZFS parameter values are in good match with the experimental values obtained by EPR. Copyright © 2014 Elsevier B.V. All rights reserved.
Sweeney, Lisa M.; Parker, Ann; Haber, Lynne T.; Tran, C. Lang; Kuempel, Eileen D.
2015-01-01
A biomathematical model was previously developed to describe the long-term clearance and retention of particles in the lungs of coal miners. The model structure was evaluated and parameters were estimated in two data sets, one from the United States and one from the United Kingdom. The three-compartment model structure consists of deposition of inhaled particles in the alveolar region, competing processes of either clearance from the alveolar region or translocation to the lung interstitial region, and very slow, irreversible sequestration of interstitialized material in the lung-associated lymph nodes. Point estimates of model parameter values were estimated separately for the two data sets. In the current effort, Bayesian population analysis using Markov chain Monte Carlo simulation was used to recalibrate the model while improving assessments of parameter variability and uncertainty. When model parameters were calibrated simultaneously to the two data sets, agreement between the derived parameters for the two groups was very good, and the central tendency values were similar to those derived from the deterministic approach. These findings are relevant to the proposed update of the ICRP human respiratory tract model with revisions to the alveolar-interstitial region based on this long-term particle clearance and retention model. PMID:23454101
Huang, Lei; Liao, Li; Wu, Cathy H.
2016-01-01
Revealing the underlying evolutionary mechanism plays an important role in understanding protein interaction networks in the cell. While many evolutionary models have been proposed, the problem about applying these models to real network data, especially for differentiating which model can better describe evolutionary process for the observed network urgently remains as a challenge. The traditional way is to use a model with presumed parameters to generate a network, and then evaluate the fitness by summary statistics, which however cannot capture the complete network structures information and estimate parameter distribution. In this work we developed a novel method based on Approximate Bayesian Computation and modified Differential Evolution (ABC-DEP) that is capable of conducting model selection and parameter estimation simultaneously and detecting the underlying evolutionary mechanisms more accurately. We tested our method for its power in differentiating models and estimating parameters on the simulated data and found significant improvement in performance benchmark, as compared with a previous method. We further applied our method to real data of protein interaction networks in human and yeast. Our results show Duplication Attachment model as the predominant evolutionary mechanism for human PPI networks and Scale-Free model as the predominant mechanism for yeast PPI networks. PMID:26357273
NASA Astrophysics Data System (ADS)
Trojková, Darina; Judas, Libor; Trojek, Tomáš
2014-11-01
Minimizing the late rectal toxicity of prostate cancer patients is a very important and widely-discussed topic. Normal tissue complication probability (NTCP) models can be used to evaluate competing treatment plans. In our work, the parameters of the Lyman-Kutcher-Burman (LKB), Källman, and Logit+EUD models are optimized by minimizing the Brier score for a group of 302 prostate cancer patients. The NTCP values are calculated and are compared with the values obtained using previously published values for the parameters. χ2 Statistics were calculated as a check of goodness of optimization.
Experimental design and efficient parameter estimation in preclinical pharmacokinetic studies.
Ette, E I; Howie, C A; Kelman, A W; Whiting, B
1995-05-01
Monte Carlo simulation technique used to evaluate the effect of the arrangement of concentrations on the efficiency of estimation of population pharmacokinetic parameters in the preclinical setting is described. Although the simulations were restricted to the one compartment model with intravenous bolus input, they provide the basis of discussing some structural aspects involved in designing a destructive ("quantic") preclinical population pharmacokinetic study with a fixed sample size as is usually the case in such studies. The efficiency of parameter estimation obtained with sampling strategies based on the three and four time point designs were evaluated in terms of the percent prediction error, design number, individual and joint confidence intervals coverage for parameter estimates approaches, and correlation analysis. The data sets contained random terms for both inter- and residual intra-animal variability. The results showed that the typical population parameter estimates for clearance and volume were efficiently (accurately and precisely) estimated for both designs, while interanimal variability (the only random effect parameter that could be estimated) was inefficiently (inaccurately and imprecisely) estimated with most sampling schedules of the two designs. The exact location of the third and fourth time point for the three and four time point designs, respectively, was not critical to the efficiency of overall estimation of all population parameters of the model. However, some individual population pharmacokinetic parameters were sensitive to the location of these times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sepke, Scott M.
In this note, the laser focal plane intensity pro le for a beam modeled using the 3D ray trace package in HYDRA is determined. First, the analytical model is developed followed by a practical numerical model for evaluating the resulting computationally intensive normalization factor for all possible input parameters.
Systematic parameter inference in stochastic mesoscopic modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Huan; Yang, Xiu; Li, Zhen
2017-02-01
We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the priormore » knowledge that the coefficients are “sparse”. The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.« less
Riches, S F; Payne, G S; Morgan, V A; Dearnaley, D; Morgan, S; Partridge, M; Livni, N; Ogden, C; deSouza, N M
2015-05-01
The objectives are determine the optimal combination of MR parameters for discriminating tumour within the prostate using linear discriminant analysis (LDA) and to compare model accuracy with that of an experienced radiologist. Multiparameter MRIs in 24 patients before prostatectomy were acquired. Tumour outlines from whole-mount histology, T2-defined peripheral zone (PZ), and central gland (CG) were superimposed onto slice-matched parametric maps. T2, Apparent Diffusion Coefficient, initial area under the gadolinium curve, vascular parameters (K(trans),Kep,Ve), and (choline+polyamines+creatine)/citrate were compared between tumour and non-tumour tissues. Receiver operating characteristic (ROC) curves determined sensitivity and specificity at spectroscopic voxel resolution and per lesion, and LDA determined the optimal multiparametric model for identifying tumours. Accuracy was compared with an expert observer. Tumours were significantly different from PZ and CG for all parameters (all p < 0.001). Area under the ROC curve for discriminating tumour from non-tumour was significantly greater (p < 0.001) for the multiparametric model than for individual parameters; at 90 % specificity, sensitivity was 41 % (MRSI voxel resolution) and 59 % per lesion. At this specificity, an expert observer achieved 28 % and 49 % sensitivity, respectively. The model was more accurate when parameters from all techniques were included and performed better than an expert observer evaluating these data. • The combined model increases diagnostic accuracy in prostate cancer compared with individual parameters • The optimal combined model includes parameters from diffusion, spectroscopy, perfusion, and anatominal MRI • The computed model improves tumour detection compared to an expert viewing parametric maps.
ERIC Educational Resources Information Center
McKinley, Robert L.; Reckase, Mark D.
A two-stage study was conducted to compare the ability estimates yielded by tailored testing procedures based on the one-parameter logistic (1PL) and three-parameter logistic (3PL) models. The first stage of the study employed real data, while the second stage employed simulated data. In the first stage, response data for 3,000 examinees were…
Snow model design for operational purposes
NASA Astrophysics Data System (ADS)
Kolberg, Sjur
2017-04-01
A parsimonious distributed energy balance snow model intended for operational use is evaluated using discharge, snow covered area and grain size; the latter two as observed from the MODIS sensor. The snow model is an improvement of the existing GamSnow model, which is a part of the Enki modelling framework. Core requirements for the new version have been: 1. Reduction of calibration freedom, motivated by previous experience of non-identifiable parameters in the existing version 2. Improvement of process representation based on recent advances in physically based snow modelling 3. Limiting the sensitivity to forcing data which are poorly known over the spatial domain of interest (often in mountainous areas) 4. Preference for observable states, and the ability to improve from updates. The albedo calculation is completely revised, now based on grain size through an emulation of the SNICAR model (Flanner and Zender, 2006; Gardener and Sharp, 2010). The number of calibration parameters in the albedo model is reduced from 6 to 2. The wind function governing turbulent energy fluxes has been reduced from 2 to 1 parameter. Following Raleigh et al (2011), snow surface radiant temperature is split from the top layer thermodynamic temperature, using bias-corrected wet-bulb temperature to model the former. Analyses are ongoing, and the poster will bring evaluation results from 16 years of MODIS observations and more than 25 catchments in southern Norway.
Probabilistic prediction models for aggregate quarry siting
Robinson, G.R.; Larkins, P.M.
2007-01-01
Weights-of-evidence (WofE) and logistic regression techniques were used in a GIS framework to predict the spatial likelihood (prospectivity) of crushed-stone aggregate quarry development. The joint conditional probability models, based on geology, transportation network, and population density variables, were defined using quarry location and time of development data for the New England States, North Carolina, and South Carolina, USA. The Quarry Operation models describe the distribution of active aggregate quarries, independent of the date of opening. The New Quarry models describe the distribution of aggregate quarries when they open. Because of the small number of new quarries developed in the study areas during the last decade, independent New Quarry models have low parameter estimate reliability. The performance of parameter estimates derived for Quarry Operation models, defined by a larger number of active quarries in the study areas, were tested and evaluated to predict the spatial likelihood of new quarry development. Population density conditions at the time of new quarry development were used to modify the population density variable in the Quarry Operation models to apply to new quarry development sites. The Quarry Operation parameters derived for the New England study area, Carolina study area, and the combined New England and Carolina study areas were all similar in magnitude and relative strength. The Quarry Operation model parameters, using the modified population density variables, were found to be a good predictor of new quarry locations. Both the aggregate industry and the land management community can use the model approach to target areas for more detailed site evaluation for quarry location. The models can be revised easily to reflect actual or anticipated changes in transportation and population features. ?? International Association for Mathematical Geology 2007.
Perkins, Kimberlie; Johnson, Brittany D.; Mirus, Benjamin B.
2014-01-01
During 2013–14, the USGS, in cooperation with the U.S. Department of Energy, focused on further characterization of the sedimentary interbeds below the future site of the proposed Remote Handled Low-Level Waste (RHLLW) facility, which is intended for the long-term storage of low-level radioactive waste. Twelve core samples from the sedimentary interbeds from a borehole near the proposed facility were collected for laboratory analysis of hydraulic properties, which also allowed further testing of the property-transfer modeling approach. For each core sample, the steady-state centrifuge method was used to measure relations between matric potential, saturation, and conductivity. These laboratory measurements were compared to water-retention and unsaturated hydraulic conductivity parameters estimated using the established property-transfer models. For each core sample obtained, the agreement between measured and estimated hydraulic parameters was evaluated quantitatively using the Pearson correlation coefficient (r). The highest correlation is for saturated hydraulic conductivity (Ksat) with an r value of 0.922. The saturated water content (qsat) also exhibits a strong linear correlation with an r value of 0.892. The curve shape parameter (λ) has a value of 0.731, whereas the curve scaling parameter (yo) has the lowest r value of 0.528. The r values demonstrate that model predictions correspond well to the laboratory measured properties for most parameters, which supports the value of extending this approach for quantifying unsaturated hydraulic properties at various sites throughout INL.
NASA Astrophysics Data System (ADS)
Alipour, M. H.; Kibler, Kelly M.
2018-02-01
A framework methodology is proposed for streamflow prediction in poorly-gauged rivers located within large-scale regions of sparse hydrometeorologic observation. A multi-criteria model evaluation is developed to select models that balance runoff efficiency with selection of accurate parameter values. Sparse observed data are supplemented by uncertain or low-resolution information, incorporated as 'soft' data, to estimate parameter values a priori. Model performance is tested in two catchments within a data-poor region of southwestern China, and results are compared to models selected using alternative calibration methods. While all models perform consistently with respect to runoff efficiency (NSE range of 0.67-0.78), models selected using the proposed multi-objective method may incorporate more representative parameter values than those selected by traditional calibration. Notably, parameter values estimated by the proposed method resonate with direct estimates of catchment subsurface storage capacity (parameter residuals of 20 and 61 mm for maximum soil moisture capacity (Cmax), and 0.91 and 0.48 for soil moisture distribution shape factor (B); where a parameter residual is equal to the centroid of a soft parameter value minus the calibrated parameter value). A model more traditionally calibrated to observed data only (single-objective model) estimates a much lower soil moisture capacity (residuals of Cmax = 475 and 518 mm and B = 1.24 and 0.7). A constrained single-objective model also underestimates maximum soil moisture capacity relative to a priori estimates (residuals of Cmax = 246 and 289 mm). The proposed method may allow managers to more confidently transfer calibrated models to ungauged catchments for streamflow predictions, even in the world's most data-limited regions.
Launch Vehicle Propulsion Parameter Design Multiple Selection Criteria
NASA Technical Reports Server (NTRS)
Shelton, Joey Dewayne
2004-01-01
The optimization tool described herein addresses and emphasizes the use of computer tools to model a system and focuses on a concept development approach for a liquid hydrogen/liquid oxygen single-stage-to-orbit system, but more particularly the development of the optimized system using new techniques. This methodology uses new and innovative tools to run Monte Carlo simulations, genetic algorithm solvers, and statistical models in order to optimize a design concept. The concept launch vehicle and propulsion system were modeled and optimized to determine the best design for weight and cost by varying design and technology parameters. Uncertainty levels were applied using Monte Carlo Simulations and the model output was compared to the National Aeronautics and Space Administration Space Shuttle Main Engine. Several key conclusions are summarized here for the model results. First, the Gross Liftoff Weight and Dry Weight were 67% higher for the design case for minimization of Design, Development, Test and Evaluation cost when compared to the weights determined by the minimization of Gross Liftoff Weight case. In turn, the Design, Development, Test and Evaluation cost was 53% higher for optimized Gross Liftoff Weight case when compared to the cost determined by case for minimization of Design, Development, Test and Evaluation cost. Therefore, a 53% increase in Design, Development, Test and Evaluation cost results in a 67% reduction in Gross Liftoff Weight. Secondly, the tool outputs define the sensitivity of propulsion parameters, technology and cost factors and how these parameters differ when cost and weight are optimized separately. A key finding was that for a Space Shuttle Main Engine thrust level the oxidizer/fuel ratio of 6.6 resulted in the lowest Gross Liftoff Weight rather than at 5.2 for the maximum specific impulse, demonstrating the relationships between specific impulse, engine weight, tank volume and tank weight. Lastly, the optimum chamber pressure for Gross Liftoff Weight minimization was 2713 pounds per square inch as compared to 3162 for the Design, Development, Test and Evaluation cost optimization case. This chamber pressure range is close to 3000 pounds per square inch for the Space Shuttle Main Engine.
Application of Cox model in coagulation function in patients with primary liver cancer.
Guo, Xuan; Chen, Mingwei; Ding, Li; Zhao, Shan; Wang, Yuefei; Kang, Qinjiong; Liu, Yi
2011-01-01
To analyze the distribution of coagulation parameters in patients with primary liver cancer; explore the relationship between clinical staging, survival, and coagulation parameters by using Coxproportional hazard model; and provide a parameter for clinical management and prognosis. Coagulation parameters were evaluated in 228 patients with primary liver cancer, 52 patients with common liver disease, and 52 normal healthy controls. The relationship between primary livercancer staging and coagulation parameters wasanalyzed. Follow-up examinations were performed. The Cox proportional hazard model was used to analyze the relationship between coagulationparameters and survival. The changes in the coagulation parameters in patients with primary liver cancer were significantly different from those in normal controls. The effect of the disease on coagulation function became more obvious as the severity of liver cancer increased (p<0.05). The levels of D-dimer, fibrinogen degradation products (FDP), fibrinogen (FIB), and platelets (PLT) were negatively correlated with the long-term survival of patients with advanced liver cancer. The stages of primary liver cancer are associated with coagulation parameters. Coagulation parameters are related to survival and risk factors. Monitoring of coagulation parameters may help ensure better surveillance and treatment for liver cancer patients.
Parameter sensitivity analysis of a 1-D cold region lake model for land-surface schemes
NASA Astrophysics Data System (ADS)
Guerrero, José-Luis; Pernica, Patricia; Wheater, Howard; Mackay, Murray; Spence, Chris
2017-12-01
Lakes might be sentinels of climate change, but the uncertainty in their main feedback to the atmosphere - heat-exchange fluxes - is often not considered within climate models. Additionally, these fluxes are seldom measured, hindering critical evaluation of model output. Analysis of the Canadian Small Lake Model (CSLM), a one-dimensional integral lake model, was performed to assess its ability to reproduce diurnal and seasonal variations in heat fluxes and the sensitivity of simulated fluxes to changes in model parameters, i.e., turbulent transport parameters and the light extinction coefficient (Kd). A C++ open-source software package, Problem Solving environment for Uncertainty Analysis and Design Exploration (PSUADE), was used to perform sensitivity analysis (SA) and identify the parameters that dominate model behavior. The generalized likelihood uncertainty estimation (GLUE) was applied to quantify the fluxes' uncertainty, comparing daily-averaged eddy-covariance observations to the output of CSLM. Seven qualitative and two quantitative SA methods were tested, and the posterior likelihoods of the modeled parameters, obtained from the GLUE analysis, were used to determine the dominant parameters and the uncertainty in the modeled fluxes. Despite the ubiquity of the equifinality issue - different parameter-value combinations yielding equivalent results - the answer to the question was unequivocal: Kd, a measure of how much light penetrates the lake, dominates sensible and latent heat fluxes, and the uncertainty in their estimates is strongly related to the accuracy with which Kd is determined. This is important since accurate and continuous measurements of Kd could reduce modeling uncertainty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurosu, K; Department of Medical Physics ' Engineering, Osaka University Graduate School of Medicine, Osaka; Takashina, M
Purpose: Monte Carlo codes are becoming important tools for proton beam dosimetry. However, the relationships between the customizing parameters and percentage depth dose (PDD) of GATE and PHITS codes have not been reported which are studied for PDD and proton range compared to the FLUKA code and the experimental data. Methods: The beam delivery system of the Indiana University Health Proton Therapy Center was modeled for the uniform scanning beam in FLUKA and transferred identically into GATE and PHITS. This computational model was built from the blue print and validated with the commissioning data. Three parameters evaluated are the maximummore » step size, cut off energy and physical and transport model. The dependence of the PDDs on the customizing parameters was compared with the published results of previous studies. Results: The optimal parameters for the simulation of the whole beam delivery system were defined by referring to the calculation results obtained with each parameter. Although the PDDs from FLUKA and the experimental data show a good agreement, those of GATE and PHITS obtained with our optimal parameters show a minor discrepancy. The measured proton range R90 was 269.37 mm, compared to the calculated range of 269.63 mm, 268.96 mm, and 270.85 mm with FLUKA, GATE and PHITS, respectively. Conclusion: We evaluated the dependence of the results for PDDs obtained with GATE and PHITS Monte Carlo generalpurpose codes on the customizing parameters by using the whole computational model of the treatment nozzle. The optimal parameters for the simulation were then defined by referring to the calculation results. The physical model, particle transport mechanics and the different geometrybased descriptions need accurate customization in three simulation codes to agree with experimental data for artifact-free Monte Carlo simulation. This study was supported by Grants-in Aid for Cancer Research (H22-3rd Term Cancer Control-General-043) from the Ministry of Health, Labor and Welfare of Japan, Grants-in-Aid for Scientific Research (No. 23791419), and JSPS Core-to-Core program (No. 23003). The authors have no conflict of interest.« less
Silva, F G; Torres, R A; Brito, L F; Euclydes, R F; Melo, A L P; Souza, N O; Ribeiro, J I; Rodrigues, M T
2013-12-11
The objective of this study was to identify the best random regression model using Legendre orthogonal polynomials to evaluate Alpine goats genetically and to estimate the parameters for test day milk yield. On the test day, we analyzed 20,710 records of milk yield of 667 goats from the Goat Sector of the Universidade Federal de Viçosa. The evaluated models had combinations of distinct fitting orders for polynomials (2-5), random genetic (1-7), and permanent environmental (1-7) fixed curves and a number of classes for residual variance (2, 4, 5, and 6). WOMBAT software was used for all genetic analyses. A random regression model using the best Legendre orthogonal polynomial for genetic evaluation of milk yield on the test day of Alpine goats considered a fixed curve of order 4, curve of genetic additive effects of order 2, curve of permanent environmental effects of order 7, and a minimum of 5 classes of residual variance because it was the most economical model among those that were equivalent to the complete model by the likelihood ratio test. Phenotypic variance and heritability were higher at the end of the lactation period, indicating that the length of lactation has more genetic components in relation to the production peak and persistence. It is very important that the evaluation utilizes the best combination of fixed, genetic additive and permanent environmental regressions, and number of classes of heterogeneous residual variance for genetic evaluation using random regression models, thereby enhancing the precision and accuracy of the estimates of parameters and prediction of genetic values.
NASA Astrophysics Data System (ADS)
Sargsyan, K.; Ricciuto, D. M.; Safta, C.; Debusschere, B.; Najm, H. N.; Thornton, P. E.
2016-12-01
Surrogate construction has become a routine procedure when facing computationally intensive studies requiring multiple evaluations of complex models. In particular, surrogate models, otherwise called emulators or response surfaces, replace complex models in uncertainty quantification (UQ) studies, including uncertainty propagation (forward UQ) and parameter estimation (inverse UQ). Further, surrogates based on Polynomial Chaos (PC) expansions are especially convenient for forward UQ and global sensitivity analysis, also known as variance-based decomposition. However, the PC surrogate construction strongly suffers from the curse of dimensionality. With a large number of input parameters, the number of model simulations required for accurate surrogate construction is prohibitively large. Relatedly, non-adaptive PC expansions typically include infeasibly large number of basis terms far exceeding the number of available model evaluations. We develop Weighted Iterative Bayesian Compressive Sensing (WIBCS) algorithm for adaptive basis growth and PC surrogate construction leading to a sparse, high-dimensional PC surrogate with a very few model evaluations. The surrogate is then readily employed for global sensitivity analysis leading to further dimensionality reduction. Besides numerical tests, we demonstrate the construction on the example of Accelerated Climate Model for Energy (ACME) Land Model for several output QoIs at nearly 100 FLUXNET sites covering multiple plant functional types and climates, varying 65 input parameters over broad ranges of possible values. This work is supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Accelerated Climate Modeling for Energy (ACME) project. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Multiplicity Control in Structural Equation Modeling
ERIC Educational Resources Information Center
Cribbie, Robert A.
2007-01-01
Researchers conducting structural equation modeling analyses rarely, if ever, control for the inflated probability of Type I errors when evaluating the statistical significance of multiple parameters in a model. In this study, the Type I error control, power and true model rates of famsilywise and false discovery rate controlling procedures were…
USDA-ARS?s Scientific Manuscript database
The complexity of the hydrologic system challenges the development of models. One issue faced during the model development stage is the uncertainty involved in model parameterization. Using a single optimized set of parameters (one snapshot) to represent baseline conditions of the system limits the ...
Utilization of Expert Knowledge in a Multi-Objective Hydrologic Model Automatic Calibration Process
NASA Astrophysics Data System (ADS)
Quebbeman, J.; Park, G. H.; Carney, S.; Day, G. N.; Micheletty, P. D.
2016-12-01
Spatially distributed continuous simulation hydrologic models have a large number of parameters for potential adjustment during the calibration process. Traditional manual calibration approaches of such a modeling system is extremely laborious, which has historically motivated the use of automatic calibration procedures. With a large selection of model parameters, achieving high degrees of objective space fitness - measured with typical metrics such as Nash-Sutcliffe, Kling-Gupta, RMSE, etc. - can easily be achieved using a range of evolutionary algorithms. A concern with this approach is the high degree of compensatory calibration, with many similarly performing solutions, and yet grossly varying parameter set solutions. To help alleviate this concern, and mimic manual calibration processes, expert knowledge is proposed for inclusion within the multi-objective functions, which evaluates the parameter decision space. As a result, Pareto solutions are identified with high degrees of fitness, but also create parameter sets that maintain and utilize available expert knowledge resulting in more realistic and consistent solutions. This process was tested using the joint SNOW-17 and Sacramento Soil Moisture Accounting method (SAC-SMA) within the Animas River basin in Colorado. Three different elevation zones, each with a range of parameters, resulted in over 35 model parameters simultaneously calibrated. As a result, high degrees of fitness were achieved, in addition to the development of more realistic and consistent parameter sets such as those typically achieved during manual calibration procedures.
Evolution of non-interacting entropic dark energy and its phantom nature
NASA Astrophysics Data System (ADS)
Mathew, Titus K.; Murali, Chinthak; Shejeelammal, J.
2016-04-01
Assuming the form of the entropic dark energy (EDE) as it arises from the surface term in the Einstein-Hilbert’s action, its evolution was analyzed in an expanding flat universe. The model parameters were evaluated by constraining the model using the Union data on Type Ia supernovae. We found that in the non-interacting case, the model predicts an early decelerated phase and a later accelerated phase at the background level. The evolutions of the Hubble parameter, dark energy (DE) density, equation of state parameter and deceleration parameter were obtained. The model hardly seems to be supporting the linear perturbation growth for the structure formation. We also found that the EDE shows phantom nature for redshifts z < 0.257. During the phantom epoch, the model predicts big rip effect at which both the scale factor of expansion and the DE density become infinitely large and the big rip time is found to be around 36 Giga years from now.
Lirio, R B; Dondériz, I C; Pérez Abalo, M C
1992-08-01
The methodology of Receiver Operating Characteristic curves based on the signal detection model is extended to evaluate the accuracy of two-stage diagnostic strategies. A computer program is developed for the maximum likelihood estimation of parameters that characterize the sensitivity and specificity of two-stage classifiers according to this extended methodology. Its use is briefly illustrated with data collected in a two-stage screening for auditory defects.
Unthank, Michael D.
2013-01-01
The Ohio River alluvial aquifer near Carrollton, Ky., is an important water resource for the cities of Carrollton and Ghent, as well as for several industries in the area. The groundwater of the aquifer is the primary source of drinking water in the region and a highly valued natural resource that attracts various water-dependent industries because of its quantity and quality. This report evaluates the performance of a numerical model of the groundwater-flow system in the Ohio River alluvial aquifer near Carrollton, Ky., published by the U.S. Geological Survey in 1999. The original model simulated conditions in November 1995 and was updated to simulate groundwater conditions estimated for September 2010. The files from the calibrated steady-state model of November 1995 conditions were imported into MODFLOW-2005 to update the model to conditions in September 2010. The model input files modified as part of this update were the well and recharge files. The design of the updated model and other input files are the same as the original model. The ability of the updated model to match hydrologic conditions for September 2010 was evaluated by comparing water levels measured in wells to those computed by the model. Water-level measurements were available for 48 wells in September 2010. Overall, the updated model underestimated the water levels at 36 of the 48 measured wells. The average difference between measured water levels and model-computed water levels was 3.4 feet and the maximum difference was 10.9 feet. The root-mean-square error of the simulation was 4.45 for all 48 measured water levels. The updated steady-state model could be improved by introducing more accurate and site-specific estimates of selected field parameters, refined model geometry, and additional numerical methods. Collection of field data to better estimate hydraulic parameters, together with continued review of available data and information from area well operators, could provide the model with revised estimates of conductance values for the riverbed and valley wall, hydraulic conductivities for the model layer, and target water levels for future simulations. Additional model layers, a redesigned model grid, and revised boundary conditions could provide a better framework for more accurate simulations. Additional numerical methods would identify possible parameter estimates and determine parameter sensitivities.
Lestini, Giulia; Dumont, Cyrielle; Mentré, France
2015-01-01
Purpose In this study we aimed to evaluate adaptive designs (ADs) by clinical trial simulation for a pharmacokinetic-pharmacodynamic model in oncology and to compare them with one-stage designs, i.e. when no adaptation is performed, using wrong prior parameters. Methods We evaluated two one-stage designs, ξ0 and ξ*, optimised for prior and true population parameters, Ψ0 and Ψ*, and several ADs (two-, three- and five-stage). All designs had 50 patients. For ADs, the first cohort design was ξ0. The next cohort design was optimised using prior information updated from the previous cohort. Optimal design was based on the determinant of the Fisher information matrix using PFIM. Design evaluation was performed by clinical trial simulations using data simulated from Ψ*. Results Estimation results of two-stage ADs and ξ* were close and much better than those obtained with ξ0. The balanced two-stage AD performed better than two-stage ADs with different cohort sizes. Three-and five-stage ADs were better than two-stage with small first cohort, but not better than the balanced two-stage design. Conclusions Two-stage ADs are useful when prior parameters are unreliable. In case of small first cohort, more adaptations are needed but these designs are complex to implement. PMID:26123680
Lestini, Giulia; Dumont, Cyrielle; Mentré, France
2015-10-01
In this study we aimed to evaluate adaptive designs (ADs) by clinical trial simulation for a pharmacokinetic-pharmacodynamic model in oncology and to compare them with one-stage designs, i.e., when no adaptation is performed, using wrong prior parameters. We evaluated two one-stage designs, ξ0 and ξ*, optimised for prior and true population parameters, Ψ0 and Ψ*, and several ADs (two-, three- and five-stage). All designs had 50 patients. For ADs, the first cohort design was ξ0. The next cohort design was optimised using prior information updated from the previous cohort. Optimal design was based on the determinant of the Fisher information matrix using PFIM. Design evaluation was performed by clinical trial simulations using data simulated from Ψ*. Estimation results of two-stage ADs and ξ * were close and much better than those obtained with ξ 0. The balanced two-stage AD performed better than two-stage ADs with different cohort sizes. Three- and five-stage ADs were better than two-stage with small first cohort, but not better than the balanced two-stage design. Two-stage ADs are useful when prior parameters are unreliable. In case of small first cohort, more adaptations are needed but these designs are complex to implement.
NASA Astrophysics Data System (ADS)
Barati, Reza
2017-07-01
Perumal et al. (2017) compared the performances of the variable parameter McCarthy-Muskingum (VPMM) model of Perumal and Price (2013) and the nonlinear Muskingum (NLM) model of Gill (1978) using hypothetical inflow hydrographs in an artificial channel. As input parameters, first model needs the initial condition, upstream boundary condition, Manning's roughness coefficient, length of the routing reach, cross-sections of the river reach and the bed slope, while the latter one requires the initial condition, upstream boundary condition and the hydrologic parameters (three parameters which can be calibrated using flood hydrographs of the upstream and downstream sections). The VPMM model was examined by available Manning's roughness values, whereas the NLM model was tested in both calibration and validation steps. As final conclusion, Perumal et al. (2017) claimed that the NLM model should be retired from the literature of the Muskingum model. While the author's intention is laudable, this comment examines some important issues in the subject matter of the original study.
Heidari, M.; Ranjithan, S.R.
1998-01-01
In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.
Traveltime inversion and error analysis for layered anisotropy
NASA Astrophysics Data System (ADS)
Jiang, Fan; Zhou, Hua-wei
2011-02-01
While tilted transverse isotropy (TTI) is a good approximation of the velocity structure for many dipping and fractured strata, it is still challenging to estimate anisotropic depth models even when the tilted angle is known. With the assumption of weak anisotropy, we present a TTI traveltime inversion approach for models consisting of several thickness-varying layers where the anisotropic parameters are constant for each layer. For each model layer the inversion variables consist of the anisotropic parameters ɛ and δ, the tilted angle φ of its symmetry axis, layer velocity along the symmetry axis, and thickness variation of the layer. Using this method and synthetic data, we evaluate the effects of errors in some of the model parameters on the inverted values of the other parameters in crosswell and Vertical Seismic Profile (VSP) acquisition geometry. The analyses show that the errors in the layer symmetry axes sensitively affect the inverted values of other parameters, especially δ. However, the impact of errors in δ on the inversion of other parameters is much less than the impact on δ from the errors in other parameters. Hence, a practical strategy is first to invert for the most error-tolerant parameter layer velocity, then progressively invert for ɛ in crosswell geometry or δ in VSP geometry.
Ivezic, Nenad; Potok, Thomas E.
2003-09-30
A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.
The ASMEx snow slab experiment: snow microwave radiative transfer (SMRT) model evaluation
NASA Astrophysics Data System (ADS)
Sandells, Melody; Löwe, Henning; Picard, Ghislain; Dumont, Marie; Essery, Richard; Floury, Nicolas; Kontu, Anna; Lemmetyinen, Juha; Maslanka, William; Mätzler, Christian; Morin, Samuel; Wiesmann, Andreas
2017-04-01
A major uncertainty in snow microwave modelling to date has been the treatment of the snow microstructure. Although observations of microstructural parameters such as the optical grain diameter, specific surface area and correlation length have improved drastically over the last few years, scale factors have been used to derive the parameters needed in microwave emission models from these observations. Previous work has shown that a major difference between electromagnetic models of scattering coefficients is due to the specific snow microstructure models used. The snow microwave radiative transfer model (SMRT) is a new model developed to advance understanding of the role of microstructure and isolate different assumptions in existing microwave models that collectively hinder interpretation of model intercomparison studies. SMRT is implemented in Python and is modular, thus allows switching between different representations in its various components. Here, the role of microstructure is examined with the Improved Born Approximation electromagnetic model. The model is evaluated against scattering and absorption coefficients derived from radiometer measurements of snow slabs taken as part of the Arctic Snow Microstructure Experiment (ASMEx), which took place in Sodankylä, Finland over two seasons. Microtomography observations of slab samples were used to determine parameters for five microstructure models: spherical, exponential, sticky hard sphere, Teubner-Strey and Gaussian random field. SMRT brightness temperature simulations are also compared with radiometric observations of the snow slabs over a reflector plate and an absorber substrate. Agreement between simulations and observations is generally good except for slabs that are highly anisotropic.
NASA Astrophysics Data System (ADS)
Mockler, E. M.; Chun, K. P.; Sapriza-Azuri, G.; Bruen, M.; Wheater, H. S.
2016-11-01
Predictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.
Nosedal-Sanchez, Alvaro; Jackson, Charles S.; Huerta, Gabriel
2016-07-20
A new test statistic for climate model evaluation has been developed that potentially mitigates some of the limitations that exist for observing and representing field and space dependencies of climate phenomena. Traditionally such dependencies have been ignored when climate models have been evaluated against observational data, which makes it difficult to assess whether any given model is simulating observed climate for the right reasons. The new statistic uses Gaussian Markov random fields for estimating field and space dependencies within a first-order grid point neighborhood structure. We illustrate the ability of Gaussian Markov random fields to represent empirical estimates of fieldmore » and space covariances using "witch hat" graphs. We further use the new statistic to evaluate the tropical response of a climate model (CAM3.1) to changes in two parameters important to its representation of cloud and precipitation physics. Overall, the inclusion of dependency information did not alter significantly the recognition of those regions of parameter space that best approximated observations. However, there were some qualitative differences in the shape of the response surface that suggest how such a measure could affect estimates of model uncertainty.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nosedal-Sanchez, Alvaro; Jackson, Charles S.; Huerta, Gabriel
A new test statistic for climate model evaluation has been developed that potentially mitigates some of the limitations that exist for observing and representing field and space dependencies of climate phenomena. Traditionally such dependencies have been ignored when climate models have been evaluated against observational data, which makes it difficult to assess whether any given model is simulating observed climate for the right reasons. The new statistic uses Gaussian Markov random fields for estimating field and space dependencies within a first-order grid point neighborhood structure. We illustrate the ability of Gaussian Markov random fields to represent empirical estimates of fieldmore » and space covariances using "witch hat" graphs. We further use the new statistic to evaluate the tropical response of a climate model (CAM3.1) to changes in two parameters important to its representation of cloud and precipitation physics. Overall, the inclusion of dependency information did not alter significantly the recognition of those regions of parameter space that best approximated observations. However, there were some qualitative differences in the shape of the response surface that suggest how such a measure could affect estimates of model uncertainty.« less
The practical use of simplicity in developing ground water models
Hill, M.C.
2006-01-01
The advantages of starting with simple models and building complexity slowly can be significant in the development of ground water models. In many circumstances, simpler models are characterized by fewer defined parameters and shorter execution times. In this work, the number of parameters is used as the primary measure of simplicity and complexity; the advantages of shorter execution times also are considered. The ideas are presented in the context of constructing ground water models but are applicable to many fields. Simplicity first is put in perspective as part of the entire modeling process using 14 guidelines for effective model calibration. It is noted that neither very simple nor very complex models generally produce the most accurate predictions and that determining the appropriate level of complexity is an ill-defined process. It is suggested that a thorough evaluation of observation errors is essential to model development. Finally, specific ways are discussed to design useful ground water models that have fewer parameters and shorter execution times.
A note on evaluating model tidal currents against observations
NASA Astrophysics Data System (ADS)
Cummins, Patrick F.; Thupaki, Pramod
2018-01-01
The root-mean-square magnitude of the vector difference between modeled and observed tidal ellipses is a comprehensive metric to evaluate the representation of tidal currents in ocean models. A practical expression for this difference is given in terms of the harmonic constants that are routinely used to specify current ellipses for a given tidal constituent. The resulting metric is sensitive to differences in all four current ellipse parameters, including phase.
What are the Starting Points? Evaluating Base-Year Assumptions in the Asian Modeling Exercise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaturvedi, Vaibhav; Waldhoff, Stephanie; Clarke, Leon E.
2012-12-01
A common feature of model inter-comparison efforts is that the base year numbers for important parameters such as population and GDP can differ substantially across models. This paper explores the sources and implications of this variation in Asian countries across the models participating in the Asian Modeling Exercise (AME). Because the models do not all have a common base year, each team was required to provide data for 2005 for comparison purposes. This paper compares the year 2005 information for different models, noting the degree of variation in important parameters, including population, GDP, primary energy, electricity, and CO2 emissions. Itmore » then explores the difference in these key parameters across different sources of base-year information. The analysis confirms that the sources provide different values for many key parameters. This variation across data sources and additional reasons why models might provide different base-year numbers, including differences in regional definitions, differences in model base year, and differences in GDP transformation methodologies, are then discussed in the context of the AME scenarios. Finally, the paper explores the implications of base-year variation on long-term model results.« less
NASA Astrophysics Data System (ADS)
Mavroidis, Panayiotis; Lind, Bengt K.; Theodorou, Kyriaki; Laurell, Göran; Fernberg, Jan-Olof; Lefkopoulos, Dimitrios; Kappas, Constantin; Brahme, Anders
2004-08-01
The purpose of this work is to provide some statistical methods for evaluating the predictive strength of radiobiological models and the validity of dose-response parameters for tumour control and normal tissue complications. This is accomplished by associating the expected complication rates, which are calculated using different models, with the clinical follow-up records. These methods are applied to 77 patients who received radiation treatment for head and neck cancer and 85 patients who were treated for arteriovenous malformation (AVM). The three-dimensional dose distribution delivered to esophagus and AVM nidus and the clinical follow-up results were available for each patient. Dose-response parameters derived by a maximum likelihood fitting were used as a reference to evaluate their compatibility with the examined treatment methodologies. The impact of the parameter uncertainties on the dose-response curves is demonstrated. The clinical utilization of the radiobiological parameters is illustrated. The radiobiological models (relative seriality and linear Poisson) and the reference parameters are validated to prove their suitability in reproducing the treatment outcome pattern of the patient material studied (through the probability of finding a worse fit, area under the ROC curve and khgr2 test). The analysis was carried out for the upper 5 cm of the esophagus (proximal esophagus) where all the strictures are formed, and the total volume of AVM. The estimated confidence intervals of the dose-response curves appear to have a significant supporting role on their clinical implementation and use.
NASA Astrophysics Data System (ADS)
Cho, G. S.
2017-09-01
For performance optimization of Refrigerated Warehouses, design parameters are selected based on the physical parameters such as number of equipment and aisles, speeds of forklift for ease of modification. This paper provides a comprehensive framework approach for the system design of Refrigerated Warehouses. We propose a modeling approach which aims at the simulation optimization so as to meet required design specifications using the Design of Experiment (DOE) and analyze a simulation model using integrated aspect-oriented modeling approach (i-AOMA). As a result, this suggested method can evaluate the performance of a variety of Refrigerated Warehouses operations.
Trame, MN; Lesko, LJ
2015-01-01
A systems pharmacology model typically integrates pharmacokinetic, biochemical network, and systems biology concepts into a unifying approach. It typically consists of a large number of parameters and reaction species that are interlinked based upon the underlying (patho)physiology and the mechanism of drug action. The more complex these models are, the greater the challenge of reliably identifying and estimating respective model parameters. Global sensitivity analysis provides an innovative tool that can meet this challenge. CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 69–79; doi:10.1002/psp4.6; published online 25 February 2015 PMID:27548289
ERM model analysis for adaptation to hydrological model errors
NASA Astrophysics Data System (ADS)
Baymani-Nezhad, M.; Han, D.
2018-05-01
Hydrological conditions are changed continuously and these phenomenons generate errors on flood forecasting models and will lead to get unrealistic results. Therefore, to overcome these difficulties, a concept called model updating is proposed in hydrological studies. Real-time model updating is one of the challenging processes in hydrological sciences and has not been entirely solved due to lack of knowledge about the future state of the catchment under study. Basically, in terms of flood forecasting process, errors propagated from the rainfall-runoff model are enumerated as the main source of uncertainty in the forecasting model. Hence, to dominate the exciting errors, several methods have been proposed by researchers to update the rainfall-runoff models such as parameter updating, model state updating, and correction on input data. The current study focuses on investigations about the ability of rainfall-runoff model parameters to cope with three types of existing errors, timing, shape and volume as the common errors in hydrological modelling. The new lumped model, the ERM model, has been selected for this study to evaluate its parameters for its use in model updating to cope with the stated errors. Investigation about ten events proves that the ERM model parameters can be updated to cope with the errors without the need to recalibrate the model.
Climate Model Diagnostic Analyzer Web Service System
NASA Astrophysics Data System (ADS)
Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.
2015-12-01
Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the new methodology as web services and incorporated the system into the Cloud. We have also developed a provenance management system for CMDA where CMDA service semantics modeling, service search and recommendation, and service execution history management are designed and implemented.
Joossen, Cedric; Lanckacker, Ellen; Zakaria, Nadia; Koppen, Carina; Joossens, Jurgen; Cools, Nathalie; De Meester, Ingrid; Lambeir, Anne-Marie; Delputte, Peter; Maes, Louis; Cos, Paul
2016-05-01
The aim of this research was to optimize and validate an animal model for dry eye, adopting clinically relevant evaluation parameters. Dry eye was induced in female Wistar rats by surgical removal of the exorbital lacrimal gland. The clinical manifestations of dry eye were evaluated by tear volume measurements, corneal fluorescein staining, cytokine measurements in tear fluid, MMP-9 mRNA expression and CD3(+) cell infiltration in the conjunctiva. The animal model was validated by treatment with Restasis(®) (4 weeks) and commercial dexamethasone eye drops (2 weeks). Removal of the exorbital lacrimal gland resulted in 50% decrease in tear volume and a gradual increase in corneal fluorescein staining. Elevated levels of TNF-α and IL-1α have been registered in tear fluid together with an increase in CD3(+) cells in the palpebral conjunctiva when compared to control animals. Additionally, an increase in MMP-9 mRNA expression was recorded in conjunctival tissue. Reference treatment with Restasis(®) and dexamethasone eye drops had a positive effect on all evaluation parameters, except on tear volume. This rat dry eye model was validated extensively and judged appropriate for the evaluation of novel compounds and therapeutic preparations for dry eye disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Designing a Pediatric Study for an Antimalarial Drug by Using Information from Adults
Jullien, Vincent; Samson, Adeline; Guedj, Jérémie; Kiechel, Jean-René; Zohar, Sarah; Comets, Emmanuelle
2015-01-01
The objectives of this study were to design a pharmacokinetic (PK) study by using information about adults and evaluate the robustness of the recommended design through a case study of mefloquine. PK data about adults and children were available from two different randomized studies of the treatment of malaria with the same artesunate-mefloquine combination regimen. A recommended design for pediatric studies of mefloquine was optimized on the basis of an extrapolated model built from adult data through the following approach. (i) An adult PK model was built, and parameters were estimated by using the stochastic approximation expectation-maximization algorithm. (ii) Pediatric PK parameters were then obtained by adding allometry and maturation to the adult model. (iii) A D-optimal design for children was obtained with PFIM by assuming the extrapolated design. Finally, the robustness of the recommended design was evaluated in terms of the relative bias and relative standard errors (RSE) of the parameters in a simulation study with four different models and was compared to the empirical design used for the pediatric study. Combining PK modeling, extrapolation, and design optimization led to a design for children with five sampling times. PK parameters were well estimated by this design with few RSE. Although the extrapolated model did not predict the observed mefloquine concentrations in children very accurately, it allowed precise and unbiased estimates across various model assumptions, contrary to the empirical design. Using information from adult studies combined with allometry and maturation can help provide robust designs for pediatric studies. PMID:26711749
Watershed scale rainfall‐runoff models are used for environmental management and regulatory modeling applications, but their effectiveness are limited by predictive uncertainties associated with model input data. This study evaluated the effect of temporal and spatial rainfall re...
A Comparison of Modeled Pollutant Profiles With MOZAIC Aircraft Measurements
In this study, we use measurements performed under the MOZAIC program to evaluate vertical profiles of meteorological parameters, CO, and ozone that were simulated for the year 2006 with several versions of the WRF/CMAQ modeling system. Model updates, including WRF nudging strate...
Uncertainty Quantification and Sensitivity Analysis in the CICE v5.1 Sea Ice Model
NASA Astrophysics Data System (ADS)
Urrego-Blanco, J. R.; Urban, N. M.
2015-12-01
Changes in the high latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with mid latitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. In this work we characterize parametric uncertainty in Los Alamos Sea Ice model (CICE) and quantify the sensitivity of sea ice area, extent and volume with respect to uncertainty in about 40 individual model parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one-at-a-time, this study uses a global variance-based approach in which Sobol sequences are used to efficiently sample the full 40-dimensional parameter space. This approach requires a very large number of model evaluations, which are expensive to run. A more computationally efficient approach is implemented by training and cross-validating a surrogate (emulator) of the sea ice model with model output from 400 model runs. The emulator is used to make predictions of sea ice extent, area, and volume at several model configurations, which are then used to compute the Sobol sensitivity indices of the 40 parameters. A ranking based on the sensitivity indices indicates that model output is most sensitive to snow parameters such as conductivity and grain size, and the drainage of melt ponds. The main effects and interactions among the most influential parameters are also estimated by a non-parametric regression technique based on generalized additive models. It is recommended research to be prioritized towards more accurately determining these most influential parameters values by observational studies or by improving existing parameterizations in the sea ice model.
Ma, Jun; Liu, Lei; Ge, Sai; Xue, Qiang; Li, Jiangshan; Wan, Yong; Hui, Xinminnan
2018-03-01
A quantitative description of aerobic waste degradation is important in evaluating landfill waste stability and economic management. This research aimed to develop a coupling model to predict the degree of aerobic waste degradation. On the basis of the first-order kinetic equation and the law of conservation of mass, we first developed the coupling model of aerobic waste degradation that considered temperature, initial moisture content and air injection volume to simulate and predict the chemical oxygen demand in the leachate. Three different laboratory experiments on aerobic waste degradation were simulated to test the model applicability. Parameter sensitivity analyses were conducted to evaluate the reliability of parameters. The coupling model can simulate aerobic waste degradation, and the obtained simulation agreed with the corresponding results of the experiment. Comparison of the experiment and simulation demonstrated that the coupling model is a new approach to predict aerobic waste degradation and can be considered as the basis for selecting the economic air injection volume and appropriate management in the future.
Stochastic inversion of cross-borehole radar data from metalliferous vein detection
NASA Astrophysics Data System (ADS)
Zeng, Zhaofa; Huai, Nan; Li, Jing; Zhao, Xueyu; Liu, Cai; Hu, Yingsa; Zhang, Ling; Hu, Zuzhi; Yang, Hui
2017-12-01
In the exploration and evaluation of the metalliferous veins with a cross-borehole radar system, traditional linear inversion methods (least squares inversion, LSQR) only get indirect parameters (permittivity, resistivity, or velocity) to estimate the target structure. They cannot accurately reflect the geological parameters of the metalliferous veins’ media properties. In order to get the intrinsic geological parameters and internal distribution, in this paper, we build a metalliferous veins model based on the stochastic effective medium theory, and carry out stochastic inversion and parameter estimation based on the Monte Carlo sampling algorithm. Compared with conventional LSQR, the stochastic inversion can get higher resolution inversion permittivity and velocity of the target body. We can estimate more accurately the distribution characteristics of abnormality and target internal parameters. It provides a new research idea to evaluate the properties of complex target media.
Robust and fast nonlinear optimization of diffusion MRI microstructure models.
Harms, R L; Fritz, F J; Tobisch, A; Goebel, R; Roebroeck, A
2017-07-15
Advances in biophysical multi-compartment modeling for diffusion MRI (dMRI) have gained popularity because of greater specificity than DTI in relating the dMRI signal to underlying cellular microstructure. A large range of these diffusion microstructure models have been developed and each of the popular models comes with its own, often different, optimization algorithm, noise model and initialization strategy to estimate its parameter maps. Since data fit, accuracy and precision is hard to verify, this creates additional challenges to comparability and generalization of results from diffusion microstructure models. In addition, non-linear optimization is computationally expensive leading to very long run times, which can be prohibitive in large group or population studies. In this technical note we investigate the performance of several optimization algorithms and initialization strategies over a few of the most popular diffusion microstructure models, including NODDI and CHARMED. We evaluate whether a single well performing optimization approach exists that could be applied to many models and would equate both run time and fit aspects. All models, algorithms and strategies were implemented on the Graphics Processing Unit (GPU) to remove run time constraints, with which we achieve whole brain dataset fits in seconds to minutes. We then evaluated fit, accuracy, precision and run time for different models of differing complexity against three common optimization algorithms and three parameter initialization strategies. Variability of the achieved quality of fit in actual data was evaluated on ten subjects of each of two population studies with a different acquisition protocol. We find that optimization algorithms and multi-step optimization approaches have a considerable influence on performance and stability over subjects and over acquisition protocols. The gradient-free Powell conjugate-direction algorithm was found to outperform other common algorithms in terms of run time, fit, accuracy and precision. Parameter initialization approaches were found to be relevant especially for more complex models, such as those involving several fiber orientations per voxel. For these, a fitting cascade initializing or fixing parameter values in a later optimization step from simpler models in an earlier optimization step further improved run time, fit, accuracy and precision compared to a single step fit. This establishes and makes available standards by which robust fit and accuracy can be achieved in shorter run times. This is especially relevant for the use of diffusion microstructure modeling in large group or population studies and in combining microstructure parameter maps with tractography results. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Automatic Parametrization of Somatosensory Evoked Potentials With Chirp Modeling.
Vayrynen, Eero; Noponen, Kai; Vipin, Ashwati; Thow, X Y; Al-Nashash, Hasan; Kortelainen, Jukka; All, Angelo
2016-09-01
In this paper, an approach using polynomial phase chirp signals to model somatosensory evoked potentials (SEPs) is proposed. SEP waveforms are assumed as impulses undergoing group velocity dispersion while propagating along a multipath neural connection. Mathematical analysis of pulse dispersion resulting in chirp signals is performed. An automatic parameterization of SEPs is proposed using chirp models. A Particle Swarm Optimization algorithm is used to optimize the model parameters. Features describing the latencies and amplitudes of SEPs are automatically derived. A rat model is then used to evaluate the automatic parameterization of SEPs in two experimental cases, i.e., anesthesia level and spinal cord injury (SCI). Experimental results show that chirp-based model parameters and the derived SEP features are significant in describing both anesthesia level and SCI changes. The proposed automatic optimization based approach for extracting chirp parameters offers potential for detailed SEP analysis in future studies. The method implementation in Matlab technical computing language is provided online.
Estimation of dynamic stability parameters from drop model flight tests
NASA Technical Reports Server (NTRS)
Chambers, J. R.; Iliff, K. W.
1981-01-01
A recent NASA application of a remotely-piloted drop model to studies of the high angle-of-attack and spinning characteristics of a fighter configuration has provided an opportunity to evaluate and develop parameter estimation methods for the complex aerodynamic environment associated with high angles of attack. The paper discusses the overall drop model operation including descriptions of the model, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods used. Static and dynamic stability derivatives were obtained for an angle-of-attack range from -20 deg to 53 deg. The results of the study indicated that the variations of the estimates with angle of attack were consistent for most of the static derivatives, and the effects of configuration modifications to the model (such as nose strakes) were apparent in the static derivative estimates. The dynamic derivatives exhibited greater uncertainty levels than the static derivatives, possibly due to nonlinear aerodynamics, model response characteristics, or additional derivatives.
NASA Astrophysics Data System (ADS)
Ben Abdessalem, Anis; Dervilis, Nikolaos; Wagg, David; Worden, Keith
2018-01-01
This paper will introduce the use of the approximate Bayesian computation (ABC) algorithm for model selection and parameter estimation in structural dynamics. ABC is a likelihood-free method typically used when the likelihood function is either intractable or cannot be approached in a closed form. To circumvent the evaluation of the likelihood function, simulation from a forward model is at the core of the ABC algorithm. The algorithm offers the possibility to use different metrics and summary statistics representative of the data to carry out Bayesian inference. The efficacy of the algorithm in structural dynamics is demonstrated through three different illustrative examples of nonlinear system identification: cubic and cubic-quintic models, the Bouc-Wen model and the Duffing oscillator. The obtained results suggest that ABC is a promising alternative to deal with model selection and parameter estimation issues, specifically for systems with complex behaviours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z. Q.; Chim, W. K.; Chiam, S. Y
2011-11-01
In this work, photoelectron spectroscopy is used to characterize the band alignment of lanthanum aluminate heterostructures which possess a wide range of potential applications. It is found that our experimental slope parameter agrees with theory using the metal-induced gap states model while the interface induced gap states (IFIGS) model yields unsatisfactory results. We show that this discrepancy can be attributed to the correlation between the dielectric work function and the electronegativity in the IFIGS model. It is found that the original trend, as established largely by metals, may not be accurate for larger band gap materials. By using a newmore » correlation, our experimental data shows good agreement of the slope parameter using the IFIGS model. This correlation, therefore, plays a crucial role in heterostructures involving wider bandgap materials for accurate band alignment prediction using the IFIGS model.« less
NASA Astrophysics Data System (ADS)
Hu, Shun; Shi, Liangsheng; Zha, Yuanyuan; Williams, Mathew; Lin, Lin
2017-12-01
Improvements to agricultural water and crop managements require detailed information on crop and soil states, and their evolution. Data assimilation provides an attractive way of obtaining these information by integrating measurements with model in a sequential manner. However, data assimilation for soil-water-atmosphere-plant (SWAP) system is still lack of comprehensive exploration due to a large number of variables and parameters in the system. In this study, simultaneous state-parameter estimation using ensemble Kalman filter (EnKF) was employed to evaluate the data assimilation performance and provide advice on measurement design for SWAP system. The results demonstrated that a proper selection of state vector is critical to effective data assimilation. Especially, updating the development stage was able to avoid the negative effect of ;phenological shift;, which was caused by the contrasted phenological stage in different ensemble members. Simultaneous state-parameter estimation (SSPE) assimilation strategy outperformed updating-state-only (USO) assimilation strategy because of its ability to alleviate the inconsistency between model variables and parameters. However, the performance of SSPE assimilation strategy could deteriorate with an increasing number of uncertain parameters as a result of soil stratification and limited knowledge on crop parameters. In addition to the most easily available surface soil moisture (SSM) and leaf area index (LAI) measurements, deep soil moisture, grain yield or other auxiliary data were required to provide sufficient constraints on parameter estimation and to assure the data assimilation performance. This study provides an insight into the response of soil moisture and grain yield to data assimilation in SWAP system and is helpful for soil moisture movement and crop growth modeling and measurement design in practice.
NASA Astrophysics Data System (ADS)
Dugger, A. L.; Rafieeinasab, A.; Gochis, D.; Yu, W.; McCreight, J. L.; Karsten, L. R.; Pan, L.; Zhang, Y.; Sampson, K. M.; Cosgrove, B.
2016-12-01
Evaluation of physically-based hydrologic models applied across large regions can provide insight into dominant controls on runoff generation and how these controls vary based on climatic, biological, and geophysical setting. To make this leap, however, we need to combine knowledge of regional forcing skill, model parameter and physics assumptions, and hydrologic theory. If we can successfully do this, we also gain information on how well our current approximations of these dominant physical processes are represented in continental-scale models. In this study, we apply this diagnostic approach to a 5-year retrospective implementation of the WRF-Hydro community model configured for the U.S. National Weather Service's National Water Model (NWM). The NWM is a water prediction model in operations over the contiguous U.S. as of summer 2016, providing real-time estimates and forecasts out to 30 days of streamflow across 2.7 million stream reaches as well as distributed snowpack, soil moisture, and evapotranspiration at 1-km resolution. The WRF-Hydro system permits not only the standard simulation of vertical energy and water fluxes common in continental-scale models, but augments these processes with lateral redistribution of surface and subsurface water, simple groundwater dynamics, and channel routing. We evaluate 5 years of NLDAS-2 precipitation forcing and WRF-Hydro streamflow and evapotranspiration simulation across the contiguous U.S. at a range of spatial (gage, basin, ecoregion) and temporal (hourly, daily, monthly) scales and look for consistencies and inconsistencies in performance in terms of bias, timing, and extremes. Leveraging results from other CONUS-scale hydrologic evaluation studies, we translate our performance metrics into a matrix of likely dominant process controls and error sources (forcings, parameter estimates, and model physics). We test our hypotheses in a series of controlled model experiments on a subset of representative basins from distinct "problem" environments (Southeast U.S. Coastal Plain, Central and Coastal Texas, Northern Plains, and Arid Southwest). The results from these longer-term model diagnostics will inform future improvements in forcing bias correction, parameter calibration, and physics developments in the National Water Model.
2012-01-01
Background Artificial neural networks (ANNs) are widely studied for evaluating diseases. This paper discusses the intelligence mode of an ANN in grading the diagnosis of liver fibrosis by duplex ultrasonogaphy. Methods 239 patients who were confirmed as having liver fibrosis or cirrhosis by ultrasound guided liver biopsy were investigated in this study. We quantified ultrasonographic parameters as significant parameters using a data optimization procedure applied to an ANN. 179 patients were typed at random as the training group; 60 additional patients were consequently enrolled as the validating group. Performance of the ANN was evaluated according to accuracy, sensitivity, specificity, Youden’s index and receiver operating characteristic (ROC) analysis. Results 5 ultrasonographic parameters; i.e., the liver parenchyma, thickness of spleen, hepatic vein (HV) waveform, hepatic artery pulsatile index (HAPI) and HV damping index (HVDI), were enrolled as the input neurons in the ANN model. The sensitivity, specificity and accuracy of the ANN model for quantitative diagnosis of liver fibrosis were 95.0%, 85.0% and 88.3%, respectively. The Youden’s index (YI) was 0.80. Conclusions The established ANN model had good sensitivity and specificity in quantitative diagnosis of hepatic fibrosis or liver cirrhosis. Our study suggests that the ANN model based on duplex ultrasound may help non-invasive grading diagnosis of liver fibrosis in clinical practice. PMID:22716936
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Jesse D.; Chang, Grace; Magalen, Jason
A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presencemore » of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .« less
Park, Yoon Soo; Lee, Young-Sun; Xing, Kuan
2016-01-01
This study investigates the impact of item parameter drift (IPD) on parameter and ability estimation when the underlying measurement model fits a mixture distribution, thereby violating the item invariance property of unidimensional item response theory (IRT) models. An empirical study was conducted to demonstrate the occurrence of both IPD and an underlying mixture distribution using real-world data. Twenty-one trended anchor items from the 1999, 2003, and 2007 administrations of Trends in International Mathematics and Science Study (TIMSS) were analyzed using unidimensional and mixture IRT models. TIMSS treats trended anchor items as invariant over testing administrations and uses pre-calibrated item parameters based on unidimensional IRT. However, empirical results showed evidence of two latent subgroups with IPD. Results also showed changes in the distribution of examinee ability between latent classes over the three administrations. A simulation study was conducted to examine the impact of IPD on the estimation of ability and item parameters, when data have underlying mixture distributions. Simulations used data generated from a mixture IRT model and estimated using unidimensional IRT. Results showed that data reflecting IPD using mixture IRT model led to IPD in the unidimensional IRT model. Changes in the distribution of examinee ability also affected item parameters. Moreover, drift with respect to item discrimination and distribution of examinee ability affected estimates of examinee ability. These findings demonstrate the need to caution and evaluate IPD using a mixture IRT framework to understand its effects on item parameters and examinee ability.
Park, Yoon Soo; Lee, Young-Sun; Xing, Kuan
2016-01-01
This study investigates the impact of item parameter drift (IPD) on parameter and ability estimation when the underlying measurement model fits a mixture distribution, thereby violating the item invariance property of unidimensional item response theory (IRT) models. An empirical study was conducted to demonstrate the occurrence of both IPD and an underlying mixture distribution using real-world data. Twenty-one trended anchor items from the 1999, 2003, and 2007 administrations of Trends in International Mathematics and Science Study (TIMSS) were analyzed using unidimensional and mixture IRT models. TIMSS treats trended anchor items as invariant over testing administrations and uses pre-calibrated item parameters based on unidimensional IRT. However, empirical results showed evidence of two latent subgroups with IPD. Results also showed changes in the distribution of examinee ability between latent classes over the three administrations. A simulation study was conducted to examine the impact of IPD on the estimation of ability and item parameters, when data have underlying mixture distributions. Simulations used data generated from a mixture IRT model and estimated using unidimensional IRT. Results showed that data reflecting IPD using mixture IRT model led to IPD in the unidimensional IRT model. Changes in the distribution of examinee ability also affected item parameters. Moreover, drift with respect to item discrimination and distribution of examinee ability affected estimates of examinee ability. These findings demonstrate the need to caution and evaluate IPD using a mixture IRT framework to understand its effects on item parameters and examinee ability. PMID:26941699
Deformation-Aware Log-Linear Models
NASA Astrophysics Data System (ADS)
Gass, Tobias; Deselaers, Thomas; Ney, Hermann
In this paper, we present a novel deformation-aware discriminative model for handwritten digit recognition. Unlike previous approaches our model directly considers image deformations and allows discriminative training of all parameters, including those accounting for non-linear transformations of the image. This is achieved by extending a log-linear framework to incorporate a latent deformation variable. The resulting model has an order of magnitude less parameters than competing approaches to handling image deformations. We tune and evaluate our approach on the USPS task and show its generalization capabilities by applying the tuned model to the MNIST task. We gain interesting insights and achieve highly competitive results on both tasks.
Asare, Ernest Ohene; Tompkins, Adrian Mark; Bomblies, Arne
2016-01-01
Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture.
Asare, Ernest Ohene; Tompkins, Adrian Mark; Bomblies, Arne
2016-01-01
Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture. PMID:27003834
NASA Technical Reports Server (NTRS)
Gross, Bernard
1996-01-01
Material characterization parameters obtained from naturally flawed specimens are necessary for reliability evaluation of non-deterministic advanced ceramic structural components. The least squares best fit method is applied to the three parameter uniaxial Weibull model to obtain the material parameters from experimental tests on volume or surface flawed specimens subjected to pure tension, pure bending, four point or three point loading. Several illustrative example problems are provided.
The predictive consequences of parameterization
NASA Astrophysics Data System (ADS)
White, J.; Hughes, J. D.; Doherty, J. E.
2013-12-01
In numerical groundwater modeling, parameterization is the process of selecting the aspects of a computer model that will be allowed to vary during history matching. This selection process is dependent on professional judgment and is, therefore, inherently subjective. Ideally, a robust parameterization should be commensurate with the spatial and temporal resolution of the model and should include all uncertain aspects of the model. Limited computing resources typically require reducing the number of adjustable parameters so that only a subset of the uncertain model aspects are treated as estimable parameters; the remaining aspects are treated as fixed parameters during history matching. We use linear subspace theory to develop expressions for the predictive error incurred by fixing parameters. The predictive error is comprised of two terms. The first term arises directly from the sensitivity of a prediction to fixed parameters. The second term arises from prediction-sensitive adjustable parameters that are forced to compensate for fixed parameters during history matching. The compensation is accompanied by inappropriate adjustment of otherwise uninformed, null-space parameter components. Unwarranted adjustment of null-space components away from prior maximum likelihood values may produce bias if a prediction is sensitive to those components. The potential for subjective parameterization choices to corrupt predictions is examined using a synthetic model. Several strategies are evaluated, including use of piecewise constant zones, use of pilot points with Tikhonov regularization and use of the Karhunen-Loeve transformation. The best choice of parameterization (as defined by minimum error variance) is strongly dependent on the types of predictions to be made by the model.
Bayesian Parameter Estimation for Heavy-Duty Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Eric; Konan, Arnaud; Duran, Adam
2017-03-28
Accurate vehicle parameters are valuable for design, modeling, and reporting. Estimating vehicle parameters can be a very time-consuming process requiring tightly-controlled experimentation. This work describes a method to estimate vehicle parameters such as mass, coefficient of drag/frontal area, and rolling resistance using data logged during standard vehicle operation. The method uses Monte Carlo to generate parameter sets which is fed to a variant of the road load equation. Modeled road load is then compared to measured load to evaluate the probability of the parameter set. Acceptance of a proposed parameter set is determined using the probability ratio to the currentmore » state, so that the chain history will give a distribution of parameter sets. Compared to a single value, a distribution of possible values provides information on the quality of estimates and the range of possible parameter values. The method is demonstrated by estimating dynamometer parameters. Results confirm the method's ability to estimate reasonable parameter sets, and indicates an opportunity to increase the certainty of estimates through careful selection or generation of the test drive cycle.« less
NASA Astrophysics Data System (ADS)
Creixell-Mediante, Ester; Jensen, Jakob S.; Naets, Frank; Brunskog, Jonas; Larsen, Martin
2018-06-01
Finite Element (FE) models of complex structural-acoustic coupled systems can require a large number of degrees of freedom in order to capture their physical behaviour. This is the case in the hearing aid field, where acoustic-mechanical feedback paths are a key factor in the overall system performance and modelling them accurately requires a precise description of the strong interaction between the light-weight parts and the internal and surrounding air over a wide frequency range. Parametric optimization of the FE model can be used to reduce the vibroacoustic feedback in a device during the design phase; however, it requires solving the model iteratively for multiple frequencies at different parameter values, which becomes highly time consuming when the system is large. Parametric Model Order Reduction (pMOR) techniques aim at reducing the computational cost associated with each analysis by projecting the full system into a reduced space. A drawback of most of the existing techniques is that the vector basis of the reduced space is built at an offline phase where the full system must be solved for a large sample of parameter values, which can also become highly time consuming. In this work, we present an adaptive pMOR technique where the construction of the projection basis is embedded in the optimization process and requires fewer full system analyses, while the accuracy of the reduced system is monitored by a cheap error indicator. The performance of the proposed method is evaluated for a 4-parameter optimization of a frequency response for a hearing aid model, evaluated at 300 frequencies, where the objective function evaluations become more than one order of magnitude faster than for the full system.
NASA Astrophysics Data System (ADS)
Morway, E. D.; Niswonger, R. G.; Nishikawa, T.
2013-12-01
The solute-transport model MT3DMS was modified to simulate transport in the unsaturated-zone by incorporating the additional flow terms calculated by the Unsaturated-Zone Flow (UZF) package developed for MODFLOW. Referred to as UZF-MT3DMS, the model simulates advection and dispersion of conservative and reactive solutes in unsaturated and saturated porous media. Significant time savings are realized owing to the efficiency of the kinematic -wave approximation used by the UZF1 package relative to Richards' equation-based approaches, facilitating the use of automated parameter-estimation routines wherein thousands of model runs may be required. Currently, UZF-MT3DMS is applied to two real-world applications of existing MODFLOW and MT3DMS models retro-fitted to use the UZF1 package for simulating the unsaturated component of the sub-surface system. In the first application, two regional-scale investigations located in Colorado's Lower Arkansas River Valley (LARV) are developed to evaluate the extent and severity of unsaturated-zone salinization contributing to crop yield loss. Preliminary results indicate root zone concentrations over both regions are at or above salinity-thresholds of most crop types grown in the LARV. Regional-scale modeling investigations of salinization found in the literature commonly use lumped-parameter models rather than physically-based distributed-parameter models. In the second application, located near Joshua Tree, CA, nitrate loading to the underlying unconfined aquifer from domestic septic systems is evaluated. Due to the region's thick unsaturated-zone and correspondingly long unsaturated-zone residence times (multi-decade), UZF-MT3DMS enabled direct simulation of spatially-varying concentration break-through curves at the water table.
Emissivity model of steel 430 during the growth of oxide layer at 800-1100 K and 1.5 μm
NASA Astrophysics Data System (ADS)
Xing, Wei; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue
2018-01-01
This work studied the variation in spectral emissivity with growth of oxide layer at the different temperatures. For this reason, we measured the normal spectral emissivity during the growth of oxide layer on the sample surface at a wavelength of 1.5 μm over a temperature range 800-1100 K. In the experiment, the temperature was measured by the two thermocouples, which were symmetrically welded onto the front surface of specimens. The average of their readings was regarded as the true temperature. The detector should be perpendicular to the specimen surface as accurately as possible. The variation in spectral emissivity with growth of oxide layer was evaluated at a certain temperature. Altogether 11 emissivity models were evaluated. The conclusion was gained that the more the number of parameters used in the models was, the better the fitting accuracy became. On the whole, all the PEE models, the four-parameter LEE model and the five-parameter PFE, PLE and LEE models could be employed to well fit this kind of variation. The variation in spectral emissivity with temperature was determined at a certain thickness of oxide film. Almost all the models studied in this paper could be used to accurately evaluate this variation. The approximate models of spectral emissivity as a function of temperature and oxide-layer thickness were proposed. The strong oscillations of spectral emissivity were observed, which were affirmed to arise from the interference effect between the two radiations stemming from the oxide layer and from the substrate. The uncertainties in the temperature of steel 430 generated only by the surface oxidization were approximately 4.1-10.7 K in this experiment.
NASA Astrophysics Data System (ADS)
Mues, Andrea; Lauer, Axel; Lupascu, Aurelia; Rupakheti, Maheswar; Kuik, Friderike; Lawrence, Mark G.
2018-06-01
An evaluation of the meteorology simulated using the Weather Research and Forecast (WRF) model for the region of south Asia and Nepal with a focus on the Kathmandu Valley is presented. A particular focus of the model evaluation is placed on meteorological parameters that are highly relevant to air quality such as wind speed and direction, boundary layer height and precipitation. The same model setup is then used for simulations with WRF including chemistry and aerosols (WRF-Chem). A WRF-Chem simulation has been performed using the state-of-the-art emission database, EDGAR HTAP v2.2, which is the Emission Database for Global Atmospheric Research of the Joint Research Centre (JRC) of the European Commission, in cooperation with the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) organized by the United Nations Economic Commission for Europe, along with a sensitivity simulation using observation-based black carbon emission fluxes for the Kathmandu Valley. The WRF-Chem simulations are analyzed in comparison to black carbon measurements in the valley and to each other. The evaluation of the WRF simulation with a horizontal resolution of 3×3 km2 shows that the model is often able to capture important meteorological parameters inside the Kathmandu Valley and the results for most meteorological parameters are well within the range of biases found in other WRF studies especially in mountain areas. But the evaluation results also clearly highlight the difficulties of capturing meteorological parameters in such complex terrain and reproducing subgrid-scale processes with a horizontal resolution of 3×3 km2. The measured black carbon concentrations are typically systematically and strongly underestimated by WRF-Chem. A sensitivity study with improved emissions in the Kathmandu Valley shows significantly reduced biases but also underlines several limitations of such corrections. Further improvements of the model and of the emission data are needed before being able to use the model to robustly assess air pollution mitigation scenarios in the Kathmandu region.
Performance of an Automated-Mixed-Traffic-Vehicle /AMTV/ System. [urban people mover
NASA Technical Reports Server (NTRS)
Peng, T. K. C.; Chon, K.
1978-01-01
This study analyzes the operation and evaluates the expected performance of a proposed automatic guideway transit system which uses low-speed Automated Mixed Traffic Vehicles (AMTV's). Vehicle scheduling and headway control policies are evaluated with a transit system simulation model. The effect of mixed-traffic interference on the average vehicle speed is examined with a vehicle-pedestrian interface model. Control parameters regulating vehicle speed are evaluated for safe stopping and passenger comfort.
A systematic uncertainty analysis of an evaluative fate and exposure model.
Hertwich, E G; McKone, T E; Pease, W S
2000-08-01
Multimedia fate and exposure models are widely used to regulate the release of toxic chemicals, to set cleanup standards for contaminated sites, and to evaluate emissions in life-cycle assessment. CalTOX, one of these models, is used to calculate the potential dose, an outcome that is combined with the toxicity of the chemical to determine the Human Toxicity Potential (HTP), used to aggregate and compare emissions. The comprehensive assessment of the uncertainty in the potential dose calculation in this article serves to provide the information necessary to evaluate the reliability of decisions based on the HTP A framework for uncertainty analysis in multimedia risk assessment is proposed and evaluated with four types of uncertainty. Parameter uncertainty is assessed through Monte Carlo analysis. The variability in landscape parameters is assessed through a comparison of potential dose calculations for different regions in the United States. Decision rule uncertainty is explored through a comparison of the HTP values under open and closed system boundaries. Model uncertainty is evaluated through two case studies, one using alternative formulations for calculating the plant concentration and the other testing the steady state assumption for wet deposition. This investigation shows that steady state conditions for the removal of chemicals from the atmosphere are not appropriate and result in an underestimate of the potential dose for 25% of the 336 chemicals evaluated.
NASA Astrophysics Data System (ADS)
Meyer, P. D.; Yabusaki, S.; Curtis, G. P.; Ye, M.; Fang, Y.
2011-12-01
A three-dimensional, variably-saturated flow and multicomponent biogeochemical reactive transport model of uranium bioremediation was used to generate synthetic data . The 3-D model was based on a field experiment at the U.S. Dept. of Energy Rifle Integrated Field Research Challenge site that used acetate biostimulation of indigenous metal reducing bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. A key assumption in past modeling studies at this site was that a comprehensive reaction network could be developed largely through one-dimensional modeling. Sensitivity analyses and parameter estimation were completed for a 1-D reactive transport model abstracted from the 3-D model to test this assumption, to identify parameters with the greatest potential to contribute to model predictive uncertainty, and to evaluate model structure and data limitations. Results showed that sensitivities of key biogeochemical concentrations varied in space and time, that model nonlinearities and/or parameter interactions have a significant impact on calculated sensitivities, and that the complexity of the model's representation of processes affecting Fe(II) in the system may make it difficult to correctly attribute observed Fe(II) behavior to modeled processes. Non-uniformity of the 3-D simulated groundwater flux and averaging of the 3-D synthetic data for use as calibration targets in the 1-D modeling resulted in systematic errors in the 1-D model parameter estimates and outputs. This occurred despite using the same reaction network for 1-D modeling as used in the data-generating 3-D model. Predictive uncertainty of the 1-D model appeared to be significantly underestimated by linear parameter uncertainty estimates.
A parameter estimation algorithm for spatial sine testing - Theory and evaluation
NASA Technical Reports Server (NTRS)
Rost, R. W.; Deblauwe, F.
1992-01-01
This paper presents the theory and an evaluation of a spatial sine testing parameter estimation algorithm that uses directly the measured forced mode of vibration and the measured force vector. The parameter estimation algorithm uses an ARMA model and a recursive QR algorithm is applied for data reduction. In this first evaluation, the algorithm has been applied to a frequency response matrix (which is a particular set of forced mode of vibration) using a sliding frequency window. The objective of the sliding frequency window is to execute the analysis simultaneously with the data acquisition. Since the pole values and the modal density are obtained from this analysis during the acquisition, the analysis information can be used to help determine the forcing vectors during the experimental data acquisition.
Barth, Gilbert R.; Hill, M.C.
2005-01-01
This paper evaluates the importance of seven types of parameters to virus transport: hydraulic conductivity, porosity, dispersivity, sorption rate and distribution coefficient (representing physical-chemical filtration), and in-solution and adsorbed inactivation (representing virus inactivation). The first three parameters relate to subsurface transport in general while the last four, the sorption rate, distribution coefficient, and in-solution and adsorbed inactivation rates, represent the interaction of viruses with the porous medium and their ability to persist. The importance of four types of observations to estimate the virus-transport parameters are evaluated: hydraulic heads, flow, temporal moments of conservative-transport concentrations, and virus concentrations. The evaluations are conducted using one- and two-dimensional homogeneous simulations, designed from published field experiments, and recently developed sensitivity-analysis methods. Sensitivity to the transport-simulation time-step size is used to evaluate the importance of numerical solution difficulties. Results suggest that hydraulic conductivity, porosity, and sorption are most important to virus-transport predictions. Most observation types provide substantial information about hydraulic conductivity and porosity; only virus-concentration observations provide information about sorption and inactivation. The observations are not sufficient to estimate these important parameters uniquely. Even with all observation types, there is extreme parameter correlation between porosity and hydraulic conductivity and between the sorption rate and in-solution inactivation. Parameter estimation was accomplished by fixing values of porosity and in-solution inactivation.
NASA Astrophysics Data System (ADS)
Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry
2016-04-01
Reliable estimates of carbon fluxes and states at regional scales are required to reduce uncertainties in regional carbon balance estimates and to support decision making in environmental politics. In this work the Community Land Model version 4.5 (CLM4.5-BGC) was applied at a high spatial resolution (1 km2) for the Rur catchment in western Germany. In order to improve the model-data consistency of net ecosystem exchange (NEE) and leaf area index (LAI) for this study area, five plant functional type (PFT)-specific CLM4.5-BGC parameters were estimated with time series of half-hourly NEE data for one year in 2011/2012, using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, a Markov Chain Monte Carlo (MCMC) approach. The parameters were estimated separately for four different plant functional types (needleleaf evergreen temperate tree, broadleaf deciduous temperate tree, C3-grass and C3-crop) at four different sites. The four sites are located inside or close to the Rur catchment. We evaluated modeled NEE for one year in 2012/2013 with NEE measured at seven eddy covariance sites in the catchment, including the four parameter estimation sites. Modeled LAI was evaluated by means of LAI derived from remotely sensed RapidEye images of about 18 days in 2011/2012. Performance indices were based on a comparison between measurements and (i) a reference run with CLM default parameters, and (ii) a 60 instance CLM ensemble with parameters sampled from the DREAM posterior probability density functions (pdfs). The difference between the observed and simulated NEE sum reduced 23% if estimated parameters instead of default parameters were used as input. The mean absolute difference between modeled and measured LAI was reduced by 59% on average. Simulated LAI was not only improved in terms of the absolute value but in some cases also in terms of the timing (beginning of vegetation onset), which was directly related to a substantial improvement of the NEE estimates in spring. In order to obtain a more comprehensive estimate of the model uncertainty, a second CLM ensemble was set up, where initial conditions and atmospheric forcings were perturbed in addition to the parameter estimates. This resulted in very high standard deviations (STD) of the modeled annual NEE sums for C3-grass and C3-crop PFTs, ranging between 24.1 and 225.9 gC m-2 y-1, compared to STD = 0.1 - 3.4 gC m-2 y-1 (effect of parameter uncertainty only, without additional perturbation of initial states and atmospheric forcings). The higher spread of modeled NEE for the C3-crop and C3-grass indicated that the model uncertainty was notably higher for those PFTs compared to the forest-PFTs. Our findings highlight the potential of parameter and uncertainty estimation to support the understanding and further development of land surface models such as CLM.
Verification of reflectance models in turbid waters
NASA Technical Reports Server (NTRS)
Tanis, F. J.; Lyzenga, D. R.
1981-01-01
Inherent optical parameters of very turbid waters were used to evaluate existing water reflectance models. Measured upwelling radiance spectra and Monte Carlo simulations of the radiative transfer equations were compared with results from models based upon two flow, quasi-single scattering, augmented isotropic scattering, and power series approximation. Each model was evaluated for three separate components of upwelling radiance: (1) direct sunlight; (2) diffuse skylight; and (3) internally reflected light. Limitations of existing water reflectance models as applied to turbid waters and possible applications to the extraction of water constituent information are discussed.
Wedenberg, Minna; Lind, Bengt K; Hårdemark, Björn
2013-04-01
The biological effects of particles are often expressed in relation to that of photons through the concept of relative biological effectiveness, RBE. In proton radiotherapy, a constant RBE of 1.1 is usually assumed. However, there is experimental evidence that RBE depends on various factors. The aim of this study is to develop a model to predict the RBE based on linear energy transfer (LET), dose, and the tissue specific parameter α/β of the linear-quadratic model for the reference radiation. Moreover, the model should capture the basic features of the RBE using a minimum of assumptions, each supported by experimental data. The α and β parameters for protons were studied with respect to their dependence on LET. An RBE model was proposed where the dependence of LET is affected by the (α/β)phot ratio of photons. Published cell survival data with a range of well-defined LETs and cell types were selected for model evaluation rendering a total of 10 cell lines and 24 RBE values. A statistically significant relation was found between α for protons and LET. Moreover, the strength of that relation varied significantly with (α/β)phot. In contrast, no significant relation between β and LET was found. On the whole, the resulting RBE model provided a significantly improved fit (p-value < 0.01) to the experimental data compared to the standard constant RBE. By accounting for the α/β ratio of photons, clearer trends between RBE and LET of protons were found, and our results suggest that late responding tissues are more sensitive to LET changes than early responding tissues and most tumors. An advantage with the proposed RBE model in optimization and evaluation of treatment plans is that it only requires dose, LET, and (α/β)phot as input parameters. Hence, no proton specific biological parameters are needed.
NASA Technical Reports Server (NTRS)
Dardner, B. R.; Blad, B. L.; Thompson, D. R.; Henderson, K. E.
1985-01-01
Reflectance and agronomic Thematic Mapper (TM) data were analyzed to determine possible data transformations for evaluating several plant parameters of corn. Three transformation forms were used: the ratio of two TM bands, logarithms of two-band ratios, and normalized differences of two bands. Normalized differences and logarithms of two-band ratios responsed similarly in the equations for estimating the plant growth parameters evaluated in this study. Two-term equations were required to obtain the maximum predictability of percent ground cover, canopy moisture content, and total wet phytomass. Standard error of estimate values were 15-26 percent lower for two-term estimates of these parameters than for one-term estimates. The terms log(TM4/TM2) and (TM4/TM5) produced the maximum predictability for leaf area and dry green leaf weight, respectively. The middle infrared bands TM5 and TM7 are essential for maximizing predictability for all measured plant parameters except leaf area index. The estimating models were evaluated over bare soil to discriminate between equations which are statistically similar. Qualitative interpretations of the resulting prediction equations are consistent with general agronomic and remote sensing theory.
On Non-Linear Sensitivity of Marine Biological Models to Parameter Variations
2007-01-01
M.B., 2002. Understanding uncertain enviromental systems. In: Grasman, J., van Straten, G. (Eds.), Predictability and Nonlinear Modelling in Natural...model evaluations to compute sensitivity indices. Comput. Phys. Commun. 145, 280–297. Saltelli, A., Andres, T.H., Homma, T., 1993. Some new techniques
USDA-ARS?s Scientific Manuscript database
Hydrologic models are essential tools for environmental assessment of agricultural non-point source pollution. The automatic calibration of hydrologic models, though efficient, demands significant computational power, which can limit its application. The study objective was to investigate a cost e...
Sánchez, Benjamín J; Pérez-Correa, José R; Agosin, Eduardo
2014-09-01
Dynamic flux balance analysis (dFBA) has been widely employed in metabolic engineering to predict the effect of genetic modifications and environmental conditions in the cell׳s metabolism during dynamic cultures. However, the importance of the model parameters used in these methodologies has not been properly addressed. Here, we present a novel and simple procedure to identify dFBA parameters that are relevant for model calibration. The procedure uses metaheuristic optimization and pre/post-regression diagnostics, fixing iteratively the model parameters that do not have a significant role. We evaluated this protocol in a Saccharomyces cerevisiae dFBA framework calibrated for aerobic fed-batch and anaerobic batch cultivations. The model structures achieved have only significant, sensitive and uncorrelated parameters and are able to calibrate different experimental data. We show that consumption, suboptimal growth and production rates are more useful for calibrating dynamic S. cerevisiae metabolic models than Boolean gene expression rules, biomass requirements and ATP maintenance. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xiang; Yao, Zhiyuan; He, Yigang; Dai, Shichao
2017-09-01
Ultrasonic motor operation relies on high-frequency vibration of a piezoelectric vibrator and interface friction between the stator and rotor/slider, which can cause temperature rise of the motor under continuous operation, and can affect motor parameters and performance in turn. In this paper, an integral model is developed to study the thermal-mechanical-electric coupling dynamics in a typical standing wave ultrasonic motor. Stick-slip motion at the contact interface and the temperature dependence of material parameters of the stator are taken into account in this model. The elastic, piezoelectric and dielectric material coefficients of the piezoelectric ceramic, as a function of temperature, are determined experimentally using a resonance method. The critical parameters in the model are identified via measured results. The resulting model can be used to evaluate the variation in output characteristics of the motor caused by the thermal-mechanical-electric coupling effects. Furthermore, the dynamic temperature rise of the motor can be accurately predicted under different input parameters using the developed model, which will contribute to improving the reliable life of a motor for long-term running.
Method of Individual Forecasting of Technical State of Logging Machines
NASA Astrophysics Data System (ADS)
Kozlov, V. G.; Gulevsky, V. A.; Skrypnikov, A. V.; Logoyda, V. S.; Menzhulova, A. S.
2018-03-01
Development of the model that evaluates the possibility of failure requires the knowledge of changes’ regularities of technical condition parameters of the machines in use. To study the regularities, the need to develop stochastic models that take into account physical essence of the processes of destruction of structural elements of the machines, the technology of their production, degradation and the stochastic properties of the parameters of the technical state and the conditions and modes of operation arose.
NASA Astrophysics Data System (ADS)
Romano, N.; Petroselli, A.; Grimaldi, S.
2012-04-01
With the aim of combining the practical advantages of the Soil Conservation Service - Curve Number (SCS-CN) method and Green-Ampt (GA) infiltration model, we have developed a mixed procedure, which is referred to as CN4GA (Curve Number for Green-Ampt). The basic concept is that, for a given storm, the computed SCS-CN total net rainfall amount is used to calibrate the soil hydraulic conductivity parameter of the Green-Ampt model so as to distribute in time the information provided by the SCS-CN method. In a previous contribution, the proposed mixed procedure was evaluated on 100 observed events showing encouraging results. In this study, a sensitivity analysis is carried out to further explore the feasibility of applying the CN4GA tool in small ungauged catchments. The proposed mixed procedure constrains the GA model with boundary and initial conditions so that the GA soil hydraulic parameters are expected to be insensitive toward the net hyetograph peak. To verify and evaluate this behaviour, synthetic design hyetograph and synthetic rainfall time series are selected and used in a Monte Carlo analysis. The results are encouraging and confirm that the parameter variability makes the proposed method an appropriate tool for hydrologic predictions in ungauged catchments. Keywords: SCS-CN method, Green-Ampt method, rainfall excess, ungauged basins, design hydrograph, rainfall-runoff modelling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nieves-Chinchilla, T.; Linton, M. G.; Hidalgo, M. A.
We present an analytical model to describe magnetic flux-rope topologies. When these structures are observed embedded in Interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature, they are called Magnetic Clouds (MCs). Our model extends the circular-cylindrical concept of Hidalgo et al. by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of MC geometrical information and orientation. The generalized model provides flexibility for implementation in 3D MHD simulations. Here, we evaluate its performance in the reconstruction ofmore » MCs in in situ observations. Four Earth-directed ICME events, observed by the Wind spacecraft, are used to validate the technique. The events are selected from the ICME Wind list with the magnetic obstacle boundaries chosen consistently with the magnetic field and plasma in situ observations and with a new parameter (EPP, the Electron Pitch angle distribution Parameter) which quantifies the bidirectionally of the plasma electrons. The goodness of the fit is evaluated with a single correlation parameter to enable comparative analysis of the events. In general, at first glance, the model fits the selected events very well. However, a detailed analysis of events with signatures of significant compression indicates the need to explore geometries other than the circular-cylindrical. An extension of our current modeling framework to account for such non-circular CMEs will be presented in a forthcoming publication.« less
Issues in the inverse modeling of a soil infiltration process
NASA Astrophysics Data System (ADS)
Kuraz, Michal; Jacka, Lukas; Leps, Matej
2017-04-01
This contribution addresses issues in evaluation of the soil hydraulic parameters (SHP) from the Richards equation based inverse model. The inverse model was representing single ring infiltration experiment on mountainous podzolic soil profile, and was searching for the SHP parameters of the top soil layer. Since the thickness of the top soil layer is often much lower than the depth required to embed the single ring or Guelph permeameter device, the SHPs for the top soil layer are very difficult to measure directly. The SHPs for the top soil layer were therefore identified here by inverse modeling of the single ring infiltration process, where, especially, the initial unsteady part of the experiment is expected to provide very useful data for evaluating the retention curve parameters (excluding the residual water content) and the saturated hydraulic conductivity. The main issue, which is addressed in this contribution, is the uniqueness of the Richards equation inverse model. We tried to answer the question whether is it possible to characterize the unsteady infiltration experiment with a unique set of SHPs values, and whether are all SHP parameters vulnerable with the non-uniqueness. Which is an important issue, since we could further conclude whether the popular gradient methods are appropriate here. Further the issues in assigning the initial and boundary condition setup, the influence of spatial and temporal discretization on the values of the identified SHPs, and the convergence issues with the Richards equation nonlinear operator during automatic calibration procedure are also covered here.
Spatial capture-recapture models allowing Markovian transience or dispersal
Royle, J. Andrew; Fuller, Angela K.; Sutherland, Chris
2016-01-01
Spatial capture–recapture (SCR) models are a relatively recent development in quantitative ecology, and they are becoming widely used to model density in studies of animal populations using camera traps, DNA sampling and other methods which produce spatially explicit individual encounter information. One of the core assumptions of SCR models is that individuals possess home ranges that are spatially stationary during the sampling period. For many species, this assumption is unlikely to be met and, even for species that are typically territorial, individuals may disperse or exhibit transience at some life stages. In this paper we first conduct a simulation study to evaluate the robustness of estimators of density under ordinary SCR models when dispersal or transience is present in the population. Then, using both simulated and real data, we demonstrate that such models can easily be described in the BUGS language providing a practical framework for their analysis, which allows us to evaluate movement dynamics of species using capture–recapture data. We find that while estimators of density are extremely robust, even to pathological levels of movement (e.g., complete transience), the estimator of the spatial scale parameter of the encounter probability model is confounded with the dispersal/transience scale parameter. Thus, use of ordinary SCR models to make inferences about density is feasible, but interpretation of SCR model parameters in relation to movement should be avoided. Instead, when movement dynamics are of interest, such dynamics should be parameterized explicitly in the model.
Estimating Model Probabilities using Thermodynamic Markov Chain Monte Carlo Methods
NASA Astrophysics Data System (ADS)
Ye, M.; Liu, P.; Beerli, P.; Lu, D.; Hill, M. C.
2014-12-01
Markov chain Monte Carlo (MCMC) methods are widely used to evaluate model probability for quantifying model uncertainty. In a general procedure, MCMC simulations are first conducted for each individual model, and MCMC parameter samples are then used to approximate marginal likelihood of the model by calculating the geometric mean of the joint likelihood of the model and its parameters. It has been found the method of evaluating geometric mean suffers from the numerical problem of low convergence rate. A simple test case shows that even millions of MCMC samples are insufficient to yield accurate estimation of the marginal likelihood. To resolve this problem, a thermodynamic method is used to have multiple MCMC runs with different values of a heating coefficient between zero and one. When the heating coefficient is zero, the MCMC run is equivalent to a random walk MC in the prior parameter space; when the heating coefficient is one, the MCMC run is the conventional one. For a simple case with analytical form of the marginal likelihood, the thermodynamic method yields more accurate estimate than the method of using geometric mean. This is also demonstrated for a case of groundwater modeling with consideration of four alternative models postulated based on different conceptualization of a confining layer. This groundwater example shows that model probabilities estimated using the thermodynamic method are more reasonable than those obtained using the geometric method. The thermodynamic method is general, and can be used for a wide range of environmental problem for model uncertainty quantification.
Item Response Theory Modeling of the Philadelphia Naming Test.
Fergadiotis, Gerasimos; Kellough, Stacey; Hula, William D
2015-06-01
In this study, we investigated the fit of the Philadelphia Naming Test (PNT; Roach, Schwartz, Martin, Grewal, & Brecher, 1996) to an item-response-theory measurement model, estimated the precision of the resulting scores and item parameters, and provided a theoretical rationale for the interpretation of PNT overall scores by relating explanatory variables to item difficulty. This article describes the statistical model underlying the computer adaptive PNT presented in a companion article (Hula, Kellough, & Fergadiotis, 2015). Using archival data, we evaluated the fit of the PNT to 1- and 2-parameter logistic models and examined the precision of the resulting parameter estimates. We regressed the item difficulty estimates on three predictor variables: word length, age of acquisition, and contextual diversity. The 2-parameter logistic model demonstrated marginally better fit, but the fit of the 1-parameter logistic model was adequate. Precision was excellent for both person ability and item difficulty estimates. Word length, age of acquisition, and contextual diversity all independently contributed to variance in item difficulty. Item-response-theory methods can be productively used to analyze and quantify anomia severity in aphasia. Regression of item difficulty on lexical variables supported the validity of the PNT and interpretation of anomia severity scores in the context of current word-finding models.
Periodontal repair in dogs: examiner reproducibility in the supraalveolar periodontal defect model.
Koo, Ki-Tae; Polimeni, Giuseppe; Albandar, Jasim M; Wikesjö, Ulf M E
2004-06-01
Histometric assessments are routinely used to evaluate biologic events ascertained in histologic sections acquired from animal and human studies. The objective of this study was to evaluate the intra- and inter-examiner reproducibility of histometric assessments in the supraalveolar periodontal defect model. Histometric analysis using incandescent and polarized light microscopy, an attached digital camera system, and a PC-based image analysis system including a custom program for the supraalveolar periodontal defect model was performed on histologic sections acquired from one jaw quadrant in each of 12 dogs. The animals had received an experimental protocol including implantation of a coral biomaterial and guided tissue regeneration (GTR) barrier devices, and were evaluated following a 4-week healing interval. Histometric parameters were recorded and repeated within a 3-month interval by two examiners following brief training. Intra- and inter-examiner reproducibility was assessed using the intra-class correlation coefficient (ICC). Most parameters showed high intra-examiner ICCs. Parameters including defect height, connective tissue repair, bone regeneration (height/area), formation of a junctional epithelium, positioning of the GTR device, ankylosis, root resorption, and defect area yielded an ICC> or 0..9. The ICCs for bone density and biomaterial density were somewhat lower (0.8 and 0.7, respectively). The inter-examiner reproducibility was somewhat lower compared to the intra-examiner reproducibility. Nevertheless, the ICCs were generally high (ICC range: 0.6-0.9). Histometric evaluations in the supraalveolar periodontal defect model yield highly reproducible results, in particular when a single examiner performs the histometric measurements, even when the examiner was exposed to limited training.
The Specification of Causal Models with Tetrad IV: A Review
ERIC Educational Resources Information Center
Landsheer, J. A.
2010-01-01
Tetrad IV is a program designed for the specification of causal models. It is specifically designed to search for causal relations, but also offers the possibility to estimate the parameters of a structural equation model. It offers a remarkable graphical user interface, which facilitates building, evaluating, and searching for causal models. The…
USDA-ARS?s Scientific Manuscript database
AnnAGNPS (Annualized Agricultural Non-Point Source Pollution Model) is a system of computer models developed to predict non-point source pollutant loadings within agricultural watersheds. It contains a daily time step distributed parameter continuous simulation surface runoff model designed to assis...
Schuff, M M; Gore, J P; Nauman, E A
2013-12-01
The treatment of cancerous tumors is dependent upon the delivery of therapeutics through the blood by means of the microcirculation. Differences in the vasculature of normal and malignant tissues have been recognized, but it is not fully understood how these differences affect transport and the applicability of existing mathematical models has been questioned at the microscale due to the complex rheology of blood and fluid exchange with the tissue. In addition to determining an appropriate set of governing equations it is necessary to specify appropriate model parameters based on physiological data. To this end, a two stage sensitivity analysis is described which makes it possible to determine the set of parameters most important to the model's calibration. In the first stage, the fluid flow equations are examined and a sensitivity analysis is used to evaluate the importance of 11 different model parameters. Of these, only four substantially influence the intravascular axial flow providing a tractable set that could be calibrated using red blood cell velocity data from the literature. The second stage also utilizes a sensitivity analysis to evaluate the importance of 14 model parameters on extravascular flux. Of these, six exhibit high sensitivity and are integrated into the model calibration using a response surface methodology and experimental intra- and extravascular accumulation data from the literature (Dreher et al. in J Natl Cancer Inst 98(5):335-344, 2006). The model exhibits good agreement with the experimental results for both the mean extravascular concentration and the penetration depth as a function of time for inert dextran over a wide range of molecular weights.
Predicting responses from Rasch measures.
Linacre, John M
2010-01-01
There is a growing family of Rasch models for polytomous observations. Selecting a suitable model for an existing dataset, estimating its parameters and evaluating its fit is now routine. Problems arise when the model parameters are to be estimated from the current data, but used to predict future data. In particular, ambiguities in the nature of the current data, or overfit of the model to the current dataset, may mean that better fit to the current data may lead to worse fit to future data. The predictive power of several Rasch and Rasch-related models are discussed in the context of the Netflix Prize. Rasch-related models are proposed based on Singular Value Decomposition (SVD) and Boltzmann Machines.