Sample records for evaluating neuro-hemodynamic coupling

  1. Intracranial microprobe for evaluating neuro-hemodynamic coupling in unanesthetized human neocortex

    PubMed Central

    Keller, Corey J.; Cash, Sydney S.; Narayanan, Suresh; Wang, Chunmao; Kuzniecky, Ruben; Carlson, Chad; Devinsky, Orrin; Thesen, Thomas; Doyle, Werner; Sassaroli, Angelo; Boas, David A.; Ulbert, Istvan; Halgren, Eric

    2009-01-01

    Measurement of the blood-oxygen-level dependent (BOLD) response with fMRI has revolutionized cognitive neuroscience and is increasingly important in clinical care. The BOLD response reflects changes in deoxy-hemoglobin concentration, blood volume, and blood flow. These hemodynamic changes ultimately result from neuronal firing and synaptic activity, but the linkage between these domains is complex, poorly understood, and may differ across species, cortical areas, diseases, and cognitive states. We describe here a technique that can measure neural and hemodynamic changes simultaneously from cortical microdomains in waking humans. We utilize a “laminar optode,” a linear array of microelectrodes for electrophysiological measures paired with a micro-optical device for hemodynamic measurements. Optical measurements include laser Doppler to estimate cerebral blood flow as well as point spectroscopy to estimate oxy- and deoxy-hemoglobin concentrations. The microelectrode array records local field potential gradients (PG) and multi-unit activity (MUA) at 24 locations spanning the cortical depth, permitting estimation of population trans-membrane current flows (Current Source Density, CSD) and population cell firing in each cortical lamina. Comparison of the laminar CSD/MUA profile with the origins and terminations of cortical circuits allows activity in specific neuronal circuits to be inferred and then directly compared to hemodynamics. Access is obtained in epileptic patients during diagnostic evaluation for surgical therapy. Validation tests with relatively well-understood manipulations (EKG, breath-holding, cortical electrical stimulation) demonstrate the expected responses. This device can provide a new and robust means for obtaining detailed, quantitative data for defining neurovascular coupling in awake humans. PMID:19428529

  2. Intracranial microprobe for evaluating neuro-hemodynamic coupling in unanesthetized human neocortex.

    PubMed

    Keller, Corey J; Cash, Sydney S; Narayanan, Suresh; Wang, Chunmao; Kuzniecky, Ruben; Carlson, Chad; Devinsky, Orrin; Thesen, Thomas; Doyle, Werner; Sassaroli, Angelo; Boas, David A; Ulbert, Istvan; Halgren, Eric

    2009-05-15

    Measurement of the blood-oxygen-level dependent (BOLD) response with fMRI has revolutionized cognitive neuroscience and is increasingly important in clinical care. The BOLD response reflects changes in deoxy-hemoglobin concentration, blood volume, and blood flow. These hemodynamic changes ultimately result from neuronal firing and synaptic activity, but the linkage between these domains is complex, poorly understood, and may differ across species, cortical areas, diseases, and cognitive states. We describe here a technique that can measure neural and hemodynamic changes simultaneously from cortical microdomains in waking humans. We utilize a "laminar optode," a linear array of microelectrodes for electrophysiological measures paired with a micro-optical device for hemodynamic measurements. Optical measurements include laser Doppler to estimate cerebral blood flow as well as point spectroscopy to estimate oxy- and deoxy-hemoglobin concentrations. The microelectrode array records local field potential gradients (PG) and multi-unit activity (MUA) at 24 locations spanning the cortical depth, permitting estimation of population trans-membrane current flows (Current Source Density, CSD) and population cell firing in each cortical lamina. Comparison of the laminar CSD/MUA profile with the origins and terminations of cortical circuits allows activity in specific neuronal circuits to be inferred and then directly compared to hemodynamics. Access is obtained in epileptic patients during diagnostic evaluation for surgical therapy. Validation tests with relatively well-understood manipulations (EKG, breath-holding, cortical electrical stimulation) demonstrate the expected responses. This device can provide a new and robust means for obtaining detailed, quantitative data for defining neurovascular coupling in awake humans.

  3. Hemodynamic and neuro-monitoring for neurocritically ill patients: An international survey of intensivists.

    PubMed

    Sivakumar, Sanjeev; Taccone, Fabio S; Rehman, Mohammed; Hinson, Holly; Naval, Neeraj; Lazaridis, Christos

    2017-06-01

    To investigate multimodality systemic and neuro-monitoring practices in acute brain injury (ABI) and to analyze differences among "neurointensivists" (NI; clinical practice comprised >1/3 by neurocritical care), and other intensivists (OI). Anonymous 22-question Web-based survey among physician members of SCCM and ESICM. Six hundred fifty-five responded (66% completion rate); 422 (65%) were OI, and 226 (35%) were NI. More NI follow hemodynamic protocols for TBI (44.5% vs 33%, P=.007) and SAH (38% vs 21%, P<.001). For CPP optimization, NI use more arterial-waveform-analysis (AWA) (45% vs 35%, P=.019), and ultrasound (37.5% vs 28%, P=.023); NI use more PbtO 2 (28% vs 10%, P<.001). In the case scenario of raised ICP/low PbtO 2 , most employ analgesia and/or sedation (47%) and osmotherapy (38%). More NI use pressure reactivity (vasopressor use OI 23% vs NI 34.5%, P=.014). For DCI, more NI target cardiac index (CI) (35% vs 21%, P<.001), and fluid responsiveness (62.5% vs 53%, P=.03). Also, NI use more angiography (57% vs 43.5%, P=.004), TCD (56.5% vs 38%, P<.001), CTP (32% vs16%, P<.001), and PbtO 2 (18% vs 7.5%, P=.001). Intensivists with exposure to ABI patients employ more neuro- and hemodynamic monitoring. We found large heterogeneity and low overall use of advanced brain-physiology parameters. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons.

    PubMed

    Ma, Ying; Shaik, Mohammed A; Kozberg, Mariel G; Kim, Sharon H; Portes, Jacob P; Timerman, Dmitriy; Hillman, Elizabeth M C

    2016-12-27

    Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (<0.04 Hz) hemodynamic fluctuations that were not well-predicted by local Thy1-GCaMP recordings. These results support that resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI.

  5. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons

    PubMed Central

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Portes, Jacob P.; Timerman, Dmitriy

    2016-01-01

    Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (<0.04 Hz) hemodynamic fluctuations that were not well-predicted by local Thy1-GCaMP recordings. These results support that resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI. PMID:27974609

  6. Methods for measuring right ventricular function and hemodynamic coupling with the pulmonary vasculature.

    PubMed

    Bellofiore, Alessandro; Chesler, Naomi C

    2013-07-01

    The right ventricle (RV) is a pulsatile pump, the efficiency of which depends on proper hemodynamic coupling with the compliant pulmonary circulation. The RV and pulmonary circulation exhibit structural and functional differences with the more extensively investigated left ventricle (LV) and systemic circulation. In light of these differences, metrics of LV function and efficiency of coupling to the systemic circulation cannot be used without modification to characterize RV function and efficiency of coupling to the pulmonary circulation. In this article, we review RV physiology and mechanics, established and novel methods for measuring RV function and hemodynamic coupling, and findings from application of these methods to RV function and coupling changes with pulmonary hypertension. We especially focus on non-invasive measurements, as these may represent the future for clinical monitoring of disease progression and the effect of drug therapies.

  7. A New MRI-Based Model of Heart Function with Coupled Hemodynamics and Application to Normal and Diseased Canine Left Ventricles

    PubMed Central

    Choi, Young Joon; Constantino, Jason; Vedula, Vijay; Trayanova, Natalia; Mittal, Rajat

    2015-01-01

    A methodology for the simulation of heart function that combines an MRI-based model of cardiac electromechanics (CE) with a Navier–Stokes-based hemodynamics model is presented. The CE model consists of two coupled components that simulate the electrical and the mechanical functions of the heart. Accurate representations of ventricular geometry and fiber orientations are constructed from the structural magnetic resonance and the diffusion tensor MR images, respectively. The deformation of the ventricle obtained from the electromechanical model serves as input to the hemodynamics model in this one-way coupled approach via imposed kinematic wall velocity boundary conditions and at the same time, governs the blood flow into and out of the ventricular volume. The time-dependent endocardial surfaces are registered using a diffeomorphic mapping algorithm, while the intraventricular blood flow patterns are simulated using a sharp-interface immersed boundary method-based flow solver. The utility of the combined heart-function model is demonstrated by comparing the hemodynamic characteristics of a normal canine heart beating in sinus rhythm against that of the dyssynchronously beating failing heart. We also discuss the potential of coupled CE and hemodynamics models for various clinical applications. PMID:26442254

  8. Framing Neuro-Glia Coupling in Antiepileptic Drug Design.

    PubMed

    Kardos, Julianna; Szabó, Zsolt; Héja, László

    2016-02-11

    We delineate perspectives for the design and discovery of antiepileptic drugs (AEDs) with fewer side effects by focusing on astroglial modulation of spatiotemporal seizure dynamics. It is now recognized that the major inhibitory neurotransmitter of the brain, γ-aminobutyric acid (GABA), can be released through the reversal of astroglial GABA transporters. Synaptic spillover and subsequent glutamate (Glu) uptake in neighboring astrocytes evoke replacement of extracellular Glu for GABA, driving neurons away from the seizure threshold. Attenuation of synaptic signaling by this negative feedback through the interplay of Glu and GABA transporters of adjacent astroglia can result in shortened seizures. By contrast, long-range activation of astroglia through gap junctions may promote recurrent seizures on the model of pharmacoresistant temporal lobe epilepsy. From their first detection to our current understanding, we identify various targets that shape both short- and long-range neuro-astroglia coupling, as these are manifest in epilepsy phenomena and in the associated research promotions of AED.

  9. Resting-state functional MRI as a tool for evaluating brain hemodynamic responsiveness to external stimuli in rats.

    PubMed

    Paasonen, Jaakko; Salo, Raimo A; Huttunen, Joanna K; Gröhn, Olli

    2017-09-01

    Anesthesia is a major confounding factor in functional MRI (fMRI) experiments attributed to its effects on brain function. Recent evidence suggests that parameters obtained with resting-state fMRI (rs-fMRI) are coupled with anesthetic depth. Therefore, we investigated whether parameters obtained with rs-fMRI, such as functional connectivity (FC), are also directly related to blood-oxygen-level-dependent (BOLD) responses. A simple rs-fMRI protocol was implemented in a pharmacological fMRI study to evaluate the coupling between hemodynamic responses and FC under five anesthetics (α-chloralose, isoflurane, medetomidine, thiobutabarbital, and urethane). Temporal change in the FC was evaluated at 1-hour interval. Supplementary forepaw stimulation experiments were also conducted. Under thiobutabarbital anesthesia, FC was clearly coupled with nicotine-induced BOLD responses. Good correlation values were also obtained under isoflurane and medetomidine anesthesia. The observations in the thiobutabarbital group were supported by forepaw stimulation experiments. Additionally, the rs-fMRI protocol revealed significant temporal changes in the FC in the α-chloralose, thiobutabarbital, and urethane groups. Our results suggest that FC can be used to estimate brain hemodynamic responsiveness to stimuli and evaluate the level and temporal changes of anesthesia. Therefore, analysis of the fMRI baseline signal may be highly valuable tool for controlling the outcome of preclinical fMRI experiments. Magn Reson Med 78:1136-1146, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Neuro-Linguistic Programming in Couple Therapy.

    ERIC Educational Resources Information Center

    Forman, Bruce D.

    Neuro-Linguistic Programming (NLP) is a method of understanding the organization of subjective human experience. The NLP model provides a theoretical framework for directing or guiding therapeutic change. According to NLP, people experience the so-called real world indirectly and operate on the real world as if it were like the model of it they…

  11. An Integrative Model of the Cardiovascular System Coupling Heart Cellular Mechanics with Arterial Network Hemodynamics

    PubMed Central

    Kim, Young-Tae; Lee, Jeong Sang; Youn, Chan-Hyun; Choi, Jae-Sung

    2013-01-01

    The current study proposes a model of the cardiovascular system that couples heart cell mechanics with arterial hemodynamics to examine the physiological role of arterial blood pressure (BP) in left ventricular hypertrophy (LVH). We developed a comprehensive multiphysics and multiscale cardiovascular model of the cardiovascular system that simulates physiological events, from membrane excitation and the contraction of a cardiac cell to heart mechanics and arterial blood hemodynamics. Using this model, we delineated the relationship between arterial BP or pulse wave velocity and LVH. Computed results were compared with existing clinical and experimental observations. To investigate the relationship between arterial hemodynamics and LVH, we performed a parametric study based on arterial wall stiffness, which was obtained in the model. Peak cellular stress of the left ventricle and systolic blood pressure (SBP) in the brachial and central arteries also increased; however, further increases were limited for higher arterial stiffness values. Interestingly, when we doubled the value of arterial stiffness from the baseline value, the percentage increase of SBP in the central artery was about 6.7% whereas that of the brachial artery was about 3.4%. It is suggested that SBP in the central artery is more critical for predicting LVH as compared with other blood pressure measurements. PMID:23960442

  12. Evaluation of hemodynamic effects of xenon in dogs undergoing hemorrhagic shock

    PubMed Central

    Franceschi, Ruben C.; Malbouisson, Luiz; Yoshinaga, Eduardo; Auler, José Otavio Costa; de Figueiredo (in memoriam), Luiz Francisco Poli; Carmona, Maria José C.

    2013-01-01

    OBJECTIVES: The anesthetic gas xenon is reported to preserve hemodynamic stability during general anesthesia. However, the effects of the gas during shock are unclear. The objective of this study was to evaluate the effect of Xe on hemodynamic stability and tissue perfusion in a canine model of hemorrhagic shock. METHOD: Twenty-six dogs, mechanically ventilated with a fraction of inspired oxygen of 21% and anesthetized with etomidate and vecuronium, were randomized into Xenon (Xe; n = 13) or Control (C; n = 13) groups. Following hemodynamic monitoring, a pressure-driven shock was induced to reach an arterial pressure of 40 mmHg. Hemodynamic data and blood samples were collected prior to bleeding, immediately after bleeding and 5, 20 and 40 minutes following shock. The Xe group was treated with 79% Xe diluted in ambient air, inhaled for 20 minutes after shock. RESULT: The mean bleeding volume was 44 mL.kg−1 in the C group and 40 mL.kg−1 in the Xe group. Hemorrhage promoted a decrease in both the cardiac index (p<0.001) and mean arterial pressure (p<0.001). These changes were associated with an increase in lactate levels and worsening of oxygen transport variables in both groups (p<0.05). Inhalation of xenon did not cause further worsening of hemodynamics or tissue perfusion markers. CONCLUSIONS: Xenon did not alter hemodynamic stability or tissue perfusion in an experimentally controlled hemorrhagic shock model. However, further studies are necessary to validate this drug in other contexts. PMID:23525321

  13. Heidelberg Neuro-Music Therapy for chronic-tonal tinnitus - treatment outline and psychometric evaluation.

    PubMed

    Argstatter, Heike; Grapp, Miriam; Plinkert, Peter K; Bolay, Hans Volker

    2012-01-01

    Musical training positively influences the cortical plasticity of the brain and has proven to be effective in treating chronic tinnitus. A neuro-music therapy concept, the "Heidelberg Neuro-Music Therapy" treatment was developed and evaluated. A prospective, cross-sectional design was used. N = 135 patients (mean age 47 years) with chronic, tonal tinnitus attended a standardized protocol for Neuro-Music Therapy (either "standard therapy" ST or "compact therapy" CT). The results were compared to a cognitive behavioral placebo music therapy procedure (PT). Tinnitus distress was assessed using the German version of the Tinnitus-Questionnaire (TQ) at admission, at discharge and six months after therapy. Changes were assessed statistically and by means of clinical significance. TQ scores significantly improved - independent of group allocation. But more than 80% of the music therapy patients (both ST and CT) revealed a reliable improvement ("responder") compared to 44% in the PT group. Therapy impact seems to be lasting since TQ scores remained stable until follow-up at six months. The "Heidelberg Neuro-Music Therapy" is a method with fast onset and long lasting effect for patients with "tonal" tinnitus. A number of potential working factors accounting for the treatment success are highlighted.

  14. Neuro-Linguistic Programming and Family Therapy.

    ERIC Educational Resources Information Center

    Davis, Susan L. R.; Davis, Donald I.

    1983-01-01

    Presents a brief introduction to Neuro-Linguistic Programming (NLP), followed by case examples which illustrate some of the substantive gains which NLP techniques have provided in work with couples and families. NLP's major contributions involve understanding new models of human experience. (WAS)

  15. Evaluating cognition in individuals with Huntington disease: Neuro-QoL cognitive functioning measures.

    PubMed

    Lai, Jin-Shei; Goodnight, Siera; Downing, Nancy R; Ready, Rebecca E; Paulsen, Jane S; Kratz, Anna L; Stout, Julie C; McCormack, Michael K; Cella, David; Ross, Christopher; Russell, Jenna; Carlozzi, Noelle E

    2018-03-01

    Cognitive functioning impacts health-related quality of life (HRQOL) for individuals with Huntington disease (HD). The Neuro-QoL includes two patient-reported outcome (PRO) measures of cognition-Executive Function (EF) and General Concerns (GC). These measures have not previously been validated for use in HD. The purpose of this analysis is to evaluate the reliability and validity of the Neuro-QoL Cognitive Function measures for use in HD. Five hundred ten individuals with prodromal or manifest HD completed the Neuro-QoL Cognition measures, two other PRO measures of HRQOL (WHODAS 2.0 and EQ5D), and a depression measure (PROMIS Depression). Measures of functioning The Total Functional Capacity and behavior (Problem Behaviors Assessment) were completed by clinician interview. Objective measures of cognition were obtained using clinician-administered Symbol Digit Modalities Test and the Stroop Test (Word, Color, and Interference). Self-rated, clinician-rated, and objective composite scores were developed. We examined the Neuro-QoL measures for reliability, convergent validity, discriminant validity, and known-groups validity. Excellent reliabilities (Cronbach's alphas ≥ 0.94) were found. Convergent validity was supported, with strong relationships between self-reported measures of cognition. Discriminant validity was supported by less robust correlations between self-reported cognition and other constructs. Prodromal participants reported fewer cognitive problems than manifest groups, and early-stage HD participants reported fewer problems than late-stage HD participants. The Neuro-QoL Cognition measures provide reliable and valid assessments of self-reported cognitive functioning for individuals with HD. Findings support the utility of these measures for assessing self-reported cognition.

  16. A neuro-immune, neuro-oxidative and neuro-nitrosative model of prenatal and postpartum depression.

    PubMed

    Roomruangwong, Chutima; Anderson, George; Berk, Michael; Stoyanov, Drozdstoy; Carvalho, André F; Maes, Michael

    2018-02-02

    A large body of evidence indicates that major affective disorders are accompanied by activated neuro-immune, neuro-oxidative and neuro-nitrosative stress (IO&NS) pathways. Postpartum depression is predicted by end of term prenatal depressive symptoms whilst a lifetime history of mood disorders appears to increase the risk for both prenatal and postpartum depression. This review provides a critical appraisal of available evidence linking IO&NS pathways to prenatal and postpartum depression. The electronic databases Google Scholar, PubMed and Scopus were sources for this narrative review focusing on keywords, including perinatal depression, (auto)immune, inflammation, oxidative, nitric oxide, nitrosative, tryptophan catabolites (TRYCATs), kynurenine, leaky gut and microbiome. Prenatal depressive symptoms are associated with exaggerated pregnancy-specific changes in IO&NS pathways, including increased C-reactive protein, advanced oxidation protein products and nitric oxide metabolites, lowered antioxidant levels, such as zinc, as well as lowered regulatory IgM-mediated autoimmune responses. The latter pathways coupled with lowered levels of endogenous anti-inflammatory compounds, including ω3 polyunsaturated fatty acids, may also underpin the pathophysiology of postpartum depression. Although increased bacterial translocation, lipid peroxidation and TRYCAT pathway activation play a role in mood disorders, similar changes do not appear to be relevant in perinatal depression. Some IO&NS biomarker characteristics of mood disorders are found in prenatal depression indicating that these pathways partly contribute to the association of a lifetime history of mood disorders and perinatal depression. However, available evidence suggests that some IO&NS pathways differ significantly between perinatal depression and mood disorders in general. This review provides a new IO&NS model of prenatal and postpartum depression. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Performance evaluation of neuro-PET using silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Jung, Jiwoong; Choi, Yong; Jung, Jin Ho; Kim, Sangsu; Im, Ki Chun

    2016-05-01

    Recently, we have developed the second prototype Silicon photomultiplier (SiPM) based positron emission tomography (PET) scanner for human brain imaging. The PET system was comprised of detector block which consisted of 4×4 SiPMs and 4×4 Lutetium Yttrium Orthosilicate arrays, charge signal transmission method, high density position decoder circuit and FPGA-embedded ADC boards. The purpose of this study was to evaluate the performance of the newly developed neuro-PET system. The energy resolution, timing resolution, spatial resolution, sensitivity, stability of the photo-peak position and count rate performance were measured. Tomographic image of 3D Hoffman brain phantom was also acquired to evaluate imaging capability of the neuro-PET. The average energy and timing resolutions measured for 511 keV gamma rays were 17±0.1% and 3±0.3 ns, respectively. Spatial resolution and sensitivity at the center of field of view (FOV) were 3.1 mm and 0.8%, respectively. The average scatter fraction was 0.4 with an energy window of 350-650 keV. The maximum true count rate and maximum NECR were measured as 43.3 kcps and 6.5 kcps at an activity concentration of 16.7 kBq/ml and 5.5 kBq/ml, respectively. Long-term stability results show that there was no significant change in the photo-peak position, energy resolution and count rate for 60 days. Phantom imaging studies were performed and they demonstrated the feasibility for high quality brain imaging. The performance tests and imaging results indicate that the newly developed PET is useful for brain imaging studies, if the axial FOV is extended to improve the system sensitivity.

  18. Evaluation of hemodynamics changes during interventional stent placement using Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Vuong, Barry; Genis, Helen; Wong, Ronnie; Ramjist, Joel; Jivraj, Jamil; Farooq, Hamza; Sun, Cuiru; Yang, Victor X. D.

    2015-03-01

    Carotid atherosclerosis is a critical medical concern that can lead to ischemic stroke. Local hemodynamic patterns have also been associated with the development of atherosclerosis, particularly in regions with disturbed flow patterns such as bifurcations. Traditionally, this disease was treated using carotid endarterectomy, however recently there is an increasing trend of carotid artery stenting due to its minimally invasive nature. It is well known that this interventional technique creates changes in vasculature geometry and hemodynamic patterns due to the interaction of stent struts with arterial lumen, and is associated with complications such as distal emboli and restenosis. Currently, there is no standard imaging technique to evaluate regional hemodynamic patterns found in stented vessels. Doppler optical coherence tomography (DOCT) provides an opportunity to identify in vivo hemodynamic changes in vasculature using high-resolution imaging. In this study, blood flow profiles were examined at the bifurcation junction in the internal carotid artery (ICA) in a porcine model following stent deployment. Doppler imaging was further conducted using pulsatile flow in a phantom model, and then compared to computational fluid dynamics (CFD) simulation of a virtual bifurcation to assist with the interpretation of emphin vivo results.

  19. Neuro-ophthalmologic evaluation, quality of life, and functional disability in patients with MS.

    PubMed

    Garcia-Martin, Elena; Rodriguez-Mena, Diego; Herrero, Raquel; Almarcegui, Carmen; Dolz, Isabel; Martin, Jesus; Ara, Jose R; Larrosa, Jose M; Polo, Vicente; Fernández, Javier; Pablo, Luis E

    2013-07-02

    To evaluate correlations between longitudinal changes in neuro-ophthalmologic measures and quality of life (QOL) and disability in patients with multiple sclerosis (MS), using optical coherence tomography (OCT), visual evoked potentials (VEP), and visual field examination. Fifty-four patients with relapsing-remitting MS were enrolled in this study and underwent Multiple Sclerosis Quality of Life questionnaire (54 items) (MSQOL-54) and Expanded Disability Status Scale (EDSS) evaluation, as well as complete neuro-ophthalmologic examination including visual field testing and retinal nerve fiber layer (RNFL) measurements using Cirrus and Spectralis OCT and VEP. All patients were re-evaluated at 12, 24, and 36 months. Logistical regression was performed to analyze which measures, if any, could predict QOL. Overall, RNFL thickness results at the baseline evaluation were significantly different from those at 3 years (p ≤ 0.05), but there were no differences in functional measures (visual acuity, contrast sensitivity, color vision, visual field, and VEP). A reduced MSQOL-54 score was associated with an increase in EDSS score and a decrease in both functional and structural parameters. Patients with longer MS duration presented with a lower MSQOL-54 score (reduction in QOL). Patients with progressive axonal loss as seen in RNFL results had a lower QOL and more functional disability.

  20. Development and evaluation of a pliable biological valved conduit. Part II: Functional and hemodynamic evaluation.

    PubMed

    Sung, H W; Witzel, T H; Hata, C; Tu, R; Shen, S H; Lin, D; Noishiki, Y; Tomizawa, Y; Quijano, R C

    1993-04-01

    Many congenital cardiac malformations may require a valved conduit for the reconstruction of the right ventricular outflow tract. In spite of many endeavors made in the last 25 years, the clinical results of right ventricular outflow tract reconstruction with currently available valved conduits are still not satisfactory. Specific problems encountered clinically include suboptimal hemodynamic performance, conduit kinking or compression, and fibrous peeling from the luminal surface. To address these deficiencies, we undertook the development of a biological valved conduit: a bovine external jugular vein graft with a retained native valve cross-linked with a diglycidyl ether (DE). This study, using a canine model, was to evaluate the functional and hemodynamic performance of this newly developed valved conduit. Three 14 mm conduits, implanted as bypass grafts, right ventricle to pulmonary artery, were evaluated. The evaluation was conducted with a noninvasive color Doppler flow mapping system at pre-implantation, immediately post implantation, one- and three-months post implantation, and prior to retrieval (five-months post implantation). The two-dimensional tomographic inspection of the leaflet motion at various periods post implantation showed that the valvular leaflets in the DE treated conduit was quite pliable. No cardiac failure or valvular dysfunction was observed in any of the studied cases. The color Doppler flow mapping study demonstrated that the valve in the DE treated conduit was competent, with no conduit kinking or compression observed in any of the three cases. The spectral Doppler velocity study evidenced that the transvalvular pressure gradients of the DE treated conduit were minimal as compared to those of the currently available conduits. In conclusion, from the functional and hemodynamic performance points of view, this newly developed valved conduit is superior to those currently available.

  1. Periodic leg movements during sleep and cerebral hemodynamic changes detected by NIRS.

    PubMed

    Pizza, Fabio; Biallas, Martin; Wolf, Martin; Valko, Philipp O; Bassetti, Claudio L

    2009-07-01

    Periodic leg movements during sleep (PLMS) have been shown to be associated with changes in autonomic and hemispheric activities. Near infrared spectroscopy (NIRS) assesses hemodynamic changes linked to hemispheric/cortical activity. We applied NIRS to test whether cerebral hemodynamic alterations accompany PLMS. Three PLMS patients underwent nocturnal polysomnography coupled with cerebral NIRS. EEG correlates of PLMS were scored and NIRS data were analysed for the identification of correspondent hemodynamic changes. PLMS were constantly associated with cerebral hemodynamic fluctuations that showed greater amplitude when associated to changes in EEG and were present also in absence of any visually detectable arousal or A phase in the EEG. This is the first study documenting cerebral hemodynamic changes linked to PLMS. The clinical relevance of these observations remains to be determined.

  2. Prognostic value of noninvasive hemodynamic evaluation of the acute effect of levosimendan in advanced heart failure.

    PubMed

    Malfatto, Gabriella; Della Rosa, Francesco; Rella, Valeria; Villani, Alessandra; Branzi, Giovanna; Blengino, Simonetta; Giglio, Alessia; Facchini, Mario; Parati, Gianfranco

    2014-04-01

    Optimization of inotropic treatment in worsening heart failure sometimes requires invasive hemodynamic assessment in selected patients. Impedance cardiography (ICG) may be useful for a noninvasive hemodynamic evaluation. ICG was performed in 40 patients (69 ± 8 years; left ventricular ejection fraction 27.5 ± 5.6%; New York Heart Association 3.18 ± 0.34; Interagency Registry for Mechanically Assisted Circulatory Support 5.48 ± 0.96, before and after infusion of Levosimendan (0.1–0.2 µg/kg per min for up to 24 h). Echocardiogram, ICG [measuring cardiac index (CI), total peripheral resistances (TPRs) and thoracic fluid content (TFC)] and plasma levels of brain natriuretic peptide (BNP) were obtained; in nine patients, right heart catheterization was also carried out. When right catheterization and ICG were performed simultaneously, a significant relationship was observed between values of CI and TPR, and between TFC and pulmonary wedge pressure. ICG detected the Levosimendan-induced recovery of the hemodynamic status, associated with improved systolic and diastolic function and reduction in BNP levels. One-year mortality was 4.4%. At multivariate analysis, independent predictors of mortality were: no improvement in the severity of mitral regurgitation, a persistent restrictive filling pattern (E/E’ > 15), a reduction of BNP levels below 30% and a change below 10% in CI, TPR and TFC. When combined, absence of hemodynamic improvement at ICG could predict 1-year mortality with better sensitivity (86%) and specificity (85%) than the combination of echocardiographic and BNP criteria only (sensitivity 80% and specificity 36%). Noninvasive hemodynamic evaluation of heart failure patients during infusion of inodilator drugs is reliable and may help in their prognostic stratification.

  3. Global Perspective of Novel Therapeutic Strategies for the Management of NeuroAIDS.

    PubMed

    Kumar, Swatantra; Maurya, Vimal K; Dandu, Himanshu R; Bhatt, Madan Lb; Saxena, Shailendra K

    2018-05-08

    Among Human immunodeficiency virus (HIV) infected individuals, around two-thirds of patients present with neuroAIDS, where HIV-associated neurocognitive disorders (HAND), and HIV-associated dementia (HAD) are the most prevailing neurological complications. The neuropathology of neuroAIDS can be characterized by the presence of HIV infected macrophages and microglia in the brain, with the formation of multinucleated giant cells. Global predominant subtypes of HIV-1 clade B and C infections influence the differential effect of immune and neuronal dysfunctions, leading to clade-specific clinical variation in neuroAIDS patient cohorts. Highly active antiretroviral therapy (HAART) enhances the survival rate among AIDS patients, but due to the inability to cross the Blood-Brain-Barrier (BBB), incidence of neuroAIDS during disease progression may be envisaged. The complex structure of blood-brain-barrier, and poor pharmacokinetic profile coupled with weak bio-distribution of antiretroviral drugs, are the principle barriers for the treatment of neuroAIDS. In the combined antiretroviral therapy (cART) era, the frequency of HAD has decreased; however the incidence of asymptomatic neurocognitive impairment (ANI) and minor neurocognitive disorder (MND) remains consistent. Therefore, several effective novel nanotechnology based therapeutic approaches have been developed to improve the availability of antiretroviral drugs in the brain for the management of neuroAIDS.

  4. [Neuro-neutrophilic Disease and Dementia].

    PubMed

    Hisanaga, Kinya

    2016-04-01

    Neuro-neutrophilic diseases are multisystem inflammatory disorders that include neuro-Behçet and neuro-Sweet disease. These disorders ectopically damage the nervous system due to the abnormal chemotaxis of neutrophils. The neutrophils' chemotaxis is induced by oral muco-cutaneous bacterial infections and the dysregulation of cytokines, including interleukins. The frequencies of human leukocyte antigen (HLA)-B51 in neuro-Behçet disease and HLA-B54 as well as Cw1 in neuro-Sweet disease significantly higher than the levels present in Japanese normal controls. Notably, their frequencies are also higher in patients exhibiting neurological complications than in patients without neurological complications. These HLA types are considered risk factors that are directly related to the etiology of these diseases. Prednisolone and colchicine, which suppress neutrophil activation, are used to treat the acute phase of both diseases. Alternatively, dapsone is prescribed to prednisolone-dependent recurrent cases of neuro-Sweet disease. Dementia is a neurological symptom of these disorders, especially in the chronic progressive subtype of neuro-Behçet disease. Other immunosuppressant drugs, including methotrexate and infliximab, are administered to patients with the chronic progressive type of neuro-Behçet disease. Neuro-neutrophilic diseases are a form of dementia considered treatable.

  5. Ophthalmologic Findings in Patients with Neuro-metabolic Disorders.

    PubMed

    Jafari, Narjes; Golnik, Karl; Shahriari, Mansoor; Karimzadeh, Parvaneh; Jabbehdari, Sayena

    2018-01-01

    We aimed to present the ophthalmic manifestations of neuro-metabolic disorders. Patients who were diagnosed with neuro-metabolic disorders in the Neurology Department of Mofid Pediatric Hospital in Tehran, Iran, between 2004 and 2014 were included in this study. Disorders were confirmed using clinical findings, neuroimaging, laboratory data, and genomic analyses. All enrolled patients were assessed for ophthalmological abnormalities. A total of 213 patients with 34 different neuro-metabolic disorders were included. Ophthalmological abnormalities were observed in 33.5% of patients. Abnormal findings in the anterior segment included Kayser-Fleischer rings, congenital or secondary cataracts, and lens dislocation into the anterior chamber. Posterior segment (i.e., retina, vitreous body, and optic nerve) evaluation revealed retinitis pigmentosa, cherry-red spots, and optic atrophy. In addition, strabismus, nystagmus, and lack of fixation were noted during external examination. Ophthalmological examination and assessment is essential in patients that may exhibit neuro-metabolic disorders.

  6. QL-10NEURO-ONCOLOGY TELEMEDICINE FOLLOW-UP VISITS

    PubMed Central

    Green, Richard; Woyshner, Emily

    2014-01-01

    We report our 18 month experience with the use of a videoconferencing system to perform neuro-oncology follow-up visits. The Neuro-oncology Program at the Kaiser Permanente-Los Angeles Medical center serves the majority of Kaiser HMO patients in the Southern California region. We installed a videoconferencing system (Cisco TelePresence EX90, Cisco Systems, San Jose, CA) in our office in Los Angeles and in a medical office building in Anaheim, CA at a distance of 35 miles. Established neuro-oncology patients from Orange County chose between in-person and remote visits. Patients were seated in an examination room and the neuro-oncology provider alerted by text page. A focused history and physical examination was performed, followed by desktop sharing of clinical and laboratory data using an electronic medical record (Epic Systems Corporation, Verona, WI) and of neuroimages (Phillips iSite PACS, Andover, MA). Patients were asked, but not required, to complete an anonymous online 16 question satisfaction survey after each visit. Visits were performed by either a neuro-oncologist (179) or a Physician's Assistant (12). Of the 191 visits, 174 included evaluation of neuroimaging and 77 included evaluation of response to ongoing chemotherapy. During 12 visits chemotherapy was initiated, and during 15 visits the chemotherapy regimen was changed based on imaging findings. One-hundred and eleven surveys (58% of visits) were completed. Patients reported a high level of satisfaction with the visits (average 9.6, on a 1-10 scale). The average estimated travel time saved was 118 minutes per visit. Four surveys reported technical problems and 1 indicated a preference for an in-person visit. No adverse events could be attributed to use of the telemedicine system. These data suggest that neuro-oncology follow-up visits can be practiced safely and effectively using a telemedicine system, with high levels of patient satisfaction.

  7. Hemodynamic Evaluation of a Biological and Mechanical Aortic Valve Prosthesis Using Patient-Specific MRI-Based CFD.

    PubMed

    Hellmeier, Florian; Nordmeyer, Sarah; Yevtushenko, Pavlo; Bruening, Jan; Berger, Felix; Kuehne, Titus; Goubergrits, Leonid; Kelm, Marcus

    2018-01-01

    Modeling different treatment options before a procedure is performed is a promising approach for surgical decision making and patient care in heart valve disease. This study investigated the hemodynamic impact of different prostheses through patient-specific MRI-based CFD simulations. Ten time-resolved MRI data sets with and without velocity encoding were obtained to reconstruct the aorta and set hemodynamic boundary conditions for simulations. Aortic hemodynamics after virtual valve replacement with a biological and mechanical valve prosthesis were investigated. Wall shear stress (WSS), secondary flow degree (SFD), transvalvular pressure drop (TPD), turbulent kinetic energy (TKE), and normalized flow displacement (NFD) were evaluated to characterize valve-induced hemodynamics. The biological prostheses induced significantly higher WSS (medians: 9.3 vs. 8.6 Pa, P = 0.027) and SFD (means: 0.78 vs. 0.49, P = 0.002) in the ascending aorta, TPD (medians: 11.4 vs. 2.7 mm Hg, P = 0.002), TKE (means: 400 vs. 283 cm 2 /s 2 , P = 0.037), and NFD (means: 0.0994 vs. 0.0607, P = 0.020) than the mechanical prostheses. The differences between the prosthesis types showed great inter-patient variability, however. Given this variability, a patient-specific evaluation is warranted. In conclusion, MRI-based CFD offers an opportunity to assess the interactions between prosthesis and patient-specific boundary conditions, which may help in optimizing surgical decision making and providing additional guidance to clinicians. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. Weak correlations between hemodynamic signals and ongoing neural activity during the resting state

    PubMed Central

    Winder, Aaron T.; Echagarruga, Christina; Zhang, Qingguang; Drew, Patrick J.

    2017-01-01

    Spontaneous fluctuations in hemodynamic signals in the absence of a task or overt stimulation are used to infer neural activity. We tested this coupling by simultaneously measuring neural activity and changes in cerebral blood volume (CBV) in the somatosensory cortex of awake, head-fixed mice during periods of true rest, and during whisker stimulation and volitional whisking. Here we show that neurovascular coupling was similar across states, and large spontaneous CBV changes in the absence of sensory input were driven by volitional whisker and body movements. Hemodynamic signals during periods of rest were weakly correlated with neural activity. Spontaneous fluctuations in CBV and vessel diameter persisted when local neural spiking and glutamatergic input was blocked, and during blockade of noradrenergic receptors, suggesting a non-neuronal origin for spontaneous CBV fluctuations. Spontaneous hemodynamic signals reflect a combination of behavior, local neural activity, and putatively non-neural processes. PMID:29184204

  9. Weak correlations between hemodynamic signals and ongoing neural activity during the resting state.

    PubMed

    Winder, Aaron T; Echagarruga, Christina; Zhang, Qingguang; Drew, Patrick J

    2017-12-01

    Spontaneous fluctuations in hemodynamic signals in the absence of a task or overt stimulation are used to infer neural activity. We tested this coupling by simultaneously measuring neural activity and changes in cerebral blood volume (CBV) in the somatosensory cortex of awake, head-fixed mice during periods of true rest and during whisker stimulation and volitional whisking. We found that neurovascular coupling was similar across states and that large, spontaneous CBV changes in the absence of sensory input were driven by volitional whisker and body movements. Hemodynamic signals during periods of rest were weakly correlated with neural activity. Spontaneous fluctuations in CBV and vessel diameter persisted when local neural spiking and glutamatergic input were blocked, as well as during blockade of noradrenergic receptors, suggesting a non-neuronal origin for spontaneous CBV fluctuations. Spontaneous hemodynamic signals reflect a combination of behavior, local neural activity, and putatively non-neural processes.

  10. Hemodynamic characterization of geometric cerebral aneurysm templates.

    PubMed

    Nair, Priya; Chong, Brian W; Indahlastari, Aprinda; Lindsay, James; DeJeu, David; Parthasarathy, Varsha; Ryan, Justin; Babiker, Haithem; Workman, Christopher; Gonzalez, L Fernando; Frakes, David

    2016-07-26

    Hemodynamics are currently considered to a lesser degree than geometry in clinical practices for evaluating cerebral aneurysm (CA) risk and planning CA treatment. This study establishes fundamental relationships between three clinically recognized CA geometric factors and four clinically relevant hemodynamic responses. The goal of the study is to develop a more combined geometric/hemodynamic basis for informing clinical decisions. Flows within eight idealized template geometries were simulated using computational fluid dynamics and measured using particle image velocimetry under both steady and pulsatile flow conditions. The geometric factor main effects were then analyzed to quantify contributions made by the geometric factors (aneurysmal dome size (DS), dome-to-neck ratio (DNR), and parent-vessel contact angle (PV-CA)) to effects on the hemodynamic responses (aneurysmal and neck-plane root-mean-square velocity magnitude (Vrms), aneurysmal wall shear stress (WSS), and cross-neck flow (CNF)). Two anatomical aneurysm models were also examined to investigate how well the idealized findings would translate to more realistic CA geometries. DNR made the greatest contributions to effects on hemodynamics including a 75.05% contribution to aneurysmal Vrms and greater than 35% contributions to all responses. DS made the next greatest contributions, including a 43.94% contribution to CNF and greater than 20% contributions to all responses. PV-CA and several factor interactions also made contributions of greater than 10%. The anatomical aneurysm models and the most similar idealized templates demonstrated consistent hemodynamic response patterns. This study demonstrates how individual geometric factors, and combinations thereof, influence CA hemodynamics. Bridging the gap between geometry and flow in this quantitative yet practical way may have potential to improve CA evaluation and treatment criteria. Agreement among results from idealized and anatomical models further

  11. Concurrent OCT imaging of stimulus evoked retinal neural activation and hemodynamic responses

    NASA Astrophysics Data System (ADS)

    Son, Taeyoon; Wang, Benquan; Lu, Yiming; Chen, Yanjun; Cao, Dingcai; Yao, Xincheng

    2017-02-01

    It is well established that major retinal diseases involve distortions of the retinal neural physiology and blood vascular structures. However, the details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood. In this study, a multi-modal optical coherence tomography (OCT) imaging system was developed to enable concurrent imaging of retinal neural activity and vascular hemodynamics. Flicker light stimulation was applied to mouse retinas to evoke retinal neural responses and hemodynamic changes. The OCT images were acquired continuously during the pre-stimulation, light-stimulation, and post-stimulation phases. Stimulus-evoked intrinsic optical signals (IOSs) and hemodynamic changes were observed over time in blood-free and blood regions, respectively. Rapid IOSs change occurred almost immediately after stimulation. Both positive and negative signals were observed in adjacent retinal areas. The hemodynamic changes showed time delays after stimulation. The signal magnitudes induced by light stimulation were observed in blood regions and did not show significant changes in blood-free regions. These differences may arise from different mechanisms in blood vessels and neural tissues in response to light stimulation. These characteristics agreed well with our previous observations in mouse retinas. Further development of the multimodal OCT may provide a new imaging method for studying how retinal structures and metabolic and neural functions are affected by age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and other diseases, which promises novel noninvasive biomarkers for early disease detection and reliable treatment evaluations of eye diseases.

  12. Structure of neuro-endocrine and neuro-epithelial interactions in human foetal pancreas.

    PubMed

    Krivova, Yuliya; Proshchina, Alexandra; Barabanov, Valeriy; Leonova, Olga; Saveliev, Sergey

    2016-12-01

    In the pancreas of many mammals including humans, endocrine islet cells can be integrated with the nervous system components into neuro-insular complexes. The mechanism of the formation of such complexes is not clearly understood. The present study evaluated the interactions between the nervous system components, epithelial cells and endocrine cells in the human pancreas. Foetal pancreas, gestational age 19-23 weeks (13 cases) and 30-34 weeks (7 cases), were studied using double immunohistochemical labeling with neural markers (S100 protein and beta III tubulin), epithelial marker (cytokeratin 19 (CK19)) and antibodies to insulin and glucagon. We first analyse the structure of neuro-insular complexes using confocal microscopy and provide immunohistochemical evidences of the presence of endocrine cells within the ganglia or inside the nerve bundles. We showed that the nervous system components contact with the epithelial cells located in ducts or in clusters outside the ductal epithelium and form complexes with separate epithelial cells. We observed CK19-positive cells inside the ganglia and nerve bundles which were located separately or were integrated with the islets. Therefore, we conclude that neuro-insular complexes may forms as a result of integration between epithelial cells and nervous system components at the initial stages of islets formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Early disrupted neurovascular coupling and changed event level hemodynamic response function in type 2 diabetes: an fMRI study.

    PubMed

    Duarte, João V; Pereira, João M S; Quendera, Bruno; Raimundo, Miguel; Moreno, Carolina; Gomes, Leonor; Carrilho, Francisco; Castelo-Branco, Miguel

    2015-10-01

    Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurophysiological impairment. Vascular pathophysiology may alter the blood flow regulation in cerebral microvasculature, affecting neurovascular coupling. Reduced fMRI signal can result from decreased neuronal activation or disrupted neurovascular coupling. The uncertainty about pathophysiological mechanisms (neurodegenerative, vascular, or both) underlying brain function impairments remains. In this cross-sectional study, we investigated if the hemodynamic response function (HRF) in lesion-free brains of patients is altered by measuring BOLD (Blood Oxygenation Level-Dependent) response to visual motion stimuli. We used a standard block design to examine the BOLD response and an event-related deconvolution approach. Importantly, the latter allowed for the first time to directly extract the true shape of HRF without any assumption and probe neurovascular coupling, using performance-matched stimuli. We discovered a change in HRF in early stages of diabetes. T2DM patients show significantly different fMRI response profiles. Our visual paradigm therefore demonstrated impaired neurovascular coupling in intact brain tissue. This implies that functional studies in T2DM require the definition of HRF, only achievable with deconvolution in event-related experiments. Further investigation of the mechanisms underlying impaired neurovascular coupling is needed to understand and potentially prevent the progression of brain function decrements in diabetes.

  14. Dioscin relieves endotoxemia induced acute neuro-inflammation and protect neurogenesis via improving 5-HT metabolism

    PubMed Central

    Yang, Rui; Chen, Wei; Lu, Ye; Li, Yingke; Du, Hongli; Gao, Songyan; Dong, Xin; Yuan, Hongbin

    2017-01-01

    Sepsis, in addition to causing fatality, is an independent risk factor for cognitive impairment among sepsis survivors. The pathologic mechanism of endotoxemia induced acute neuro-inflammation still has not been fully understood. For the first time, we found the disruption of neurotransmitters 5-HT, impaired neurogenesis and activation of astrocytes coupled with concomitant neuro-inflammation were the potential pathogenesis of endotoxemia induced acute neuro-inflammation in sepsis survivors. In addition, dioscin a natural steroidal saponin isolated from Chinese medicinal herbs, enhanced the serotonergic system and produced anti-depressant effect by enhancing 5-HT levels in hippocampus. What is more, this finding was verified by metabolic analyses of hippocampus, indicating 5-HT related metabolic pathway was involved in the pathogenesis of endotoxemia induced acute neuro-inflammation. Moreover, neuro-inflammation and neurogenesis within hippocampus were indexed using quantitative immunofluorescence analysis of GFAP DCX and Ki67, as well as real-time RT-PCR analysis of some gene expression levels in hippocampus. Our in vivo and in vitro studies show dioscin protects hippocampus from endotoxemia induced cascade neuro-inflammation through neurotransmitter 5-HT and HMGB-1/TLR4 signaling pathway, which accounts for the dioscin therapeutic effect in behavioral tests. Therefore, the current findings suggest that dioscin could be a potential approach for the therapy of endotoxemia induced acute neuro-inflammation. PMID:28059131

  15. Functional MRI Detection of Hemodynamic Response of Repeated Median Nerve Stimulation

    PubMed Central

    Ai, Leo; Oya, Hiroyuki; Howard, Matthew; Xiong, Jinhu

    2012-01-01

    Median nerve stimulation is a commonly used technique in the clinical setting to determine areas of neuronal function in the brain. Neuronal activity of repeated median nerve stimulation is well studied. The cerebral hemodynamic response of the stimulation, on the other hand, is not very clear. In this study, we investigate how cerebral hemodynamics behaves over time using the same repeated median nerve stimulation. Ten subjects received constant repeated electrical stimulation to the right median nerve. Each subject had fMRI scans while receiving said stimulations for seven runs. Our results show that the BOLD signal significantly decreases across each run. Significant BOLD signal decreases can also be seen within runs. These results are consistent with studies that have studied the hemodynamic habituation effect with other forms of stimulation. However, the results do not completely agree with the findings of studies where evoked potentials were examined. Thus, further inquiry of how evoked potentials and cerebral hemodynamics are coupled when using constant stimulations is needed. PMID:23228312

  16. The evolution of neuroArm.

    PubMed

    Sutherland, Garnette R; Wolfsberger, Stefan; Lama, Sanju; Zarei-nia, Kourosh

    2013-01-01

    Intraoperative imaging disrupts the rhythm of surgery despite providing an excellent opportunity for surgical monitoring and assessment. To allow surgery within real-time images, neuroArm, a teleoperated surgical robotic system, was conceptualized. The objective was to design and manufacture a magnetic resonance-compatible robot with a human-machine interface that could reproduce some of the sight, sound, and touch of surgery at a remote workstation. University of Calgary researchers worked with MacDonald, Dettwiler and Associates engineers to produce a requirements document, preliminary design review, and critical design review, followed by the manufacture, preclinical testing, and clinical integration of neuroArm. During the preliminary design review, the scope of the neuroArm project changed to performing microsurgery outside the magnet and stereotaxy inside the bore. neuroArm was successfully manufactured and installed in an intraoperative magnetic resonance imaging operating room. neuroArm was clinically integrated into 35 cases in a graded fashion. As a result of this experience, neuroArm II is in development, and advances in technology will allow microsurgery within the bore of the magnet. neuroArm represents a successful interdisciplinary collaboration. It has positive implications for the future of robotic technology in neurosurgery in that the precision and accuracy of robots will continue to augment human capability.

  17. Neuro-Ophthalmology at a Tertiary Eye Care Centre in India.

    PubMed

    Dhiman, Rebika; Singh, Digvijay; Gantayala, Shiva P; Ganesan, Vaitheeswaran L; Sharma, Pradeep; Saxena, Rohit

    2017-11-09

    Neuro-ophthalmology as a specialty is underdeveloped in India. The aim of our study was to determine the spectrum and profile of patients presenting to a tertiary eye care center with neuro-ophthalmic disorders. A retrospective hospital-based study was conducted, and records of all patients seen at the neuro-ophthalmology clinic of Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India, over a 1-year period were retrieved and evaluated. Of a total of 30,111 patients referred to various specialty clinics in a span of 1 year, 1597 (5%) were referred for neuro-ophthalmology evaluation. The mean patient age was 30.8 ± 19.5 years, with a male dominance (M:F = 2.02:1). Among these patients, optic nerve disorders were noted in 63.8% (n = 1,020), cranial nerve palsy in 7% (n = 114), cortical visual impairment in 6.5% (n = 105), and others (eye/optic nerve hypophasia, blepharospasm, and optic disc drusen) in 6% (n = 95). Among the patients with optic nerve disorders, optic neuropathy without disc edema/(traumatic optic neuropathy, hereditary, tumor-related, retrobulbar neuritis, toxic, and idiopathic) was noted in 42.8% (n = 685) and optic neuropathy with disc edema (ischemic optic neuropathy, papilledema, post-papilledema optic atrophy, papillitis, neuroretinitis, and inflammatory optic neuropathy) in 20.9% (n = 335). Sixteen percent of patients (n = 263) were incorrect referrals. The neuro-ophthalmic clinic constitutes a significant referral unit in a tertiary eye care center in India. Traumatic and ischemic optic neuropathies are the most common diagnoses. Neuro-ophthalmology requires further development as a subspecialty in India to better serve the nation's population.

  18. Individual Differences in Audio-Vocal Speech Imitation Aptitude in Late Bilinguals: Functional Neuro-Imaging and Brain Morphology

    PubMed Central

    Reiterer, Susanne Maria; Hu, Xiaochen; Erb, Michael; Rota, Giuseppina; Nardo, Davide; Grodd, Wolfgang; Winkler, Susanne; Ackermann, Hermann

    2011-01-01

    An unanswered question in adult language learning or late bi and multilingualism is why individuals show marked differences in their ability to imitate foreign accents. While recent research acknowledges that more adults than previously assumed can still acquire a “native” foreign accent, very little is known about the neuro-cognitive correlates of this special ability. We investigated 140 German-speaking individuals displaying varying degrees of “mimicking” capacity, based on natural language text, sentence, and word imitations either in their second language English or in Hindi and Tamil, languages they had never been exposed to. The large subject pool was strictly controlled for previous language experience prior to magnetic resonance imaging. The late-onset (around 10 years) bilinguals showed significant individual differences as to how they employed their left-hemisphere speech areas: higher hemodynamic activation in a distinct fronto-parietal network accompanied low ability, while high ability paralleled enhanced gray matter volume in these areas concomitant with decreased hemodynamic responses. Finally and unexpectedly, males were found to be more talented foreign speech mimics. PMID:22059077

  19. Less or more hemodynamic monitoring in critically ill patients.

    PubMed

    Jozwiak, Mathieu; Monnet, Xavier; Teboul, Jean-Louis

    2018-06-07

    Hemodynamic investigations are required in patients with shock to identify the type of shock, to select the most appropriate treatments and to assess the patient's response to the selected therapy. We discuss how to select the most appropriate hemodynamic monitoring techniques in patients with shock as well as the future of hemodynamic monitoring. Over the last decades, the hemodynamic monitoring techniques have evolved from intermittent toward continuous and real-time measurements and from invasive toward less-invasive approaches. In patients with shock, current guidelines recommend the echocardiography as the preferred modality for the initial hemodynamic evaluation. In patients with shock nonresponsive to initial therapy and/or in the most complex patients, it is recommended to monitor the cardiac output and to use advanced hemodynamic monitoring techniques. They also provide other useful variables that are useful for managing the most complex cases. Uncalibrated and noninvasive cardiac output monitors are not reliable enough in the intensive care setting. The use of echocardiography should be initially encouraged in patients with shock to identify the type of shock and to select the most appropriate therapy. The use of more invasive hemodynamic monitoring techniques should be discussed on an individualized basis.

  20. Intelligent multiagent coordination based on reinforcement hierarchical neuro-fuzzy models.

    PubMed

    Mendoza, Leonardo Forero; Vellasco, Marley; Figueiredo, Karla

    2014-12-01

    This paper presents the research and development of two hybrid neuro-fuzzy models for the hierarchical coordination of multiple intelligent agents. The main objective of the models is to have multiple agents interact intelligently with each other in complex systems. We developed two new models of coordination for intelligent multiagent systems, which integrates the Reinforcement Learning Hierarchical Neuro-Fuzzy model with two proposed coordination mechanisms: the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with a market-driven coordination mechanism (MA-RL-HNFP-MD) and the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with graph coordination (MA-RL-HNFP-CG). In order to evaluate the proposed models and verify the contribution of the proposed coordination mechanisms, two multiagent benchmark applications were developed: the pursuit game and the robot soccer simulation. The results obtained demonstrated that the proposed coordination mechanisms greatly improve the performance of the multiagent system when compared with other strategies.

  1. The Neurologic Assessment in Neuro-Oncology (NANO) scale: a tool to assess neurologic function for integration into the Response Assessment in Neuro-Oncology (RANO) criteria.

    PubMed

    Nayak, Lakshmi; DeAngelis, Lisa M; Brandes, Alba A; Peereboom, David M; Galanis, Evanthia; Lin, Nancy U; Soffietti, Riccardo; Macdonald, David R; Chamberlain, Marc; Perry, James; Jaeckle, Kurt; Mehta, Minesh; Stupp, Roger; Muzikansky, Alona; Pentsova, Elena; Cloughesy, Timothy; Iwamoto, Fabio M; Tonn, Joerg-Christian; Vogelbaum, Michael A; Wen, Patrick Y; van den Bent, Martin J; Reardon, David A

    2017-05-01

    The Macdonald criteria and the Response Assessment in Neuro-Oncology (RANO) criteria define radiologic parameters to classify therapeutic outcome among patients with malignant glioma and specify that clinical status must be incorporated and prioritized for overall assessment. But neither provides specific parameters to do so. We hypothesized that a standardized metric to measure neurologic function will permit more effective overall response assessment in neuro-oncology. An international group of physicians including neurologists, medical oncologists, radiation oncologists, and neurosurgeons with expertise in neuro-oncology drafted the Neurologic Assessment in Neuro-Oncology (NANO) scale as an objective and quantifiable metric of neurologic function evaluable during a routine office examination. The scale was subsequently tested in a multicenter study to determine its overall reliability, inter-observer variability, and feasibility. The NANO scale is a quantifiable evaluation of 9 relevant neurologic domains based on direct observation and testing conducted during routine office visits. The score defines overall response criteria. A prospective, multinational study noted a >90% inter-observer agreement rate with kappa statistic ranging from 0.35 to 0.83 (fair to almost perfect agreement), and a median assessment time of 4 minutes (interquartile range, 3-5). The NANO scale provides an objective clinician-reported outcome of neurologic function with high inter-observer agreement. It is designed to combine with radiographic assessment to provide an overall assessment of outcome for neuro-oncology patients in clinical trials and in daily practice. Furthermore, it complements existing patient-reported outcomes and cognition testing to combine for a global clinical outcome assessment of well-being among brain tumor patients. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions

  2. Comparison of Automated Brain Volume Measures obtained with NeuroQuant and FreeSurfer.

    PubMed

    Ochs, Alfred L; Ross, David E; Zannoni, Megan D; Abildskov, Tracy J; Bigler, Erin D

    2015-01-01

    To examine intermethod reliabilities and differences between FreeSurfer and the FDA-cleared congener, NeuroQuant, both fully automated methods for structural brain MRI measurements. MRI scans from 20 normal control subjects, 20 Alzheimer's disease patients, and 20 mild traumatically brain-injured patients were analyzed with NeuroQuant and with FreeSurfer. Intermethod reliability was evaluated. Pairwise correlation coefficients, intraclass correlation coefficients, and effect size differences were computed. NeuroQuant versus FreeSurfer measures showed excellent to good intermethod reliability for the 21 regions evaluated (r: .63 to .99/ICC: .62 to .99/ES: -.33 to 2.08) except for the pallidum (r/ICC/ES = .31/.29/-2.2) and cerebellar white matter (r/ICC/ES = .31/.31/.08). Volumes reported by NeuroQuant were generally larger than those reported by FreeSurfer with the whole brain parenchyma volume reported by NeuroQuant 6.50% larger than the volume reported by FreeSurfer. There was no systematic difference in results between the 3 subgroups. NeuroQuant and FreeSurfer showed good to excellent intermethod reliability in volumetric measurements for all brain regions examined with the only exceptions being the pallidum and cerebellar white matter. This finding was robust for normal individuals, patients with Alzheimer's disease, and patients with mild traumatic brain injury. Copyright © 2015 by the American Society of Neuroimaging.

  3. Evaluating MRI based vascular wall motion as a biomarker of Fontan hemodynamic performance

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad G.; Hong, Haifa

    2015-03-01

    The Fontan procedure for single-ventricle heart disease involves creation of pathways to divert venous blood from the superior & inferior venacavae (SVC, IVC) directly into the pulmonary arteries (PA), bypassing the right ventricle. For optimal surgical outcomes, venous flow energy loss in the resulting vascular construction must be minimized and ensuring close to equal flow distribution from the Fontan conduit connecting IVC to the left & right PA is paramount. This requires patient-specific hemodynamic evaluation using computational fluid dynamics (CFD) simulations which are often time and resource intensive, limiting applicability for real-time patient management in the clinic. In this study, we report preliminary efforts at identifying a new non-invasive imaging based surrogate for CFD simulated hemodynamics. We establish correlations between computed hemodynamic criteria from CFD modeling and cumulative wall displacement characteristics of the Fontan conduit quantified from cine cardiovascular MRI segmentations over time (i.e. 20 cardiac phases gated from the start of ventricular systole), in 5 unique Fontan surgical connections. To focus our attention on diameter variations while discounting side-to-side swaying motion of the Fontan conduit, the difference between its instantaneous regional expansion and inward contraction (averaged across the conduit) was computed and analyzed. Maximum Fontan conduit-average expansion over the cardiac cycle correlated with the anatomy-specific diametric offset between the axis of the IVC and SVC (r2=0.13, p=0.55) - a known factor correlated with Fontan energy loss and IVC-to-PA flow distribution. Investigation in a larger study cohort is needed to establish stronger statistical correlations.

  4. Time-resolved magnetic resonance angiography (MRA) at 3.0 Tesla for evaluation of hemodynamic characteristics of vascular malformations: description of distinct subgroups.

    PubMed

    Hammer, Simone; Uller, Wibke; Manger, Florentine; Fellner, Claudia; Zeman, Florian; Wohlgemuth, Walter A

    2017-01-01

    Quantitative evaluation of hemodynamic characteristics of arteriovenous and venous malformations using time-resolved magnetic resonance angiography (MRA) at 3.0 Tesla. Time-resolved MRA with interleaved stochastic trajectories (TWIST) at 3.0 Tesla was studied in 83 consecutive patients with venous malformations (VM) and arteriovenous malformations (AVM). Enhancement characteristics were calculated as percentage increase of signal intensity above baseline over time. Maximum percentage signal intensity increase (signal max ), time intervals between onset of arterial enhancement and lesion enhancement (t onset ), and time intervals between beginning of lesion enhancement and maximum percentage of lesion enhancement (t max ) were analyzed. All AVMs showed a high-flow hemodynamic pattern. Two significantly different (p < 0.001) types of venous malformations emerged: VMs with arteriovenous fistulas (AVF) (median signal max 737 %, IQR [interquartile range] = 511 - 1182 %; median t onset 5 s, IQR = 5 - 10 s; median t max 35 s, IQR = 26 - 40 s) and without AVFs (median signal max 284 %, IQR = 177-432 %; median t onset 23 s, IQR = 15 - 30 s; median t max 60 s, IQR = 55 - 75 s). Quantitative evaluation of time-resolved MRA at 3.0 Tesla provides hemodynamic characterization of vascular malformations. VMs can be subclassified into two hemodynamic subgroups due to presence or absence of AVFs. • Time-resolved MRA at 3.0 Tesla provides quantitative hemodynamic characterization of vascular malformations. • Malformations significantly differ in time courses of enhancement and signal intensity increase. • AVMs show a distinctive high-flow hemodynamic pattern. • Two significantly different types of VMs emerged: VMs with and without AVFs.

  5. Effects of Anti-Hypertensive Monotherapy with Either Calcium Channel Blocker or Angiotensin Receptor Blocker on Arterial Stiffness, Central Hemodynamics, and Ventriculo-Arterial Coupling in Uncomplicated Hypertension Patients

    PubMed Central

    Lin, Heng-Hsu; Wang, Chia-Sung; Lin, Jiunn-Lee; Hwang, Juey-Jen; Lin, Lian-Yu

    2013-01-01

    Objectives This study is designed to investigate the effects of anti-hypertensive monotherapy [either calcium channel blocker (CCB) or angiotensin receptor blocker (ARB)] on pulsatile hemodynamic parameters in patients with uncomplicated hypertension. Methods This is a longitudinal observational study. For simplicity, we included patients with uncomplicated hypertension who receivedmono anti-hypertensive therapy with ARB or CCB. Hemodynamic parameters including central arterial pressure (CAP), aortic characteristic impedance (Zc), augmentation index (AI), brachial-ankle pulse wave velocity (baPWV), heart-ankle pulse wave velocity (haPWV), cardiac ultrasonographic parameters and ventriculo-arterial (VA) coupling were measured before, 1 month and 3 months after treatment. Results A total of 74 subjects were included in our study for analysis from 2007-2008. Systolic blood pressure (SBP), diastolic blood pressure (DBP), and central systolic arterial pressure (CSAP) were significantly reduced 1 and 3 months after initiation of therapy. Among the pulsatile hemodynamic parameters, only the baPWV was significantly reduced (from1537.78 ± 200.63 cm/s to 1460.06 ± 186.09 cm/s to 1456.53 ± 196.03 cm/s, p for trend = 0.016). The haPWV only decreased with borderline significance (from 1015.38 ± 124.26 cm/s to 978.88 ± 126.55 cm/s to 967.99 ± 103.37 cm/s, p for trend = 0.041). The other pulsatile hemodynamic parameters remained unchanged before and after therapy. Subgroup analysis (age above or below52 years) showed that the baPWVwas significantly reduced only in the younger group. Conclusions Among the pulsatile hemodynamic parameters, only the baPWV was effectively reduced by either CCB or ARB. The improvement of PWV was more evident in younger subjects. PMID:27122681

  6. Non-invasive quantification of hemodynamics in human choriocapillaries

    NASA Astrophysics Data System (ADS)

    Yu, Huidan (Whitney); Chen, Rou; An, Senyou; McDonough, James; Gelfand, Bradley; Yao, Jun

    2016-11-01

    The development of retinal disease is inextricably linked to defects in the choroidal blood supply. However, to date a description of the hemodynamics in the human choroidal circulation is lacking. Through high resolution choroidal vascular network mapped from immunofluorescent labeling and confocal microscopy of human cadaver donor eyes. We noninvasively quantify hemodynamics including velocity, pressure, and wall-shear stress (WSS) in choriocapillaries through mesoscale modeling and GPU-accelerated fast computation. This is the first-ever map of hemodynamic parameters (WSS, pressure, and velocity) in anatomically accurate human choroidal vasculature in health and disease. The pore scale simulation results are used to evaluate porous media models with the same porosity and boundary conditions. School of Medicine, Indiana University.

  7. Validation of the Neuro-QoL Measurement System in Children with Epilepsy

    PubMed Central

    Lai, Jin-Shei; Nowinski, Cindy J.; Zelko, Frank; Wortman, Katy; Burns, James; Nordli, Douglas R.; Cella, David

    2015-01-01

    OBJECTIVE Children with epilepsy often face complex psychosocial consequences that are not fully captured by existing patient-reported outcome (PRO) measures. The Neurology Quality of Life Measurement System “Neuro-QoL” was developed to provide a set of common PRO measures that address issues important to people with neurologic disorders. This paper reports Neuro-QoL (Anxiety, Depression, Interaction with peers, Fatigue, Pain, Cognition, Stigma, and Upper and Lower Extremity Function) validation in children with epilepsy. METHOD Patients (aged 10–18 years) diagnosed with epilepsy completed Neuro-QoL and legacy measures at time-1 and 6-month follow-up. Internal consistency reliability was also evaluated. Concurrent validity was assessed by comparing Neuro-QoL measures with more established “legacy” measures of the same concepts. Clinical validity was evaluated by comparing mean Neuro-QoL scores of patients grouped by clinical anchors such as disease severity. Responsiveness of the Neuro-QoL from time-1 to 6-month was evaluated using self-reported change as the primary anchor. RESULTS 61 patients (mean age=13.4 years; 62.3% male, 75.9% white) participated. Most patients (64.2%) had been seizure free in the 3 months prior to participation, and seizure frequency was otherwise described as follows: 17.8% daily, 13.3% weekly, 35.6% monthly and 33.3% yearly. All patients were taking anti-epileptic drugs. Patients reported better function/less symptoms compared to the reference groups. Internal consistency (alpha) coefficients ranged from 0.76 – 0.87. Patients with different seizure frequency differed on Anxiety (p<.01) and Cognition (p<.05). Compared to patients on polytherapy, those on monotherapy had better Upper Extremity scores (p<.05). Compared to those with localized seizures, those experiencing generalized seizures reported worse stigma (p<.05). Depression, Anxiety, Lower Extremity, Fatigue, Pain, Interaction with peers, and Stigma also significantly

  8. The Neurologic Assessment in Neuro-Oncology (NANO) scale: a tool to assess neurologic function for integration into the Response Assessment in Neuro-Oncology (RANO) criteria

    PubMed Central

    DeAngelis, Lisa M.; Brandes, Alba A.; Peereboom, David M.; Galanis, Evanthia; Lin, Nancy U.; Soffietti, Riccardo; Macdonald, David R.; Chamberlain, Marc; Perry, James; Jaeckle, Kurt; Mehta, Minesh; Stupp, Roger; Muzikansky, Alona; Pentsova, Elena; Cloughesy, Timothy; Iwamoto, Fabio M.; Tonn, Joerg-Christian; Vogelbaum, Michael A.; Wen, Patrick Y.; van den Bent, Martin J.; Reardon, David A.

    2017-01-01

    Abstract Background. The Macdonald criteria and the Response Assessment in Neuro-Oncology (RANO) criteria define radiologic parameters to classify therapeutic outcome among patients with malignant glioma and specify that clinical status must be incorporated and prioritized for overall assessment. But neither provides specific parameters to do so. We hypothesized that a standardized metric to measure neurologic function will permit more effective overall response assessment in neuro-oncology. Methods. An international group of physicians including neurologists, medical oncologists, radiation oncologists, and neurosurgeons with expertise in neuro-oncology drafted the Neurologic Assessment in Neuro-Oncology (NANO) scale as an objective and quantifiable metric of neurologic function evaluable during a routine office examination. The scale was subsequently tested in a multicenter study to determine its overall reliability, inter-observer variability, and feasibility. Results. The NANO scale is a quantifiable evaluation of 9 relevant neurologic domains based on direct observation and testing conducted during routine office visits. The score defines overall response criteria. A prospective, multinational study noted a >90% inter-observer agreement rate with kappa statistic ranging from 0.35 to 0.83 (fair to almost perfect agreement), and a median assessment time of 4 minutes (interquartile range, 3–5). Conclusion. The NANO scale provides an objective clinician-reported outcome of neurologic function with high inter-observer agreement. It is designed to combine with radiographic assessment to provide an overall assessment of outcome for neuro-oncology patients in clinical trials and in daily practice. Furthermore, it complements existing patient-reported outcomes and cognition testing to combine for a global clinical outcome assessment of well-being among brain tumor patients. PMID:28453751

  9. Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study.

    PubMed

    Fabiani, Monica; Gordon, Brian A; Maclin, Edward L; Pearson, Melanie A; Brumback-Peltz, Carrie R; Low, Kathy A; McAuley, Edward; Sutton, Bradley P; Kramer, Arthur F; Gratton, Gabriele

    2014-01-15

    Brain aging is characterized by changes in both hemodynamic and neuronal responses, which may be influenced by the cardiorespiratory fitness of the individual. To investigate the relationship between neuronal and hemodynamic changes, we studied the brain activity elicited by visual stimulation (checkerboard reversals at different frequencies) in younger adults and in older adults varying in physical fitness. Four functional brain measures were used to compare neuronal and hemodynamic responses obtained from BA17: two reflecting neuronal activity (the event-related optical signal, EROS, and the C1 response of the ERP), and two reflecting functional hemodynamic changes (functional magnetic resonance imaging, fMRI, and near-infrared spectroscopy, NIRS). The results indicated that both younger and older adults exhibited a quadratic relationship between neuronal and hemodynamic effects, with reduced increases of the hemodynamic response at high levels of neuronal activity. Although older adults showed reduced activation, similar neurovascular coupling functions were observed in the two age groups when fMRI and deoxy-hemoglobin measures were used. However, the coupling between oxy- and deoxy-hemoglobin changes decreased with age and increased with increasing fitness. These data indicate that departures from linearity in neurovascular coupling may be present when using hemodynamic measures to study neuronal function. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. The human resource crisis in neuro-ophthalmology.

    PubMed

    Frohman, Larry P

    2008-09-01

    Neuro-ophthalmology is facing a serious human resource issue. Few are entering the subspecialty, which is perceived as being poorly compensated compared with other subspecialties of ophthalmology. The low compensation comes from the fact that 1) non-procedural encounters remain undervalued, 2) efforts that benefit other medical specialists are not counted, and 3) the relatively low expenses of neuro-ophthalmologists are not factored into compensation formulas. Mission-based budgeting, which forces academic departments to be financially accountable without the expectation of fiscal relief from medical schools or practice plans, has exacerbated the compensation issue. Solutions must come from within neuro-ophthalmology, academic departments, medical schools, and medical practice plans. They include 1) providing educational resources so that neuro-ophthalmologists need not spend so much time teaching the basics, 2) factoring into compensation the impact of neuro-ophthalmologists in teaching and on revenue generation by procedure-based specialists, 3) improving the efficiency of neuro-ophthalmologists in their consultative practices by providing ample clerical support and other measures, 4) providing contractual salary compensation by departments such as neurosurgery to recognize the contributions made by neuro-ophthalmologists, and 5) reorganizing the academic clinical effort as multidisciplinary rather than departmental.

  11. A Profile of Neuro-Ophthalmic Practice Around the World.

    PubMed

    Frohman, Larry P

    2018-03-01

    To compare contrast neuro-ophthalmic practice in various countries, an 18-question survey was sent to the international North American Neuro-Ophthalmology Society (NANOS) members in the spring of 2016. At least 1 NANOS member was contacted for each non-US nation in the NANOS membership roster. If there were multiple NANOS members from 1 country, multiple were contacted. If responses were received from more than 1 person from a single country, the first response received was used as the source data. The survey (in English) was emailed to 47 NANOS members from 31 countries. Twenty responses were received representing members from 15 nations. In all 15 nations, at least half of the neuro-ophthalmologists were trained as ophthalmologists. In 60% of nations, at least half of the neuro-ophthalmologists were trained internally, whereas in 33% of countries, at least half were trained in the United States. The number of physicians who practiced a significant amount of neuro-ophthalmology ranged from low (0.08/million, India) to high (3.10/million, Israel). Countries having the highest percentage of neuro-ophthalmologists exclusively practicing neuro-ophthalmology also were those with better patient access to neuro-ophthalmic care. Requirement of approval to see a neuro-ophthalmologist or for imaging studies requested by neuro-ophthalmologists was not typical. In most nations, academic neuro-ophthalmologists were paid a straight salary. In no nation were neuro-ophthalmologists paid more than another ophthalmic subspecialty. Individual national health care system designs and compensation models have had a profound influence on the rewards and challenges that face neuro-ophthalmologists. There seems to have been a connection between recognition of the discipline, financial rewards of neuro-ophthalmic practice, conditions that permit full-time neuro-ophthalmic practice, and patient access to care. A higher percentage of gross national product for health care did not seem to

  12. Effects of antenatal magnesium sulfate treatment for neonatal neuro-protection on cerebral oxygen kinetics.

    PubMed

    Stark, Michael J; Hodyl, Nicolette A; Andersen, Chad C

    2015-09-01

    The underlying neuro-protective mechanisms of antenatal magnesium sulfate (MgSO(4)) in infants born preterm remain poorly understood. Early neonatal brain injury may be preceded by low cerebral blood flow (CBF) and elevated cerebral fractional tissue oxygen extraction (cFTOE). This study investigated the effect of antenatal MgSO(4) on cerebral oxygen delivery, consumption, and cFTOE in preterm infants. CBF and tissue oxygenation index were measured, and oxygen delivery, consumption, and cFTOE calculated within 24 h of birth and at 48 and 72 h of life in 36 infants ≤ 30 wk gestation exposed to MgSO(4) and 29 unexposed infants. Total internal carotid blood flow and cerebral oxygen delivery did not differ between the groups at the three study time-points. Cerebral oxygen consumption and cFTOE were lower in infants exposed to antenatal MgSO(4) (P = 0.012) compared to unexposed infants within 24 h of delivery. This difference was not evident by 48 h of age. Fewer infants in the MgSO(4) group developed P/IVH by 72 h of age (P = 0.03). Infants exposed to MgSO(4) had similar systemic and cerebral hemodynamics but lower cFTOE compared to nonexposed. These findings suggest reduced cerebral metabolism maybe a component of the neuro-protective actions of antenatal MgSO(4).

  13. Frequency and Pathological Phenotype of Bovine Astrovirus CH13/NeuroS1 Infection in Neurologically-Diseased Cattle: Towards Assessment of Causality.

    PubMed

    Selimovic-Hamza, Senija; Boujon, Céline L; Hilbe, Monika; Oevermann, Anna; Seuberlich, Torsten

    2017-01-18

    Next-generation sequencing (NGS) has opened up the possibility of detecting new viruses in unresolved diseases. Recently, astrovirus brain infections have been identified in neurologically diseased humans and animals by NGS, among them bovine astrovirus (BoAstV) CH13/NeuroS1, which has been found in brain tissues of cattle with non-suppurative encephalitis. Only a few studies are available on neurotropic astroviruses and a causal relationship between BoAstV CH13/NeuroS1 infections and neurological disease has been postulated, but remains unproven. Aiming at making a step forward towards assessing the causality, we collected brain samples of 97 cases of cattle diagnosed with unresolved non-suppurative encephalitis, and analyzed them by in situ hybridization and immunohistochemistry, to determine the frequency and neuropathological distribution of the BoAstV CH13/NeuroS1 and its topographical correlation to the pathology. We detected BoAstV CH13/NeuroS1 RNA or proteins in neurons throughout all parts of the central nervous system (CNS) in 34% of all cases, but none were detected in cattle of the control group. In general, brain lesions had a high correlation with the presence of the virus. These findings show that a substantial proportion of cattle with non-suppurative encephalitis are infected with BoAstV CH13/NeuroS1 and further substantiate the causal relationship between neurological disease and astrovirus infections.

  14. Frequency and Pathological Phenotype of Bovine Astrovirus CH13/NeuroS1 Infection in Neurologically-Diseased Cattle: Towards Assessment of Causality

    PubMed Central

    Selimovic-Hamza, Senija; Boujon, Céline L.; Hilbe, Monika; Oevermann, Anna; Seuberlich, Torsten

    2017-01-01

    Next-generation sequencing (NGS) has opened up the possibility of detecting new viruses in unresolved diseases. Recently, astrovirus brain infections have been identified in neurologically diseased humans and animals by NGS, among them bovine astrovirus (BoAstV) CH13/NeuroS1, which has been found in brain tissues of cattle with non-suppurative encephalitis. Only a few studies are available on neurotropic astroviruses and a causal relationship between BoAstV CH13/NeuroS1 infections and neurological disease has been postulated, but remains unproven. Aiming at making a step forward towards assessing the causality, we collected brain samples of 97 cases of cattle diagnosed with unresolved non-suppurative encephalitis, and analyzed them by in situ hybridization and immunohistochemistry, to determine the frequency and neuropathological distribution of the BoAstV CH13/NeuroS1 and its topographical correlation to the pathology. We detected BoAstV CH13/NeuroS1 RNA or proteins in neurons throughout all parts of the central nervous system (CNS) in 34% of all cases, but none were detected in cattle of the control group. In general, brain lesions had a high correlation with the presence of the virus. These findings show that a substantial proportion of cattle with non-suppurative encephalitis are infected with BoAstV CH13/NeuroS1 and further substantiate the causal relationship between neurological disease and astrovirus infections. PMID:28106800

  15. In-stream attenuation of neuro-active pharmaceuticals and their metabolites

    USGS Publications Warehouse

    Writer, Jeffrey; Antweiler, Ronald C.; Ferrar, Imma; Ryan, Joseph N.; Thurman, Michael

    2013-01-01

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.

  16. Evidence-based Neuro Linguistic Psychotherapy: a meta-analysis.

    PubMed

    Zaharia, Cătălin; Reiner, Melita; Schütz, Peter

    2015-12-01

    Neuro Linguistic Programming (NLP) Framework has enjoyed enormous popularity in the field of applied psychology. NLP has been used in business, education, law, medicine and psychotherapy to identify people's patterns and alter their responses to stimuli, so they are better able to regulate their environment and themselves. NLP looks at achieving goals, creating stable relationships, eliminating barriers such as fears and phobias, building self-confidence, and self-esteem, and achieving peak performance. Neuro Linguistic Psychotherapy (NLPt) encompasses NLP as framework and set of interventions in the treatment of individuals with different psychological and/or social problems. We aimed systematically to analyse the available data regarding the effectiveness of Neuro Linguistic Psychotherapy (NLPt). The present work is a meta-analysis of studies, observational or randomized controlled trials, for evaluating the efficacy of Neuro Linguistic Programming in individuals with different psychological and/or social problems. The databases searched to identify studies in English and German language: CENTRAL in the Cochrane Library; PubMed; ISI Web of Knowledge (include results also from Medline and the Web of Science); PsycINFO (including PsycARTICLES); Psyndex; Deutschsprachige Diplomarbeiten der Psychologie (database of theses in Psychology in German language), Social SciSearch; National library of health and two NLP-specific research databases: one from the NLP Community (http://www.nlp.de/cgi-bin/research/nlprdb.cgi?action=res_entries) and one from the NLP Group (http://www.nlpgrup.com/bilimselarastirmalar/bilimsel-arastirmalar-4.html#Zweig154). From a total number of 425 studies, 350 were removed and considered not relevant based on the title and abstract. Included, in the final analysis, are 12 studies with numbers of participants ranging between 12 and 115 subjects. The vast majority of studies were prospective observational. The actual paper represents the first

  17. Freedom Solo Versus Trifecta Bioprotheses: Clinical and Hemodynamic Evaluation after Propensity Score Matching.

    PubMed

    J Cerqueira, Rui; Melo, Renata; Moreira, Soraia; A Saraiva, Francisca; Andrade, Marta; Salgueiro, Elson; Almeida, Jorge; J Amorim, Mário; Pinho, Paulo; Lourenço, André; F Leite-Moreira, Adelino

    2017-01-01

    To compare stentless Freedom Solo and stented Trifecta aortic bioprostheses regarding hemodynamic profile, left ventricular mass regression, early and late postoperative outcomes and survival. Longitudinal cohort study of consecutive patients undergoing aortic valve replacement (from 2009 to 2016) with either Freedom Solo or Trifecta at one centre. Local databases and national records were queried. Postoperative echocardiography (3-6 months) was obtained for hemodynamic profile (mean transprosthetic gradient and effective orifice area) and left ventricle mass determination. After propensity score matching (21 covariates), Kaplan-Meier analysis and cumulative incidence analysis were performed for survival and combined outcome of structural valve deterioration and endocarditis, respectively. Hemodynamics and left ventricle mass regression were assessed by a mixed- -effects model including propensity score as a covariate. From a total sample of 397 Freedom Solo and 525 Trifecta patients with a median follow-up time of 4.0 (2.2- 6.0) and 2.4 (1.4-3.7) years, respectively, a matched sample of 329 pairs was obtained. Well-balanced matched groups showed no difference in survival (hazard ratio=1.04, 95% confidence interval=0.69-1.56) or cumulative hazards of combined outcome (subhazard ratio=0.54, 95% confidence interval=0.21-1.39). Although Trifecta showed improved hemodynamic profile compared to Freedom Solo, no differences were found in left ventricle mass regression. Trifecta has a slightly improved hemodynamic profile compared to Freedom Solo but this does not translate into differences in the extent of mass regression, postoperative outcomes or survival, which were good and comparable for both bioprostheses. Long-term follow-up is needed for comparisons with older models of bioprostheses.

  18. Diffusion and imaging properties of three new lipophilic tracers, NeuroVue ™ Maroon, NeuroVue ™ Red and NeuroVue ™ Green and their use for double and triple labeling of neuronal profile.

    PubMed Central

    Fritzsch, B.; Muirhead, K.A.; Feng, Feng; D.Gray, B.; Ohlsson-Wilhelm, B. M.

    2006-01-01

    We describe here diffusion and imaging properties of three new lipophilic tracers, NeuroVue ™ Maroon (near infrared), NeuroVue ™ Red and NeuroVue ™ Green. Using pair wise comparisons between the new dyes and existing dyes (DiI, DiA, DiD, DiO, PKH2, PKH26) applied to the left and the right side of fixed spinal cord preparations, we show that NeuroVue Maroon (excitation max 647 nm) surpasses all other dyes in this study in signal to noise ratio. We also present data showing the utility of these new dyes for both double labeling and triple labeling in combination with each other or existing lipophilic tracers. Using mice bearing the PLP-eGFP transgene, we demonstrate that either NeuroVue Maroon or NeuroVue Red can readily be combined with eGFP labeling. Double labeling experiments using NeuroVue Red and eGFP allowed us to demonstrate that every fiber in the neonatal ear is surrounded by developing Schwann cells. PMID:16023922

  19. Lack of correlation between preoperative and intraoperative liver hemodynamics: a descriptive analysis.

    PubMed

    Sánchez-Cabús, Santiago; Abraldes, Juan G; Taurá, Pilar; Calatayud, David; Fondevila, Constantino; Fuster, José; Ferrer, Joana; García-Pagán, Juan Carlos; García-Valdecasas, Juan Carlos

    2014-01-15

    Adult living-donor liver transplantation recipients undergo important hemodynamic changes during the procedure, which in turn have proven to be of the upmost importance when dealing with small grafts, to avoid the so-called "small-for-size" syndrome. Back in 2003, we started a hemodynamic monitoring protocol in adult living-donor liver transplantation recipients, which evaluated the hemodynamic status of the patient 24 hr before, during, and 3 days after transplantation. We analyzed the correlation between the same hemodynamic variables measured in the hemodynamic laboratory and those taken in the operating room. With the exception of cardiac index and indexed systemic vascular resistance, all the other hepatic and systemic hemodynamic parameters measured before and during the intervention, as well as during and after the intervention, showed a lack of correlation. The observed lack of correlation may happen due to many factors, such as the influence of vasoactive and anesthetic drugs, total muscular relaxation, or the presence of an open abdomen. As a result, a direct comparison between hemodynamic values should only be done when measured in the same conditions.

  20. Invasive and noninvasive hemodynamic monitoring of patients with cerebrovascular accidents.

    PubMed Central

    Velmahos, G C; Wo, C C; Demetriades, D; Bishop, M H; Shoemaker, W C

    1998-01-01

    Seventeen patients with hemodynamic instability from acute cerebrovascular accidents were evaluated shortly after arrival at the emergency department of a university-run county hospital with both invasive Swan-Ganz pulmonary artery catheter placement and a new, noninvasive, thoracic electrical bioimpedance device. Values were recorded and temporal patterns of survivors and nonsurvivors were described. Cardiac indices obtained simultaneously by the 2 techniques were compared. Of the 17 patients, 11 (65%) died. Survivors had higher values than nonsurvivors for mean arterial pressure, cardiac index, and oxygen saturation, delivery, and consumption at comparable times. Cardiac index values, as measured by invasive and noninvasive methods, were correlated. We concluded that hemodynamic monitoring in an acute care setting may recognize temporal circulatory patterns associated with outcome. Noninvasive electrical bioimpedance technology offers a new method for early hemodynamic evaluation. Further research in this area is warranted. PMID:9682626

  1. Development, Implementation and Evaluation of an Audiotape and Accompanying Visuals in Hemodynamics as a Supplementary Teaching Aid for Human Anatomy and Physiology: Curriculum and Program Planning.

    ERIC Educational Resources Information Center

    Selvadurai, Ranjani H.

    The purpose of this study was to develop, implement, and evaluate an audiotape and accompanying handouts on hemodynamics as a supplemental teaching aid in the Health Science Learning Center of New York City Technical College. It was hypothesized that there would be a significant difference between the mean examination grade on hemodynamics of…

  2. In Vitro Evaluation of an Alternative Neonatal Extracorporeal Life Support Circuit on Hemodynamic Performance and Bubble Trap.

    PubMed

    Spencer, Shannon B; Wang, Shigang; Woitas, Karl; Glass, Kristen; Kunselman, Allen R; Ündar, Akif

    2017-01-01

    The objective of this study was to evaluate an alternative neonatal extracorporeal life support (ECLS) circuit with a RotaFlow centrifugal pump and Better-Bladder (BB) for hemodynamic performance and gaseous microemboli (GME) capture in a simulated neonatal ECLS system. The circuit consisted of a Maquet RotaFlow centrifugal pump, a Quadrox-iD Pediatric diffusion membrane oxygenator, 8 Fr arterial cannula, and 10 Fr venous cannula. A "Y" connector was inserted into the venous line to allow for comparison between BB and no BB. The circuit and pseudopatient were primed with lactated Ringer's solution and packed human red blood cells (hematocrit 35%). All hemodynamic trials were conducted at flow rates ranging from 100 to 600 mL/min at 36°C. Real-time pressure and flow data were recorded using a data acquisition system. For GME testing, 0.5 cc of air was injected via syringe into the venous line. GME were detected and characterized with or without the BB using the Emboli Detection and Classification Quantifier (EDAC) System. Trials were conducted at flow rates ranging from 200 to 500 mL/min. The hemodynamic energy data showed that up to 75.2% of the total hemodynamic energy was lost from the circuit. The greatest pressure drops occurred across the arterial cannula and increased with increasing flow rate from 10.1 mm Hg at 100 mL/min to 114.3 mm Hg at 600 mL/min. The EDAC results showed that the BB trapped a significant amount of the GME in the circuit. When the bladder was removed, GME passed through the pump head and the oxygenator to the arterial line. This study showed that a RotaFlow centrifugal pump combined with a BB can help to significantly decrease the number of GME in a neonatal ECLS circuit. Even with this optimized alternative circuit, a large percentage of the total hemodynamic energy was lost. The arterial cannula was the main source of resistance in the circuit. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals

  3. Validation of the Neuro-QoL measurement system in children with epilepsy.

    PubMed

    Lai, Jin-Shei; Nowinski, Cindy J; Zelko, Frank; Wortman, Katy; Burns, James; Nordli, Douglas R; Cella, David

    2015-05-01

    Children with epilepsy often face complex psychosocial consequences that are not fully captured by existing patient-reported outcome (PRO) measures. The Neurology Quality of Life Measurement System "Neuro-QoL" was developed to provide a set of common PRO measures that address issues important to people with neurologic disorders. This paper reports Neuro-QoL (anxiety, depression, interaction with peers, fatigue, pain, cognitive function, stigma, and upper and lower extremity functions) validation in children with epilepsy. Patients (aged 10-18years) diagnosed with epilepsy completed Neuro-QoL and legacy measures at time 1 (initial study visit) and 6-month follow-up. Internal consistency reliability was also evaluated. Concurrent validity was assessed by comparing Neuro-QoL measures with more established "legacy" measures of the same concepts. Clinical validity was evaluated by comparing mean Neuro-QoL scores of patients grouped by clinical anchors such as disease severity. Responsiveness of the Neuro-QoL from time 1 (initial study visit) to 6months was evaluated using self-reported change as the primary anchor. Sixty-one patients (mean age=13.4years; 62.3% male, 75.9% white) participated. Most patients (64.2%) had been seizure-free in the 3months prior to participation, and seizure frequency was otherwise described as follows: 17.8% daily, 13.3% weekly, 35.6% monthly, and 33.3% yearly. All patients were taking antiepileptic drugs. Patients reported better function/less symptoms compared to the reference groups. Internal consistency (alpha) coefficients ranged from 0.76 to 0.87. Patients with different seizure frequencies differed on anxiety (p<.01) and cognitive function (p<.05). Compared to patients on polytherapy, those on monotherapy had better upper extremity scores (p<.05). Compared to those with localized seizures, those experiencing generalized seizures reported worse stigma (p<.05). Depression, anxiety, lower extremity, fatigue, pain, interaction with peers

  4. A Revised Hemodynamic Theory of Age-Related Macular Degeneration

    PubMed Central

    Gelfand, Bradley D.; Ambati, Jayakrishna

    2016-01-01

    Age-related macular degeneration (AMD) afflicts one out of every 40 individuals worldwide, causing irreversible central blindness in millions. The transformation of various tissue layers within the macula in the retina has led to competing conceptual models of the molecular pathways, cell types, and tissues responsible for the onset and progression of AMD. A model that has persisted for over 6 decades is the hemodynamic, or vascular theory of AMD progression, which states that vascular dysfunction of the choroid underlies AMD pathogenesis. Here, we re-evaluate this hypothesis in light of recent advances on molecular, anatomic, and hemodynamic changes underlying choroidal dysfunction in AMD. We propose an updated, detailed model of hemodynamic dysfunction as a mechanism of AMD development and progression. PMID:27423265

  5. The nursing perspective on monitoring hemodynamics and oxygen transport.

    PubMed

    Tucker, Dawn; Hazinski, Mary Fran

    2011-07-01

    Maintenance of adequate systemic oxygen delivery requires careful clinical assessment integrated with hemodynamic measurements and calculations to detect and treat conditions that may compromise oxygen delivery and lead to life-threatening shock, respiratory failure, or cardiac arrest. The bedside nurse constantly performs such assessments and measurements to detect subtle changes and trends in patient condition. The purpose of this editorial is to highlight nursing perspectives about the hemodynamic and oxygen transport monitoring systems summarized in the Pediatric Cardiac Intensive Care Society Evidence- Based Review and Consensus Statement on Monitoring of Hemodynamics and Oxygen Transport Balance. There is no substitute for the observations of a knowledgeable and experienced clinician who understands the patient's condition and potential causes of deterioration and is able to evaluate response to therapy.

  6. Functional Neuro-Imaging and Post-Traumatic Olfactory Impairment

    PubMed Central

    Roberts, Richard J.; Sheehan, William; Thurber, Steven; Roberts, Mary Ann

    2010-01-01

    Objective: To evaluate via a research literature survey the anterior neurological significance of decreased olfactory functioning following traumatic brain injuries. Materials and Methods: A computer literature review was performed to locate all functional neuro-imaging studies on patients with post-traumatic anosmia and other olfactory deficits. Results: A convergence of findings from nine functional neuro-imaging studies indicating evidence for reduced metabolic activity at rest or relative hypo-perfusion during olfactory activations. Hypo-activation of the prefrontal regions was apparent in all nine post-traumatic samples, with three samples yielding evidence of reduced activity in the temporal regions as well. Conclusions: The practical ramifications include the reasonable hypothesis that a total anosmic head trauma patient likely has frontal lobe involvement. PMID:21716782

  7. Sub-band denoising and spline curve fitting method for hemodynamic measurement in perfusion MRI

    NASA Astrophysics Data System (ADS)

    Lin, Hong-Dun; Huang, Hsiao-Ling; Hsu, Yuan-Yu; Chen, Chi-Chen; Chen, Ing-Yi; Wu, Liang-Chi; Liu, Ren-Shyan; Lin, Kang-Ping

    2003-05-01

    In clinical research, non-invasive MR perfusion imaging is capable of investigating brain perfusion phenomenon via various hemodynamic measurements, such as cerebral blood volume (CBV), cerebral blood flow (CBF), and mean trasnit time (MTT). These hemodynamic parameters are useful in diagnosing brain disorders such as stroke, infarction and periinfarct ischemia by further semi-quantitative analysis. However, the accuracy of quantitative analysis is usually affected by poor signal-to-noise ratio image quality. In this paper, we propose a hemodynamic measurement method based upon sub-band denoising and spline curve fitting processes to improve image quality for better hemodynamic quantitative analysis results. Ten sets of perfusion MRI data and corresponding PET images were used to validate the performance. For quantitative comparison, we evaluate gray/white matter CBF ratio. As a result, the hemodynamic semi-quantitative analysis result of mean gray to white matter CBF ratio is 2.10 +/- 0.34. The evaluated ratio of brain tissues in perfusion MRI is comparable to PET technique is less than 1-% difference in average. Furthermore, the method features excellent noise reduction and boundary preserving in image processing, and short hemodynamic measurement time.

  8. Encouraging Subspecialty Practice by Constructively Influencing Trainees Early in their Careers Will Improve Advocacy for Neuro-Ophthalmology among Nigerian Ophthalmologists

    PubMed Central

    Ogun, Olufunmilola A.

    2016-01-01

    This study was conducted to assess the current knowledge, attitude, and perception of Nigerian ophthalmologists toward neuro-ophthalmology; identify barriers to the uptake of neuro-ophthalmology as a desired subspecialty; and make recommendations to improve interest in neuro-ophthalmology training. This was a cross-sectional survey of ophthalmology consultants and trainees from the six geopolitical zones of Nigeria, who were attending a national ophthalmology conference. All consenting respondents voluntarily completed a validated self-administered questionnaire. There were 107 respondents comprising 56 males and 51 females. Majority (54.2%) of respondents were aged 40 years and younger. Almost half (47.8%) worked at tertiary level, public health institutions. Only 10.3% worked in private practice. Neuro-ophthalmology exposure was short and occurred mainly during residency (65.7%), while 15% had no exposure at all. Most (80.4%) indicated only nominal interest in neuro-ophthalmology, while only 4.6% indicated a desire to specialize in the field. Financial constraint was the main obstacle to the pursuit of subspecialty training. A total of 86% of respondents admitted that full (34%) or partial (52%) Funding would motivate them to pursue the training. Among respondents desiring part sponsorship, more than half were willing to augment such sponsorship with personal funds. In conclusion, career interest in neuro-ophthalmology is very low among Nigerian ophthalmologists. Late and limited exposure to neuro-ophthalmology during medical training may be contributing factors. Early exposure to neuro-ophthalmology during medical school rotations, coupled with the provision of sponsored subspecialty training opportunities, will serve to increase enrollment in the field. PMID:29349319

  9. Comparative hemodynamics in an aorta with bicuspid and trileaflet valves

    NASA Astrophysics Data System (ADS)

    Gilmanov, Anvar; Sotiropoulos, Fotis

    2016-04-01

    Bicuspid aortic valve (BAV) is a congenital heart defect that has been associated with serious aortopathies, such as aortic stenosis, aortic regurgitation, infective endocarditis, aortic dissection, calcific aortic valve and dilatation of ascending aorta. There are two main hypotheses to explain the increase prevalence of aortopathies in patients with BAV: the genetic and the hemodynamic. In this study, we seek to investigate the possible role of hemodynamic factors as causes of BAV-associated aortopathy. We employ the curvilinear immersed boundary method coupled with an efficient thin-shell finite-element formulation for tissues to carry out fluid-structure interaction simulations of a healthy trileaflet aortic valve (TAV) and a BAV placed in the same anatomic aorta. The computed results reveal major differences between the TAV and BAV flow patterns. These include: the dynamics of the aortic valve vortex ring formation and break up; the large-scale flow patterns in the ascending aorta; the shear stress magnitude, directions, and dynamics on the heart valve surfaces. The computed results are in qualitative agreement with in vivo magnetic resonance imaging data and suggest that the linkages between BAV aortopathy and hemodynamics deserve further investigation.

  10. Innovative neuro-fuzzy system of smart transport infrastructure for road traffic safety

    NASA Astrophysics Data System (ADS)

    Beinarovica, Anna; Gorobetz, Mikhail; Levchenkov, Anatoly

    2017-09-01

    The proposed study describes applying of neural network and fuzzy logic in transport control for safety improvement by evaluation of accidents’ risk by intelligent infrastructure devices. Risk evaluation is made by following multiple-criteria: danger, changeability and influence of changes for risk increasing. Neuro-fuzzy algorithms are described and proposed for task solution. The novelty of the proposed system is proved by deep analysis of known studies in the field. The structure of neuro-fuzzy system for risk evaluation and mathematical model is described in the paper. The simulation model of the intelligent devices for transport infrastructure is proposed to simulate different situations, assess the risks and propose the possible actions for infrastructure or vehicles to minimize the risk of possible accidents.

  11. Patient-Specific Modeling of Interventricular Hemodynamics in Single Ventricle Physiology

    NASA Astrophysics Data System (ADS)

    Vedula, Vijay; Feinstein, Jeffrey; Marsden, Alison

    2016-11-01

    Single ventricle (SV) congenital heart defects, in which babies are born with only functional ventricle, lead to significant morbidity and mortality with over 30% of patients developing heart failure prior to adulthood. Newborns with SV physiology typically undergo three palliative surgeries, in which the SV becomes the systemic pumping chamber. Depending on which ventricle performs the systemic function, patients are classified as having either a single left ventricle (SLV) or a single right ventricle (SRV), with SRV patients at higher risk of failure. As the native right ventricles are not designed to meet systemic demands, they undergo remodeling leading to abnormal hemodynamics. The hemodynamic characteristics of SLVs compared with SRVs is not well established. We present a validated computational framework for performing patient-specific modeling of ventricular flows, and apply it across 6 SV patients (3SLV + 3SRV), comparing hemodynamic conditions between the two subgroups. Simulations are performed with a stabilized finite element method coupled with an immersed boundary method for modeling heart valves. We discuss identification of hemodynamic biomarkers of ventricular remodeling for early risk assessment of failure. This research is supported in part by the Stanford Child Health Research Institute and the Stanford NIH-NCATS-CTSA through Grant UL1 TR001085 and due to U.S. National Institute of Health through NIH NHLBI R01 Grants 5R01HL129727-02 and 5R01HL121754-03.

  12. Hemodynamic Characteristics Including Pulmonary Hypertension at Rest and During Exercise Before and After Heart Transplantation

    PubMed Central

    Lundgren, Jakob; Rådegran, Göran

    2015-01-01

    Background Little is known about the hemodynamic response to exercise in heart failure patients at various ages before and after heart transplantation (HT). This information is important because postoperative hemodynamics may be a predictor of survival. To investigate the hemodynamic response to HT and exercise, we grouped our patients based on preoperative age and examined their hemodynamics at rest and during exercise before and after HT. Methods and Results Ninety-four patients were evaluated at rest prior to HT with right heart catheterization at our laboratory. Of these patients, 32 were evaluated during slight supine exercise before and 1 year after HT. Postoperative evaluations were performed at rest 1 week after HT and at rest and during exercise at 4 weeks, 3 months, 6 months, and 1 year after HT. The exercise patients were divided into 2 groups based on preoperative age of ≤50 or >50 years. There were no age-dependent differences in the preoperative hemodynamic exercise responses. Hemodynamics markedly improved at rest and during exercise at 1 and 4 weeks, respectively, after HT; however, pulmonary and, in particular, ventricular filling pressures remained high during exercise at 1 year after HT, resulting in normalized pulmonary vascular resistance response but deranged total pulmonary vascular resistance response. Conclusions Our findings suggest that, (1) in patients with heart failure age ≤50 or >50 years may not affect the hemodynamic response to exercise to the same extent as in healthy persons, and (2) total pulmonary vascular resistance may be more adequate than pulmonary vascular resistance for evaluating the exercise response after HT. PMID:26199230

  13. The effect of different anesthetics on neurovascular coupling

    PubMed Central

    Franceschini, Maria Angela; Radhakrishnan, Harsha; Thakur, Kiran; Wu, Weicheng; Ruvinskaya, Svetlana; Carp, Stefan; Boas, David A.

    2010-01-01

    To date, the majority of neurovascular coupling studies focused on the thalamic afferents' activity in layer IV and the corresponding large spiking activity as responsible for functional hyperemia. This paper highlights the role of the secondary and late cortico-cortical transmission in neurovascular coupling. Simultaneous scalp electroencephalography (EEG) and diffuse optical imaging (DOI) measurements were obtained during multiple conditions of event-related electrical forepaw stimulation in 33 male Sprague-Dawley rats divided into 6 groups depending on the maintaining anesthetic - alpha-chloralose, pentobarbital, ketamine-xylazine, fentanyl-droperidol, isoflurane, or propofol. The somatosensory evoked potentials (SEP) were decomposed into four components and the question of which best predicts the hemodynamic responses was investigated. Results of the linear regression analysis show that the hemodynamic response is best correlated with the secondary and late cortico-cortical transmissions and not with the initial thalamic input activity in layer IV. Baseline cerebral blood flow (CBF) interacts with neural activity and influences the evoked hemodynamic responses. Finally, neurovascular coupling appears to be the same across all anesthetics used. PMID:20350606

  14. Evaluation of bioimpedance for the measurement of physiologic variables as related to hemodynamic studies in space flight

    NASA Technical Reports Server (NTRS)

    Taylor, Bruce C.

    1993-01-01

    Orthostatic intolerance, following space flight, has received substantial attention because of the possibility that it compromises astronaut safety and reduces the ability of astronauts to function at peak performance levels upon return to a one-g environment. Many pre- and post-flight studies are performed to evaluate changes in hemodynamic responses to orthostatic challenges after shuttle missions. The purpose of this present project is to validate bioimpedance as a means to acquire stroke volume and other hemodynamic information in these studies. In this study, ten male and ten female subjects were subjected to simultaneous measurements of thoracic bioimpedance and Doppler ultrasonic velocimetry under supine, 10 degree head down and 30 degree head up conditions. Paired measurements were made during six periods of five seconds breath holding, over a two minute period, for each of the three positions. Stroke volume was calculated by three bioimpedance techniques and ultrasonic Doppler.

  15. Monitoring Detrusor Oxygenation and Hemodynamics Noninvasively during Dysfunctional Voiding

    PubMed Central

    Macnab, Andrew J.; Stothers, Lynn S.; Shadgan, Babak

    2012-01-01

    The current literature indicates that lower urinary tract symptoms (LUTSs) related to benign prostatic hyperplasia (BPH) have a heterogeneous pathophysiology. Pressure flow studies (UDSs) remain the gold standard evaluation methodology for such patients. However, as the function of the detrusor muscle depends on its vasculature and perfusion, the underlying causes of LUTS likely include abnormalities of detrusor oxygenation and hemodynamics, and available treatment options include agents thought to act on the detrusor smooth muscle and/or vasculature. Hence, near infrared spectroscopy (NIRS), an established optical methodology for monitoring changes in tissue oxygenation and hemodynamics, has relevance as a means of expanding knowledge related to the pathophysiology of BPH and potential treatment options. This methodological report describes how to conduct simultaneous NIRS monitoring of detrusor oxygenation and hemodynamics during UDS, outlines the clinical implications and practical applications of NIRS, explains the principles of physiologic interpretation of NIRS voiding data, and proposes an exploratory hypothesis that the pathophysiological causes underlying LUTS include detrusor dysfunction due to an abnormal hemodynamic response or the onset of oxygen debt during voiding. PMID:23019422

  16. [To strengthen the education on basic knowledge and skills of neuro-ophthalmology].

    PubMed

    Zhang, Xiao-jun; Wang, Ning-li

    2011-12-01

    Basic knowledge and skills are cornerstone of the diagnosis and treatment of neuro-ophthalmology diseases in ophthalmology practice. Due to the interdisciplinary features of neuro-ophthalmology, neuro-anatomy, neuro-physiology related to eyes, neuro-image and neuro-electrodiagnosis, these should be included in the education for the ophthalmologist. Special attention should be paid to training on capability of logically thinking in neuro-ophthalmology. Multiple ways can be used for the education of ophthalmologists and neurologists for the enhancement of basic knowledge and skills of neuro-ophthalmology in China.

  17. Design of a smart hemodynamic monitoring simulator.

    PubMed

    Kilty, Brennan G; Wright, Cameron H G; Barrett, Steven F; Calkins, Jerry M; Drzewiecki, Tadeusz M

    2007-01-01

    We describe the design of a medical patient status simulator developed as a proof of concept for the United States Air Force. The simulator is the precursor to a system that analyzes hemodynamic information in order to act as an intelligent assistant to a Critical Care Air Transport Team (CCATT) monitoring a critically injured casualty. The simulator displays hemodynamic information, alerts to abnormal values, offers likely diagnoses, and allows the team to review recommended therapies. The focus has been to develop a user interface and modular system architecture that allows individual modules to easily be evaluated and altered as needed. While initiated by the military, this work could also be used to aid civilian first responders.

  18. Hemodynamics in an Aorta with Bicuspid and Trileaflet Valves

    NASA Astrophysics Data System (ADS)

    Gilmanov, Anvar; Sotiropoulos, Fotis

    2015-11-01

    Bicuspid aortic valve (BAV) is a congenital heart defect that has been associated with serious aortopathies, such as ascending aortic aneurysm, aortic stenosis, aortic regurgitation, infective endocarditis, aortic dissection, calcific aortic valve and dilatation of ascending aorta. Two main hypotheses - the genetic and the hemodynamic are discussed in literature to explain the development and progression of aortopathies in patients with BAV. In this study we seek to investigate the possible role of hemodynamic factors as causes of BAV-associated aortopathy. We employ the Curvilinear Immersed Boundary (CURVIB) method coupled with an efficient thin-shell finite element (TS-FE) formulation for tissues to carry out fluid-structure interaction simulations of a healthy tri-leaflet aortic valve (TAV) and a BAV placed in the same anatomic aorta. The computed results reveal major differences between the TAV and BAV flow patterns. These include: the dynamics of the aortic valve vortex ring formation and break up; the large scale flow patterns in the ascending aorta; and the shear stress magnitude on the aortic wall. The computed results are in qualitative agreement with in vivo Magnetic Resonance Imaging (MRI) data and suggest that the linkages between BAV aortopathy and hemodynamics deserve further investigation. This work is supported by the Lillehei Heart Institute at the University of Minnesota and the Minnesota Supercomputing Institute.

  19. Symptom-Hemodynamic Mismatch and Heart Failure Event Risk

    PubMed Central

    Lee, Christopher S.; Hiatt, Shirin O.; Denfeld, Quin E.; Mudd, James O.; Chien, Christopher; Gelow, Jill M.

    2014-01-01

    Background Heart failure (HF) is a heterogeneous condition of both symptoms and hemodynamics. Objective The goal of this study was to identify distinct profiles among integrated data on physical and psychological symptoms and hemodynamics, and quantify differences in 180-day event-risk among observed profiles. Methods A secondary analysis of data collected during two prospective cohort studies by a single group of investigators was performed. Latent class mixture modeling was used to identify distinct symptom-hemodynamic profiles. Cox proportional hazards modeling was used to quantify difference in event-risk (HF emergency visit, hospitalization or death) among profiles. Results The mean age (n=291) was 57±13 years, 38% were female, and 61% had class III/IV HF. Three distinct symptom-hemodynamic profiles were identified. 17.9% of patients had concordant symptoms and hemodynamics (i.e. moderate physical and psychological symptoms matched the comparatively hemodynamic profile), 17.9% had severe symptoms and average hemodynamics, and 64.2% had poor hemodynamics and mild symptoms. Compared to those in the concordant profile, both profiles of symptom-hemodynamic mismatch were associated with a markedly increased event-risk (severe symptoms hazards ratio = 3.38, p=0.033; poor hemodynamics hazards ratio = 3.48, p=0.016). Conclusions A minority of adults with HF have concordant symptoms and hemodynamics. Either profile of symptom-hemodynamic mismatch in HF is associated with a greater risk of healthcare utilization for HF or death. PMID:24988323

  20. Advanced hemodynamic monitoring in intensive care medicine : A German web-based survey study.

    PubMed

    Saugel, B; Reese, P C; Wagner, J Y; Buerke, M; Huber, W; Kluge, S; Prondzinsky, R

    2018-04-01

    Advanced hemodynamic monitoring is recommended in patients with complex circulatory shock. To evaluate the current attitudes and beliefs among German intensivists, regarding advanced hemodynamic monitoring, the actual hemodynamic management in clinical practice, and the barriers to using it. Web-based survey among members of the German Society of Medical Intensive Care and Emergency Medicine. Of 284 respondents, 249 (87%) agreed that further hemodynamic assessment is needed to determine the type of circulatory shock if no clear clinical diagnosis can be made. In all, 281 (99%) agreed that echocardiography is helpful for this purpose (transpulmonary thermodilution: 225 [79%]; pulmonary artery catheterization: 126 [45%]). More than 70% of respondents agreed that blood flow variables (cardiac output, stroke volume) should be measured in patients with hemodynamic instability. The parameters most respondents agreed should be assessed in a patient with hemodynamic instability were mean arterial pressure, cardiac output, and serum lactate. Echocardiography is available in 99% of ICUs (transpulmonary thermodilution: 91%; pulmonary artery catheter: 63%). The respondents stated that, in clinical practice, invasive arterial pressure measurements and serum lactate measurements are performed in more than 90% of patients with hemodynamic instability (cardiac output monitoring in about 50%; transpulmonary thermodilution in about 40%). The respondents did not feel strong barriers to the use of advanced hemodynamic monitoring in clinical practice. This survey study shows that German intensivists deem advanced hemodynamic assessment necessary for the differential diagnosis of circulatory shock and to guide therapy with fluids, vasopressors, and inotropes in ICU patients.

  1. Clinical relevance of fetal hemodynamic monitoring: Perinatal implications.

    PubMed

    Pruetz, Jay D; Votava-Smith, Jodie; Miller, David A

    2015-08-01

    Comprehensive assessment of fetal wellbeing involves monitoring of fetal growth, placental function, central venous pressure, and cardiac function. Ultrasound evaluation of the fetus using 2D, color Doppler, and pulse-wave Doppler techniques form the foundation of antenatal diagnosis of structural anomalies, rhythm abnormalities and altered fetal circulation. Accurate and timely prenatal identification of the fetus at risk is critical for appropriate parental counseling, antenatal diagnostic testing, consideration for fetal intervention, perinatal planning, and coordination of postnatal care delivery. Fetal hemodynamic monitoring and serial assessment are vital to ensuring fetal wellbeing, particularly in the setting of complex congenital anomalies. A complete hemodynamic evaluation of the fetus gives important information on the likelihood of a smooth postnatal transition and contributes to ensuring the best possible outcome for the neonate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Difference in hemodynamic and wall stress of ascending thoracic aortic aneurysms with bicuspid and tricuspid aortic valve

    PubMed Central

    Pasta, Salvatore; Rinaudo, Antonino; Luca, Angelo; Pilato, Michele; Scardulla, Cesare; Gleason, Thomas G.; Vorp, David A.

    2014-01-01

    The aortic dissection (AoD) of an ascending thoracic aortic aneurysm (ATAA) initiates when the hemodynamic loads exerted on the aneurysmal wall overcome the adhesive forces holding the elastic layers together. Parallel coupled, two-way fluid–structure interaction (FSI) analyses were performed on patient-specific ATAAs obtained from patients with either bicuspid aortic valve (BAV) or tricuspid aortic valve (TAV) to evaluate hemodynamic predictors and wall stresses imparting aneurysm enlargement and AoD. Results showed a left-handed circumferential flow with slower-moving helical pattern in the aneurysm's center for BAV ATAAs whereas a slight deviation of the blood flow toward the anterolateral region of the ascending aorta was observed for TAV ATAAs. Blood pressure and wall shear stress were found key hemodynamic predictors of aneurysm dilatation, and their dissimilarities are likely associated to the morphological anatomy of the aortic valve. We also observed discontinues, wall stresses on aneurysmal aorta, which was modeled as a composite with two elastic layers (i.e., inhomogeneity of vessel structural organization). This stress distribution was caused by differences on elastic material properties of aortic layers. Wall stress distribution suggests AoD just above sinotubular junction. Moreover, abnormal flow and lower elastic material properties that are likely intrinsic in BAV individuals render the aneurysm susceptible to the initiation of AoD. PMID:23664314

  3. [Meta-analyses on measurement precision of non-invasive hemodynamic monitoring technologies in adults].

    PubMed

    Pestel, G; Fukui, K; Higashi, M; Schmidtmann, I; Werner, C

    2018-06-01

    An ideal non-invasive monitoring system should provide accurate and reproducible measurements of clinically relevant variables that enables clinicians to guide therapy accordingly. The monitor should be rapid, easy to use, readily available at the bedside, operator-independent, cost-effective and should have a minimal risk and side effect profile for patients. An example is the introduction of pulse oximetry, which has become established for non-invasive monitoring of oxygenation worldwide. A corresponding non-invasive monitoring of hemodynamics and perfusion could optimize the anesthesiological treatment to the needs in individual cases. In recent years several non-invasive technologies to monitor hemodynamics in the perioperative setting have been introduced: suprasternal Doppler ultrasound, modified windkessel function, pulse wave transit time, radial artery tonometry, thoracic bioimpedance, endotracheal bioimpedance, bioreactance, and partial CO 2 rebreathing have been tested for monitoring cardiac output or stroke volume. The photoelectric finger blood volume clamp technique and respiratory variation of the plethysmography curve have been assessed for monitoring fluid responsiveness. In this manuscript meta-analyses of non-invasive monitoring technologies were performed when non-invasive monitoring technology and reference technology were comparable. The primary evaluation criterion for all studies screened was a Bland-Altman analysis. Experimental and pediatric studies were excluded, as were all studies without a non-invasive monitoring technique or studies without evaluation of cardiac output/stroke volume or fluid responsiveness. Most studies found an acceptable bias with wide limits of agreement. Thus, most non-invasive hemodynamic monitoring technologies cannot be considered to be equivalent to the respective reference method. Studies testing the impact of non-invasive hemodynamic monitoring technologies as a trend evaluation on outcome, as well as

  4. Central hemodynamic responses during serial exercise tests in heart failure patients using implantable hemodynamic monitors.

    PubMed

    Ohlsson, A; Steinhaus, D; Kjellström, B; Ryden, L; Bennett, T

    2003-06-01

    Exercise testing is commonly used in patients with congestive heart failure for diagnostic and prognostic purposes. Such testing may be even more valuable if invasive hemodynamics are acquired. However, this will make the test more complex and expensive and only provides information from isolated moments. We studied serial exercise tests in heart failure patients with implanted hemodynamic monitors allowing recording of central hemodynamics. Twenty-one NYHA Class II-III heart failure patients underwent maximal exercise tests and submaximal bike or 6-min hall walk tests to quantify their hemodynamic responses and to study the feasibility of conducting exercise tests in patients with such devices. Patients were followed for 2-3 years with serial exercise tests. During maximal tests (n=70), heart rate increased by 52+/-19 bpm while S(v)O(2) decreased by 35+/-10% saturation units. RV systolic and diastolic pressure increased 29+/-11 and 11+/-6 mmHg, respectively, while pulmonary artery diastolic pressure increased 21+/-8 mmHg. Submaximal bike (n=196) and hall walk tests (n=172) resulted in S(v)O(2) changes of 80 and 91% of the maximal tests, while RV pressures ranged from 72 to 79% of maximal responses. An added potential value of implantable hemodynamic monitors in heart failure patients may be to quantitatively determine the true hemodynamic profile during standard non-invasive clinical exercise tests and to compare that to hemodynamic effects of regular exercise during daily living. It would be of interest to study whether such information could improve the ability to predict changes in a patient's clinical condition and to improve tailoring patient management.

  5. Nonlinear extension of a hemodynamic linear model for coherent hemodynamics spectroscopy.

    PubMed

    Sassaroli, Angelo; Kainerstorfer, Jana M; Fantini, Sergio

    2016-01-21

    In this work, we are proposing an extension of a recent hemodynamic model (Fantini, 2014a), which was developed within the framework of a novel approach to the study of tissue hemodynamics, named coherent hemodynamics spectroscopy (CHS). The previous hemodynamic model, from a signal processing viewpoint, treats the tissue microvasculature as a linear time-invariant system, and considers changes of blood volume, capillary blood flow velocity and the rate of oxygen diffusion as inputs, and the changes of oxy-, deoxy-, and total hemoglobin concentrations (measured in near infrared spectroscopy) as outputs. The model has been used also as a forward solver in an inversion procedure to retrieve quantitative parameters that assess physiological and biological processes such as microcirculation, cerebral autoregulation, tissue metabolic rate of oxygen, and oxygen extraction fraction. Within the assumption of "small" capillary blood flow velocity oscillations the model showed that the capillary and venous compartments "respond" to this input as low pass filters, characterized by two distinct impulse response functions. In this work, we do not make the assumption of "small" perturbations of capillary blood flow velocity by solving without approximations the partial differential equation that governs the spatio-temporal behavior of hemoglobin saturation in capillary and venous blood. Preliminary comparison between the linear time-invariant model and the extended model (here identified as nonlinear model) are shown for the relevant parameters measured in CHS as a function of the oscillation frequency (CHS spectra). We have found that for capillary blood flow velocity oscillations with amplitudes up to 10% of the baseline value (which reflect typical scenarios in CHS), the discrepancies between CHS spectra obtained with the linear and nonlinear models are negligible. For larger oscillations (~50%) the linear and nonlinear models yield CHS spectra with differences within typical

  6. Improved Anatomical Specificity of Non-invasive Neuro-stimulation by High Frequency (5 MHz) Ultrasound

    NASA Astrophysics Data System (ADS)

    Li, Guo-Feng; Zhao, Hui-Xia; Zhou, Hui; Yan, Fei; Wang, Jing-Yao; Xu, Chang-Xi; Wang, Cong-Zhi; Niu, Li-Li; Meng, Long; Wu, Song; Zhang, Huai-Ling; Qiu, Wei-Bao; Zheng, Hai-Rong

    2016-04-01

    Low frequency ultrasound (<1 MHz) has been demonstrated to be a promising approach for non-invasive neuro-stimulation. However, the focal width is limited to be half centimeter scale. Minimizing the stimulation region with higher frequency ultrasound will provide a great opportunity to expand its application. This study first time examines the feasibility of using high frequency (5 MHz) ultrasound to achieve neuro-stimulation in brain, and verifies the anatomical specificity of neuro-stimulation in vivo. 1 MHz and 5 MHz ultrasound stimulation were evaluated in the same group of mice. Electromyography (EMG) collected from tail muscles together with the motion response videos were analyzed for evaluating the stimulation effects. Our results indicate that 5 MHz ultrasound can successfully achieve neuro-stimulation. The equivalent diameter (ED) of the stimulation region with 5 MHz ultrasound (0.29 ± 0.08 mm) is significantly smaller than that with 1 MHz (0.83 ± 0.11 mm). The response latency of 5 MHz ultrasound (45 ± 31 ms) is also shorter than that of 1 MHz ultrasound (208 ± 111 ms). Consequently, high frequency (5 MHz) ultrasound can successfully activate the brain circuits in mice. It provides a smaller stimulation region, which offers improved anatomical specificity for neuro-stimulation in a non-invasive manner.

  7. Improved hemodynamic parameters in middle cerebral artery infarction after decompressive craniectomy.

    PubMed

    Amorim, Robson Luis; de Andrade, Almir Ferreira; Gattás, Gabriel S; Paiva, Wellingson Silva; Menezes, Marcos; Teixeira, Manoel Jacobsen; Bor-Seng-Shu, Edson

    2014-05-01

    Decompressive craniectomy (DC) reduces mortality and improves functional outcome in patients with malignant middle cerebral artery infarction. However, little is known regarding the impact of DC on cerebral hemodynamics. Therefore, our goal was to study the hemodynamic changes that may occur in patients with malignant middle cerebral artery infarction after DC and to assess their relationship with outcomes. Twenty-seven patients with malignant middle cerebral artery infarction who were treated with DC were studied. The perfusion CT hemodynamic parameters, mean transit time, cerebral blood flow, and cerebral blood volume were evaluated preoperatively and within the first 24 hours after DC. There was a global trend toward improved cerebral hemodynamics after DC. Preoperative and postoperative absolute mean transit times were associated with mortality at 6 months, and the ratio of post- and preoperative cerebral blood flow was significantly higher in patients with favorable outcomes than those with unfavorable outcomes. Patients who underwent surgery 48 hours after stroke, those with midline brain shift>10 mm, and those who were >55 years showed no significant improvement in any perfusion CT parameters. DC improves cerebral hemodynamics in patients with malignant middle cerebral artery infarction, and the level of improvement is related to outcome. However, some patients did not seem to experience any additional hemodynamic benefit, suggesting that perfusion CT may play a role as a prognostic tool in patients undergoing DC after ischemic stroke.

  8. Randomized, multicenter, comparative study of NEURO versus CIMT in poststroke patients with upper limb hemiparesis: the NEURO-VERIFY Study.

    PubMed

    Abo, Masahiro; Kakuda, Wataru; Momosaki, Ryo; Harashima, Hiroaki; Kojima, Miki; Watanabe, Shigeto; Sato, Toshihiro; Yokoi, Aki; Umemori, Takuma; Sasanuma, Jinichi

    2014-07-01

    Many poststroke patients suffer functional motor limitation of the affected upper limb, which is associated with diminished health-related quality of life. The aim of this study is to conduct a randomized, multicenter, comparative study of low-frequency repetitive transcranial magnetic stimulation combined with intensive occupational therapy, NEURO (NovEl intervention Using Repetitive TMS and intensive Occupational therapy) versus constraint-induced movement therapy in poststroke patients with upper limb hemiparesis. In this randomized controlled study of NEURO and constraint-induced movement therapy, 66 poststroke patients with upper limb hemiparesis were randomly assigned at 2:1 ratio to low-frequency repetitive transcranial magnetic stimulation plus occupational therapy (NEURO group) or constraint-induced movement therapy (constraint-induced movement therapy group) for 15 days. Fugl-Meyer Assessment and Wolf Motor Function Test and Functional Ability Score of Wolf Motor Function Test were used for assessment. No differences in patients' characteristics were found between the two groups at baseline. The Fugl-Meyer Assessment score was significantly higher in both groups after the 15-day treatment compared with the baseline. Changes in Fugl-Meyer Assessment scores and Functional Ability Score of Wolf Motor Function Test were significantly higher in the NEURO group than in the constraint-induced movement therapy group, whereas the decrease in the Wolf Motor Function Test log performance time was comparable between the two groups (changes in Fugl-Meyer Assessment score, NEURO: 5·39 ± 4·28, constraint-induced movement therapy: 3·09 ± 4·50 points; mean ± standard error of the mean; P < 0·05) (changes in Functional Ability Score of Wolf Motor Function Test, NEURO: 3·98 ± 2·99, constraint-induced movement therapy: 2·09 ± 2·96 points; P < 0·05). The results of the 15-day rehabilitative protocol showed the superiority of NEURO

  9. Transduction of NeuroD2 protein induced neural cell differentiation.

    PubMed

    Noda, Tomohide; Kawamura, Ryuzo; Funabashi, Hisakage; Mie, Masayasu; Kobatake, Eiry

    2006-11-01

    NeuroD2, one of the neurospecific basic helix-loop-helix transcription factors, has the ability to induce neural differentiation in undifferentiated cells. In this paper, we show that transduction of NeuroD2 protein induced mouse neuroblastoma cell line N1E-115 into neural differentiation. NeuroD2 has two basic-rich domains, one is nuclear localization signal (NLS) and the other is basic region of basic helix-loop-helix (basic). We constructed some mutants of NeuroD2, ND2(Delta100-115) (lack of NLS), ND2(Delta123-134) (lack of basic) and ND2(Delta100-134) (lack of both NLS and basic) for transduction experiments. Using these proteins, we have shown that NLS region of NeuroD2 plays a role of protein transduction. Continuous addition of NeuroD2 protein resulted in N1E-115 cells adopting neural morphology after 4 days and Tau mRNA expression was increased. These results suggest that neural differentiation can be induced by direct addition of NeuroD2 protein.

  10. Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study

    NASA Astrophysics Data System (ADS)

    Lee, Seungduk; Lee, Mina; Koh, Dalkwon; Kim, Beop-Min; Choi, Jee Hyun

    2010-05-01

    We applied near-infrared spectroscopy (NIRS) and electroencephalography (EEG) simultaneously on the mouse brain and investigated the hemodynamic response to epileptic episodes under pharmacologically driven seizure. γ-butyrolactone (GBL) and 4-aminopyridine (4-AP) were applied to induce absence and tonic-clonic seizures, respectively. The epileptic episodes were identified from the single-channel EEG, and the corresponding hemodynamic changes in different regions of the brain were characterized by multichannel frequency-domain NIRS. Our results are the following: (i) the oxyhemoglobin level increases in the case of GBL-treated mice but not 4-AP-treated mice compared to the predrug state; (ii) the dominant response to each absence seizure is a decrease in deoxyhemolobin; (iii) the phase shift between oxy- and deoxyhemoglobin reduces in GBL-treated mice but no 4-AP-treated mice; and (iv) the spatial correlation of hemodynamics increased significantly in 4-AP-treated mice but not in GBL-treated mice. Our results shows that spatiotemporal tracking of cerebral hemodynamics using NIRS can be successfully applied to the mouse brain in conjunction with electrophysiological recording, which will support the study of molecular, cellular, and network origin of neurovascular coupling in vivo.

  11. Yogic exercises and health--a psycho-neuro immunological approach.

    PubMed

    Kulkarni, D D; Bera, T K

    2009-01-01

    Relaxation potential of yogic exercises seems to play a vital role in establishing psycho-physical health in reversing the psycho-immunology of emotions under stress based on breath and body awareness. However, mechanism of yogic exercises for restoring health and fitness components operating through psycho-neuro-immunological pathways is unknown. Therefore, a hybrid model of human information processing-psycho-neuroendocrine (HIP-PNE) network has been proposed to reveal the importance of yogic information processing. This study focuses on two major pathways of information processing involving cortical and hypothalamo-pituitary-adrenal axis (HPA) interactions with a deep reach molecular action on cellular, neuro-humoral and immune system in reversing stress mediated diseases. Further, the proposed HIP-PNE model has ample of experimental potential for objective evaluation of yogic view of health and fitness.

  12. Intracranial Vascular Disease Evaluation With Combined Vessel Wall Imaging And Patient Specific Hemodynamics

    NASA Astrophysics Data System (ADS)

    Samson, Kurt; Mossa-Basha, Mahmud; Yuan, Chun; Canton, Maria De Gador; Aliseda, Alberto

    2017-11-01

    Intracranial vascular pathologies are evaluated with angiography, conventional digital subtraction angiography or non-invasive (MRI, CT). Current techniques present limitations on the resolution with which the vessel wall characteristics can be measured, presenting a major challenge to differential diagnostic of cerebral vasculopathies. A new combined approach is presented that incorporates patient-specific image-based CFD models with intracranial vessel-wall MRI (VWMRI). Comparisons of the VWMRI measurements, evaluated for the presence of wall enhancement and thin-walled regions, against CFD metrics such as wall shear stress (WSS), and oscillatory shear index (OSI) are used to understand how the new imaging technique developed can predict the influence of hemodynamics on the deterioration of the aneurysmal wall, leading to rupture. Additionally, histology of each resected aneurysm, evaluated for inflammatory infiltration and wall thickness features, is used to validate the analysis from VWMRI and CFD. This data presents a solid foundation on which to build a new framework for combined VWMRI-CFD to predict unstable wall changes in unruptured intracranial aneurysms, and support clinical monitoring and intervention decisions.

  13. Accelerating Translational Research through Open Science: The Neuro Experiment.

    PubMed

    Gold, E Richard

    2016-12-01

    Translational research is often afflicted by a fundamental problem: a limited understanding of disease mechanisms prevents effective targeting of new treatments. Seeking to accelerate research advances and reimagine its role in the community, the Montreal Neurological Institute (Neuro) announced in the spring of 2016 that it is launching a five-year experiment during which it will adopt Open Science-open data, open materials, and no patenting-across the institution. The experiment seeks to examine two hypotheses. The first is whether the Neuro's Open Science initiative will attract new private partners. The second hypothesis is that the Neuro's institution-based approach will draw companies to the Montreal region, where the Neuro is based, leading to the creation of a local knowledge hub. This article explores why these hypotheses are likely to be true and describes the Neuro's approach to exploring them.

  14. Global cross-station assessment of neuro-fuzzy models for estimating daily reference evapotranspiration

    NASA Astrophysics Data System (ADS)

    Shiri, Jalal; Nazemi, Amir Hossein; Sadraddini, Ali Ashraf; Landeras, Gorka; Kisi, Ozgur; Fard, Ahmad Fakheri; Marti, Pau

    2013-02-01

    SummaryAccurate estimation of reference evapotranspiration is important for irrigation scheduling, water resources management and planning and other agricultural water management issues. In the present paper, the capabilities of generalized neuro-fuzzy models were evaluated for estimating reference evapotranspiration using two separate sets of weather data from humid and non-humid regions of Spain and Iran. In this way, the data from some weather stations in the Basque Country and Valencia region (Spain) were used for training the neuro-fuzzy models [in humid and non-humid regions, respectively] and subsequently, the data from these regions were pooled to evaluate the generalization capability of a general neuro-fuzzy model in humid and non-humid regions. The developed models were tested in stations of Iran, located in humid and non-humid regions. The obtained results showed the capabilities of generalized neuro-fuzzy model in estimating reference evapotranspiration in different climatic zones. Global GNF models calibrated using both non-humid and humid data were found to successfully estimate ET0 in both non-humid and humid regions of Iran (the lowest MAE values are about 0.23 mm for non-humid Iranian regions and 0.12 mm for humid regions). non-humid GNF models calibrated using non-humid data performed much better than the humid GNF models calibrated using humid data in non-humid region while the humid GNF model gave better estimates in humid region.

  15. Hemodynamic monitoring in the critically ill.

    PubMed

    Voga, G

    1995-06-01

    Monitoring of vital functions is one of the most important and essential tools in the management of critically ill patients in the ICU. Today it is possible to detect and analyze a great variety of physiological signals by various noninvasive and invasive techniques. An intensivist should be able to select and perform the most appropriate monitoring method for the individual patient considering risk-benefit ratio of the particular monitoring technique and the need for immediate therapy, specific diagnosis, continuous monitoring and evaluation of morphology should be included. Despite rapid development of noninvasive monitoring techniques, invasive hemodynamic monitoring in still one of the most basic ICU procedures. It enables monitoring of pressures, flow and saturation, pressures in the systemic and pulmonary circulation, estimation of cardiac performance and judgment of the adequacy of the cardiocirculatory system. Carefully and correctly obtained information are basis for proper hemodynamic assessment which usually effects the therapeutic decisions.

  16. Progressive Cortical Neuronal Damage and Chronic Hemodynamic Impairment in Atherosclerotic Major Cerebral Artery Disease.

    PubMed

    Yamauchi, Hiroshi; Kagawa, Shinya; Kishibe, Yoshihiko; Takahashi, Masaaki; Higashi, Tatsuya

    2016-06-01

    Cross-sectional studies suggest that chronic hemodynamic impairment may cause selective cortical neuronal damage in patients with atherosclerotic internal carotid artery or middle cerebral artery occlusive disease. The purpose of this longitudinal study was to determine whether the progression of cortical neuronal damage, evaluated as a decrease in central benzodiazepine receptors (BZRs), is associated with hemodynamic impairment at baseline or hemodynamic deterioration during follow-up. We evaluated the distribution of BZRs twice using positron emission tomography and (11)C-flumazenil over time in 80 medically treated patients with atherosclerotic internal carotid artery or middle cerebral artery occlusive disease that had no ischemic episodes during follow-up. Using 3D stereotactic surface projections, we quantified abnormal decreases in the BZRs in the cerebral cortex within the middle cerebral artery distribution and correlated changes in the BZR index with the mean hemispheric values of hemodynamic parameters obtained from (15)O gas positron emission tomography. In the hemisphere affected by arterial disease, the BZR index in 40 patients (50%) was increased during follow-up (mean 26±20 months). In multivariable logistic regression analyses, increases in the BZR index were associated with the decreased cerebral blood flow at baseline and an increased oxygen extraction fraction during follow-up. Increases in the oxygen extraction fraction during follow-up were associated with a lack of statin use. In patients with atherosclerotic internal carotid artery or middle cerebral artery disease, the progression of cortical neuronal damage was associated with hemodynamic impairment at baseline and hemodynamic deterioration during follow-up. Statin use may be beneficial against hemodynamic deterioration and therefore neuroprotective. © 2016 American Heart Association, Inc.

  17. [How xenon works: neuro and cardioprotection mechanisms].

    PubMed

    Morais, Ricardo; Andrade, Luísa; Lourenço, André; Tavares, Jorge

    2014-01-01

    The Xenon, a noble gas, has anesthetics properties, associated with remarkable hemodynamic stability as well as cardioprotective, neuroprotective proprieties. Its physicochemical characteristics give him a quick induction and emergence of anesthesia, being free of deleterious effects in all organs and showing no teratogenicity. Such properties have led to a growing interest in improving the knowledge about this noble gas, in order to assess the mechanisms of neuro and cardioprotection induced and to assess the clinical indications for its use. Qualitative review of clinical trials on anesthesia with xenon. Studies were identified from MEDLINE and by hand-searching, using the following keywords: xenon, xenon anestesia, xenon neuroprotection, xenon cradioprotection. After several studies, including two randomized multicenter controlled trials, the use of xenon as an anesthetic in patients ASA I-II was approved in March 2007. However his use in clinical practice has been strongly limited by it's high price. It seems unlikely that the advantages it offers in relation to other anesthetics justify it's use in patients ASA I-II. Although, xenon may be a valuable asset in the reduction of co-morbilities and mortality in anesthesia of patients ASA III-IV, unfortunately, there are no large randomized control studies to prove it. Unfortunately, there are still no randomized or multicentric studies showing a favourable cost-benefit profile of xenon in ASA III-IV patients vs. other anaesthetics. The usefulness of xenon in Anesthesiology requires more studies to be defined.

  18. Augmentation of sensory-evoked hemodynamic response in an early Alzheimer's disease mouse model.

    PubMed

    Kim, Jinho; Jeong, Yong

    2013-01-01

    Based on enlarged blood oxygen level-dependent (BOLD) responses in cognitively normal subjects at risk for Alzheimer's disease (AD), compensatory neuronal hyperactivation has been proposed as an early marker for diagnosis of AD. The BOLD response results from neurovascular coupling, i.e., hemodynamic response induced by neuronal activity. However, there has been no evidence of task-induced increases in hemodynamic response in animal models of AD. Here, we observed an augmented hemodynamic response pattern in a transgenic AβPP(SWE)/PS1ΔE9 mouse model of AD using three in vivo imaging methods: intrinsic optical signal imaging, multi-photon laser scanning microscopy, and laser Doppler flowmetry. Sensory stimulation resulted in augmented and prolonged hemodynamic responses in transgenic mice evidenced by changes in total, oxygenated, and deoxygenated hemoglobin concentration. This difference between transgenic and wild-type mice was significant at 7 months of age when amyloid plaques and cerebral amyloid angiopathy had developed but not at younger or older ages. Correspondingly, sensory stimulation-induced pial arteriole diameter was also augmented and prolonged in transgenic mice at 7 months of age. Cerebral blood flow response in transgenic mice was augmented but not prolonged. These results are consistent with the existence of BOLD signal hyperactivation in non-demented AD-risk human subjects, supporting its potential use as an early diagnostic marker of AD.

  19. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques

    NASA Astrophysics Data System (ADS)

    Lohani, A. K.; Kumar, Rakesh; Singh, R. D.

    2012-06-01

    SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.

  20. Neurovascular coupling and energy metabolism in the developing brain

    PubMed Central

    Kozberg, M.; Hillman, E.

    2016-01-01

    In the adult brain, increases in local neural activity are almost always accompanied by increases in local blood flow. However, many functional imaging studies of the newborn and developing human brain have observed patterns of hemodynamic responses that differ from adult responses. Among the proposed mechanisms for the observed variations is that neurovascular coupling itself is still developing in the perinatal brain. Many of the components thought to be involved in actuating and propagating this hemodynamic response are known to still be developing postnatally, including perivascular cells such as astrocytes and pericytes. Both neural and vascular networks expand and are then selectively pruned over the first year of human life. Additionally, the metabolic demands of the newborn brain are still evolving. These changes are highly likely to affect early postnatal neurovascular coupling, and thus may affect functional imaging signals in this age group. This chapter will discuss the literature relating to neurovascular development. Potential effects of normal and aberrant development of neurovascular coupling on the newborn brain will also be explored, as well as ways to effectively utilize imaging techniques that rely on hemodynamic modulation such as fMRI and NIRS in younger populations. PMID:27130418

  1. [Neuro-ophthalmology: the eye as a window to the brain].

    PubMed

    Kesler, Anat

    2013-02-01

    Neuro-ophthalmology focuses on the diagnosis and treatment of visual disorders related to the neurological system rather than the globe itself. Being a subspecialty of both neurology and ophthalmology, it requires specialized training and expertise in diseases of the eye, brain, nerves and muscles. Commonly encountered pathologies in neuro-ophthalmology include: optic neuropathies (such as optic neuritis and ischemic optic neuropathy), visual field loss (transient, constant, unexplained), transient visual loss, unspecified visual disturbances, diplopia, abnormal eye movements, thyroid eye disease, myasthenia gravis, anisocoria, and eyelid abnormalities. The current issue of "Harefuah" is dedicated to contemporary knowledge in neuro-opthalmology, and spans from studies of neuromyelitis optica (NMO), ischemic optic neuropathies, and optic neuropathies induced by phosphodiesterase inhibitors, to the management of sight-threatening carotid-cavernous fistulas, and more. These studies emphasize the importance of an interdisciplinary treatment team consisting of a neuro-ophthalmologist, a neuro-radiologist, and sometimes, even a neuro-surgeon. Such an approach may prove to be beneficial to the patient, by optimizing follow-up and treatment decisions. This issue emphasizes how a correct and timely diagnosis is of paramount significance in patients with neuro-ophthalmological disorders.

  2. Improving English Instruction through Neuro-Linguistic Programming

    ERIC Educational Resources Information Center

    Helm, David Jay

    2009-01-01

    This study examines the background information and numerous applications of neuro-linguistic programming as it applies to improving English instruction. In addition, the N.L.P. modalities of eye movement, the use of predicates, and posturing are discussed. Neuro-linguistic programming presents all students of English an opportunity to reach their…

  3. Can This Marriage Be Saved? The Future of "Neuro-Education"

    ERIC Educational Resources Information Center

    Schrag, Francis

    2013-01-01

    Neuro-education, a new frontier for educational researchers, has its passionate advocates and equally passionate detractors. Some philosophers, including Noel Purdy and Hugh Morrison, Andrew Davis, and Ralph Schumacher, have argued that the entire enterprise is misguided. I evaluate and challenge their arguments. This permits me to articulate my…

  4. Chronologic Evaluation of Cerebral Hemodynamics by Dynamic Susceptibility Contrast Magnetic Resonance Imaging After Indirect Bypass Surgery for Moyamoya Disease.

    PubMed

    Ishii, Yosuke; Tanaka, Yoji; Momose, Toshiya; Yamashina, Motoshige; Sato, Akihito; Wakabayashi, Shinichi; Maehara, Taketoshi; Nariai, Tadashi

    2017-12-01

    Although indirect bypass surgery is an effective treatment option for patients with ischemic-onset moyamoya disease (MMD), the time point after surgery at which the patient's hemodynamic status starts to improve and the time point at which the improvement reaches a maximum have not been known. The objective of the present study is to evaluate the hemodynamic status time course after indirect bypass surgery for MMD, using dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI). We retrospectively analyzed the cases of 25 patients with MMD (37 sides; mean age, 14.7 years; range, 3-36 years) who underwent indirect bypass surgery and repeated DSC-MRI measurement within 6 months after the operation. The difference in the mean transit time (MTT) between the target regions and the control region (cerebellum) was termed the MTT delay, and we measured the MTT delay's chronologic changes after surgery. The postoperative MTT delay was 1.81 ± 1.16 seconds within 1 week after surgery, 1.57 ± 1.01 at weeks 1-2, 1.55 ± 0.68 at weeks 2-4, 1.32 ± 0.68 at months 1-2, 0.95 ± 0.32 at months 2-3, and 0.77 ± 0.33 at months 3-6. Compared with the preoperative value (2.11 ± 0.98 seconds), the MTT delay decreased significantly from 2 to 4 weeks after surgery (P < 0.05). The amelioration of cerebral hemodynamics by indirect bypass surgery began soon after surgery and gradually reached a maximum at 3 months after surgery. DSC-MRI detected small changes in hemodynamic improvement, which are suspected to be caused by the initiation of angiogenesis and arteriogenesis in the early postoperative period. Copyright © 2017. Published by Elsevier Inc.

  5. Approximation abilities of neuro-fuzzy networks

    NASA Astrophysics Data System (ADS)

    Mrówczyńska, Maria

    2010-01-01

    The paper presents the operation of two neuro-fuzzy systems of an adaptive type, intended for solving problems of the approximation of multi-variable functions in the domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of artificial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules "if-then", generated by means of the self-organization of data grouping and the estimation of relations between fuzzy experiment results. The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang (TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer structure of the systems is a structure analogous to the structure of "classic" neural networks. In its final part the article presents selected areas of application of neuro-fuzzy systems in the field of geodesy and surveying engineering. Numerical examples showing how the systems work concerned: the approximation of functions of several variables to be used as algorithms in the Geographic Information Systems (the approximation of a terrain model), the transformation of coordinates, and the prediction of a time series. The accuracy characteristics of the results obtained have been taken into consideration.

  6. Palliative Care Consultations in the Neuro-ICU: A Qualitative Study.

    PubMed

    Tran, Len N; Back, Anthony L; Creutzfeldt, Claire J

    2016-10-01

    Integration of palliative care (PC) into the neurological intensive care unit (neuro-ICU) is increasingly recommended, but evidence regarding the best practice is lacking. We conducted a qualitative analysis exploring current practices and key themes of specialist PC consultations in patients admitted to a single neuro-ICU. We retrospectively identified all patients who were admitted to the neuro-ICU for ≥24 h and received a PC consultation between January and August 2014. We reviewed PC consultation notes and neuro-ICU progress notes from the electronic health records of these patients. We performed content analysis on the PC notes. Twenty-five neuro-ICU patients (4 %) received a PC consultation over 8 months with the most prevalent reason of clarifying goals of care. The main distinctions between patients with and those without (n = 580) a PC consultation were ICU length of stay (median 8.2 vs. 2.8 days) and death in the neuro-ICU (56 % vs. 11 %). The most prevalent themes addressed in the PC consultation notes were (1) discussing prognosis, (2) eliciting patient and family values, (3) understanding medical options, and (4) identifying conflict. PC consultations in the neuro-ICU emphasize family coping and decision-making by helping discuss prognosis and exploring patient and family values as well as their ability to understand the medical information. Several features suggest that earlier integration of PC into neuro-ICU care may enhance both coping and the decision-making process.

  7. Hemodynamic stability during laryngeal electromyography procedures.

    PubMed

    Lu, Yi-An; Pei, Yu-Cheng; Wong, Alice Mk; Chiang, Hui-Chen; Fang, Tuan-Jen

    2017-10-01

    Laryngeal electromyography (LEMG) is accepted as safe, with minimal side effects. However, patient hemodynamic stability, during these procedures, has not been reported. This study aimed to investigate the hemodynamics in patients undergoing LEMG and determine the risk factors for hemodynamic changes. We recruited 89 consecutive patients who underwent LEMG. Baseline and postprocedural changes in vital signs were analyzed. Diastolic blood pressure (DBP) increased from 75.08 ± 11.54 mmHg preprocedure to 77.4 ± 11.91 mmHg postprocedure (p = .006); pulse rate (PR) increased from 78.1 ± 13.3 beats per minute preprocedure to 80.02 ± 13.69 postprocedure (p = .027). Systolic blood pressure (SBP) and oxygen saturation were unchanged after the procedure. However, about 17% of patients experienced profound changes in vital signs of >20% above baseline during LEMG. The hemodynamic changes did not differ between sexes or between surgical and non-surgical etiologies of vocal fold paralysis. Two patients experienced profound but reversible near-syncope during the procedure. LEMG is a safe procedure with few immediate complications, though it may affect the patient's hemodynamic status by increasing DBP and PR. The hemodynamic monitoring is recommended so that timely intervention can be applied in case any warning sign occurs.

  8. Cytotoxic Effects of Ochratoxin A in Neuro-2a Cells: Role of Oxidative Stress Evidenced by N-acetylcysteine.

    PubMed

    Bhat, Pratiksha V; Pandareesh; Khanum, Farhath; Tamatam, Anand

    2016-01-01

    Ochratoxin-A (OTA), is toxic secondary metabolite and is found to be a source of vast range of toxic effects like hepatotoxicity, nephrotoxicity. However, the information available currently regarding neurotoxic effects exerted by OTA is scanty. Hence, the present study was aimed to evaluate the neurotoxic effects of OTA and the possible mechanisms of toxicity as well as the role of cytotoxic oxidative stress on neuronal (Neuro-2a) cell line was evaluated in vitro. Results of the MTT and LDH assay showed that, OTA induced dose-dependent cell death in Neuro-2a cells and EC50 value was determined as 500 nM. OTA induced high levels of reactive oxygen species (ROS) and elevated levels of malondialdehyde, also loss of mitochondrial membrane potential was observed in a dose depended manner. Effects of OTA on ROS induced chromosomal DNA damage was assessed by Comet assay and plasmid DNA damage assay in which increase in DNA damage was observed in Neuro-2a cells by increasing the OTA concentration. Further western blotting analysis of OTA treated Neuro-2a cells indicated elevated expression levels of c-Jun, JNK3 and cleaved caspase-3 leading to apoptotic cell death. Other hand realtime-Q-PCR analysis clearly indicates the suppressed expression of neuronal biomarker genes including AChE, BDNF, TH and NOS2. Further N-acetylcysteine (NAC) pretreatment to Neuro-2a cells followed by OTA treatment clearly evidenced that, the significant reversal of toxic effects exerted by OTA on Neuro-2a cells. In the present study, results illustrate that ROS a principle event in oxidative stress was elevated by OTA toxicity in Neuro-2a cells. However, further in vivo, animal studies are in need to conclude the present study reports and the use of NAC as a remedy for OTA induced neuronal stress.

  9. Intracranial Aneurysms of Neuro-Ophthalmologic Relevance.

    PubMed

    Micieli, Jonathan A; Newman, Nancy J; Barrow, Daniel L; Biousse, Valérie

    2017-12-01

    Intracranial saccular aneurysms are acquired lesions that often present with neuro-ophthalmologic symptoms and signs. Recent advances in neurosurgical techniques, endovascular treatments, and neurocritical care have improved the optimal management of symptomatic unruptured aneurysms, but whether the chosen treatment has an impact on neuro-ophthalmologic outcomes remains debated. A review of the literature focused on neuro-ophthalmic manifestations and treatment of intracranial aneurysms with specific relevance to neuro-ophthalmologic outcomes was conducted using Ovid MEDLINE and EMBASE databases. Cavernous sinus aneurysms were not included in this review. Surgical clipping vs endovascular coiling for aneurysms causing third nerve palsies was compared in 13 retrospective studies representing 447 patients. Complete recovery was achieved in 78% of surgical patients compared with 44% of patients treated with endovascular coiling. However, the complication rate, hospital costs, and days spent in intensive care were reported as higher in surgically treated patients. Retrospective reviews of surgical clipping and endovascular coiling for all ocular motor nerve palsies (third, fourth, or sixth cranial nerves) revealed similar results of complete resolution in 76% and 49%, respectively. Improvement in visual deficits related to aneurysmal compression of the anterior visual pathways was also better among patients treated with clipping than with coiling. The time to treatment from onset of visual symptoms was a predictive factor of visual recovery in several studies. Few reports have specifically assessed the improvement of visual deficits after treatment with flow diverters. Decisions regarding the choice of therapy for intracranial aneurysms causing neuro-ophthalmologic signs ideally should be made at high-volume centers with access to both surgical and endovascular treatments. The status of the patient, location of the aneurysm, and experience of the treating physicians

  10. [Hemodynamics in puerparas during subarachnoidal anesthesia with lidocaine].

    PubMed

    Semenikhin, A A; Kim, En Din; Khodzhaeva, A A

    2007-01-01

    Hemodynamic changes in response to subarachnoidal injection of 1.2-1.4 mg/kg of lidocaine at various concentrations were comparatively evaluated in 106 pregnant women aged 21 to 36 years (with 53 patients in each group). All the women underwent lumbar puncture at the level of L(II)-L(IV), 1.2-1.4 mg/kg of hyperbaric lidocaine solution being subarachnoidally administered. Groups 1 and 2 patients received 2 and 5% solution of the anesthetic, respectively. At the stages of anesthesia and surgery, the investigators examined central hemodynamics, recorded the duration of a complete segmental sensomotor block and the number of blocked segments (the extent of block). No significant differences were established at the time of development of a complete sensomotor block with the use of 2% (Group 1) and 5% (Group 2) lidocaine solutions. At the same time there were 16.8 +/- 0.6 and 11.9 +/- 0.5 blocked segments in Groups 1 and 2, respectively. In Group 1, severe hemodynamic disorders to be corrected were recorded in 30.2% of the women and in Group 2, subarachnoidal administration of the same doses of lidocaine did not cause any disorders.

  11. [Functional neuro-navigation and intraoperative magnetic resonance imaging for the resection of gliomas involving eloquent language structures].

    PubMed

    Chen, Xiao-lei; Xu, Bai-nan; Wang, Fei; Meng, Xiang-hui; Zhang, Jun; Jiang, Jin-li; Yu, Xin-guang; Zhou, Ding-biao

    2011-08-01

    To explore the clinical value of functional neuro-navigation and high-field-strength intraoperative magnetic resonance imaging (iMRI) for the resection of intracerebral gliomas involving eloquent language structures. From April 2009 to April 2010, 48 patients with intracerebral gliomas involving eloquent language structures, were operated with functional neuro-navigation and iMRI. Blood oxygen level dependent functional MRI (BOLD-fMRI) was used to depict both Broca and Wernicke cortex, while diffusion tensor imaging (DTI) based fiber tracking was used to delineate arcuate fasciculus. The reconstructed language structures were integrated into a navigation system, so that intra-operative microscopic-based functional neuro-navigation could be achieved. iMRI was used to update the images for both language structures and residual tumors. All patients were evaluated for language function pre-operatively and post-operatively upon short-term and long-term follow-up. In all patients, functional neuro-navigation and iMRI were successfully achieved. In 38 cases (79.2%), gross total resection was accomplished, while in the rest 10 cases (20.8%), subtotal resection was achieved. Only 1 case (2.1%) developed long-term (more than 3 months) new language function deficits at post-operative follow-up. No peri-operative mortality was recorded. With functional neuro-navigation and iMRI, the eloquent structures for language can be precisely located, while the resection size can be accurately evaluated intra-operatively. This technique is safe and helpful for preservation of language function.

  12. Intraosseous anesthesia in hemodynamic studies in children with cardiopathy.

    PubMed

    Aliman, Ana Cristina; Piccioni, Marilde de Albuquerque; Piccioni, João Luiz; Oliva, José Luiz; Auler Júnior, José Otávio Costa

    2011-01-01

    Intraosseous (IO) access has been used with good results in emergency situations, when venous access is not available for fluids and drugs infusion. The objective of this study was to evaluate IO a useful technique for anesthesia and fluids infusion during hemodynamic studies and when peripheral intravascular access is unobtainable. The setting was an university hospital hemodynamics unit, and the subjects were twenty one infants with congenital heart disease enrolled for elective hemodynamic study diagnosis. This study compared the effectiveness of IO access in relation to IV access for infusion of anesthetics agents (ketamine, midazolam, and fentanyl) and fluids during hemodynamic studies. The anesthetic induction time, procedure duration, anesthesia recovery time, adequate hydration, and IV and IO puncture complications were compared between groups. The puncture time was significantly smaller in IO group (3.6 min) that in IV group (9.6 min). The anesthetic onset time (56.3 second) for the IV group was faster than IO group (71.3 second). No significant difference between groups were found in relation to hydration (IV group, 315.5 mL vs IO group, 293.2 mL), and anesthesia recovery time (IO group, 65.2 min vs IV group, 55.0 min). The puncture site was reevaluated after 7 and 15 days without signs of infection or other complications. Results showed superiority for IO infusion when considering the puncture time of the procedure. Due to its easy manipulation and efficiency, hydration and anesthesia by IO access was satisfactory for hemodynamic studies without the necessity of other infusion access. Copyright © 2011 Elsevier Editora Ltda. All rights reserved.

  13. Left atrial strain predicts hemodynamic parameters in cardiovascular patients.

    PubMed

    Hewing, Bernd; Theres, Lena; Spethmann, Sebastian; Stangl, Karl; Dreger, Henryk; Knebel, Fabian

    2017-08-01

    We aimed to evaluate the predictive value of left atrial (LA) reservoir, conduit, and contractile function parameters as assessed by speckle tracking echocardiography (STE) for invasively measured hemodynamic parameters in a patient cohort with myocardial and valvular diseases. Sixty-nine patients undergoing invasive hemodynamic assessment were enrolled into the study. Invasive hemodynamic parameters were obtained by left and right heart catheterization. Transthoracic echocardiography assessment of LA reservoir, conduit, and contractile function was performed by STE. Forty-nine patients had sinus rhythm (SR) and 20 patients had permanent atrial fibrillation (AF). AF patients had significantly reduced LA reservoir function compared to SR patients. In patients with SR, LA reservoir, conduit, and contractile function inversely correlated with pulmonary capillary wedge pressure (PCWP), left ventricular end-diastolic pressure, and mean pulmonary artery pressure (PAP), and showed a moderate association with cardiac index. In AF patients, there were no significant correlations between LA reservoir function and invasively obtained hemodynamic parameters. In SR patients, LA contractile function with a cutoff value of 16.0% had the highest diagnostic accuracy (area under the curve, AUC: 0.895) to predict PCWP ≥18 mm Hg compared to the weaker diagnostic accuracy of average E/E' ratio with an AUC of 0.786 at a cutoff value of 14.3. In multivariate analysis, LA contractile function remained significantly associated with PCWP ≥18 mm Hg. In a cohort of patients with a broad spectrum of cardiovascular diseases LA strain shows a valuable prediction of hemodynamic parameters, specifically LV filling pressures, in the presence of SR. © 2017, Wiley Periodicals, Inc.

  14. Computational simulation of passive leg-raising effects on hemodynamics during cardiopulmonary resuscitation.

    PubMed

    Shin, Dong Ah; Park, Jiheum; Lee, Jung Chan; Shin, Sang Do; Kim, Hee Chan

    2017-03-01

    The passive leg-raising (PLR) maneuver has been used for patients with circulatory failure to improve hemodynamic responsiveness by increasing cardiac output, which should also be beneficial and may exert synergetic effects during cardiopulmonary resuscitation (CPR). However, the impact of the PLR maneuver on CPR remains unclear due to difficulties in monitoring cardiac output in real-time during CPR and a lack of clinical evidence. We developed a computational model that couples hemodynamic behavior during standard CPR and the PLR maneuver, and simulated the model by applying different angles of leg raising from 0° to 90° and compression rates from 80/min to 160/min. The simulation results showed that the PLR maneuver during CPR significantly improves cardiac output (CO), systemic perfusion pressure (SPP) and coronary perfusion pressure (CPP) by ∼40-65% particularly under the recommended range of compression rates between 100/min and 120/min with 45° of leg raise, compared to standard CPR. However, such effects start to wane with further leg lifts, indicating the existence of an optimal angle of leg raise for each person to achieve the best hemodynamic responses. We developed a CPR-PLR model and demonstrated the effects of PLR on hemodynamics by investigating changes in CO, SPP, and CPP under different compression rates and angles of leg raising. Our computational model will facilitate study of PLR effects during CPR and the development of an advanced model combined with circulatory disorders, which will be a valuable asset for further studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Citation classics in neuro-oncology: assessment of historical trends and scientific progress.

    PubMed

    Hachem, Laureen D; Mansouri, Alireza; Juraschka, Kyle; Taslimi, Shervin; Pirouzmand, Farhad; Zadeh, Gelareh

    2017-09-01

    Citation classics represent the highest cited works in a field and are often regarded as the most influential literature. Analyzing thematic trends in citation classics across eras enables recognition of important historical advances within a field. We present the first analysis of the citation classics in neuro-oncology. The Web of Science database was searched using terms relevant to "neuro-oncology." Articles with >400 citations were identified and the top 100 cited articles were evaluated. The top 100 neuro-oncology citation classics consisted of 43 clinical studies (17 retrospective, 10 prospective, 16 randomized trials), 43 laboratory investigations, 8 reviews/meta-analyses, and 6 guidelines/consensus statements. Articles were classified into 4 themes: 13 pertained to tumor classification, 37 to tumor pathogenesis/clinical presentation, 6 to imaging, 44 to therapy (15 chemotherapy, 10 radiotherapy, 5 surgery, 14 new agents). Gliomas were the most common tumor type examined, with 70 articles. There was a significant increase in the number of citation classics in the late 1990s, which was paralleled by an increase in studies examining tumor pathogenesis, chemotherapy, and new agents along with laboratory and randomized studies. The majority of citation classics in neuro-oncology are related to gliomas and pertain to tumor pathogenesis and treatment. The rise in citation classics in recent years investigating tumor biology, new treatment agents, and chemotherapeutics may reflect increasing scientific interest in nonsurgical treatments for CNS tumors and the need for fundamental investigations into disease processes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  16. Renal hemodynamics in space.

    PubMed

    Kramer, H J; Heer, M; Cirillo, M; De Santo, N G

    2001-09-01

    Renal excretory function and hemodynamics are determined by the effective circulating plasma volume as well as by the interplay of systemic and local vasoconstrictors and vasodilators. Microgravity results in a headward shift of body fluid. Because the control conditions of astronauts were poorly defined in many studies, controversial results have been obtained regarding diuresis and natriuresis as well as renal hemodynamic changes in response to increased central blood volume, especially during the initial phase of space flight. Renal excretory function and renal hemodynamics in microgravity are affected in a complex fashion, because during the initial phase of space flight, variable mechanisms become operative to modulate the effects of increased central blood volume. They include interactions between vasodilators (dopamine, atrial natriuretic peptide, and prostaglandins) and vasoconstrictors (sympathetic nervous system and the renin-angiotensin system). The available data suggest a moderate rise in glomerular filtration rate during the first 2 days after launch without a significant increase in effective renal plasma flow. In contrast, too few data regarding the effects of space flight on renal function during the first 12 hours after launch are available and are, in addition, partly contradictory. Thus, detailed and well-controlled studies are required to shed more light on the role of the various factors besides microgravity that determine systemic and renal hemodynamics and renal excretory function during the different stages of space flight.

  17. Hemodynamic Based Coronary Artery Aneurysm Thrombosis Risk Stratification in Kawasaki Disease Patients

    NASA Astrophysics Data System (ADS)

    Grande Gutierrez, Noelia; Mathew, M.; McCrindle, B.; Kahn, A.; Burns, J.; Marsden, A.

    2017-11-01

    Coronary artery aneurysms (CAA) as a result of Kawasaki Disease (KD) put patients at risk for thrombosis and myocardial infarction. Current AHA guidelines recommend CAA diameter >8 mm or Z-score >10 as the criterion for initiating systemic anticoagulation. Our hypothesis is that hemodynamic data derived from computational blood flow simulations is a better predictor of thrombosis than aneurysm diameter alone. Patient-specific coronary models were constructed from CMRI for a cohort of 10 KD patients (5 confirmed thrombosis cases) and simulations with fluid structure interaction were performed using the stabilized finite element Navier-Stokes solver available in SimVascular. We used a closed-loop lumped parameter network (LPN) to model the heart and vascular boundary conditions coupled numerically to the flow solver. An automated parameter estimation method was used to match LPN values to clinical data for each patient. Hemodynamic data analysis resulted in low correlation between Wall Shear Stress (WSS)/ Particle Residence Time (PRT) and CAA diameter but demonstrates the positive correlation between hemodynamics and adverse patient outcomes. Our results suggest that quantifying WSS and PRT should enable identification of regions at higher risk of thrombosis. We propose a quantitative method to non-invasively assess the abnormal flow in CAA following KD that could potentially improve clinical decision-making regarding anticoagulation therapy.

  18. Effects of extra-corporeal shock waves on penile hemodynamics and histopathology in rats.

    PubMed

    Tefekli, Ahmet; Armagan, Abdullah; Erol, Bulent; Celtik, Murat; Kilicaslan, Isi; Nurten, Asiye; Kadioglu, Ates

    2002-12-01

    To study the effect of extra-corporeal shock wave (ESW) on the penile hemodynamics and histopathology in rats. Adult male Sprague-Dawley rats were divided at random into 3 groups. ESW application was performed with a Siemens Lithostar with the rats under anesthesia lying prone on the balloon probe. Rats in Group I received a total of 1000 shocks at 18 kV and immediately underwent hemodynamic evaluation performed by direct electrostimulation of the cavernous nerve and measurement of intracavernous pressure (ICP). Rats in Group II received 3 times 1000 shocks at 18 kV at weekly intervals and hemodynamic evaluation was performed 1 month after the last ESW application. Group III served as the control. Histopathological examinations of penile tissues were done on Masson's trichrome and hematoxylin and eosin stained sections. Penile hemodynamic evaluation showed a trend toward a diminished mean maximal ICP, duration of erection, ICP during the plateau phase and maximal ICP/ blood pressure ratio in Group I, although there was no significant significance. The mean latency period in Groups I and II was prolonged. Petechial bleeding within tunical layers and small foci of hemorrhage within the corpora cavernosa were observed in Group I. However, histopathological examination failed to reveal any significant differences between the groups in terms of smooth muscle content, tunical thickness, organization of collagen bundles and elastic fiber-lattice framework. ESW has certain damaging effects on the penis.

  19. Treatment of neuro-ophthalmic sarcoidosis.

    PubMed

    Frohman, Larry P

    2015-03-01

    Because of the rarity of neuro-ophthalmic sarcoidosis, there are no therapeutic guidelines based on evidence-based medicine for this disorder. Review of literature combined with personal experience. Corticosteroids are the preferred initial therapy for neuro-ophthalmic sarcoidosis. If patients cannot tolerate the requisite dose of corticosteroid needed to control their disease, or if corticosteroids fail to adequately control the disease process, the choices of a second agent are based on the consideration of rapidity of clinical response and the safety profile. Although methotrexate and mycophenolate mofetil are the medications that are often selected after corticosteroid failure, more rapidly acting agents that have been used are infliximab and intravenous cyclophosphamide.

  20. Parent perceptions of the quality of life of pet dogs living with neuro-typically developing and neuro-atypically developing children: An exploratory study.

    PubMed

    Hall, Sophie S; Wright, Hannah F; Mills, Daniel S

    2017-01-01

    There is growing scientific and societal recognition of the role that pet dogs can play in healthy development of children; both those who are neuro-typically developing and those who live with a neuro-developmental disorder, such as autism or attention deficit hyperactivity disorder. However, little attention has been paid to how living with children positively and negatively affects quality of life of a pet dog. In this exploratory study we conducted semi-structured interviews with parents of neuro-typically developing children (n = 18) and those with a neuro-developmental disorder (n = 18) who owned a pet dog, until no new factors were identified. Living with children brought potentially positive benefits to the dog's life including: imposition of a routine, participation in recreational activities and the development of a strong bond between the child and the dog. The importance of maintaining a routine was particularly prevalent in families with children with neuro-developmental disorders. Potential negative factors included having to cope with child meltdowns and tantrums, over stimulation from child visitors, harsh contact and rough and tumble play with the child. The regularity and intensity of meltdowns and tantrums was particularly evident in responses from parents with children with a neuro-developmental disorder. However, child visitors and rough play and contact were mentioned similarly across the groups. Protective factors included having a safe haven for the dog to escape to, parent's awareness of stress signs and child education in dog-interaction. Parents were also asked to complete a stress response scale to provide an initial quantitative comparison of stress responses between dogs living with the two family-types. Parents with neuro-typically developing children more frequently observed their dog rapidly running away from a situation and less frequently observed their dog widening their eyes, than parents with children with a neuro

  1. The changes of cerebral hemodynamics during ketamine induced anesthesia in a rat model.

    PubMed

    Bae, Jayyoung; Shin, Teo J; Kim, Seonghyun; Choi, Dong-Hyuk; Cho, Dongrae; Ham, Jinsil; Manca, Marco; Jeong, Seongwook; Lee, Boreom; Kim, Jae G

    2018-05-25

    Current electroencephalogram (EEG) based-consciousness monitoring technique is vulnerable to specific clinical conditions (eg, epilepsy and dementia). However, hemodynamics is the most fundamental and well-preserved parameter to evaluate, even under severe clinical situations. In this study, we applied near-infrared spectroscopy (NIRS) system to monitor hemodynamic change during ketamine-induced anesthesia to find its correlation with the level of consciousness. Oxy-hemoglobin (OHb) and deoxy-hemoglobin concentration levels were continuously acquired throughout the experiment, and the reflectance ratio between 730 and 850 nm was calculated to quantify the hemodynamic changes. The results showed double peaks of OHb concentration change during ketamine anesthesia, which seems to be closely related to the consciousness state of the rat. This finding suggests the possibility of NIRS based-hemodynamic monitoring as a supplementary parameter for consciousness monitoring, compensating drawbacks of EEG signal based monitoring. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Patent ductus arteriosus: patho-physiology, hemodynamic effects and clinical complications.

    PubMed

    Capozzi, Giovanbattista; Santoro, Giuseppe

    2011-10-01

    During fetal life, patent arterial duct diverts placental oxygenated blood from the pulmonary artery into the aorta by-passing lungs. After birth, decrease of prostacyclins and prostaglandins concentration usually causes arterial duct closure. This process may be delayed, or may even completely fail in preterm infants with arterial duct still remaining patent. If that happens, blood flow by-pass of the systemic circulation through the arterial duct results in pulmonary overflow and systemic hypoperfusion. When pulmonary flow is 50% higher than systemic flow, a hemodynamic "paradox" results, with an increase of left ventricular output without a subsequent increase of systemic output. Cardiac overload support neuro-humoral effects (activation of sympathetic nervous system and renin-angiotensin system) that finally promote heart failure. Moreover, increased pulmonary blood flow can cause vascular congestion and pulmonary edema. However, the most dangerous effect is cerebral under-perfusion due to diastolic reverse-flow and resulting in cerebral hypoxia. At last, blood flow decreases through the abdominal aorta, reducing perfusion of liver, gut and kidneys and may cause hepatic failure, renal insufficiency and necrotizing enterocolitis. Conclusions Large patent arterial duct may cause life-threatening multi-organ effects. In pre-term infant early diagnosis and timely effective treatment are cornerstones in the prevention of cerebral damage and long-term multi-organ failure.

  3. Intraoperative video-rate hemodynamic response assessment in human cortex using snapshot hyperspectral optical imaging

    PubMed Central

    Pichette, Julien; Laurence, Audrey; Angulo, Leticia; Lesage, Frederic; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frederic

    2016-01-01

    Abstract. Using light, we are able to visualize the hemodynamic behavior of the brain to better understand neurovascular coupling and cerebral metabolism. In vivo optical imaging of tissue using endogenous chromophores necessitates spectroscopic detection to ensure molecular specificity as well as sufficiently high imaging speed and signal-to-noise ratio, to allow dynamic physiological changes to be captured, isolated, and used as surrogate of pathophysiological processes. An optical imaging system is introduced using a 16-bands on-chip hyperspectral camera. Using this system, we show that up to three dyes can be imaged and quantified in a tissue phantom at video-rate through the optics of a surgical microscope. In vivo human patient data are presented demonstrating brain hemodynamic response can be measured intraoperatively with molecular specificity at high speed. PMID:27752519

  4. The estimation of hemodynamic signals measured by fNIRS response to cold pressor test

    NASA Astrophysics Data System (ADS)

    Ansari, M. A.; Fazliazar, E.

    2018-04-01

    The estimation of cerebral hemodynamic signals has an important role for monitoring the stage of neurological diseases. Functional Near-Infrared Spectroscopy (fNIRS) can be used for monitoring of brain activities. fNIRS utilizes light in the near-infrared spectrum (650-1000 nm) to study the response of the brain vasculature to the changes in neural activities, called neurovascular coupling, within the cortex when cognitive activation occurs. The neurovascular coupling may be disrupted in the brain pathological condition. Therefore, we can also use fNIRS to diagnosis brain pathological conditions or to monitor the efficacy of related treatments. The Cold pressor test (CPT), followed by immersion of dominant hand or foot in the ice water, can induce cortical activities. The perception of pain induced by CPT can be related to cortical neurovascular coupling. Hence, the variation of cortical hemodynamic signals during CPT can be an indicator for studying neurovascular coupling. Here, we study the effect of pain induced by CPT on the temporal variation of concentration of oxyhemoglobin [HbO2] and deoxyhemoglobin [Hb] in the healthy brains. We use fNIRS data collected on forehead during a CPT from 11 healthy subjects, and the average data are compared with post-stimulus pain rating scores. The results show that the variation of [Hb] and [HbO2] are positively correlated with self-reported scores during the CPT. These results depict that fNIRS can be potentially applied to study the decoupling of neurovascular process in brain pathological conditions.

  5. [Hemodynamic changes in hypoglycemic shock].

    PubMed

    Gutiérrez, C; Piza, R; Chousleb, A; Hidalgo, M A; Ortigosa, J L

    1977-01-01

    Severe hypoglycemia may be present in seriously ill patients; if it is not corrected opportunely a series of neuroendocrinal mechanisms take place aimed at correcting metabolic alterations. These mechanisms can produce hemodynamic alterations as well. Nine mongrel dogs were studied with continuous registration of: blood pressure, central venous pressure, cardiac frequency, respiratory frequency, electrocardiogram and first derivative (Dp/Dt). Six dogs received crystalline (fast acting) insuline intravenously (group 1). After hemodynamic changes were registered hypoglycemia was corrected with 50 per cent glucose solution. Complementary insuline doses were administered to three dogs (group 2); in this group hypoglycemia was not corrected. In group 1 during hypoglycemia there was an increase in blood pressure, central venous pressure, cardiac frequency, respiratory frequency and Dp/Dt, and changes in QT and T wave on the EKG; these changes were partially reversible after hypoglycemia was corrected. The above mentioned alterations persisted in group 2, breathing became irregular irregular and respiratory arrest supervened. It can be inferred that the hemodynamic response to hypoglycemia is predominantly adrenergic. The role of catecolamines, glucocorticoides, glucagon, insuline, cyclic AMP in metabolic and hemodynamic alterations consecutive to hypoglycemia are discussed.

  6. From 'Hard' Neuro-Tools to 'Soft' Neuro-Toys? Refocussing the Neuro-Enhancement Debate.

    PubMed

    Brenninkmeijer, Jonna; Zwart, Hub

    2017-01-01

    Since the 1990's, the debate concerning the ethical, legal and societal aspects of 'neuro-enhancement' has evolved into a massive discourse, both in the public realm and in the academic arena. This ethical debate, however, tends to repeat the same sets of arguments over and over again. Normative disagreements between transhumanists and bioconservatives on invasive or radical brain stimulators, and uncertainties regarding the use and effectivity of nootropic pharmaceuticals dominate the field. Building on the results of an extensive European project on responsible research and innovation in neuro-enhancement (NERRI), we observe and encourage that the debate is now entering a new and, as we will argue, more realistic and societally relevant stage. This new stage concerns those technologies that enter the market as ostensibly harmless contrivances that consumers may use for self-care or entertainment. We use the examples and arguments of participants in NERRI debates to describe three case studies of such purportedly innocent 'toys'. Based upon this empirical material, we argue that these 'soft' enhancement gadgets are situated somewhere in the boundary zone between the internal and the external, between the intimate and the intrusive, between the familiar and the unfamiliar, between the friendly and the scary and, in Foucauldian terms, between technologies of the self and technologies of control. Therefore, we describe their physiognomy with the help of a term borrowed from Jacques Lacan, namely as "extimate" technologies.

  7. Preclinical Evaluation of a Decision Support Medical Monitoring System for Early Detection of Potential Hemodynamic Decompensation During Blood Loss in Humans

    DTIC Science & Technology

    2013-09-01

    Hemodynamic Decompensation During Blood Loss in Humans PRINCIPAL INVESTIGATOR: Michael J. Joyner, M.D. CONTRACTING ORGANIZATION: Mayo Clinic...Medical Monitoring System for Early Detection of Potential Hemodynamic Decompensation During Blood Loss in Humans 5c. PROGRAM ELEMENT NUMBER 6...loss and hemorrhage in humans. The aim Is to be able to detect subtle changes in hemodynamic variables that provide prodromal clues to Impending

  8. A computational evaluation of sedentary lifestyle effects on carotid hemodynamics and atherosclerotic events incidence.

    PubMed

    Caruso, Maria Vittoria; Serra, Raffaele; Perri, Paolo; Buffone, Gianluca; Caliò, Francesco Giuseppe; DE Franciscis, Stefano; Fragomeni, Fragomeni

    2017-01-01

    Hemodynamics has a key role in atheropathogenesis. Indeed, atherosclerotic phenomena occur in vessels characterized by complex geometry and flow pattern, like the carotid bifurcation. Moreover, lifestyle is a significant risk factor. The aim of this study is to evaluate the hemodynamic effects due to two sedentary lifestyles - sitting and standing positions - in the carotid bifurcation in order to identify the worst condition and to investigate the atherosclerosis incidence. The computational fluid dynamics (CFD) was chosen to carry out the analysis, in which in vivo non-invasive measurements were used as boundary conditions. Furthermore, to compare the two conditions, one patient-specific 3D model of a carotid bifurcation was reconstructed starting from computer tomography. Different mechanical indicators, correlated with atherosclerosis incidence, were calculated in addition to flow pattern and pressure distribution: the time average wall shear stress (TAWSS), the oscillatory shear index (OSI) and the relative residence time (RRT). The results showed that the bulb and the external carotid artery emergence are the most probable regions in which atherosclerotic events could happen. Indeed, low velocity and WSS values, high OSI and, as a consequence, areas with chaotic-swirling flow, with stasis (high RRT), occur. Moreover, the sitting position is the worst condition: considering a cardiac cycle, TAWSS is less than 17.2% and OSI and RRT are greater than 17.5% and 21.2%, respectively. This study suggests that if a person spends much time in the sitting position, a high risk of plaque formation and, consequently, of stenosis could happen.

  9. Neuro-immune interactions at barrier surfaces

    PubMed Central

    Veiga-Fernandes, Henrique; Mucida, Daniel

    2016-01-01

    Multidirectional interactions between the nervous and immune systems have been documented in homeostasis and pathologies ranging from multiple sclerosis to autism, and from leukemia to acute and chronic inflammation. Recent studies have addressed this crosstalk using cell-specific targeting, novel sequencing, imaging and analytical tools, shedding light on unappreciated mechanisms of neuro-immune regulation. This review focuses on neuro-immune interactions at barrier surfaces, mostly the gut, but also including the skin and the airways, areas densely populated by neurons and immune cells that constantly sense and adapt to tissue-specific environmental challenges. PMID:27153494

  10. Direct cortical hemodynamic mapping of somatotopy of pig nostril sensation by functional near-infrared cortical imaging (fNCI).

    PubMed

    Uga, Minako; Saito, Toshiyuki; Sano, Toshifumi; Yokota, Hidenori; Oguro, Keiji; Rizki, Edmi Edison; Mizutani, Tsutomu; Katura, Takusige; Dan, Ippeita; Watanabe, Eiju

    2014-05-01

    Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique for the noninvasive monitoring of human brain activation states utilizing the coupling between neural activity and regional cerebral hemodynamics. Illuminators and detectors, together constituting optodes, are placed on the scalp, but due to the presence of head tissues, an inter-optode distance of more than 2.5cm is necessary to detect cortical signals. Although direct cortical monitoring with fNIRS has been pursued, a high-resolution visualization of hemodynamic changes associated with sensory, motor and cognitive neural responses directly from the cortical surface has yet to be realized. To acquire robust information on the hemodynamics of the cortex, devoid of signal complications in transcranial measurement, we devised a functional near-infrared cortical imaging (fNCI) technique. Here we demonstrate the first direct functional measurement of temporal and spatial patterns of cortical hemodynamics using the fNCI technique. For fNCI, inter-optode distance was set at 5mm, and light leakage from illuminators was prevented by a special optode holder made of a light-shielding rubber sheet. fNCI successfully detected the somatotopy of pig nostril sensation, as assessed in comparison with concurrent and sequential somatosensory-evoked potential (SEP) measurements on the same stimulation sites. Accordingly, the fNCI system realized a direct cortical hemodynamic measurement with a spatial resolution comparable to that of SEP mapping on the rostral region of the pig brain. This study provides an important initial step toward realizing functional cortical hemodynamic monitoring during neurosurgery of human brains. Copyright © 2014. Published by Elsevier Inc.

  11. Low-frequency oscillation amplitude elevation of prefrontal cerebral hemodynamics with driving duration during prolonged driving test

    NASA Astrophysics Data System (ADS)

    Deng, Zishan; Gao, Yuan; Li, Ting

    2018-02-01

    It has been observed that there is a low-frequency oscillation (LFO) around 0.1 Hz in cerebral hemodynamics related to brain activity. Since functional near-infrared spectroscopy (fNIRS) is a novel technique to monitor hemodynamic responses noninvasively, we applied it to detect LFOs of cerebral hemodynamic parameters, such as oxyhemoglobin and deoxyhemoglobin, during prolonged driving. We performed an experiment lasting for 7 hours and an experimental test was done every hour and 8 times altogether. 7 subjects were recruited and the data of 3 of them were analyzed. By means of Fourier transformation, the amplitude of the three parameters during each test at 0.1 Hz in frequency domain was extracted. The results showed an increasing trend in the 0.1 Hz amplitudes of the three hemodynamic parameters during 7 hours' simulated driving test. Our findings indicated the potential of LFOs of prefrontal cerebral hemodynamics in brain research and brain function evaluation.

  12. Parent perceptions of the quality of life of pet dogs living with neuro-typically developing and neuro-atypically developing children: An exploratory study

    PubMed Central

    Wright, Hannah F.; Mills, Daniel S.

    2017-01-01

    There is growing scientific and societal recognition of the role that pet dogs can play in healthy development of children; both those who are neuro-typically developing and those who live with a neuro-developmental disorder, such as autism or attention deficit hyperactivity disorder. However, little attention has been paid to how living with children positively and negatively affects quality of life of a pet dog. In this exploratory study we conducted semi-structured interviews with parents of neuro-typically developing children (n = 18) and those with a neuro-developmental disorder (n = 18) who owned a pet dog, until no new factors were identified. Living with children brought potentially positive benefits to the dog’s life including: imposition of a routine, participation in recreational activities and the development of a strong bond between the child and the dog. The importance of maintaining a routine was particularly prevalent in families with children with neuro-developmental disorders. Potential negative factors included having to cope with child meltdowns and tantrums, over stimulation from child visitors, harsh contact and rough and tumble play with the child. The regularity and intensity of meltdowns and tantrums was particularly evident in responses from parents with children with a neuro-developmental disorder. However, child visitors and rough play and contact were mentioned similarly across the groups. Protective factors included having a safe haven for the dog to escape to, parent’s awareness of stress signs and child education in dog-interaction. Parents were also asked to complete a stress response scale to provide an initial quantitative comparison of stress responses between dogs living with the two family-types. Parents with neuro-typically developing children more frequently observed their dog rapidly running away from a situation and less frequently observed their dog widening their eyes, than parents with children with a neuro

  13. Development of a neuro early mobilisation protocol for use in a neuroscience intensive care unit.

    PubMed

    Brissie, Megan A; Zomorodi, Meg; Soares-Sardinha, Sharmila; Jordan, J Dedrick

    2017-10-01

    Through evaluation of the literature and working with a team of multidisciplinary healthcare providers, our objective was to refine an interprofessional Neuro Early Mobilisation Protocol for complex patients in the Neuroscience Intensive Care Unit. Using the literature as a guide, key stakeholders, from multiple professions, designed and refined a Neuro Early Mobilisation Protocol. This project took place at a large academic medical center in the southeast United States classified as both a Level I Trauma Center and Comprehensive Stroke Center. Goals for protocol development were to: (1) simplify the protocol to allow for ease of use, (2) make the protocol more generalizable to the patient population cared for in the Neuroscience Intensive Care Unit, (3) receive feedback from those using the original protocol on ways to improve the protocol and (4) ensure patients were properly screened for inclusion and exclusion in the protocol. Using expert feedback and the evidence, an evidence-based Neuro Early Mobilisation Protocol was created for use with all patients in the Neuroscience Intensive Care Unit. Future work will consist of protocol implementation and evaluation in order to increase patient mobilisation in the Neuroscience Intensive Care Unit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Coupled 0D-1D CFD Modeling of Right Heart and Pulmonary Artery Morphometry Tree

    NASA Astrophysics Data System (ADS)

    Dong, Melody; Yang, Weiguang; Feinstein, Jeffrey A.; Marsden, Alison

    2017-11-01

    Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary artery (PA) pressure and remodeling of the distal PAs resulting in right ventricular (RV) dysfunction and failure. It is hypothesized that patients with untreated ventricular septal defects (VSD) may develop PAH due to elevated flows and pressures in the PAs. Wall shear stress (WSS), due to elevated flows, and circumferential stress, due to elevated pressures, are known to play a role in vascular mechanobiology. Thus, simulating VSD hemodynamics and wall mechanics may facilitate our understanding of mechanical stimuli leading to PAH initiation and progression. Although 3D CFD models can capture detailed hemodynamics in the proximal PAs, they cannot easily model hemodynamics and wave propagation in the distal PAs, where remodeling occurs. To improve current PA models, we will present a new method that couples distal PA hemodynamics with RV function. Our model couples a 0D lumped parameter model of the RV to a 1D model of the PA tree, based on human PA morphometry data, to characterize RV performance and WSS changes in the PA tree. We will compare a VSD 0D-1D model and a 0D-3D model coupled to a mathematical morphometry tree model to quantify WSS in the entire PA vascular tree.

  15. Neural and Hemodynamic Responses Elicited by Forelimb- and Photo-stimulation in Channelrhodopsin-2 Mice: Insights into the Hemodynamic Point Spread Function

    PubMed Central

    Vazquez, Alberto L.; Fukuda, Mitsuhiro; Crowley, Justin C.; Kim, Seong-Gi

    2014-01-01

    Hemodynamic responses are commonly used to map brain activity; however, their spatial limits have remained unclear because of the lack of a well-defined and malleable spatial stimulus. To examine the properties of neural activity and hemodynamic responses, multiunit activity, local field potential, cerebral blood volume (CBV)-sensitive optical imaging, and laser Doppler flowmetry were measured from the somatosensory cortex of transgenic mice expressing Channelrhodopsin-2 in cortex Layer 5 pyramidal neurons. The magnitude and extent of neural and hemodynamic responses were modulated using different photo-stimulation parameters and compared with those induced by somatosensory stimulation. Photo-stimulation-evoked spiking activity across cortical layers was similar to forelimb stimulation, although their activity originated in different layers. Hemodynamic responses induced by forelimb- and photo-stimulation were similar in magnitude and shape, although the former were slightly larger in amplitude and wider in extent. Altogether, the neurovascular relationship differed between these 2 stimulation pathways, but photo-stimulation-evoked changes in neural and hemodynamic activities were linearly correlated. Hemodynamic point spread functions were estimated from the photo-stimulation data and its full-width at half-maximum ranged between 103 and 175 µm. Therefore, submillimeter functional structures separated by a few hundred micrometers may be resolved using hemodynamic methods, such as optical imaging and functional magnetic resonance imaging. PMID:23761666

  16. Patterns of neuroAIDS in Africa.

    PubMed

    Tadesse, Tizeta; Langford, Dianne; Manji, Karim; Mehari, Enawgaw

    2005-01-01

    According to UNAIDS, the African population accounts for greater than half of persons infected with HIV. Nevertheless, little information exists characterizing HIV in this population. Thus, the natural history and progression of HIV in the African population is virtually undocumented and therefore, poorly understood. Information regarding virtually every aspect of the disease including microbiology, pathogenicity, virulence, and clinical manifestation is based largely on data from select and limited populations. During the HAART-era, we have seen dramatic and significant changes in patterns of NeuroAIDS in patients in clinical cohorts from the United States and Western Europe. These observations have led to increased understanding of the progression of NeuroAIDS and have improved our ability to design treatment regimens to combat CNS complications resulting from HIV. Despite the existence of antiretroviral therapy for HIV, its absence in Africa along with poor treatments for opportunistic infections associated with HIV have become the main sources of neurological morbidity and mortality. In this context, we are presented with a unique opportunity to cultivate and enhance our understanding of the natural history and progression of NeuroAIDS in the African population thereby, better equipping healthcare providers, patients and their families in addressing this epidemic. This concept is particularly important as rapidly improving and more accessible anti-HIV medications and medications for the treatment of opportunistic infections become available to third world countries such as Africa. We believe that it is imperative to foster research, education and training between institutions in the industrialized world and Africa to close the gap in understanding patterns of NeuroAIDS in Africa.

  17. Volume-dependent hemodynamic effects of blood collection in canine donors - evaluation of 13% and 15% of total blood volume depletion.

    PubMed

    Ferreira, Rui R F; Gopegui, Rafael R; De Matos, Augusto J F

    2015-03-01

    There is no consensus regarding the blood volume that could be safely donated by dogs, ranging from 11 to 25% of its total blood volume (TBV). No previous studies evaluated sedated donors. To evaluate the hemodynamic effects of blood collection from sedated and non-sedated dogs and to understand if such effects were volume-dependent. Fifty three donations of 13% of TBV and 20 donations of 15% TBV were performed in dogs sedated with diazepam and ketamine. Additionally, a total of 30 collections of 13% TBV and 20 collections of 15% TBV were performed in non-sedated dogs. Non-invasive arterial blood pressures and pulse rates were registered before and 15 min after donation. Post-donation pulse rates increased significantly in both sedated groups, with higher differences in the 15% TBV collections. Systolic arterial pressures decreased significantly in these groups, while diastolic pressures increased significantly in 13% TBV donations. Non-sedated groups revealed a slight, but significant, SBP decrease. No clinical signs related to donations were registered. These results suggest that the collection of 15% TBV in sedated donors induces hemodynamic variations that may compromise the harmlessness of the procedure, while it seems to be a safe procedure in non-sedated dogs.

  18. Measurement of hemodynamics during postural changes using a new wearable cephalic laser blood flowmeter.

    PubMed

    Fujikawa, Tetsuya; Tochikubo, Osamu; Kura, Naoki; Kiyokura, Takanori; Shimada, Junichi; Umemura, Satoshi

    2009-10-01

    Patients with orthostatic hypotension have pathologic hemodynamics related to changes in body posture. A new cephalic laser blood flowmeter that can be worn on the tragus to investigate the hemodynamics upon rising from a sitting or squatting posture was developed. The relationship between cephalic hemodynamics and cerebral ischemic symptoms in 63 subjects in a sitting, squatting, and standing positions using the new device was evaluated. Transient decrease in blood pressure within 15 s after rising to an erect position possibly causes dizziness, syncope, and fall. Subjects exhibiting dizziness upon standing showed a significant decrease in the cephalic blood flow (CBF) and indirect beat-to-beat systolic blood pressure, as monitored by the Finometer, and a significant correlation was observed between the drop ratio (drop value on rising/mean value in the squatting position) of CBF and that of systolic blood pressure. This new wearable CBF-meter is potentially useful for estimating cephalic hemodynamics and objectively diagnosing cerebral ischemic symptoms of subjects in a standing posture.

  19. Neuro-Linguistic Programming: A Discussion of Why and How.

    ERIC Educational Resources Information Center

    Partridge, Susan

    Intended for teachers, this article offers a definition of neuro-linguistic programming (NLP), discusses its relevance to instruction, and provides illustrations of the implementation of neuro-linguistic programming in instructional contexts. NLP is defined as an approach to instruction that recognizes the familiar visual, auditory, and…

  20. Empirical Evaluation of Visual Fatigue from Display Alignment Errors Using Cerebral Hemodynamic Responses

    PubMed Central

    Wiyor, Hanniebey D.; Ntuen, Celestine A.

    2013-01-01

    The purpose of this study was to investigate the effect of stereoscopic display alignment errors on visual fatigue and prefrontal cortical tissue hemodynamic responses. We collected hemodynamic data and perceptual ratings of visual fatigue while participants performed visual display tasks on 8 ft × 6 ft NEC LT silver screen with NEC LT 245 DLP projectors. There was statistical significant difference between subjective measures of visual fatigue before air traffic control task (BATC) and after air traffic control task (ATC 3), (P < 0.05). Statistical significance was observed between left dorsolateral prefrontal cortex oxygenated hemoglobin (l DLPFC-HbO2), left dorsolateral prefrontal cortex deoxygenated hemoglobin (l DLPFC-Hbb), and right dorsolateral prefrontal cortex deoxygenated hemoglobin (r DLPFC-Hbb) on stereoscopic alignment errors (P < 0.05). Thus, cortical tissue oxygenation requirement in the left hemisphere indicates that the effect of visual fatigue is more pronounced in the left dorsolateral prefrontal cortex. PMID:27006917

  1. Tetrahedral and polyhedral mesh evaluation for cerebral hemodynamic simulation--a comparison.

    PubMed

    Spiegel, Martin; Redel, Thomas; Zhang, Y; Struffert, Tobias; Hornegger, Joachim; Grossman, Robert G; Doerfler, Arnd; Karmonik, Christof

    2009-01-01

    Computational fluid dynamic (CFD) based on patient-specific medical imaging data has found widespread use for visualizing and quantifying hemodynamics in cerebrovascular disease such as cerebral aneurysms or stenotic vessels. This paper focuses on optimizing mesh parameters for CFD simulation of cerebral aneurysms. Valid blood flow simulations strongly depend on the mesh quality. Meshes with a coarse spatial resolution may lead to an inaccurate flow pattern. Meshes with a large number of elements will result in unnecessarily high computation time which is undesirable should CFD be used for planning in the interventional setting. Most CFD simulations reported for these vascular pathologies have used tetrahedral meshes. We illustrate the use of polyhedral volume elements in comparison to tetrahedral meshing on two different geometries, a sidewall aneurysm of the internal carotid artery and a basilar bifurcation aneurysm. The spatial mesh resolution ranges between 5,119 and 228,118 volume elements. The evaluation of the different meshes was based on the wall shear stress previously identified as a one possible parameter for assessing aneurysm growth. Polyhedral meshes showed better accuracy, lower memory demand, shorter computational speed and faster convergence behavior (on average 369 iterations less).

  2. Expression and cellular localization of the transcription factor NeuroD1 in the developing and adult rat pineal gland.

    PubMed

    Castro, Analía E; Benitez, Sergio G; Farias Altamirano, Luz E; Savastano, Luis E; Patterson, Sean I; Muñoz, Estela M

    2015-05-01

    Circadian rhythms govern many aspects of mammalian physiology. The daily pattern of melatonin synthesis and secretion is one of the classic examples of circadian oscillations. It is mediated by a class of neuroendocrine cells known as pinealocytes which are not yet fully defined. An established method to evaluate functional and cytological characters is through the expression of lineage-specific transcriptional regulators. NeuroD1 is a basic helix-loop-helix transcription factor involved in the specification and maintenance of both endocrine and neuronal phenotypes. We have previously described developmental and adult regulation of NeuroD1 mRNA in the rodent pineal gland. However, the transcript levels were not influenced by the elimination of sympathetic input, suggesting that any rhythmicity of NeuroD1 might be found downstream of transcription. Here, we describe NeuroD1 protein expression and cellular localization in the rat pineal gland during development and the daily cycle. In embryonic and perinatal stages, protein expression follows the mRNA pattern and is predominantly nuclear. Thereafter, NeuroD1 is mostly found in pinealocyte nuclei in the early part of the night and in cytoplasm during the day, a rhythm maintained into adulthood. Additionally, nocturnal nuclear NeuroD1 levels are reduced after sympathetic disruption, an effect mimicked by the in vivo administration of α- and β-adrenoceptor blockers. NeuroD1 phosphorylation at two sites, Ser(274) and Ser(336) , associates with nuclear localization in pinealocytes. These data suggest that NeuroD1 influences pineal phenotype both during development and adulthood, in an autonomic and phosphorylation-dependent manner. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Developmental neurogenetics and neuro-ophthalmology.

    PubMed

    Bennett, Jeffrey L

    2002-12-01

    The field of developmental neurogenetics has burgeoned over the past decade. Through the combined efforts of developmental biologists, geneticists, and clinicians, genetic defects resulting in neuro-ophthalmic disorders such as holoprosencephaly, microphthalmia, dominant optic atrophy, and optic nerve colobomas have been identified and characterized at the molecular level. Experimental studies in model organisms are continuing to identify novel genes critical for ocular and central nervous system development. Mutations in some of these genes have revealed a spectrum of pathology similar to that observed in septo-optic dysplasia, Möebius syndrome, and Duane retraction syndrome. This review examines our current knowledge of the molecular genetics of neuro-ophthalmic disease and focuses on several candidate genes for afferent and efferent visual system disorders.

  4. GABA and GABA-Alanine from the Red Microalgae Rhodosorus marinus Exhibit a Significant Neuro-Soothing Activity through Inhibition of Neuro-Inflammation Mediators and Positive Regulation of TRPV1-Related Skin Sensitization

    PubMed Central

    Scandolera, Amandine; Hubert, Jane; Humeau, Anne; Lambert, Carole; De Bizemont, Audrey; Winkel, Chris; Kaouas, Abdelmajid; Renault, Jean-Hugues; Reynaud, Romain

    2018-01-01

    The aim of the present study was to investigate the neuro-soothing activity of a water-soluble hydrolysate obtained from the red microalgae Rhodosorus marinus Geitler (Stylonemataceae). Transcriptomic analysis performed on ≈100 genes related to skin biological functions firstly revealed that the crude Rhodosorus marinus extract was able to significantly negatively modulate specific genes involved in pro-inflammation (interleukin 1α encoding gene, IL1A) and pain detection related to tissue inflammation (nerve growth factor NGF and its receptor NGFR). An in vitro model of normal human keratinocytes was then used to evaluate the ability of the Rhodosorus marinus extract to control the release of neuro-inflammation mediators under phorbol myristate acetate (PMA)-induced inflammatory conditions. The extract incorporated at 1% and 3% significantly inhibited the release of IL-1α and NGF secretion. These results were confirmed in a co-culture system of reconstructed human epithelium and normal human epidermal keratinocytes on which a cream formulated with the Rhodosorus marinus extract at 1% and 3% was topically applied after systemic induction of neuro-inflammation. Finally, an in vitro model of normal human astrocytes was developed for the evaluation of transient receptor potential vanilloid 1 (TRPV1) receptor modulation, mimicking pain sensing related to neuro-inflammation as observed in sensitive skins. Treatment with the Rhodosorus marinus extract at 1% and 3% significantly decreased PMA-mediated TRPV1 over-expression. In parallel with these biological experiments, the crude Rhodosorus marinus extract was fractionated by centrifugal partition chromatography (CPC) and chemically profiled by a recently developed 13C NMR-based dereplication method. The CPC-generated fractions as well as pure metabolites were tested again in vitro in an attempt to identify the biologically active constituents involved in the neuro-soothing activity of the Rhodosorus marinus extract

  5. Noninvasive optical evaluation of low frequency oscillations in prefrontal cortex hemodynamics during verbal working memory

    NASA Astrophysics Data System (ADS)

    Li, Ting; Zhao, Yue; Li, Kai; Sun, Yunlong

    2014-03-01

    The low frequency oscillation (LFO) around 0.1 Hz has been observed recently in cerebral hemodynamic signals during rest/sleep, enhanced breathing, and head- up-tilting, showing that cerebral autoregulation can be accessed by LFOs. However, many brain function researches require direct measurement of LFOs during specified brain function activities. This pilot study explored using near-infrared spectroscopy/imaging (NIRS) to noninvasively and simultaneously detect LFOs of prefrontal cerebral hemodynamics (i.e., oxygenated/deoxygenated/total hemoglobin concentration: △[oxy-Hb]/ △[deoxy-Hb]/ △[tot-Hb]) during N-back visual verbal working memory task. The LFOs were extracted from the measured variables using power spectral analysis. We found the brain activation sites struck clear LFOs while other sites did not. The LFO of △[deoxy-Hb] acted as a negative pike and ranged in (0.05, 0.1) Hz, while LFOs of △[oxy-Hb] and △[tot-Hb] acted as a positive pike and ranged in (0.1, 0.15) Hz. The amplitude difference and frequency lag between △[deoxy-Hb] and △[oxy-Hb]/ △[tot-Hb] produced a more focused and sensitive activation map compare to hemodynamic amplitude-quantified activation maps. This study observed LFOs in brain activities and showed strong potential of LFOs in accessing brain functions.

  6. NeuroD modulates opioid agonist-selective regulation of adult neurogenesis and contextual memory extinction.

    PubMed

    Zheng, Hui; Zhang, Yue; Li, Wen; Loh, Horace H; Law, Ping-Yee

    2013-04-01

    Addictive drugs, including opioids, modulate adult neurogenesis. In order to delineate the probable implications of neurogenesis on contextual memory associated with addiction, we investigated opioid agonist-selective regulation of neurogenic differentiation 1 (NeuroD) activities under the conditioned place preference (CPP) paradigm. Training mice with equivalent doses of morphine and fentanyl produced different CPP extinction rates without measurable differences in the CPP acquisition rate or magnitude. Fentanyl-induced CPP required much longer time for extinction than morphine-induced CPP. We observed a parallel decrease in NeuroD activities and neurogenesis after morphine-induced CPP, but not after fentanyl-induced CPP. Increasing NeuroD activities with NeuroD-lentivirus (nd-vir) injection at the dentate gyrus before CPP training reversed morphine-induced decreases in NeuroD activities and neurogenesis, and prolonged the time required for extinction of morphine-induced CPP. On the other hand, decreasing NeuroD activities via injection of miRNA-190-virus (190-vir) reversed the fentanyl effect on NeuroD and neurogenesis and shortened the time required for extinction of fentanyl-induced CPP. Another contextual memory task, the Morris Water Maze (MWM), was affected similarly by alteration of NeuroD activities. The reduction in NeuroD activities either by morphine treatment or 190-vir injection decreased MWM task retention, while the increase in NeuroD activities by nd-vir prolonged MWM task retention. Thus, by controlling NeuroD activities, opioid agonists differentially regulate adult neurogenesis and subsequent contextual memory retention. Such drug-related memory regulation could have implications in eventual context-associated relapse.

  7. Diagnostic value of neuro-ophthalmological signs in cases of Chiari I malformation.

    PubMed

    Bekerman, Inessa; Sigal, Tal; Kimiagar, Itzhak; Almer, Zina Evy; Vaiman, Michael

    2016-12-01

    Our purpose was to evaluate the diagnostic value of measuring diameters of optic nerve sheath (ONSD), presence/absence of papilledema, tortuosity of the optic nerve, flattening of the posterior sclera, and intraocular protrusion of the prelaminar optic nerve for intracranial pressure assessment in cases of Chiari I malformation. In a retrospective study, MRI data of 37 consecutive pediatric patients with Chiari malformation and data of 400 patients without intracranial pathology were compared and analyzed. ONSDs were measured at the point where the ophthalmic artery crosses the optic nerve (anatomical landmark). The correlation analysis was performed with clinical findings, gender, age, papilledema, and other neuro-ophthalmological findings. ONSD was enlarged in 38 % of cases of Chiari malformation. The enlargement was bilateral, no correlation with age or gender was found (p = 0.67 and p = 0.76, respectively). The presence of papilledema was detected in 19 % of cases presenting less valuable diagnostic sign if compared with ONSD. The tortuosity of the optic nerve was found in 22 % of cases, but in three patients, it was unilateral. All patients with enlarged ONSD and other neuro-ophthalmological signs present were treated surgically, while most of the patients without these signs (20/23) were treated conservatively. In majority of pediatric cases of Chiari malformation, the ONSD is not enlarged and other neuro-ophthalmological signs are not present. Detecting the enlarged ONSD and other neuro-ophthalmological signs in cases of Chiari malformation may indicate the elevated intracranial pressure and necessity for urgent surgical intervention.

  8. Biochemistry and neurobiology of prosaposin: a potential therapeutic neuro-effector.

    PubMed

    Misasi, Roberta; Hozumi, Isao; Inuzuka, Takashi; Capozzi, Antonella; Mattei, Vincenzo; Kuramoto, Yukako; Shimeno, Hiroshi; Soeda, Shinji; Azuma, Norihiro; Yamauchi, Toyoaki; Hiraiwa, Masao

    2009-06-01

    Prosaposin, a 66 kDa glycoprotein, was identified initially as the precursor of the sphingolipid activator proteins, saposins A-D, which are required for the enzymatic hydrolysis of certain sphingolipids by lysosomal hydrolases. While mature saposins are distributed to lysosomes, prosaposin exists in secretory body fluids and plasma membranes. In addition to its role as the precursor, prosaposin shows a variety of neurotrophic and myelinotrophic activities through a receptor-mediated mechanism. In studies in vivo, prosaposin was demonstrated to exert a variety of neuro-efficacies capable of preventing neuro-degeneration following neuro-injury and promoting the amelioration of allodynia and hyperalgesia in pain models. Collective findings indicate that prosaposin is not a simple house-keeping precursor protein; instead, it is a protein essentially required for the development and maintenance of the central and peripheral nervous systems. Accumulating evidence over the last decade has attracted interests in exploring and developing new therapeutic approaches using prosaposin for human disorders associated with neuro-degeneration. In this review we detail the structure characteristics, cell biological feature, in vivo efficacy, and neuro-therapeutic potential of prosaposin, thereby providing future prospective in clinical application of this multifunctional protein.

  9. Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool.

    PubMed

    Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi

    2007-10-01

    Traditionally, the multiple linear regression technique has been one of the most widely used models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, neuro-fuzzy systems have gained much popularity for calibrating the nonlinear relationships. This study evaluated the potential of a neuro-fuzzy system as an alternative to the traditional statistical regression technique for the purpose of predicting flow from a local source in a river basin. The effectiveness of the proposed identification technique was demonstrated through a simulation study of the river flow time series of the Citarum River in Indonesia. Furthermore, in order to provide the uncertainty associated with the estimation of river flow, a Monte Carlo simulation was performed. As a comparison, a multiple linear regression analysis that was being used by the Citarum River Authority was also examined using various statistical indices. The simulation results using 95% confidence intervals indicated that the neuro-fuzzy model consistently underestimated the magnitude of high flow while the low and medium flow magnitudes were estimated closer to the observed data. The comparison of the prediction accuracy of the neuro-fuzzy and linear regression methods indicated that the neuro-fuzzy approach was more accurate in predicting river flow dynamics. The neuro-fuzzy model was able to improve the root mean square error (RMSE) and mean absolute percentage error (MAPE) values of the multiple linear regression forecasts by about 13.52% and 10.73%, respectively. Considering its simplicity and efficiency, the neuro-fuzzy model is recommended as an alternative tool for modeling of flow dynamics in the study area.

  10. Evaluation of the impact of carotid artery bifurcation angle on hemodynamics by use of computational fluid dynamics: a simulation and volunteer study.

    PubMed

    Saho, Tatsunori; Onishi, Hideo

    2016-07-01

    In this study, we evaluated the hemodynamics of carotid artery bifurcation with various geometries using simulated and volunteer models based on magnetic resonance imaging (MRI). Computational fluid dynamics (CFD) was analyzed by use of OpenFOAM. The velocity distribution, streamline, and wall shear stress (WSS) were evaluated in a simulated model with known bifurcation angles (30°, 40°, 50°, 60°, derived from patients' data) and in three-dimensional (3D) healthy volunteer models. Separated flow was observed at the outer side of the bifurcation, and large bifurcation models represented upstream transfer of the point. Local WSS values at the outer bifurcation [both simulated (<30 Pa) and volunteer (<50 Pa) models] were lower than those in the inner region (>100 Pa). The bifurcation angle had a significant negative correlation with the WSS value (p<0.05). The results of this study show that the carotid artery bifurcation angle is related to the WSS value. This suggests that hemodynamic stress can be estimated based on the carotid artery geometry. The construction of a clinical database for estimation of developing atherosclerosis is warranted.

  11. Lagrangian postprocessing of computational hemodynamics.

    PubMed

    Shadden, Shawn C; Arzani, Amirhossein

    2015-01-01

    Recent advances in imaging, modeling, and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries, and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows.

  12. Lagrangian postprocessing of computational hemodynamics

    PubMed Central

    Shadden, Shawn C.; Arzani, Amirhossein

    2014-01-01

    Recent advances in imaging, modeling and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows. PMID:25059889

  13. Palliative Care Needs Assessment in the Neuro-ICU: Effect on Family.

    PubMed

    Creutzfeldt, Claire J; Hanna, Marina G; Cheever, C Sherry; Lele, Abhijit V; Spiekerman, Charles; Engelberg, Ruth A; Curtis, J Randall

    2017-10-01

    Examine the association of a daily palliative care needs checklist on outcomes for family members of patients discharged from the neurosciences intensive care unit (neuro-ICU). We conducted a prospective, longitudinal cohort study in a single, thirty-bed neuro-ICU in a regional comprehensive stroke and level 1 trauma center. One of two neuro-ICU services that admit patients to the same ICU on alternating days used a palliative care needs checklist during morning work rounds. Between March and October, 2015, surveys were mailed to family members of patients discharged from the neuro-ICU. Nearly half of surveys (n = 91, 48.1%) were returned at a median of 4.7 months. At the time of survey completion, mean Modified rankin scale score (mRS) of neuro-ICU patients was 3.1 (SD 2). Overall ratings of quality of care were relatively high (82.2 on a 0-100 scale) with 32% of family members meeting screening criteria for depressive syndrome. The primary outcome measuring family satisfaction, consisting of eight items from the Family Satisfaction in the ICU questionnaire, did not differ significantly between families of patients from either ICU service nor did family ratings of depression (PHQ-8) and post-traumatic stress (PCL-17). Among families of patients discharged from the neuro-ICU, the daily use of a palliative care needs checklist had no measurable effect on family satisfaction scores or long-term psychological outcomes. Further research is needed to identify optimal interventions to meet the palliative care needs specific to family members of patients treated in the neuro-ICU.

  14. Less invasive methods of advanced hemodynamic monitoring: principles, devices, and their role in the perioperative hemodynamic optimization

    PubMed Central

    2013-01-01

    The monitoring of the cardiac output (CO) and other hemodynamic parameters, traditionally performed with the thermodilution method via a pulmonary artery catheter (PAC), is now increasingly done with the aid of less invasive and much easier to use devices. When used within the context of a hemodynamic optimization protocol, they can positively influence the outcome in both surgical and non-surgical patient populations. While these monitoring tools have simplified the hemodynamic calculations, they are subject to limitations and can lead to erroneous results if not used properly. In this article we will review the commercially available minimally invasive CO monitoring devices, explore their technical characteristics and describe the limitations that should be taken into consideration when clinical decisions are made. PMID:24472443

  15. Statistically qualified neuro-analytic failure detection method and system

    DOEpatents

    Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.

    2002-03-02

    An apparatus and method for monitoring a process involve development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two stages: deterministic model adaption and stochastic model modification of the deterministic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics, augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation error minimization technique. Stochastic model modification involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system. Illustrative of the method and apparatus, the method is applied to a peristaltic pump system.

  16. Neuro-Behçet’s disease in childhood: A focus on the neuro-ophthalmological features

    PubMed Central

    2013-01-01

    Neuro-Behçet’s disease (NBD) involves the central nervous system; peripheral nervous system involvement is not often reported. NBD is quite common in adult patients and occurs rarely during childhood and adolescence. Young patients may share symptoms and signs of NBD with other neuro-ophthalmological disorders (e.g. idiopathic intracranial hypertension); thus, making the differential diagnosis difficult. Neuroimaging is mandatory and necessary for a correct NBD diagnosis but in children radiological examinations are often difficult to perform without sedation. From 1971 to 2011, 130 patients aged ≤16 years have been reported with NBD, according to retrospective surveys, case series, and case reports. The origin of the reported cases met the well-known geographical distribution of Behçet’s disease (BD); the mean age at presentation of neurological findings was 11.8 years, with male gender prevalence (ratio, 2.9:1). We considered in detail the neuro-ophthalmological features of the 53 cases whose neuroimaging alterations were described with an assigned radiological pattern of the disease (parenchymal: 14 cases, non-parechymal: 35 cases, and mixed: 4 cases). In 19/53 patients (36%), neuro-ophthalmological symptoms anticipated any pathognomonic sign for a BD diagnosis, or only occasional aphtae were recalled by the patients. Family history was positive in 17% of subjects. Headache was reported in 75% of the patients; in those presenting with cerebral vascular involvement, headache was combined to other symptoms of intracranial hypertension. Papilledema was the most frequently reported ophthalmological finding, followed by posterior uveitis. Treatment consisted of systemic steroids in 93% of patients, often combined with other immunosuppressive drugs (especially colchicine and azathioprine). Clinical recovery or improvement was documented in the large majority of patients. Nine subjects had definitive alterations, and one died. Based on our review and personal

  17. Two modular neuro-fuzzy system for mobile robot navigation

    NASA Astrophysics Data System (ADS)

    Bobyr, M. V.; Titov, V. S.; Kulabukhov, S. A.; Syryamkin, V. I.

    2018-05-01

    The article considers the fuzzy model for navigation of a mobile robot operating in two modes. In the first mode the mobile robot moves along a line. In the second mode, the mobile robot looks for an target in unknown space. Structural and schematic circuit of four-wheels mobile robot are presented in the article. The article describes the movement of a mobile robot based on two modular neuro-fuzzy system. The algorithm of neuro-fuzzy inference used in two modular control system for movement of a mobile robot is given in the article. The experimental model of the mobile robot and the simulation of the neuro-fuzzy algorithm used for its control are presented in the article.

  18. Towards the evaluation of the pathological state of ascending thoracic aneurysms: integration of in-vivo measurements and hemodynamic simulations

    NASA Astrophysics Data System (ADS)

    Boccadifuoco, Alessandro; Mariotti, Alessandro; Celi, Simona; Martini, Nicola; Salvetti, Maria Vittoria

    2016-11-01

    Ascending thoracic aortic aneurysms are cardiovascular diseases consisting in a dilation of the ascending thoracic aorta. Since indicating a weakness of the arterial wall, they can lead to major complications with significant mortality rate. Clinical decisions about surgery are currently based on the maximum aortic diameter, but this single index does not seem a reliable indicator of the pathological state of the aorta. Numerical simulations of the blood flow inside the aneurysm may give supplementary information by quantifying important indices that are difficult to be measured, like the wall shear stress. Our aim is to develop an efficient platform in which in-vivo measurements are used to perform the hemodynamic simulations on a patient-specific basis. In particular, we used real geometries of thoracic aorta and focused on the use of clinical information to impose accurate boundary conditions at the inlet/outlets of the computational model. Stochastic analysis was also performed, to evaluate how uncertainties in the boundary parameters affect the main hemodynamic indicators, by considering both rigid and deformable walls. Stochastic calibration of numerical parameters against clinical data is in progress and results will be possibly shown.

  19. Simultaneous diffuse near-infrared imaging of hemodynamic and oxygenation changes and electroencephalographic measurements of neuronal activity in the human brain

    NASA Astrophysics Data System (ADS)

    Noponen, Tommi; Kicic, Dubravko; Kotilahti, Kalle; Kajava, Timo; Kahkonen, Seppo; Nissila, Ilkka; Merilainen, Pekka; Katila, Toivo

    2005-04-01

    Visually evoked hemodynamic responses and potentials were simultaneously measured using a 16-channel optical imaging instrument and a 60-channel electroencephalography instrument during normo-, hypo- and hypercapnia from three subjects. Flashing and pattern-reversed checkerboard stimuli were used. The study protocol included two counterbalanced measurements during both normo- and hypocapnia and normo- and hypercapnia. Hypocapnia was produced by controlled hyperventilation and hypercapnia by breathing carbon dioxide enriched air. Near-infrared imaging was also used to monitor the concentration changes of oxy- and deoxyhaemoglobin due to hypo- and hypercapnia. Hemodynamic responses and evoked potentials were successfully detected for each subject above the visual cortex. The latencies of the hemodynamic responses during hypocapnia were shorter whereas during hypercapnia they were longer when compared to the latencies during normocapnia. Hypocapnia tended to decrease the latencies of visually evoked potentials compared to those during normocapnia while hypercapnia did not show any consistent effect to the potentials. The developed measurement setup and the study protocol provide the opportunity to investigate the neurovascular coupling and the links between the baseline level of blood flow, electrical activity and hemodynamic responses in the human brain.

  20. Effects of dexmedetomidine infusion during spinal anesthesia on hemodynamics and sedation

    PubMed Central

    Tarıkçı Kılıç, Ebru; Aydın, Gaye

    2018-01-01

    ABSTRACT Background: We evaluated the effects of intravenous dexmedetomidine during spinal anesthesia on hemodynamics, respiratory rate, oxygen saturation, sedpain, and compared them with those of saline infusion. Sixty American Society of Anesthesiologists physical status I and II cases were randomly divided into two groups. Patients were connected to the monitor after premedication, and spinal anesthesia was administered. Sensory and motor blockades were assessed using pinprick test and Bromage scale, respectively. Group I received dexmedetomidine infusion and Group II received saline infusion. Throughout the infusion process, hemodynamic data, respiratory rate, oxygen saturation, sedation, pain, Bromage score, amnesia, bispectral index, and side effects were recorded. Postoperative hemodynamic measurements, oxygen saturation, sedation, pain scores were obtained. Sedation and pain were evaluated using the Ramsay and visual analog scales, respectively. Analgesics were administered in cases with high scores on the visual analog scale. Postoperative analgesic consumption, side effects, treatments were recorded. No significant differences were found between the groups with respect to oxygen saturation, respiratory rate, pain, and side effects in the intraoperative period. Time to onset of sensorial block, maximum sensorial block, onset of motor block, and maximum motor block; bispectral index values; and apex heartbeat until 80 min of infusion, systolic arterial blood pressure until 90 min, and diastolic arterial blood pressure until 50 min were lower, whereas amnesia and sedation levels were higher in dexmedetomidine group. Postoperative pain and analgesic requirement were not different. Apex heartbeat at 15 min and systolic arterial blood pressure at 30 min were lower and sedation scores were higher in the dexmedetomidine infusion group. We demonstrated dexmedetomidine infusion had a hemodynamic depressant effect intraoperatively whereas it had no significant

  1. Society for Neuro-Oncology 2014 annual meeting updates on central nervous system metastases.

    PubMed

    Lukas, Rimas V; Mehta, Minesh P; Lesniak, Maciej S

    2015-06-01

    The 19th Annual Meeting of the Society for Neuro-Oncology (SNO) took place in November of 2014. The focus of many abstracts, as well as the Education Day, was on recent advances in the study of central nervous system (CNS) metastases. Key studies evaluating the factors in tumors and their microenvironment associated with the development and growth of brain metastases are reviewed. Studies investigating the factors that independently influence survival in participants with brain metastases are presented. The Response Assessment for Neuro-Oncology criteria for brain metastases (RANO-BM) and the Neurological Assessment in Neuro-Oncology (NANO) criteria, which were both presented, are recapped. Studies are reviewed evaluating factors that influence survival outcomes in participants with brain metastases who were treated with radiotherapy. Studies investigating the potential risk of radiation necrosis with the combination of radiotherapy and immunotherapies are presented. Brain metastases-focused subset analyses from the ASCEND-1 trial for ALK-translocated non-small cell lung cancer are presented. Preclinical and clinical work on solid tumor leptomeningeal carcinomatosis is also covered. An overview is provided of treatment- related toxicities as well as important concepts that may influence strategies to protect against these toxicities. Key concepts regarding tumor biology, prognostication, response assessment, therapeutic management, and sequelae of treatment for CNS metastases are summarized. Advances in our understanding of the basic and clinical science of CNS metastases have the potential to improve outcomes for patients.

  2. Jogging Therapy for Hikikomori Social Withdrawal and Increased Cerebral Hemodynamics: A Case Report.

    PubMed

    Nishida, Masaki; Kikuchi, Senichiro; Fukuda, Kazuhito; Kato, Satoshi

    2016-01-01

    Severe social withdrawal, called hikikomori, has drawn increased public attention. However, an optimal clinical approach and strategy of treatment has not been well established. Here, we report a case of hikikomori for which an exercise intervention using jogging therapy was effective, showing cerebral hemodynamic improvement. The patient was a 20 year old Japanese male who was hospitalized in order to evaluate and treat severe social withdrawal. Although depressive and anxiety symptoms partially subsided with sertraline alone, social withdrawal persisted due to a lack of self confidence. With his consent, we implemented exercise therapy with 30 minutes of jogging three times a week for three months. We did not change the pharmacotherapy, and his social withdrawal remarkably improved with continuous jogging exercise. Using near infrared spectroscopy to evaluate hemodynamic alteration, bilateral temporal hemodynamics considerably increased after the three-month jogging therapy. Regarding exercise therapy for mental illness, numerous studies have reported the effectiveness of exercise therapy for major depression. This case implied, however, that the applicability of exercise therapy is not limited to major depressive disorder. Jogging therapy may contribute to reinforcing self confidence associated with "resilience" in conjunction with neurophysiological modulation of neural networks.

  3. Central and peripheral hemodynamic responses to passive limb movement: the role of arousal

    PubMed Central

    Venturelli, Massimo; Amann, M.; McDaniel, J.; Trinity, J. D.; Fjeldstad, A. S.

    2012-01-01

    The exact role of arousal in central and peripheral hemodynamic responses to passive limb movement in humans is unclear but has been proposed as a potential contributor. Thus, we used a human model with no lower limb afferent feedback to determine the role of arousal on the hemodynamic response to passive leg movement. In nine people with a spinal cord injury, we compared central and peripheral hemodynamic and ventilatory responses to one-leg passive knee extension with and without visual feedback (M+VF and M-VF, respectively) as well as in a third trial with no movement or visual feedback but the perception of movement (F). Ventilation (V̇e), heart rate, stroke volume, cardiac output, mean arterial pressure, and leg blood flow (LBF) were evaluated during the three protocols. V̇e increased rapidly from baseline in M+VF (55 ± 11%), M-VF (63 ± 13%), and F (48 ± 12%) trials. Central hemodynamics (heart rate, stroke volume, cardiac output, and mean arterial pressure) were unchanged in all trials. LBF increased from baseline by 126 ± 18 ml/min in the M+VF protocol and 109 ± 23 ml/min in the M-VF protocol but was unchanged in the F protocol. Therefore, with the use of model that is devoid of afferent feedback from the legs, the results of this study reveal that, although arousal is invoked by passive movement or the thought of passive movement, as evidenced by the increase in V̇e, there is no central or peripheral hemodynamic impact of this increased neural activity. Additionally, this study revealed that a central hemodynamic response is not an obligatory component of movement-induced LBF. PMID:22003056

  4. Low-Dimensional Models of "Neuro-Glio-Vascular Unit" for Describing Neural Dynamics under Normal and Energy-Starved Conditions.

    PubMed

    Chhabria, Karishma; Chakravarthy, V Srinivasa

    2016-01-01

    The motivation of developing simple minimal models for neuro-glio-vascular (NGV) system arises from a recent modeling study elucidating the bidirectional information flow within the NGV system having 89 dynamic equations (1). While this was one of the first attempts at formulating a comprehensive model for neuro-glio-vascular system, it poses severe restrictions in scaling up to network levels. On the contrary, low--dimensional models are convenient devices in simulating large networks that also provide an intuitive understanding of the complex interactions occurring within the NGV system. The key idea underlying the proposed models is to describe the glio-vascular system as a lumped system, which takes neural firing rate as input and returns an "energy" variable (analogous to ATP) as output. To this end, we present two models: biophysical neuro-energy (Model 1 with five variables), comprising KATP channel activity governed by neuronal ATP dynamics, and the dynamic threshold (Model 2 with three variables), depicting the dependence of neural firing threshold on the ATP dynamics. Both the models show different firing regimes, such as continuous spiking, phasic, and tonic bursting depending on the ATP production coefficient, ɛp, and external current. We then demonstrate that in a network comprising such energy-dependent neuron units, ɛp could modulate the local field potential (LFP) frequency and amplitude. Interestingly, low-frequency LFP dominates under low ɛp conditions, which is thought to be reminiscent of seizure-like activity observed in epilepsy. The proposed "neuron-energy" unit may be implemented in building models of NGV networks to simulate data obtained from multimodal neuroimaging systems, such as functional near infrared spectroscopy coupled to electroencephalogram and functional magnetic resonance imaging coupled to electroencephalogram. Such models could also provide a theoretical basis for devising optimal neurorehabilitation strategies, such as

  5. Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study.

    PubMed

    Wu, Lei; Eichele, Tom; Calhoun, Vince D

    2010-10-01

    Concurrent EEG-fMRI studies have provided increasing details of the dynamics of intrinsic brain activity during the resting state. Here, we investigate a prominent effect in EEG during relaxed resting, i.e. the increase of the alpha power when the eyes are closed compared to when the eyes are open. This phenomenon is related to changes in thalamo-cortical and cortico-cortical synchronization. In order to investigate possible changes to EEG-fMRI coupling and fMRI functional connectivity during the two states we adopted a data-driven approach that fuses the multimodal data on the basis of parallel ICA decompositions of the fMRI data in the spatial domain and of the EEG data in the spectral domain. The power variation of a posterior alpha component was used as a reference function to deconvolve the hemodynamic responses from occipital, frontal, temporal, and subcortical fMRI components. Additionally, we computed the functional connectivity between these components. The results showed widespread alpha hemodynamic responses and high functional connectivity during eyes-closed (EC) rest, while eyes open (EO) resting abolished many of the hemodynamic responses and markedly decreased functional connectivity. These data suggest that generation of local hemodynamic responses is highly sensitive to state changes that do not involve changes of mental effort or awareness. They also indicate the localized power differences in posterior alpha between EO and EC in resting state data are accompanied by spatially widespread amplitude changes in hemodynamic responses and inter-regional functional connectivity, i.e. low frequency hemodynamic signals display an equivalent of alpha reactivity. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Acute effects of power and resistance exercises on hemodynamic measurements of older women

    PubMed Central

    Coelho-Júnior, Hélio José; Irigoyen, Maria-Cláudia; Aguiar, Samuel da Silva; Gonçalves, Ivan de Oliveira; Câmara, Niels Olsen Saraiva; Cenedeze, Marco Antonio; Asano, Ricardo Yukio; Rodrigues, Bruno; Uchida, Marco Carlos

    2017-01-01

    Purpose The purpose of this study was to compare the acute effects of resistance training (RT) and power training (PT) on the hemodynamic parameters and nitric oxide (NO) bioavailability of older women. Materials and methods A randomized experimental design was used in this study. Twenty-one older women (age: 67.1±4.6 years; body mass index: 28.03±4.9 kg/m2; systolic blood pressure: 135.1±21.1 mmHg) were recruited to participate in this study. Volunteers were randomly allocated into PT, RT, and control session (CS) groups. The PT and RT groups underwent a single session of physical exercise equalized by training volume, characterized by 3 sets of 8–10 repetitions in 8 different exercises. However, RT group performed exercise at a higher intensity (difficult) than PT (moderate) group. On the other hand, concentric contractions were faster in PT group than in RT group. Hemodynamic parameters and saliva samples (for NO quantification) were collected before and during an hour after exercise completion. Results Results demonstrated post-exercise hypotension during 35 minutes in the PT when compared to rest period (P=0.001). In turn, RT showed decreased heart rate and double product (P<0.001) during the whole evaluation period after exercise completion compared with the rest period. NO levels increased in the PT and RT during the whole evaluation period in relation to rest period. However, there were no differences between PT, RT, and CS regarding hemodynamic and NO evaluations. Conclusion Data indicate that an acute session of power and resistance exercise can be effective to cause beneficial changes on hemodynamic parameters and NO levels in older women. PMID:28744114

  7. Lightning Burns and Electrical Trauma in a Couple Simultaneously Struck by Lightning

    PubMed Central

    Eyerly-Webb, Stephanie A.; Solomon, Rachele; Lee, Seong K.; Sanchez, Rafael; Carrillo, Eddy H.; Davare, Dafney L.; Kiffin, Chauniqua; Rosenthal, Andrew

    2017-01-01

    More people are struck and killed by lightning each year in Florida than any other state in the United States. This report discusses a couple that was simultaneously struck by lightning while walking arm-in-arm. Both patients presented with characteristic lightning burns and were admitted for hemodynamic monitoring, serum labs, and observation and were subsequently discharged home. Despite the superficial appearance of lightning burns, serious internal electrical injuries are common. Therefore, lightning strike victims should be admitted and evaluated for cardiac arrhythmias, renal injury, and neurological sequelae.

  8. Cascade control of superheated steam temperature with neuro-PID controller.

    PubMed

    Zhang, Jianhua; Zhang, Fenfang; Ren, Mifeng; Hou, Guolian; Fang, Fang

    2012-11-01

    In this paper, an improved cascade control methodology for superheated processes is developed, in which the primary PID controller is implemented by neural networks trained by minimizing error entropy criterion. The entropy of the tracking error can be estimated recursively by utilizing receding horizon window technique. The measurable disturbances in superheated processes are input to the neuro-PID controller besides the sequences of tracking error in outer loop control system, hence, feedback control is combined with feedforward control in the proposed neuro-PID controller. The convergent condition of the neural networks is analyzed. The implementation procedures of the proposed cascade control approach are summarized. Compared with the neuro-PID controller using minimizing squared error criterion, the proposed neuro-PID controller using minimizing error entropy criterion may decrease fluctuations of the superheated steam temperature. A simulation example shows the advantages of the proposed method. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Statistically Qualified Neuro-Analytic system and Method for Process Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.

    1998-11-04

    An apparatus and method for monitoring a process involves development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two steps: deterministic model adaption and stochastic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics,augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation emor minimization technique. Stochastic model adaptation involves qualifying any remaining uncertaintymore » in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system.« less

  10. Central circulatory hemodynamics as a function of gravitational stress

    NASA Technical Reports Server (NTRS)

    Latham, Rick D.; White, C. D.; Fanton, J. W.; Owens, R. W.; Barber, J. F.; Lewkowski, B. E.; Goff, O. T.

    1991-01-01

    This study focuses on an evaluation of the central hemodynamics in a nonhuman primate model to variations in gravitational states. The baboon, phylogenectically close to man, was chosen as the human surrogate. The study environments selected are head-down and head-up tilt in the physiology laboratory, centrifugation to test hypergravic stress, and parabolic flights to test transient acute responses to microgravity.

  11. Neuro-transmitters in the central nervous system & their implication in learning and memory processes.

    PubMed

    Reis, Helton J; Guatimosim, Cristina; Paquet, Maryse; Santos, Magda; Ribeiro, Fabíola M; Kummer, Arthur; Schenatto, Grace; Salgado, João V; Vieira, Luciene B; Teixeira, Antônio L; Palotás, András

    2009-01-01

    This review article gives an overview of a number of central neuro-transmitters, which are essential for integrating many functions in the central nervous system (CNS), such as learning, memory, sleep cycle, body movement, hormone regulation and many others. Neurons use neuro-transmitters to communicate, and a great variety of molecules are known to fit the criteria to be classified as such. A process shared by all neuro-transmitters is their release by excocytosis, and we give an outline of the molecular events and protein complexes involved in this mechanism. Synthesis, transport, inactivation, and cellular signaling can be very diverse when different neuro-transmitters are compared, and these processes are described separately for each neuro-transmitter system. Here we focus on the most well known neuro-transmitters: acetyl-choline, catechol-amines (dopamine and nor-adrenalin), indole-amine (serotonin), glutamate, and gamma-amino-butyric acid (GABA). Glutamate is the major excitatory neuro-transmitter in the brain and its actions are counter-balanced by GABA, which is the major inhibitory substance in the CNS. A balance of neuronal transmission between these two neuro-transmitters is essential to normal brain function. Acetyl-choline, serotonin and catechol-amines have a more modulatory function in the brain, being involved in many neuronal circuits. Apart from summarizing the current knowledge about the synthesis, release and receptor signaling of these transmitters, some disease states due to alteration of their normal neuro-transmission are also described.

  12. Dose effect evaluation and therapeutic window of the neuro-EPO nasal application for the treatment of the focal ischemia model in the Mongolian gerbil.

    PubMed

    Teste, Iliana Sosa; Tamos, Yuneidys Mengana; Cruz, Yamila Rodríguez; Cernada, Adriana Muñoz; Rodríguez, Janette Cruz; Martínez, Nelvis Subirós; Antich, Rosa Maria Coro; González-Quevedo, Alina; Rodríguez, Julio Cesar García

    2012-01-01

    Cerebrovascular disease is the third leading cause of death and the leading cause of disability in Cuba and in several developed countries. A possible neuroprotective agent is the rHu-EPO, whose effects have been demonstrated in models of brain ischemia. The Neuro-EPO is a derivative of the rHu-EPO that avoids the stimulation of erythropoiesis. The aim of this study was to determine the Neuro-EPO delivery into the central nervous system (CNS) to exert a neuroprotective effect in cerebral ischemia model of the Mongolian gerbil. The Neuro-EPO in a rate of 249.4 UI every 8 hours for 4 days showed 25% higher viability efficacy (P > 0.01), improving neurological score and behavior of the spontaneous exploratory activity, the preservation of CA3 areas of the hippocampus, the cortex, and thalamic nuclei in the focal ischemia model of the Mongolian gerbil. In summary, this study, the average dose-used Neuro-EPO (249.4 UI/10 μL/every 8 hours for 4 days), proved to be valid indicators of viability, neurological status, and spontaneous exploratory activity, being significantly lower than that reported for the systemically use of the rHu-EPO as a neuroprotectant. Indeed, up to 12 h after brain ischemia is very positive Neuro-EPO administration by the nasal route as a candidate for neuroprotection.

  13. [Top ten progression of neuro-ophthalmology research in China in the latest five years].

    PubMed

    2014-12-01

    Ten researches that represent the most advanced neuro-ophthalmology related studies in china were voted by specialists from Chinese Neuro-ophthalmology Society. These researches were concentrated in the following fields: clinical and basic researches of optic neuritis, studies of ischemic optic neuropathy, and clinical present of Leber's hereditary optic neuropathy. These researches represented the level of neuro-ophthalmology in China and also showed the focus of our Chinese neuro-ophthalmologists in recent years.

  14. Neuro Linguistic Programming for Counselors.

    ERIC Educational Resources Information Center

    Harman, Robert L.; O'Neill, Charles

    1981-01-01

    Describes contributions of Neuro Linguistic Programming (NLP) to counseling practice. The Meta-Model, representational systems, anchoring, and reframing are described. Counselors interested in learning NLP can integrate many valuable new ways of communicating with clients and changing client behaviors. (Author)

  15. Mesial Temporal Sclerosis: Accuracy of NeuroQuant versus Neuroradiologist.

    PubMed

    Azab, M; Carone, M; Ying, S H; Yousem, D M

    2015-08-01

    We sought to compare the accuracy of a volumetric fully automated computer assessment of hippocampal volume asymmetry versus neuroradiologists' interpretations of the temporal lobes for mesial temporal sclerosis. Detecting mesial temporal sclerosis (MTS) is important for the evaluation of patients with temporal lobe epilepsy as it often guides surgical intervention. One feature of MTS is hippocampal volume loss. Electronic medical record and researcher reports of scans of patients with proved mesial temporal sclerosis were compared with volumetric assessment with an FDA-approved software package, NeuroQuant, for detection of mesial temporal sclerosis in 63 patients. The degree of volumetric asymmetry was analyzed to determine the neuroradiologists' threshold for detecting right-left asymmetry in temporal lobe volumes. Thirty-six patients had left-lateralized MTS, 25 had right-lateralized MTS, and 2 had bilateral MTS. The estimated accuracy of the neuroradiologist was 72.6% with a κ statistic of 0.512 (95% CI, 0.315-0.710) [moderate agreement, P < 3 × 10(-6)]), whereas the estimated accuracy of NeuroQuant was 79.4% with a κ statistic of 0.588 (95% CI, 0.388-0.787) [moderate agreement, P < 2 × 10(-6)]). This discrepancy in accuracy was not statistically significant. When at least a 5%-10% volume discrepancy between temporal lobes was present, the neuroradiologists detected it 75%-80% of the time. As a stand-alone fully automated software program that can process temporal lobe volume in 5-10 minutes, NeuroQuant compares favorably with trained neuroradiologists in predicting the side of mesial temporal sclerosis. Neuroradiologists can often detect even small temporal lobe volumetric changes visually. © 2015 by American Journal of Neuroradiology.

  16. Industry progress report on neuro-oncology: a biotech update.

    PubMed

    Haber, Jessica S; Banu, Matei A; Ray, Ashley; Kesavabhotla, Kartik; Boockvar, John A

    2013-04-01

    With steadily rising revenue and large numbers of clinical trials utilizing novel treatment strategies, the field of neuro-oncology is at the core of the growing cancer therapy industry. In June 2012, the Weill Cornell Brain and Tumor Center hosted the first Brain Tumor Biotech Summit as a forum for fostering and encouraging collaboration between researches and investors to accelerate novel treatments for brain cancer. This event brought together neuro-oncologists, neurosurgeons, academicians, entrepreneurs, non-profits, CEOs and investors in an attempt to bring innovative treatments and concepts to the fore. Specific subjects presented at the meeting included new surgical devices and delivery techniques, targeted therapeutics, immunotherapy, and stem cell biology. The mission of the summit was to provide opportunities for researchers in neuro-oncology to directly interact with leaders from the investment community with insight into the commercial aspects of our work. Our shared goal is to shorten the time for basic science ideas to be translated into the clinical setting. The following serves as a progress report on the biotech industry in neuro-oncology, as presented at the Brain Tumor Biotech Summit.

  17. Neuro-Sweet disease: report of the first autopsy case.

    PubMed

    Kokubo, Yasumasa; Kuzuhara, Shigeki; Isoda, Kenichi; Sato, Kenji; Kawada, Norikazu; Narita, Yugo

    2007-09-01

    Neuro-Sweet disease is a rare condition of central nervous involvement accompanied by cutaneous Sweet lesions. Neuropathological changes in neuro-Sweet disease are unknown. To describe post-mortem findings of the first case of neuro-Sweet disease. A 44-year-old Japanese man developed recurrent episodes of cerebral and brainstem encephalitis with cutaneous Sweet lesions from the age of 34 years. His HLA typing was B54 and Cw1, and the symptoms and MRI abnormalities markedly subsided following corticosteroid therapy. Histologically, there were multiple lesions of perivascular cuffing of small venules by macrophages without vasculitis in the thalamus, temporal lobe, basal ganglia, pons, leptomeninges or ventricular ependym. The core neuropathological findings were: perivascular cuffing around particularly small veins; absence of granulomatous or necrotic angitis; mainly macrophage infiltration; and the thalamus being most affected. In the present case, the diagnosis of neuro-Sweet disease was made by skin biopsy 5 years after the onset of the central neuron system symptoms. We should pay more attention to skin lesions in steroid responsive recurrent encephalitis in patients who are HLA-B54 or Cw1 positive.

  18. NeuroPigPen: A Scalable Toolkit for Processing Electrophysiological Signal Data in Neuroscience Applications Using Apache Pig.

    PubMed

    Sahoo, Satya S; Wei, Annan; Valdez, Joshua; Wang, Li; Zonjy, Bilal; Tatsuoka, Curtis; Loparo, Kenneth A; Lhatoo, Samden D

    2016-01-01

    The recent advances in neurological imaging and sensing technologies have led to rapid increase in the volume, rate of data generation, and variety of neuroscience data. This "neuroscience Big data" represents a significant opportunity for the biomedical research community to design experiments using data with greater timescale, large number of attributes, and statistically significant data size. The results from these new data-driven research techniques can advance our understanding of complex neurological disorders, help model long-term effects of brain injuries, and provide new insights into dynamics of brain networks. However, many existing neuroinformatics data processing and analysis tools were not built to manage large volume of data, which makes it difficult for researchers to effectively leverage this available data to advance their research. We introduce a new toolkit called NeuroPigPen that was developed using Apache Hadoop and Pig data flow language to address the challenges posed by large-scale electrophysiological signal data. NeuroPigPen is a modular toolkit that can process large volumes of electrophysiological signal data, such as Electroencephalogram (EEG), Electrocardiogram (ECG), and blood oxygen levels (SpO2), using a new distributed storage model called Cloudwave Signal Format (CSF) that supports easy partitioning and storage of signal data on commodity hardware. NeuroPigPen was developed with three design principles: (a) Scalability-the ability to efficiently process increasing volumes of data; (b) Adaptability-the toolkit can be deployed across different computing configurations; and (c) Ease of programming-the toolkit can be easily used to compose multi-step data processing pipelines using high-level programming constructs. The NeuroPigPen toolkit was evaluated using 750 GB of electrophysiological signal data over a variety of Hadoop cluster configurations ranging from 3 to 30 Data nodes. The evaluation results demonstrate that the toolkit

  19. Using functional hemodynamic indicators to guide fluid therapy.

    PubMed

    Bridges, Elizabeth

    2013-05-01

    Hemodynamic monitoring has traditionally relied on such static pressure measurements as pulmonary artery occlusion pressure and central venous pressure to guide fluid therapy. Over the past 15 years, however, there's been a shift toward less invasive or noninvasive monitoring methods, which use "functional" hemodynamic indicators that reflect ventilator-induced changes in preload and thereby more accurately predict fluid responsiveness. The author reviews the physiologic principles underlying functional hemodynamic indicators, describes how the indicators are calculated, and discusses when and how to use them to guide fluid resuscitation in critically ill patients.

  20. Neuro-QoL health-related quality of life measurement system: Validation in Parkinson's disease.

    PubMed

    Nowinski, Cindy J; Siderowf, Andrew; Simuni, Tanya; Wortman, Catherine; Moy, Claudia; Cella, David

    2016-05-01

    Neuro-QoL is a multidimensional patient-reported outcome measurement system assessing aspects of physical, mental, and social health identified by neurology patients and caregivers as important. One of the first neurology-specific patient-reported outcome measure systems created using modern test development methods, Neuro-Qol enables brief, yet precise, assessment and the ability to conduct both PD-specific and cross-disease comparisons. We present results of Neuro-QoL clinical validation using a sample of PD patients. A total of 120 PD patients recruited from academic medical centers were assessed at baseline, 1 week, and 6 months. Assessments included Neuro-QoL and general and PD-specific validity measures. Participants were 62% male and 95% white (average age = 66); H & Y stages were 1 (16%), 2 (61%), 3 (18%), and 4 (5%). Internal consistency and test-retest reliability of Neuro-QoL ranged from Cronbach's alphas = 0.81 to 0.94 with intraclass correlation coefficients = 0.66 to 0.80. Pearson's correlations between Neuro-QoL and legacy measures were generally moderate and in expected directions. UPDRS Part 2 was moderately correlated with Neuro-QoL Upper Extremity and Mobility, respectively (r's = -0.44; -0.59). Parkinson's Disease Questionnaire-39 and Neuro-QoL measures of similar constructs showed strong-to-moderate correlations (r's = 0.70-0.44). Neuro-QoL measures of fatigue, mobility, positive emotion, and emotional/behavioral control showed responsiveness to self-reported change. Neuro-QoL is valid for use in PD clinical research. Reliability for all but two measures is sufficient for group comparisons, with some evidence supporting responsiveness to change. Neuro-QoL possesses characteristics, such as brevity, flexibility in administration, and suitability, for cross-disease comparisons that may be advantageous to users in a variety of settings. © 2016 Movement Disorder Society. © 2016 International Parkinson and Movement Disorder

  1. Unraveling the relationship between arterial flow and intra-aneurysmal hemodynamics.

    PubMed

    Morales, Hernán G; Bonnefous, Odile

    2015-02-26

    Arterial flow rate affects intra-aneurysmal hemodynamics but it is not clear how their relationship is. This uncertainty hinders the comparison among studies, including clinical evaluations, like a pre- and post-treatment status, since arterial flow rates may differ at each time acquisition. The purposes of this work are as follows: (1) To study how intra-aneurysmal hemodynamics changes within the full physiological range of arterial flow rates. (2) To provide characteristic curves of intra-aneurysmal velocity, wall shear stress (WSS) and pressure as functions of the arterial flow rate. Fifteen image-based aneurysm models were studied using computational fluid dynamics (CFD) simulations. The full range of physiological arterial flow rates reported in the literature was covered by 11 pulsatile simulations. For each aneurysm, the spatiotemporal-averaged blood flow velocity, WSS and pressure were calculated. Spatiotemporal-averaged velocity inside the aneurysm linearly increases as a function of the mean arterial flow (minimum R(2)>0.963). Spatiotemporal-averaged WSS and pressure at the aneurysm wall can be represented by quadratic functions of the arterial flow rate (minimum R(2)>0.996). Quantitative characterizations of spatiotemporal-averaged velocity, WSS and pressure inside cerebral aneurysms can be obtained with respect to the arterial flow rate. These characteristic curves provide more information of the relationship between arterial flow and aneurysm hemodynamics since the full range of arterial flow rates is considered. Having these curves, it is possible to compare experimental studies and clinical evaluations when different flow conditions are used. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Neuro-cognitive mechanisms of decision making in joint action: a human-robot interaction study.

    PubMed

    Bicho, Estela; Erlhagen, Wolfram; Louro, Luis; e Silva, Eliana Costa

    2011-10-01

    In this paper we present a model for action preparation and decision making in cooperative tasks that is inspired by recent experimental findings about the neuro-cognitive mechanisms supporting joint action in humans. It implements the coordination of actions and goals among the partners as a dynamic process that integrates contextual cues, shared task knowledge and predicted outcome of others' motor behavior. The control architecture is formalized by a system of coupled dynamic neural fields representing a distributed network of local but connected neural populations. Different pools of neurons encode task-relevant information about action means, task goals and context in the form of self-sustained activation patterns. These patterns are triggered by input from connected populations and evolve continuously in time under the influence of recurrent interactions. The dynamic model of joint action is evaluated in a task in which a robot and a human jointly construct a toy object. We show that the highly context sensitive mapping from action observation onto appropriate complementary actions allows coping with dynamically changing joint action situations. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. A Portable Ultrasound System for Non-Invasive Ultrasonic Neuro-Stimulation.

    PubMed

    Qiu, Weibao; Zhou, Juan; Chen, Yan; Su, Min; Li, Guofeng; Zhao, Huixia; Gu, Xianyi; Meng, De; Wang, Congzhi; Xiao, Yang; Lam, Kwok Ho; Dai, Jiyan; Zheng, Hairong

    2017-12-01

    Fundamental insights into the function of the neural circuits often follows from the advances in methodologies and tools for neuroscience. Electrode- and optical- based stimulation methods have been used widely for neuro-modulation with high resolution. However, they are suffering from inherent invasive surgical procedure. Ultrasound has been proved as a promising technology for neuro-stimulation in a non-invasive manner. However, no portable ultrasound system has been developed particularly for neuro-stimulation. The utilities used currently are assembled by traditional functional generator, power amplifier, and general transducer, therefore, resulting in lack of flexibility. This paper presents a portable system to achieve ultrasonic neuro-stimulation to satisfy various studies. The system incorporated a high voltage waveform generator and a matching circuit that were optimized for neuro-stimulation. A new switching mode power amplifier was designed and fabricated. The noise generated by the power amplifier was reduced (about 30 dB), and the size and weight were smaller in contrast with commercial equipment. In addition, a miniaturized ultrasound transducer was fabricated using Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT) 1-3 composite single crystal for the improved ultrasonic performance. The spatial peak temporal average pressure was higher than 250 kPa in the range of 0.5-5 MHz. In vitro and in vivo studies were conducted to show the performance of the system.

  4. Resveratrol protects bupivacaine-induced neuro-apoptosis in dorsal root ganglion neurons via activation on tropomyosin receptor kinase A.

    PubMed

    Guo, Zhiliang; Liu, Yuanyuan; Cheng, Min

    2018-07-01

    General anesthesia in spinal cord may lead to unexpected but irreversible neurotoxicity. We investigated whether resveratrol (RSV) may protect bupivacaine (BUP)-induced neuro-apoptosis in spinal cord dorsal root ganglia (DRG). Mouse DRG cells were cultured in vitro, pre-treated with RSV and then 5 mM BUP. A concentration-dependent effect of RSV on reducing BUP-induced apoptosis of DRG neurons (DRGNs) was evaluated using a TUNEL assay. QRT-PCR and western blot assays were also conducted to evaluate gene and protein expressions of tropomyosin receptor kinase A/B/C (TrkA/B/C) and activated (phosphorylated) Trk receptors, phospho-TrkA/B/C. In addition, a functional TrkA blocking antibody MNAC13 was applied in DRG culture to further measure the functional role of Trk receptor in RSV-initiated apoptotic protection on BUP-damaged DRGNs. BUP promoted significant apoptosis in DRG. RSV exhibited protective effects against BUP-induced neuro-apoptosis in a concentration-dependent manner. qRT-PCR and western blot showed that RSV did not alter TrkA/B/C gene or protein expression, but significantly upregulated phospho-TrkA. Conversely, application of MNAC13 decreased phospho-TrkA and reversed RSV-initiated neuro-protection on BUP-induced DRGN apoptosis. Resveratrol may protect anesthesia-induced DRG neuro-apoptosis, and activation of TrkA signaling pathway may be the underlying mechanism in this process. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. OpenCL Implementation of NeuroIsing

    NASA Astrophysics Data System (ADS)

    Zapart, C. A.

    Recent advances in graphics card hardware combined with anintroduction of the OpenCL standard promise to accelerate numerical simulations across diverse scientific disciplines. One such field benefiting from new hardware/software paradigms is econophysics. The paper describes an OpenCL implementation of a selected econophysics model: NeuroIsing, which has been designed to execute in parallel on a vendor-independent graphics card. Originally introduced in the paper [C.~A.~Zapart, ``Econophysics in Financial Time Series Prediction'', PhD thesis, Graduate University for Advanced Studies, Japan (2009)], at first it was implemented on a CELL processor running inside a SONY PS3 games console. The NeuroIsing framework can be applied to predicting and trading foreign exchange as well as stock market index futures.

  6. Basic equipment requirements for hemodynamic monitoring.

    PubMed Central

    Morton, B C

    1979-01-01

    Hemodynamic monitoring in the critically ill patient requires the use of sophisticated electronic devices. To use this equipment one should have a general understanding of the principles involved and the requirements of a reliable system. This communication serves to explain the requirements of the various components of a hemodynamic monitoring system and to demonstrate how they interact to produce accurate and safe electronic signals from mechanical wave forms obtained from the patient. Images FIG. 5 PMID:497978

  7. Assessment of hemodynamics of intracranial aneurysms using Doppler optical coherence tomography in patient specific phantoms: preliminary results (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ramjist, Joel M.; Jivraj, Jamil; Barrows, Dexter; Vuong, Barry; Wong, Ronnie; Yang, Victor X. D.

    2017-02-01

    Intracranial aneurysms affect a large number of individuals every year. Changes to hemodynamics are thought to be a crucial factor in the initial formation and enlargement of intracranial aneurysms. Previously, surgical clipping - an open an invasive procedure, was the standard of care. More recently, minimally invasive, catheter based therapies, specifically stenting and coiling, has been employed for treatment as it is less invasive and poses fewer overall risks. However, these treatments can further alter hemodynamic patterns of patients, affecting efficacy and prognosis. Doppler optical coherence tomography (DOCT) has shown to be useful for the evaluation of changes to hemodynamic patterns in various vascular pathologies, and intravascular DOCT may provide useful insight in the evaluation and changes to hemodynamic patterns before and during the treatment of aneurysms. In this study, we present preliminary results of DOCT imaging used in three patient-specific aneurysm phantoms located within the Circle of Willis both pre and post-treatment. These results are compared with computational fluid dynamics (CFD) simulations and high-speed camera imaging for further interpretation and validation of results.

  8. Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Jasdzewski, G.; Strangman, G.; Wagner, J.; Kwong, K. K.; Poldrack, R. A.; Boas, D. A.; Sutton, J. P. (Principal Investigator)

    2003-01-01

    Several current brain imaging techniques rest on the assumption of a tight coupling between neural activity and hemodynamic response. The nature of this neurovascular coupling, however, is not completely understood. There is some evidence for a decoupling of these processes at the onset of neural activity, which manifests itself as a momentary increase in the relative concentration of deoxyhemoglobin (HbR). The existence of this early component of the hemodynamic response function, however, is controversial, as it is inconsistently found. Near infrared spectroscopy (NIRS) allows quantification of levels of oxyhemoglobin (HbO(2)) and HbR during task performance in humans. We acquired NIRS data during performance of simple motor and visual tasks, using rapid-presentation event-related paradigms. Our results demonstrate that rapid, event-related NIRS can provide robust estimates of the hemodynamic response without artifacts due to low-frequency signal components, unlike data from blocked designs. In both the motor and visual data the onset of the increase in HbO(2) occurs before HbR decreases, and there is a poststimulus undershoot. Our results also show that total blood volume (HbT) drops before HbO(2) and undershoots baseline, raising a new issue for neurovascular models. We did not find early deoxygenation in the motor data using physiologically plausible values for the differential pathlength factor, but did find one in the visual data. We suggest that this difference, which is consistent with functional magnetic resonance imaging (fMRI) data, may be attributable to different capillary transit times in these cortices.

  9. Dose Effect Evaluation and Therapeutic Window of the Neuro-EPO Nasal Application for the Treatment of the Focal Ischemia Model in the Mongolian Gerbil

    PubMed Central

    Teste, Iliana Sosa; Tamos, Yuneidys Mengana; Cruz, Yamila Rodríguez; Cernada, Adriana Muñoz; Rodríguez, Janette Cruz; Martínez, Nelvis Subirós; Antich, Rosa Maria Coro; González-Quevedo, Alina; Rodríguez, Julio Cesar García

    2012-01-01

    Cerebrovascular disease is the third leading cause of death and the leading cause of disability in Cuba and in several developed countries. A possible neuroprotective agent is the rHu-EPO, whose effects have been demonstrated in models of brain ischemia. The Neuro-EPO is a derivative of the rHu-EPO that avoids the stimulation of erythropoiesis. The aim of this study was to determine the Neuro-EPO delivery into the central nervous system (CNS) to exert a neuroprotective effect in cerebral ischemia model of the Mongolian gerbil. The Neuro-EPO in a rate of 249.4 UI every 8 hours for 4 days showed 25% higher viability efficacy (P > 0.01), improving neurological score and behavior of the spontaneous exploratory activity, the preservation of CA3 areas of the hippocampus, the cortex, and thalamic nuclei in the focal ischemia model of the Mongolian gerbil. In summary, this study, the average dose-used Neuro-EPO (249.4 UI/10 μL/every 8 hours for 4 days), proved to be valid indicators of viability, neurological status, and spontaneous exploratory activity, being significantly lower than that reported for the systemically use of the rHu-EPO as a neuroprotectant. Indeed, up to 12 h after brain ischemia is very positive Neuro-EPO administration by the nasal route as a candidate for neuroprotection. PMID:22701364

  10. Cerebral Hemodynamics Patterns by Transcranial Doppler in Patients With Acute Liver Failure.

    PubMed

    Abdo, A; Pérez-Bernal, J; Hinojosa, R; Porras, F; Castellanos, R; Gómez, F; Gutiérrez, J; Castellanos, A; Leal, G; Espinosa, N; Gómez-Bravo, M

    2015-11-01

    About half of patients with acute liver failure (ALF) show clinical signs of cerebral edema and intracranial hypertension. Neuroimaging diagnostics and electroencephalography have poor correlation with intracranial pressure measurement. The objective of this study was to characterize the cerebral hemodynamics patterns with transcranial Doppler (TCD) sonography in patients with ALF. We studied 21 patients diagnosed with ALF, admitted to the intensive care unit (ICU) at the Centro de Investigaciones Médico Quirúrgicas of Cuba. All of these patients had a TCD performed on arrival at ICU, evaluating the following: systolic (SV), diastolic (DV), and medium (MV) flows velocities and pulsatility index (PI) in right middle cerebral artery (RMCA) via temporal windows. The sonographic patterns of cerebral hemodynamics were as follows: low-flow, 12 patients (57.1%); high resistance, 5 patients (23.8%); and hyperemic, 4 patients (19%). Patients who died while waiting had lower MV RMCA (56.1 vs 58.1 cm/s) and higher PI (1.71 vs 1.41) than patients who could undergo transplantation (P = .800 and P = .787, respectively). In patients diagnosed with ALF admitted to the ICU the predominating cerebral hemodynamic pattern was low-flow with resistance increase. The TCD was shown to be a useful tool in the initial evaluation for prognosis and treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The role of ethics in data governance of large neuro-ICT projects.

    PubMed

    Stahl, Bernd Carsten; Rainey, Stephen; Harris, Emma; Fothergill, B Tyr

    2018-05-14

    We describe current practices of ethics-related data governance in large neuro-ICT projects, identify gaps in current practice, and put forward recommendations on how to collaborate ethically in complex regulatory and normative contexts. We undertake a survey of published principles of data governance of large neuro-ICT projects. This grounds an approach to a normative analysis of current data governance approaches. Several ethical issues are well covered in the data governance policies of neuro-ICT projects, notably data protection and attribution of work. Projects use a set of similar policies to ensure users behave appropriately. However, many ethical issues are not covered at all. Implementation and enforcement of policies remain vague. The data governance policies we investigated indicate that the neuro-ICT research community is currently close-knit and that shared assumptions are reflected in infrastructural aspects. This explains why many ethical issues are not explicitly included in data governance policies at present. With neuro-ICT research growing in scale, scope, and international involvement, these shared assumptions should be made explicit and reflected in data governance.

  12. Estimating Reservoir Inflow Using RADAR Forecasted Precipitation and Adaptive Neuro Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Yi, J.; Choi, C.

    2014-12-01

    Rainfall observation and forecasting using remote sensing such as RADAR(Radio Detection and Ranging) and satellite images are widely used to delineate the increased damage by rapid weather changeslike regional storm and flash flood. The flood runoff was calculated by using adaptive neuro-fuzzy inference system, the data driven models and MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as the input variables.The result of flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated by comparing it with the actual data.The Adaptive Neuro Fuzzy method was applied to the Chungju Reservoir basin in Korea. The six rainfall events during the flood seasons in 2010 and 2011 were used for the input data.The reservoir inflow estimation results were comparedaccording to the rainfall data used for training, checking and testing data in the model setup process. The results of the 15 models with the combination of the input variables were compared and analyzed. Using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation in this study.The model using the MAPLE forecasted precipitation data showed better result for inflow estimation in the Chungju Reservoir.

  13. Berberine attenuates depressive-like behaviors by suppressing neuro-inflammation in stressed mice.

    PubMed

    Liu, Ya-Min; Niu, Le; Wang, Lin-Lin; Bai, Li; Fang, Xiao-Yan; Li, Yu-Cheng; Yi, Li-Tao

    2017-09-01

    Berberine, the major constituent alkaloid originally from the famous Chinese herb Huanglian (Coptis chinensis), has been shown to exert antidepressant-like effects in rodents. However, it is still not clear the involvement of neuro-inflammation suppression in the effects of berberine. The purpose of this study was to determine whether berberine affects the neuro-inflammation system in mice induced by chronic unpredictable mild stress (CUMS). Berberine was orally administrated in normal or CUMS mice for successive four weeks. Behavioral evaluation showed that berberine prevented the depressive deficits both in sucrose preference test and novelty-suppressed feeding test. The elevation of hippocampal pro-inflammatory cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), as well as the activation of microglia were decreased by berberine. In addition, chronic berberine treatment inhibited nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway as the phosphorylated proteins of NF-κB, IκB kinase (IKK)α and IKKβ in the hippocampus were suppressed after berberine administration. Furthermore, inducible nitric oxide synthase (iNOS), one downstream target of NF-κB signaling pathway was also inhibited by berberine. In conclusion, these findings suggest that administration of berberine could prevent depressive-like behaviors in CUMS mice by suppressing neuro-inflammation in the hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. NeuroLOG: a community-driven middleware design.

    PubMed

    Montagnat, Johan; Gaignard, Alban; Lingrand, Diane; Rojas Balderrama, Javier; Collet, Philippe; Lahire, Philippe

    2008-01-01

    The NeuroLOG project designs an ambitious neurosciences middleware, gaining from many existing components and learning from past project experiences. It is targeting a focused application area and adopting a user-centric perspective to meet the neuroscientists expectations. It aims at fostering the adoption of HealthGrids in a pre-clinical community. This paper details the project's design study and methodology which were proposed to achieve the integration of heterogeneous site data schemas and the definition of a site-centric policy. The NeuroLOG middleware will bridge HealthGrid and local resources to match user desires to control their resources and provide a transitional model towards HealthGrids.

  15. NeuroManager: a workflow analysis based simulation management engine for computational neuroscience

    PubMed Central

    Stockton, David B.; Santamaria, Fidel

    2015-01-01

    We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach (1) provides flexibility to adapt to a variety of neuroscience simulators, (2) simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and (3) improves tracking of simulator/simulation evolution. We implemented NeuroManager in MATLAB, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in 22 stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to MATLAB's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project. PMID:26528175

  16. NeuroManager: a workflow analysis based simulation management engine for computational neuroscience.

    PubMed

    Stockton, David B; Santamaria, Fidel

    2015-01-01

    We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach (1) provides flexibility to adapt to a variety of neuroscience simulators, (2) simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and (3) improves tracking of simulator/simulation evolution. We implemented NeuroManager in MATLAB, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in 22 stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to MATLAB's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project.

  17. Chips of Hope: Neuro-Electronic Hybrids for Brain Repair

    NASA Astrophysics Data System (ADS)

    Ben-Jacob, Eshel

    2010-03-01

    The field of Neuro-Electronic Hybrids kicked off 30 years ago when researchers in the US first tweaked the technology of recording and stimulation of networks of live neurons grown in a Petri dish and interfaced with a computer via an array of electrodes. Since then, many researchers have searched for ways to imprint in neural networks new ``memories" without erasing old ones. I will describe our new generation of Neuro-Electronic Hybrids and how we succeeded to turn them into the first learning Neurochips - memory and information processing chips made of live neurons. To imprint multiple memories in our new chip we used chemical stimulation at specific locations that were selected by analyzing the networks activity in real time according to our new information encoding principle. Currently we develop new-generation of neuro chips using special carbon nano tubes (CNT). These electrodes enable to engineer the networks topology and efficient electrical interfacing with the neurons. This advance bears the promise to pave the way for building a new experimental platform for testing new drugs and developing new methods for neural networks repair and regeneration. Looking into the future, the development brings us a step closer towards the dream of Brain Repair by implementable Neuro-Electronic hybrid chips.

  18. A Case of Neuro-Behcet's Disease Presenting with Central Neurogenic Hyperventilation.

    PubMed

    Alkhachroum, Ayham M; Saeed, Saba; Kaur, Jaspreet; Shams, Tanzila; DeGeorgia, Michael A

    2016-03-11

    Behcet's disease is a chronic inflammatory disorder usually characterized by the triad of oral ulcers, genital ulcers, and uveitis. Central to the pathogenesis of Behcet's disease is an autoimmune vasculitis. Neurological involvement, so called "Neuro-Behcet's disease", occurs in 10-20% of patients, usually from a meningoencephalitis or venous thrombosis. We report the case of a 46-year-old patient with Neuro-Behcet's disease who presented with central neurogenic hyperventilation as a result of brainstem involvement from venulitis. To the best of our knowledge, central neurogenic hyperventilation has not previously been described in a patient with Neuro-Behcet's disease.

  19. Exploiting neurovascular coupling: a Bayesian sequential Monte Carlo approach applied to simulated EEG fNIRS data

    NASA Astrophysics Data System (ADS)

    Croce, Pierpaolo; Zappasodi, Filippo; Merla, Arcangelo; Chiarelli, Antonio Maria

    2017-08-01

    Objective. Electrical and hemodynamic brain activity are linked through the neurovascular coupling process and they can be simultaneously measured through integration of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Thanks to the lack of electro-optical interference, the two procedures can be easily combined and, whereas EEG provides electrophysiological information, fNIRS can provide measurements of two hemodynamic variables, such as oxygenated and deoxygenated hemoglobin. A Bayesian sequential Monte Carlo approach (particle filter, PF) was applied to simulated recordings of electrical and neurovascular mediated hemodynamic activity, and the advantages of a unified framework were shown. Approach. Multiple neural activities and hemodynamic responses were simulated in the primary motor cortex of a subject brain. EEG and fNIRS recordings were obtained by means of forward models of volume conduction and light propagation through the head. A state space model of combined EEG and fNIRS data was built and its dynamic evolution was estimated through a Bayesian sequential Monte Carlo approach (PF). Main results. We showed the feasibility of the procedure and the improvements in both electrical and hemodynamic brain activity reconstruction when using the PF on combined EEG and fNIRS measurements. Significance. The investigated procedure allows one to combine the information provided by the two methodologies, and, by taking advantage of a physical model of the coupling between electrical and hemodynamic response, to obtain a better estimate of brain activity evolution. Despite the high computational demand, application of such an approach to in vivo recordings could fully exploit the advantages of this combined brain imaging technology.

  20. Psychometric testing of the modified Care Dependency Scale (Neuro-CDS).

    PubMed

    Piredda, Michela; Biagioli, Valentina; Gambale, Giulia; Porcelli, Elisa; Barbaranelli, Claudio; Palese, Alvisa; De Marinis, Maria Grazia

    2016-01-01

    Effective measures of nursing care dependency in neurorehabilitation are warranted to plan nursing interventions to help patients avoid increasing dependency. The Care Dependency Scale (CDS) is a theory-based, comprehensive tool to evaluate functional disability. This study aimed to modify the CDS for neurological and neurorehabilitation patients (Neuro-CDS) and to test its psychometric properties in adult neurorehabilitation inpatients. Exploratory factor analysis (EFA) was performed using a Maximum Likelihood robust (MLR) estimator. The Barthel Index (BI) was used to evaluate concurrent validity. Stability was measured using the Intra-class Correlation Coefficient (ICC). The sample included 124 patients (mean age = 69.7 years, 54% male). The EFA revealed a two-factor structure with good fit indexes, Factor 1 (Physical care dependence) loaded by 11 items and Factor 2 (Psycho-social care dependence) loaded by 4 items. The correlation between factors was 0.61. Correlations between Factor 1 and the BI and between Factor 2 and the BI were r = 0.843 and r = 0.677, respectively (p <  0.001). The Cronbach's alpha coefficients were 0.99 and 0.88 (Factor 1 and 2). The ICC was 0.98. The Neuro-CDS is multidimensional, valid, reliable, straightforward, and able to measure care dependence in neurorehabilitation patients as a basis for individualized and holistic care.

  1. Computational modeling of cardiac hemodynamics: Current status and future outlook

    NASA Astrophysics Data System (ADS)

    Mittal, Rajat; Seo, Jung Hee; Vedula, Vijay; Choi, Young J.; Liu, Hang; Huang, H. Howie; Jain, Saurabh; Younes, Laurent; Abraham, Theodore; George, Richard T.

    2016-01-01

    The proliferation of four-dimensional imaging technologies, increasing computational speeds, improved simulation algorithms, and the widespread availability of powerful computing platforms is enabling simulations of cardiac hemodynamics with unprecedented speed and fidelity. Since cardiovascular disease is intimately linked to cardiovascular hemodynamics, accurate assessment of the patient's hemodynamic state is critical for the diagnosis and treatment of heart disease. Unfortunately, while a variety of invasive and non-invasive approaches for measuring cardiac hemodynamics are in widespread use, they still only provide an incomplete picture of the hemodynamic state of a patient. In this context, computational modeling of cardiac hemodynamics presents as a powerful non-invasive modality that can fill this information gap, and significantly impact the diagnosis as well as the treatment of cardiac disease. This article reviews the current status of this field as well as the emerging trends and challenges in cardiovascular health, computing, modeling and simulation and that are expected to play a key role in its future development. Some recent advances in modeling and simulations of cardiac flow are described by using examples from our own work as well as the research of other groups.

  2. The NeuroAiD Safe Treatment (NeST) Registry: a protocol

    PubMed Central

    Venketasubramanian, Narayanaswamy; Kumar, Ramesh; Soertidewi, Lyna; Abu Bakar, Azizi; Laik, Carine; Gan, Robert

    2015-01-01

    Introduction NeuroAiD (MLC601, MLC901), a combination of natural products, has been shown to be safe and to aid neurological recovery after brain injuries. The NeuroAiD Safe Treatment (NeST) Registry aims to assess its use and safety in the real-world setting. Methods and analysis The NeST Registry is designed as a product registry that would provide information on the use and safety of NeuroAiD in clinical practice. An online NeST Registry was set up to allow easy entry and retrieval of essential information including demographics, medical conditions, clinical assessments of neurological, functional and cognitive state, compliance, concomitant medications, and side effects, if any, among patients on NeuroAiD. Patients who are taking or have been prescribed NeuroAiD may be included. Participation is voluntary. Data collected are similar to information obtained during standard care and are prospectively entered by the participating physicians at baseline (before initialisation of NeuroAiD) and during subsequent visits. The primary outcome assessed is safety (ie, non-serious and serious adverse event), while compliance and neurological status over time are secondary outcomes. The in-person follow-up assessments are timed with clinical appointments. Anonymised data will be extracted and collectively analysed. Initial target sample size for the registry is 2000. Analysis will be performed after every 500 participants entered with completed follow-up information. Ethics and dissemination Doctors who prescribe NeuroAiD will be introduced to the registry by local partners. The central coordinator of the registry will discuss the protocol and requirements for implementation with doctors who show interest. Currently, the registry has been approved by the Ethics Committees of Universiti Kebangsaan Malaysia (Malaysia) and National Brain Center (Indonesia). In addition, for other countries, Ethics Committee approval will be obtained in accordance with local requirements. Trial

  3. In-Vitro Evaluation of Two Types of Neonatal Oxygenators in Handling Gaseous Microemboli and Maintaining Optimal Hemodynamic Stability During Cardiopulmonary Bypass.

    PubMed

    Marupudi, Neelima; Wang, Shigang; Canêo, Luiz Fernando; Jatene, Fabio Biscegli; Kunselman, Allen R; Undar, Akif

    2016-01-01

    Usually only FDA-approved oxygenators are subject of studies by the international scientific community. The objective of this study is to evaluate two types of neonatal membrane oxygenators in terms of transmembrane pressure gradient, hemodynamic energy transmission and gaseous microemboli capture in simulated cardiopulmonary bypass systems. We investigated the Braile Infant 1500 (Braile Biomédica, São José do Rio Preto, Brazil), an oxygenator commonly used in Brazilian operating rooms, and compared it to the Dideco Kids D100 (Sorin Group, Arvada, CO, USA), that is an FDA-approved and widely used model in the USA. Cardiopulmonary bypass circuits were primed with lactated Ringer's solution and packed red blood cells (Hematocrit 40%). Trials were conducted at flow rates of 500 ml/min and 700 ml/min at 35ºC and 25ºC. Real-time pressure and flow data were recorded using a custom-based data acquisition system. For gaseous microemboli testing, 5cc of air were manually injected into the venous line. Gaseous microemboli were recorded using the Emboli Detection and Classification Quantifier. Braile Infant 1500 had a lower pressure drop (P<0.01) and a higher total hemodynamic energy delivered to the pseudopatient (P<0.01). However, there was a higher raw number of gaseous microemboli seen prior to oxygenator at lower temperatures with the Braile oxygenator compared to the Kids D100 (P<0.01). Braile Infant 1500 oxygenator had a better hemodynamic performance compared to the Dideco Kids D100 oxygenator. Braile had more gaseous microemboli detected at the pre-oxygenator site under hypothermia, but delivered a smaller percentage of air emboli to the pseudopatient than the Dideco oxygenator.

  4. Computational analysis of aortic hemodynamics during total and partial extracorporeal membrane oxygenation and intra-aortic balloon pump support.

    PubMed

    Caruso, Maria Vittoria; Gramigna, Vera; Renzulli, Attilio; Fragomeni, Gionata

    2016-01-01

    The extracorporeal membrane oxygenation (ECMO) is a temporary, but prolonged circulatory support for cardiopulmonary failure. Clinical evidence suggests that pulsed flow is healthier than non pulsatile perfusion. The aim of this study was to computationally evaluate the effects of total and partial ECMO assistance and pulsed flow on hemodynamics in a patient-specific aorta model. The pulsatility was obtained by means of the intra-aortic balloon pump (IABP), and two different cases were investigated, considering a cardiac output (CO) of 5 L/min: Case A - total assistance - the whole flow delivered through the ECMO arterial cannula; Case B - partial assistance - flow delivered half through the cannula and half through the aorta. Computational fluid dynamic (CFD) analysis was carried out using the multiscale approach to couple the 3D aorta model with the lumped parameter model (resistance boundary condition). In case A pulsatility followed the balloon radius change, while in case B it was mostly influenced by the cardiac one. Furthermore, during total assistance, a blood stagnation occurred in the ascending aorta; in the case of partial assistance, the flow was orderly when the IABP was on and was chaotic when the balloon was off. Moreover, the mean arterial pressure (MAP) was higher in case B. The wall shear stress was worse in ascending aorta in case A. Partial support is hemodynamically advisable.

  5. Impact of provider level, training and gender on the utilization of palliative care and hospice in neuro-oncology: a North-American survey.

    PubMed

    Walbert, Tobias; Glantz, Michael; Schultz, Lonni; Puduvalli, Vinay K

    2016-01-01

    Specialized palliative care (PC) services have emerged to address symptoms and provide end-of-life management for patients with brain tumors. The utilization patterns of PC in neuro-oncology are unknown. A 22-question survey was distributed to participants of the society for neuro-oncology annual meeting 2012 (n = 4487). Nonparametric methods including Wilcoxon two-sample and Kruskal-Wallis tests were used to assess differences in responses. 239 (5.3 %) evaluable responses were received; 79 % of respondents were physicians, and 17 % were nurses or midlevel providers. Forty-seven percent were medical or neuro-oncologists, 31 % neurosurgeons and 11 % radiation oncologists. Forty percent had no formal training in PC, 57 % had some formal training and 3 % completed a PC fellowship. Seventy-nine percent practiced in an academic setting. Of the respondents, 57 % referred patients to PC when symptoms required treatment and 18 % at end of life. Only 51 % of all providers felt comfortable dealing with end-of-life issues and symptoms, while 33 % did not. Fifty-one percent preferred a service named "Supportive Care" rather than "Palliative Care" (MDs > midlevel providers, p < 0.001), and 32 % felt that patient expectations for ongoing therapy hindered their ability to make PC referrals. Female gender, formal training in neuro-oncology and PC, and medical versus surgical neuro-oncology training were significantly associated with hospice referral, comfort in dealing with end-of-life issues, and ease of access to PC services. Provider level, specialty, gender, training in PC and neuro-oncology have significant impact on the utilization of PC and hospice in neuro-oncology.

  6. Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL.

    PubMed

    Su, Pan; Mao, Deng; Liu, Peiying; Li, Yang; Pinho, Marco C; Welch, Babu G; Lu, Hanzhang

    2017-11-01

    Assessment of brain hemodynamics without exogenous contrast agents is of increasing importance in clinical applications. This study aims to develop an MR perfusion technique that can provide noncontrast and multiparametric estimation of hemodynamic markers. We devised an arterial spin labeling (ASL) method based on the principle of MR fingerprinting (MRF), referred to as MRF-ASL. By taking advantage of the rich information contained in MRF sequence, up to seven hemodynamic parameters can be estimated concomitantly. Feasibility demonstration, flip angle optimization, comparison with Look-Locker ASL, reproducibility test, sensitivity to hypercapnia challenge, and initial clinical application in an intracranial steno-occlusive process, Moyamoya disease, were performed to evaluate this technique. Magnetic resonance fingerprinting ASL provided estimation of up to seven parameters, including B1+, tissue T 1 , cerebral blood flow (CBF), tissue bolus arrival time (BAT), pass-through arterial BAT, pass-through blood volume, and pass-through blood travel time. Coefficients of variation of the estimated parameters ranged from 0.2 to 9.6%. Hypercapnia resulted in an increase in CBF by 57.7%, and a decrease in BAT by 13.7 and 24.8% in tissue and vessels, respectively. Patients with Moyamoya disease showed diminished CBF and lengthened BAT that could not be detected with regular ASL. Magnetic resonance fingerprinting ASL is a promising technique for noncontrast, multiparametric perfusion assessment. Magn Reson Med 78:1812-1823, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. NeuroPigPen: A Scalable Toolkit for Processing Electrophysiological Signal Data in Neuroscience Applications Using Apache Pig

    PubMed Central

    Sahoo, Satya S.; Wei, Annan; Valdez, Joshua; Wang, Li; Zonjy, Bilal; Tatsuoka, Curtis; Loparo, Kenneth A.; Lhatoo, Samden D.

    2016-01-01

    The recent advances in neurological imaging and sensing technologies have led to rapid increase in the volume, rate of data generation, and variety of neuroscience data. This “neuroscience Big data” represents a significant opportunity for the biomedical research community to design experiments using data with greater timescale, large number of attributes, and statistically significant data size. The results from these new data-driven research techniques can advance our understanding of complex neurological disorders, help model long-term effects of brain injuries, and provide new insights into dynamics of brain networks. However, many existing neuroinformatics data processing and analysis tools were not built to manage large volume of data, which makes it difficult for researchers to effectively leverage this available data to advance their research. We introduce a new toolkit called NeuroPigPen that was developed using Apache Hadoop and Pig data flow language to address the challenges posed by large-scale electrophysiological signal data. NeuroPigPen is a modular toolkit that can process large volumes of electrophysiological signal data, such as Electroencephalogram (EEG), Electrocardiogram (ECG), and blood oxygen levels (SpO2), using a new distributed storage model called Cloudwave Signal Format (CSF) that supports easy partitioning and storage of signal data on commodity hardware. NeuroPigPen was developed with three design principles: (a) Scalability—the ability to efficiently process increasing volumes of data; (b) Adaptability—the toolkit can be deployed across different computing configurations; and (c) Ease of programming—the toolkit can be easily used to compose multi-step data processing pipelines using high-level programming constructs. The NeuroPigPen toolkit was evaluated using 750 GB of electrophysiological signal data over a variety of Hadoop cluster configurations ranging from 3 to 30 Data nodes. The evaluation results demonstrate that

  8. Passive Wearable Skin Patch Sensor Measures Limb Hemodynamics Based on Electromagnetic Resonance.

    PubMed

    Cluff, Kim; Becker, Ryan; Jayakumar, Balakumar; Han, Kiyun; Condon, Ernie; Dudley, Kenneth; Szatkowski, George; Pipinos, Iraklis I; Amick, Ryan Z; Patterson, Jeremy

    2018-04-01

    The objectives of this study were to design and develop an open-circuit electromagnetic resonant skin patch sensor, characterize the fluid volume and resonant frequency relationship, and investigate the sensor's ability to measure limb hemodynamics and pulse volume waveform features. The skin patch was designed from an open-circuit electromagnetic resonant sensor comprised of a single baseline trace of copper configured into a square planar spiral which had a self-resonating response when excited by an external radio frequency sweep. Using a human arm phantom with a realistic vascular network, the sensor's performance to measure limb hemodynamics was evaluated. The sensor was able to measure pulsatile blood flow which registered as shifts in the sensor's resonant frequencies. The time-varying waveform pattern of the resonant frequency displayed a systolic upstroke, a systolic peak, a dicrotic notch, and a diastolic down stroke. The resonant frequency waveform features and peak systolic time were validated against ultrasound pulse wave Doppler. A statistical correlation analysis revealed a strong correlation () between the resonant sensor peak systolic time and the pulse wave Doppler peak systolic time. The sensor was able to detect pulsatile flow, identify hemodynamic waveform features, and measure heart rate with 98% accuracy. The open-circuit resonant sensor design leverages the architecture of a thin planar spiral which is passive (does not require batteries), robust and lightweight (does not have electrical components or electrical connections), and may be able to wirelessly monitor cardiovascular health and limb hemodynamics.

  9. Prediction of specific depressive symptom clusters in youth with epilepsy: The NDDI-E-Y versus Neuro-QOL SF.

    PubMed

    Kellermann, Tanja S; Mueller, Martina; Carter, Emma G; Brooks, Byron; Smith, Gigi; Kopp, Olivia J; Wagner, Janelle L

    2017-08-01

    Proper assessment and early identification of depressive symptoms are essential to initiate treatment and minimize the risk for poor outcomes in youth with epilepsy (YWE). The current study examined the predictive utility of the Neurological Disorders Depression Inventory-Epilepsy for Youth (NDDI-E-Y) and the Neuro-QOL Depression Short Form (Neuro-QOL SF) in explaining variance in overall depressive symptoms and specific symptom clusters on the gold standard Children's Depression Inventory-2 (CDI-2). Cross-sectional study examining 99 YWE (female 68, mean age 14.7 years) during a routine epilepsy visit, who completed self-report measures of depressive symptoms, including the NDDI-E-Y, CDI-2, and the Neuro-QOL SF. Caregivers completed a measure of seizure severity. All sociodemographic and medical information was evaluated through electronic medical record review. After accounting for seizure and demographic variables, the NDDI-E-Y accounted for 45% of the variance in the CDI-2 Total score and the CDI-2 Ineffectiveness subscale. Furthermore, the NDDI-E-Y predicted CDI-2 Total scores and subscales similarly, with the exception of explaining significantly more variance in the CDI-2 Ineffectiveness subscale compared to the Negative Mood subscale. The NDDI-E-Y explained greater variance compared to Neuro-QOL SF across the Total (48% vs. 37%) and all CDI-2 subscale scores; however, the NDDI-E-Y emerged as a stronger predictor of only CDI-2 Ineffectiveness. Both the NDDI-E-Y and Neuro-QOL SF accounted for the lowest amount of variance in CDI-2 Negative Mood. Sensitivity was poor for the Neuro-QOL SF in predicting high versus low CDI-2 scores. The NDDI-E-Y has strong psychometrics and can be easily integrated into routine epilepsy care for quick, brief screening of depressive symptoms in YWE. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  10. Severe panuveitis in neuro-Behçet's disease in Malaysia: a case series.

    PubMed

    Othman, Khairuddin; Liza-Sharmini, Ahmad Tajudin; Ibrahim, Mohtar; Tharakan, John; Yanai, Ryoji; Zunaina, Embong

    2017-01-01

    Behçet's disease (BD) is a multisystemic disease that is very rare in Malaysia. About 5% of patients develop central nervous system involvement, termed neuro-Behçet's. Neuro-Behçet's is one of the most serious causes of long-term morbidity and mortality. We report two cases of neuro-Behçet's associated with uveitis (ocular BD) highlighting the clinical presentation, diagnostic measurement, and therapeutic management of these cases.

  11. Widespread occurrence of neuro-active pharmaceuticals and metabolites in 24 Minnesota rivers and wastewaters

    USGS Publications Warehouse

    Writer, Jeffrey; Ferrer, Imma; Barber, Larry B.; Thurman, E. Michael

    2013-01-01

    Concentrations of 17 neuro-active pharmaceuticals and their major metabolites (bupropion, hydroxy-bupropion, erythro-hydrobupropion, threo-hydrobupropion, carbamazepine, 10,11,-dihydro-10,11,-dihydroxycarbamazepine, 10-hydroxy-carbamazepine, citalopram, N-desmethyl-citalopram, fluoxetine, norfluoxetine, gabapentin, lamotrigine, 2-N-glucuronide-lamotrigine, oxcarbazepine, venlafaxine and O-desmethyl-venlafaxine), were measured in treated wastewater and receiving surface waters from 24 locations across Minnesota, USA. The analysis of upstream and downstream sampling sites indicated that the wastewater treatment plants were the major source of the neuro-active pharmaceuticals and associated metabolites in surface waters of Minnesota. Concentrations of parent compound and the associated metabolite varied substantially between treatment plants (concentrations ± standard deviation of the parent compound relative to its major metabolite) as illustrated by the following examples; bupropion and hydrobupropion 700 ± 1000 ng L−1, 2100 ± 1700 ng L−1, carbamazepine and 10-hydroxy-carbamazepine 480 ± 380 ng L−1, 360 ± 400 ng L−1, venlafaxine and O-desmethyl-venlafaxine 1400 ± 1300 ng L−1, 1800 ± 2300 ng L−1. Metabolites of the neuro-active compounds were commonly found at higher or comparable concentrations to the parent compounds in wastewater effluent and the receiving surface water. Neuro-active pharmaceuticals and associated metabolites were detected only sporadically in samples upstream from the effluent outfall. Metabolite to parent ratios were used to evaluate transformation, and we determined that ratios in wastewater were much lower than those reported in urine, indicating that the metabolites are relatively more labile than the parent compounds in the treatment plants and in receiving waters. The widespread occurrence of neuro-active pharmaceuticals and metabolites in Minnesota effluents and surface waters indicate that

  12. Lin4Neuro: a customized Linux distribution ready for neuroimaging analysis

    PubMed Central

    2011-01-01

    Background A variety of neuroimaging software packages have been released from various laboratories worldwide, and many researchers use these packages in combination. Though most of these software packages are freely available, some people find them difficult to install and configure because they are mostly based on UNIX-like operating systems. We developed a live USB-bootable Linux package named "Lin4Neuro." This system includes popular neuroimaging analysis tools. The user interface is customized so that even Windows users can use it intuitively. Results The boot time of this system was only around 40 seconds. We performed a benchmark test of inhomogeneity correction on 10 subjects of three-dimensional T1-weighted MRI scans. The processing speed of USB-booted Lin4Neuro was as fast as that of the package installed on the hard disk drive. We also installed Lin4Neuro on a virtualization software package that emulates the Linux environment on a Windows-based operation system. Although the processing speed was slower than that under other conditions, it remained comparable. Conclusions With Lin4Neuro in one's hand, one can access neuroimaging software packages easily, and immediately focus on analyzing data. Lin4Neuro can be a good primer for beginners of neuroimaging analysis or students who are interested in neuroimaging analysis. It also provides a practical means of sharing analysis environments across sites. PMID:21266047

  13. Lin4Neuro: a customized Linux distribution ready for neuroimaging analysis.

    PubMed

    Nemoto, Kiyotaka; Dan, Ippeita; Rorden, Christopher; Ohnishi, Takashi; Tsuzuki, Daisuke; Okamoto, Masako; Yamashita, Fumio; Asada, Takashi

    2011-01-25

    A variety of neuroimaging software packages have been released from various laboratories worldwide, and many researchers use these packages in combination. Though most of these software packages are freely available, some people find them difficult to install and configure because they are mostly based on UNIX-like operating systems. We developed a live USB-bootable Linux package named "Lin4Neuro." This system includes popular neuroimaging analysis tools. The user interface is customized so that even Windows users can use it intuitively. The boot time of this system was only around 40 seconds. We performed a benchmark test of inhomogeneity correction on 10 subjects of three-dimensional T1-weighted MRI scans. The processing speed of USB-booted Lin4Neuro was as fast as that of the package installed on the hard disk drive. We also installed Lin4Neuro on a virtualization software package that emulates the Linux environment on a Windows-based operation system. Although the processing speed was slower than that under other conditions, it remained comparable. With Lin4Neuro in one's hand, one can access neuroimaging software packages easily, and immediately focus on analyzing data. Lin4Neuro can be a good primer for beginners of neuroimaging analysis or students who are interested in neuroimaging analysis. It also provides a practical means of sharing analysis environments across sites.

  14. Importance of Non-invasive Right and Left Ventricular Variables on Exercise Capacity in Patients with Tetralogy of Fallot Hemodynamics.

    PubMed

    Meierhofer, Christian; Tavakkoli, Timon; Kühn, Andreas; Ulm, Kurt; Hager, Alfred; Müller, Jan; Martinoff, Stefan; Ewert, Peter; Stern, Heiko

    2017-12-01

    Good quality of life correlates with a good exercise capacity in daily life in patients with tetralogy of Fallot (ToF). Patients after correction of ToF usually develop residual defects such as pulmonary regurgitation or stenosis of variable severity. However, the importance of different hemodynamic parameters and their impact on exercise capacity is unclear. We investigated several hemodynamic parameters measured by cardiovascular magnetic resonance (CMR) and echocardiography and evaluated which parameter has the most pronounced effect on maximal exercise capacity determined by cardiopulmonary exercise testing (CPET). 132 patients with ToF-like hemodynamics were tested during routine follow-up with CMR, echocardiography and CPET. Right and left ventricular volume data, ventricular ejection fraction and pulmonary regurgitation were evaluated by CMR. Echocardiographic pressure gradients in the right ventricular outflow tract and through the tricuspid valve were measured. All data were classified and correlated with the results of CPET evaluations of these patients. The analysis was performed using the Random Forest model. In this way, we calculated the importance of the different hemodynamic variables related to the maximal oxygen uptake in CPET (VO 2 %predicted). Right ventricular pressure showed the most important influence on maximal oxygen uptake, whereas pulmonary regurgitation and right ventricular enddiastolic volume were not important hemodynamic variables to predict maximal oxygen uptake in CPET. Maximal exercise capacity was only very weakly influenced by right ventricular enddiastolic volume and not at all by pulmonary regurgitation in patients with ToF. The variable with the most pronounced influence was the right ventricular pressure.

  15. Relationships between urinary electrolytes excretion and central hemodynamics, and arterial stiffness in hypertensive patients.

    PubMed

    Han, Weizhong; Han, Xiao; Sun, Ningling; Chen, Yunchao; Jiang, Shiliang; Li, Min

    2017-08-01

    High sodium intake plays an important role in the onset and exacerbation of hypertension. However, the relationships between urinary electrolytes excretion and central hemodynamics and between urinary electrolyte excretion and arterial stiffness are still the subject of debate. This study sought to clarify the associations of salt intake with central aortic pressure and arterial stiffness indicators. A total of 431 untreated hypertensive individuals were recruited into the study. Twenty-four-hour urinary samples were collected to measure the excretion of urinary electrolytes. Central hemodynamics parameters and brachial-ankle pulse wave velocity (baPWV) were measured. We evaluated the independent relationship between urinary sodium or potassium excretion and the abovementioned indices. The mean 24-h urinary sodium of all subjects was 166.6±70.0 mmol/24 h. With increases in urinary sodium excretion, central blood pressure and baPWV values markedly increased. Multiple regression analysis showed that urinary sodium was independently associated with increases in central systolic blood pressure, central diastolic blood pressure, the augmentation index, and baPWV. Significant correlations were identified between high dietary sodium and central hemodynamics and between high dietary sodium and arterial elasticity. Prospective interventional studies in hypertensive patients may be required to determine the effect of salt intake on central hemodynamics.

  16. Correlation between Hemodynamics and Treatment Outcome of Intracranial Aneurysms after Intervention with Flow Diverters

    NASA Astrophysics Data System (ADS)

    Paliwal, Nikhil; Damiano, Robert; Davies, Jason; Siddiqui, Adnan; Meng, Hui

    2015-11-01

    Endovascular intervention by Flow Diverter (FD) - a densely woven stent - occludes an aneurysm by inducing thrombosis in the aneurysm sac and reconstructing the vessel. Hemodynamics plays a vital role in the thrombotic occlusion of aneurysms and eventual treatment outcome. CFD analysis of pre- and post-treatment aneurysms not only provides insight of flow modifications by FD, but also allows investigation of interventional strategies and prediction of their outcome. In this study 80 patient-specific aneurysms treated with FDs were retrospectively studied to evaluate the effect of intervention. Out of these cases, 16 required retreatment and thus are considered as having unfavorable outcome. Clinical FD deployment in these cases was simulated using an efficient virtual stenting workflow. CFD analysis was carried out on both pre- and post-treatment cases, and changes in hemodynamic parameters were calculated. Support vector machine algorithm was used to correlate the hemodynamic changes with outcome. Results show that cases having higher flow reduction into the aneurysmal sac have a better likelihood of occlusion. This suggests that changes in hemodynamics can be potentially used to predict the outcome of different clinical intervention strategies in aneurysms. This work was supported by the National Institutes of Health (R01 NS091075).

  17. The effect of dim light at night on cerebral hemodynamic oscillations during sleep: A near-infrared spectroscopy study.

    PubMed

    Kim, Tae-Joon; Lee, Byeong Uk; Sunwoo, Jun-Sang; Byun, Jung-Ick; Moon, Jangsup; Lee, Soon-Tae; Jung, Keun-Hwa; Chu, Kon; Kim, Manho; Lim, Jong-Min; Lee, Eunil; Lee, Sang Kun; Jung, Ki-Young

    2017-01-01

    Recent studies have reported that dim light at night (dLAN) is associated with risks of cardiovascular complications, such as hypertension and carotid atherosclerosis; however, little is known about the underlying mechanism. Here, we evaluated the effect of dLAN on the cerebrovascular system by analyzing cerebral hemodynamic oscillations using near-infrared spectroscopy (NIRS). Fourteen healthy male subjects underwent polysomnography coupled with cerebral NIRS. The data collected during sleep with dim light (10 lux) were compared with those collected during sleep under the control dark conditions for the sleep structure, cerebral hemodynamic oscillations, heart rate variability (HRV), and their electroencephalographic (EEG) power spectrum. Power spectral analysis was applied to oxy-hemoglobin concentrations calculated from the NIRS signal. Spectral densities over endothelial very-low-frequency oscillations (VLFOs) (0.003-0.02 Hz), neurogenic VLFOs (0.02-0.04 Hz), myogenic low-frequency oscillations (LFOs) (0.04-0.15 Hz), and total LFOs (0.003-0.15 Hz) were obtained for each sleep stage. The polysomnographic data revealed an increase in the N2 stage under the dLAN conditions. The spectral analysis of cerebral hemodynamics showed that the total LFOs increased significantly during slow-wave sleep (SWS) and decreased during rapid eye movement (REM) sleep. Specifically, endothelial (median of normalized value, 0.46 vs. 0.72, p = 0.019) and neurogenic (median, 0.58 vs. 0.84, p = 0.019) VLFOs were enhanced during SWS, whereas endothelial VLFOs (median, 1.93 vs. 1.47, p = 0.030) were attenuated during REM sleep. HRV analysis exhibited altered spectral densities during SWS induced by dLAN, including an increase in very-low-frequency and decreases in low-frequency and high-frequency ranges. In the EEG power spectral analysis, no significant difference was detected between the control and dLAN conditions. In conclusion, dLAN can disturb cerebral hemodynamics via the

  18. Adaptive Neuro-Fuzzy Modeling of UH-60A Pilot Vibration

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi; Malki, Heidar A.; Langari, Reza

    2003-01-01

    Adaptive neuro-fuzzy relationships have been developed to model the UH-60A Black Hawk pilot floor vertical vibration. A 200 point database that approximates the entire UH-60A helicopter flight envelope is used for training and testing purposes. The NASA/Army Airloads Program flight test database was the source of the 200 point database. The present study is conducted in two parts. The first part involves level flight conditions and the second part involves the entire (200 point) database including maneuver conditions. The results show that a neuro-fuzzy model can successfully predict the pilot vibration. Also, it is found that the training phase of this neuro-fuzzy model takes only two or three iterations to converge for most cases. Thus, the proposed approach produces a potentially viable model for real-time implementation.

  19. WEB downloadable software for training in cardiovascular hemodynamics in the (3-D) stress echo lab

    PubMed Central

    2010-01-01

    When a physiological (exercise) stress echo is scheduled, interest focuses on wall motion segmental contraction abnormalities to diagnose ischemic response to stress, and on left ventricular ejection fraction to assess contractile reserve. Echocardiographic evaluation of volumes (plus standard assessment of heart rate and blood pressure) is ideally suited for the quantitative and accurate calculation of a set of parameters allowing a complete characterization of cardiovascular hemodynamics (including cardiac output and systemic vascular resistance), left ventricular elastance (mirroring left ventricular contractility, theoretically independent of preload and afterload changes heavily affecting the ejection fraction), arterial elastance, ventricular arterial coupling (a central determinant of net cardiovascular performance in normal and pathological conditions), and diastolic function (through the diastolic mean filling rate). All these parameters were previously inaccessible, inaccurate or labor-intensive and now become, at least in principle, available in the stress echocardiography laboratory since all of them need an accurate estimation of left ventricular volumes and stroke volume, easily derived from 3 D echo. Aims of this paper are: 1) to propose a simple method to assess a set of parameters allowing a complete characterization of cardiovascular hemodynamics in the stress echo lab, from basic measurements to calculations 2) to propose a simple, web-based software program, to learn and training calculations as a phantom of the everyday activity in the busy stress echo lab 3) to show examples of software testing in a way that proves its value. The informatics infrastructure is available on the web, linking to http://cctrainer.ifc.cnr.it PMID:21073738

  20. The effects of proton pump inhibitor on hepatic vascular responsiveness and hemodynamics in cirrhotic rats.

    PubMed

    Hsin, I-Fang; Hsu, Shao-Jung; Chuang, Chiao-Lin; Huo, Teh-Ia; Huang, Hui-Chun; Lee, Fa-Yauh; Ho, Hsin-Ling; Chang, Shu-Yu; Lee, Shou-Dong

    2018-05-17

    Liver cirrhosis is associated with increased intrahepatic resistance due to hepatic fibrosis and exaggerated vasoconstriction. Recent studies have indicated that proton pump inhibitors (PPIs), in addition to acid suppression, modulate vasoactive substances and vasoresponsiveness. PPIs are frequently prescribed in patients with cirrhosis due to a higher prevalence of peptic ulcers, however other impacts are unknown. Liver cirrhosis was induced in Sprague-Dawley rats with common bile duct ligation (BDL). On the 29th day after BDL and after hemodynamic measurements, the intrahepatic vascular responsiveness to high concentrations of endothelin-1 (ET-1) was evaluated after preincubation with (1) Krebs solution (vehicle), (2) esomeprazole (30 μM), or (3) esomeprazole plus N ω -nitro l-arginine (NNA, a non-selective NO synthase (NOS) inhibitor, 10 -4  M). After perfusion, the hepatic protein expressions of endothelial NOS (eNOS), inducible NOS (iNOS), cyclooxygenase (COX)-1, COX-2, endothelin-1, DDAH-1 (dimethylarginine dimethylaminohydrolase-1, ADMA inhibitor), DDAH-2, ADMA (asymmetrical dimethyl arginine, NOS inhibitor) were evaluated. In the chronic model, the BDL rats received (1) vehicle; or (2) esomeprazole (3.6 mg/kg/day, oral gavage) from the 1st to 28th day after BDL. On the 29th day and after hemodynamic measurements, plasma liver biochemistry and liver fibrosis were evaluated. Esomeprazole did not affect hepatic ET-1 vasoresponsiveness. The hepatic protein expressions of the aforementioned factors were not significantly different among the groups. There were no significant differences in hemodynamics, liver biochemistry and hepatic fibrosis after chronic esomeprazole administration. PPIs did not affect hepatic vasoresponsiveness or the release of vasoactive substances. Furthermore, they did not influence hemodynamics, liver biochemistry or severity of hepatic fibrosis in the cirrhotic rats. Copyright © 2018. Published by Elsevier Taiwan LLC.

  1. [Prevention of neuro- and cardiotoxic side effects of tuberculosis chemotherapy with noopept].

    PubMed

    Mordyk, A V; Lysov, A V; Kondria, A V; Gol'dzon, M A; Khlebova, N V

    2009-01-01

    The study evaluated clinical efficiency of noopept used to prevent adverse side effects of antituberculous agents. It included 60 patients with newly diagnosed respiratory tuberculosis. Those in group 1 (n = 30) received 10 mg of noopept twice daily during the first month. The treatment promoted functional normalization of vegetative nervous system and antioxidative systems, reduced manifestations of anxiety, decreased frequency of adverse neuro- and cardiotoxic responses to antituberculous drugs.

  2. Induction of neural differentiation by electrically stimulated gene expression of NeuroD2.

    PubMed

    Mie, Masayasu; Endoh, Tamaki; Yanagida, Yasuko; Kobatake, Eiry; Aizawa, Masuo

    2003-02-13

    Regulation of cell differentiation is an important assignment for cellular engineering. One of the techniques for regulation is gene transfection into undifferentiated cells. Transient expression of NeuroD2, one of neural bHLH transcription factors, converted mouse N1E-115 neuroblastoma cells into differentiated neurons. The regulation of neural bHLH expression should be a novel strategy for cell differentiation. In this study, we tried to regulate neural differentiation by NeuroD2 gene inserted under the control of heat shock protein-70 (HSP) promoter, which can be activated by electrical stimulation. Mouse neuroblastoma cell line, N1E-115, was stably transfected with expression vector containing mouse NeuroD2 cDNA under HSP promoter. Transfected cells were cultured on the electrode surface and applied electrical stimulation. After stimulation, NeuroD2 expression was induced, and transfected cells adopt a neuronal morphology at 3 days after stimulation. These results suggest that neural differentiation can be induced by electrically stimulated gene expression of NeuroD2.

  3. Is there a specific hemodynamic effect in reflexology? A systematic review of randomized controlled trials.

    PubMed

    Jones, Jenny; Thomson, Patricia; Irvine, Kathleen; Leslie, Stephen J

    2013-04-01

    Reflexology claims that the feet are representative of the body and that massage to specific points of the feet increases blood supply to "mapped" organs in the body. This review provides the first systematic evaluation of existing reflexology randomized controlled trials (RCTs) to determine whether there is any evidence to suggest the existence of a reflexology treatment-related hemodynamic effect; to examine whether reflexology researchers used study designs that systematically controlled for nonspecific effects in order to isolate this specific component; and to highlight some of the methodological challenges that need to be overcome to demonstrate specific and beneficial hemodynamic effects. Fifty-two RCTs of reflexology published from 1990 to September 2011 were initially retrieved. Cardiorespiratory Department, Highland Heartbeat Centre, Raigmore Hospital, Inverness. Adult subjects. Studies using reflexology foot massage techniques as the intervention versus sham reflexology treatment, simple foot massage, conventional treatment, or no treatment as the control were then selected. OUTCOME MEASURES included any hemodynamic parameter potentially involved in the regulation of circulating blood volume and flow, including heart rate and systolic and diastolic arterial blood pressure. Seven RCTs suggested that reflexology has an effect on selected cardiovascular parameters; however, five of these delivered the reflexology intervention as a whole complex treatment, with the data collector often delivering the intervention themselves. This systematic review found that although reflexology has been shown to have an effect on selected hemodynamic variables, the lack of methodological control for nonspecific general massage effects means that there is little convincing evidence at this time to suggest the existence of a specific treatment-related hemodynamic effect. Furthermore, the review found that few studies of reflexology controlled for nonspecific effects in order

  4. Influence of exposure and geometric parameters on absorbed doses associated with common neuro-interventional procedures.

    PubMed

    Safari, Mohammad Javad; Wong, Jeannie Hsiu Ding; Jong, Wei Loong; Thorpe, Nathan; Cutajar, Dean; Rosenfeld, Anatoly; Ng, Kwan Hoong

    2017-03-01

    The purpose of this study was to investigate the effects of routine exposure parameters on patient's dose during neuro-interventional radiology procedures. We scrutinized the routine radiological exposure parameters during 58 clinical neuro-interventional procedures such as, exposure direction, magnification, frame rate, and distance between image receptor to patient's body and evaluate their effects on patient's dose using an anthropomorphic phantom. Radiation dose received by the occipital region, ears and eyes of the phantom were measured using MOSkin detectors. DSA imaging technique is a major contributor to patient's dose (80.9%) even though they are used sparingly (5.3% of total frame number). The occipital region of the brain received high dose largely from the frontal tube constantly placed under couch (73.7% of the total KAP). When rotating the frontal tube away from under the couch, the radiation dose to the occipital reduced by 40%. The use of magnification modes could increase radiation dose by 94%. Changing the image receptor to the phantom surface distance from 10 to 40cm doubled the radiation dose received by the patient's skin at the occipital region. Our findings provided important insights into the contribution of selected fluoroscopic exposure parameters and their impact on patient's dose during neuro-interventional radiology procedures. This study showed that the DSA imaging technique contributed to the highest patient's dose and judicial use of exposure parameters might assist interventional radiologists in effective skin and eye lens dose reduction for patients undergoing neuro-interventional procedures. Copyright © 2017 Associazione Italiana di Fisica Medica. All rights reserved.

  5. The Neurologic Assessment in Neuro-Oncology (NANO) Scale as an Assessment Tool for Survival in Patients With Primary Glioblastoma.

    PubMed

    Ung, Timothy H; Ney, Douglas E; Damek, Denise; Rusthoven, Chad G; Youssef, A Samy; Lillehei, Kevin O; Ormond, D Ryan

    2018-03-30

    The Neurologic Assessment in Neuro-Oncology (NANO) scale is a standardized objective metric designed to measure neurological function in neuro-oncology. Current neuroradiological evaluation guidelines fail to use specific clinical criteria for progression. To determine if the NANO scale was a reliable assessment tool in glioblastoma (GBM) patients and whether it correlated to survival. Our group performed a retrospective review of all patients with newly diagnosed GBM from January 1, 2010, through December 31, 2012, at our institution. We applied the NANO scale, Karnofsky performance score (KPS), Eastern Cooperative Oncology Group (ECOG) scale, Macdonald criteria, and the Response Assessment in Neuro-Oncology (RANO) criteria to patients at the time of diagnosis as well as at 3, 6, and 12 mo. Initial NANO score was correlated with overall survival at time of presentation. NANO progression was correlated with decreased survival in patients at 6 and 12 mo. A decrease in KPS was associated with survival at 3 and 6 mo, an increase in ECOG score was associated only at 3 mo, and radiological evaluation (RANO and Macdonald) was correlated at 3 and 6 mo. Only the NANO scale was associated with patient survival at 1 yr. NANO progression was the only metric that was linked to decreased overall survival when compared to RANO and Macdonald at 6 and 12 mo. The NANO scale is specific to neuro-oncology and can be used to assess patients with glioma. This retrospective analysis demonstrates the usefulness of the NANO scale in glioblastoma.

  6. Clinical neuro-oncology formal education opportunities for medical students in the United States and Canada.

    PubMed

    Dixit, Karan S; Nicholas, Martin Kelly; Lukas, Rimas V

    2014-12-01

    To develop an understanding of the availability of the formal clinical neuro-oncology educational opportunities for medical students. The curriculum websites of all medical schools accredited by the Liaison Committee on Medical Education were reviewed for the presence of clinical neuro-oncology electives as well as other relevant data. Ten (6.8%) of medical schools accredited by the Liaison Committee on Medical Education offer formal neuro-oncology electives. Half are clustered in the Midwest. Forty percent are at institutions with neuro-oncology fellowships. All are at institutions with neurosurgery and neurology residency programs. Formal clinical neuro-oncology elective opportunities for medical students in the United States and Canada are limited. Additional such opportunities may be of value in the education of medical students. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Translational Research in NeuroAIDS: A Neuroimmune Pharmacology-Related Course

    PubMed Central

    Brown, Amanda; Shiramizu, Bruce; Nath, Avindra; Wojna, Valerie

    2010-01-01

    Neuroimmune pharmacology (NIP) can be considered a multidisciplinary science where areas of neuroscience, immunology, and pharmacology intersect in neurological disorders. The R25 training program titled “Translational Research in NeuroAIDS and Mental Health (TR-NAMH): An innovative mentoring program to promote diversity in NeuroAIDS Research (R25 MH080661)” at the Johns Hopkins University is a web-based interactive course with the goal to improve the capacity of high quality research by developing mentoring programs for (1) doctoral and postdoctoral candidates and junior faculty from racial and ethnic minorities and (2) non-minority individuals at the same levels, whose research focuses on NeuroAIDS disparity issues such as HIV-associated neurocognitive disorders (HAND). This web-based interactive course overcomes the limitations of traditional education such as access to expert faculty and financial burden of scientists from racial and ethnic minority groups in the field of NeuroAIDS research and NIP and identifies rich nurturing environments for investigators to support their careers. The TR-NAMH program identifies a cadre of talented students and investigators eager to commit to innovative educational and training sessions in NeuroAIDS and NIP. The interplay between NIP changes precipitated by HIV infection in the brain makes the study of HAND an outstanding way to integrate important concepts from these two fields. The course includes activities besides those related to didactic learning such as research training and long-term mentoring; hence, the newly learned topics in NIP are continually reinforced and implemented in real-time experiences. We describe how NIP is integrated in the TR-NAMH program in the context of HAND. PMID:20496178

  8. Translational research in NeuroAIDS: a neuroimmune pharmacology-related course.

    PubMed

    Brown, Amanda; Shiramizu, Bruce; Nath, Avindra; Wojna, Valerie

    2011-03-01

    Neuroimmune pharmacology (NIP) can be considered a multidisciplinary science where areas of neuroscience, immunology, and pharmacology intersect in neurological disorders. The R25 training program titled "Translational Research in NeuroAIDS and Mental Health (TR-NAMH): An innovative mentoring program to promote diversity in NeuroAIDS Research (R25 MH080661)" at the Johns Hopkins University is a web-based interactive course with the goal to improve the capacity of high quality research by developing mentoring programs for (1) doctoral and postdoctoral candidates and junior faculty from racial and ethnic minorities and (2) non-minority individuals at the same levels, whose research focuses on NeuroAIDS disparity issues such as HIV-associated neurocognitive disorders (HAND). This web-based interactive course overcomes the limitations of traditional education such as access to expert faculty and financial burden of scientists from racial and ethnic minority groups in the field of NeuroAIDS research and NIP and identifies rich nurturing environments for investigators to support their careers. The TR-NAMH program identifies a cadre of talented students and investigators eager to commit to innovative educational and training sessions in NeuroAIDS and NIP. The interplay between NIP changes precipitated by HIV infection in the brain makes the study of HAND an outstanding way to integrate important concepts from these two fields. The course includes activities besides those related to didactic learning such as research training and long-term mentoring; hence, the newly learned topics in NIP are continually reinforced and implemented in real-time experiences. We describe how NIP is integrated in the TR-NAMH program in the context of HAND.

  9. Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller.

    PubMed

    von Twickel, Arndt; Büschges, Ansgar; Pasemann, Frank

    2011-02-01

    This article presents modular recurrent neural network controllers for single legs of a biomimetic six-legged robot equipped with standard DC motors. Following arguments of Ekeberg et al. (Arthropod Struct Dev 33:287-300, 2004), completely decentralized and sensori-driven neuro-controllers were derived from neuro-biological data of stick-insects. Parameters of the controllers were either hand-tuned or optimized by an evolutionary algorithm. Employing identical controller structures, qualitatively similar behaviors were achieved for robot and for stick insect simulations. For a wide range of perturbing conditions, as for instance changing ground height or up- and downhill walking, swing as well as stance control were shown to be robust. Behavioral adaptations, like varying locomotion speeds, could be achieved by changes in neural parameters as well as by a mechanical coupling to the environment. To a large extent the simulated walking behavior matched biological data. For example, this was the case for body support force profiles and swing trajectories under varying ground heights. The results suggest that the single-leg controllers are suitable as modules for hexapod controllers, and they might therefore bridge morphological- and behavioral-based approaches to stick insect locomotion control.

  10. [Monitoring and Modern Hemodynamic Concepts in Cardiac Anesthesia].

    PubMed

    Heringlake, Matthias; Schmidt, Christian; Brandt, Sebastian

    2018-05-01

    Patients undergoing cardiac surgery are growing older, present with more comorbidities, and are frequently scheduled for more complex and prolonged surgical procedures. Routine application of neurological as well as extended hemodynamic monitoring combined with goal-directed perioperative hemodynamic optimization, targeting optimization of systemic and cerebral oxygen balance, show promise to reduce postoperative complications and to improve mortality in this high risk population. Expert recommendations suggest to avoid synthetic colloids for fluid optimization. Additionally, pathophysiological reasoning and results from recent trials suggest to start inotropic and vasoactive therapy primarily with non-adrenergic drugs like levosimendan and vasopressin and to add classical catecholamines like dobutamine and noradrenalin only if necessary to accomplish hemodynamic goals. Georg Thieme Verlag KG Stuttgart · New York.

  11. Correlation between electrical and hemodynamic responses during visual stimulation with graded contrasts

    NASA Astrophysics Data System (ADS)

    Si, Juanning; Zhang, Xin; Li, Yuejun; Zhang, Yujin; Zuo, Nianming; Jiang, Tianzi

    2016-09-01

    Brain functional activity involves complex cellular, metabolic, and vascular chain reactions, making it difficult to comprehend. Electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) have been combined into a multimodal neuroimaging method that captures both electrophysiological and hemodynamic information to explore the spatiotemporal characteristics of brain activity. Because of the significance of visually evoked functional activity in clinical applications, numerous studies have explored the amplitude of the visual evoked potential (VEP) to clarify its relationship with the hemodynamic response. However, relatively few studies have investigated the influence of latency, which has been frequently used to diagnose visual diseases, on the hemodynamic response. Moreover, because the latency and the amplitude of VEPs have different roles in coding visual information, investigating the relationship between latency and the hemodynamic response should be helpful. In this study, checkerboard reversal tasks with graded contrasts were used to evoke visual functional activity. Both EEG and fNIRS were employed to investigate the relationship between neuronal electrophysiological activities and the hemodynamic responses. The VEP amplitudes were linearly correlated with the hemodynamic response, but the VEP latency showed a negative linear correlation with the hemodynamic response.

  12. Neuro-fuzzy controller to navigate an unmanned vehicle.

    PubMed

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).

  13. Slow spontaneous hemodynamic oscillations during sleep measured with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Virtanen, Jaakko; Näsi, Tiina; Noponen, Tommi; Toppila, Jussi; Salmi, Tapani; Ilmoniemi, Risto J.

    2011-07-01

    Spontaneous cerebral hemodynamic oscillations below 100 mHz reflect the level of cerebral activity, modulate hemodynamic responses to tasks and stimuli, and may aid in detecting various pathologies of the brain. Near-infrared spectroscopy (NIRS) is ideally suited for both measuring spontaneous hemodynamic oscillations and monitoring sleep, but little research has been performed to combine these two applications. We analyzed 30 all-night NIRS-electroencephalography (EEG) sleep recordings to investigate spontaneous hemodynamic activity relative to sleep stages determined by polysomnography. Signal power of hemodynamic oscillations in the low-frequency (LF, 40-150 mHz) and very-low-frequency (VLF, 3-40 mHz) bands decreased in slow-wave sleep (SWS) compared to light sleep (LS) and rapid-eye-movement (REM) sleep. No statistically significant (p < 0.05) differences in oscillation power between LS and REM were observed. However, the period of VLF oscillations around 8 mHz increased in REM sleep in line with earlier studies with other modalities. These results increase our knowledge of the physiology of sleep, complement EEG data, and demonstrate the applicability of NIRS to studying spontaneous hemodynamic fluctuations during sleep.

  14. Abnormal hemodynamic response to forepaw stimulation in rat brain after cocaine injection

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Park, Kicheon; Choi, Jeonghun; Pan, Yingtian; Du, Congwu

    2015-03-01

    Simultaneous measurement of hemodynamics is of great importance to evaluate the brain functional changes induced by brain diseases such as drug addiction. Previously, we developed a multimodal-imaging platform (OFI) which combined laser speckle contrast imaging with multi-wavelength imaging to simultaneously characterize the changes in cerebral blood flow (CBF), oxygenated- and deoxygenated- hemoglobin (HbO and HbR) from animal brain. Recently, we upgraded our OFI system that enables detection of hemodynamic changes in response to forepaw electrical stimulation to study potential brain activity changes elicited by cocaine. The improvement includes 1) high sensitivity to detect the cortical response to single forepaw electrical stimulation; 2) high temporal resolution (i.e., 16Hz/channel) to resolve dynamic variations in drug-delivery study; 3) high spatial resolution to separate the stimulation-evoked hemodynamic changes in vascular compartments from those in tissue. The system was validated by imaging the hemodynamic responses to the forepaw-stimulations in the somatosensory cortex of cocaine-treated rats. The stimulations and acquisitions were conducted every 2min over 40min, i.e., from 10min before (baseline) to 30min after cocaine challenge. Our results show that the HbO response decreased first (at ~4min) followed by the decrease of HbR response (at ~6min) after cocaine, and both did not fully recovered for over 30min. Interestingly, while CBF decreased at 4min, it partially recovered at 18min after cocaine administration. The results indicate the heterogeneity of cocaine's effects on vasculature and tissue metabolism, demonstrating the unique capability of optical imaging for brain functional studies.

  15. Losartan exerts no protective effects against acute pulmonary embolism-induced hemodynamic changes.

    PubMed

    Dias, Carlos A; Neto-Neves, Evandro M; Montenegro, Marcelo F; Tanus-Santos, Jose E

    2012-02-01

    The acute obstruction of pulmonary vessels by venous thrombi is a critical condition named acute pulmonary embolism (APE). During massive APE, severe pulmonary hypertension may lead to death secondary to right heart failure and circulatory shock. APE-induced pulmonary hypertension is aggravated by active pulmonary vasoconstriction. While blocking the effects of some vasoconstrictors exerts beneficial effects, no previous study has examined whether angiotensin II receptor blockers protect against the hemodynamic changes associated with APE. We examined the effects exerted by losartan on APE-induced hemodynamic changes. Hemodynamic evaluations were performed in non-embolized lambs treated with saline (n = 4) and in lambs that were embolized with silicon microspheres and treated with losartan (30 mg/kg followed by 1 mg/kg/h, n = 5) or saline (n = 7) infusions. The plasma and lung angiotensin-converting enzyme (ACE) activity were assessed using a fluorometric method. APE increased mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance index (PVRI) by 21 ± 2 mmHg and 375 ± 20 dyn s cm⁻⁵ m⁻², respectively (P < 0.05). Losartan decreased MPAP significantly (by approximately 15%), without significant changes in PVRI and tended to decrease cardiac index (P > 0.05). Lung and plasma ACE activity were similar in both embolized and non-embolized animals. Our findings show evidence of lack of activation of the renin-angiotensin system during APE. The lack of significant effects of losartan on the pulmonary vascular resistance suggests that losartan does not protect against the hemodynamic changes found during APE.

  16. Hemodynamic alterations in chronically conscious unrestrained diabetic rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbonell, L.F.; Salmon, M.G.; Garcia-Estan, J.

    1987-05-01

    Important cardiovascular dysfunctions have been described in streptozotocin (STZ)-diabetic rats. To determine the influence of these changes on the hemodynamic state and whether insulin treatment can avoid them, different hemodynamic parameters, obtained by the thermodilution method, were studied in STZ-induced (65 mg/kg) diabetic male Wistar rats, as well as in age-control, weight-control, and insulin-treated diabetic ones. Plasma volume was measured by dilution of radioiodinated (/sup 125/I) human serum albumin. All rats were examined in the conscious, unrestrained state 12 wk after induction of diabetes or acidified saline (pH 4.5) injection. At 12 wk of diabetic state most important findings weremore » normotension, high blood volume, bradycardia, increase in stroke volume, cardiac output, and cardiosomatic ratio, and decrease in total peripheral resistance and cardiac contractility and relaxation (dP/dt/sub max/ and dP/dt/sub min/ of left ventricular pressure curves). The insulin-treated diabetic rats did not show any hemodynamic differences when compared with the control animals. These results suggest that important hemodynamic alterations are present in the chronic diabetic states, possibly conditioning congestive heart failure. These alterations can be prevented by insulin treatment.« less

  17. Gastrointestinal hemodynamics in dogs with nonfood induced atopic dermatitis.

    PubMed

    Bruet, V; Brune, J; Pastor, A; Imparato, L; Roussel, A; Bourdeau, P; Desfontis, J C

    2013-01-01

    Canine atopic dermatitis can be a result of exposure to aeroallergens or trophallergens. Hemodynamic alterations occur in dogs with food hypersensitivity. To evaluate if hemodynamic alterations occur in dogs with NFICAD with lowered resistance to diastolic flow at fasting, after feeding, or both. Ten healthy dogs and 22 dogs with NFICAD were included from the hospital population. Blinded prospective study. Peak systolic velocity (PSV), end diastolic velocity (EDV), mean velocity (MV), pulsatility index (PI), resistive index (RI) and PSV/EDV ratio were measured at fasting for both arteries (cranial mesenteric artery [CMA], celiac artery [CA]) and at 40 minutes after feeding in CMA and at 60 minutes in CA. The results were analyzed statistically with a mixed model. There was no difference detected between groups of dogs for any variable except EDV during fasting (P = .01). There is no decrease in resistance in NFICAD to diastolic flow. This observation could be explained by the absence intestinal inflammation in NFICAD. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  18. Verification of a research prototype for hemodynamic analysis of cerebral aneurysms.

    PubMed

    Suzuki, Takashi; Ioan Nita, Cosmin; Rapaka, Saikiran; Takao, Hiroyuki; Mihalef, Viorel; Fujimura, Soichiro; Dahmani, Chihebeddine; Sharma, Puneet; Mamori, Hiroya; Ishibashi, Toshihiro; Redel, Thomas; Yamamoto, Makoto; Murayama, Yuichi

    2016-08-01

    Owing to its clinical importance, there has been a growing body of research on understanding the hemodynamics of cerebral aneurysms. Traditionally, this work has been performed using general-purpose, state-of-the-art commercial solvers. This has meant requiring engineering expertise for making appropriate choices on the geometric discretization, time-step selection, choice of boundary conditions etc. Recently, a CFD research prototype has been developed (Siemens Healthcare GmbH, Prototype - not for diagnostic use) for end-to-end analysis of aneurysm hemodynamics. This prototype enables anatomical model preparation, hemodynamic computations, advanced visualizations and quantitative analysis capabilities. In this study, we investigate the accuracy of the hemodynamic solver in the prototype against a commercially available CFD solver ANSYS CFX 16.0 (ANSYS Inc., Canonsburg, PA, www.ansys.com) retrospectively on a sample of twenty patient-derived aneurysm models, and show good agreement of hemodynamic parameters of interest.

  19. Assessing neuro-motor recovery in a stroke survivor with high-resolution EEG, robotics and Virtual Reality.

    PubMed

    Comani, Silvia; Schinaia, Lorenzo; Tamburro, Gabriella; Velluto, Lucia; Sorbi, Sandro; Conforto, Silvia; Guarnieri, Biancamaria

    2015-01-01

    One post-stroke patient underwent neuro-motor rehabilitation of one upper limb with a novel system combining a passive robotic device, Virtual Reality training applications and high resolution electroencephalography (HR-EEG). The outcome of the clinical tests and the evaluation of the kinematic parameters recorded with the robotic device concurred to highlight an improved motor recovery of the impaired limb despite the age of the patient, his compromised motor function, and the start of rehabilitation at the 3rd week post stroke. The time frequency and functional source analysis of the HR-EEG signals permitted to quantify the functional changes occurring in the brain in association with the rehabilitation motor tasks, and to highlight the recovery of the neuro-motor function.

  20. Neuro-Immune Mechanisms in Response to Venezuelan Equine Encephalitis Virus Infection

    DTIC Science & Technology

    2000-01-01

    iii ABSTRACT NEURO-IMMUNE MECHANISMS IN RESPONSE TO VENEZUELAN EQUINE ENCEPHALITIS VIRUS INFECTION Major Bruce A. Schoneboom directed by Franziska B...Grieder, DVM, Ph.D., Assistant Professor of Microbiology and Immunology, Molecular and Cellular Biology, and Neuroscience Venezuelan equine ...3. DATES COVERED - 4. TITLE AND SUBTITLE NEURO-IMMUNE MECHANISMS IN RESPONSE TO VENEZUELAN EQUINE ENCEPHALITIS VIRUS INFECTION 5a. CONTRACT

  1. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors.

    PubMed

    Cheung, Kit; Schultz, Simon R; Luk, Wayne

    2015-01-01

    NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation.

  2. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors

    PubMed Central

    Cheung, Kit; Schultz, Simon R.; Luk, Wayne

    2016-01-01

    NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation. PMID:26834542

  3. The mechanisms of intrarenal hemodynamic changes following acute arterial occlusion.

    DOT National Transportation Integrated Search

    1963-10-01

    The hemodynamic response of the kidney to acute arterial occlusion is poorly understood. The purpose of the present study was to determine intrarenal hemodynamic changes in intact and isolated kidneys following arterial occlusion. : The relative role...

  4. Non invasive evaluation of cardiomechanics in patients undergoing MitrClip procedure

    PubMed Central

    2013-01-01

    Background In the last recent years a new percutaneous procedure, the MitraClip, has been validated for the treatment of mitral regurgitation. MitraClip procedure is a promising alternative for patients unsuitable for surgery as it reduces the risk of death related to surgery ensuring a similar result. Few data are present in literature about the variation of hemodynamic parameters and ventricular coupling after Mitraclip implantation. Methods Hemodynamic data of 18 patients enrolled for MitraClip procedure were retrospectively reviewed and analyzed. Echocardiographic measurements were obtained the day before the procedure (T0) and 21 ± 3 days after the procedure (T1), including evaluation of Ejection Fraction, mitral valve regurgitation severity and mechanism, forward Stroke Volume, left atrial volume, estimated systolic pulmonary pressure, non invasive echocardiographic estimation of single beat ventricular elastance (Es(sb)), arterial elastance (Ea) measured as systolic pressure • 0.9/ Stroke Volume, ventricular arterial coupling (Ea/Es(sb) ratio). Data were expressed as median and interquartile range. Measures obtained before and after the procedure were compared using Wilcoxon non parametric test for paired samples. Results Mitraclip procedure was effective in reducing regurgitation. We observed an amelioration of echocardiographic parameters with a reduction of estimated systolic pulmonary pressure (45 to 37,5 p = 0,0002) and left atrial volume (110 to 93 p = 0,0001). Despite a few cases decreasing in ejection fraction (37 to 35 p = 0,035), the maintained ventricular arterial coupling after the procedure (P = 0,67) was associated with an increasing in forward stroke volume (60,3 to 78 p = 0,05). Conclusion MitraClip is effective in reducing mitral valve regurgitation and determines an amelioration of hemodynamic parameters with preservation of ventricular arterial coupling. PMID:23642140

  5. The effect of magneto-treated blood autotransfusion on central hemodynamic values and cerebral circulation in patients with essential hypertension.

    PubMed

    Alizade, Ilgar G; Karayeva, Nigar T

    2002-05-01

    The work was carried out to study the effect of magneto-treated blood autotransfusion on the values of central and cerebral hemodynamics in patients with essential hypertension. Sixty-six patients with stage II essential hypertension aged 31-60 years who underwent magneto-treated blood autotransfusion were evaluated and treated, at the Cardiology Department, Hospital of Ministry of Internal Affairs of the Azerbaijan Republic, over a period of 8 years. The diagnosis was based on clinical examination and generally accepted criteria of essential hypertension stages proposed in 1978 by the World Health Organization. Sixty-six patients with stage II essential hypertension with stable drop in blood pressure, simultaneously showed a positive clinical effect. Central hemodynamic changes in the process of magneto-treated blood autotransfusion were different and depended on the initial state of circulation. High clinical effect showed the patients with hyperkinetic type of hemodynamics. Their blood pressure were significantly lower than the patients with hypokinetic type of circulation. Rheoencephalographic study demonstrated that magneto-treated blood autotransfusion possessed insignificant effect on cerebral hemodynamics, mainly expressed by the reduction of arterial blood flow tension in the patients with hypokinetic type of hemodynamics.

  6. Space flight-associated neuro-ocular syndrome (SANS).

    PubMed

    Lee, Andrew G; Mader, Thomas H; Gibson, C Robert; Brunstetter, Tyson J; Tarver, William J

    2018-03-12

    Interesting novel and somewhat perplexing physiologic and pathologic neuro-ocular findings have been documented in astronauts during and after long duration space flight (LDSF). These findings collectively have been termed the "space flight-associated neuro-ocular syndrome" (SANS). The National Aeronautics and Space Administration (NASA) in the United States has meticulously and prospectively documented the clinical, ultrasound, optical coherence tomography imaging, and radiographic findings of SANS including unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and nerve fiber layer infarcts (i.e., cotton wool spots). NASA and collaborating researchers continue to study SANS in preparation for future manned missions to space, including continued trips to the ISS, a return to the moon, or perhaps new voyages to the asteroid belt, or the planet, Mars.

  7. A Survey of the Neuro-Oncology Landscape

    PubMed Central

    Wu, Jing; Dey, Mahua; Buerki, Robin A.; Byrne, Richard W.; Dohrmann, George J.

    2018-01-01

    The field of neuro-oncology is evolving rapidly. Many important advances have recently been reported, and other promising investigations have the potential to soon make substantial impacts in the field, especially in the areas of high-grade gliomas and brain metastases. We present an overview of the current status of this field, highlighting the key recent advances as well as representative work of key clinical investigations, since these concepts have the potential to influence clinical management if they are demonstrated to be safe and efficacious. This overview includes some work that has only appeared in abstract form in order to provide a timely understanding of how the field is actively changing and what may lie on the horizon. We focus on both medical and surgical neuro-oncology advances in this highly multidisciplinary subspecialty. PMID:29141278

  8. Hemodynamic coherence and the rationale for monitoring the microcirculation.

    PubMed

    Ince, Can

    2015-01-01

    This article presents a personal viewpoint of the shortcoming of conventional hemodynamic resuscitation procedures in achieving organ perfusion and tissue oxygenation following conditions of shock and cardiovascular compromise, and why it is important to monitor the microcirculation in such conditions. The article emphasizes that if resuscitation procedures are based on the correction of systemic variables, there must be coherence between the macrocirculation and microcirculation if systemic hemodynamic-driven resuscitation procedures are to be effective in correcting organ perfusion and oxygenation. However, in conditions of inflammation and infection, which often accompany states of shock, vascular regulation and compensatory mechanisms needed to sustain hemodynamic coherence are lost, and the regional circulation and microcirculation remain in shock. We identify four types of microcirculatory alterations underlying the loss of hemodynamic coherence: type 1, heterogeneous microcirculatory flow; type 2, reduced capillary density induced by hemodilution and anemia; type 3, microcirculatory flow reduction caused by vasoconstriction or tamponade; and type 4, tissue edema. These microcirculatory alterations can be observed at the bedside using direct visualization of the sublingual microcirculation with hand-held vital microscopes. Each of these alterations results in oxygen delivery limitation to the tissue cells despite the presence of normalized systemic hemodynamic variables. Based on these concepts, we propose how to optimize the volume of fluid to maximize the oxygen-carrying capacity of the microcirculation to transport oxygen to the tissues.

  9. Neurology diagnostics security and terminal adaptation for PocketNeuro project.

    PubMed

    Chemak, C; Bouhlel, M-S; Lapayre, J-C

    2008-09-01

    This paper presents new approaches of medical information security and terminal mobile phone adaptation for the PocketNeuro project. The latter term refers to a project created for the management of neurological diseases. It consists of transmitting information about patients ("desk of patients") to a doctor's mobile phone during a visit and examination of a patient. These new approaches for the PocketNeuro project were analyzed in terms of medical information security and adaptation of the diagnostic images to the doctor's mobile phone. Images were extracted from a DICOM library. Matlab and its library were used as software to test our approaches and to validate our results. Experiments performed on a database of 30 256 x 256 pixel-sized neuronal medical images indicated that our new approaches for PocketNeuro project are valid and support plans for large-scale studies between French and Swiss hospitals using secured connections.

  10. Research Registries: A Tool to Advance Understanding of Rare Neuro-Ophthalmic Diseases

    PubMed Central

    Blankshain, Kimberly D; Moss, Heather E

    2016-01-01

    Background Medical research registries (MRR) are organized systems used to collect, store and analyze patient information. They are important tools for medical research with particular application to the study of rare diseases, including those seen in neuro-ophthalmic practice. Evidence Acquisition Evidence for this review was gathered from the writers’ experiences creating a comprehensive neuro-ophthalmology registry and review of the literature. Results MRR are typically observational and prospective databases of de-identified patient information. The structure is flexible and can accommodate a focus on specific diseases or treatments, surveillance of patient populations, physician quality improvement, or recruitment for future studies. They are particularly useful for the study of rare diseases. They can be integrated into the hierarchy of medical research at many levels provided their construction is well organized and they have several key characteristics including an easily manipulated database, comprehensive information on carefully selected patients and comply with human subjects regulations. MRR pertinent to neuro-ophthalmology include the UIC neuro-ophthalmology registry, Susac Syndrome Registry, Intracranial Hypertension Registry as well as larger scale patient outcome registries being developed by professional societies. Conclusion Medical research registries have a variety of forms and applications. With careful planning and clear goals, they are flexible and powerful research tools that can support multiple different study designs, and through this have the potential to advance understanding and care of neuro-ophthalmic diseases. PMID:27389624

  11. Closed-Loop, Multichannel Experimentation Using the Open-Source NeuroRighter Electrophysiology Platform

    PubMed Central

    Newman, Jonathan P.; Zeller-Townson, Riley; Fong, Ming-Fai; Arcot Desai, Sharanya; Gross, Robert E.; Potter, Steve M.

    2013-01-01

    Single neuron feedback control techniques, such as voltage clamp and dynamic clamp, have enabled numerous advances in our understanding of ion channels, electrochemical signaling, and neural dynamics. Although commercially available multichannel recording and stimulation systems are commonly used for studying neural processing at the network level, they provide little native support for real-time feedback. We developed the open-source NeuroRighter multichannel electrophysiology hardware and software platform for closed-loop multichannel control with a focus on accessibility and low cost. NeuroRighter allows 64 channels of stimulation and recording for around US $10,000, along with the ability to integrate with other software and hardware. Here, we present substantial enhancements to the NeuroRighter platform, including a redesigned desktop application, a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data servers for accessing data streams, and a new application programming interface (API) for creating closed-loop protocols that can be inserted into NeuroRighter as plugin programs. This greatly simplifies the design of sophisticated real-time experiments without sacrificing the power and speed of a compiled programming language. Here we present a detailed description of NeuroRighter as a stand-alone application, its plugin API, and an extensive set of case studies that highlight the system’s abilities for conducting closed-loop, multichannel interfacing experiments. PMID:23346047

  12. Research Registries: A Tool to Advance Understanding of Rare Neuro-Ophthalmic Diseases.

    PubMed

    Blankshain, Kimberly D; Moss, Heather E

    2016-09-01

    Medical research registries (MRR) are organized systems used to collect, store, and analyze patient information. They are important tools for medical research with particular application to the study of rare diseases, including those seen in neuro-ophthalmic practice. Evidence for this review was gathered from the writers' experiences creating a comprehensive neuro-ophthalmology registry and review of the literature. MRR are typically observational and prospective databases of de-identified patient information. The structure is flexible and can accommodate a focus on specific diseases or treatments, surveillance of patient populations, physician quality improvement, or recruitment for future studies. They are particularly useful for the study of rare diseases. They can be integrated into the hierarchy of medical research at many levels provided their construction is well organized and they have several key characteristics including an easily manipulated database, comprehensive information on carefully selected patients, and comply with human subjects regulations. MRR pertinent to neuro-ophthalmology include the University of Illinois at Chicago neuro-ophthalmology registry, Susac Syndrome Registry, Intracranial Hypertension Registry, and larger-scale patient outcome registries being developed by professional societies. MRR have a variety of forms and applications. With careful planning and clear goals, they are flexible and powerful research tools that can support multiple different study designs, and this can provide the potential to advance understanding and care of neuro-ophthalmic diseases.

  13. Hemodynamics during an ambulance flight.

    PubMed

    Ehlers, Ulrike Elisabeth; Seiler, Olivier

    2012-01-01

    Transportation of patients may present challenges, especially if they need intensive care, require mechanical ventilation, or are hemodynamically unstable. In the reported case study, Picco-based measurements were used to track hemodynamic changes in a patient throughout the duration of a transfer, which included an air ambulance transport. If air medical transport is indicated, several additional physical and chemical considerations require awareness during the trip, planning, and pretransport patient preparation: first, that decreasing atmospheric pressure leads to reduced blood oxygenation, and second, that intracorporeal volume shifts may occur during takeoff and landing. To our knowledge, our findings represent the first measurements with a Picco system during interhospital patient transport that included an air medical flight. Copyright © 2012 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  14. Effect of NeuroD gene silencing on the migration and invasion of human pancreatic cancer cells PANC-1.

    PubMed

    Wang, Yang; Su, Dong Wei; Gao, Li; Ding, Gui Ling; Ni, Can Rong; Zhu, Ming Hua

    2014-07-01

    The aim of this study is to investigate the influence of Lenti-EGFP-NeuroD-miR, RNAi lentiviral expression vector, on the expression level of NeuroD and migration, and invasion of PANC-1 cell line. PANC-1 cells were cultured and cotransfected with Lenti-EGFP-NeuroD-miR and Lenti-GFP. The infection rate of lentivirus was determined by fluorescence. The interfering effection by the expression of NeuroD mRNA in PANC-1 cells was analyzed by real-time PCR after transfected. Biological behavior of PANC-1 cells transinfected was observed, and the migration and invasion were studied by transwell assay. Intrapancreatic allografts model in nude mice was established to observe the effects of NeuroD on tumorigenesis, tumor growth, and invasion in vivo. The expression of NeuroD mRNA decreased significantly after RNAi lentivirus transinfecting PANC-1 cell. The cell's migration and invasion ability decreased obviously as soon as down regulate of NeuroD in PANC-1 cells. Comparing with control group, the tumors were smaller in size and the invasiveness was inhibited after 8 weeks intrapancreatic allografts in nude mice. Lenti-EGFP-NeuroD-miR transfected into PANC-1 cells shows a stable, effective, and especial blocking expression of NeuroD in mRNA level. The RNAi of lentiviral vector target NeuroD can reduce the migration and invasion abilities of PANC-1 cells.

  15. Space Flight-Associated Neuro-ocular Syndrome.

    PubMed

    Lee, Andrew G; Mader, Thomas H; Gibson, C Robert; Tarver, William

    2017-09-01

    New and unique physiologic and pathologic systemic and neuro-ocular responses have been documented in astronauts during and after long-duration space flight. Although the precise cause remains unknown, space flight-associated neuro-ocular syndrome (SANS) has been adopted as an appropriate descriptive term. The Space Medicine Operations Division of the US National Aeronautics and Space Administration (NASA) has documented the variable occurrence of SANS in astronauts returning from long-duration space flight on the International Space Station. These clinical findings have included unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and nerve fiber layer infarcts. The clinical findings of SANS have been correlated with structural changes on intraorbital and intracranial magnetic resonance imaging and in-flight and terrestrial ultrasonographic studies and ocular optical coherence tomography. Further study of SANS is ongoing for consideration of future manned missions to space, including a return trip to the moon or Mars.

  16. Screening for the presence of lipophilic marine biotoxins in shellfish samples using the neuro-2a bioassay.

    PubMed

    Bodero, Marcia; Bovee, Toine F H; Wang, Si; Hoogenboom, Ron L A P; Klijnstra, Mirjam D; Portier, Liza; Hendriksen, Peter J M; Gerssen, Arjen

    2018-02-01

    The neuro-2a bioassay is considered as one of the most promising cell-based in vitro bioassays for the broad screening of seafood products for the presence of marine biotoxins. The neuro-2a assay has been shown to detect a wide array of toxins like paralytic shellfish poisons (PSPs), ciguatoxins, and also lipophilic marine biotoxins (LMBs). However, the neuro-2a assay is rarely used for routine testing of samples due to matrix effects that, for example, lead to false positives when testing for LMBs. As a result there are only limited data on validation and evaluation of its performance on real samples. In the present study, the standard extraction procedure for LMBs was adjusted by introducing an additional clean-up step with n-hexane. Recovery losses due to this extra step were less than 10%. This wash step was a crucial addition in order to eliminate false-positive outcomes due to matrix effects. Next, the applicability of this assay was assessed by testing a broad range of shellfish samples contaminated with various LMBs, including diarrhetic shellfish toxins/poisons (DSPs). For comparison, the samples were also analysed by LC-MS/MS. Standards of all regulated LMBs were tested, including analogues of some of these toxins. The neuro-2a cells showed good sensitivity towards all compounds. Extracts of 87 samples, both blank and contaminated with various toxins, were tested. The neuro-2a outcomes were in line with those of LC-MS/MS analysis and support the applicability of this assay for the screening of samples for LMBs. However, for use in a daily routine setting, the test might be further improved and we discuss several recommended modifications which should be considered before a full validation is carried out.

  17. The lack of CD131 and the inhibition of Neuro-2a growth by carbamylated erythropoietin.

    PubMed

    Ding, Jing; Li, Qin-Ying; Yu, Jie-Zhong; Wang, Xin; Lu, Chuan-Zhen; Ma, Cun-Gen; Xiao, Bao-Guo

    2015-02-01

    Recombinant human erythropoietin (EPO), a glycohormone, is one of the leading biopharmaceutical products, while carbamylated erythropoietin (CEPO), an EPO derivative, is attracting widespread interest due to its neuroprotective effects without erythropoiesis in several cells and animal models. However, exogenous EPO promotes an angiogenic response from tumor cells and is associated with tumor growth, but knowledge of CEPO on tumor growth is lacking. Here we show that CEPO, but not EPO, inhibited Neuro-2a growth and viability. As expected, CEPO--unlike EPO--did not activate JAK-2 either in primary neurons or in Neuro-2a cells. Interestingly, CEPO did not induce GDNF expression and subsequent AKT activation in Neuro-2a cells. Before CEPO/EPO treatment, glial cell line-derived neurotrophic factor (GDNF) neutralization and GFR receptor blocking decreased the viability of EPO-treated Neuro-2a cells but did not influence CEPO-treated Neuro-2a cells. As compared to primary neurons, the expression of CD131, as a receptor complex binding to CEPO, is almost lacking in Neuro-2a cells. In BABL/C-nu mice, CEPO did not promote the growth of Neuro-2a cells nor extended the survival time compared to mice treated with EPO. The results indicate that CEPO did not promote tumor growth because of lower expression of CD131 and subsequent dysfunction of CD131/GDNF/AKT pathway in Neuro-2a cells, revealing its therapeutic potential in future clinical application.

  18. Role of pulmonary hemodynamics in determining 6-minute walk test result in atrial septal defect: an observational study.

    PubMed

    Supomo, Supomo; Darmawan, Handy; Arjana, Adika Zhulhi

    2018-05-22

    The presence of altered pulmonary hemodynamics in adult patients with atrial septal defect (ASD) is common. However, there are no observational studies which evaluate the impact of altered pulmonary hemodynamics on the 6-min walk test (6MWT) result. This study aimed to investigate the role of pulmonary hemodynamics in determining 6MWT result of patients with ASD. Forty-six consecutive adult patients with ASD were included in this study. Right heart catheterization was performed to obtain the pulmonary hemodynamics profile. Meanwhile, 6MWT was presented as high or low with cut-off point 350 m. Receiver operating characteristic (ROC) was used for analytical methods. Abnormal functional capacity was indicated by ROC result of mPAP cut-off value of > 24 mmHg (p = 0.0243; AUC = 0.681). The value of PVR > 3.42 woods unit (WU) showed high specificity in determining abnormal functional capacity (p = 0.0069; AUC = 0.713). Flow ratio with cut-off point ≤4.89 had the highest sensitivity (100%) (p = 0.8300; AUC = 0.520). Pulmonary hemodynamics can serve as an indicator of 6MWT result in adult ASD patients with values of mPAP> 24 mmHg and PVR > 3.42 WU.

  19. A Hybrid Neuro-Fuzzy Model For Integrating Large Earth-Science Datasets

    NASA Astrophysics Data System (ADS)

    Porwal, A.; Carranza, J.; Hale, M.

    2004-12-01

    A GIS-based hybrid neuro-fuzzy approach to integration of large earth-science datasets for mineral prospectivity mapping is described. It implements a Takagi-Sugeno type fuzzy inference system in the framework of a four-layered feed-forward adaptive neural network. Each unique combination of the datasets is considered a feature vector whose components are derived by knowledge-based ordinal encoding of the constituent datasets. A subset of feature vectors with a known output target vector (i.e., unique conditions known to be associated with either a mineralized or a barren location) is used for the training of an adaptive neuro-fuzzy inference system. Training involves iterative adjustment of parameters of the adaptive neuro-fuzzy inference system using a hybrid learning procedure for mapping each training vector to its output target vector with minimum sum of squared error. The trained adaptive neuro-fuzzy inference system is used to process all feature vectors. The output for each feature vector is a value that indicates the extent to which a feature vector belongs to the mineralized class or the barren class. These values are used to generate a prospectivity map. The procedure is demonstrated by an application to regional-scale base metal prospectivity mapping in a study area located in the Aravalli metallogenic province (western India). A comparison of the hybrid neuro-fuzzy approach with pure knowledge-driven fuzzy and pure data-driven neural network approaches indicates that the former offers a superior method for integrating large earth-science datasets for predictive spatial mathematical modelling.

  20. Nocturnal cerebral hemodynamics in snorers and in patients with obstructive sleep apnea: a near-infrared spectroscopy study.

    PubMed

    Pizza, Fabio; Biallas, Martin; Wolf, Martin; Werth, Esther; Bassetti, Claudio L

    2010-02-01

    Sleep disordered breathing (SDB) of the obstructive type causes hemodynamic consequences, leading to an increased cerebrovascular risk. The severity of SDB at which detrimental circulatory consequences appear is matter of controversy. Aim of the present study is the investigation of cerebral hemodynamics in patients with SDB of variable severity using near-infrared spectroscopy (NIRS). N/A. Sleep laboratory. Nineteen patients with SDB. N/A. Patients underwent nocturnal videopolysomnography (VPSG) coupled with cerebral NIRS. NIRS data were averaged for each patient, and a new method (integral) was applied to quantify cerebral hemodynamic alterations. Nocturnal VPSG disclosed various severities of SDB: snoring (7 patients, apnea-hypopnea index [AHI] = 2 +/- 2/h, range: 0.5-4.5); mild SDB (7 patients, AHI = 14 +/- 8/h, range: 6.3-28.6); and severe obstructive sleep apnea syndrome (5 patients, AHI = 79 +/- 20/h, range: 39.6-92.9). Relative changes of NIRS parameters were significantly larger during obstructive apneas (compared with hypopneas; mean deoxygenated hemoglobin [HHb] change of 0.72 +/- 0.23 and 0.13 +/- 0.08 micromol/L per sec, p value = 0.048) and in patients with severe SDB (as compared with patients with mild SDB and simple snorers; mean HHb change of 0.84 +/- 0.24, 0.02 +/- 0.09, and 0.2 +/- 0.08 micromol/L per sec, respectively, p value = 0.020). In this group, NIRS and concomitant changes in peripheral oxygen saturation correlated. The results of this study suggest that acute cerebral hemodynamic consequences of SDB lead to a failure of autoregulatory mechanisms with brain hypoxia only in the presence of frequent apneas (AHI > 30) and obstructive events.

  1. Nocturnal Cerebral Hemodynamics in Snorers and in Patients with Obstructive Sleep Apnea: A Near-Infrared Spectroscopy Study

    PubMed Central

    Pizza, Fabio; Biallas, Martin; Wolf, Martin; Werth, Esther; Bassetti, Claudio L.

    2010-01-01

    Study Objectives: Sleep disordered breathing (SDB) of the obstructive type causes hemodynamic consequences, leading to an increased cerebrovascular risk. The severity of SDB at which detrimental circulatory consequences appear is matter of controversy. Aim of the present study is the investigation of cerebral hemodynamics in patients with SDB of variable severity using near-infrared spectroscopy (NIRS). Design: N/A. Setting: Sleep laboratory. Patients or Participants: Nineteen patients with SDB. Interventions: N/A. Measurements and Results: Patients underwent nocturnal videopolysomnography (VPSG) coupled with cerebral NIRS. NIRS data were averaged for each patient, and a new method (integral) was applied to quantify cerebral hemodynamic alterations. Nocturnal VPSG disclosed various severities of SDB: snoring (7 patients, apnea-hypopnea index [AHI] = 2 ± 2/h, range: 0.5–4.5); mild SDB (7 patients, AHI = 14 ± 8/h, range: 6.3–28.6); and severe obstructive sleep apnea syndrome (5 patients, AHI = 79 ± 20/h, range: 39.6–92.9). Relative changes of NIRS parameters were significantly larger during obstructive apneas (compared with hypopneas; mean deoxygenated hemoglobin [HHb] change of 0.72 ± 0.23 and 0.13 ± 0.08 μmol/L per sec, p value = 0.048) and in patients with severe SDB (as compared with patients with mild SDB and simple snorers; mean HHb change of 0.84 ± 0.24, 0.02 ± 0.09, and 0.2 ± 0.08 μmol/L per sec, respectively, p value = 0.020). In this group, NIRS and concomitant changes in peripheral oxygen saturation correlated. Conclusions: The results of this study suggest that acute cerebral hemodynamic consequences of SDB lead to a failure of autoregulatory mechanisms with brain hypoxia only in the presence of frequent apneas (AHI > 30) and obstructive events. Citation: Pizza F; Biallas M; Wolf M; Werth E; Bassetti CL. Nocturnal cerebral hemodynamics in snorers and in patients with obstructive sleep apnea: a near-infrared spectroscopy study. SLEEP 2010

  2. Natriuretic Peptide and Clinical Evaluation in the Diagnosis of Heart Failure Hemodynamic Profile: Comparison with Tissue Doppler Echocardiography.

    PubMed

    Almeida Junior, Gustavo Luiz Gouvêa de; Clausell, Nadine; Garcia, Marcelo Iorio; Esporcatte, Roberto; Rangel, Fernando Oswaldo Dias; Rocha, Ricardo Mourilhe; Beck-da-Silva, Luis; Silva, Fabricio Braga da; Gorgulho, Paula de Castro Carvalho; Xavier, Sergio Salles

    2018-03-01

    Physical examination and B-type natriuretic peptide (BNP) have been used to estimate hemodynamics and tailor therapy of acute decompensated heart failure (ADHF) patients. However, correlation between these parameters and left ventricular filling pressures is controversial. This study was designed to evaluate the diagnostic accuracy of physical examination, chest radiography (CR) and BNP in estimating left atrial pressure (LAP) as assessed by tissue Doppler echocardiogram. Patients admitted with ADHF were prospectively assessed. Diagnostic characteristics of physical signs of heart failure, CR and BNP in predicting elevation (> 15 mm Hg) of LAP, alone or combined, were calculated. Spearman test was used to analyze the correlation between non-normal distribution variables. The level of significance was 5%. Forty-three patients were included, with mean age of 69.9 ± 11.1years, left ventricular ejection fraction of 25 ± 8.0%, and BNP of 1057 ± 1024.21 pg/mL. Individually, all clinical, CR or BNP parameters had a poor performance in predicting LAP ≥ 15 mm Hg. A clinical score of congestion had the poorest performance [area under the receiver operating characteristic curve (AUC) 0.53], followed by clinical score + CR (AUC 0.60), clinical score + CR + BNP > 400 pg/mL (AUC 0.62), and clinical score + CR + BNP > 1000 pg/mL (AUC 0.66). Physical examination, CR and BNP had a poor performance in predicting a LAP ≥ 15 mm Hg. Using these parameters alone or in combination may lead to inaccurate estimation of hemodynamics.

  3. Purα Repaired Expanded Hexanucleotide GGGGCC Repeat Noncoding RNA-Caused Neuronal Toxicity in Neuro-2a Cells.

    PubMed

    Shen, Jianying; Zhang, Yu; Zhao, Shi; Mao, Hong; Wang, Zhongjing; Li, Honglian; Xu, Zihui

    2018-05-01

    Expanded hexanucleotide GGGGCC repeat in a noncoding region of C9ORF72 is the most common cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). However, its molecular pathogenesis remains unclear. In our previous study, the expanded GGGGCC repeats have been shown to be sufficient to cause neurodegeneration. In order to investigate the further role of expanded GGGGCC repeats in the neuron, the normal r(GGGGCC) 3 and mutant-type expanded r(GGGGCC) 30 expression vectors were transfected into Neuro-2a cells. Cell proliferation, dendrite development, and the proteins' levels of microtubule-associated protein-2 (MAP2) and cyclin-dependent kinase-5 (CDK5) were used to evaluate the cell toxicity of GGGGCC repeats on Neuro-2a cells. The results were shown that expression of expanded GGGGCC repeats caused neuronal cell toxicity in Neuro-2a cells, enhanced the expression of pMAP2 and pCDK5. Moreover, overexpression of Purα repaired expanded GGGGCC repeat-inducing neuronal toxicity in Neuro-2a cells and reduced the expression of pMAP2 and pCDK5. In all, our findings suggested that the expanded GGGGCC repeats might cause neurodegeneration through destroyed neuron cells. And the GGGGCC repeat-induced neuronal cell toxicity was inhibited by upregulation of Purα. We inferred that Purα inhibits expanded GGGGCC repeat-inducing neurodegeneration, which might reveal a novel mechanism of neurodegenerative diseases ALS and FTD.

  4. Where Is the “Optimal” Fontan Hemodynamics?

    PubMed Central

    2017-01-01

    Fontan circulation is generally characterized by high central venous pressure, low cardiac output, and slightly low arterial oxygen saturation, and it is quite different from normal biventricular physiology. Therefore, when a patient with congenital heart disease is selected as a candidate for this type of circulation, the ultimate goals of therapy consist of 2 components. One is a smooth adjustment to the new circulation, and the other is long-term circulatory stabilization after adjustment. When either of these goals is not achieved, the patient is categorized as having “failed” Fontan circulation, and the prognosis is dismal. For the first goal of smooth adjustment, a lot of effort has been made to establish criteria for patient selection and intensive management immediately after the Fontan operation. For the second goal of long-term circulatory stabilization, there is limited evidence of successful strategies for long-term hemodynamic stabilization. Furthermore, there have been no data on optimal hemodynamics in Fontan circulation that could be used as a reference for patient management. Although small clinical trials and case reports are available, the results cannot be generalized to the majority of Fontan survivors. We recently reported the clinical and hemodynamic characteristics of early and late failing Fontan survivors and their association with all-cause mortality. This knowledge could provide insight into the complex Fontan pathophysiology and might help establish a management strategy for long-term hemodynamic stabilization. PMID:29035429

  5. "Too Withdrawn" or "Too Friendly": Considering Social Vulnerability in Two Neuro-Developmental Disorders

    ERIC Educational Resources Information Center

    Jawaid, A.; Riby, D. M.; Owens, J.; White, S. W.; Tarar, T.; Schulz, P. E.

    2012-01-01

    In some neuro-developmental disorders, the combined effect of intellectual disability and atypicalities of social cognition may put individuals at increased vulnerability in their social environment. The neuro-developmental disorders Williams syndrome, characterised by "hypersociability", and autism spectrum disorders, characterised by "social…

  6. β-Hydroxy-β-Methylbutyrate (HMB) Promotes Neurite Outgrowth in Neuro2a Cells.

    PubMed

    Salto, Rafael; Vílchez, Jose D; Girón, María D; Cabrera, Elena; Campos, Nefertiti; Manzano, Manuel; Rueda, Ricardo; López-Pedrosa, Jose M

    2015-01-01

    β-Hydroxy-β-methylbutyrate (HMB) has been shown to enhance cell survival, differentiation and protein turnover in muscle, mainly activating phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinases/ extracellular-signal-regulated kinases (MAPK/ERK) signaling pathways. Since these two pathways are related to neuronal survival and differentiation, in this study, we have investigated the neurotrophic effects of HMB in mouse neuroblastoma Neuro2a cells. In Neuro2a cells, HMB promotes differentiation to neurites independent from any effects on proliferation. These effects are mediated by activation of both the PI3K/Akt and the extracellular-signal-regulated kinases (ERK1/2) signaling as demonstrated by the use of specific inhibitors of these two pathways. As myocyte-enhancer factor 2 (MEF2) family of transcription factors are involved in neuronal survival and plasticity, the transcriptional activity and protein levels of MEF2 were also evaluated. HMB promoted MEF2-dependent transcriptional activity mediated by the activation of Akt and ERK1/2 pathways. Furthermore, HMB increases the expression of brain glucose transporters 1 (GLUT1) and 3 (GLUT3), and mTOR phosphorylation, which translates in a higher protein synthesis in Neuro2a cells. Furthermore, Torin1 and rapamycin effects on MEF2 transcriptional activity and HMB-dependent neurite outgrowth support that HMB acts through mTORC2. Together, these findings provide clear evidence to support an important role of HMB in neurite outgrowth.

  7. β-Hydroxy-β-Methylbutyrate (HMB) Promotes Neurite Outgrowth in Neuro2a Cells

    PubMed Central

    Girón, María D.; Cabrera, Elena; Campos, Nefertiti; Manzano, Manuel; Rueda, Ricardo; López-Pedrosa, Jose M.

    2015-01-01

    β-Hydroxy-β-methylbutyrate (HMB) has been shown to enhance cell survival, differentiation and protein turnover in muscle, mainly activating phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinases/ extracellular-signal-regulated kinases (MAPK/ERK) signaling pathways. Since these two pathways are related to neuronal survival and differentiation, in this study, we have investigated the neurotrophic effects of HMB in mouse neuroblastoma Neuro2a cells. In Neuro2a cells, HMB promotes differentiation to neurites independent from any effects on proliferation. These effects are mediated by activation of both the PI3K/Akt and the extracellular-signal-regulated kinases (ERK1/2) signaling as demonstrated by the use of specific inhibitors of these two pathways. As myocyte-enhancer factor 2 (MEF2) family of transcription factors are involved in neuronal survival and plasticity, the transcriptional activity and protein levels of MEF2 were also evaluated. HMB promoted MEF2-dependent transcriptional activity mediated by the activation of Akt and ERK1/2 pathways. Furthermore, HMB increases the expression of brain glucose transporters 1 (GLUT1) and 3 (GLUT3), and mTOR phosphorylation, which translates in a higher protein synthesis in Neuro2a cells. Furthermore, Torin1 and rapamycin effects on MEF2 transcriptional activity and HMB-dependent neurite outgrowth support that HMB acts through mTORC2. Together, these findings provide clear evidence to support an important role of HMB in neurite outgrowth. PMID:26267903

  8. A Neuro-Fuzzy Approach in the Classification of Students' Academic Performance

    PubMed Central

    2013-01-01

    Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions. PMID:24302928

  9. Spacecraft attitude control using neuro-fuzzy approximation of the optimal controllers

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Woo; Park, Sang-Young; Park, Chandeok

    2016-01-01

    In this study, a neuro-fuzzy controller (NFC) was developed for spacecraft attitude control to mitigate large computational load of the state-dependent Riccati equation (SDRE) controller. The NFC was developed by training a neuro-fuzzy network to approximate the SDRE controller. The stability of the NFC was numerically verified using a Lyapunov-based method, and the performance of the controller was analyzed in terms of approximation ability, steady-state error, cost, and execution time. The simulations and test results indicate that the developed NFC efficiently approximates the SDRE controller, with asymptotic stability in a bounded region of angular velocity encompassing the operational range of rapid-attitude maneuvers. In addition, it was shown that an approximated optimal feedback controller can be designed successfully through neuro-fuzzy approximation of the optimal open-loop controller.

  10. A neuro-fuzzy approach in the classification of students' academic performance.

    PubMed

    Do, Quang Hung; Chen, Jeng-Fung

    2013-01-01

    Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions.

  11. Hemodynamic Performance and Thrombogenic Properties of a Superhydrophobic Bileaflet Mechanical Heart Valve

    PubMed Central

    Bark, David L.; Vahabi, Hamed; Bui, Hieu; Movafaghi, Sanli; Moore, Brandon; Kota, Arun K.; Popat, Ketul; Dasi, Lakshmi P.

    2016-01-01

    In this study, we explore how blood-material interactions and hemodynamics are impacted by rendering a clinical quality 25 mm St. Jude Medical Bileaflet mechanical heart valve (BMHV) superhydrophobic (SH) with the aim of reducing thrombo-embolic complications associated with BMHVs. Basic cell adhesion is evaluated to assess blood-material interactions, while hemodynamic performance is analyzed with and without the SH coating. Results show that a SH coating with a receding contact angle (CA) of 160º strikingly eliminates platelet and leukocyte adhesion to the surface. Alternatively, many platelets attach to and activate on pyrolytic carbon (receding CA=47), the base material for BMHVs. We further show that the performance index increases by 2.5% for coated valve relative to an uncoated valve, with a maximum possible improved performance of 5%. Both valves exhibit instantaneous shear stress below 10 N/m2 and Reynolds Shear Stress below 100 N/m2. Therefore, a SH BMHV has the potential to relax the requirement for antiplatelet and anticoagulant drug regimens typically required for patients receiving MHVs by minimizing blood-material interactions, while having a minimal impact on hemodynamics. We show for the first time that SH-coated surfaces may be a promising direction to minimize thrombotic complications in complex devices such as heart valves. PMID:27098219

  12. Validity of the Neurology Quality of Life (Neuro-QoL) Measurement System in Adult Epilepsy

    PubMed Central

    Victorson, David; Cavazos, Jose E.; Holmes, Gregory L.; Reder, Anthony T.; Wojna, Valerie; Nowinski, Cindy; Miller, Deborah; Buono, Sarah; Mueller, Allison; Moy, Claudia; Cella, David

    2014-01-01

    Epilepsy is a chronic neurological disorder that results in recurring seizures and can have a significant adverse effect on health related quality of life (HRQL). Neuro-QoL is an NINDS-funded system of patient reported outcome measures for neurology clinical research, which was designed to provide a precise and standardized way to measure HRQL in epilepsy and other neurological disorders. Using mixed-methods and item response theory-based approaches, we developed generic item banks and targeted scales for adults and children with major neurological disorders. This paper provides empirical results from a clinical validation study with a sample of adults diagnosed with epilepsy. One hundred twenty one people diagnosed with epilepsy participated, of which the majority were male (62%), Caucasian (95%), with a mean age of 47.3 (SD=16.9). Baseline assessments included Neuro-QoL short forms and general and external validity measures. Neuro-QoL short forms that are not typically found in other epilepsy-specific HRQL instruments include Stigma, Sleep Disturbance, Emotional and Behavioral Dyscontrol and Positive Affect & Well-being. Neuro-QoL short forms demonstrated adequate reliability (internal consistency range = .86–.96; test-retest range = .57–.89). Pearson correlations (p<.01) between Neuro-QoL forms of emotional distress (Anxiety, Depression, Stigma) and the QOLIE-31 Emotional Well-being Subscale were in the moderate to strong range (r’s = .66, .71 & .53, respectively), as were relations with the PROMIS Global Mental Health subscale (r’s = .59, .74 & .52, respectively). Moderate correlations were observed between Neuro-QoL Social Role Performance and Satisfaction and the QOLIE-31 Social Function (r’s = .58 & .52, respectively). In measuring aspects of physical function, the Neuro-QoL Mobility and Upper Extremity forms demonstrated moderate associations with the PROMIS Global Physical Function Subscale (r’s = .60 & .61, respectively). Neuro-QoL measures of

  13. Improving neuro-oncological patients care: basic and practical concepts for nurse specialist in neuro-rehabilitation

    PubMed Central

    2012-01-01

    Background Neuro-oncological population well expresses the complexity of neurological disability due to the multiple neurological deficits that affect these patients. Moreover, due to the therapeutical opportunities survival times for patients with brain tumor have increased and more of these patients require rehabilitation care. The figure of nurse in the interdisciplinary specialty of neurorehabilitation is not clearly defined, even if their role in this setting is recognized as being critical and is expanding. The purpose of the study is to identify the standard competencies for neurorehabilitation nurses that could be taught by means of a specialization course. Methods A literature review was conducted with preference given to works published between January 2000 and December 2008 in English. The search strategy identified 523 non-duplicated references of which 271 titles were considered relevant. After reviewing the abstracts, 147 papers were selected and made available to a group of healthcare professionals who were requested to classify them in few conceptual main areas defining the relative topics. Results The following five main areas were identified: clinical aspects of nursing; nursing techniques; nursing methodology; relational and organisational models; legal aspects of nursing. The relative topics were included within each area. As educational method a structured course based on lectures and practical sessions was designed. Also multi-choices questions were developed in order to evaluate the participants’ level of knowledge, while a semi-structured interview was prepared to investigate students’ satisfaction. Conclusions Literature shows that the development of rehabilitation depends on the improvement of scientific and practical knowledge of health care professionals. This structured training course could be incorporated into undergraduate nursing education programmes and also be inserted into continuing education programmes for graduate nurses

  14. Age and Vascular Burden Determinants of Cortical Hemodynamics Underlying Verbal Fluency.

    PubMed

    Heinzel, Sebastian; Metzger, Florian G; Ehlis, Ann-Christine; Korell, Robert; Alboji, Ahmed; Haeussinger, Florian B; Wurster, Isabel; Brockmann, Kathrin; Suenkel, Ulrike; Eschweiler, Gerhard W; Maetzler, Walter; Berg, Daniela; Fallgatter, Andreas J

    2015-01-01

    Aging processes and several vascular burden factors have been shown to increase the risk of dementia including Alzheimer's disease. While pathological alterations in dementia precede diagnosis by many years, reorganization of brain processing might temporarily delay cognitive decline. We hypothesized that in healthy elderly individuals both age-related neural and vascular factors known to be related to the development of dementia impact functional cortical hemodynamics during increased cognitive demands. Vascular burden factors and cortical functional hemodynamics during verbal fluency were assessed in 1052 non-demented elderly individuals (51 to 83 years; cross-sectional data of the longitudinal TREND study) using functional near-infrared spectroscopy (fNIRS). The prediction of functional hemodynamic responses by age in multiple regressions and the impact of single and cumulative vascular burden factors including hypertension, diabetes, obesity, smoking and atherosclerosis were investigated. Replicating and extending previous findings we could show that increasing age predicted functional hemodynamics to be increased in right prefrontal and bilateral parietal cortex, and decreased in bilateral inferior frontal junction during phonological fluency. Cumulative vascular burden factors, with hypertension in particular, decreased left inferior frontal junction hemodynamic responses during phonological fluency. However, age and vascular burden factors showed no statistical interaction on functional hemodynamics. Based on these findings, one might hypothesize that increased fronto-parietal processing may represent age-related compensatory reorganization during increased cognitive demands. Vascular burden factors, such as hypertension, may contribute to regional cerebral hypoperfusion. These neural and vascular hemodynamic determinants should be investigated longitudinally and combined with other markers to advance the prediction of future cognitive decline and dementia.

  15. The role of tumor board conferences in neuro-oncology: a nationwide provider survey.

    PubMed

    Snyder, James; Schultz, Lonni; Walbert, Tobias

    2017-05-01

    The tumor board or multidisciplinary cancer meeting (MCM) is the foundation of high value multidisciplinary oncology care, coordinating teams of specialists. Little is known on how these meetings are implemented in Neuro-oncology. Benefits of MCMs include coordination, direction for complicated cases, education, and a forum for communication, emerging technology, and clinical trials. This study identifies participation and utilization of neuro-oncology MCMs. A cross-sectional descriptive survey was dispersed through an internet questionnaire. The Society of Neuro-Oncology and the American Brain Tumor Association provided a list of dedicated neuro-oncology centers. All National Cancer Institute designated centers, and participants in the Adult Brain Tumor Consortium or the Brain Tumor Trials Collaborative were included, identifying 85 centers. Discussion included primary brain tumors (100%), challenging cases (98%), recurrent disease (96%), neoplastic spine disease (93%), metastatic brain lesions (89%), pre-surgical cases (82%), pathology (76%), and paraneoplastic disease (40%). MCMs were composed of neuro-oncologists, neurosurgeons, and radiation oncologists (100%), radiologists (98%), pathologists (96%), and clinical trial participants (64%). Individual preparation ranged from 15 to 300 min. MCMs were valued for clinical decision making (94%), education (89%), and access to clinical trials (69%). 13% documented MCMs in the medical record. 38% of centers used a molecular tumor board; however, many commented with uncertainty as to how this is defined. Neuro-oncology MCMs at leading U.S. institutions demonstrate congruity of core disciplines, cases discussed, and perceived value. We identified variability in preparation time and implementation of MCM recommendations. There is high uncertainty as to the definition and application of a molecular tumor board.

  16. White-collar workers' hemodynamic responses during working hours.

    PubMed

    Liu, Xinxin; Iwakiri, Kazuyuki; Sotoyama, Midori

    2017-08-08

    In the present study, two investigations were conducted at a communication center, to examine white-collar workers' hemodynamic responses during working hours. In investigation I, hemodynamic responses were measured on a working day; and in investigation II, cardiovascular responses were verified on both working and non-working days. In investigation I, blood pressure, cardiac output, heart rate, stroke volume, and total peripheral resistance were measured in 15 workers during working hours (from 9:00 am to 18:00 pm) on one working day. Another 40 workers from the same workplace participated in investigation II, in which blood pressure and heart rate were measured between the time workers arose in the morning until they went to bed on 5 working days and 2 non-working days. The results showed that blood pressure increased and remained at the same level during working hours. The underlying hemodynamics of maintaining blood pressure, however, changed between the morning and the afternoon on working days. Cardiac responses increased in the afternoon, suggesting that cardiac burdens increase in the afternoon on working days. The present study suggested that taking underlying hemodynamic response into consideration is important for managing the work-related cardiovascular burden of white-collar workers.

  17. White-collar workers’ hemodynamic responses during working hours

    PubMed Central

    LIU, Xinxin; IWAKIRI, Kazuyuki; SOTOYAMA, Midori

    2017-01-01

    In the present study, two investigations were conducted at a communication center, to examine white-collar workers’ hemodynamic responses during working hours. In investigation I, hemodynamic responses were measured on a working day; and in investigation II, cardiovascular responses were verified on both working and non-working days. In investigation I, blood pressure, cardiac output, heart rate, stroke volume, and total peripheral resistance were measured in 15 workers during working hours (from 9:00 am to 18:00 pm) on one working day. Another 40 workers from the same workplace participated in investigation II, in which blood pressure and heart rate were measured between the time workers arose in the morning until they went to bed on 5 working days and 2 non-working days. The results showed that blood pressure increased and remained at the same level during working hours. The underlying hemodynamics of maintaining blood pressure, however, changed between the morning and the afternoon on working days. Cardiac responses increased in the afternoon, suggesting that cardiac burdens increase in the afternoon on working days. The present study suggested that taking underlying hemodynamic response into consideration is important for managing the work-related cardiovascular burden of white-collar workers. PMID:28428502

  18. System identification of smart structures using a wavelet neuro-fuzzy model

    NASA Astrophysics Data System (ADS)

    Mitchell, Ryan; Kim, Yeesock; El-Korchi, Tahar

    2012-11-01

    This paper proposes a complex model of smart structures equipped with magnetorheological (MR) dampers. Nonlinear behavior of the structure-MR damper systems is represented by the use of a wavelet-based adaptive neuro-fuzzy inference system (WANFIS). The WANFIS is developed through the integration of wavelet transforms, artificial neural networks, and fuzzy logic theory. To evaluate the effectiveness of the WANFIS model, a three-story building employing an MR damper under a variety of natural hazards is investigated. An artificial earthquake is used for training the input-output mapping of the WANFIS model. The artificial earthquake is generated such that the characteristics of a variety of real recorded earthquakes are included. It is demonstrated that this new WANFIS approach is effective in modeling nonlinear behavior of the structure-MR damper system subjected to a variety of disturbances while resulting in shorter training times in comparison with an adaptive neuro-fuzzy inference system (ANFIS) model. Comparison with high fidelity data proves the viability of the proposed approach in a structural health monitoring setting, and it is validated using known earthquake signals such as El-Centro, Kobe, Northridge, and Hachinohe.

  19. A new learning algorithm for a fully connected neuro-fuzzy inference system.

    PubMed

    Chen, C L Philip; Wang, Jing; Wang, Chi-Hsu; Chen, Long

    2014-10-01

    A traditional neuro-fuzzy system is transformed into an equivalent fully connected three layer neural network (NN), namely, the fully connected neuro-fuzzy inference systems (F-CONFIS). The F-CONFIS differs from traditional NNs by its dependent and repeated weights between input and hidden layers and can be considered as the variation of a kind of multilayer NN. Therefore, an efficient learning algorithm for the F-CONFIS to cope these repeated weights is derived. Furthermore, a dynamic learning rate is proposed for neuro-fuzzy systems via F-CONFIS where both premise (hidden) and consequent portions are considered. Several simulation results indicate that the proposed approach achieves much better accuracy and fast convergence.

  20. libNeuroML and PyLEMS: using Python to combine procedural and declarative modeling approaches in computational neuroscience.

    PubMed

    Vella, Michael; Cannon, Robert C; Crook, Sharon; Davison, Andrew P; Ganapathy, Gautham; Robinson, Hugh P C; Silver, R Angus; Gleeson, Padraig

    2014-01-01

    NeuroML is an XML-based model description language, which provides a powerful common data format for defining and exchanging models of neurons and neuronal networks. In the latest version of NeuroML, the structure and behavior of ion channel, synapse, cell, and network model descriptions are based on underlying definitions provided in LEMS, a domain-independent language for expressing hierarchical mathematical models of physical entities. While declarative approaches for describing models have led to greater exchange of model elements among software tools in computational neuroscience, a frequent criticism of XML-based languages is that they are difficult to work with directly. Here we describe two Application Programming Interfaces (APIs) written in Python (http://www.python.org), which simplify the process of developing and modifying models expressed in NeuroML and LEMS. The libNeuroML API provides a Python object model with a direct mapping to all NeuroML concepts defined by the NeuroML Schema, which facilitates reading and writing the XML equivalents. In addition, it offers a memory-efficient, array-based internal representation, which is useful for handling large-scale connectomics data. The libNeuroML API also includes support for performing common operations that are required when working with NeuroML documents. Access to the LEMS data model is provided by the PyLEMS API, which provides a Python implementation of the LEMS language, including the ability to simulate most models expressed in LEMS. Together, libNeuroML and PyLEMS provide a comprehensive solution for interacting with NeuroML models in a Python environment.

  1. libNeuroML and PyLEMS: using Python to combine procedural and declarative modeling approaches in computational neuroscience

    PubMed Central

    Vella, Michael; Cannon, Robert C.; Crook, Sharon; Davison, Andrew P.; Ganapathy, Gautham; Robinson, Hugh P. C.; Silver, R. Angus; Gleeson, Padraig

    2014-01-01

    NeuroML is an XML-based model description language, which provides a powerful common data format for defining and exchanging models of neurons and neuronal networks. In the latest version of NeuroML, the structure and behavior of ion channel, synapse, cell, and network model descriptions are based on underlying definitions provided in LEMS, a domain-independent language for expressing hierarchical mathematical models of physical entities. While declarative approaches for describing models have led to greater exchange of model elements among software tools in computational neuroscience, a frequent criticism of XML-based languages is that they are difficult to work with directly. Here we describe two Application Programming Interfaces (APIs) written in Python (http://www.python.org), which simplify the process of developing and modifying models expressed in NeuroML and LEMS. The libNeuroML API provides a Python object model with a direct mapping to all NeuroML concepts defined by the NeuroML Schema, which facilitates reading and writing the XML equivalents. In addition, it offers a memory-efficient, array-based internal representation, which is useful for handling large-scale connectomics data. The libNeuroML API also includes support for performing common operations that are required when working with NeuroML documents. Access to the LEMS data model is provided by the PyLEMS API, which provides a Python implementation of the LEMS language, including the ability to simulate most models expressed in LEMS. Together, libNeuroML and PyLEMS provide a comprehensive solution for interacting with NeuroML models in a Python environment. PMID:24795618

  2. Decomposition of Near-Infrared Spectroscopy Signals Using Oblique Subspace Projections: Applications in Brain Hemodynamic Monitoring.

    PubMed

    Caicedo, Alexander; Varon, Carolina; Hunyadi, Borbala; Papademetriou, Maria; Tachtsidis, Ilias; Van Huffel, Sabine

    2016-01-01

    Clinical data is comprised by a large number of synchronously collected biomedical signals that are measured at different locations. Deciphering the interrelationships of these signals can yield important information about their dependence providing some useful clinical diagnostic data. For instance, by computing the coupling between Near-Infrared Spectroscopy signals (NIRS) and systemic variables the status of the hemodynamic regulation mechanisms can be assessed. In this paper we introduce an algorithm for the decomposition of NIRS signals into additive components. The algorithm, SIgnal DEcomposition base on Obliques Subspace Projections (SIDE-ObSP), assumes that the measured NIRS signal is a linear combination of the systemic measurements, following the linear regression model y = Ax + ϵ . SIDE-ObSP decomposes the output such that, each component in the decomposition represents the sole linear influence of one corresponding regressor variable. This decomposition scheme aims at providing a better understanding of the relation between NIRS and systemic variables, and to provide a framework for the clinical interpretation of regression algorithms, thereby, facilitating their introduction into clinical practice. SIDE-ObSP combines oblique subspace projections (ObSP) with the structure of a mean average system in order to define adequate signal subspaces. To guarantee smoothness in the estimated regression parameters, as observed in normal physiological processes, we impose a Tikhonov regularization using a matrix differential operator. We evaluate the performance of SIDE-ObSP by using a synthetic dataset, and present two case studies in the field of cerebral hemodynamics monitoring using NIRS. In addition, we compare the performance of this method with other system identification techniques. In the first case study data from 20 neonates during the first 3 days of life was used, here SIDE-ObSP decoupled the influence of changes in arterial oxygen saturation from the

  3. A wearable neuro-feedback system with EEG-based mental status monitoring and transcranial electrical stimulation.

    PubMed

    Roh, Taehwan; Song, Kiseok; Cho, Hyunwoo; Shin, Dongjoo; Yoo, Hoi-Jun

    2014-12-01

    A wearable neuro-feedback system is proposed with a low-power neuro-feedback SoC (NFS), which supports mental status monitoring with encephalography (EEG) and transcranial electrical stimulation (tES) for neuro-modulation. Self-configured independent component analysis (ICA) is implemented to accelerate source separation at low power. Moreover, an embedded support vector machine (SVM) enables online source classification, configuring the ICA accelerator adaptively depending on the types of the decomposed components. Owing to the hardwired accelerating functions, the NFS dissipates only 4.45 mW to yield 16 independent components. For non-invasive neuro-modulation, tES stimulation up to 2 mA is implemented on the SoC. The NFS is fabricated in 130-nm CMOS technology.

  4. Hemodynamic response to fluid removal during hemodialysis: categorization of causes of intradialytic hypotension.

    PubMed

    Levin, Nathan W; de Abreu, Marcia H F G; Borges, Lucas E; Tavares Filho, Helcio A; Sarwar, Rabia; Gupta, Surendra; Hafeez, Tahir; Lev, Shaul; Williams, Caroline

    2018-04-14

    Intradialytic hypotension is a clinically significant problem, however, the hemodynamics that underlie ultrafiltration and consequent hypotensive episodes has not been studied comprehensively. Intradialytic cardiac output, cardiac power and peripheral resistance changes from pretreatment measurements were evaluated using a novel regional impedance cardiographic device (NICaS, NI Medical, Peta Tikva, Israel) in 263 hemodialysis sessions in 54 patients in dialysis units in the USA and Brazil with the goal of determining the various hemodynamic trends as blood pressure decreases. Hypotensive episodes occurred in 99 (13.5%) of 736 intra- and postdialytic evaluations. The hemodynamic profiles of the episodes were categorized: (i) The cardiac power index significantly decreased in 35% of episodes by 36%, from 0.66 [95% confidence interval (CI) 0.60-0.72] to 0.43 (95% CI 0.37-0.48) [w/m2] with a small reduction in the total peripheral resistance index. (ii) The total peripheral resistance index significantly decreased in 37.4% of episodes by 33%, from 3342 (95% CI 2824-3859) to 2251 (95% CI 1900-2602) [dyn × s/cm5 × m2] with a small reduction in the cardiac power index. (iii) Both the cardiac power index and total peripheral resistance index significantly decreased in 27.3% of episodes, the cardiac power index by 25% from 0.63 (95% CI 0.57-0.70) to 0.48 (95% CI 0.42-0.53) [w/m2] and the total peripheral resistance index by 23% from 2964 (95% CI 2428-3501) to 2266 (95% CI 1891-2642). The hemodynamic profiles clearly define specific hemodynamic mechanisms of cardiac power reduction and/or vasodilatation as underlying intradialytic hypotensive episodes. A reduction in cardiac power (reduction of both blood pressure and cardiac output) could be the result of preload reduction due to a high ultrafiltration rate with not enough refilling or low target weight. A reduction in peripheral resistance (reduction in blood pressure and increase in cardiac output) could be the result

  5. Immunotherapy Response Assessment in Neuro-Oncology (iRANO): A Report of the RANO Working Group

    PubMed Central

    Okada, Hideho; Weller, Michael; Huang, Raymond; Finocchiaro, Gaetano; Gilbert, Mark R.; Wick, Wolfgang; Ellingson, Benjamin M.; Hashimoto, Naoya; Pollack, Ian F.; Brandes, Alba A.; Franceschi, Enrico; Herold-Mende, Christel; Nayak, Lakshmi; Panigrahy, Ashok; Pope, Whitney B.; Prins, Robert; Sampson, John H.; Wen, Patrick Y.; Reardon, David A.

    2015-01-01

    Immunotherapy represents a promising area of therapy among neuro-oncology patients. However, early phase studies reveal unique challenges associated with assessment of radiological changes reflecting delayed responses or therapy-induced inflammation. Clinical benefit, including long-term survival and tumor regression, can still occur following initial apparent progression or appearance of new lesions. Refinement of response assessment criteria for neuro-oncology patients undergoing immunotherapy is therefore warranted. A multinational and multidisciplinary panel of neuro-oncology immunotherapy experts describes immunotherapy response assessment for neuro-oncology (iRANO) criteria that are based on guidance for determination of tumor progression outlined by the immune-related response criteria (irRC) and the response assessment in neuro-oncology (RANO) working group. Among patients who demonstrate imaging findings meeting RANO criteria for progressive disease (PD) within six months of initiating immunotherapy including the development of new lesions, confirmation of radiographic progression on follow-up imaging is recommended provided that the patient is not significantly worse clinically. The proposed criteria also include guidelines for use of corticosteroids. The role of advanced imaging techniques and measurement of clinical benefit endpoints including neurologic and immunologic functions are reviewed. The iRANO guidelines put forth herein will evolve successively to improve their utility as further experience from immunotherapy trials in neuro-oncology accumulate. PMID:26545842

  6. Self-reported tolerance influences prefrontal cortex hemodynamics and affective responses.

    PubMed

    Tempest, Gavin; Parfitt, Gaynor

    2016-02-01

    The relationship between cognitive and sensory processes in the brain contributes to the regulation of affective responses (pleasure-displeasure). Exercise can be used to manipulate sensory processes (by increasing physiological demand) in order to examine the role of dispositional traits that may influence an individual's ability to cognitively regulate these responses. With the use of near infrared spectroscopy, in this study we examined the influence of self-reported tolerance upon prefrontal cortex (PFC) hemodynamics and affective responses. The hemodynamic response was measured in individuals with high or low tolerance during an incremental exercise test. Sensory manipulation was standardized against metabolic processes (ventilatory threshold [VT] and respiratory compensation point [RCP]), and affective responses were recorded. The results showed that the high-tolerance group displayed a larger hemodynamic response within the right PFC above VT (which increased above RCP). The low-tolerance group showed a larger hemodynamic response within the left PFC above VT. The high-tolerance group reported a more positive/less negative affective response above VT. These findings provide direct neurophysiological evidence of differential hemodynamic responses within the PFC that are associated with tolerance in the presence of increased physiological demands. This study supports the role of dispositional traits and previous theorizing into the underlying mechanisms (cognitive vs. sensory processes) of affective responses.

  7. A novel, objective, quantitative method of evaluation of the back pain component using comparative computerized multi-parametric tactile mapping before/after spinal cord stimulation and database analysis: the "Neuro-Pain't" software.

    PubMed

    Rigoard, P; Nivole, K; Blouin, P; Monlezun, O; Roulaud, M; Lorgeoux, B; Bataille, B; Guetarni, F

    2015-03-01

    One of the major challenges of neurostimulation is actually to address the back pain component in patients suffering from refractory chronic back and leg pain. Facing a tremendous expansion of neurostimulation techniques and available devices, implanters and patients can still remain confused as they need to select the right tool for the right indication. To be able to evaluate and compare objectively patient outcomes, depending on therapeutical strategies, it appears essential to develop a rational and quantitative approach to pain assessment for those who undergo neurostimulation implantation. We developed a touch screen interface, in Poitiers University Hospital and N(3)Lab, called the "Neuro-Pain'T", to detect, record and quantify the painful area surface and intensity changes in an implanted patient within time. The second aim of this software is to analyse the link between a paraesthesia coverage generated by a type of neurostimulation and a potential analgesic effect, measured by pain surface reduction, pain intensity reduction within the painful surface and local change in pain characteristics distribution. The third aim of Neuro-Pain'T is to correlate these clinical parameters to global patient data and functional outcome analysis, via a network database (Neuro-Database), to be able to provide a concise but objective approach of the neurostimulation efficacy, summarized by an index called "RFG Index". This software has been used in more than 190 patients since 2012, leading us to define three clinical parameters grouped as a clinical component of the RFG Index, which might be helpful to assess neurostimulation efficacy and compare implanted devices. The Neuro-Pain'T is an original software designed to objectively and quantitatively characterize reduction of a painful area in a given individual, in terms of intensity, surface and pain typology, in response to a treatment strategy or implantation of an analgesic device. Because pain is a physical sensation

  8. Diffuse optical measurements of head and neck tumor hemodynamics for early prediction of chemoradiation therapy outcomes

    NASA Astrophysics Data System (ADS)

    Dong, Lixin; Kudrimoti, Mahesh; Irwin, Daniel; Chen, Li; Kumar, Sameera; Shang, Yu; Huang, Chong; Johnson, Ellis L.; Stevens, Scott D.; Shelton, Brent J.; Yu, Guoqiang

    2016-08-01

    This study used a hybrid near-infrared diffuse optical instrument to monitor tumor hemodynamic responses to chemoradiation therapy for early prediction of treatment outcomes in patients with head and neck cancer. Forty-seven patients were measured once per week to evaluate the hemodynamic status of clinically involved cervical lymph nodes as surrogates for the primary tumor response. Patients were classified into two groups: complete response (CR) (n=29) and incomplete response (IR) (n=18). Tumor hemodynamic responses were found to be associated with clinical outcomes (CR/IR), wherein the associations differed depending on human papillomavirus (HPV-16) status. In HPV-16 positive patients, significantly lower levels in tumor oxygenated hemoglobin concentration ([HbO2]) at weeks 1 to 3, total hemoglobin concentration at week 3, and blood oxygen saturation (StO2) at week 3 were found in the IR group. In HPV-16 negative patients, significantly higher levels in tumor blood flow index and reduced scattering coefficient (μs‧) at week 3 were observed in the IR group. These hemodynamic parameters exhibited significantly high accuracy for early prediction of clinical outcomes, within the first three weeks of therapy, with the areas under the receiver operating characteristic curves (AUCs) ranging from 0.83 to 0.96.

  9. Diffuse optical measurements of head and neck tumor hemodynamics for early prediction of chemoradiation therapy outcomes

    PubMed Central

    Dong, Lixin; Kudrimoti, Mahesh; Irwin, Daniel; Chen, Li; Kumar, Sameera; Shang, Yu; Huang, Chong; Johnson, Ellis L.; Stevens, Scott D.; Shelton, Brent J.; Yu, Guoqiang

    2016-01-01

    Abstract. This study used a hybrid near-infrared diffuse optical instrument to monitor tumor hemodynamic responses to chemoradiation therapy for early prediction of treatment outcomes in patients with head and neck cancer. Forty-seven patients were measured once per week to evaluate the hemodynamic status of clinically involved cervical lymph nodes as surrogates for the primary tumor response. Patients were classified into two groups: complete response (CR) (n=29) and incomplete response (IR) (n=18). Tumor hemodynamic responses were found to be associated with clinical outcomes (CR/IR), wherein the associations differed depending on human papillomavirus (HPV-16) status. In HPV-16 positive patients, significantly lower levels in tumor oxygenated hemoglobin concentration ([HbO2]) at weeks 1 to 3, total hemoglobin concentration at week 3, and blood oxygen saturation (StO2) at week 3 were found in the IR group. In HPV-16 negative patients, significantly higher levels in tumor blood flow index and reduced scattering coefficient (μs′) at week 3 were observed in the IR group. These hemodynamic parameters exhibited significantly high accuracy for early prediction of clinical outcomes, within the first three weeks of therapy, with the areas under the receiver operating characteristic curves (AUCs) ranging from 0.83 to 0.96. PMID:27564315

  10. Bioimpedance Measurement of Segmental Fluid Volumes and Hemodynamics

    NASA Technical Reports Server (NTRS)

    Montgomery, Leslie D.; Wu, Yi-Chang; Ku, Yu-Tsuan E.; Gerth, Wayne A.; DeVincenzi, D. (Technical Monitor)

    2000-01-01

    Bioimpedance has become a useful tool to measure changes in body fluid compartment volumes. An Electrical Impedance Spectroscopic (EIS) system is described that extends the capabilities of conventional fixed frequency impedance plethysmographic (IPG) methods to allow examination of the redistribution of fluids between the intracellular and extracellular compartments of body segments. The combination of EIS and IPG techniques was evaluated in the human calf, thigh, and torso segments of eight healthy men during 90 minutes of six degree head-down tilt (HDT). After 90 minutes HDT the calf and thigh segments significantly (P < 0.05) lost conductive volume (eight and four percent, respectively) while the torso significantly (P < 0.05) gained volume (approximately three percent). Hemodynamic responses calculated from pulsatile IPG data also showed a segmental pattern consistent with vascular fluid loss from the lower extremities and vascular engorgement in the torso. Lumped-parameter equivalent circuit analyses of EIS data for the calf and thigh indicated that the overall volume decreases in these segments arose from reduced extracellular volume that was not completely balanced by increased intracellular volume. The combined use of IPG and EIS techniques enables noninvasive tracking of multi-segment volumetric and hemodynamic responses to environmental and physiological stresses.

  11. Successful Retreatment of Recurrent Intracranial Vertebral Artery Dissecting Aneurysms After Stent-Assisted Coil Embolization: A Self-Controlled Hemodynamic Analysis.

    PubMed

    Liu, Jian; Jing, Linkai; Zhang, Ying; Song, Ying; Wang, Yang; Li, Chuanhui; Wang, Yanmin; Mu, Shiqing; Paliwal, Nikhil; Meng, Hui; Linfante, Italo; Yang, Xinjian

    2017-01-01

    Intracranial vertebral artery dissecting aneurysms (VADAs) tend to recur despite successful stent-assisted coil embolization (SACE). Hemodynamics is useful in evaluating aneurysmal formation, growth, and rupture. Our aim was to evaluate the hemodynamic patterns of the recurrence of VADA. Between September 2009 and November 2013, all consecutive patients with recurrent VADAs after SACE in our institutions were enrolled. Recurrence was defined as recanalization and/or regrowth. We assessed the hemodynamic alterations in wall shear stress (WSS) and velocity after the initial SACE and subsequently after retreatment of the aneurysms that recurred. Five patients were included. After the initial treatment, 3 patients showed recanalization and 2 showed regrowth. In the 2 patients with regrowth, the 2 original aneurysms maintained complete occlusion; however, de novo aneurysm regrowth was confirmed near the previous site. Compared with 3 recanalized aneurysms, the completely occluded aneurysms showed high mean reductions in velocity and WSS after initial treatment (velocity, 77.6% vs. 57.7%; WSS, 74.2% vs. 52.4%); however, WSS remained high at the region near the previous lesion where the new aneurysm originated. After the second retreatment, there was no recurrence in any patient. Compared with the 3 aneurysms that recanalized, the 4 aneurysms that maintained complete occlusion showed higher reductions in velocity (62.9%) and WSS (71.1%). Our series indicated that hemodynamics might have an important role in recurrence of VADAs. After endovascular treatment, sufficient hemodynamic reduction in aneurysm dome, orifice, and parent vessel may be one of the key factors for preventing recurrence in VADAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Lucien J. Rubinstein: enduring contributions to neuro-oncology.

    PubMed

    Mut, Melike; Lopes, M Beatriz S; Shaffrey, Mark

    2005-04-15

    Dr. Lucien Rubinstein is best remembered for his significant contributions to the field of neuropathology, particularly in the classification of nervous system tumors. His accomplishments in basic neuro-oncology and in the formulation of diagnostic principles reflected a unique talent for synthesizing fundamental clinicopathological concepts based on skillful diagnostic investigation and a thorough understanding of neurobiology. Dr. Rubinstein was the leader in the establishment of cell cultures from central nervous system (CNS) tumors. He meticulously analyzed both light and electron microscopic features of CNS tumors, recorded his findings, and patiently drew sketches to be shared generously with his colleagues and students. As a pioneer in neuropathology, in his work Dr. Rubinstein set the foundation for many enduring concepts in neurosurgery, neuro-oncology, neurology, and basic tumor biology.

  13. Improvements in the Hemodynamic Stability of Combat Casualties During En Route Care

    DTIC Science & Technology

    2013-01-01

    IMPROVEMENTS IN THE HEMODYNAMIC STABILITY OF COMBAT CASUALTIES DURING EN ROUTE CARE Amy N. Apodaca,* Jonathan J. Morrison,†‡ Mary Ann Spott,* John J...greater clinical capability is associated with an improved hemodynamic status in critical casualties. The ideal prehospital triage should endeavor to...before out of theater medical evacuation (MEDEVAC). As SI is measure of hemodynamic stability, patients with isolated severe brain injury or

  14. Comparison of Dexmedetomidine and Remifentanil on Airway Reflex and Hemodynamic Changes during Recovery after Craniotomy

    PubMed Central

    Kim, Hyunzu; Min, Kyeong Tae; Lee, Jeong Rim; Ha, Sang Hee; Lee, Woo Kyung; Seo, Jae Hee

    2016-01-01

    Purpose During emergence from anesthesia for a craniotomy, maintenance of hemodynamic stability and prompt evaluation of neurological status is mandatory. The aim of this prospective, randomized, double-blind study was to compare the effects of dexmedetomidine and remifentanil on airway reflex and hemodynamic change in patients undergoing craniotomy. Materials and Methods Seventy-four patients undergoing clipping of unruptured cerebral aneurysm were recruited. In the dexmedetomidine group, patients were administered dexmedetomidine (0.5 µg/kg) for 5 minutes, while the patients of the remifentanil group were administered remifentanil with an effect site concentration of 1.5 ng/mL until endotracheal extubation. The incidence and severity of cough and hemodynamic variables were measured during the recovery period. Hemodynamic variables, respiration rate, and sedation scale were measured after extubation and in the post-anesthetic care unit (PACU). Results The incidence of grade 2 and 3 cough at the point of extubation was 62.5% in the dexmedetomidine group and 53.1% in the remifentanil group (p=0.39). Mean arterial pressure (p=0.01) at admission to the PACU and heart rate (p=0.04 and 0.01, respectively) at admission and at 10 minutes in the PACU were significantly lower in the dexmedetomidine group. Respiration rate was significantly lower in the remifentanil group at 2 minutes (p<0.01) and 5 minutes (p<0.01) after extubation. Conclusion We concluded that a single bolus of dexmedetomidine (0.5 µg/kg) and remifentanil infusion have equal effectiveness in attenuating coughing and hemodynamic changes in patients undergoing cerebral aneurysm clipping; however, dexmedetomidine leads to better preservation of respiration. PMID:27189295

  15. Hypertrophic response to hemodynamic overload: role of load vs. renin-angiotensin system activation

    NASA Technical Reports Server (NTRS)

    Koide, M.; Carabello, B. A.; Conrad, C. C.; Buckley, J. M.; DeFreyte, G.; Barnes, M.; Tomanek, R. J.; Wei, C. C.; Dell'Italia, L. J.; Cooper, G. 4th; hide

    1999-01-01

    Myocardial hypertrophy is one of the basic mechanisms by which the heart compensates for hemodynamic overload. The mechanisms by which hemodynamic overload is transduced by the cardiac muscle cell and translated into cardiac hypertrophy are not completely understood. Candidates include activation of the renin-angiotensin system (RAS) and angiotensin II receptor (AT1) stimulation. In this study, we tested the hypothesis that load, independent of the RAS, is sufficient to stimulate cardiac growth. Four groups of cats were studied: 14 normal controls, 20 pulmonary artery-banded (PAB) cats, 7 PAB cats in whom the AT1 was concomitantly and continuously blocked with losartan, and 8 PAB cats in whom the angiotensin-converting enzyme (ACE) was concomitantly and continuously blocked with captopril. Losartan cats had at least a one-log order increase in the ED50 of the blood pressure response to angiotensin II infusion. Right ventricular (RV) hypertrophy was assessed using the RV mass-to-body weight ratio and ventricular cardiocyte size. RV hemodynamic overload was assessed by measuring RV systolic and diastolic pressures. Neither the extent of RV pressure overload nor RV hypertrophy that resulted from PAB was affected by AT1 blockade with losartan or ACE inhibition with captopril. RV systolic pressure was increased from 21 +/- 3 mmHg in normals to 68 +/- 4 mmHg in PAB, 65 +/- 5 mmHg in PAB plus losartan and 62 +/- 3 mmHg in PAB plus captopril. RV-to-body weight ratio increased from 0.52 +/- 0.04 g/kg in normals to 1.11 +/- 0.06 g/kg in PAB, 1.06 +/- 0.06 g/kg in PAB plus losartan and 1.06 +/- 0.06 g/kg in PAB plus captopril. Thus 1) pharmacological modulation of the RAS with losartan and captopril did not change the extent of the hemodynamic overload or the hypertrophic response induced by PAB; 2) neither RAS activation nor angiotensin II receptor stimulation is an obligatory and necessary component of the signaling pathway that acts as an intermediary coupling load to the

  16. A comparative CFD study on the hemodynamics of flow through an idealized symmetric and asymmetric stenosed arteries

    NASA Astrophysics Data System (ADS)

    Prashantha, B.; Anish, S.

    2017-04-01

    The aim of the present study is to numerically evaluate the hemodynamic factors which affect the formation of atherosclerosis and plaque rupture in the human artery. An increase of atherosclerosis in the artery causes geometry changes, which results in hemodynamic changes such as flow separation, reattachment and adhesion of new cells (chemotactic) in the artery. Hence, geometry plays an important role in the determining the nature of hemodynamic patterns. Influence of stenosis in the non-bifurcating artery, under pulsatile flow condition has been studied on an idealized geometry. Analysis of flow through symmetric and asymmetric stenosis in the artery revealed the significance of oscillating shear index (OSI), flow separation, low wall shear stress (WSS) zones and secondary flow patterns on plaque formation. The observed characteristic of flow in the post-stenotic region highlight the importance of plaque eccentricity on the formation of secondary stenosis on the arterial wall.

  17. Hemodynamic Parameters during Laryngoscopic Procedures in the Office and in the Operating Room.

    PubMed

    Tierney, William S; Chota, Rebecca L; Benninger, Michael S; Nowacki, Amy S; Bryson, Paul C

    2016-09-01

    Previous research has shown that office-based laryngoscopic procedures can induce hemodynamic changes, including tachycardia and severe hypertension, calling into question the safety of these procedures. However, comparison between office and operating room (OR) procedures has not been carried out. Therefore, we prospectively measured hemodynamic variables in both settings to compare hemodynamic changes between office and OR procedures. Prospective cohort study. Single academic center. Subjects undergoing office and OR laryngoscopic procedures were prospectively identified, and 92 OR and 70 office subjects were included. Heart rate and blood pressure were measured at established time points before, during, and after the procedures. Descriptive and comparative statistical analyses were conducted. Severe hemodynamic events, either tachycardia or severe hypertension (blood pressure >180 mm Hg systolic or >110 mm Hg diastolic), occurred significantly more frequently in OR than office procedures (41% vs 20%; P = .006). OR severe hemodynamic events occurred more commonly than previously reported rates in the office (41% vs 28%; P = .012). Regression analyses showed that the odds of having a severe hemodynamic event were 3.66 times higher in OR versus office procedures. Severe hemodynamic events are more likely to occur in the OR than in the office during laryngologic procedures. While larger studies will be required to establish rates of dangerous cardiovascular events in laryngoscopic procedures, hemodynamic parameters indicate that office-based procedures have a safety benefit for procedures that can be conducted in either setting. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  18. Hemodynamics of 8 different configurations of stenting for bifurcation aneurysms.

    PubMed

    Kono, K; Terada, T

    2013-10-01

    SACE is performed for complex aneurysms. There are several configurations of stent placement for bifurcation aneurysms. We investigated hemodynamics among 8 different configurations of stent placement, which may relate to the recanalization rate. We created a silicone block model of a patient-specific asymmetric bifurcation aneurysm. Enterprise closed-cell stents were deployed in the model as various configurations. 3D images of these stents were obtained by micro-CT. We performed CFD simulations for a no-stent model and 8 stent models: a single stent from a proximal vessel to a right or left distal vessel, a horizontal stent, a kissing-Y stent with a uniformly narrowed structure, a nonoverlapping-Y stent, a virtual-Y stent with no narrowed structure (fusion of 2 single stents), and 2 different crossing-Y stents with a focally narrowed structure. Hemodynamic parameters were evaluated. Cycle-averaged velocity and WSS in the aneurysm were reduced because of stent placement in the following order: single stent (19% reduction in cycle-averaged velocity) < nonoverlapping-Y stent (29%) < virtual-Y stent (32%) < horizontal stent (39%) < kissing-Y stent (48%) < crossing-Y stent (54%). Kissing- and crossing-Y stents redirected impingement flow into the distal vessels because of lowered porosity of stents due to narrowed structures. Among 8 different configurations of stent placement, kissing- and crossing-Y stents showed the strongest reduction in flow velocity in the aneurysm because of lowered porosity of stents and redirection of impingement flow. This may be a desirable reconstruction of flow hemodynamics and may decrease recanalization rates in SACE.

  19. Role of Multimodal Evaluation of Cerebral Hemodynamics in Selecting Patients with Symptomatic Carotid or Middle Cerebral Artery Steno-occlusive Disease for Revascularization

    PubMed Central

    Sharma, Vijay K; Tsivgoulis, Georgios; Ning, Chou; Teoh, Hock L; Bairaktaris, Chrisostomos; Chong, Vincent FH; Ong, Benjamin KC; Chan, Bernard PL; Sinha, Arvind K

    2008-01-01

    Background: The circle of Willis provides collateral pathways to perfuse the affected vascular territories in patients with severe stenoocclusive disease of major arteries. The collateral perfusion may become insufficient in certain physiological circumstances due to failed vasodilatory reserve and intracranial steal phenomenon, so-called ‘Reversed-Robinhood syndrome’. We evaluated cerebral hemodynamics and vasodilatory reserve in patients with symptomatic distal internal carotid (ICA) or middle cerebral artery (MCA) severe steno-occlusive disease. Methods: Diagnostic transcranial Doppler (TCD) and TCD-monitoring with voluntary breath-holding according to a standard scanning protocol were performed in patients with severe ICA or MCA steno-occlusive disease. The steal phenomenon was detected as transient, spontaneous, or vasodilatory stimuli-induced velocity reductions in affected arteries at the time of velocity increase in normal vessels. Patients with exhausted vasomotor reactivity and intracranial steal phenomenon during breath-holding were further evaluated by 99technetiumm-hexamethyl propylene amine oxime single photon emission computed tomography (HMPAO-SPECT) with acetazolamide challenge. Results: Sixteen patients (age 27–74 years, 11 men) fulfilled our TCD criteria for exhausted vasomotor reactivity and intracranial steal phenomenon during the standard vasomotor testing by breath holding. Acetazolamide-challenged HMPAO-SPECT demonstrated significant hypoperfusion in 12 patients in affected arterial territories, suggestive of failed vasodilatory reserve. A breath-holding index of ≤0.3 on TCD was associated with an abnormal HMPAO-SPECT with acetazolamide challenge. TCD findings of a breath holding index of ≤0.3 and intracranial steal during the procedure were determinants of a significant abnormality on HMPAO-SPECT with acetazolamide challenge. Conclusion: Multimodal evaluation of cerebral hemodynamics in symptomatic patients with severe steno

  20. Evaluation of Time Domain EM Coupling Techniques. Volume II.

    DTIC Science & Technology

    1980-08-01

    tool for the analysis of elec- tromangetic coupling and shielding problems: the finite-difference, time-domain (FD- TD ) solution of Maxwell’s equations...The objective of the program was to evaluate the suitability of the FD- TD method to determine the amount of electromagnetic coupling through an...specific questfiowwere addressed during this program: 1. Can the FD- TD method accurately model electromagnetic coupling into a conducting structure for

  1. Device specific analysis of neonatal aortic outflow cannula jet flows for improved cardiopulmonary bypass hemodynamics

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad; Sotiropoulos, Fotis; Undar, Akif; Pekkan, Kerem

    2011-11-01

    Hemodynamically efficient aortic outflow cannulae can provide high blood volume flow rates at low exit force during extracorporeal circulation in pediatric or neonatal cardiopulmonary bypass repairs. Furthermore, optimal hemolytic aortic insertion configurations can significantly reduce risk of post-surgical neurological complications and developmental defects in the young patient. The methodology and results presented in this study serve as a baseline for design of superior aortic outflow cannulae based on a novel paradigm of characterizing jet-flows at different flow regimes. In-silico evaluations of multiple cannula tips were used to delineate baseline hemodynamic performance of the popular pediatric cannula tips in an experimental cuboidal test-rig, using PIV. High resolution CFD jet-flow simulations performed for various cannula tips in the cuboidal test-rig as well as in-vivo insertion configurations have suggested the existence of optimal surgically relevant characteristics such as cannula outflow angle and insertion depth for improved hemodynamic performance during surgery. Improved cannula tips were designed with internal flow-control features for decreased blood damage and increased permissible flow rates.

  2. Neuro-genetic multioptimization of the determination of polychlorinated biphenyl congeners in human milk by headspace solid phase microextraction coupled to gas chromatography with electron capture detection.

    PubMed

    Kowalski, Cláudia Hoffmann; da Silva, Gilmare Antônia; Poppi, Ronei Jesus; Godoy, Helena Teixeira; Augusto, Fabio

    2007-02-28

    Polychlorinated biphenyls (PCB) can eventually contaminate breast milk, which is a serious issue to the newborn due to their high vulnerability. Solid phase microextraction (SPME) can be a very convenient technique for their isolation and pre-concentration prior chromatographic analysis. Here, a simultaneous multioptimization strategy based on a neuro-genetic approach was applied to a headspace SPME method for determination of 12 PCB in human milk. Gas chromatography with electron capture detection (ECD) was adopted for the separation and detection of the analytes. Experiments according to a Doehlert design were carried out with varied extraction time and temperature, media ionic strength and concentration of the methanol (co-solvent). To find the best model that simultaneously correlate all PCB peak areas and SPME extraction conditions, a multivariate calibration method based on a Bayesian Neural Network (BNN) was applied. The net output from the neural network was used as input in a genetic algorithm (GA) optimization operation (neuro-genetic approach). The GA pointed out that the best values of the overall SPME operational conditions were the saturation of the media with NaCl, extraction temperature of 95 degrees C, extraction time of 60 min and addition of 5% (v/v) methanol to the media. These optimized parameters resulted in the decrease of the detection limits and increase on the sensitivity for all tested analytes, showing that the use of neuro-genetic approach can be a promising way for optimization of SPME methods.

  3. Prediction of flood abnormalities for improved public safety using a modified adaptive neuro-fuzzy inference system.

    PubMed

    Aqil, M; Kita, I; Yano, A; Nishiyama, S

    2006-01-01

    It is widely accepted that an efficient flood alarm system may significantly improve public safety and mitigate economical damages caused by inundations. In this paper, a modified adaptive neuro-fuzzy system is proposed to modify the traditional neuro-fuzzy model. This new method employs a rule-correction based algorithm to replace the error back propagation algorithm that is employed by the traditional neuro-fuzzy method in backward pass calculation. The final value obtained during the backward pass calculation using the rule-correction algorithm is then considered as a mapping function of the learning mechanism of the modified neuro-fuzzy system. Effectiveness of the proposed identification technique is demonstrated through a simulation study on the flood series of the Citarum River in Indonesia. The first four-year data (1987 to 1990) was used for model training/calibration, while the other remaining data (1991 to 2002) was used for testing the model. The number of antecedent flows that should be included in the input variables was determined by two statistical methods, i.e. autocorrelation and partial autocorrelation between the variables. Performance accuracy of the model was evaluated in terms of two statistical indices, i.e. mean average percentage error and root mean square error. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach, and evolving graphical features, and can be adopted for any similar situation to predict the streamflow. The main data processing includes gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood data, to train/test the model using various input options, and to visualize results. The program code consists of a set of files, which can be modified as well to match other

  4. Validity of the Neurology Quality-of-Life (Neuro-QoL) measurement system in adult epilepsy.

    PubMed

    Victorson, David; Cavazos, Jose E; Holmes, Gregory L; Reder, Anthony T; Wojna, Valerie; Nowinski, Cindy; Miller, Deborah; Buono, Sarah; Mueller, Allison; Moy, Claudia; Cella, David

    2014-02-01

    Epilepsy is a chronic neurological disorder that results in recurring seizures and can have a significant adverse effect on health-related quality of life (HRQL). The Neuro-QoL measurement initiative is an NINDS-funded system of patient-reported outcome measures for neurology clinical research, which was designed to provide a precise and standardized way to measure HRQL in epilepsy and other neurological disorders. Using mixed-method and item response theory-based approaches, we developed generic item banks and targeted scales for adults and children with major neurological disorders. This paper provides empirical results from a clinical validation study with a sample of adults diagnosed with epilepsy. One hundred twenty-one people diagnosed with epilepsy participated, the majority of which were male (62%) and Caucasian (95%), with a mean age of 47.3 (SD=16.9). Baseline assessments included Neuro-QoL short forms and general and external validity measures. The Neuro-QoL short forms that are not typically found in other epilepsy-specific HRQL instruments include Stigma, Sleep Disturbance, Emotional and Behavioral Dyscontrol, and Positive Affect and Well-Being. Neurology Quality-of-Life short forms demonstrated adequate reliability (internal consistency range=.86-.96; test-retest range=.57-.89). Pearson correlations (p<.01) between Neuro-QoL forms of emotional distress (anxiety, depression, stigma) and the QOLIE-31 Emotional Well-Being subscale were in the moderate-to-strong range (r's=.66, .71 and .53, respectively), as were relations with the PROMIS Global Mental Health subscale (r's=.59, .74 and .52, respectively). Moderate correlations were observed between Neuro-QoL Social Role Performance and Satisfaction and the QOLIE-31 Social Function (r's=.58 and .52, respectively). In measuring aspects of physical function, the Neuro-QoL Mobility and Upper Extremity forms demonstrated moderate associations with the PROMIS Global Physical Function subscale (r's=.60 and .61

  5. Angiographic assessment of atherosclerotic load at the lower extremity in patients with diabetic foot and charcot neuro-arthropathy.

    PubMed

    Çildağ, Mehmet B; Ertuğrul, Bülent M; Köseoğlu, Ömer Fk; Çildağ, Songül; Armstrong, David G

    2018-06-01

    The aim of this study was to investigate atherosclerotic load at the lower extremity in patients with diabetic foot and charcot neuro-arthropathy and compare them with patients with diabetic foot without charcot neuro-arthropathy. This retrospective study consists of 78 patients with diabetic foot who had lower extremity angiography with antegrade approach. All patients were classified into two groups; neuro ischemic wounds with charcot neuro-arthropathy (30/78) and without charcot neuro-arthropathy (48/78).Atherosclerotic load at the side of diabetic foot was determined by using the Bollinger angiogram scoring method. Comparison of atherosclerotic load between the two groups was performed. The mean of total and infrapopliteal level angiogram scoring of all patients was 33.3 (standard deviation, sd:±17.2) and 29.3 (sd:±15.6), respectively. The mean of total and infrapopliteal level angiogram scoring of neuroischemic wounds with charcot neuro-arthropathy group was 18.1 (sd:±11.6) and 15.7 (sd:±10.4), respectively. The mean of total and infrapopliteal level angiogram scoring of neuroischemic wounds without charcot neuro-arthropathy group was 42.8 (sd:±12.7) and 37.7 (sd:±12.0), respectively. There was a statistically significant difference between the two groups of mean total and infrapopliteal angiogram scoring (p < 0.01). This angiographic study confirms that the atherosclerotic load in patients with diabetic foot and chronic charcot neuro-arthropathy is significantly less than in patients with neuroischemic diabetic foot wounds without chronic charcot neuro-arthropathy. Copyright © 2017. Published by Elsevier Taiwan LLC.

  6. Module modified acute physiology and chronic health evaluation II: predicting the mortality of neuro-critical disease.

    PubMed

    Su, Yingying; Wang, Miao; Liu, Yifei; Ye, Hong; Gao, Daiquan; Chen, Weibi; Zhang, Yunzhou; Zhang, Yan

    2014-12-01

    This study aimed to conduct and assess a module modified acute physiology and chronic health evaluation (MM-APACHE) II model, based on disease categories modified-acute physiology and chronic health evaluation (DCM-APACHE) II model, in predicting mortality more accurately in neuro-intensive care units (N-ICUs). In total, 1686 patients entered into this prospective study. Acute physiology and chronic health evaluation (APACHE) II scores of all patients on admission and worst 24-, 48-, 72-hour scores were obtained. Neurological diagnosis on admission was classified into five categories: cerebral infarction, intracranial hemorrhage, neurological infection, spinal neuromuscular (SNM) disease, and other neurological diseases. The APACHE II scores of cerebral infarction, intracranial hemorrhage, and neurological infection patients were used for building the MM-APACHE II model. There were 1386 cases for cerebral infarction disease, intracranial hemorrhage disease, and neurological infection disease. The logistic linear regression showed that 72-hour APACHE II score (Wals  =  173.04, P < 0.001) and disease classification (Wals  =  12.51, P  =  0.02) were of importance in forecasting hospital mortality. Module modified acute physiology and chronic health evaluation II model, built on the variables of the 72-hour APACHE II score and disease category, had good discrimination (area under the receiver operating characteristic curve (AU-ROC  =  0.830)) and calibration (χ2  =  12.518, P  =  0.20), and was better than the Knaus APACHE II model (AU-ROC  =  0.778). The APACHE II severity of disease classification system cannot provide accurate prognosis for all kinds of the diseases. A MM-APACHE II model can accurately predict hospital mortality for cerebral infarction, intracranial hemorrhage, and neurologic infection patients in N-ICU.

  7. Quantifying the abnormal hemodynamics of sickle cell anemia

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Karniadakis, George

    2012-02-01

    Sickle red blood cells (SS-RBC) exhibit heterogeneous morphologies and abnormal hemodynamics in deoxygenated states. A multi-scale model for SS-RBC is developed based on the Dissipative Particle Dynamics (DPD) method. Different cell morphologies (sickle, granular, elongated shapes) typically observed in deoxygenated states are constructed and quantified by the Asphericity and Elliptical shape factors. The hemodynamics of SS-RBC suspensions is studied in both shear and pipe flow systems. The flow resistance obtained from both systems exhibits a larger value than the healthy blood flow due to the abnormal cell properties. Moreover, SS-RBCs exhibit abnormal adhesive interactions with both the vessel endothelium cells and the leukocytes. The effect of the abnormal adhesive interactions on the hemodynamics of sickle blood is investigated using the current model. It is found that both the SS-RBC - endothelium and the SS-RBC - leukocytes interactions, can potentially trigger the vicious ``sickling and entrapment'' cycles, resulting in vaso-occlusion phenomena widely observed in micro-circulation experiments.

  8. [Unit of hemodynamics: the production of the knowledge].

    PubMed

    Linch, Graciele Fernanda da Costa; Guido, Laura de Azevedo; Pitthan, Luiza de Oliveira; Umann, Juliane

    2009-12-01

    This study aimed at doing an integrative review that has as objective to investigate what has been published on nursing in hemodynamic in the following data bases: Scientific Electronic Library Online (SciELO), Medical Literature Analysis and Retrieval System Online (MEDLINE), Latin American and Caribbean Health Sciences (LILACS), and Nursing Database (BDENF); with the descriptors: Enfermagem and Hemodinâmica and Nursing and Hemodynamics. The data indicate that the studies in his majority were developed by nurses, and made a list to the presence of nursing, there were still boarded aspects made a list to the reprocess of catheters and health of the professionals of nursing. Nevertheless, it is noticeable that the publication of works connected with the thematic of hemodynamic is limited. However, they demonstrate the predominance of inquiries and reports making a list to the aspects of the presence of nursing in this sector which may represent the necessities and the problems that permeate the work.

  9. Neuro-Linguistic Programming: The New Eclectic Therapy.

    ERIC Educational Resources Information Center

    Betts, Nicoletta C.

    Richard Bandler and John Grinder developed neuro-linguisitc programming (NLP) after observing "the magical skills of potent psychotherapists" Frederick Perls, Virginia Satir, and Milton Erikson. They compiled the most effective techniques for building rapport, gathering data, and influencing change in psychotherapy, offering them only as…

  10. Spinal Cord Injury-Assessing Tolerability and Use of Combined Rehabilitation and NeuroAiD (SATURN Study): Protocol of An Exploratory Study In Assessing the Safety and Efficacy of NeuroAiD Amongst People Who Sustain Severe Spinal Cord Injury.

    PubMed

    Kumar, Ramesh; Htwe, Ohnmar; Baharudin, Azmi; Ariffin, Mohammad Hisam; Abdul Rhani, Shaharuddin; Ibrahim, Kamalnizat; Rustam, Aishah; Gan, Robert

    2016-12-05

    Spinal cord injury (SCI) is a devastating condition with limited therapeutic options despite decades of research. Current treatment options include use of steroids, surgery, and rehabilitation. Nevertheless, many patients with SCI remain disabled. MLC601 (NeuroAiD), a combination of natural products, has been shown to be safe and to aid neurological recovery after brain injuries and may have a potential role in improving recovery after SCI. The aim of this study is to evaluate the safety and efficacy of NeuroAiD amongst people who sustain SCI in the study setting. Spinal Cord Injury-Assessing Tolerability and Use of Combined Rehabilitation and NeuroAiD (SATURN) is a prospective cohort study of patients with moderately severe to severe SCI, defined as American Spinal Injury Association (ASIA) Impairment Scale (AIS) A and B. These patients will be treated with open-label NeuroAiD for 6 months in addition to standard care and followed for 24 months. Anonymized data will be prospectively collected at baseline and months 1, 3, 6, 12, 18, and 24 and will include information on demographics; main diagnostics; and neurological and functional state assessed by the Spinal Cord Independence Measure, ASIA-International Standard for Neurological Classification Spinal Cord Injury, and Short Form (SF-8) Health Survey. In addition, NeuroAiD treatment, compliance, concomitant therapies, and side effects, if any, will be collected. Investigators will use a secured online system for data entry. The study is approved by the ethics committee of Hospital University Kebangsaan Malaysia. The coprimary endpoints are safety, AIS grade, and improvement in ASIA motor score at 6 months. Secondary endpoints are AIS grade, ASIA motor scores and sensory scores, Spinal Cord Independence Measure (SCIM), SF-8 Health Survey, and compliance at other time points. SATURN investigates the promising role of NeuroAiD in SCI especially given its excellent safety profile. We described here the protocol and

  11. Spinal Cord Injury—Assessing Tolerability and Use of Combined Rehabilitation and NeuroAiD (SATURN Study): Protocol of An Exploratory Study In Assessing the Safety and Efficacy of NeuroAiD Amongst People Who Sustain Severe Spinal Cord Injury

    PubMed Central

    Htwe, Ohnmar; Baharudin, Azmi; Ariffin, Mohammad Hisam; Abdul Rhani, Shaharuddin; Ibrahim, Kamalnizat; Rustam, Aishah; Gan, Robert

    2016-01-01

    Background Spinal cord injury (SCI) is a devastating condition with limited therapeutic options despite decades of research. Current treatment options include use of steroids, surgery, and rehabilitation. Nevertheless, many patients with SCI remain disabled. MLC601 (NeuroAiD), a combination of natural products, has been shown to be safe and to aid neurological recovery after brain injuries and may have a potential role in improving recovery after SCI. Objective The aim of this study is to evaluate the safety and efficacy of NeuroAiD amongst people who sustain SCI in the study setting. Methods Spinal Cord Injury—Assessing Tolerability and Use of Combined Rehabilitation and NeuroAiD (SATURN) is a prospective cohort study of patients with moderately severe to severe SCI, defined as American Spinal Injury Association (ASIA) Impairment Scale (AIS) A and B. These patients will be treated with open-label NeuroAiD for 6 months in addition to standard care and followed for 24 months. Anonymized data will be prospectively collected at baseline and months 1, 3, 6, 12, 18, and 24 and will include information on demographics; main diagnostics; and neurological and functional state assessed by the Spinal Cord Independence Measure, ASIA—International Standard for Neurological Classification Spinal Cord Injury, and Short Form (SF-8) Health Survey. In addition, NeuroAiD treatment, compliance, concomitant therapies, and side effects, if any, will be collected. Investigators will use a secured online system for data entry. The study is approved by the ethics committee of Hospital University Kebangsaan Malaysia. Results The coprimary endpoints are safety, AIS grade, and improvement in ASIA motor score at 6 months. Secondary endpoints are AIS grade, ASIA motor scores and sensory scores, Spinal Cord Independence Measure (SCIM), SF-8 Health Survey, and compliance at other time points. Conclusions SATURN investigates the promising role of NeuroAiD in SCI especially given its excellent

  12. Droxidopa, an oral norepinephrine precursor, improves hemodynamic and renal alterations of portal hypertensive rats.

    PubMed

    Coll, Mar; Rodriguez, Sarai; Raurell, Imma; Ezkurdia, Nahia; Brull, Astrid; Augustin, Salvador; Guardia, Jaime; Esteban, Rafael; Martell, María; Genescà, Joan

    2012-11-01

    We aimed to evaluate the effects of droxidopa (an oral synthetic precursor of norepinephrine) on the hemodynamic and renal alterations of portal hypertensive rats. Sham, portal vein-ligated (PVL), and 4-week biliary duct-ligated (BDL) rats received a single oral dose of droxidopa (25-50 mg/kg) or vehicle and hemodynamic parameters were monitored for 2 hours. Two groups of BDL and cirrhotic rats induced by carbon tetrachloride (CCl(4) ) were treated for 5 days with droxidopa (15 mg/kg, twice daily, orally); hemodynamic parameters and blood and urinary parameters were assessed. The droxidopa effect on the Rho kinase (RhoK) / protein kinase B (AKT) / endothelial nitric oxide synthase (eNOS) pathways was analyzed by western blot in superior mesenteric artery (SMA). The acute administration of droxidopa in PVL and BDL rats caused a significant and maintained increase in arterial pressure and mesenteric arterial resistance, with a significant decrease of mesenteric arterial and portal blood flow, without changing portal pressure and renal blood flow. Two-hour diuresis greatly increased. Carbidopa (DOPA decarboxylase inhibitor) blunted all effects of droxidopa. Chronic droxidopa therapy in BDL rats produced the same beneficial hemodynamic effects observed in the acute study, did not alter liver function parameters, and caused a 50% increase in 24-hour diuresis volume (7.4 ± 0.9 mL/100g in BDL vehicle versus 11.8 ± 2.5 mL/100g in BDL droxidopa; P = 0.01). Droxidopa-treated rats also showed a decreased ratio of p-eNOS/eNOS and p-AKT/AKT and increased activity of RhoK in SMA. The same chronic treatment in CCl(4) rats caused similar hemodynamic effects and produced significant increases in diuresis volume and 24-hour natriuresis (0.08 ± 0.02 mmol/100g in CCl(4) vehicle versus 0.23 ± 0.03 mmol/100g in CCl(4) droxidopa; P = 0.014). Droxidopa might be an effective therapeutic agent for hemodynamic and renal alterations of liver cirrhosis and should be tested in cirrhosis

  13. Metabolic demands of neural-hemodynamic associated and disassociated areas in brain.

    PubMed

    Sanganahalli, Basavaraju G; Herman, Peter; Rothman, Douglas L; Blumenfeld, Hal; Hyder, Fahmeed

    2016-10-01

    Interpretation of regional blood oxygenation level-dependent (BOLD) responses in functional magnetic resonance imaging (fMRI) is contingent on whether local field potential (LFP) and multi-unit activity (MUA) is either dissociated or associated. To examine whether neural-hemodynamic associated and dissociated areas have different metabolic demands, we recorded sensory-evoked responses of BOLD signal, blood flow (CBF), and blood volume (CBV), which with calibrated fMRI provided oxidative metabolism (CMR O2 ) from rat's ventral posterolateral thalamic nucleus (VPL) and somatosensory forelimb cortex (S1 FL ) and compared these neuroimaging signals to neurophysiological recordings. MUA faithfully recorded evoked latency differences between VPL and S1 FL because evoked MUA in these regions were similar in magnitude. Since evoked LFP was significantly attenuated in VPL, we extracted the time courses of the weaker thalamic LFP to compare with the stronger cortical LFP using wavelet transform. BOLD and CBV responses were greater in S1 FL than in VPL, similar to LFP regional differences. CBF and CMR O2 responses were both comparably larger in S1 FL and VPL. Despite different levels of CBF-CMR O2 and LFP-MUA couplings in VPL and S1 FL , the CMR O2 was well matched with MUA in both regions. These results suggest that neural-hemodynamic associated and dissociated areas in VPL and S1 FL can have similar metabolic demands. © The Author(s) 2016.

  14. A Case of Neuro-Behcet’s Disease Presenting with Central Neurogenic Hyperventilation

    PubMed Central

    Alkhachroum, Ayham M.; Saeed, Saba; Kaur, Jaspreet; Shams, Tanzila; De Georgia, Michael A.

    2016-01-01

    Patient: Female, 46 Final Diagnosis: Central hyperventilation Symptoms: Hyperventilation Medication: — Clinical Procedure: None Specialty: Neurology Objective: Unusual clinical course Background: Behcet’s disease is a chronic inflammatory disorder usually characterized by the triad of oral ulcers, genital ulcers, and uveitis. Central to the pathogenesis of Behcet’s disease is an autoimmune vasculitis. Neurological involvement, so called “Neuro-Behcet’s disease”, occurs in 10–20% of patients, usually from a meningoencephalitis or venous thrombosis. Case Report: We report the case of a 46-year-old patient with Neuro-Behcet’s disease who presented with central neurogenic hyperventilation as a result of brainstem involvement from venulitis. Conclusions: To the best of our knowledge, central neurogenic hyperventilation has not previously been described in a patient with Neuro-Behcet’s disease. PMID:26965646

  15. Tocotrienol prevents AAPH-induced neurite degeneration in neuro2a cells.

    PubMed

    Fukui, Koji; Sekiguchi, Hidekazu; Takatsu, Hirokatsu; Koike, Taisuke; Koike, Tatsuro; Urano, Shiro

    2013-01-01

    Reactive oxygen species induce neurite degeneration before inducing cell death. However, the degenerative mechanisms have not yet been elucidated. While tocotrienols have a known neuroprotective function, the underlying mechanism remains unclear and may or may not involve antioxidant action. In this study, we hypothesize that free radical-derived membrane injury is one possible mechanism for inducing neurite degeneration. Therefore, we examined the potential neuroprotective effect of tocotrienols mediated through its antioxidant activity. Mouse neuroblastoma neuro2a cells were used to examine the effect of the water-soluble free radical generator 2,2'-azobis(2-methylpropionamide) dihydrochloride (AAPH) on neurite dynamics. After 24 hours of AAPH treatment, cell viability, neurite number, and the number of altered neurites were measured in the presence or absence of α-tocotrienol. Treatment of neuro2a cells with a low concentration of AAPH induces neurite degeneration, but not cell death. Treatment with 5 µM α-tocotrienol significantly inhibited neurite degeneration in AAPH-treated neuro2a cells. Furthermore, morphological changes in AAPH-treated neuro2a cells were similar to those observed with colchicine treatment. α-Tocotrienol may scavenge AAPH-derived free radicals and alkoxyl radicals that are generated from AAPH-derived peroxyl radicals on cell membranes. Therefore, α-tocotrienol may have a neuroprotective effect mediated by its antioxidant activity.

  16. Hemodynamic and clinical impact of ultrasound-derived venous reflux parameters.

    PubMed

    Neglén, Peter; Egger, John F; Olivier, Jake; Raju, Seshadri

    2004-08-01

    This study was undertaken to assess which ultrasound-derived parameter was superior for measuring venous reflux quantitatively and to evaluate the importance of popliteal vein valve reflux. A retrospective analysis was performed of 244 refluxive limbs in 182 patients who underwent ultrasound scanning, venous pressure measurement, air plethysmography, and clinical classification of severity according to the CEAP score. Reflux time (RT, s), peak reflux velocity (PRV, m/s), time of average rate of reflux (TAF, mL/min), absolute displaced volume retrogradely (ADV, mL) were compared to clinical class, ambulatory venous pressure (% drop), venous filling time (s), and venous filling index (mL/s) using nonparametric statistical tests. A P value of <.05 was considered significant. Limbs were divided into 3 groups: (A) axial great saphenous vein reflux only (n = 68); (B) axial deep reflux including popliteal vein incompetence with or without concomitant gastrocnemius or great or small saphenous vein reflux (all ultrasound reflux parameters of each refluxive vein added at the knee level) (n = 79); and (C) all limbs with popliteal vein reflux (the ultrasound data of the refluxive popliteal vein exclusively was used in comparison regardless of concomitant associated reflux) (n = 103). Limbs were also stratified into limbs with skin changes and ulcer (C-class 4-6) and those without (C-class 1-3) and subsequently compared. No meaningful significant correlation was found between RT and the clinical and hemodynamic results in groups A and B. The PRV and TAF correlated significantly with the hemodynamic parameters. The PRV and TAF and clinical severity trended towards correlation in group A (P =.0554 and P =.0998, respectively), but was significantly correlated in group B. The poor hemodynamic condition in the subset of C-class 4-6 limbs in groups A and B was reflected in a greater PRV, TAF, and ADV in this subset as compared with the limbs in C-class 1-3. RT was not significantly

  17. Grewia tiliaefolia and its active compound vitexin regulate the expression of glutamate transporters and protect Neuro2a cells from glutamate toxicity.

    PubMed

    Malar, Dicson Sheeja; Prasanth, Mani Iyer; Shafreen, Rajamohamed Beema; Balamurugan, Krishnaswamy; Devi, Kasi Pandima

    2018-04-25

    Glutamate is a major neurotransmitter involved in several brain functions and glutamate excitotoxicity is involved in Alzheimer's disease (AD). In the current study, the neuroprotective effect of the Indian medicinal plant Grewia tiliaefolia (GT) and its active component vitexin was evaluated in Neuro-2a cells against glutamate toxicity. Neuro-2a cells were exposed to glutamate to cause excitotoxicity and the neuroprotective effect of GT and vitexin were evaluated using biochemical studies (estimation of reactive oxygen species, reactive nitrogen species, protein carbonyl content, lipid peroxidation level, mitochondrial membrane potential and caspase-3 activity), molecular docking studies, gene expression and western blot analysis. Glutamate exposure to Neuro-2a cells induced oxidative stress, loss of membrane potential, suppressed the expression of antioxidant response genes (Nrf-2, HO-1, NQO-1), glutamate transporters (GLAST-1, GLT-1) and induced the expression of NMDAR, Calpain. However, pre-treatment of cells with GT/vitexin inhibited oxidative stress mediated damage by augmenting the expression of Nrf-2/HO-1 pathway, inducing the expression of glutamate transporters and downregulating Calpain, NMDAR. Molecular docking showed that vitexin effectively binds to NMDAR and GSK-3β and thereby can inhibit their activation. GT/vitexin also inhibited glutamate induced Bax expression. Methanol extract of G. tiliaefolia and its active component vitexin can act in an antioxidant dependent mechanism as well as by regulating glutamate in mitigating the toxicity exerted by glutamate in Neuro-2a cells. Our results conclude that GT/vitexin can act as potential drug leads for the therapeutic intervention of AD. Copyright © 2017. Published by Elsevier Inc.

  18. Development and validation of the positive affect and well-being scale for the neurology quality of life (Neuro-QOL) measurement system.

    PubMed

    Salsman, John M; Victorson, David; Choi, Seung W; Peterman, Amy H; Heinemann, Allen W; Nowinski, Cindy; Cella, David

    2013-11-01

    To develop and validate an item-response theory-based patient-reported outcomes assessment tool of positive affect and well-being (PAW). This is part of a larger NINDS-funded study to develop a health-related quality of life measurement system across major neurological disorders, called Neuro-QOL. Informed by a literature review and qualitative input from clinicians and patients, item pools were created to assess PAW concepts. Items were administered to a general population sample (N = 513) and a group of individuals with a variety of neurologic conditions (N = 581) for calibration and validation purposes, respectively. A 23-item calibrated bank and a 9-item short form of PAW was developed, reflecting components of positive affect, life satisfaction, or an overall sense of purpose and meaning. The Neuro-QOL PAW measure demonstrated sufficient unidimensionality and displayed good internal consistency, test-retest reliability, model fit, convergent and discriminant validity, and responsiveness. The Neuro-QOL PAW measure was designed to aid clinicians and researchers to better evaluate and understand the potential role of positive health processes for individuals with chronic neurological conditions. Further psychometric testing within and between neurological conditions, as well as testing in non-neurologic chronic diseases, will help evaluate the generalizability of this new tool.

  19. Imaging quality evaluation method of pixel coupled electro-optical imaging system

    NASA Astrophysics Data System (ADS)

    He, Xu; Yuan, Li; Jin, Chunqi; Zhang, Xiaohui

    2017-09-01

    With advancements in high-resolution imaging optical fiber bundle fabrication technology, traditional photoelectric imaging system have become ;flexible; with greatly reduced volume and weight. However, traditional image quality evaluation models are limited by the coupling discrete sampling effect of fiber-optic image bundles and charge-coupled device (CCD) pixels. This limitation substantially complicates the design, optimization, assembly, and evaluation image quality of the coupled discrete sampling imaging system. Based on the transfer process of grayscale cosine distribution optical signal in the fiber-optic image bundle and CCD, a mathematical model of coupled modulation transfer function (coupled-MTF) is established. This model can be used as a basis for following studies on the convergence and periodically oscillating characteristics of the function. We also propose the concept of the average coupled-MTF, which is consistent with the definition of traditional MTF. Based on this concept, the relationships among core distance, core layer radius, and average coupled-MTF are investigated.

  20. [Evaluation of an outpatient multidisciplinary Neuro-HIV clinic by the patients and referring doctors].

    PubMed

    Vallotton, Kevin; Métral, Mélanie; Chocron, Oury; Meuli, Reto; Alves, Deolinda; Du Pasquier, Renaud; Cavassini, Matthias

    2017-04-12

    The neurocognitive complaints among HIV infected patients remain frequent, and to establish their etiology can be challenging. We created in 2011 an outpatient Neuro-HIV clinical platform that takes advantage of a multidisciplinary approach with 5 specialists (neuropsychologist, neurologist, psychiatrist, infectiologist and neuroradiologist). In order to estimate its utility, we conducted two questionnaire-based interviews by phone calls with the patients and their referring physicians. Three quarters of both the patients and the physicians interviewed consider the platform useful or essential. Even though there is often no immediate treatment for cognitive disorders, the patients receive from this multidisciplinary approach a better understanding of their disease, which may help them to better cope with their anxieties in daily life.

  1. Correlation between the hemodynamic gain obtained after operation of primary varicose veins and chronic venous disease classification.

    PubMed

    Dezotti, Nei Rodrigues Alves; Joviliano, Edwaldo Edner; Moriya, Takachi; Piccinato, Carlos Eli

    2011-01-01

    Previous studies have demonstrated improvement of venous hemodynamics after surgical treatment of primary varicose veins of the lower extremities using air plethysmography (APG). To correlate the venous hemodynamics obtained by APG with the CEAP classification after surgical treatment of primary varicose veins. We studied 63 limbs of 39 patients (35 women and 4 men) aged on average 46.3 years, operated upon at the University Hospital, Faculty of Medicine of Ribeirão Preto, University of São Paulo, during the period from January 2001 to December 2004. The 63 limbs were divided into the three following groups according to CEAP classification: group C2 + C3 (38 limbs), group C4 (15 limbs) and group C5 + C6 (10 limbs). The patients were evaluated clinically before and 30 to 40 days after surgery by preoperative duplex ultrasonography and pre- and postoperative APG. There was an apparent hemodynamic improvement after surgical treatment of the varicose veins in the two groups of lower severity, but the improvement was significant in the most severe group based on venous filling index. Surgical treatment was beneficial for all three groups, but the greatest hemodynamic gain was observed in the group of highest clinical severity (group C5 + C6).

  2. The Utility of a Wireless Implantable Hemodynamic Monitoring System in Patients Requiring Mechanical Circulatory Support.

    PubMed

    Feldman, David S; Moazami, Nader; Adamson, Philip B; Vierecke, Juliane; Raval, Nir; Shreenivas, Satya; Cabuay, Barry M; Jimenez, Javier; Abraham, William T; O'Connell, John B; Naka, Yoshifumi

    Proper timing of left ventricular assist device (LVAD) implantation in advanced heart failure patients is not well established and is an area of intense interest. In addition, optimizing LVAD performance after implantation remains difficult and represents a significant clinical need. Implantable hemodynamic monitoring systems may provide physicians with the physiologic information necessary to improve the timing of LVAD implantation as well as LVAD performance when compared with current methods. The CardioMEMS Heart sensor Allows for Monitoirng of Pressures to Improve Outcomes in NYHA Class III heart failure patients (CHAMPION) Trial enrolled 550 previously hospitalized patients with New York Heart Association (NYHA) class III heart failure. All patients were implanted with a pulmonary artery (PA) pressure monitoring system and randomized to a treatment and control groups. In the treatment group, physicians used the hemodynamic information to make heart failure management decisions. This information was not available to physicians for the control group. During an average of 18 month randomized follow-up, 27 patients required LVAD implantation. At the time of PA pressure sensor implantation, patients ultimately requiring advanced therapy had higher PA pressures, lower systemic pressure, and similar cardiac output measurements. Treatment and control patients in the LVAD subgroup had similar clinical profiles at the time of enrollment. There was a trend toward a shorter length of time to LVAD implantation in the treatment group when hemodynamic information was available. After LVAD implantation, most treatment group patients continued to provide physicians with physiologic information from the hemodynamic monitoring system. As expected PA pressures declined significantly post LVAD implant in all patients, but the magnitude of decline was higher in patients with PA pressure monitoring. Implantable hemodynamic monitoring appeared to improve the timing of LVAD

  3. [Neuro-skeletal biology and its importance for clinical osteology].

    PubMed

    Zofková, I

    2012-01-01

    Bone remodeling is determined by function of two basic cell forms--bone resorbing osteoclasts and bone formation activating osteoblasts. Both cells are under control of a variety of endogenic and environmental factors, which ensure balance between bone resorption and bone formation. This article reviews the neuro-hormonal factors with osteoanabolic (central isoform of serotonin, melatonin, cannabinoids, beta 1 adrenergic system, oxytocin, ACTH and TSH) or osteocatabolic effects (neuropeptide Y, neuromedin U, beta2 adrenergic system). The dual effects of the beta-adrenergic system, serotonin and leptin are also discussed. The goal of studies focused on neuro-skeletal interaction is to synthesize new molecules, which can modify osteo-anabolic or osteo-catabolic pathways.

  4. Neuro-Fuzzy Support of Knowledge Management in Social Regulation

    NASA Astrophysics Data System (ADS)

    Petrovic-Lazarevic, Sonja; Coghill, Ken; Abraham, Ajith

    2002-09-01

    The aim of the paper is to demonstrate the neuro-fuzzy support of knowledge management in social regulation. Knowledge could be understood for social regulation purposes as explicit and tacit. Explicit knowledge relates to the community culture indicating how things work in the community based on social policies and procedures. Tacit knowledge is ethics and norms of the community. The former could be codified, stored and transferable in order to support decision making, while the latter being based on personal knowledge, experience and judgments is difficult to codify and store. Tacit knowledge expressed through linguistic information can be stored and used to support knowledge management in social regulation through the application of fuzzy and neuro-fuzzy logic.

  5. Hemodynamic deterioration precedes onset of ventricular tachyarrhythmia after Heartmate II implantation.

    PubMed

    Yaksh, Ameeta; Kik, Charles; Knops, Paul; Zwiers, Korinne; van Ettinger, Maarten J B; Manintveld, Olivier C; de Wijs, Marcel C J; van der Kemp, Peter; Bogers, Ad J J C; de Groot, Natasja M S

    2016-07-08

    Early postoperative ventricular tachyarrhythmia (PoVT) after left ventricular assist device (LVAD) implantation are common and associated with higher mortality-rates. At present, there is no data on initiation of these PoVT and the role of alterations in cardiac hemodynamics. A LVAD was implanted in a patient with end-stage heart failure due to a ischemic cardiomyopathy. Alterations in cardiac rhythm and hemodynamics preceding PoVT-episodes during the first five postoperative days were examined by using continuous recordings of cardiac rhythm and various hemodynamic parameters. All PoVT (N=120) were monomorphic, most often preceded by short-long-short-sequences or regular SR and initiated by ventricular runs. Prior to PoVT, mean arterial pressure decreased; heart rate and ST-segments deviations increased. PoVT are caused by different underlying electrophysiological mechanisms. Yet, they are all monomorphic and preceded by hemodynamic deterioration due to myocardial ischemia.

  6. NeuroGrid: recording action potentials from the surface of the brain.

    PubMed

    Khodagholy, Dion; Gelinas, Jennifer N; Thesen, Thomas; Doyle, Werner; Devinsky, Orrin; Malliaras, George G; Buzsáki, György

    2015-02-01

    Recording from neural networks at the resolution of action potentials is critical for understanding how information is processed in the brain. Here, we address this challenge by developing an organic material-based, ultraconformable, biocompatible and scalable neural interface array (the 'NeuroGrid') that can record both local field potentials(LFPs) and action potentials from superficial cortical neurons without penetrating the brain surface. Spikes with features of interneurons and pyramidal cells were simultaneously acquired by multiple neighboring electrodes of the NeuroGrid, allowing for the isolation of putative single neurons in rats. Spiking activity demonstrated consistent phase modulation by ongoing brain oscillations and was stable in recordings exceeding 1 week's duration. We also recorded LFP-modulated spiking activity intraoperatively in patients undergoing epilepsy surgery. The NeuroGrid constitutes an effective method for large-scale, stable recording of neuronal spikes in concert with local population synaptic activity, enhancing comprehension of neural processes across spatiotemporal scales and potentially facilitating diagnosis and therapy for brain disorders.

  7. A new neuro-fuzzy training algorithm for identifying dynamic characteristics of smart dampers

    NASA Astrophysics Data System (ADS)

    Dzung Nguyen, Sy; Choi, Seung-Bok

    2012-08-01

    This paper proposes a new algorithm, named establishing neuro-fuzzy system (ENFS), to identify dynamic characteristics of smart dampers such as magnetorheological (MR) and electrorheological (ER) dampers. In the ENFS, data clustering is performed based on the proposed algorithm named partitioning data space (PDS). Firstly, the PDS builds data clusters in joint input-output data space with appropriate constraints. The role of these constraints is to create reasonable data distribution in clusters. The ENFS then uses these clusters to perform the following tasks. Firstly, the fuzzy sets expressing characteristics of data clusters are established. The structure of the fuzzy sets is adjusted to be suitable for features of the data set. Secondly, an appropriate structure of neuro-fuzzy (NF) expressed by an optimal number of labeled data clusters and the fuzzy-set groups is determined. After the ENFS is introduced, its effectiveness is evaluated by a prediction-error-comparative work between the proposed method and some other methods in identifying numerical data sets such as ‘daily data of stock A’, or in identifying a function. The ENFS is then applied to identify damping force characteristics of the smart dampers. In order to evaluate the effectiveness of the ENFS in identifying the damping forces of the smart dampers, the prediction errors are presented by comparing with experimental results.

  8. Bupivacaine-induced apoptosis independently of WDR35 expression in mouse neuroblastoma Neuro2a cells

    PubMed Central

    2012-01-01

    Background Bupivacaine-induced neurotoxicity has been shown to occur through apoptosis. Recently, bupivacaine was shown to elicit reactive oxygen species (ROS) production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK) in a human neuroblastoma cell line. We have reported that WDR35, a WD40-repeat protein, may mediate apoptosis through caspase-3 activation. The present study was undertaken to test whether bupivacaine induces apoptosis in mouse neuroblastoma Neuro2a cells and to determine whether ROS, p38 MAPK, and WDR35 are involved. Results Our results showed that bupivacaine induced ROS generation and p38 MAPK activation in Neuro2a cells, resulting in apoptosis. Bupivacaine also increased WDR35 expression in a dose- and time-dependent manner. Hydrogen peroxide (H2O2) also increased WDR35 expression in Neuro2a cells. Antioxidant (EUK-8) and p38 MAPK inhibitor (SB202190) treatment attenuated the increase in caspase-3 activity, cell death and WDR35 expression induced by bupivacaine or H2O2. Although transfection of Neuro2a cells with WDR35 siRNA attenuated the bupivacaine- or H2O2-induced increase in expression of WDR35 mRNA and protein, in contrast to our previous studies, it did not inhibit the increase in caspase-3 activity in bupivacaine- or H2O2-treated cells. Conclusions In summary, our results indicated that bupivacaine induced apoptosis in Neuro2a cells. Bupivacaine induced ROS generation and p38 MAPK activation, resulting in an increase in WDR35 expression, in these cells. However, the increase in WDR35 expression may not be essential for the bupivacaine-induced apoptosis in Neuro2a cells. These results may suggest the existence of another mechanism of bupivacaine-induced apoptosis independent from WDR35 expression in Neuro2a cells. PMID:23227925

  9. Hemodynamic and Anatomic Predictors of Renovisceral Stent-Graft Occlusion Following Chimney Endovascular Repair of Juxtarenal Aortic Aneurysms.

    PubMed

    Tricarico, Rosamaria; He, Yong; Laquian, Liza; Scali, Salvatore T; Tran-Son-Tay, Roger; Beck, Adam W; Berceli, Scott A

    2017-12-01

    To identify anatomic and hemodynamic changes associated with impending visceral chimney stent-graft occlusion after endovascular aneurysm repair (EVAR) with the chimney technique (chEVAR). A retrospective evaluation was performed of computed tomography scans from 41 patients who underwent juxtarenal chEVAR from 2008 to 2012 to identify stent-grafts demonstrating conformational changes following initial placement. Six subjects (mean age 74 years; 3 men) were selected for detailed reconstruction and computational hemodynamic analysis; 4 had at least 1 occluded chimney stent-graft. This subset of repairs was systematically analyzed to define the anatomic and hemodynamic impact of these changes and identify signature patterns associated with impending renovisceral stent-graft occlusion. Spatial and temporal analyses of cross-sectional area, centerline angle, intraluminal pressure, and wall shear stress (WSS) were performed within the superior mesenteric and renal artery chimney grafts used for repair. Conformational changes in the chimney stent-grafts and associated perturbations, in both local WSS and pressure, were responsible for the 5 occlusions in the 13 stented branches. Anatomic and hemodynamic signatures leading to occlusion were identified within 1 month postoperatively, with a lumen area <14 mm 2 (p=0.04), systolic pressure gradient >25 Pa/mm (p=0.03), and systolic WSS >45 Pa (p=0.03) associated with future chimney stent-graft occlusion. Chimney stent-grafts at increased risk for occlusion demonstrated anatomic and hemodynamic signatures within 1 month of juxtarenal chEVAR. Analysis of these parameters in the early postoperative period may be useful for identifying and remediating these high-risk stent-grafts.

  10. A mixed analog/digital chaotic neuro-computer system for quadratic assignment problems.

    PubMed

    Horio, Yoshihiko; Ikeguchi, Tohru; Aihara, Kazuyuki

    2005-01-01

    We construct a mixed analog/digital chaotic neuro-computer prototype system for quadratic assignment problems (QAPs). The QAP is one of the difficult NP-hard problems, and includes several real-world applications. Chaotic neural networks have been used to solve combinatorial optimization problems through chaotic search dynamics, which efficiently searches optimal or near optimal solutions. However, preliminary experiments have shown that, although it obtained good feasible solutions, the Hopfield-type chaotic neuro-computer hardware system could not obtain the optimal solution of the QAP. Therefore, in the present study, we improve the system performance by adopting a solution construction method, which constructs a feasible solution using the analog internal state values of the chaotic neurons at each iteration. In order to include the construction method into our hardware, we install a multi-channel analog-to-digital conversion system to observe the internal states of the chaotic neurons. We show experimentally that a great improvement in the system performance over the original Hopfield-type chaotic neuro-computer is obtained. That is, we obtain the optimal solution for the size-10 QAP in less than 1000 iterations. In addition, we propose a guideline for parameter tuning of the chaotic neuro-computer system according to the observation of the internal states of several chaotic neurons in the network.

  11. A Review of Central Venous Pressure and Its Reliability as a Hemodynamic Monitoring Tool in Veterinary Medicine.

    PubMed

    Hutchinson, Kristen M; Shaw, Scott P

    2016-09-01

    To review the current literature regarding central venous pressure (CVP) in veterinary patients pertaining to placement (of central line), measurement, interpretation, use in veterinary medicine, limitations, and controversies in human medicine. CVP use in human medicine is a widely debated topic, as numerous sources have shown poor correlation of CVP measurements to the volume status of a patient. Owing to the ease of placement and monitoring in veterinary medicine, CVP remains a widely used modality for evaluating the hemodynamic status of a patient. A thorough evaluation of the veterinary and human literature should be performed to evaluate the role of CVP measurements in assessing volume status in veterinary patients. Veterinary patients that benefit from accurate CVP readings include those suffering from hypovolemic or septic shock, heart disease, or renal disease or all of these. Other patients that may benefit from CVP monitoring include high-risk anesthetic patients undergoing major surgery, trending of fluid volume status in critically ill patients, patients with continued shock, and patients that require rapid or large amounts of fluids. The goal of CVP use is to better understand a patient's intravascular volume status, which would allow early goal-directed therapy. CVP would most likely continue to play an important role in the hemodynamic monitoring of the critically ill veterinary patient; however, when available, cardiac output methods should be considered the first choice for hemodynamic monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. [How free is free will? Neuro-scientific and philosophical aspects of motivation and decision-making].

    PubMed

    Hinterhuber, Hartmann

    2012-01-01

    The question concerning the postulated freedom of will continues to occupy the neuro-sciences, psychiatry, law and neuro-philosophy. Do current research results really show that freedom and responsibility were only illusions, since previously supposed free decisions were only accompanying features of long held neuronal activations? Did Julien de La Mettrie have a great vision, when, already in the Eighteenth Century, he expected a "monsieur Machine"?This article attempts to summarize and evaluate findings that are currently available. The autonomy of human action is not only founded in a subjectively perceived act of will but far more in the ability of the human being to act according to an inner drive which is steered consciously and rationally. The autonomy of human action is not only restricted to the perceived ego, but comprises body and soul, brain and spirit and consequently the whole human being with all their characteristics, values and aims. Modern science thereby supports the old philosophical theory of a conditional freedom of will.

  13. Landslide susceptibility assessment by using a neuro-fuzzy model: a case study in the Rupestrian heritage rich area of Matera

    NASA Astrophysics Data System (ADS)

    Sdao, F.; Lioi, D. S.; Pascale, S.; Caniani, D.; Mancini, I. M.

    2013-02-01

    The complete assessment of landslide susceptibility needs uniformly distributed detailed information on the territory. This information, which is related to the temporal occurrence of landslide phenomena and their causes, is often fragmented and heterogeneous. The present study evaluates the landslide susceptibility map of the Natural Archaeological Park of Matera (Southern Italy) (Sassi and area Rupestrian Churches sites). The assessment of the degree of "spatial hazard" or "susceptibility" was carried out by the spatial prediction regardless of the return time of the events. The evaluation model for the susceptibility presented in this paper is very focused on the use of innovative techniques of artificial intelligence such as Neural Network, Fuzzy Logic and Neuro-fuzzy Network. The method described in this paper is a novel technique based on a neuro-fuzzy system. It is able to train data like neural network and it is able to shape and control uncertain and complex systems like a fuzzy system. This methodology allows us to derive susceptibility maps of the study area. These data are obtained from thematic maps representing the parameters responsible for the instability of the slopes. The parameters used in the analysis are: plan curvature, elevation (DEM), angle and aspect of the slope, lithology, fracture density, kinematic hazard index of planar and wedge sliding and toppling. Moreover, this method is characterized by the network training which uses a training matrix, consisting of input and output training data, which determine the landslide susceptibility. The neuro-fuzzy method was integrated to a sensitivity analysis in order to overcome the uncertainty linked to the used membership functions. The method was compared to the landslide inventory map and was validated by applying three methods: a ROC (Receiver Operating Characteristic) analysis, a confusion matrix and a SCAI method. The developed neuro-fuzzy method showed a good performance in the

  14. The EPTN consensus-based atlas for CT- and MR-based contouring in neuro-oncology.

    PubMed

    Eekers, Daniëlle Bp; In 't Ven, Lieke; Roelofs, Erik; Postma, Alida; Alapetite, Claire; Burnet, Neil G; Calugaru, Valentin; Compter, Inge; Coremans, Ida E M; Høyer, Morton; Lambrecht, Maarten; Nyström, Petra Witt; Romero, Alejandra Méndez; Paulsen, Frank; Perpar, Ana; de Ruysscher, Dirk; Renard, Laurette; Timmermann, Beate; Vitek, Pavel; Weber, Damien C; van der Weide, Hiske L; Whitfield, Gillian A; Wiggenraad, Ruud; Troost, Esther G C

    2018-03-13

    To create a digital, online atlas for organs at risk (OAR) delineation in neuro-oncology based on high-quality computed tomography (CT) and magnetic resonance (MR) imaging. CT and 3 Tesla (3T) MR images (slice thickness 1 mm with intravenous contrast agent) were obtained from the same patient and subsequently fused. In addition, a 7T MR without intravenous contrast agent was obtained from a healthy volunteer. Based on discussion between experienced radiation oncologists, the clinically relevant organs at risk (OARs) to be included in the atlas for neuro-oncology were determined, excluding typical head and neck OARs previously published. The draft atlas was delineated by a senior radiation oncologist, 2 residents in radiation oncology, and a senior neuro-radiologist incorporating relevant available literature. The proposed atlas was then critically reviewed and discussed by European radiation oncologists until consensus was reached. The online atlas includes one CT-scan at two different window settings and one MR scan (3T) showing the OARs in axial, coronal and sagittal view. This manuscript presents the three-dimensional descriptions of the fifteen consensus OARs for neuro-oncology. Among these is a new OAR relevant for neuro-cognition, the posterior cerebellum (illustrated on 7T MR images). In order to decrease inter- and intra-observer variability in delineating OARs relevant for neuro-oncology and thus derive consistent dosimetric data, we propose this atlas to be used in photon and particle therapy. The atlas is available online at www.cancerdata.org and will be updated whenever required. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. NeuroNames: an ontology for the BrainInfo portal to neuroscience on the web.

    PubMed

    Bowden, Douglas M; Song, Evan; Kosheleva, Julia; Dubach, Mark F

    2012-01-01

    BrainInfo ( http://braininfo.org ) is a growing portal to neuroscientific information on the Web. It is indexed by NeuroNames, an ontology designed to compensate for ambiguities in neuroanatomical nomenclature. The 20-year old ontology continues to evolve toward the ideal of recognizing all names of neuroanatomical entities and accommodating all structural concepts about which neuroscientists communicate, including multiple concepts of entities for which neuroanatomists have yet to determine the best or 'true' conceptualization. To make the definitions of structural concepts unambiguous and terminologically consistent we created a 'default vocabulary' of unique structure names selected from existing terminology. We selected standard names by criteria designed to maximize practicality for use in verbal communication as well as computerized knowledge management. The ontology of NeuroNames accommodates synonyms and homonyms of the standard terms in many languages. It defines complex structures as models composed of primary structures, which are defined in unambiguous operational terms. NeuroNames currently relates more than 16,000 names in eight languages to some 2,500 neuroanatomical concepts. The ontology is maintained in a relational database with three core tables: Names, Concepts and Models. BrainInfo uses NeuroNames to index information by structure, to interpret users' queries and to clarify terminology on remote web pages. NeuroNames is a resource vocabulary of the NLM's Unified Medical Language System (UMLS, 2011) and the basis for the brain regions component of NIFSTD (NeuroLex, 2011). The current version has been downloaded to hundreds of laboratories for indexing data and linking to BrainInfo, which attracts some 400 visitors/day, downloading 2,000 pages/day.

  16. The incidence of neuro-ophthalmic diseases in Singapore: a prospective study in public hospitals.

    PubMed

    Lim, Su Ann; Wong, Wan Ling; Fu, Esther; Goh, Kong Yong; Seah, Alvin; Tan, Clement; Tow, Sharon; Cullen, James F; Wong, Tien Y

    2009-01-01

    To describe the incidence of neuro-ophthalmic diseases in a multi-ethnic Asian population in Singapore. Prospective study in public hospitals in Singapore. All neuro-ophthalmic cases seen in four public sector hospitals over a 22-month period (September 2002 to June 2004) were identified using a standardized protocol. The 2004 Singapore population was used as a denominator to estimate annual incidence. The prevalence of ischemic risk factors (hypertension, diabetes, and hypercholesterolemia) among cases was compared to population data. A total of 1,356 patients with neuro-ophthalmic diseases were seen during the study period, of which 627 were new incident cases. The overall annual incidence of neuro-ophthalmic diseases was 9.81 per 100,000 (95% confidence interval, 8.80-10.90). The incidence increased with age. After controlling for age, the annual incidence was similar between men (10.75 per 100,000) and women (9.00 per 100,000), but was higher in Chinese (10.33 per 100,000) and Indians (9.34 per 100,000) than in Malays (6.62 per 100,000). The three commonest specific neuro-ophthalmic conditions were abducens nerve palsy (1.27 per 100,000), anterior ischemic optic neuropathy (1.08 per 100,000) and oculomotor nerve palsy (0.91 per 100,000). The incidence of optic neuritis was 0.83 per 100,000. Compared with the Singapore general population, the prevalence of diabetes was significantly higher in people aged 40-59, while the prevalence of hypercholesterolemia was significantly higher in 60-69 year age group. In this study of public hospitals in Singapore, the incidence of neuro-ophthalmic diseases was higher in Chinese and Indians compared to Malays.

  17. Protection of Neuroblastoma Neuro2A Cells from Hypoxia-Induced Apoptosis by Cyclic Phosphatidic Acid (cPA)

    PubMed Central

    Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2012-01-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We have previously shown that cPA significantly suppresses ischemia-induced delayed neuronal death and the accumulation of glial fibrillary acidic protein in the CA1 region of the rat hippocampus. These results indicated that the systemic administration of cPA can protect hippocampal neurons against ischemia-induced delayed neuronal cell death. In the current study, we investigated the effects of cPA on neuronal cell death caused by hypoxia in vitro and the molecular mechanisms underlying these effects. We used cobalt chloride (CoCl2) to expose cells to hypoxic conditions in vitro. Treating mouse neuroblastoma (Neuro2A) cells with CoCl2 induced nuclear DNA condensation and phosphatidylserine exposure. However, adding cPA led to the suppression of CoCl2-induced apoptosis in a cPA dose-dependent manner and attenuated the increase in the Bax/Bcl-2 ratio caused by CoCl2. Quantitative PCR analysis showed that Neuro2A cells strongly express the LPA1, LPA2, and LPA6, which are G-protein coupled receptors that can be activated by cPA. To date, LPA1 and LPA2 have been reported to exhibit antiapoptotic activity. Therefore, to assess the roles of LPA1 and LPA2 on cPA-induced neuroprotective functions, Ki16425, a selective LPA1 and LPA3 antagonist, was adopted to know the LPA1 function and siRNA was used to knockdown the expression of LPA2. On the basis of our results, we propose that cPA-induced protection of Neuro2A cells from CoCl2-induced hypoxia damage is mediated via LPA2. PMID:23251428

  18. Protection of neuroblastoma Neuro2A cells from hypoxia-induced apoptosis by cyclic phosphatidic acid (cPA).

    PubMed

    Gotoh, Mari; Sano-Maeda, Katsura; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2012-01-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We have previously shown that cPA significantly suppresses ischemia-induced delayed neuronal death and the accumulation of glial fibrillary acidic protein in the CA1 region of the rat hippocampus. These results indicated that the systemic administration of cPA can protect hippocampal neurons against ischemia-induced delayed neuronal cell death. In the current study, we investigated the effects of cPA on neuronal cell death caused by hypoxia in vitro and the molecular mechanisms underlying these effects. We used cobalt chloride (CoCl(2)) to expose cells to hypoxic conditions in vitro. Treating mouse neuroblastoma (Neuro2A) cells with CoCl(2) induced nuclear DNA condensation and phosphatidylserine exposure. However, adding cPA led to the suppression of CoCl(2)-induced apoptosis in a cPA dose-dependent manner and attenuated the increase in the Bax/Bcl-2 ratio caused by CoCl(2). Quantitative PCR analysis showed that Neuro2A cells strongly express the LPA(1), LPA(2), and LPA(6), which are G-protein coupled receptors that can be activated by cPA. To date, LPA(1) and LPA(2) have been reported to exhibit antiapoptotic activity. Therefore, to assess the roles of LPA(1) and LPA(2) on cPA-induced neuroprotective functions, Ki16425, a selective LPA(1) and LPA(3) antagonist, was adopted to know the LPA(1) function and siRNA was used to knockdown the expression of LPA(2). On the basis of our results, we propose that cPA-induced protection of Neuro2A cells from CoCl(2)-induced hypoxia damage is mediated via LPA(2).

  19. A selected review of abstracts from the 20th Annual Meeting of the Society for Neuro-Oncology (SNO).

    PubMed

    Chamberlain, Marc C

    2016-07-01

    20th Annual Meeting of the Society for Neuro-Oncology, San Antonio, TX, USA, 18-22 November 2015 The Society for Neuro-Oncology is the largest neuro-oncology meeting in the USA that meets annually and provides a multiday venue that showcases new brain cancer clinical trial results and basic research primarily pertaining to gliomas. The Society for Neuro-Oncology 2015 meeting comprising one education day, 2 days of premeetings and 3 days of presentation, over 200 oral presentations and 900 abstracts provides an overview of contemporary neuro-oncology that includes metastatic disease of the central nervous system as well as primary brain tumors. This review attempts to highlight select abstracts presented at this year's meeting in a short summary that provides a synopsis of a large and multifaceted meeting.

  20. Neural attention and evaluative responses to gay and lesbian couples.

    PubMed

    Dickter, Cheryl L; Forestell, Catherine A; Mulder, Blakely E

    2015-01-01

    The goal of the current study was to examine whether differential neural attentional capture and evaluative responses for out-group homosexual relative to in-group heterosexual targets occur during social categorization. To this end, 36 heterosexual participants were presented with pictures of heterosexual and homosexual couples in a picture-viewing task that was designed to assess implicit levels of discomfort toward homosexuality and explicit evaluations of pleasantness toward the images. Neural activity in the form of electroencephalogram was recorded during the presentation of the pictures, and event-related potentials resulting from these stimuli were examined. Participants also completed questionnaires that assessed the degree to which they socialized with gays and lesbians. Results demonstrated that relative to straight couples, larger P2 amplitude was observed in response to gay but not to lesbian couples. However, both gay and lesbian couples yielded a larger late positive potential than straight couples. Moreover, the degree to which participants differentially directed early neural attention to out-group lesbian versus in-group straight couples was related to their familiarity with homosexual individuals. This work, which provides an initial understanding of the neural underpinnings of attention toward homosexual couples, suggests that differences in the processing of sexual orientation can occur as early as 200 ms and may be moderated by familiarity.

  1. From Emotions to Consciousness – A Neuro-Phenomenal and Neuro-Relational Approach

    PubMed Central

    Northoff, Georg

    2012-01-01

    The James–Lange theory considers emotional feelings as perceptions of physiological body changes. This approach has recently resurfaced and modified in both neuroscientific and philosophical concepts of embodiment of emotional feelings. In addition to the body, the role of the environment in emotional feeling needs to be considered. I here claim that the environment has not merely an indirect and instrumental, i.e., modulatory role on emotional feelings via the body and its sensorimotor and vegetative functions. Instead, the environment may have a direct and non-instrumental, i.e., constitutional role in emotional feelings. This implies that the environment itself is constitutive of emotional feeling rather than the bodily representation of the environment. I call this the relational concept of emotional feeling. The present paper discusses recent data from neuroimaging that investigate emotions in relation to interoceptive processing and the brain’s intrinsic activity. These data show the intrinsic linkage of interoceptive stimulus processing to both exteroceptive stimuli and the brain’s intrinsic activity. This is possible only if the differences between intrinsic activity and intero- and exteroceptive stimuli is encoded into neural activity. Such relational coding makes possible the assignment of subjective and affective features to the otherwise objective and non-affective stimulus. I therefore consider emotions to be intrinsically affective and subjective as it is manifest in emotional feelings. The relational approach thus goes together with what may be described as neuro-phenomenal approach. Such neuro-phenomenal approach does not only inform emotions and emotional feeling but is also highly relevant to better understand the neuronal mechanisms underlying consciousness in general. PMID:22969736

  2. Vas deferens neuro-effector junction: from kymographic tracings to structural biology principles.

    PubMed

    Navarrete, L Camilo; Barrera, Nelson P; Huidobro-Toro, J Pablo

    2014-10-01

    The vas deferens is a simple bioassay widely used to study the physiology of sympathetic neurotransmission and the pharmacodynamics of adrenergic drugs. The role of ATP as a sympathetic co-transmitter has gained increasing attention and furthered our understanding of its role in sympathetic reflexes. In addition, new information has emerged on the mechanisms underlying the storage and release of ATP. Both noradrenaline and ATP concur to elicit the tissue smooth muscle contractions following sympathetic reflexes or electrical field stimulation of the sympathetic nerve terminals. ATP and adenosine (its metabolic byproduct) are powerful presynaptic regulators of co-transmitter actions. In addition, neuropeptide Y, the third member of the sympathetic triad, is an endogenous modulator. The peptide plus ATP and/or adenosine play a significant role as sympathetic modulators of transmitter's release. This review focuses on the physiological principles that govern sympathetic co-transmitter activity, with special interest in defining the motor role of ATP. In addition, we intended to review the recent structural biology findings related to the topology of the P2X1R based on the crystallized P2X4 receptor from Danio rerio, or the crystallized adenosine A2A receptor as a member of the G protein coupled family of receptors as prototype neuro modulators. This review also covers structural elements of ectonucleotidases, since some members are found in the vas deferens neuro-effector junction. The allosteric principles that apply to purinoceptors are also reviewed highlighting concepts derived from receptor theory at the light of the current available structural elements. Finally, we discuss clinical applications of these concepts. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Patient-specific analysis of post-operative aortic hemodynamics: a focus on thoracic endovascular repair (TEVAR)

    NASA Astrophysics Data System (ADS)

    Auricchio, F.; Conti, M.; Lefieux, A.; Morganti, S.; Reali, A.; Sardanelli, F.; Secchi, F.; Trimarchi, S.; Veneziani, A.

    2014-10-01

    The purpose of this study is to quantitatively evaluate the impact of endovascular repair on aortic hemodynamics. The study addresses the assessment of post-operative hemodynamic conditions of a real clinical case through patient-specific analysis, combining accurate medical image analysis and advanced computational fluid-dynamics (CFD). Although the main clinical concern was firstly directed to the endoluminal protrusion of the prosthesis, the CFD simulations have demonstrated that there are two other important areas where the local hemodynamics is impaired and a disturbed blood flow is present: the first one is the ostium of the subclavian artery, which is partially closed by the graft; the second one is the stenosis of the distal thoracic aorta. Besides the clinical relevance of these specific findings, this study highlights how CFD analyses allow to observe important flow effects resulting from the specific features of patient vessel geometries. Consequently, our results demonstrate the potential impact of computational biomechanics not only on the basic knowledge of physiopathology, but also on the clinical practice, thanks to a quantitative extraction of knowledge made possible by merging medical data and mathematical models.

  4. Baseline Hemodynamics and Response to Contrast Media During Diagnostic Cardiac Catheterization Predict Adverse Events in Heart Failure Patients.

    PubMed

    Denardo, Scott J; Vock, David M; Schmalfuss, Carsten M; Young, Gregory D; Tcheng, James E; O'Connor, Christopher M

    2016-07-01

    Contrast media administered during cardiac catheterization can affect hemodynamic variables. However, little is documented about the effects of contrast on hemodynamics in heart failure patients or the prognostic value of baseline and changes in hemodynamics for predicting subsequent adverse events. In this prospective study of 150 heart failure patients, we measured hemodynamics at baseline and after administration of iodixanol or iopamidol contrast. One-year Kaplan-Meier estimates of adverse event-free survival (death, heart failure hospitalization, and rehospitalization) were generated, grouping patients by baseline measures of pulmonary capillary wedge pressure (PCWP) and cardiac index (CI), and by changes in those measures after contrast administration. We used Cox proportional hazards modeling to assess sequentially adding baseline PCWP and change in CI to 5 validated risk models (Seattle Heart Failure Score, ESCAPE [Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness], CHARM [Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity], CORONA [Controlled Rosuvastatin Multinational Trial in Heart Failure], and MAGGIC [Meta-Analysis Global Group in Chronic Heart Failure]). Median contrast volume was 109 mL. Both contrast media caused similarly small but statistically significant changes in most hemodynamic variables. There were 39 adverse events (26.0%). Adverse event rates increased using the composite metric of baseline PCWP and change in CI (P<0.01); elevated baseline PCWP and decreased CI after contrast correlated with the poorest prognosis. Adding both baseline PCWP and change in CI to the 5 risk models universally improved their predictive value (P≤0.02). In heart failure patients, the administration of contrast causes small but significant changes in hemodynamics. Calculating baseline PCWP with change in CI after contrast predicts adverse events and increases the predictive value of

  5. GNOSIS: guidelines for neuro-oncology: standards for investigational studies--reporting of surgically based therapeutic clinical trials.

    PubMed

    Chang, Susan; Vogelbaum, Michael; Lang, Frederick F; Haines, Stephen; Kunwar, Sandeep; Chiocca, E Antonio; Olivi, Alessandro; Quinones-Hinojosa, Alfredo; Parsa, Andrew; Warnick, Ronald

    2007-04-01

    We present guidelines to standardize the reporting of surgically based neuro-oncology trials. The guidelines are summarized in a checklist format that can be used as a framework from which to construct a surgically based trial. This manuscript follows and is taken in part from GNOSIS: Guidelines for neuro-oncology: Standards for investigational studies-reporting of phase 1 and phase 2 clinical trials [Chang SM, Reynolds SL, Butowski N, Lamborn KR, Buckner JC, Kaplan RS, Bigner DD (2005) Neuro-oncology 7:425-434].

  6. NeuroElectro: a window to the world's neuron electrophysiology data

    PubMed Central

    Tripathy, Shreejoy J.; Savitskaya, Judith; Burton, Shawn D.; Urban, Nathaniel N.; Gerkin, Richard C.

    2014-01-01

    The behavior of neural circuits is determined largely by the electrophysiological properties of the neurons they contain. Understanding the relationships of these properties requires the ability to first identify and catalog each property. However, information about such properties is largely locked away in decades of closed-access journal articles with heterogeneous conventions for reporting results, making it difficult to utilize the underlying data. We solve this problem through the NeuroElectro project: a Python library, RESTful API, and web application (at http://neuroelectro.org) for the extraction, visualization, and summarization of published data on neurons' electrophysiological properties. Information is organized both by neuron type (using neuron definitions provided by NeuroLex) and by electrophysiological property (using a newly developed ontology). We describe the techniques and challenges associated with the automated extraction of tabular electrophysiological data and methodological metadata from journal articles. We further discuss strategies for how to best combine, normalize and organize data across these heterogeneous sources. NeuroElectro is a valuable resource for experimental physiologists attempting to supplement their own data, for computational modelers looking to constrain their model parameters, and for theoreticians searching for undiscovered relationships among neurons and their properties. PMID:24808858

  7. Antibody and complement reduce renal hemodynamic function in isolated perfused rat kidney.

    PubMed

    Jocks, T; Zahner, G; Helmchen, U; Kneissler, U; Stahl, R A

    1996-01-01

    To evaluate the effect of antibody and complement on renal hemodynamic changes, glomerular injury was induced in isolated perfused kidneys by an anti-thymocyte antibody (ATS) and rat serum (RS). Glomerular filtration rate (GFR), renal vascular resistance (RVR), and renal perfusate flow (RPF) were assessed over an 80-min period. The possible role of thromboxane (Tx) was tested by the application of the Tx synthesis inhibitor UK-38485 and the Tx receptor blocker daltroban. Perfusion of kidneys with ATS and RS significantly reduced GFR at 10 min (control, 501 +/- 111; ATS + RS, 138 +/- 86 ml.g kidney-1.min-1, significance of F = 0.000) after RS. Similarly, RPF (ml.g kidney-1.min-1) fell from 19.2 +/- 1.8 to 6.1 +/- 2.0 (significance of F = 0.000), whereas RVR (mmHg.ml-1.g.min) increased threefold from 5.2 +/- 0.4 to 17.9 +/- 5.0 at 10 min. These changes were ameliorated by the pretreatment of the rats with daltroban and UK-38485. Addition of erythrocytes to the perfusate increased RVR and GFR, whereas RPF decreased compared with cell-free perfused kidneys. ATS and RS in this preparation also decrease GFR and RPF. The hemodynamic alterations appeared without changes in filtration fraction. Compared with untreated, perfused control kidneys, glomerular Tx formation was significantly increased in ATS and RS perfused kidneys. These data demonstrate that antibody and RS induce impairment of renal hemodynamics, which are mediated by increased Tx formation.

  8. Multicomponent Exercise Improves Physical Functioning but Not Cognition and Hemodynamic Parameters in Elderly Osteoarthritis Patients Regardless of Hypertension

    PubMed Central

    Gonçalvez, Ivan de Oliveira; Callado Sanches, Iris; Gonçalves, Leandro

    2018-01-01

    The present study aimed to investigate the impact of a 6-month multicomponent exercise program (MCEP) on physical function, cognition, and hemodynamic parameters of elderly normotensive (NTS) and hypertensive (HTS) osteoarthritis patients. A total of 99 elderly osteoarthritis patients (44 NTS and 55 HTS) were recruited and submitted to functional, cognitive, and hemodynamic evaluations before and after six months of a MCEP. The program of exercise was performed twice a week at moderate intensity. The physical exercises aggregated functional and walking exercises. Results indicate that 6 months of MCEP were able to improve one-leg stand and mobility (walking speeds) of osteoarthritis patients regardless of hypertension. On the other hand, cognitive and hemodynamic parameters were not altered after the MCEP. The findings of the present study demonstrate that 6 months of MCEP were able to improve the physical functioning (i.e., usual and maximal walking speed and balance) of osteoarthritis patients regardless of hypertensive condition. PMID:29721504

  9. Simultaneous EEG and diffuse optical imaging of seizure-related hemodynamic activity in the newborn infant brain

    NASA Astrophysics Data System (ADS)

    Hebden, Jeremy C.; Cooper, Robert J.; Gibson, Adam; Everdell, Nick; Austin, Topun

    2012-06-01

    An optical imaging system has been developed which uses measurements of diffusely reflected near-infrared light to produce maps of changes in blood flow and oxygenation occurring within the cerebral cortex. Optical sources and detectors are coupled to the head via an array of optical fibers, on a probe held in contact with the scalp, and data is collected at a rate of 10 Hz. A clinical electroencephalography (EEG) system has been integrated with the optical system to enable simultaneous observation of electrical and hemodynamic activity in the cortex of neurologically compromised newborn infants diagnosed with seizures. Studies have made a potentially critically important discovery of previously unknown transient hemodynamic events in infants treated with anticonvulsant medication. We observed repeated episodes of small increases in cortical oxyhemoglobin concentration followed by a profound decrease in 3 of 4 infants studied, each with cerebral injury who presented with neonatal seizures. This was not accompanied by clinical or EEG seizure activity and was not present in nineteen matched controls. The underlying cause of these changes is currently unknown. We tentatively suggest that our results may be associated with a phenomenon known as cortical spreading depolarization, not previously observed in the infant brain.

  10. Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia

    PubMed Central

    Selb, Juliette; Boas, David A.; Chan, Suk-Tak; Evans, Karleyton C.; Buckley, Erin M.; Carp, Stefan A.

    2014-01-01

    Abstract. Near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) are two diffuse optical technologies for brain imaging that are sensitive to changes in hemoglobin concentrations and blood flow, respectively. Measurements for both modalities are acquired on the scalp, and therefore hemodynamic processes in the extracerebral vasculature confound the interpretation of cortical hemodynamic signals. The sensitivity of NIRS to the brain versus the extracerebral tissue and the contrast-to-noise ratio (CNR) of NIRS to cerebral hemodynamic responses have been well characterized, but the same has not been evaluated for DCS. This is important to assess in order to understand their relative capabilities in measuring cerebral physiological changes. We present Monte Carlo simulations on a head model that demonstrate that the relative brain-to-scalp sensitivity is about three times higher for DCS (0.3 at 3 cm) than for NIRS (0.1 at 3 cm). However, because DCS has higher levels of noise due to photon-counting detection, the CNR is similar for both modalities in response to a physiologically realistic simulation of brain activation. Even so, we also observed higher CNR of the hemodynamic response during graded hypercapnia in adult subjects with DCS than with NIRS. PMID:25453036

  11. Standard and Strain Measurements by Echocardiography Detect Early Overloaded Right Ventricular Dysfunction: Validation against Hemodynamic and Myocyte Contractility Changes in a Large Animal Model.

    PubMed

    Hodzic, Amir; Bobin, Pierre; Mika, Delphine; Ly, Mohamed; Lefebvre, Florence; Lechêne, Patrick; Le Bret, Emmanuel; Gouadon, Elodie; Coblence, Mathieu; Vandecasteele, Grégoire; Capderou, André; Leroy, Jérôme; Rucker-Martin, Catherine; Lambert, Virginie

    2017-11-01

    Early detection of right ventricular (RV) failure is required to improve the management of patients with congenital heart diseases. The aim of this study was to validate echocardiography for the early detection of overloaded RV dysfunction, compared with hemodynamic and myocyte contractility assessment. Using a porcine model reproducing repaired tetralogy of Fallot, RV function was evaluated over 4 months using standard echocardiography and speckle-tracking compared with hemodynamic parameters (conductance catheter). Sarcomere shortening and calcium transients were recorded in RV isolated myocytes. Contractile reserve (ΔE max ) was assessed by β-adrenergic stimulation in vivo (dobutamine 5 μg/kg) and ex vivo (isoproterenol 100 nM). Six operated animals were compared with four age- and sex-matched controls. In the operated group, hemodynamic RV efficient ejection fraction was significantly decreased (29.7% [26.2%-34%] vs 42.9% [40.7%-48.6%], P < .01), and inotropic responses to dobutamine were attenuated (ΔE max was 51% vs 193%, P < .05). Echocardiographic measurements of fraction of area change, tricuspid annular plane systolic excursion, tricuspid annular peak systolic velocity (S') and RV free wall longitudinal systolic strain and strain rate were significantly decreased. Strain rate, S', and tricuspid annular plane systolic excursion were correlated with ΔE max (r = 0.75, r = 0.78, and r = 0.65, respectively, P < .05). These alterations were associated in RV isolated myocytes with the decrease of sarcomere shortening in response to isoproterenol and perturbations of calcium homeostasis assessed by the increase of spontaneous calcium waves. In this porcine model, both standard and strain echocardiographic parameters detected early impairments of RV function and cardiac reserve, which were associated with cardiomyocyte excitation-contraction coupling alterations. Copyright © 2017 American Society of Echocardiography. Published by Elsevier

  12. Cerebral hemodynamics in patients with obstructive sleep apnea syndrome monitored with near-infrared spectroscopy (NIRS) during positive airways pressure (CPAP) therapy: a pilot study

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongxing; Schneider, Maja; Laures, Marco; Fritschi, Ursula; Lehner, Isabella; Qi, Ming; Khatami, Ramin

    2014-03-01

    In obstructive sleep apnea syndrome (OSA) the periodic reduction or cessation of breathing due to narrowing or occlusion of the upper airway during sleep leads to daytime symptoms and increased cardiovascular risk, including stroke. The higher risk of stroke is related to the impairment in cerebral vascular autoregulation. Continuous positive airways pressure (CPAP) therapy at night is the most effective treatment for OSA. However, there is no suitable bedside monitoring method evaluating the treatment efficacy of CPAP therapy, especially to monitor the recovery of cerebral hemodynamics. NIRS is ideally suited for non-invasive monitoring the cerebral hemodynamics during sleep. In this study, we will for first time assess dynamic changes of cerebral hemodynamics during nocturnal CPAP therapy in 3 patients with OSA using NIRS. We found periodic oscillations in HbO2, HHb, tissue oxygenation index (TOI) and blood volume associated with periodic apnea events without CPAP in all OSA patients. These oscillations were gradually attenuated and finally eliminated with the stepwise increments of CPAP pressures. The oscillations were totally eliminated in blood volume earlier than in other hemodynamic parameters. These results suggested that 1) the cerebral hemodynamic oscillations induced by OSA events can effectively be attenuated by CPAP therapy, and 2) blood flow and blood volume recovered first during CPAP therapy, followed by the recovery of oxygen consumption. Our study suggested that NIRS is a useful tool to evaluate the efficacy of CPAP therapy in patients with OSA bedside and in real time.

  13. Online Removal of Baseline Shift with a Polynomial Function for Hemodynamic Monitoring Using Near-Infrared Spectroscopy.

    PubMed

    Zhao, Ke; Ji, Yaoyao; Li, Yan; Li, Ting

    2018-01-21

    Near-infrared spectroscopy (NIRS) has become widely accepted as a valuable tool for noninvasively monitoring hemodynamics for clinical and diagnostic purposes. Baseline shift has attracted great attention in the field, but there has been little quantitative study on baseline removal. Here, we aimed to study the baseline characteristics of an in-house-built portable medical NIRS device over a long time (>3.5 h). We found that the measured baselines all formed perfect polynomial functions on phantom tests mimicking human bodies, which were identified by recent NIRS studies. More importantly, our study shows that the fourth-order polynomial function acted to distinguish performance with stable and low-computation-burden fitting calibration (R-square >0.99 for all probes) among second- to sixth-order polynomials, evaluated by the parameters R-square, sum of squares due to error, and residual. This study provides a straightforward, efficient, and quantitatively evaluated solution for online baseline removal for hemodynamic monitoring using NIRS devices.

  14. Quantification of sand fraction from seismic attributes using Neuro-Fuzzy approach

    NASA Astrophysics Data System (ADS)

    Verma, Akhilesh K.; Chaki, Soumi; Routray, Aurobinda; Mohanty, William K.; Jenamani, Mamata

    2014-12-01

    In this paper, we illustrate the modeling of a reservoir property (sand fraction) from seismic attributes namely seismic impedance, seismic amplitude, and instantaneous frequency using Neuro-Fuzzy (NF) approach. Input dataset includes 3D post-stacked seismic attributes and six well logs acquired from a hydrocarbon field located in the western coast of India. Presence of thin sand and shale layers in the basin area makes the modeling of reservoir characteristic a challenging task. Though seismic data is helpful in extrapolation of reservoir properties away from boreholes; yet, it could be challenging to delineate thin sand and shale reservoirs using seismic data due to its limited resolvability. Therefore, it is important to develop state-of-art intelligent methods for calibrating a nonlinear mapping between seismic data and target reservoir variables. Neural networks have shown its potential to model such nonlinear mappings; however, uncertainties associated with the model and datasets are still a concern. Hence, introduction of Fuzzy Logic (FL) is beneficial for handling these uncertainties. More specifically, hybrid variants of Artificial Neural Network (ANN) and fuzzy logic, i.e., NF methods, are capable for the modeling reservoir characteristics by integrating the explicit knowledge representation power of FL with the learning ability of neural networks. In this paper, we opt for ANN and three different categories of Adaptive Neuro-Fuzzy Inference System (ANFIS) based on clustering of the available datasets. A comparative analysis of these three different NF models (i.e., Sugeno-type fuzzy inference systems using a grid partition on the data (Model 1), using subtractive clustering (Model 2), and using Fuzzy c-means (FCM) clustering (Model 3)) and ANN suggests that Model 3 has outperformed its counterparts in terms of performance evaluators on the present dataset. Performance of the selected algorithms is evaluated in terms of correlation coefficients (CC), root

  15. Hemodynamic Response to Hemodialysis With Ultrafiltration Rate Profiles Either Gradually Decreasing or Gradually Increasing.

    PubMed

    Morales-Alvarez, Ricardo; Martínez-Memije, Raúl; Becerra-Luna, Brayans; García-Paz, Paola; Infante, Oscar; Palma-Ramírez, Alfredo; Caviedes-Aramburu, Amaya; Vargas-Barrón, Jesús; Lerma, Claudia; Pérez-Grovas, Héctor

    2016-07-01

    Hemodialysis (HD) is usually performed with the gradually decreasing ultrafiltration rate (UFR) profile (dUFR). The aim of the present study was to compare the hemodynamic response to HD with the dUFR to that of HD with the gradually increasing UFR profile (iUFR). The study population included 10 patients (three women, mean age: 28 ± 8 years) undergoing maintenance HD who had reached dry weight without taking antihypertensive medications. Each patient received (in random order) one HD session with the dUFR and another with the iUFR (both with 3 h total UFR = 2200 mL). Hemodynamic response was evaluated with a brachial blood pressure (BP) monitor, echocardiogram and Portapres to measure digital BP, heart rate, cardiac output, stroke volume, and peripheral resistance. Mean values were compared at each HD hour during the first 3 h of a 4-h HD session. The HD characteristics, including Kt/V, were similar for both UFR profiles. Relative blood volume decreased more gradually and linearly with the iUFR. Hemodynamic variables were not significantly different between the two profiles, but brachial BP was more stable with the iUFR. Digital diastolic BP increased with both profiles. Peripheral resistance increased with both profiles, and tended to increase more with the iUFR. Echocardiographic variables changed similarly during the HD session with both profiles. In conclusion, these two UFR profiles are similar in most hemodynamic variables. The statistical equivalence of both profiles suggests that either could be prescribed based on the clinical characteristics of the patient. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. Phase-contrast MRI versus numerical simulation to quantify hemodynamical changes in cerebral aneurysms after flow diverter treatment

    PubMed Central

    Frolov, Sergey; Prothmann, Sascha; Liepsch, Dieter; Balasso, Andrea; Berg, Philipp; Kaczmarz, Stephan; Kirschke, Jan Stefan

    2018-01-01

    Cerebral aneurysms are a major risk factor for intracranial bleeding with devastating consequences for the patient. One recently established treatment is the implantation of flow-diverters (FD). Methods to predict their treatment success before or directly after implantation are not well investigated yet. The aim of this work was to quantitatively study hemodynamic parameters in patient-specific models of treated cerebral aneurysms and its correlation with the clinical outcome. Hemodynamics were evaluated using both computational fluid dynamics (CFD) and phase contrast (PC) MRI. CFD simulations and in vitro MRI measurements were done under similar flow conditions and results of both methods were comparatively analyzed. For preoperative and postoperative distribution of hemodynamic parameters, CFD simulations and PC-MRI velocity measurements showed similar results. In both cases where no occlusion of the aneurysm was observed after six months, a flow reduction of about 30-50% was found, while in the clinically successful case with complete occlusion of the aneurysm after 6 months, the flow reduction was about 80%. No vortex was observed in any of the three models after treatment. The results are in agreement with recent studies suggesting that CFD simulations can predict post-treatment aneurysm flow alteration already before implantation of a FD and PC-MRI could validate the predicted hemodynamic changes right after implantation of a FD. PMID:29304062

  17. Venous hemodynamic changes in the surgical treatment of primary varicose vein of the lower limbs.

    PubMed

    Kim, Ick-Hee; Joh, Jin-Hyun; Kim, Dong-Ik

    2004-08-31

    Venous hemodynamic changes after the surgery of primary varicose veins were evaluated. (Materials and methods) We retrospectively analyzed 1,211 patients (1,407 limbs) who underwent surgery for primary varicose veins from 1994 to 2002. The venous hemodynamics were evaluated using air- plethysmography (APG) preoperatively and one month postoperatively in the viewpoints of ambulatory venous pressure (AVP), venous volume (VV), venous filling index (VFI), and ejection fraction (EF). (Results) The surgical modalities included 958 cases of greater saphenous vein high ligation (GSV HL) and stripping with varicosectomy (VS), 222 cases of short saphenous vein (SSV) HL and VS, 143 cases of external banding valvuloplasty of GSV and VS, and 44 cases using VNUS and VS. The reduction rate of VV was 20.9 +/- 14.1% in the GSV stripping group, 12.0 +/- 14.7% in the GSV valvuloplasty group, 18.3 +/- 16.1% in the VNUS group, and 20.6 +/- 15.9% in the SSV group. The reduction rate of VFI was 63.6 +/- 20.7% in the GSV stripping group, 38.8 +/- 40.9% in the GSV valvuloplasty group, 60.1 +/- 23.9% in the VNUS group, and 37.6 +/- 30.2% in the SSV group. The increasing rate of EF was 25.0 +/- 28.2% in the GSV stripping group, 21.0 +/- 30.0% in the GSV valvuloplasty group, 29.4 +/- 31.9% in the VNUS group, and 30.0 +/- 36.5% in the SSV group. The reduction rate of AVP was 25.4 +/- 32.2% in the GSV stripping group, -6.1 +/- 58.1% in the GSV valvuloplasty group, 28.4 +/- 38.5% in the VNUS group, and 14.1 +/- 49.0% in the SSV group. All of the patients showed improvements in venous hemodynamics by showing a decrease in VV, VFI, AVP, and an increase in EF. However, there was no difference in the change of venous hemodynamics according to the type of surgery.

  18. Linking of the quality of life in neurological disorders (Neuro-QoL) to the international classification of functioning, disability and health.

    PubMed

    Wong, Alex W K; Lau, Stephen C L; Cella, David; Lai, Jin-Shei; Xie, Guanli; Chen, Lidian; Chan, Chetwyn C H; Heinemann, Allen W

    2017-09-01

    The quality of life in neurological disorders (Neuro-QoL) is a U.S. National Institutes of Health initiative that produced a set of self-report measures of physical, mental, and social health experienced by adults or children who have a neurological condition or disorder. To describe the content of the Neuro-QoL at the item level using the World Health Organization's international classification of functioning, disability and health (ICF). We assessed the Neuro-QoL for its content coverage of functioning and disability relative to each of the four ICF domains (i.e., body functions, body structures, activities and participation, and environment). We used second-level ICF three-digit codes to classify items into categories within each ICF domain and computed the percentage of categories within each ICF domain that were represented in the Neuro-QoL items. All items of Neuro-QoL could be mapped to the ICF categories at the second-level classification codes. The activities and participation domain and the mental functions category of the body functions domain were the areas most often represented by Neuro-QoL. Neuro-QoL provides limited coverage of the environmental factors and body structure domains. Neuro-QoL measures map well to the ICF. The Neuro-QoL-ICF-mapped items provide a blueprint for users to select appropriate measures in ICF-based measurement applications.

  19. NeuroLines: A Subway Map Metaphor for Visualizing Nanoscale Neuronal Connectivity.

    PubMed

    Al-Awami, Ali K; Beyer, Johanna; Strobelt, Hendrik; Kasthuri, Narayanan; Lichtman, Jeff W; Pfister, Hanspeter; Hadwiger, Markus

    2014-12-01

    We present NeuroLines, a novel visualization technique designed for scalable detailed analysis of neuronal connectivity at the nanoscale level. The topology of 3D brain tissue data is abstracted into a multi-scale, relative distance-preserving subway map visualization that allows domain scientists to conduct an interactive analysis of neurons and their connectivity. Nanoscale connectomics aims at reverse-engineering the wiring of the brain. Reconstructing and analyzing the detailed connectivity of neurons and neurites (axons, dendrites) will be crucial for understanding the brain and its development and diseases. However, the enormous scale and complexity of nanoscale neuronal connectivity pose big challenges to existing visualization techniques in terms of scalability. NeuroLines offers a scalable visualization framework that can interactively render thousands of neurites, and that supports the detailed analysis of neuronal structures and their connectivity. We describe and analyze the design of NeuroLines based on two real-world use-cases of our collaborators in developmental neuroscience, and investigate its scalability to large-scale neuronal connectivity data.

  20. Reflections on 50 Years of Neuroscience Nursing: Neuro-Oncology, Moving Forward by Looking Back.

    PubMed

    Reed, Marilyn E; Anthony, Patricia P; Rosenfeld, Priscilla B; Ligon, Brandi L; Doris, Estelle M; Fox, Sherry W

    2018-06-01

    During the past 50 years, there have been more than 100 articles published in the Journal of Neuroscience Nursing covering the topic of neuro-oncology. This article will explore the historical implications and milestones from these articles. The analysis highlights the scope and depth of the many articles as they relate to the advancements in neuro-oncology.

  1. Study of severe scorpion envenoming following subcutaneous venom injection into dogs: Hemodynamic and concentration/effect analysis.

    PubMed

    Elatrous, Souheil; Ouanes-Besbes, Lamia; Ben Sik-Ali, Habiba; Hamouda, Zineb; BenAbdallah, Saoussen; Tilouche, Nejla; Jalloul, Faten; Fkih-Hassen, Mohamed; Dachraoui, Fahmi; Ouanes, Islem; Abroug, Fekri

    2015-09-15

    To evaluate the dose-effects of Androctonus australis hector (Aah) venom injected subcutaneously on hemodynamics and neurohormonal secretions, 10 anesthetized and ventilated mongrel dogs, were split in two groups (n = 5/group). Subcutaneous injection was done with either 0.2 mg/kg or 0.125 mg/kg of the purified G50 scorpion toxic fraction. Hemodynamic parameters using right heart catheter were recorded and plasma concentrations of catecholamine, troponin, and serum toxic fraction were measured sequentially from baseline to 120 min. We identified the dose of toxic fraction evoking characteristic hemodynamic perturbation of severe envenomation, the time-lapse to envenomation, and the associated plasma level. The injection of 0.125 mg/kg toxic fraction was not associated with significant variations in hemodynamic parameters, whereas the 0.2 mg/kg dose caused envenomation characterized by significant increase in plasma catecholamines, increased pulmonary artery occluded pressure, mean arterial pressure, and systemic vascular resistance (p < 0.05), in association with sustained decline in cardiac output (p < 0.001). Envenomation occurred by the 30th minute, and the corresponding concentration of toxic fraction was 1.14 ng/ml. The current experiment allowed the identification of the sub-lethal dose (0.2 mg/kg) of the toxic fraction of Aah administered by the subcutaneous route. Two parameters with potential clinical relevance were also uncovered: the time-lapse to envenomation and the corresponding concentration of toxic fraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Ocular hemodynamics and glaucoma: the role of mathematical modeling.

    PubMed

    Harris, Alon; Guidoboni, Giovanna; Arciero, Julia C; Amireskandari, Annahita; Tobe, Leslie A; Siesky, Brent A

    2013-01-01

    To discuss the role of mathematical modeling in studying ocular hemodynamics, with a focus on glaucoma. We reviewed recent literature on glaucoma, ocular blood flow, autoregulation, the optic nerve head, and the use of mathematical modeling in ocular circulation. Many studies suggest that alterations in ocular hemodynamics play a significant role in the development, progression, and incidence of glaucoma. Although there is currently a limited number of studies involving mathematical modeling of ocular blood flow, regulation, and diseases (such as glaucoma), preliminary modeling work shows the potential of mathematical models to elucidate the mechanisms that contribute most significantly to glaucoma progression. Mathematical modeling is a useful tool when used synergistically with clinical and laboratory data in the study of ocular blood flow and glaucoma. The development of models to investigate the relationship between ocular hemodynamic alterations and glaucoma progression will provide a unique and useful method for studying the pathophysiology of glaucoma.

  3. [A mid-term clinical and hemodynamic evaluation of the Wessex and Hancock II bioprostheses].

    PubMed

    Santalla, A; Rodríguez-Bailón, I; Calleja, M; Tercedor, L; Cervera, S; Lara, J; Moreno, T

    1992-01-01

    The purpose of this study is to compare clinically and hemodynamically the Wessex and Hancock II porcine bioprostheses. We compared functional class and data from echo-Doppler in 34 Wessex bioprostheses (group A) with those in 42 Hancock II bioprostheses (group B). We subdivided group A into A1 and A2. A1 was made up of 23 Wessex manufactured since 1986. A2 constituted 11 Wessex made before 1986 which belonged to a series with some variations in the manufacturing process, and in which some early dysfunctions have been described. We compared data from these sub-groups between each other as well as with those of group B. The groups were homogeneous in age, sex, patients body surface and the time elapsed since the prosthetic implant. The mean mitral gradient, the mitral area, the peak aortic gradient and the regurgitation incidence were similar in groups A and B. In A2 the mean mitral gradient was significantly superior to that of group B (7.1 +/- 1.1 mmHg vs 5.4 +/- 1.4 mmHg; p less than 0.01), and the mitral area showed a tendency to be inferior, although with no statistical significance. The functional class of the patients was similar in all the groups. We conclude that the Wessex bioprosthesis presents hemodynamic data and functional class similar to those of the Hancock II, with the exception of a sub-group of Wessex manufactured before 1986 which presents mean mitral gradients superior to the others and which would warrant further studies.

  4. Impact of country of birth on progression of steady and pulsatile hemodynamic parameters in normotensive and hypertensive subjects.

    PubMed

    Thomas, Frédérique; Pannier, Bruno; Safar, Michel E

    2013-01-01

    The impact of country of birth (Africa, Asia, or France) on variations of hemodynamic, clinical, and biological parameters of a French general population was evaluated. The study included 2743 subjects (1641 men, 1102 women; mean age 45.4 ± 13.5 years) with at least two health checkups at the Centre d'Investigations Préventives et Cliniques, Paris, between 2008 and 2011. The interval between the two visits (V1, V2) was 1.74 ± 0.66 years. Changes of hemodynamic, biological and clinical markers were calculated using the V2-V1 absolute difference or percent variation. African- and Asian-born were compared separately to French-born subjects using variance analysis and χ² tests. In men, country of birth was not associated with any significant mean hemodynamic parameter variation. In women, mean brachial and central pulse pressures, heart rate (HR), and central augmentation index (CAI) varied significantly more among African- than Asian-born women, when compared with French-born women. For each hemodynamic parameter, V1 values were the first predictive of this change. Country of birth was a significant predictor of HR and CAI changes. Evaluation of interactions showed that a gender × birth country interaction was significant with CAI variation and, to a lesser extent, HR. Finally, country of birth impacted changes in CAI differently in men and women, suggesting that wave reflections play an important role in cardiovascular risk mainly in women. Their effects act predominantly on pulse pressure level and its amplification, indicating an increasing contribution of CAI with age. Copyright © 2013 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  5. Intravenous flurbiprofen axetil can stabilize the hemodynamic instability due to mesenteric traction syndrome--evaluation with continuous measurement of the systemic vascular resistance index using a FloTrac® sensor.

    PubMed

    Takada, Motoshi; Taruishi, Chieko; Sudani, Tomoko; Suzuki, Akira; Iida, Hiroki

    2013-08-01

    Evaluation of the stabilizing effect of intravenous flurbiprofen axetil against hemodynamic instability due to mesenteric traction syndrome (MTS) by continuous measurement of systemic vascular resistance index (SVRI) using a FloTrac(®) sensor was evaluated. Prospective randomized trial. A single-center study performed in an educational hospital. Two prospective studies were carried out, each with 40 patients scheduled for elective open abdominal surgery. Twenty patients received 50 mg of flurbiprofen axetil after the recognition of MTS by the anesthesiologist (group FT). The remaining patients served as controls (groups CP and CT). SVRI data was collected every 20 seconds for 1 hour after starting the laparotomy. The average SVRI prior to skin incision was taken as the baseline. Following 3 values were devised to evaluate MTS: the S-value (sum total of changes in SVRI from baseline), the T-value (period during which SVRI remained 20% or more below baseline), and the M-value (maximum change in SVRI from baseline). In group FP, decrease in SVRI was smaller than in group CP, and statistical differences in the 3 values were found. In group FT, SVRI recovered earlier than in group CT, and statistical differences were found in S-value and T-value. However, the M-value had no statistical differences. Intravenous flurbiprofen axetil can stabilize the hemodynamic instability due to MTS. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Integrating RNA sequencing into neuro-oncology practice.

    PubMed

    Rogawski, David S; Vitanza, Nicholas A; Gauthier, Angela C; Ramaswamy, Vijay; Koschmann, Carl

    2017-11-01

    Malignant tumors of the central nervous system (CNS) cause substantial morbidity and mortality, yet efforts to optimize chemo- and radiotherapy have largely failed to improve dismal prognoses. Over the past decade, RNA sequencing (RNA-seq) has emerged as a powerful tool to comprehensively characterize the transcriptome of CNS tumor cells in one high-throughput step, leading to improved understanding of CNS tumor biology and suggesting new routes for targeted therapies. RNA-seq has been instrumental in improving the diagnostic classification of brain tumors, characterizing oncogenic fusion genes, and shedding light on intratumor heterogeneity. Currently, RNA-seq is beginning to be incorporated into regular neuro-oncology practice in the form of precision neuro-oncology programs, which use information from tumor sequencing to guide implementation of personalized targeted therapies. These programs show great promise in improving patient outcomes for tumors where single agent trials have been ineffective. As RNA-seq is a relatively new technique, many further applications yielding new advances in CNS tumor research and management are expected in the coming years. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. In vivo hemodynamic and electrocardiographic changes following Crataegus aronia syn. Azarolus L administration to normotensive Wistar rats.

    PubMed

    Shatoor, Abdullah S

    2013-02-01

    To evaluate the effects of the whole plant aqueous extract of Crataegus aronia (C. aronia) syn. Azarolus (L) on the hemodynamic and electrocardiographic intervals in albino rats. This study was carried out in 2 stages at the Research Laboratory, Physiology Department, Medical College of King Khalid University, Abha, Kingdom of Saudi Arabia between February and June 2012. First, the effects of C. aronia syn. Azarolus (L) on the hemodynamics and electrocardiograph in 54 Wistar male rats were assessed, then the mechanisms underlying the hemodynamic and electrocardiographic changes observed in the first stage were evaluated in 48 rats of the same species. The C. aronia administered at escalating doses (0.05-20 microgram/kg) produced a dose-time-dependent decrease in heart rate (HR) and mean arterial pressure (MAP). Higher doses (15 and 20 microgram/kg) produced the most significant reduction in both HR and MAP, and induced sinus node suppression and progressive atrio-ventricular blockade. The underlying mechanism of the induced bradyarrhythmia appeared to be due to the direct stimulation of the muscarinic receptor M2 and possible blockade of beta-receptors, while the hypotension was caused by enhanced nitric oxide release. No significant alterations in the electrocardiogram (ECG) components were observed. The administration of the C. aronia syn. Azarolus extract induced bradyarrhythmia and hypotension, without alteration in the ECG components.

  8. Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods

    NASA Astrophysics Data System (ADS)

    Durduran, Turgut

    Diffuse optical techniques were used to measure hemodynamics of tissues non-invasively. Spectroscopy and tomography of the brain, muscle and implanted tumors were carried out in animal models and humans. Two qualitatively different methods, diffuse optical tomography and diffuse correlation tomography, were hybridized permitting simultaneous measurement of total hemoglobin concentration, blood oxygen saturation and blood flow. This combination of information was processed further to derive estimates of oxygen metabolism (e.g. CMRO 2) in tissue. The diffuse correlation measurements of blood flow were demonstrated in human tissues, for the first time, demonstrating continous, non-invasive imaging of oxygen metabolism in large tissue volumes several centimeters below the tissue surface. The bulk of these investigations focussed on cerebral hemodynamics. Extensive validation of this methodology was carried out in in vivo rat brain models. Three dimensional images of deep tissue hemodynamics in middle cerebral artery occlusion and cortical spreading depression (CSD) were obtained. CSD hemodynamics were found to depend strongly on partial pressure of carbon dioxide. The technique was then adapted for measurement of human brain. All optical spectroscopic measurements of CMRO2 during functional activation were obtained through intact human skull non-invasively. Finally, a high spatio-temporal resolution measurement of cerebral blood flow due to somatosensory cortex activation following electrical forepaw stimulation in rats was carried out with laser speckle flowmetry. New analysis methods were introduced for laser speckle flowmetry. In other organs, deep tissue hemodynamics were measured on human calf muscle during exercise and cuff-ischemia and were shown to have some clinical utility for peripheral vascular disease. In mice tumor models, the measured hemodynamics were shown to be predictive of photodynamic therapy efficacy, again suggesting promise of clinical utility

  9. Damage control of civilian penetrating brain injuries in environments of low neuro-monitoring resources.

    PubMed

    Charry, José D; Rubiano, Andrés M; Puyana, Juan C; Carney, Nancy; David Adelson, P

    2016-01-01

    Gunshot wounds to the head are more common in military settings. Recently, a damage control (DC) approach for the management of these lesions has been used in combat areas. The aim of this study was to evaluate the results of civilian patients with penetrating gunshot wounds to the head, managed with a strategy of early cranial decompression (ECD) as a DC procedure in a university hospital with few resources for intensive care unit (ICU) neuro-monitoring in Colombia. Fifty-four patients were operated according to the DC strategy (<12 h after injury), over a 4-year period. Variables were analysed and results were evaluated according to the Glasgow Outcome Scale (GOS) at 12 months post injury; a dichotomous variable was established as 'favourable' (GOS 4-5) or 'unfavourable' (GOS 1-3). A univariate analysis was performed using a χ(2) test. Forty (74.1%) of the patients survived and 36 (90%) of them had favourable GOS. Factors associated with adverse outcomes were: Injury Severity Score (ISS) greater than 25, bi-hemispheric involvement, intra-cerebral haematoma on the first CT, closed basal cisterns and non-reactive pupils in the emergency room. DC for neurotrauma with ECD is an option to improve survival and favourable neurological outcomes 12 months after injury in patients with penetrating traumatic brain injury treated in a university hospital with few resources for ICU neuro-monitoring.

  10. Recent Developments of 18F-FET PET in Neuro-oncology.

    PubMed

    Muoio, Barbara; Giovanella, Luca; Treglia, Giorgio

    2017-11-23

    From the past decade to date several studies about O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) positron emission tomography (PET) in brain tumours have been published in the literature. Objective The aim of this narrative review is to summarize the recent developments and the current role of 18F-FET PET in brain tumours according to recent literature data. Methods Main findings from selected recently published and relevant articles on the role of 18F-FET PET in neuro-oncology were described. Results 18F-FET PET may be useful in the differential diagnosis between brain tumours and non-neoplastic lesions and between low-grade and high-grade gliomas. Integration of 18F-FET PET into surgical planning allows better delineation of the extent of resection beyond margins visible with standard MRI. For biopsy planning, 18F-FET PET is particularly useful in identifying malignant foci within non-contrast-enhancing gliomas. 18F-FET PET may improve the radiation therapy planning in patients with gliomas. This metabolic imaging method may be useful to evaluate treatment response in patients with gliomas and it improves the differential diagnosis between brain tumours recurrence and post-treatment changes. 18F-FET PET may provide useful prognostic information in high-grade gliomas. Conclusions Based on recent literature data 18F-FET PET may provide additional diagnostic information compared to standard MRI in neuro-oncology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. A biomedical solicitation examination of nanoparticles as drug agents to minimize the hemodynamics of a stenotic channel

    NASA Astrophysics Data System (ADS)

    Ijaz, S.; Nadeem, S.

    2017-11-01

    A theoretical examination is presented in this analysis to study the flow of a bio-nanofluid through a curved stenotic channel. The curved channel is considered with an overlapping stenotic region. The effect of convective conditions is incorporated to discuss the heat transfer characteristic. The mathematical problem of a curved stenotic channel is formulated and then solved by using the exact technique. To discuss the hemodynamics of a curved stenotic channel the expression of resistance to blood is evaluated by dividing the channel into pre-stenotic, stenotic and post stenotic region. In this investigation gold, silver and copper nanoparticles are used as drug carriers. The outcomes of the graphical illustration reveal that with an increase in nanoparticle concentration hemodynamics effects of stenosed curved channel are reduced and they also conclude that the drug Au nanoparticles are more effective to minimize hemodynamics when compared to the drug Ag and Cu nanoparticles. This analysis finds valuable theoretical information for nanoparticles used as drug agents in the field of bio-inspired applications.

  12. Computational medical imaging and hemodynamics framework for functional analysis and assessment of cardiovascular structures.

    PubMed

    Wong, Kelvin K L; Wang, Defeng; Ko, Jacky K L; Mazumdar, Jagannath; Le, Thu-Thao; Ghista, Dhanjoo

    2017-03-21

    Cardiac dysfunction constitutes common cardiovascular health issues in the society, and has been an investigation topic of strong focus by researchers in the medical imaging community. Diagnostic modalities based on echocardiography, magnetic resonance imaging, chest radiography and computed tomography are common techniques that provide cardiovascular structural information to diagnose heart defects. However, functional information of cardiovascular flow, which can in fact be used to support the diagnosis of many cardiovascular diseases with a myriad of hemodynamics performance indicators, remains unexplored to its full potential. Some of these indicators constitute important cardiac functional parameters affecting the cardiovascular abnormalities. With the advancement of computer technology that facilitates high speed computational fluid dynamics, the realization of a support diagnostic platform of hemodynamics quantification and analysis can be achieved. This article reviews the state-of-the-art medical imaging and high fidelity multi-physics computational analyses that together enable reconstruction of cardiovascular structures and hemodynamic flow patterns within them, such as of the left ventricle (LV) and carotid bifurcations. The combined medical imaging and hemodynamic analysis enables us to study the mechanisms of cardiovascular disease-causing dysfunctions, such as how (1) cardiomyopathy causes left ventricular remodeling and loss of contractility leading to heart failure, and (2) modeling of LV construction and simulation of intra-LV hemodynamics can enable us to determine the optimum procedure of surgical ventriculation to restore its contractility and health This combined medical imaging and hemodynamics framework can potentially extend medical knowledge of cardiovascular defects and associated hemodynamic behavior and their surgical restoration, by means of an integrated medical image diagnostics and hemodynamic performance analysis framework.

  13. Clinical outcomes and changes in venous hemodynamics after subfascial endoscopic perforating vein surgery.

    PubMed

    Ting, A C W; Cheng, S W K; Ho, P; Wu, L L H; Cheung, G C Y

    2003-08-01

    We evaluated the clinical results of subfascial endoscopic perforating vein surgery (SEPS) in patients with severe chronic venous insufficiency (CVI) (clinical class 4-6) and assessed the hemodynamic changes associated with SEPS using air plethysmography (APG). Forty-five patients with severe CVI who had undergone SEPS were evaluated. Clinical score and venous hemodynamics, as measured by APG before operation and at 1 month and 1 year after operation, were compared using the Wilcoxon signed rank test. Patient satisfaction (on a visual analogue scale of 0 to 100%) was also assessed. There were 29 men and 16 women; their mean age was 60 years (range, 37-83). Thirty-five patients (78%) had active venous ulcers; the ulcers' mean size was 7.8 +/- 11.9 cm2 and the mean duration of ulceration was 9 +/- 10 months. There were no hospital deaths. Postoperative complications were uncommon (one groin wound infection and one case of thrombophlebitis). At a mean follow-up of 15 +/- 9 months, 34 ulcers (97%) had healed. The cumulative ulcer healing was 82% at 3 months. There were five recurrent ulcers (15%). Significant improvement was seen in the clinical scores (10 +/- 3 before operation, 6 +/- 4 at 1 month, and 4 +/- 3 at 1 year after operation). The venous filling index was also significantly improved after operation; this improvement was maintained at 1-year follow-up (7.36 +/- 6.23 ml/sec before operation, 3.63 +/- 3.90 ml/sec at 1 month, and 3.14 +/- 2.06 ml/sec at 1 year). The degree of patient satisfaction was also remarkable, with 74 +/- 17% and 90 +/- 12% satisfaction at 1-month and 1-year follow-up, respectively. SEPS is a safe and effective treatment for patients with severe CVI. It leads to hemodynamic improvement, with rapid ulcer healing, and it is associated with a high degree of patient satisfaction.

  14. Heterogeneous Optimization Framework: Reproducible Preprocessing of Multi-Spectral Clinical MRI for Neuro-Oncology Imaging Research.

    PubMed

    Milchenko, Mikhail; Snyder, Abraham Z; LaMontagne, Pamela; Shimony, Joshua S; Benzinger, Tammie L; Fouke, Sarah Jost; Marcus, Daniel S

    2016-07-01

    Neuroimaging research often relies on clinically acquired magnetic resonance imaging (MRI) datasets that can originate from multiple institutions. Such datasets are characterized by high heterogeneity of modalities and variability of sequence parameters. This heterogeneity complicates the automation of image processing tasks such as spatial co-registration and physiological or functional image analysis. Given this heterogeneity, conventional processing workflows developed for research purposes are not optimal for clinical data. In this work, we describe an approach called Heterogeneous Optimization Framework (HOF) for developing image analysis pipelines that can handle the high degree of clinical data non-uniformity. HOF provides a set of guidelines for configuration, algorithm development, deployment, interpretation of results and quality control for such pipelines. At each step, we illustrate the HOF approach using the implementation of an automated pipeline for Multimodal Glioma Analysis (MGA) as an example. The MGA pipeline computes tissue diffusion characteristics of diffusion tensor imaging (DTI) acquisitions, hemodynamic characteristics using a perfusion model of susceptibility contrast (DSC) MRI, and spatial cross-modal co-registration of available anatomical, physiological and derived patient images. Developing MGA within HOF enabled the processing of neuro-oncology MR imaging studies to be fully automated. MGA has been successfully used to analyze over 160 clinical tumor studies to date within several research projects. Introduction of the MGA pipeline improved image processing throughput and, most importantly, effectively produced co-registered datasets that were suitable for advanced analysis despite high heterogeneity in acquisition protocols.

  15. Hemodynamic instability following airway spray cryotherapy

    PubMed Central

    Pedoto, Alessia; Desiderio, Dawn; Amar, David; Downey, Robert J.

    2016-01-01

    Background Spray cryotherapy (SCT) of airway lesions is used to effectively palliate respiratory symptoms related to airway obstruction but significant intraoperative hemodynamic complications have been noted. We reviewed the experience at a single institution using SCT for the treatment of obstructive airway tumors. Methods A retrospective review of a single institution experience with intraoperative and postoperative hemodynamic complications associated with SCT was performed. Descriptive statistics were performed. Results Between June 2009 and April 2010, 34 treatment sessions were performed on 28 patients. Median age was 60 years (range, 15–88 years). Tumor characteristics were as follows: 13 primary lung cancers (43%), 11 pulmonary metastases (50%), 1 direct extension of an esophageal cancer (3%) and 2 benign pulmonary lesions (7%). Twenty-one tumors (75%) were distal to the carina; 14 (50%) were >95% occlusive. Median procedure length was 78 min (range, 15–176 min). Eleven sessions (31%) led to severe hypotension and/or bradycardia, with 2 patients requiring cardiopulmonary resuscitation. One patient died intraoperatively after cardiac arrest; a second patient was stable intra-operatively but died within 24 h of SCT. Four patients required reintubation and short-term mechanical ventilation. Conclusions Unpredictable life-threatening hemodynamic instability can follow endobronchial SCT. We propose that the most likely cause is pulmonary venous gaseous emboli entering the right heart, the coronary arteries and the systemic circulation. Although SCT may offer advantages over airway laser therapy (such as no risk of fire and rapid hemostasis), further study is needed to delineate the relative likelihood of therapeutic benefit versus catastrophic complications. PMID:27763916

  16. Hemodynamic correlates of nutritional indexes in heart failure.

    PubMed

    Horiuchi, Yu; Tanimoto, Shuzou; Okuno, Taishi; Aoki, Jiro; Yahagi, Kazuyuki; Sato, Yu; Tanaka, Tetsu; Koseki, Keita; Komiyama, Kota; Nakajima, Hiroyoshi; Hara, Kazuhiro; Tanabe, Kengo

    2018-06-01

    Malnutrition in heart failure (HF) is related to altered intestinal function, which could be due to hemodynamic changes. We investigated the usefulness of novel nutritional indexes in relation to hemodynamic parameters. We retrospectively analyzed 139 HF patients with reduced ejection fraction who underwent right heart catheterization. We investigated correlations between right side pressures and nutritional indexes, which include controlling nutritional (CONUT) score and geriatric nutritional risk index (GNRI). Receiver operating characteristic (ROC) curves were generated to investigate the prognostic accuracy of CONUT score and GNRI for a composite of death or HF hospitalization in 12 months. Logistic regression analysis was performed to investigate whether hemodynamic correlates were associated with malnutrition, which was defined based on CONUT sore or GNRI. Higher right side pressures were positively correlated with worse nutritional status according to CONUT score, but were negatively correlated with worse nutritional status according to GNRI. Area under ROC curve for the composite endpoint was 0.746 in CONUT score and 0.576 in GNRI. The composite endpoint occurred in 40% of CONUT score≥3 and in 11% of CONUT score<3 (p<0.001). These relationships were also investigated with GNRI (40% of GNRI<95 vs. 17% of GNRI≥95, p=0.002). In multivariate analysis, higher right atrial pressure was significantly associated with higher CONUT score, while no hemodynamic parameter was related to GNRI. CONUT score was associated with right side congestion, while no association between GNRI and right side congestion was noted. CONUT score had better predictive value than GNRI. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  17. Effects of Incretin-Based Therapies on Neuro-Cardiovascular Dynamic Changes Induced by High Fat Diet in Rats.

    PubMed

    Marques-Neto, Silvio Rodrigues; Castiglione, Raquel Carvalho; Pontes, Aiza; Oliveira, Dahienne Ferreira; Ferraz, Emanuelle Baptista; Nascimento, José Hamilton Matheus; Bouskela, Eliete

    2016-01-01

    Obesity promotes cardiac and cerebral microcirculatory dysfunction that could be improved by incretin-based therapies. However, the effects of this class of compounds on neuro-cardiovascular system damage induced by high fat diet remain unclear. The aim of this study was to investigate the effects of incretin-based therapies on neuro-cardiovascular dysfunction induced by high fat diet in Wistar rats. We have evaluated fasting glucose levels and insulin resistance, heart rate variability quantified on time and frequency domains, cerebral microcirculation by intravital microscopy, mean arterial blood pressure, ventricular function and mitochondrial swelling. High fat diet worsened biometric and metabolic parameters and promoted deleterious effects on autonomic, myocardial and haemodynamic parameters, decreased capillary diameters and increased functional capillary density in the brain. Biometric and metabolic parameters were better improved by glucagon like peptide-1 (GLP-1) compared with dipeptdyl peptidase-4 (DPP-4) inhibitor. On the other hand, both GLP-1 agonist and DPP-4 inhibitor reversed the deleterious effects of high fat diet on autonomic, myocardial, haemodynamic and cerebral microvascular parameters. GLP-1 agonist and DPP-4 inhibitor therapy also increased mitochondrial permeability transition pore resistance in brain and heart tissues of rats subjected to high fat diet. Incretin-based therapies improve deleterious cardiovascular effects induced by high fat diet and may have important contributions on the interplay between neuro-cardiovascular dynamic controls through mitochondrial dysfunction associated to metabolic disorders.

  18. Daily pan evaporation modelling using a neuro-fuzzy computing technique

    NASA Astrophysics Data System (ADS)

    Kişi, Özgür

    2006-10-01

    SummaryEvaporation, as a major component of the hydrologic cycle, is important in water resources development and management. This paper investigates the abilities of neuro-fuzzy (NF) technique to improve the accuracy of daily evaporation estimation. Five different NF models comprising various combinations of daily climatic variables, that is, air temperature, solar radiation, wind speed, pressure and humidity are developed to evaluate degree of effect of each of these variables on evaporation. A comparison is made between the estimates provided by the NF model and the artificial neural networks (ANNs). The Stephens-Stewart (SS) method is also considered for the comparison. Various statistic measures are used to evaluate the performance of the models. Based on the comparisons, it was found that the NF computing technique could be employed successfully in modelling evaporation process from the available climatic data. The ANN also found to perform better than the SS method.

  19. Effects of different levels of end-expiratory pressure on hemodynamic, respiratory mechanics and systemic stress response during laparoscopic cholecystectomy.

    PubMed

    Sen, Oznur; Erdogan Doventas, Yasemin

    General anesthesia causes reduction of functional residual capacity. And this decrease can lead to atelectasis and intrapulmonary shunting in the lung. In this study we want to evaluate the effects of 5 and 10cmH 2 O PEEP levels on gas exchange, hemodynamic, respiratory mechanics and systemic stress response in laparoscopic cholecystectomy. American Society of Anesthesiologist I-II physical status 43 patients scheduled for laparoscopic cholecystectomy were randomly selected to receive external PEEP of 5cmH 2 O (PEEP 5 group) or 10cmH 2 O PEEP (PEEP 10 group) during pneumoperitoneum. Basal hemodynamic parameters were recorded, and arterial blood gases (ABG) and blood sampling were done for cortisol, insulin and glucose level estimations to assess the systemic stress response before induction of anesthesia. Thirty minutes after the pneumoperitoneum, the respiratory and hemodynamic parameters were recorded again and ABG and sampling for cortisol, insulin, and glucose levels were repeated. Lastly hemodynamic parameters were recorded; ABG analysis and sampling for stress response levels were taken after 60minutes from extubation. There were no statistical differences between the two groups about hemodynamic and respiratory parameters except mean airway pressure (P mean ). P mean , compliance and PaO 2 ; pH values were higher in 'PEEP 10 group'. Also, PaCO 2 values were lower in 'PEEP 10 group'. No differences were observed between insulin and lactic acid levels in the two groups. But postoperative cortisol level was significantly lower in 'PEEP 10 group'. Ventilation with 10cmH 2 O PEEP increases compliance and oxygenation, does not cause hemodynamic and respiratory complications and reduces the postoperative stress response. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. [Effects of different levels of end-expiratory pressure on hemodynamic, respiratory mechanics and systemic stress response during laparoscopic cholecystectomy].

    PubMed

    Sen, Oznur; Erdogan Doventas, Yasemin

    General anesthesia causes reduction of functional residual capacity. And this decrease can lead to atelectasis and intrapulmonary shunting in the lung. In this study we want to evaluate the effects of 5 and 10cmH 2 O PEEP levels on gas exchange, hemodynamic, respiratory mechanics and systemic stress response in laparoscopic cholecystectomy. American Society of Anesthesiologist I-II physical status 43 patients scheduled for laparoscopic cholecystectomy were randomly selected to receive external PEEP of 5cmH 2 O (PEEP 5 group) or 10cmH 2 O PEEP (PEEP 10 group) during pneumoperitoneum. Basal hemodynamic parameters were recorded, and arterial blood gases (ABG) and blood sampling were done for cortisol, insulin and glucose level estimations to assess the systemic stress response before induction of anesthesia. Thirty minutes after the pneumoperitoneum, the respiratory and hemodynamic parameters were recorded again and ABG and sampling for cortisol, insulin, and glucose levels were repeated. Lastly hemodynamic parameters were recorded; ABG analysis and sampling for stress response levels were taken after 60minutes from extubation. There were no statistical differences between the two groups about hemodynamic and respiratory parameters except mean airway pressure (P mean ). P mean , compliance and PaO 2 ; pH values were higher in 'PEEP 10 group'. Also, PaCO 2 values were lower in 'PEEP 10 group'. No differences were observed between insulin and lactic acid levels in the two groups. But postoperative cortisol level was significantly lower in 'PEEP 10 group'. Ventilation with 10cmH 2 O PEEP increases compliance and oxygenation, does not cause hemodynamic and respiratory complications and reduces the postoperative stress response. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  1. Transcranial diffuse optical monitoring of microvascular cerebral hemodynamics after thrombolysis in ischemic stroke

    NASA Astrophysics Data System (ADS)

    Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut

    2014-01-01

    The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.

  2. Transcranial diffuse optical monitoring of microvascular cerebral hemodynamics after thrombolysis in ischemic stroke.

    PubMed

    Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut

    2014-01-01

    The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.

  3. Reliability of oscillometric central hemodynamic responses to an orthostatic challenge.

    PubMed

    Stoner, Lee; Bonner, Chantel; Credeur, Daniel; Lambrick, Danielle; Faulkner, James; Wadsworth, Daniel; Williams, Michelle A

    2015-08-01

    Monitoring central hemodynamic responses to an orthostatic challenge may provide important insight into autonomic nervous system function. Oscillometric pulse wave analysis devices have recently emerged, presenting clinically viable options for investigating central hemodynamic properties. The purpose of the current study was to determine whether oscillometric pulse wave analysis can be used to reliably (between-day) assess central blood pressure and central pressure augmentation (augmentation index) responses to a 5 min orthostatic challenge (modified tilt-table). Twenty healthy adults (26.4 y (SD 5.2), 55% F, 24.7 kg/m(2) (SD 3.8)) were tested on 3 different mornings in the fasted state, separated by a maximum of 7 days. Central hemodynamic variables were assessed on the left arm using an oscillometric device. Repeated measures analysis of variance indicated a significant main effect of the modified tilt-table for all central hemodynamic variables (P < 0.001). In response to the tilt, central diastolic pressure increased by 4.5 mmHg (CI: 2.6, 6.4), central systolic blood pressure increased by 2.3 (CI: 4.4, 0.16) mmHg, and augmentation index decreased by an absolute - 5.3%, (CI: -2.7, -7.9%). The intra-class correlation coefficient values for central diastolic pressure (0.83-0.86), central systolic blood pressure (0.80-0.87) and AIx (0.79-0.82) were above the 0.75 criterion in both the supine and tilted positions, indicating excellent between-day reliability. Central hemodynamic responses to an orthostatic challenge can be assessed with acceptable between-day reliability using oscillometric pulse wave analysis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Novel use of a noninvasive hemodynamic monitor in a personalized, active learning simulation.

    PubMed

    Zoller, Jonathan K; He, Jianghua; Ballew, Angela T; Orr, Walter N; Flynn, Brigid C

    2017-06-01

    The present study furthered the concept of simulation-based medical education by applying a personalized active learning component. We tested this novel approach utilizing a noninvasive hemodynamic monitor with the capability to measure and display in real time numerous hemodynamic parameters in the exercising participant. Changes in medical knowledge concerning physiology were examined with a pre-and posttest. Simply by observation of one's own hemodynamic variables, the understanding of complex physiological concepts was significantly enhanced. Copyright © 2017 the American Physiological Society.

  5. Prenatal stress and hemodynamics in pregnancy: a systematic review.

    PubMed

    Levine, Terri A; Alderdice, Fiona A; Grunau, Ruth E; McAuliffe, Fionnuala M

    2016-10-01

    Maternal prenatal stress is associated with preterm birth, intrauterine growth restriction, and developmental delay. However, the impact of prenatal stress on hemodynamics during pregnancy remains unclear. This systematic review was conducted in order to assess the quality of the evidence available to date regarding the relationship between prenatal stress and maternal-fetal hemodynamics. The PubMed/Medline, EMBASE, PsycINFO, Maternity and Infant Care, Trip, Cochrane Library, and CINAHL databases were searched using the search terms pregnancy; stress; fetus; blood; Doppler; ultrasound. Studies were eligible for inclusion if prenatal stress was assessed with standardized measures, hemodynamics was measured with Doppler ultrasound, and methods were adequately described. A specifically designed data extraction form was used. The methodological quality of included studies was assessed using well-accepted quality appraisal guidelines. Of 2532 studies reviewed, 12 met the criteria for inclusion. Six reported that prenatal stress significantly affects maternal or fetal hemodynamics; six found no significant association between maternal stress and circulation. Significant relationships between prenatal stress and uterine artery resistance (RI) and pulsatility (PI) indices, umbilical artery RI, PI, and systolic/diastolic ratio, fetal middle cerebral artery PI, cerebroplacental ratio, and umbilical vein volume blood flow were found. To date, there is limited evidence that prenatal stress is associated with changes in circulation. More carefully designed studies with larger sample sizes, repeated assessments across gestation, tighter control for confounding factors, and measures of pregnancy-specific stress will clarify this relationship.

  6. Near-infrared spectroscopy assessment of divided visual attention task-invoked cerebral hemodynamics during prolonged true driving

    NASA Astrophysics Data System (ADS)

    Li, Ting; Zhao, Yue; Sun, Yunlong; Gao, Yuan; Su, Yu; Hetian, Yiyi; Chen, Min

    2015-03-01

    Driver fatigue is one of the leading causes of traffic accidents. It is imperative to develop a technique to monitor fatigue of drivers in real situation. Near-infrared spectroscopy (fNIRS) is now capable of measuring brain functional activity noninvasively in terms of hemodynamic responses sensitively, which shed a light to us that it may be possible to detect fatigue-specified brain functional activity signal. We developed a sensitive, portable and absolute-measure fNIRS, and utilized it to monitor cerebral hemodynamics on car drivers during prolonged true driving. An odd-ball protocol was employed to trigger the drivers' visual divided attention, which is a critical function in safe driving. We found that oxyhemoglobin concentration and blood volume in prefrontal lobe dramatically increased with driving duration (stand for fatigue degree; 2-10 hours), while deoxyhemoglobin concentration increased to the top at 4 hours then decreased slowly. The behavior performance showed clear decrement only after 6 hours. Our study showed the strong potential of fNIRS combined with divided visual attention protocol in driving fatigue degree monitoring. Our findings indicated the fNIRS-measured hemodynamic parameters were more sensitive than behavior performance evaluation.

  7. A framework for porting the NeuroBayes machine learning algorithm to FPGAs

    NASA Astrophysics Data System (ADS)

    Baehr, S.; Sander, O.; Heck, M.; Feindt, M.; Becker, J.

    2016-01-01

    The NeuroBayes machine learning algorithm is deployed for online data reduction at the pixel detector of Belle II. In order to test, characterize and easily adapt its implementation on FPGAs, a framework was developed. Within the framework an HDL model, written in python using MyHDL, is used for fast exploration of possible configurations. Under usage of input data from physics simulations figures of merit like throughput, accuracy and resource demand of the implementation are evaluated in a fast and flexible way. Functional validation is supported by usage of unit tests and HDL simulation for chosen configurations.

  8. Decreased Vertebral Artery Hemodynamics in Patients with Loss of Cervical Lordosis

    PubMed Central

    Bulut, Mehmet Deniz; Alpayci, Mahmut; Şenköy, Emre; Bora, Aydin; Yazmalar, Levent; Yavuz, Alpaslan; Gülşen, İsmail

    2016-01-01

    Background Because loss of cervical lordosis leads to disrupted biomechanics, the natural lordotic curvature is considered to be an ideal posture for the cervical spine. The vertebral arteries proceed in the transverse foramen of each cervical vertebra. Considering that the vertebral arteries travel in close anatomical relationship to the cervical spine, we speculated that the loss of cervical lordosis may affect vertebral artery hemodynamics. The aim of this study was to compare the vertebral artery values between subjects with and without loss of cervical lordosis. Material/Methods Thirty patients with loss of cervical lordosis and 30 controls matched for age, sex, and body mass index were included in the study. Sixty vertebral arteries in patients with loss of cervical lordosis and 60 in controls without loss of cervical lordosis were evaluated by Doppler ultrasonography. Vertebral artery hemodynamics, including lumen diameter, flow volume, peak systolic velocity, end-diastolic velocity, and resistive index, were measured, and determined values were statistically compared between the patient and the control groups. Results The means of diameter (p=0.003), flow volume (p=0.002), and peak systolic velocity (p=0.014) in patients were significantly lower as compared to controls. However, there was no significant difference between the 2 groups in terms of the end-diastolic velocity (p=0.276) and resistive index (p=0.536) parameters. Conclusions The present study revealed a significant association between loss of cervical lordosis and decreased vertebral artery hemodynamics, including diameter, flow volume, and peak systolic velocity. Further studies are required to confirm these findings and to investigate their possible clinical implications. PMID:26876295

  9. Decreased Vertebral Artery Hemodynamics in Patients with Loss of Cervical Lordosis.

    PubMed

    Bulut, Mehmet Deniz; Alpayci, Mahmut; Şenköy, Emre; Bora, Aydin; Yazmalar, Levent; Yavuz, Alpaslan; Gülşen, İsmail

    2016-02-15

    BACKGROUND Because loss of cervical lordosis leads to disrupted biomechanics, the natural lordotic curvature is considered to be an ideal posture for the cervical spine. The vertebral arteries proceed in the transverse foramen of each cervical vertebra. Considering that the vertebral arteries travel in close anatomical relationship to the cervical spine, we speculated that the loss of cervical lordosis may affect vertebral artery hemodynamics. The aim of this study was to compare the vertebral artery values between subjects with and without loss of cervical lordosis. MATERIAL AND METHODS Thirty patients with loss of cervical lordosis and 30 controls matched for age, sex, and body mass index were included in the study. Sixty vertebral arteries in patients with loss of cervical lordosis and 60 in controls without loss of cervical lordosis were evaluated by Doppler ultrasonography. Vertebral artery hemodynamics, including lumen diameter, flow volume, peak systolic velocity, end-diastolic velocity, and resistive index, were measured, and determined values were statistically compared between the patient and the control groups. RESULTS The means of diameter (p=0.003), flow volume (p=0.002), and peak systolic velocity (p=0.014) in patients were significantly lower as compared to controls. However, there was no significant difference between the 2 groups in terms of the end-diastolic velocity (p=0.276) and resistive index (p=0.536) parameters. CONCLUSIONS The present study revealed a significant association between loss of cervical lordosis and decreased vertebral artery hemodynamics, including diameter, flow volume, and peak systolic velocity. Further studies are required to confirm these findings and to investigate their possible clinical implications.

  10. Hemodynamic response during aneurysm clipping surgery among experienced neurosurgeons.

    PubMed

    Bunevicius, Adomas; Bilskiene, Diana; Macas, Andrius; Tamasauskas, Arimantas

    2016-02-01

    Neurosurgery is a challenging field associated with high levels of mental stress. The goal of this study was to investigate the hemodynamic response of experienced neurosurgeons during aneurysm clipping surgery and to evaluate whether neurosurgeons' hemodynamic responses are associated with patients' clinical statuses. Four vascular neurosurgeons (all male; mean age 51 ± 10 years; post-residency experience ≥7 years) were studied during 42 aneurysm clipping procedures. Blood pressure (BP) and heart rate (HR) were assessed at rest and during seven phases of surgery: before the skin incision, after craniotomy, after dural opening, after aneurysm neck dissection, after aneurysm clipping, after dural closure and after skin closure. HR and BP were significantly greater during surgery relative to the rest situation (p ≤ 0.03). There was a statistically significant increase in neurosurgeons' HR (F [6, 41] = 10.88, p < 0.001), systolic BP (F [6, 41] = 2.97, p = 0.01), diastolic BP (F [6, 41] = 2.49, p = 0.02) and mean BP (F [6, 41] = 3.36, p = 0.003) during surgery. The greatest mean HR was after aneurysm clipping, and the greatest BP was after aneurysm neck dissection. Systolic, diastolic and mean BPs were significantly greater during surgical clipping for unruptured aneurysms compared to ruptured aneurysms across all stages of surgery (p ≤ 0.002); however, after adjusting for neurosurgeon experience, the difference in BP as a function of aneurysm rupture was not significant (p > 0.08). Aneurysm location, intraoperative aneurysm rupture, admission WFNS score, admission Glasgow Coma Scale scores and Fisher grade were not associated with neurosurgeons' intraoperative HR and BP (all p > 0.07). Aneurysm clipping surgery is associated with significant hemodynamic system activation among experienced neurosurgeons. The greatest HR and BP were after aneurysm neck dissection and clipping. Aneurysm location and patient clinical

  11. Hemodynamic and electrophysiological relationship involved in human face processing: evidence from a combined fMRI-ERP study.

    PubMed

    Iidaka, Tetsuya; Matsumoto, Atsushi; Haneda, Kaoruko; Okada, Tomohisa; Sadato, Norihiro

    2006-03-01

    Functional magnetic resonance imaging (fMRI) and event-related potential (ERP) experiments were conducted in the same group of subjects and with an identical task paradigm to investigate a possible relationship between hemodynamic and electrophysiological responses within the brain. The subjects were instructed to judge whether visually presented stimuli were faces or houses and then press the corresponding button. Functional MRI identified face- and house-related regions in the lateral and medial part of the fusiform gyrus, respectively, while ERP showed significantly greater N170 negativity for face than for house stimuli in the temporo-occipital electrodes. Correlation analysis between the BOLD signal in the fusiform gyrus and ERP parameters demonstrated a close relationship between the signal and both latency and amplitude of N170 across the subjects. These correlations may indicate that the variation in cognitive demand and hemodynamic responses during the face/house discrimination task is coupled with the variation of N170 peak latency/amplitude across the subjects. Thus, integrative analysis of spatial and temporal information obtained from the two experimental modalities may help in studying neural correlates involved in a particular cognitive task.

  12. Assessment of hemodynamics in a rat model of liver cirrhosis with precancerous lesions using multislice spiral CT perfusion imaging.

    PubMed

    Ma, Guolin; Bai, Rongjie; Jiang, Huijie; Hao, Xuejia; Ling, Zaisheng; Li, Kefeng

    2013-01-01

    To develop an optimal scanning protocol for multislice spiral CT perfusion (CTP) imaging to evaluate hemodynamic changes in liver cirrhosis with diethylnitrosamine- (DEN-) induced precancerous lesions. Male Wistar rats were randomly divided into the control group (n = 80) and the precancerous liver cirrhosis group (n = 40). The control group received saline injection and the liver cirrhosis group received 50 mg/kg DEN i.p. twice a week for 12 weeks. All animals underwent plain CT scanning, CTP, and contrast-enhanced CT scanning. Scanning parameters were optimized by adjusting the diatrizoate concentration, the flow rate, and the delivery time. The hemodynamics of both groups was further compared using optimized multislice spiral CTP imaging. High-quality CTP images were obtained with following parameters: 150 kV; 150 mAs; 5 mm thickness, 5 mm interval; pitch, 1; matrix, 512 × 512; and FOV, 9.6 cm. Compared to the control group, the liver cirrhosis group had a significantly increased value of the hepatic arterial fraction and the hepatic artery perfusion (P < 0.05) but significantly decreased hepatic portal perfusion and mean transit time (P < 0.05). Multislice spiral CTP imaging can be used to evaluate the hemodynamic changes in the rat model of liver cirrhosis with precancerous lesions.

  13. Implant experience with an implantable hemodynamic monitor for the management of symptomatic heart failure.

    PubMed

    Steinhaus, David; Reynolds, Dwight W; Gadler, Fredrik; Kay, G Neal; Hess, Mike F; Bennett, Tom

    2005-08-01

    Management of congestive heart failure is a serious public health problem. The use of implantable hemodynamic monitors (IHMs) may assist in this management by providing continuous ambulatory filling pressure status for optimal volume management. The Chronicle system includes an implanted monitor, a pressure sensor lead with passive fixation, an external pressure reference (EPR), and data retrieval and viewing components. The tip of the lead is placed near the right ventricular outflow tract to minimize risk of sensor tissue encapsulation. Implant technique and lead placement is similar to that of a permanent pacemaker. After the system had been successfully implanted in 148 patients, the type and frequency of implant-related adverse events were similar to a single-chamber pacemaker implant. R-wave amplitude was 15.2 +/- 6.7 mV and the pressure waveform signal was acceptable in all but two patients in whom presence of artifacts required lead repositioning. Implant procedure time was not influenced by experience, remaining constant throughout the study. Based on this evaluation, permanent placement of an IHM in symptomatic heart failure patients is technically feasible. Further investigation is warranted to evaluate the use of the continuous hemodynamic data in management of heart failure patients.

  14. Cerebral watershed infarcts may be induced by hemodynamic changes in blood flow.

    PubMed

    Shi, Jingfei; Meng, Ran; Konakondla, Sanjay; Ding, Yuchuan; Duan, Yunxia; Wu, Di; Wang, Bincheng; Luo, Yinghao; Ji, Xunming

    2017-06-01

    A watershed infarct is defined as an ischemic lesion at the border zones between territories of two major arteries. The pathogenesis of watershed infarcts, specifically whether they are caused by hemodynamic or embolic mechanisms, has long been debated. In this study, we aimed to examine whether watershed infarcts can be induced by altering the hemodynamic conditions in rats. In phase one, to determine the proper clamping duration for a reproducible infarct, 30 rats were equally divided into 5 subgroups and underwent bilateral common carotid artery (CCA) clamping for different durations (0.5, 1.0, 1.5, 2.0, and 3.0 hours). In phase two, to analyze the types of infarcts induced by bilateral CCA clamping, 40 rats were subjected to bilateral CCA clamping for 2 hours. As a control, 8 rats underwent all the operation procedures except bilateral CCA clamping. We performed 7.0T magnetic resonance imaging on the surviving rats on the second day to evaluate the extent of the infarcts. We further identified and examined the infarcts with brain slices stained using 2, 3, 5-triphenyltetrazolium chloride (TTC) on the third day. After 2 hours of bilateral CCA clamping, cerebral infarction occurred in 42% of surviving rats (13/31). The majority of the ischemic lesions were located in watershed regions of the brain, demonstrated by both MRI and TTC staining. Watershed infarcts were induced through changing hemodynamic conditions by bilateral CCA clamping in rats. This method may lead to the development of a reliable rodent model for watershed infarcts.

  15. Early hemodynamic assessment and treatment of elderly patients in the medical ICU.

    PubMed

    Voga, Gorazd; Gabršček-Parežnik, Lucija

    2016-12-01

    The aim of this retrospective study was to analyze differences in the initial hemodynamic assessment and its impact on the treatment in patients aged 80 years or older compared to younger patients during the first 6 h after admission to the medical intensive care unit (ICU). We analyzed 615 consecutive patients admitted to the medical ICU of which 124 (20%) were aged 80 years or more. The older group had a significantly higher acute physiology and chronic health evaluation (APACHE II) score, an overall mortality in the ICU and a presence of pre-existing cardiac disease. Both groups did not differ in the presence of shock and shock types on admission. In 57% of older and in 56% of younger patients, transthoracic echocardiography was performed with a higher therapeutic impact in the older patients. Transesophageal echocardiography was performed in 3% of the patients in both groups for specific diagnostic problems. Early reassessment with transthoracic echocardiography was necessary in 5% of the older and in 6% of the younger patients and resulted in a change of the treatment in one third of the patients. Continuous invasive hemodynamic monitoring was used in 11% of the older and in 10% of the younger patients and resulted in a therapeutic change in 71% of the older and in 64% of the younger patients. Patients aged 80 years or older represent 20% of all admissions to the medical ICU. Once admitted the older patients were similarly hemodynamically assessed as the younger ones with a similar impact on the treatment.

  16. Diagnosis of occlusal dysesthesia utilizing prefrontal hemodynamic activity with slight occlusal interference.

    PubMed

    Ono, Yumie; Ishikawa, Yu; Munakata, Motohiro; Shibuya, Tomoaki; Shimada, Atsushi; Miyachi, Hideo; Wake, Hiroyuki; Tamaki, Katsushi

    2016-11-01

    Clinical diagnosis of occlusal dysesthesia (OD), also referred to as phantom bite syndrome, is currently based on the absence of objective occlusal discrepancy despite the persistent complaint of uncomfortable bite sensation. We previously demonstrated that the subjective feeling of occlusal discomfort generated by artificial occlusal interference can be objectively evaluated using prefrontal hemodynamic activity in young healthy individuals. The aim of this study was to investigate whether dental patients with and without OD show distinct prefrontal activity during grinding behavior with an occlusal interference. Six dental patients with OD (OD group) and eight patients without OD (control group) grinded piled occlusal strips placed between their first molars and reported their perception and discomfort thresholds during continuous monitoring of prefrontal hemodynamic activity with a portable functional near-infrared spectroscopy. Although patients without OD showed the typical hemodynamic pattern of increased oxyhemoglobin and reduced deoxyhemoglobin (HHb) concentration, those with OD showed persistent incremental increases of HHb concentration that began at the loading of occlusal strips on their molars before they executed grinding. The intensities of the task-related HHb activities showed statistically significant differences between OD and control groups, particularly at channel 3, arranged over the left frontal pole cortex. When the discrimination criterion was set using the intensity values of channel 3 from both groups, the overall accuracy of the OD discrimination was 92.9%. Although physiological interpretation has yet to be elucidated, the task-related response of an increase in HHb may be a useful neuronal signature to characterize dental patients with OD.

  17. Diagnosis of occlusal dysesthesia utilizing prefrontal hemodynamic activity with slight occlusal interference

    PubMed Central

    Ishikawa, Yu; Munakata, Motohiro; Shibuya, Tomoaki; Shimada, Atsushi; Miyachi, Hideo; Wake, Hiroyuki; Tamaki, Katsushi

    2016-01-01

    Clinical diagnosis of occlusal dysesthesia (OD), also referred to as phantom bite syndrome, is currently based on the absence of objective occlusal discrepancy despite the persistent complaint of uncomfortable bite sensation. We previously demonstrated that the subjective feeling of occlusal discomfort generated by artificial occlusal interference can be objectively evaluated using prefrontal hemodynamic activity in young healthy individuals. The aim of this study was to investigate whether dental patients with and without OD show distinct prefrontal activity during grinding behavior with an occlusal interference. Six dental patients with OD (OD group) and eight patients without OD (control group) grinded piled occlusal strips placed between their first molars and reported their perception and discomfort thresholds during continuous monitoring of prefrontal hemodynamic activity with a portable functional near‐infrared spectroscopy. Although patients without OD showed the typical hemodynamic pattern of increased oxyhemoglobin and reduced deoxyhemoglobin (HHb) concentration, those with OD showed persistent incremental increases of HHb concentration that began at the loading of occlusal strips on their molars before they executed grinding. The intensities of the task‐related HHb activities showed statistically significant differences between OD and control groups, particularly at channel 3, arranged over the left frontal pole cortex. When the discrimination criterion was set using the intensity values of channel 3 from both groups, the overall accuracy of the OD discrimination was 92.9%. Although physiological interpretation has yet to be elucidated, the task‐related response of an increase in HHb may be a useful neuronal signature to characterize dental patients with OD. PMID:29744159

  18. [Part II: basic hemodynamic monitoring and the use of pulmonary artery catheter].

    PubMed

    Dias, Fernando Suparregui; Rezende, Ederlon; Mendes, Ciro Leite; Réa-Neto, Alvaro; David, Cid Marcos; Schettino, Guilherme; Lobo, Suzana Margareth Ajeje; Barros, Alberto; Silva, Eliézer; Friedman, Gilberto; Amaral, José Luiz Gomes do; Park, Marcelo; Monachini, Maristela; Oliveira, Mirella Cristine de; Assunção, Murillo Santucci César; Akamine, Nelson; Mello, Patrícia Veiga C; Pereira, Renata Andréa Pietro; Costa Filho, Rubens; Araújo, Sebastião; Félix Pinto, Sérgio; Ferreira, Sérgio; Mitushima, Simone Mattoso; Agareno, Sydney; Brilhante, Yuzeth Nóbrega de Assis

    2006-03-01

    Monitoring of vital functions is one of the most important tools in the management of critically ill patients. Nowadays is possible to detect and analyze a great deal of physiologic data using a lot of invasive and non-invasive methods. The intensivist must be able to select and carry out the most appropriate monitoring technique according to the patient requirements and taking into account the benefit/risk ratio. Despite the fast development of non invasive monitoring techniques, invasive hemodynamic monitoring using Pulmonary Artery Catheter still is one of the basic procedures in Critical Care. The aim was to define recommendations about clinical utility of basic hemodynamic monitoring methods and the Use of Pulmonary Artery Catheter. Modified Delphi methodology was used to create and quantify the consensus between the participants. AMIB indicated a coordinator who invited more six experts in the area of monitoring and hemodynamic support to constitute the Consensus Advisory Board. Twenty-five physicians and nurses selected from different regions of the country completed the expert panel, which reviewed the pertinent bibliography listed at the MEDLINE in the period from 1996 to 2004. Recommendations were made based on 55 questions about the use of central venous pressure, invasive arterial pressure, pulmonary artery catheter and its indications in different settings. Evaluation of central venous pressure and invasive arterial pressure, besides variables obtained by the PAC allow the understanding of cardiovascular physiology that is of great value to the care of critically ill patients. However, the correct use of these tools is fundamental to achieve the benefits due to its use.

  19. CFD Modelling of Local Hemodynamics in Intracranial Aneurysms Harboring Arterial Branches.

    PubMed

    Krylov, Vladimir; Grigoryeva, Elena; Dolotova, Daria; Blagosklonova, Evgenia; Gavrilov, Andrey

    2017-01-01

    The main cause of non-traumatic subarachnoid haemorrhage is an intracranial aneurysm's rupture. The choice of treatment approach is exceptionally difficult in cases of aneurysms with additional branches on the aneurysm's dome or neck. The impact of the arterial branches on local hemodynamics is still unclear and controversial question. At the same time, up-to-date methods of image processing and mathematical modeling provide a way to investigate the hemodynamic environment of aneurysms. The paper discusses hemodynamic aspects of aneurysms harboring arterial branch through the use of patient-specific 3D models and computational fluid dynamics (CFD) methods. The analysis showed that the presence of the arterial branches has a great influence on flow streamlines and wall shear stress, particularly for side wall aneurysm.

  20. Evidence Report: Risk of Spaceflight Associated Neuro-ocular Syndrome (SANS)

    NASA Technical Reports Server (NTRS)

    Stenger, Michael B.; Tarver, William J.; Brunstetter, Tyson; Gibson, Charles Robert; Laurie, Steven S.; Lee, Stuart M. C.; Macias, Brandon R.; Mader, Thomas H.; Otto, Christian; Smith, Scott M.; hide

    2017-01-01

    A subset of astronauts develop neuro-ocular structural and functional changes during prolonged periods of spaceflight that may lead to additional neurologic and ocular consequences upon return to Earth.

  1. Impact of Iodinated Contrast on Renal Function and Hemodynamics in Rats with Chronic Hyperglycemia and Chronic Kidney Disease

    PubMed Central

    Fernandes, Sheila Marques; Martins, Daniel Malisani; da Fonseca, Cassiane Dezoti; Watanabe, Mirian; Vattimo, Maria de Fátima Fernandes

    2016-01-01

    Iodinated contrast (IC) is clinically used in diagnostic and interventional procedures, but its use can result in contrast-induced acute kidney injury (CI-AKI). Chronic kidney disease (CKD) and chronic hyperglycemia (CH) are important predisposing factors to CI-AKI. The aim of this study was to investigate the impact of iodinated contrast on the renal function and hemodynamics in rats with chronic hyperglycemia and chronic kidney disease. A total of 30 rats were divided into six groups; Sham: control of chronic renal disease; Citrate: control of chronic hyperglycemia (CH); Nx5/6: rats with 5/6 nephrectomy; Chronic Hyperglycemia: rats receiving Streptozotocin 65 mg/kg; Nx5/6 + IC: rats Nx5/6 received 6 mL/kg of IC; CH + IC: Chronic hyperglycemia rats receiving 6 mL/kg of IC. Renal function (inulin clearance; urinary neutrophil gelatinase-associated lipocalin, NGAL) and hemodynamics (arterial blood pressure; renal blood flow; renal vascular resistance) were evaluated. Iodinated contrast significantly increased urinary NGAL and reduced inulin clearance, while the hemodynamics parameters showed changes in arterial blood pressure, renal blood flow, and renal vascular resistance in both CKD and CH groups. The results suggest that the iodinated contrast in risk factors models has important impact on renal function and hemodynamics. NGAL was confirmed to play a role of highlight in diagnosis of CI-AKI. PMID:27034930

  2. Neuro-Linguistic Programming, Matching Sensory Predicates, and Rapport.

    ERIC Educational Resources Information Center

    Schmedlen, George W.; And Others

    A key task for the therapist in psychotherapy is to build trust and rapport with the client. Neuro-Linguistic Programming (NLP) practitioners believe that matching the sensory modality (representational system) of a client's predicates (verbs, adverbs, and adjectives) improves rapport. In this study, 16 volunteer subjects participated in two…

  3. Man versus machine: comparison of radiologists' interpretations and NeuroQuant® volumetric analyses of brain MRIs in patients with traumatic brain injury.

    PubMed

    Ross, David E; Ochs, Alfred L; Seabaugh, Jan M; Shrader, Carole R

    2013-01-01

    NeuroQuant® is a recently developed, FDA-approved software program for measuring brain MRI volume in clinical settings. The purpose of this study was to compare NeuroQuant with the radiologist's traditional approach, based on visual inspection, in 20 outpatients with mild or moderate traumatic brain injury (TBI). Each MRI was analyzed with NeuroQuant, and the resulting volumetric analyses were compared with the attending radiologist's interpretation. The radiologist's traditional approach found atrophy in 10.0% of patients; NeuroQuant found atrophy in 50.0% of patients. NeuroQuant was more sensitive for detecting brain atrophy than the traditional radiologist's approach.

  4. Prefrontal Hemodynamic Changes Associated with Subjective Sense of Occlusal Discomfort

    PubMed Central

    Kobayashi, Goh; Hayama, Rika; Ikuta, Ryuhei; Onozouka, Minoru; Wake, Hiroyuki; Shimada, Atsushi; Shibuya, Tomoaki; Tamaki, Katsushi

    2015-01-01

    We used functional near-infrared spectroscopy to measure prefrontal brain activity accompanying the physical sensation of oral discomfort that arose when healthy young-adult volunteers performed a grinding motion with mild occlusal elevation (96 μm). We simultaneously evaluated various forms of occlusal discomfort using the visual analogue scale (VAS) and hemodynamic responses to identify the specific prefrontal activity that occurs with increased occlusal discomfort. The Oxy-Hb responses of selected channels in the bilateral frontopolar and dorsolateral prefrontal cortices increased in participants who reported increased severity of occlusal discomfort, while they decreased in those who reported no change or decreased occlusal discomfort during grinding. Moreover, the cumulative values of Oxy-Hb response in some of these channels were statistically significant predictive factors for the VAS scores. A generalized linear model analysis of Oxy-Hb signals in a group of participants who reported increased discomfort further indicated significant cerebral activation in the right frontopolar and dorsolateral prefrontal cortices that overlapped with the results of correlation analyses. Our results suggest that the increased hemodynamic responses in the prefrontal area reflect the top-down control of attention and/or self-regulation against the uncomfortable somatosensory input, which could be a possible marker to detect the subjective sense of occlusal discomfort. PMID:26090407

  5. Renal Hemodynamics in AKI: In Search of New Treatment Targets.

    PubMed

    Matejovic, Martin; Ince, Can; Chawla, Lakhmir S; Blantz, Roland; Molitoris, Bruce A; Rosner, Mitchell H; Okusa, Mark D; Kellum, John A; Ronco, Claudio

    2016-01-01

    Novel therapeutic interventions are required to prevent or treat AKI. To expedite progress in this regard, a consensus conference held by the Acute Dialysis Quality Initiative was convened in April of 2014 to develop recommendations for research priorities and future directions. Here, we highlight the concepts related to renal hemodynamics in AKI that are likely to reveal new treatment targets on investigation. Overall, we must better understand the interactions between systemic, total renal, and glomerular hemodynamics, including the role of tubuloglomerular feedback. Furthermore, the net consequences of therapeutic maneuvers aimed at restoring glomerular filtration need to be examined in relation to the nature, magnitude, and duration of the insult. Additionally, microvascular blood flow heterogeneity in AKI is now recognized as a common occurrence; timely interventions to preserve the renal microcirculatory flow may interrupt the downward spiral of injury toward progressive kidney failure and should, therefore, be investigated. Finally, development of techniques that permit an integrative physiologic approach, including direct visualization of renal microvasculature and measurement of oxygen kinetics and mitochondrial function in intact tissue in all nephron segments, may provide new insights into how the kidney responds to various injurious stimuli and allow evaluation of new therapeutic strategies. Copyright © 2016 by the American Society of Nephrology.

  6. Renal Hemodynamics in AKI: In Search of New Treatment Targets

    PubMed Central

    Matejovic, Martin; Ince, Can; Chawla, Lakhmir S.; Blantz, Roland; Molitoris, Bruce A.; Okusa, Mark D.; Kellum, John A.; Ronco, Claudio

    2016-01-01

    Novel therapeutic interventions are required to prevent or treat AKI. To expedite progress in this regard, a consensus conference held by the Acute Dialysis Quality Initiative was convened in April of 2014 to develop recommendations for research priorities and future directions. Here, we highlight the concepts related to renal hemodynamics in AKI that are likely to reveal new treatment targets on investigation. Overall, we must better understand the interactions between systemic, total renal, and glomerular hemodynamics, including the role of tubuloglomerular feedback. Furthermore, the net consequences of therapeutic maneuvers aimed at restoring glomerular filtration need to be examined in relation to the nature, magnitude, and duration of the insult. Additionally, microvascular blood flow heterogeneity in AKI is now recognized as a common occurrence; timely interventions to preserve the renal microcirculatory flow may interrupt the downward spiral of injury toward progressive kidney failure and should, therefore, be investigated. Finally, development of techniques that permit an integrative physiologic approach, including direct visualization of renal microvasculature and measurement of oxygen kinetics and mitochondrial function in intact tissue in all nephron segments, may provide new insights into how the kidney responds to various injurious stimuli and allow evaluation of new therapeutic strategies. PMID:26510884

  7. Cerebral hematocrit decreases with hemodynamic compromise in carotid artery occlusion: a PET study.

    PubMed

    Yamauchi, H; Fukuyama, H; Nagahama, Y; Katsumi, Y; Okazawa, H

    1998-01-01

    This study investigated whether in patients with internal carotid artery occlusion the regional cerebral hematocrit correlates with cerebral hemodynamics or metabolic state and, if so, how the regional cerebral hematocrit changes in the hemodynamically compromised region. We used positron emission tomography to study seven patients with unilateral internal carotid artery occlusion and no cortical infarction in the chronic stage. The distributions of red blood cell and plasma volumes were assessed using oxygen-15-labeled carbon monoxide and copper-62-labeled human serum albumin-dithiosemicarbazone tracers, respectively. The calculated hematocrit value was compared with the hemodynamic and metabolic parameters measured with the oxygen-15 steady-state technique. In the cerebral cortex, the value of the cerebral hematocrit varied but was correlated with the hemodynamic and metabolic status. Stepwise regression analysis revealed that the large vessel hematocrit, the cerebral metabolic rate of oxygen, and the cerebral blood flow or the oxygen extraction fraction accounted for a significant proportion of variance of the cerebral hematocrit. The oxygen extraction fraction and the cerebral metabolic rate of oxygen negatively correlated with the cerebral hematocrit, whereas the cerebral blood flow correlated positively: patients with reduced blood supply relative to metabolic demand (decreased blood flow with increased oxygen extraction fraction) showed low hematocrit values. In carotid artery occlusion in the chronic stage, regional cerebral hematocrit may vary according to cerebral hemodynamics and metabolic status. Regional cerebral hematocrit may decrease with hemodynamic compromise unless oxygen metabolism concomitantly decreases.

  8. The Effects of Renal Denervation on Renal Hemodynamics and Renal Vasculature in a Porcine Model

    PubMed Central

    Verloop, Willemien L.; Hubens, Lisette E. G.; Spiering, Wilko; Doevendans, Pieter A.; Goldschmeding, Roel; Bleys, Ronald L. A. W.; Voskuil, Michiel

    2015-01-01

    Rationale Recently, the efficacy of renal denervation (RDN) has been debated. It is discussed whether RDN is able to adequately target the renal nerves. Objective We aimed to investigate how effective RDN was by means of functional hemodynamic measurements and nerve damage on histology. Methods and Results We performed hemodynamic measurements in both renal arteries of healthy pigs using a Doppler flow and pressure wire. Subsequently unilateral denervation was performed, followed by repeated bilateral hemodynamic measurements. Pigs were terminated directly after RDN or were followed for 3 weeks or 3 months after the procedure. After termination, both treated and control arteries were prepared for histology to evaluate vascular damage and nerve damage. Directly after RDN, resting renal blood flow tended to increase by 29±67% (P = 0.01). In contrast, renal resistance reserve increased from 1.74 (1.28) to 1.88 (1.17) (P = 0.02) during follow-up. Vascular histopathology showed that most nerves around the treated arteries were located outside the lesion areas (8±7 out of 55±25 (14%) nerves per pig were observed within a lesion area). Subsequently, a correlation was noted between a more impaired adventitia and a reduction in renal resistance reserve (β: -0.33; P = 0.05) at three weeks of follow-up. Conclusion Only a small minority of renal nerves was targeted after RDN. Furthermore, more severe adventitial damage was related to a reduction in renal resistance in the treated arteries at follow-up. These hemodynamic and histological observations may indicate that RDN did not sufficiently target the renal nerves. Potentially, this may explain the significant spread in the response after RDN. PMID:26587981

  9. Hemodynamic responses to etomidate on induction of anesthesia in pediatric patients.

    PubMed

    Sarkar, Molly; Laussen, Peter C; Zurakowski, David; Shukla, Avinash; Kussman, Barry; Odegard, Kirsten C

    2005-09-01

    Etomidate is often used for inducing anesthesia in patients who have limited hemodynamic reserve. Using invasive hemodynamic monitoring, we studied the acute effects of a bolus of etomidate during induction of anesthesia in children. Twelve children undergoing cardiac catheterization were studied (mean age, 9.2 +/- 4.8 yr; mean weight, 33.4 +/- 15.4 kg); catheterization procedures included device closure of secundum atrial septal defects (n = 7) and radiofrequency catheter ablation procedures for supraventricular tachycardia (n = 5). Using IV sedation, a balloon-tipped pulmonary artery catheter was placed to measure intracardiac and pulmonary artery pressures and oxygen saturations. Baseline measurements were recorded and then repeated after a bolus of IV etomidate (0.3 mg/kg). For the entire group, no significant changes in right atrial, aortic, or pulmonary artery pressure, oxygen saturations, calculated Qp:Qs ratio or systemic or pulmonary vascular resistance were detected after the bolus dose of etomidate. The lack of clinically significant hemodynamic changes after etomidate administration supports the clinical impression that etomidate is safe in children. Further research is needed to determine the hemodynamic profile of etomidate in neonates and in pediatric patients with severe ventricular dysfunction and pulmonary hypertension.

  10. Toward an operational neuroethical risk analysis and mitigation paradigm for emerging neuroscience and technology (neuroS/T).

    PubMed

    Giordano, James

    2017-01-01

    Research in neuroscience and neurotechnology (neuroS/T) is progressing at a rapid pace with translational applications both in medicine, and more widely in the social milieu. Current and projected neuroS/T research and its applications evoke a number of neuroethicolegal and social issues (NELSI). This paper defines inherent and derivative NELSI of current and near-term neuroS/T development and engagement, and provides an overview of our group's ongoing work to develop a systematized approach to their address. Our proposed operational neuroethical risk assessment and mitigation paradigm (ONRAMP) is presented, which entails querying, framing, and modeling patterns and trajectories of neuroS/T research and translational uses, and the NELSI generated by such advancements and their applications. Extant ethical methods are addressed, with suggestion toward possible revision or re-formulation to meet the needs and exigencies fostered by neuroS/T and resultant NELSI in multi-cultural contexts. The relevance and importance of multi-disciplinary expertise in focusing upon NELSI is discussed, and the need for neuroethics education toward cultivating such a cadre of expertise is emphasized. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Perioperative cerebral hemodynamics and oxygen metabolism in neonates with single-ventricle physiology

    PubMed Central

    Dehaes, Mathieu; Cheng, Henry H.; Buckley, Erin M.; Lin, Pei-Yi; Ferradal, Silvina; Williams, Kathryn; Vyas, Rutvi; Hagan, Katherine; Wigmore, Daniel; McDavitt, Erica; Soul, Janet S.; Franceschini, Maria Angela; Newburger, Jane W.; Ellen Grant, P.

    2015-01-01

    Congenital heart disease (CHD) patients are at risk for neurodevelopmental delay. The etiology of these delays is unclear, but abnormal prenatal cerebral maturation and postoperative hemodynamic instability likely play a role. A better understanding of these factors is needed to improve neurodevelopmental outcome. In this study, we used bedside frequency-domain near infrared spectroscopy (FDNIRS) and diffuse correlation spectroscopy (DCS) to assess cerebral hemodynamics and oxygen metabolism in neonates with single-ventricle (SV) CHD undergoing surgery and compared them to controls. Our goals were 1) to compare cerebral hemodynamics between unanesthetized SV and healthy neonates, and 2) to determine if FDNIRS-DCS could detect alterations in cerebral hemodynamics beyond cerebral hemoglobin oxygen saturation (SO2). Eleven SV neonates were recruited and compared to 13 controls. Preoperatively, SV patients showed decreased cerebral blood flow (CBFi), cerebral oxygen metabolism (CMRO2i) and SO2; and increased oxygen extraction fraction (OEF) compared to controls. Compared to preoperative values, unstable postoperative SV patients had decreased CMRO2i and CBFi, which returned to baseline when stable. However, SO2 showed no difference between unstable and stable states. Preoperative SV neonates are flow-limited and show signs of impaired cerebral development compared to controls. FDNIRS-DCS shows potential to improve assessment of cerebral development and postoperative hemodynamics compared to SO2 alone. PMID:26713191

  12. Three Forms of Neuro-Realism: Explaining the Persistence of the "Uncritically Real" in Popular Neuroscience News

    ERIC Educational Resources Information Center

    Gruber, David R.

    2017-01-01

    Neuro-realism is a widely cited concept describing a textual phenomenon in popular science news wherein brain research uncritically validates or invalidates the "realness" of particular beliefs or practices. Currently, no research on neuro-realism examines the variable rhetorical roles of such statements, that is, how they support…

  13. Immediate effects of chest physiotherapy on hemodynamic, metabolic, and oxidative stress parameters in subjects with septic shock.

    PubMed

    dos Santos, Rafael S; Donadio, Márcio V F; da Silva, Gabriela V; Blattner, Clarissa N; Melo, Denizar A S; Nunes, Fernanda B; Dias, Fernando S; Squizani, Eamim D; Pedrazza, Leonardo; Gadegast, Isabella; de Oliveira, Jarbas R

    2014-09-01

    Septic shock presents as a continuum of infectious events, generating tissue hypoxia and hypovolemia, and increased oxidative stress. Chest physiotherapy helps reduce secretion, improving dynamic and static compliance, as well as improving secretion clearance and preventing pulmonary complications. The purpose of this study was to evaluate the immediate effect of chest physiotherapy on hemodynamic, metabolic, inflammatory, and oxidative stress parameters in subjects in septic shock. We conducted a quasi-experimental study in 30 subjects in septic shock, who underwent chest physiotherapy, without associated heart diseases and with vasopressors < 0.5 μg/kg/min. Venous and arterial blood gases, clinical and hemodynamic data, inflammatory data, lactate, and oxidative stress were evaluated before and 15 min after physiotherapy. Thirty subjects with a mean age of 61.8 ± 15.9 y and Sequential Organ Failure Assessment of 8 (range 6-10) were included. Chest physiotherapy caused a normalization of pH (P = .046) and P(aCO2) (P = .008); reduction of lactate (P = .001); and an increase in P(aO2) (P = .03), arterial oxygen saturation (P = .02), and P(aO2)/F(IO2) (P = .034), 15 min after it was applied. The results indicate that chest physiotherapy has immediate effects, improving oxygenation and reducing lactate and oxidative damage in subjects in septic shock. However, it does not cause alterations in the inflammatory and hemodynamic parameters. Copyright © 2014 by Daedalus Enterprises.

  14. Comparative analysis of the effect of low-dimensional alumina structures on cell lines L929 and Neuro-2a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomenko, A. N., E-mail: alserova@ispms.tsc.ru; Korovin, M. S., E-mail: msk@ispms.tsc.ru

    The paper presents the toxicity evaluation of nanostructures on the basis of alumina of different shape (nanofibers, nanoplates, nanosheets, nanosheet agglomerates) and with similar physical and chemical properties (particle size, specific surface area, phase composition, and zeta potential). The nanostructures were examined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), low-temperature nitrogen adsorption, and dynamic light scattering (DLS). The cytotoxicity of nanostructures was estimated using L929 fibroblast cells and Neuro-2a tumor cells. It has been found that the L929 cells are less subject to the influence of alumina nanoparticles than the Neuro-2a tumor cells. Probably, themore » differences in the proliferation activity of normal and tumor cells in contact with the synthesized nanostructures are due to a change in the pH of the cell microenvironment.« less

  15. Comparative analysis of the effect of low-dimensional alumina structures on cell lines L929 and Neuro-2a

    NASA Astrophysics Data System (ADS)

    Fomenko, A. N.; Korovin, M. S.

    2016-08-01

    The paper presents the toxicity evaluation of nanostructures on the basis of alumina of different shape (nanofibers, nanoplates, nanosheets, nanosheet agglomerates) and with similar physical and chemical properties (particle size, specific surface area, phase composition, and zeta potential). The nanostructures were examined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), low-temperature nitrogen adsorption, and dynamic light scattering (DLS). The cytotoxicity of nanostructures was estimated using L929 fibroblast cells and Neuro-2a tumor cells. It has been found that the L929 cells are less subject to the influence of alumina nanoparticles than the Neuro-2a tumor cells. Probably, the differences in the proliferation activity of normal and tumor cells in contact with the synthesized nanostructures are due to a change in the pH of the cell microenvironment.

  16. Predicting Length of Stay in Intensive Care Units after Cardiac Surgery: Comparison of Artificial Neural Networks and Adaptive Neuro-fuzzy System.

    PubMed

    Maharlou, Hamidreza; Niakan Kalhori, Sharareh R; Shahbazi, Shahrbanoo; Ravangard, Ramin

    2018-04-01

    Accurate prediction of patients' length of stay is highly important. This study compared the performance of artificial neural network and adaptive neuro-fuzzy system algorithms to predict patients' length of stay in intensive care units (ICU) after cardiac surgery. A cross-sectional, analytical, and applied study was conducted. The required data were collected from 311 cardiac patients admitted to intensive care units after surgery at three hospitals of Shiraz, Iran, through a non-random convenience sampling method during the second quarter of 2016. Following the initial processing of influential factors, models were created and evaluated. The results showed that the adaptive neuro-fuzzy algorithm (with mean squared error [MSE] = 7 and R = 0.88) resulted in the creation of a more precise model than the artificial neural network (with MSE = 21 and R = 0.60). The adaptive neuro-fuzzy algorithm produces a more accurate model as it applies both the capabilities of a neural network architecture and experts' knowledge as a hybrid algorithm. It identifies nonlinear components, yielding remarkable results for prediction the length of stay, which is a useful calculation output to support ICU management, enabling higher quality of administration and cost reduction.

  17. Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells.

    PubMed

    Manikandan, M; Hasan, Nazim; Wu, Hui-Fen

    2013-07-01

    This study demonstrates the effective synthesis of five different sized/shaped Pt NPs, within a narrow size regime of 1-21 nm using a modified methodology and the toxicity/biocompatibility of Pt NPs on Neuro 2A cancer cells was investigated elaborately by using light microscopic observations, tryphan blue exclusion assay, MTT assay and ICP-MS. The Pt NPs-C with sizes 5-6 nm showed superior non-cytotoxic property compared to the other four Pt NPs. These non-cytotoxic Pt NPs were employed for successful photothermal treatment of Neuro 2A cell lines using near-IR 1064 nm of laser irradiation. The Pt NPs-C could generate a 9 °C increase in temperature leading to effective photothermal killing of cancer cells. The MALDI-MS was used to prove the possibility of apoptosis related triggering of cell death in the presence of the Pt NPs. The results confirm that the current approach is an effective platform for in vivo treatment of neuro cancer cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. NeuroPG: open source software for optical pattern generation and data acquisition

    PubMed Central

    Avants, Benjamin W.; Murphy, Daniel B.; Dapello, Joel A.; Robinson, Jacob T.

    2015-01-01

    Patterned illumination using a digital micromirror device (DMD) is a powerful tool for optogenetics. Compared to a scanning laser, DMDs are inexpensive and can easily create complex illumination patterns. Combining these complex spatiotemporal illumination patterns with optogenetics allows DMD-equipped microscopes to probe neural circuits by selectively manipulating the activity of many individual cells or many subcellular regions at the same time. To use DMDs to study neural activity, scientists must develop specialized software to coordinate optical stimulation patterns with the acquisition of electrophysiological and fluorescence data. To meet this growing need we have developed an open source optical pattern generation software for neuroscience—NeuroPG—that combines, DMD control, sample visualization, and data acquisition in one application. Built on a MATLAB platform, NeuroPG can also process, analyze, and visualize data. The software is designed specifically for the Mightex Polygon400; however, as an open source package, NeuroPG can be modified to incorporate any data acquisition, imaging, or illumination equipment that is compatible with MATLAB’s Data Acquisition and Image Acquisition toolboxes. PMID:25784873

  19. Hemodynamic and tubular changes induced by contrast media.

    PubMed

    Caiazza, Antonella; Russo, Luigi; Sabbatini, Massimo; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI.

  20. Hemodynamic and Tubular Changes Induced by Contrast Media

    PubMed Central

    Caiazza, Antonella; Russo, Luigi; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI. PMID:24678510

  1. Mathematical modeling of metabolism and hemodynamics.

    PubMed

    Costalat, R; Francoise, J-P; Menuel, C; Lahutte, M; Vallée, J-N; de Marco, G; Chiras, J; Guillevin, R

    2012-06-01

    We provide a mathematical study of a model of energy metabolism and hemodynamics of glioma allowing a better understanding of metabolic modifications leading to anaplastic transformation from low grade glioma. This mathematical analysis allows ultimately to unveil the solution to a viability problem which seems quite pertinent for applications to medecine.

  2. Evolutionary Local Search of Fuzzy Rules through a novel Neuro-Fuzzy encoding method.

    PubMed

    Carrascal, A; Manrique, D; Ríos, J; Rossi, C

    2003-01-01

    This paper proposes a new approach for constructing fuzzy knowledge bases using evolutionary methods. We have designed a genetic algorithm that automatically builds neuro-fuzzy architectures based on a new indirect encoding method. The neuro-fuzzy architecture represents the fuzzy knowledge base that solves a given problem; the search for this architecture takes advantage of a local search procedure that improves the chromosomes at each generation. Experiments conducted both on artificially generated and real world problems confirm the effectiveness of the proposed approach.

  3. Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: A broadband near-infrared spectroscopy study.

    PubMed

    Wang, Xinlong; Tian, Fenghua; Reddy, Divya D; Nalawade, Sahil S; Barrett, Douglas W; Gonzalez-Lima, Francisco; Liu, Hanli

    2017-12-01

    Transcranial infrared laser stimulation (TILS) is a noninvasive form of brain photobiomulation. Cytochrome-c-oxidase (CCO), the terminal enzyme in the mitochondrial electron transport chain, is hypothesized to be the primary intracellular photoacceptor. We hypothesized that TILS up-regulates cerebral CCO and causes hemodynamic changes. We delivered 1064-nm laser stimulation to the forehead of healthy participants ( n = 11), while broadband near-infrared spectroscopy was utilized to acquire light reflectance from the TILS-treated cortical region before, during, and after TILS. Placebo experiments were also performed for accurate comparison. Time course of spectroscopic readings were analyzed and fitted to the modified Beer-Lambert law. With respect to the placebo readings, we observed (1) significant increases in cerebral concentrations of oxidized CCO (Δ[CCO]; >0.08 µM; p < 0.01), oxygenated hemoglobin (Δ[HbO]; >0.8 µM; p < 0.01), and total hemoglobin (Δ[HbT]; >0.5 µM; p < 0.01) during and after TILS, and (2) linear interplays between Δ[CCO] versus Δ[HbO] and between Δ[CCO] versus Δ[HbT]. Ratios of Δ[CCO]/Δ[HbO] and Δ[CCO]/Δ[HbT] were introduced as TILS-induced metabolic-hemodynamic coupling indices to quantify the coupling strength between TILS-enhanced cerebral metabolism and blood oxygen supply. This study provides the first demonstration that TILS causes up-regulation of oxidized CCO in the human brain, and contributes important insight into the physiological mechanisms.

  4. Hemodynamic deterioration after aortic valve replacement in a patient with mixed systemic amyloidosis.

    PubMed

    Seki, Tatsuya; Hattori, Atsuo; Yoshida, Toshihito

    2017-08-01

    We report a case of hemodynamic deterioration after aortic valve replacement in a patient with mixed systemic amyloidosis. A 77-year-old male with severe aortic valve stenosis and 19 years hemodialysis underwent aortic valve replacement. Postoperatively, the patient died of hemodynamic deterioration. Autopsy findings showed massive, whole-body edema and mixed systemic amyloidosis (dialysis-related and AA amyloidosis). Clinical and autopsy findings implied that hemodynamic deterioration was caused by increased vascular permeability. The amyloid deposit to the vessel causes inflammatory changes and increases vascular permeability. Mixed systemic amyloidosis occurs very rarely and could increases vascular permeability even more than each single type of amyloidosis. Systemic amyloidosis may be a risk factor for hemodynamic deterioration after cardiac surgery. Patients with longtime hemodialysis and a history associated with dialysis-related amyloidosis would have at least single systemic amyloidosis, which should be considered a contraindication to cardiac surgery with cardiopulmonary bypass.

  5. Interventions to improve cardiopulmonary hemodynamics during laparoscopy in a porcine sepsis model.

    PubMed

    Grief, W M; Forse, R A

    1999-11-01

    Laparoscopy is increasingly used in severely ill and acutely septic patients. In animals undergoing laparoscopy, the hemodynamic response to sepsis is blunted. Specific interventions to augment the hemodynamic potential may make laparoscopic intervention a safer alternative in septic patients. We compared different interventions to improve hemodynamic performance during exploratory laparoscopy in a porcine endotoxic shock model. Domestic pigs (n = 12) received intravenous lipopolysaccharide injection and underwent surgical abdominal exploration using either laparoscopy or conventional laparotomy. For comparison, pigs exposed to endotoxin underwent laparoscopy with these interventions: intravenous infusions of prostacyclin (n = 5) or indomethacin (n = 4), intravenous crystalloid resuscitation (n = 5), pulmonary hyperventilation (n = 4), or abdominal insufflation with air (n = 5). Hemodynamic measurements and blood gas analyses were obtained using Swan-Ganz and arterial catheters. Septic animals treated with prostacyclin undergoing laparoscopy had a higher cardiac index (CI, p < 0.01), stroke volume (SV; p < 0.001) and oxygen delivery (p < 0.05) than the untreated group. Likewise, treatment with indomethacin was associated with a higher CI (p < 0.001), SV (p < 0.005), and oxygen delivery (p < 0.005) compared with the untreated group. These effects may be secondary to a decreased pulmonary vascular resistance, demonstrated in the animals that received either prostacyclin (p < 0.05) or indomethacin (p < 0.05). In addition, animals given aggressive fluid resuscitation had a significantly higher CI (p < 0.05) and SV (p < 0.001) than those with normal fluid resuscitation during laparoscopy. Manipulation of arterial pH by insufflation of the abdomen with air to create the pneumoperitoneum, or by aggressively hyperventilating the animals, did not improve CI. Adverse effects of laparoscopy on cardiovascular hemodynamics in the septic state may be mediated by increased

  6. A method to reduce patient's eye lens dose in neuro-interventional radiology procedures

    NASA Astrophysics Data System (ADS)

    Safari, M. J.; Wong, J. H. D.; Kadir, K. A. A.; Sani, F. M.; Ng, K. H.

    2016-08-01

    Complex and prolonged neuro-interventional radiology procedures using the biplane angiography system increase the patient's risk of radiation-induced cataract. Physical collimation is the most effective way of reducing the radiation dose to the patient's eye lens, but in instances where collimation is not possible, an attenuator may be useful in protecting the eyes. In this study, an eye lens protector was designed and fabricated to reduce the radiation dose to the patients' eye lens during neuro-interventional procedures. The eye protector was characterised before being tested on its effectiveness in a simulated aneurysm procedure on an anthropomorphic phantom. Effects on the automatic dose rate control (ADRC) and image quality are also evaluated. The eye protector reduced the radiation dose by up to 62.1% at the eye lens. The eye protector is faintly visible in the fluoroscopy images and increased the tube current by a maximum of 3.7%. It is completely invisible in the acquisition mode and does not interfere with the clinical procedure. The eye protector placed within the radiation field of view was able to reduce the radiation dose to the eye lens by direct radiation beam of the lateral x-ray tube with minimal effect on the ADRC system.

  7. Coupling between gamma-band power and cerebral blood volume during recurrent acute neocortical seizures.

    PubMed

    Harris, Sam; Ma, Hongtao; Zhao, Mingrui; Boorman, Luke; Zheng, Ying; Kennerley, Aneurin; Bruyns-Haylett, Michael; Overton, Paul G; Berwick, Jason; Schwartz, Theodore H

    2014-08-15

    Characterization of neural and hemodynamic biomarkers of epileptic activity that can be measured using non-invasive techniques is fundamental to the accurate identification of the epileptogenic zone (EZ) in the clinical setting. Recently, oscillations at gamma-band frequencies and above (>30 Hz) have been suggested to provide valuable localizing information of the EZ and track cortical activation associated with epileptogenic processes. Although a tight coupling between gamma-band activity and hemodynamic-based signals has been consistently demonstrated in non-pathological conditions, very little is known about whether such a relationship is maintained in epilepsy and the laminar etiology of these signals. Confirmation of this relationship may elucidate the underpinnings of perfusion-based signals in epilepsy and the potential value of localizing the EZ using hemodynamic correlates of pathological rhythms. Here, we use concurrent multi-depth electrophysiology and 2-dimensional optical imaging spectroscopy to examine the coupling between multi-band neural activity and cerebral blood volume (CBV) during recurrent acute focal neocortical seizures in the urethane-anesthetized rat. We show a powerful correlation between gamma-band power (25-90 Hz) and CBV across cortical laminae, in particular layer 5, and a close association between gamma measures and multi-unit activity (MUA). Our findings provide insights into the laminar electrophysiological basis of perfusion-based imaging signals in the epileptic state and may have implications for further research using non-invasive multi-modal techniques to localize epileptogenic tissue. Copyright © 2014. Published by Elsevier Inc.

  8. The numerical simulation study of hemodynamics of the new dense-mesh stent

    NASA Astrophysics Data System (ADS)

    Ma, Jiali; Yuan, Zhishan; Yu, Xuebao; Feng, Zhaowei; Miao, Weidong; Xu, Xueli; Li, Juntao

    2017-09-01

    The treatment of aortic aneurysm in new dense mesh stent is based on the principle of hemodynamic changes. But the mechanism is not yet very clear. This paper analyzed and calculated the hemodynamic situation before and after the new dense mesh stent implanting by the method of numerical simulation. The results show the dense mesh stent changed and impacted the blood flow in the aortic aneurysm. The changes include significant decrement of blood velocity, pressure and shear forces, while ensuring blood can supply branches, which means the new dense mesh stent's hemodynamic mechanism in the treatment of aortic aneurysm is clearer. It has very important significance in developing new dense mesh stent in order to cure aortic aneurysm.

  9. Standardized model of porcine resuscitation using a custom-made resuscitation board results in optimal hemodynamic management.

    PubMed

    Wollborn, Jakob; Ruetten, Eva; Schlueter, Bjoern; Haberstroh, Joerg; Goebel, Ulrich; Schick, Martin A

    2018-01-22

    Standardized modeling of cardiac arrest and cardiopulmonary resuscitation (CPR) is crucial to evaluate new treatment options. Experimental porcine models are ideal, closely mimicking human-like physiology. However, anteroposterior chest diameter differs significantly, being larger in pigs and thus poses a challenge to achieve adequate perfusion pressures and consequently hemodynamics during CPR, which are commonly achieved during human resuscitation. The aim was to prove that standardized resuscitation is feasible and renders adequate hemodynamics and perfusion in pigs, using a specifically designed resuscitation board for a pneumatic chest compression device. A "porcine-fit" resuscitation board was designed for our experiments to optimally use a pneumatic compression device (LUCAS® II, Physio-Control Inc.), which is widely employed in emergency medicine and ideal in an experimental setting due to its high standardization. Asphyxial cardiac arrest was induced in 10 German hybrid landrace pigs and cardiopulmonary resuscitation was performed according to ERC/AHA 2015 guidelines with mechanical chest compressions. Hemodynamics were measured in the carotid and pulmonary artery. Furthermore, arterial blood gas was drawn to assess oxygenation and tissue perfusion. The custom-designed resuscitation board in combination with the LUCAS® device demonstrated highly sufficient performance regarding hemodynamics during CPR (mean arterial blood pressure, MAP 46 ± 1 mmHg and mean pulmonary artery pressure, mPAP of 36 ± 1 mmHg over the course of CPR). MAP returned to baseline values at 2 h after ROSC (80 ± 4 mmHg), requiring moderate doses of vasopressors. Furthermore, stroke volume and contractility were analyzed using pulse contour analysis (106 ± 3 ml and 1097 ± 22 mmHg/s during CPR). Blood gas analysis revealed CPR-typical changes, normalizing in the due course. Thermodilution parameters did not show persistent intravascular volume shift

  10. NeuroMatic: An Integrated Open-Source Software Toolkit for Acquisition, Analysis and Simulation of Electrophysiological Data

    PubMed Central

    Rothman, Jason S.; Silver, R. Angus

    2018-01-01

    Acquisition, analysis and simulation of electrophysiological properties of the nervous system require multiple software packages. This makes it difficult to conserve experimental metadata and track the analysis performed. It also complicates certain experimental approaches such as online analysis. To address this, we developed NeuroMatic, an open-source software toolkit that performs data acquisition (episodic, continuous and triggered recordings), data analysis (spike rasters, spontaneous event detection, curve fitting, stationarity) and simulations (stochastic synaptic transmission, synaptic short-term plasticity, integrate-and-fire and Hodgkin-Huxley-like single-compartment models). The merging of a wide range of tools into a single package facilitates a more integrated style of research, from the development of online analysis functions during data acquisition, to the simulation of synaptic conductance trains during dynamic-clamp experiments. Moreover, NeuroMatic has the advantage of working within Igor Pro, a platform-independent environment that includes an extensive library of built-in functions, a history window for reviewing the user's workflow and the ability to produce publication-quality graphics. Since its original release, NeuroMatic has been used in a wide range of scientific studies and its user base has grown considerably. NeuroMatic version 3.0 can be found at http://www.neuromatic.thinkrandom.com and https://github.com/SilverLabUCL/NeuroMatic. PMID:29670519

  11. Saturation thresholds of evoked neural and hemodynamic responses in awake and asleep rats

    NASA Astrophysics Data System (ADS)

    Schei, Jennifer L.; Van Nortwick, Amy S.; Meighan, Peter C.; Rector, David M.

    2011-03-01

    Neural activation generates a hemodynamic response to the localized region replenishing nutrients to the area. Changes in vigilance state have been shown to alter the vascular response where the vascular response is muted during wake compared to quiet sleep. We tested the saturation thresholds of the neurovascular response in the auditory cortex during wake and sleep by chronically implanting rats with an EEG electrode, a light emitting diode (LED, 600 nm), and photodiode to simultaneously measure evoked response potentials (ERPs) and evoked hemodynamic responses. We stimulated the cortex with a single speaker click delivered at random intervals 2-13 s at varied stimulus intensities ranging from 45-80 dB. To further test the potential for activity related saturation, we sleep deprived animals for 2, 4, or 6 hours and recorded evoked responses during the first hour recovery period. With increasing stimulus intensity, integrated ERPs and evoked hemodynamic responses increased; however the hemodynamic response approached saturation limits at a lower stimulus intensity than the ERP. With longer periods of sleep deprivation, the integrated ERPs did not change but evoked hemodynamic responses decreased. There may be physical limits in cortical blood delivery and vascular compliance, and with extended periods of neural activity during wake, vessels may approach these limits.

  12. Response assessment in neuro-oncology.

    PubMed

    Quant, Eudocia C; Wen, Patrick Y

    2011-02-01

    Accuracy and reproducibility in determining response to therapy and tumor progression can be difficult to achieve for nervous system tumors. Current response criteria vary depending on the pathology and have several limitations. Until recently, the most widely used criteria for gliomas were "Macdonald criteria," based on two-dimensional tumor measurements on neuroimaging studies. However, the Response Assessment in Neuro-Oncology (RANO) Working Group has published new recommendations in high-grade gliomas and is working on recommendations for other nervous system tumors. This article reviews current response criteria for high-grade glioma, low-grade glioma, brain metastasis, meningioma, and schwannoma.

  13. Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Akhavan, P.; Karimi, M.; Pahlavani, P.

    2014-10-01

    Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL) created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.

  14. Induced Hypothermia Does Not Harm Hemodynamics after Polytrauma: A Porcine Model

    PubMed Central

    Mommsen, Philipp; Pfeifer, Roman; Mohr, Juliane; Ruchholtz, Steffen; Flohé, Sascha; Fröhlich, Matthias; Keibl, Claudia; Seekamp, Andreas; Witte, Ingo

    2015-01-01

    Background. The deterioration of hemodynamics instantly endangers the patients' life after polytrauma. As accidental hypothermia frequently occurs in polytrauma, therapeutic hypothermia still displays an ambivalent role as the impact on the cardiopulmonary function is not yet fully understood. Methods. We have previously established a porcine polytrauma model including blunt chest trauma, penetrating abdominal trauma, and hemorrhagic shock. Therapeutic hypothermia (34°C) was induced for 3 hours. We documented cardiovascular parameters and basic respiratory parameters. Pigs were euthanized after 15.5 hours. Results. Our polytrauma porcine model displayed sufficient trauma impact. Resuscitation showed adequate restoration of hemodynamics. Induced hypothermia had neither harmful nor major positive effects on the animals' hemodynamics. Though heart rate significantly decreased and mixed venous oxygen saturation significantly increased during therapeutic hypothermia. Mean arterial blood pressure, central venous pressure, pulmonary arterial pressure, and wedge pressure showed no significant differences comparing normothermic trauma and hypothermic trauma pigs during hypothermia. Conclusions. Induced hypothermia after polytrauma is feasible. No major harmful effects on hemodynamics were observed. Therapeutic hypothermia revealed hints for tissue protective impact. But the chosen length for therapeutic hypothermia was too short. Nevertheless, therapeutic hypothermia might be a useful tool for intensive care after polytrauma. Future studies should extend therapeutic hypothermia. PMID:26170533

  15. Neuro-Linguistic Programming Treatment for Anxiety: Magic or Myth?

    ERIC Educational Resources Information Center

    Krugman, Martin; And Others

    1985-01-01

    Compared neuro-linguistic programing treatment for anxiety with self-control desensitization of equal duration and a waiting-list control group in treating public speaking anxiety. Results indicated that neither treatment was more effective in reducing anxiety than merely waiting for one hour. (Author/MCF)

  16. Fetal ECG extraction via Type-2 adaptive neuro-fuzzy inference systems.

    PubMed

    Ahmadieh, Hajar; Asl, Babak Mohammadzadeh

    2017-04-01

    We proposed a noninvasive method for separating the fetal ECG (FECG) from maternal ECG (MECG) by using Type-2 adaptive neuro-fuzzy inference systems. The method can extract FECG components from abdominal signal by using one abdominal channel, including maternal and fetal cardiac signals and other environmental noise signals, and one chest channel. The proposed algorithm detects the nonlinear dynamics of the mother's body. So, the components of the MECG are estimated from the abdominal signal. By subtracting estimated mother cardiac signal from abdominal signal, fetal cardiac signal can be extracted. This algorithm was applied on synthetic ECG signals generated based on the models developed by McSharry et al. and Behar et al. and also on DaISy real database. In environments with high uncertainty, our method performs better than the Type-1 fuzzy method. Specifically, in evaluation of the algorithm with the synthetic data based on McSharry model, for input signals with SNR of -5dB, the SNR of the extracted FECG was improved by 38.38% in comparison with the Type-1 fuzzy method. Also, the results show that increasing the uncertainty or decreasing the input SNR leads to increasing the percentage of the improvement in SNR of the extracted FECG. For instance, when the SNR of the input signal decreases to -30dB, our proposed algorithm improves the SNR of the extracted FECG by 71.06% with respect to the Type-1 fuzzy method. The same results were obtained on synthetic data based on Behar model. Our results on real database reflect the success of the proposed method to separate the maternal and fetal heart signals even if their waves overlap in time. Moreover, the proposed algorithm was applied to the simulated fetal ECG with ectopic beats and achieved good results in separating FECG from MECG. The results show the superiority of the proposed Type-2 neuro-fuzzy inference method over the Type-1 neuro-fuzzy inference and the polynomial networks methods, which is due to its

  17. A review of the hemodynamic effects of external leg and lower body compression.

    PubMed

    Helmi, M; Gommers, D; Groeneveld, A B J

    2014-03-01

    External leg and lower body compression (ELC) has been used for decades in the prevention of deep vein thrombosis and the treatment of leg ischemia. Because of systemic effects, the methods have regained interest in anesthesia, surgery and critical care. This review intends to summarize hemodynamic effects and their mechanisms. Compilation of relevant literature published in English as full paper and retrieved from Medline. By compressing veins, venous stasis is diminished and venous return and arterial blood flow are increased. ELC has been suggested to improve systemic hemodynamics, in different clinical settings, such as postural hypotension, anesthesia, surgery, shock, cardiopulmonary resuscitation and mechanical ventilation. However, the hemodynamic alterations depend upon the magnitude, extent, cycle, duration and thus the modality of ELC, when applied in a static or intermittent fashion (by pneumatic inflation), respectively. ELC may help future research and optimizing treatment of hemodynamically unstable, surgical or critically ill patients, independent of plasma volume expansion.

  18. [Study of sharing platform of web-based enhanced extracorporeal counterpulsation hemodynamic waveform data].

    PubMed

    Huang, Mingbo; Hu, Ding; Yu, Donglan; Zheng, Zhensheng; Wang, Kuijian

    2011-12-01

    Enhanced extracorporeal counterpulsation (EECP) information consists of both text and hemodynamic waveform data. At present EECP text information has been successfully managed through Web browser, while the management and sharing of hemodynamic waveform data through Internet has not been solved yet. In order to manage EECP information completely, based on the in-depth analysis of EECP hemodynamic waveform file of digital imaging and communications in medicine (DICOM) format and its disadvantages in Internet sharing, we proposed the use of the extensible markup language (XML), which is currently the Internet popular data exchange standard, as the storage specification for the sharing of EECP waveform data. Then we designed a web-based sharing system of EECP hemodynamic waveform data via ASP. NET 2.0 platform. Meanwhile, we specifically introduced the four main system function modules and their implement methods, including DICOM to XML conversion module, EECP waveform data management module, retrieval and display of EECP waveform module and the security mechanism of the system.

  19. Adaptive neuro-fuzzy inference systems for semi-automatic discrimination between seismic events: a study in Tehran region

    NASA Astrophysics Data System (ADS)

    Vasheghani Farahani, Jamileh; Zare, Mehdi; Lucas, Caro

    2012-04-01

    Thisarticle presents an adaptive neuro-fuzzy inference system (ANFIS) for classification of low magnitude seismic events reported in Iran by the network of Tehran Disaster Mitigation and Management Organization (TDMMO). ANFIS classifiers were used to detect seismic events using six inputs that defined the seismic events. Neuro-fuzzy coding was applied using the six extracted features as ANFIS inputs. Two types of events were defined: weak earthquakes and mining blasts. The data comprised 748 events (6289 signals) ranging from magnitude 1.1 to 4.6 recorded at 13 seismic stations between 2004 and 2009. We surveyed that there are almost 223 earthquakes with M ≤ 2.2 included in this database. Data sets from the south, east, and southeast of the city of Tehran were used to evaluate the best short period seismic discriminants, and features as inputs such as origin time of event, distance (source to station), latitude of epicenter, longitude of epicenter, magnitude, and spectral analysis (fc of the Pg wave) were used, increasing the rate of correct classification and decreasing the confusion rate between weak earthquakes and quarry blasts. The performance of the ANFIS model was evaluated for training and classification accuracy. The results confirmed that the proposed ANFIS model has good potential for determining seismic events.

  20. Novel Software-Assisted Hemodynamic Evaluation of Pelvic Flow During Chemoperfusion of Pelvic Arteries for Bladder Cancer: Double- Versus Single-Balloon Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Kiyohito, E-mail: rad105@poh.osaka-med.ac.jp; Yamamoto, Kazuhiro, E-mail: rad043@poh.osaka-med.ac.jp; Nakai, Go, E-mail: rad091@poh.osaka-med.ac.jp

    2016-06-15

    PurposeApproximately 83 % of patients with bladder cancer have achieved a complete response after undergoing a novel bladder preservation therapy involving balloon-occluded intra-arterial infusion chemotherapy (BOAI) using a four-lumen double-balloon catheter, known as the Osaka Medical College regimen. This study aimed to show the quantitative difference in hemodynamics of the bladder arteries using syngo iFlow (Siemens Healthcare, Erlangen, Germany), which provides an automatic tool for quantitative blood flow analysis between double BOAI (D-BOAI) and conventional single BOAI (S-BOAI).Materials and MethodsFifty patients were included. The catheters were introduced into both posterior trunks of the internal iliac arteries via contralateral femoral artery access.more » A side hole between the distal and proximal balloons was placed at the origin of each bladder artery to allow clear visualization of angiographic flow of the injected agent into the urinary bladder. Digital subtraction angiography was used during analysis with the syngo iFlow to evaluate the hemodynamics of the contrast medium in the pelvic arteries during BOAI. The comparative change in the amount of contrast medium in the bladder arteries between D-BOAI and S-BOAI was assessed using syngo iFlow.ResultsOne-hundred pelvic sides were analyzed. The amount of contrast medium in the bladder arteries using D-BOAI was more than twice that using S-BOAI (right, 3.03-fold; left, 2.81-fold).ConclusionThe amount of contrast medium in the bladder arteries using D-BOAI was higher than that using conventional S-BOAI. This may increase the anticancer drug concentration in the affected bladder, leading to a good clinical response.« less

  1. Particle Image Velocimetry studies of bicuspid aortic valve hemodynamics

    NASA Astrophysics Data System (ADS)

    Saikrishnan, Neelakantan; Yap, Choon-Hwai; Yoganathan, Ajit P.

    2010-11-01

    Bicuspid aortic valves (BAVs) are a congenital anomaly of the aortic valve with two fused leaflets, affecting about 1-2% of the population. BAV patients have much higher incidence of valve calcification & aortic dilatation, which may be related to altered mechanical forces from BAV hemodynamics. This study aims to characterize BAV hemodynamics using Particle Image Velocimetry(PIV). BAV models are constructed from normal explanted porcine aortic valves by suturing two leaflets together. The valves are mounted in an acrylic chamber with two sinuses & tested in a pulsatile flow loop at physiological conditions. 2D PIV is performed to obtain flow fields in three planes downstream of the valve. The stenosed BAV causes an eccentric jet, resulting in a very strong vortex in the normal sinus. The bicuspid sinus vortex appears much weaker, but more unstable. Unsteady oscillatory shear stresses are also observed, which have been associated with adverse biological response; characterization of the hemodynamics of BAVs will provide the first step to understanding these processes better. Results from multiple BAV models of varying levels of stenosis will be presented & higher stenosis corresponded to stronger jets & increased aortic wall shear stresses.

  2. Novel Use of a Noninvasive Hemodynamic Monitor in a Personalized, Active Learning Simulation

    ERIC Educational Resources Information Center

    Zoller, Jonathan K.; He, Jianghua; Ballew, Angela T.; Orr, Walter N.; Flynn, Brigid C.

    2017-01-01

    The present study furthered the concept of simulation-based medical education by applying a personalized active learning component. We tested this novel approach utilizing a noninvasive hemodynamic monitor with the capability to measure and display in real time numerous hemodynamic parameters in the exercising participant. Changes in medical…

  3. Echocardiographic parameters predicting acute hemodynamically significant mitral regurgitation during transfemoral transcatheter aortic valve replacement.

    PubMed

    Ito, Asahiro; Iwata, Shinichi; Mizutani, Kazuki; Nonin, Shinichi; Nishimura, Shinsuke; Takahashi, Yosuke; Yamada, Tokuhiro; Murakami, Takashi; Shibata, Toshihiko; Yoshiyama, Minoru

    2018-03-01

    Alteration in mitral valve morphology resulting from retrograde stiff wire entanglement sometimes causes hemodynamically significant acute mitral regurgitation (MR) during transfemoral transcatheter aortic valve replacement (TAVR). Little is known about the echocardiographic parameters related to hemodynamically significant acute MR. This study population consisted of 64 consecutive patients who underwent transfemoral TAVR. We defined hemodynamically significant acute MR as changes in the severity of MR with persistent hypotension (systolic blood pressure < 80-90 mm Hg or mean arterial pressure 30 mm Hg lower than baseline). Hemodynamically significant acute MR occurred in 5 cases (7.8%). Smaller left ventricular end-systolic diameter (LVDs), larger ratios of the coiled section of stiff wire tip to LVDs (wire-width/LVDs), and higher Wilkins score were significantly associated with hemodynamically significant acute MR (P < .05), whereas the parameters of functional MR (annular area, anterior-posterior diameter, tenting area, and coaptation length) were not. Moreover, when patients were divided into 4 groups according to wire-width/LVDs and Wilkins score, the group with the larger wire-width/LVDs and higher Wilkins score improved prediction rates (P < .05). Small left ventricle or wire oversizing and calcific mitral apparatus were predictive of hemodynamically significant acute MR. These findings are important for risk stratification, and careful monitoring using intraoperative transesophageal echocardiography may improve the safety in this population. © 2017, Wiley Periodicals, Inc.

  4. Sour taste increases swallowing and prolongs hemodynamic responses in the cortical swallowing network

    PubMed Central

    Kamarunas, Erin; Ludlow, Christy L.

    2016-01-01

    Sour stimuli have been shown to upregulate swallowing in patients and in healthy volunteers. However, such changes may be dependent on taste-induced increases in salivary flow. Other mechanisms include genetic taster status (Bartoshuk LM, Duffy VB, Green BG, Hoffman HJ, Ko CW, Lucchina LA, Weiffenbach JM. Physiol Behav 82: 109–114, 2004) and differences between sour and other tastes. We investigated the effects of taste on swallowing frequency and cortical activation in the swallowing network and whether taster status affected responses. Three-milliliter boluses of sour, sour with slow infusion, sweet, water, and water with infusion were compared on swallowing frequency and hemodynamic responses. The sour conditions increased swallowing frequency, whereas sweet and water did not. Changes in cortical oxygenated hemoglobin (hemodynamic responses) measured by functional near-infrared spectroscopy were averaged over 30 trials for each condition per participant in the right and left motor cortex, S1 and supplementary motor area for 30 s following bolus onset. Motion artifact in the hemodynamic response occurred 0–2 s after bolus onset, when the majority of swallows occurred. The peak hemodynamic response 2–7 s after bolus onset did not differ by taste, hemisphere, or cortical location. The mean hemodynamic response 17–22 s after bolus onset was highest in the motor regions of both hemispheres, and greater in the sour and infusion condition than in the water condition. Genetic taster status did not alter changes in swallowing frequency or hemodynamic response. As sour taste significantly increased swallowing and cortical activation equally with and without slow infusion, increases in the cortical swallowing were due to sour taste. PMID:27489363

  5. Impact of tubing length on hemodynamics in a simulated neonatal extracorporeal life support circuit.

    PubMed

    Qiu, Feng; Uluer, Mehmet C; Kunselman, Allen; Clark, J Brian; Myers, John L; Undar, Akif

    2010-11-01

    During extracorporeal life support (ECLS), a large portion of the hemodynamic energy is lost to various components of the circuit. Minimization of this loss in the circuit leads to better vital organ perfusion and decreases the risk of systemic inflammation. In this study, we evaluated the hemodynamic properties of differing lengths of tubing in a simulated neonatal ECLS circuit. The neonatal ECLS circuit used in this study included a Capiox Baby RX05 oxygenator (Terumo Corporation, Tokyo, Japan), a Rotaflow centrifugal pump (MAQUET Cardiopulmonary AG, Hirrlingen, Germany), and a heater and cooler unit. An 8Fr Biomedicus arterial and a 10Fr Biomedicus venous cannula were connected to the pseudopatient. One-fourth inch tubing was used for both the arterial and the venous line. A Hoffman clamp was located upstream from the pseudopatient to maintain a certain patient pressure. Three pressure transducers were placed at different sites: postoxygenator, prearterial cannula, and postarterial cannula. The system was primed with Lactated Ringer's solution; human blood was then added to maintain a hematocrit of 40%. The volume of the pseudopatient was 500mL. We hemodynamically evaluated three circuits with different lengths of tubing: 6, 4, and 2 feet (182.88, 121.92, and 60.96 cm, respectively) for both arterial and venous lines; the priming volumes including all of the components of the circuits were 195, 155, and 115mL, respectively. In each circuit, we measured the pressure drops of the arterial tubing and the arterial cannula, as well as the flow rates at different rpm (1750-3000, 250 intervals) under three patient pressures (40, 60, and 80mm Hg). All the experiments were conducted at 37°C. The pressure drop across the arterial cannula is much larger than that of arterial tubing in all set-ups, especially under high flow rates. Upon cutting the tubing from 6 to 2 feet, the pressure drop of the arterial tubing decreased by half, while the pressure drop of the arterial

  6. Different expression patterns of Ngb and EPOR in the cerebral cortex and hippocampus revealed distinctive therapeutic effects of intranasal delivery of Neuro-EPO for ischemic insults to the gerbil brain.

    PubMed

    Gao, Yan; Mengana, Yuneidis; Cruz, Yamila Rodríguez; Muñoz, Adriana; Testé, Iliana Sosa; García, Jorge Daniel; Wu, Yonghong; Rodríguez, Julio César García; Zhang, Chenggang

    2011-02-01

    The purpose of this study was to evaluate the neuroprotective effects of intranasally delivered recombinant human neuronal erythropoietin (Neuro-EPO) on brain injury induced by unilateral permanent ischemia in the Mongolian gerbil. Expression of EPO receptor (EPOR) and neuroglobin (Ngb) over 5 weeks after intranasal treatment with Neuro-EPO was determined using immunohistochemistry. Mortality of Neuro-EPO-treated gerbils decreased after surgery, and the sensory and motor function was significantly improved. Histopathological mapping showed that Neuro-EPO significantly reduced delayed neuronal death in the brain. Expression of Ngb was upregulated in the cerebral cortex at most time points (expect for 10 min and 48 hr) and in the hippocampus at 10 min and from 48 hr to 5 weeks, whereas EPOR was almost downregulated or unchanged in the brain (expect for 48 hr). The 10 min and 48 hr seemed to be two time points for the brain to switch the expression of both Ngb and EPOR to early and late recovery phase, respectively. In addition, there were two phases, 10 min to 1 hr and 24 hr to 72 hr, respectively, closing to the "golden hour" of about 60 min and the "silver day" of 1 to 3 days, for the brain to recover from stroke onset with intranasal Neuro-EPO treatment. Therefore, the results suggest that the intranasal administration of Neuro-EPO is effective in the treatment of acute brain ischemia. The different expression patterns of Ngb and EPOR is probably due to ischemic tolerance in the cerebral cortex and ischemic sensitivity in the hippocampus.

  7. Different Expression Patterns of Ngb and EPOR in the Cerebral Cortex and Hippocampus Revealed Distinctive Therapeutic Effects of Intranasal Delivery of Neuro-EPO for Ischemic Insults to the Gerbil Brain

    PubMed Central

    Gao, Yan; Mengana, Yuneidis; Cruz, Yamila Rodríguez; Muñoz, Adriana; Testé, Iliana Sosa; García, Jorge Daniel; Wu, Yonghong; Rodríguez, Julio César García; Zhang, Chenggang

    2011-01-01

    The purpose of this study was to evaluate the neuroprotective effects of intranasally delivered recombinant human neuronal erythropoietin (Neuro-EPO) on brain injury induced by unilateral permanent ischemia in the Mongolian gerbil. Expression of EPO receptor (EPOR) and neuroglobin (Ngb) over 5 weeks after intranasal treatment with Neuro-EPO was determined using immunohistochemistry. Mortality of Neuro-EPO-treated gerbils decreased after surgery, and the sensory and motor function was significantly improved. Histopathological mapping showed that Neuro-EPO significantly reduced delayed neuronal death in the brain. Expression of Ngb was upregulated in the cerebral cortex at most time points (expect for 10 min and 48 hr) and in the hippocampus at 10 min and from 48 hr to 5 weeks, whereas EPOR was almost downregulated or unchanged in the brain (expect for 48 hr). The 10 min and 48 hr seemed to be two time points for the brain to switch the expression of both Ngb and EPOR to early and late recovery phase, respectively. In addition, there were two phases, 10 min to 1 hr and 24 hr to 72 hr, respectively, closing to the “golden hour” of about 60 min and the “silver day” of 1 to 3 days, for the brain to recover from stroke onset with intranasal Neuro-EPO treatment. Therefore, the results suggest that the intranasal administration of Neuro-EPO is effective in the treatment of acute brain ischemia. The different expression patterns of Ngb and EPOR is probably due to ischemic tolerance in the cerebral cortex and ischemic sensitivity in the hippocampus. PMID:21339183

  8. Guiding Principles for a Pediatric Neurology ICU (neuroPICU) Bedside Multimodal Monitor

    PubMed Central

    Eldar, Yonina C.; Gopher, Daniel; Gottlieb, Amihai; Lammfromm, Rotem; Mangat, Halinder S; Peleg, Nimrod; Pon, Steven; Rozenberg, Igal; Schiff, Nicholas D; Stark, David E; Yan, Peter; Pratt, Hillel; Kosofsky, Barry E

    2016-01-01

    Summary Background Physicians caring for children with serious acute neurologic disease must process overwhelming amounts of physiological and medical information. Strategies to optimize real time display of this information are understudied. Objectives Our goal was to engage clinical and engineering experts to develop guiding principles for creating a pediatric neurology intensive care unit (neuroPICU) monitor that integrates and displays data from multiple sources in an intuitive and informative manner. Methods To accomplish this goal, an international group of physicians and engineers communicated regularly for one year. We integrated findings from clinical observations, interviews, a survey, signal processing, and visualization exercises to develop a concept for a neuroPICU display. Results Key conclusions from our efforts include: (1) A neuroPICU display should support (a) rapid review of retrospective time series (i.e. cardiac, pulmonary, and neurologic physiology data), (b) rapidly modifiable formats for viewing that data according to the specialty of the reviewer, and (c) communication of the degree of risk of clinical decline. (2) Specialized visualizations of physiologic parameters can highlight abnormalities in multivariable temporal data. Examples include 3-D stacked spider plots and color coded time series plots. (3) Visual summaries of EEG with spectral tools (i.e. hemispheric asymmetry and median power) can highlight seizures via patient-specific “fingerprints.” (4) Intuitive displays should emphasize subsets of physiology and processed EEG data to provide a rapid gestalt of the current status and medical stability of a patient. Conclusions A well-designed neuroPICU display must present multiple datasets in dynamic, flexible, and informative views to accommodate clinicians from multiple disciplines in a variety of clinical scenarios. PMID:27437048

  9. Impact of body position on central and peripheral hemodynamic contributions to movement-induced hyperemia: implications for rehabilitative medicine

    PubMed Central

    McDaniel, John; Venturelli, Massimo; Fjeldstad, Anette S.; Ives, Stephen J.; Witman, Melissa A. H.; Barrett-O'Keefe, Zachary; Amann, Markus; Wray, D. Walter; Richardson, Russell S.

    2011-01-01

    This study used alterations in body position to identify differences in hemodynamic responses to passive exercise. Central and peripheral hemodynamics were noninvasively measured during 2 min of passive knee extension in 14 subjects, whereas perfusion pressure (PP) was directly measured in a subset of 6 subjects. Movement-induced increases in leg blood flow (LBF) and leg vascular conductance (LVC) were more than twofold greater in the upright compared with supine positions (LBF, supine: 462 ± 6, and upright: 1,084 ± 159 ml/min, P < 0.001; and LVC, supine: 5.3 ± 1.2, and upright: 11.8 ± 2.8 ml·min−1·mmHg−1, P < 0.002). The change in heart rate (HR) from baseline to peak was not different between positions (supine: 8 ± 1, and upright: 10 ± 1 beats/min, P = 0.22); however, the elevated HR was maintained for a longer duration when upright. Stroke volume contributed to the increase in cardiac output (CO) during the upright movement only. CO increased in both positions; however, the magnitude and duration of the CO response were greater in the upright position. Mean arterial pressure and PP were higher at baseline and throughout passive movement when upright. Thus exaggerated central hemodynamic responses characterized by an increase in stroke volume and a sustained HR response combined to yield a greater increase in CO during upright movement. This greater central response coupled with the increased PP and LVC explains the twofold greater and more sustained increase in movement-induced hyperemia in the upright compared with supine position and has clinical implications for rehabilitative medicine. PMID:21357514

  10. Impact of body position on central and peripheral hemodynamic contributions to movement-induced hyperemia: implications for rehabilitative medicine.

    PubMed

    Trinity, Joel D; McDaniel, John; Venturelli, Massimo; Fjeldstad, Anette S; Ives, Stephen J; Witman, Melissa A H; Barrett-O'Keefe, Zachary; Amann, Markus; Wray, D Walter; Richardson, Russell S

    2011-05-01

    This study used alterations in body position to identify differences in hemodynamic responses to passive exercise. Central and peripheral hemodynamics were noninvasively measured during 2 min of passive knee extension in 14 subjects, whereas perfusion pressure (PP) was directly measured in a subset of 6 subjects. Movement-induced increases in leg blood flow (LBF) and leg vascular conductance (LVC) were more than twofold greater in the upright compared with supine positions (LBF, supine: 462 ± 6, and upright: 1,084 ± 159 ml/min, P < 0.001; and LVC, supine: 5.3 ± 1.2, and upright: 11.8 ± 2.8 ml·min⁻¹ ·mmHg⁻¹, P < 0.002). The change in heart rate (HR) from baseline to peak was not different between positions (supine: 8 ± 1, and upright: 10 ± 1 beats/min, P = 0.22); however, the elevated HR was maintained for a longer duration when upright. Stroke volume contributed to the increase in cardiac output (CO) during the upright movement only. CO increased in both positions; however, the magnitude and duration of the CO response were greater in the upright position. Mean arterial pressure and PP were higher at baseline and throughout passive movement when upright. Thus exaggerated central hemodynamic responses characterized by an increase in stroke volume and a sustained HR response combined to yield a greater increase in CO during upright movement. This greater central response coupled with the increased PP and LVC explains the twofold greater and more sustained increase in movement-induced hyperemia in the upright compared with supine position and has clinical implications for rehabilitative medicine.

  11. Vision rehabilitation for visual-vestibular dysfunction: the role of the neuro-optometrist.

    PubMed

    Cohen, Allen H

    2013-01-01

    This article discusses, in a clinically relevant format, the importance of including a neuro-optometrist as a member of the management team for patients with balance disorders. To review the importance of vision and visual processing for maintaining a sense of balance and equilibrium and the role of the neuro-optometrist in the overall rehabilitation of patients with balance disorders Dizziness, balance problems and the sensation that the space world is moving (vertigo) are one of the most commonly reported problems in general medical practice. Persons with a central nervous system injury or other idiopathic causes of visual processing problems or who have functional vision problems that are not adequately managed, often experience extreme difficulty with balance and movement, as well as with their perception of space. Consequently, the patient often experiences difficulty functioning in an environment with excessive visual stimulation such as a grocery store or shopping mall. Symptoms of disequilibrium, vestibular and balance problems are commonly a result of VOR disturbance secondary to an inner ear problem and an unstable binocularity. The combination of neuro-optomertic rehabilitative therapy and balance therapy will result in a is an effective treatment for reducing or resolving these symptoms.

  12. Multiparametric optical coherence tomography imaging of the inner retinal hemodynamic response to visual stimulation

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Harsha; Srinivasan, Vivek J.

    2013-08-01

    The hemodynamic response to neuronal activation is a well-studied phenomenon in the brain, due to the prevalence of functional magnetic resonance imaging. The retina represents an optically accessible platform for studying lamina-specific neurovascular coupling in the central nervous system; however, due to methodological limitations, this has been challenging to date. We demonstrate techniques for the imaging of visual stimulus-evoked hyperemia in the rat inner retina using Doppler optical coherence tomography (OCT) and OCT angiography. Volumetric imaging with three-dimensional motion correction, en face flow calculation, and normalization of dynamic signal to static signal are techniques that reduce spurious changes caused by motion. We anticipate that OCT imaging of retinal functional hyperemia may yield viable biomarkers in diseases, such as diabetic retinopathy, where the neurovascular unit may be impaired.

  13. NeuroAIDS, drug abuse, and inflammation: building collaborative research activities.

    PubMed

    Berman, Joan W; Carson, Monica J; Chang, Linda; Cox, Brian M; Fox, Howard S; Gonzalez, R Gilberto; Hanson, Glen R; Hauser, Kurt F; Ho, Wen-Zhe; Hong, Jau-Shyong; Major, Eugene O; Maragos, William F; Masliah, Eliezer; McArthur, Justin C; Miller, Diane B; Nath, Avindra; O'Callaghan, James P; Persidsky, Yuri; Power, Christopher; Rogers, Thomas J; Royal, Walter

    2006-12-01

    Neurological complications of human immunodeficiency virus (HIV) infection are a public health problem despite the availability of active antiretroviral therapies. The neuropathogenesis of HIV infection revolves around a complex cascade of events that include viral infection and glial immune activation, monocyte-macrophage brain infiltration, and secretion of a host of viral and cellular inflammatory and neurotoxic molecules. Although there is evidence that HIV-infected drug abusers experience more severe neurological disease, the biological basis for this finding is unknown. A scientific workshop organized by the National Institute on Drug Abuse (NIDA) was held on March 23-24, 2006 to address this question. The goal of the meeting was to bring together basic science and clinical researchers who are experts in NeuroAIDS, glial immunity, drugs of abuse, and/or pharmacology in order to find new approaches to understanding interactions between drug abuse and neuroAIDS. The format of the meeting was designed to stimulate open discussion and forge new multidisciplinary research collaborations. This report includes transcripts of active discussions and short presentations from invited participants. The presentations were separated into sections that included: Glial Biology, Inflammation, and HIV; Pharmacology, Neurotoxicology, and Neuroprotection; NeuroAIDS and Virology; and Virus-Drug and Immune-Drug Interactions. Research priorities were identified. Additional information about this meeting is available through links from the NIDA AIDS Research Program website ( http://www.nida.nih.gov/about/organization/arp/arp-websites.htm ).

  14. Seizure Duration and Hemodynamic State During Electroconvulsive Therapy: Sodium Thiopental Versus Propofol.

    PubMed

    Jarineshin, Hashem; Kashani, Saeed; Fekrat, Fereydoon; Vatankhah, Majid; Golmirzaei, Javad; Alimolaee, Esmaeel; Zafarpour, Hamid

    2015-06-12

    General anesthesia is required for Electroconvulsive Therapy (ECT) and it is usually provided by a hypnotic agent. The seizure duration is important for the treatment, and it is usually accompanied by severe hemodynamic changes. The aim of this study was to compare the effects of sodium thiopental versus Propofol on seizure duration and hemodynamic variables during ECT. A number of 100 patient-sessions of ECT were included in this randomized clinical trial. The initial hemodynamic state of each patient was recorded. Anesthesia was induced by Sodium thiopental in the 1st group and with Propofol in 2nd group. All the patients received the muscle relaxant succinylcholine. The hemodynamic variables after seizure and seizure duration were recorded. The data were analyzed through SPSS 20 and independent t-test. P<0.05 was considered significant. The mean duration of seizure in the sodium thiopental group was significantly longer than the Propofol group (40.3±16.6 sec versus 32±11.3 sec) (P=0.001). There was no statistically significant difference between the mean energy level applied in the two groups (20.5±3.81 joules in the sodium thiopental versus 20.2±3.49 joules in the Propofol group). The mean systolic and diastolic blood pressure at all times after seizure and mean heart rate at 3 and 5 minutes after seizure were significantly lower in Propofol than sodium thiopental groups. Propofol provides a more stable hemodynamic state for the ECT procedures, and its use is highly preferred over sodium thiopental in patients with cardiovascular disease.

  15. Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses.

    PubMed

    Chen, Jie; Lu, Xi-Yun; Wang, Wen

    2006-01-01

    Non-Newtonian fluid flow in a stenosed coronary bypass is investigated numerically using the Carreau-Yasuda model for the shear thinning behavior of the blood. End-to-side coronary bypass anastomosis is considered in a simplified model geometry where the host coronary artery has a 75% severity stenosis. Different locations of the bypass graft to the stenosis and different flow rates in the graft and in the host artery are studied. Particular attention is given to the non-Newtonian effect of the blood on the primary and secondary flow patterns in the host coronary artery and the wall shear stress (WSS) distribution there. Interaction between the jet flow from the stenosed artery and the flow from the graft is simulated by solving the three-dimensional Navier-Stokes equation coupled with the non-Newtonian constitutive model. Results for the non-Newtonian flow, the Newtonian flow and the rescaled Newtonian flow are presented. Significant differences in axial velocity profiles, secondary flow streamlines and WSS between the non-Newtonian and Newtonian fluid flows are revealed. However, reasonable agreement between the non-Newtonian and the rescaled Newtonian flows is found. Results from this study support the view that the residual flow in a partially occluded coronary artery interacts with flow in the bypass graft and may have significant hemodynamic effects in the host vessel downstream of the graft. Non-Newtonian property of the blood alters the flow pattern and WSS distribution and is an important factor to be considered in simulating hemodynamic effects of blood flow in arterial bypass grafts.

  16. [Cerebral hemodynamics in patients with neurosensory hearing loss before and after magnetotherapy].

    PubMed

    Morenko, V M; Enin, I P

    2001-01-01

    Magnetotherapy effects on cerebral hemodynamics were studied using rheoencephalography (REG). When the treatment results and changes in cerebral hemodynamics were compared it was evident that normalization or improvement of vascular status in vertebrobasilar and carotid territories registered at REG results in better hearing. This confirms the role of vascular factor in pathogenesis of neurosensory hypoacusis of different etiology and effectiveness of magnetotherapy in such patients.

  17. The reliability of the clinical examination in predicting hemodynamic status in acute febrile illness in a tropical, resource-limited setting.

    PubMed

    Moek, Felix; Poe, Poe; Charunwatthana, Prakaykaew; Pan-Ngum, Wirichada; Wattanagoon, Yupaporn; Chierakul, Wirongrong

    2018-05-19

    The clinical examination alone is widely considered unreliable when assessing fluid responsiveness in critically ill patients. Little evidence exists on the performance of the clinical examination to predict other hemodynamic derangements or more complex hemodynamic states. Patients with acute febrile illness were assessed on admission, both clinically and per non-invasive hemodynamic measurement. Correlations between clinical signs and hemodynamics patterns were analyzed, and the predictive capacity of the clinical signs was examined. Seventy-one patients were included; the most common diagnoses were bacterial sepsis, scrub typhus and dengue infection. Correlations between clinical signs and hemodynamic parameters were only statistically significant for Cardiac Index (r=0.75, p-value <0.01), Systemic Vascular Resistance Index (r=0.79, p-value <0.01) and flow time corrected (r=0.44, p-value 0.03). When assessing the predictive accuracy of clinical signs, the model identified only 62% of hemodynamic states correctly, even less if there was more than one hemodynamic abnormality. The clinical examination is not reliable to assess a patient's hemodynamic status in acute febrile illness. Fluid responsiveness, cardiodepression and more complex hemodynamic states are particularly easily missed.

  18. Sapphire implant based neuro-complex for deep-lying brain tumors phototheranostics

    NASA Astrophysics Data System (ADS)

    Sharova, A. S.; Maklygina, YU S.; Yusubalieva, G. M.; Shikunova, I. A.; Kurlov, V. N.; Loschenov, V. B.

    2018-01-01

    The neuro-complex as a combination of sapphire implant optical port and osteoplastic biomaterial "Collapan" as an Aluminum phthalocyanine nanoform photosensitizer (PS) depot was developed within the framework of this study. The main goals of such neuro-complex are to provide direct access of laser radiation to the brain tissue depth and to transfer PS directly to the pathological tissue location that will allow multiple optical phototheranostics of the deep-lying tumor region without repeated surgical intervention. The developed complex spectral-optical properties research was carried out by photodiagnostics method using the model sample: a brain tissue phantom. The optical transparency of sapphire implant allows obtaining a fluorescent signal with high accuracy, comparable to direct measurement "in contact" with the tissue.

  19. An evaluation of Neuro-Physiological Psychotherapy: An integrative therapeutic approach to working with adopted children who have experienced early life trauma.

    PubMed

    McCullough, Elaine; Gordon-Jones, Susi; Last, Anna; Vaughan, Jay; Burnell, Alan

    2016-10-01

    Research into the effectiveness of therapeutic interventions for older children who have experienced multiple forms of trauma within the context of their early development is scant. This article explores the effectiveness of Neuro-Physiological Psychotherapy (NPP): a wrap-around multi-disciplinary, neuro-sequential, attachment-focussed intervention for children and families who present with multiple, clinically significant, emotional and behavioural difficulties. In total, 31 young people and their adoptive parents took part in the study. Baseline measures were repeated and parents and children interviewed. An assessment of the parent/child relationship and child attachment was undertaken but not analysed for this article. Analysis of the repeated measures received statistically significant changes in behavioural regulation, metacognitive executive functioning and externalising and internalising difficulties, alongside an improvement in thought and social problems. An analysis of the parent interviews provided positive results in terms of the children's engagement in education, an absence of further mental health diagnosis or involvement in the criminal justice system. Further hypotheses are posited regarding the impact of the treatment and further research into the effectiveness of the model outlined. © The Author(s) 2016.

  20. Molecular markers in pediatric neuro-oncology.

    PubMed

    Ichimura, Koichi; Nishikawa, Ryo; Matsutani, Masao

    2012-09-01

    Pediatric molecular neuro-oncology is a fast developing field. A multitude of molecular profiling studies in recent years has unveiled a number of genetic abnormalities unique to pediatric brain tumors. It has now become clear that brain tumors that arise in children have distinct pathogenesis and biology, compared with their adult counterparts, even for those with indistinguishable histopathology. Some of the molecular features are so specific to a particular type of tumors, such as the presence of the KIAA1549-BRAF fusion gene for pilocytic astrocytomas or SMARCB1 mutations for atypical teratoid/rhabdoid tumors, that they could practically serve as a diagnostic marker on their own. Expression profiling has resolved the existence of 4 molecular subgroups in medulloblastomas, which positively translated into improved prognostication for the patients. The currently available molecular markers, however, do not cover all tumors even within a single tumor entity. The molecular pathogenesis of a large number of pediatric brain tumors is still unaccounted for, and the hierarchy of tumors is likely to be more complex and intricate than currently acknowledged. One of the main tasks of future molecular analyses in pediatric neuro-oncology, including the ongoing genome sequencing efforts, is to elucidate the biological basis of those orphan tumors. The ultimate goal of molecular diagnostics is to accurately predict the clinical and biological behavior of any tumor by means of their molecular characteristics, which is hoped to eventually pave the way for individualized treatment.

  1. Molecular markers in pediatric neuro-oncology

    PubMed Central

    Ichimura, Koichi; Nishikawa, Ryo; Matsutani, Masao

    2012-01-01

    Pediatric molecular neuro-oncology is a fast developing field. A multitude of molecular profiling studies in recent years has unveiled a number of genetic abnormalities unique to pediatric brain tumors. It has now become clear that brain tumors that arise in children have distinct pathogenesis and biology, compared with their adult counterparts, even for those with indistinguishable histopathology. Some of the molecular features are so specific to a particular type of tumors, such as the presence of the KIAA1549-BRAF fusion gene for pilocytic astrocytomas or SMARCB1 mutations for atypical teratoid/rhabdoid tumors, that they could practically serve as a diagnostic marker on their own. Expression profiling has resolved the existence of 4 molecular subgroups in medulloblastomas, which positively translated into improved prognostication for the patients. The currently available molecular markers, however, do not cover all tumors even within a single tumor entity. The molecular pathogenesis of a large number of pediatric brain tumors is still unaccounted for, and the hierarchy of tumors is likely to be more complex and intricate than currently acknowledged. One of the main tasks of future molecular analyses in pediatric neuro-oncology, including the ongoing genome sequencing efforts, is to elucidate the biological basis of those orphan tumors. The ultimate goal of molecular diagnostics is to accurately predict the clinical and biological behavior of any tumor by means of their molecular characteristics, which is hoped to eventually pave the way for individualized treatment. PMID:23095836

  2. The dual pathway model of AD/HD: an elaboration of neuro-developmental characteristics.

    PubMed

    Sonuga-Barke, Edmund J S

    2003-11-01

    The currently dominant neuro-cognitive model of Attention Deficit Hyperactivity Disorder (AD/HD) presents the condition as executive dysfunction (EDF) underpinned by disturbances in the fronto-dorsal striatal circuit and associated dopaminergic branches (e.g. meso-cortical). In contrast, motivationally-based accounts focus on altered reward processes and implicate fronto-ventral striatal reward circuits and those meso-limbic branches that terminate in the ventral striatum especially the nucleus accumbens. One such account, delay aversion (DEL), presents AD/HD as a motivational style-characterised by attempts to escape or avoid delay-arising from fundamental disturbances in these reward centres. While traditionally regarded as competing, EDF and DEL models have recently been presented as complimentary accounts of two psycho-patho-physiological subtypes of AD/HD with different developmental pathways, underpinned by different cortico-striatal circuits and modulated by different branches of the dopamine system. In the current paper we describe the development of this model in more detail. We elaborate on the neuro-circuitry possibly underpinning these two pathways and explore their developmental significance within a neuro-ecological framework.

  3. e100 NeuroRobotic system.

    PubMed

    Stein, Joel

    2009-01-01

    Therapy incorporating the repeated practice of motor tasks has been found to enhance motor function after stroke. This type of therapy may be facilitated by robotic devices and several such devices are being developed for use in rehabilitation. The Myomo e100 NeuroRobotic system is a novel device developed to provide assistance during elbow movements in stroke survivors. The device uses surface electromyographic signals to control a powered elbow orthosis. Data from a pilot study reveals that the device can be used successfully by stroke survivors and suggests that it may be effective in helping to restore motor control after stroke. Further studies are needed to confirm these preliminary results.

  4. Altering hemodynamics leads to congenital heart defects (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ford, Stephanie M.; McPheeters, Matthew T.; Wang, Yves T.; Gu, Shi; Doughman, Yong Qiu; Strainic, James P.; Rollins, Andrew M.; Watanabe, Michiko; Jenkins, Michael W.

    2016-03-01

    The role of hemodynamics in early heart development is poorly understood. In order to successfully assess the impact of hemodynamics on development, we need to monitor and perturb blood flow, and quantify the resultant effects on morphology. Here, we have utilized cardiac optical pacing to create regurgitant flow in embryonic hearts and OCT to quantify regurgitation percentage and resultant morphology. Embryonic quail in a shell-less culture were optically paced at 3 Hz (well above the intrinsic rate or 1.33-1.67 Hz) on day 2 of development (3-4 weeks human) for 5 minutes. The pacing fatigued the heart and led to a prolonged period (> 1 hour) of increased regurgitant flow. Embryos were kept alive until day 3 (cardiac looping - 4-5 weeks human) or day 8 (4 chambered heart - 8 weeks human) to quantify resultant morphologic changes with OCT. All paced embryos imaged at day 3 displayed cardiac defects. The extent of regurgitant flow immediately after pacing was correlated with cardiac cushion size 24-hours post pacing (p-value < 0.01) with higher regurgitation leading to smaller cushions. Almost all embryos (16/18) surviving to day 8 exhibited congenital heart defects (CHDs) including 11/18 with valve defects, 5/18 with ventricular septal defects and 5/18 with hypoplastic right ventricles. Our data suggests that regurgitant flow leads to smaller cushions, which develop into abnormal valves and septa. Our model produces similar phenotypes as found in our fetal alcohol syndrome and velo-cardio-facial/DiGeorge syndrome models suggesting that hemodynamics plays a role in these syndromes as well. Utilizing OCT and optical pacing to understand hemodynamics in development is an important step towards determining CHD mechanisms and ultimately developing earlier treatments.

  5. Systematic review and meta-analysis of hemodynamic-directed feedback during cardiopulmonary resuscitation in cardiac arrest.

    PubMed

    Chopra, A S; Wong, N; Ziegler, C P; Morrison, L J

    2016-04-01

    Physiologic monitoring of resuscitative efforts during cardiac arrest is gaining in importance, as it provides a real-time window into the cellular physiology of patients. The aim of this review is to assess the quality of evidence surrounding the use of physiologic monitoring to guide cardiopulmonary resuscitation (CPR), and to examine whether the evidence demonstrates an improvement in patient outcome when comparing hemodynamic-directed CPR versus standard CPR. Studies were obtained through a search of the PubMed, Embase and Cochrane databases. Peer-reviewed randomized trials, case-control studies, systematic reviews, and cohort studies that titrated CPR to physiologic measures, compared results to standard CPR, and examined patient outcome were included. Six studies met inclusion criteria, with all studies conducted in animal populations. Four studies examined the effects of hemodynamic-directed CPR on survival, with 35/37 (94.6%) animals surviving in the hemodynamic-directed CPR groups and 12/35 (34.3%) surviving in the control groups (p<0.001). Two studies examined the effects of hemodynamic-directed CPR on ROSC, with 22/30 (73.3%) achieving ROSC in the hemodynamic-directed CPR group and 19/30 (63.3%) achieving ROSC in the control group (p=0.344). These results suggest a trend in survival from hemodynamic-directed CPR over standard CPR, however the small sample size and lack of human data make these results of limited value. Future human studies examining hemodynamic-directed CPR versus current CPR standards are needed to enhance our understanding of how to effectively use physiologic measures to improve resuscitation efforts and ultimately incorporate concrete targets into international resuscitation guidelines. Crown Copyright © 2016. Published by Elsevier Ireland Ltd. All rights reserved.

  6. [Hemodynamic phenomena in retrobulhar and eyeball vessels].

    PubMed

    Modrzejewska, Monika

    2011-01-01

    The purpose of this review was to evaluate factors connected with blood flow and indices regulating vascular diameter and some parameters influencing retrobulbar circulation such as type of vascular resistance, anatomical structure of vascular wall and vessel lumen. Neurogenic and angiogenic factors, rheological blood composition, presence of anatomical and pathological obstructions on blood flow pathway as well as degree of development of collateral circulation pathways--have influence on the volume and blood flow velocity in eyeball. There were discussed bulbar circulation hemodynamics, emphasizing the importance of perfusion pressure. The role of risk factors was underlined for pathological lesions in vessels supplying blood to eyeball and in ophthalmic artery (OA) and its collaterals, in central retinal artery (CRA) as well as posterior ciliary arteries (PCAs), and in venous system carrying away blood from eye. IN CONCLUSION--the results of many studies of retrobulbar blood flow in different types of ophthalmic diseases of the vascular etiopathogenesis indicate that registry of the mean values of blood flow parameters and vascular resistance indices parallel to measurement of blood flow spectrum in OA, CRA, PCAs arteries, might contribute much information to explain or to evaluate nature of pathological changes in retinal and choroidal circulation.

  7. Does Flexible Arterial Tubing Retain More Hemodynamic Energy During Pediatric Pulsatile Extracorporeal Life Support?

    PubMed

    Wang, Shigang; Kunselman, Allen R; Ündar, Akif

    2017-01-01

    The objective of this study was to evaluate the hemodynamic performance and energy transmission of flexible arterial tubing as the arterial line in a simulated pediatric pulsatile extracorporeal life support (ECLS) system. The ECLS circuit consisted of a Medos Deltastream DP3 diagonal pump head, Medos Hilite 2400 LT oxygenator, Biomedicus arterial/venous cannula (10 Fr/14 Fr), 3 feet of polyvinyl chloride (PVC) arterial tubing or latex rubber arterial tubing, primed with lactated Ringer's solution and packed red blood cells (hematocrit 40%). Trials were conducted at flow rates of 300 to 1200 mL/min (300 mL/min increments) under nonpulsatile and pulsatile modes at 36°C using either PVC arterial tubing (PVC group) or latex rubber tubing (Latex group). Real-time pressure and flow data were recorded using a custom-based data acquisition system. Mean pressures and energy equivalent pressures (EEP) were the same under nonpulsatile mode between the two groups. Under pulsatile mode, EEPs were significantly great than mean pressure, especially in the Latex group (P < 0.05). There was no difference between the two groups with regards to pressure drops across ECLS circuit, but pulsatile flow created more pressure drops than nonpulsatile flow (P < 0.05). Surplus hemodynamic energy (SHE) levels were always higher in the Latex group than in the PVC group at all sites. Although total hemodynamic energy (THE) losses were higher under pulsatile mode compared to nonpulsatile mode, more THE was delivered to the pseudopatient, particularly in the Latex group (P < 0.05). The results showed that the flexible arterial tubing retained more hemodynamic energy passing through it under pulsatile mode while mean pressures and pressure drops across the ECLS circuit were similar between PVC and latex rubber arterial tubing. Further studies are warranted to verify our findings. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. Suture technique does not affect hemodynamic performance of the small supra-annular Trifecta bioprosthesis.

    PubMed

    Ugur, Murat; Byrne, John G; Bavaria, Joseph E; Cheung, Anson; Petracek, Michael; Groh, Mark A; Suri, Rakesh M; Borger, Michael A; Schaff, Hartzell V

    2014-10-01

    The study objective was to evaluate whether aortic valve replacement with the Trifecta valve (St Jude Medical Inc, St Paul, Minn) using simple sutures produces better hemodynamic performance than valve replacement with noneverting pledget-reinforced sutures. We analyzed prospectively acquired 1-year hemodynamic data of patients with small aortic annulus sizes who were enrolled in a multicenter trial of the Trifecta aortic valve bioprosthesis and underwent aortic valve replacement with a 19-mm or 21-mm bioprosthesis between August 2007 and November 2009. We compared preoperative clinical information and 1-year postoperative hemodynamic data for noneverting pledget-reinforced sutures (group 1) versus everting mattress sutures or simple sutures (group 2). A total of 346 patients underwent aortic valve replacement: 269 in group 1 and 77 in group 2. Preoperative demographic characteristics for the 2 groups were similar. For groups 1 and 2, the mean gradient was 10.4±4.7 mm Hg and 11.1±4.4 mm Hg for 19-mm valves, respectively, and 8.4±3.5 mm Hg and 8.8±3.6 mm Hg for 21-mm valves, respectively; the effective orifice area was 1.40 cm2 and 1.25 cm2 for 19-mm valves, respectively, and 1.57 cm2 and 1.50 cm2 for 21-mm valves, respectively. The rate of severe prosthesis-patient mismatch (indexed effective orifice area≤0.65 cm2/m2) was 18.6% (n=11) and 25% (n=6) for 19-mm valves, respectively, and 10.9% (n=20) and 16.3% (n=8) for 21-mm valves, respectively. The suture method did not affect hemodynamic performance of supra-annular bioprostheses in patients with small aortic annulus sizes. Choice of suture technique should be determined by surgeon experience and local anatomic features. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  9. Validating Neuro-QoL short forms and targeted scales with people who have multiple sclerosis.

    PubMed

    Miller, Deborah M; Bethoux, Francois; Victorson, David; Nowinski, Cindy J; Buono, Sarah; Lai, Jin-Shei; Wortman, Katy; Burns, James L; Moy, Claudia; Cella, David

    2016-05-01

    Multiple sclerosis (MS) is a chronic, progressive, and disabling disease of the central nervous system with dramatic variations in the combination and severity of symptoms it can produce. The lack of reliable disease-specific health-related quality of life (HRQL) measures for use in clinical trials prompted the development of the Neurology Quality of Life (Neuro-QOL) instrument, which includes 13 scales that assess physical, emotional, cognitive, and social domains, for use in a variety of neurological illnesses. The objective of this research paper is to conduct an initial assessment of the reliability and validation of the Neuro-QOL short forms (SFs) in MS. We assessed reliability, concurrent validity, known groups validity, and responsiveness between cross-sectional and longitudinal data in 161 recruited MS patients. Internal consistency was high for all measures (α = 0.81-0.95) and ICCs were within the acceptable range (0.76-0.91); concurrent and known groups validity were highest with the Global HRQL question. Longitudinal assessment was limited by the lack of disease progression in the group. The Neuro-QOL SFs demonstrate good internal consistency, test-re-test reliability, and concurrent and known groups validity in this MS population, supporting the validity of Neuro-QOL in adults with MS. © The Author(s), 2015.

  10. Ultrasound neuro-modulation chip: activation of sensory neurons in Caenorhabditis elegans by surface acoustic waves.

    PubMed

    Zhou, Wei; Wang, Jingjing; Wang, Kaiyue; Huang, Bin; Niu, Lili; Li, Fei; Cai, Feiyan; Chen, Yan; Liu, Xin; Zhang, Xiaoyan; Cheng, Hankui; Kang, Lijun; Meng, Long; Zheng, Hairong

    2017-05-16

    Ultrasound neuro-modulation has gained increasing attention as a non-invasive method. In this paper, we present an ultrasound neuro-modulation chip, capable of initiating reversal behaviour and activating neurons of C. elegans under the stimulation of a single-shot, short-pulsed ultrasound. About 85.29% ± 6.17% of worms respond to the ultrasound stimulation exhibiting reversal behaviour. Furthermore, the worms can adapt to the ultrasound stimulation with a lower acoustic pulse duration of stimulation. In vivo calcium imaging shows that the activity of ASH, a polymodal sensory neuron in C. elegans, can be directly evoked by the ultrasound stimulation. On the other hand, AFD, a thermal sensitive neuron, cannot be activated by the ultrasound stimulation using the same parameter and the temperature elevation during the stimulation process is relatively small. Consistent with the calcium imaging results, the tax-4 mutants, which are insensitive to temperature increase, do not show a significant difference in avoidance probability compared to the wild type. Therefore, the mechanical effects induced by ultrasound are the main reason for neural and behavioural modulation of C. elegans. With the advantages of confined acoustic energy on the surface, compatible with standard calcium imaging, this neuro-modulation chip could be a powerful tool for revealing the molecular mechanisms of ultrasound neuro-modulation.

  11. Hemodynamics of Pericardial Aortic Valves: Contemporary Stented versus Stentless Valves in a Matched Comparison

    PubMed Central

    Holinski, Sebastian; Zhigalov, Konstantin; Zielinski, Christina Barbara; Grubitzsch, Herko

    2017-01-01

    Purpose: Hemodynamic performance of aortic valve bioprostheses is essential for reliable function and durability. So far, the supra-annularly implanted stentless Sorin Freedom Solo (SFS) demonstrated unsurpassed hemodynamic properties. As contemporary stented and externally mounted pericardial bioprostheses, like the Labcor Dokimos Plus (LDP), also improve hemodynamic performance, these types of valves were compared in this study. Methods: A total of 218 patients, who underwent aortic valve replacement with the LDP or the SFS, were matched retrospectively 1:1 on variables affecting hemodynamic measurements: implanted valve size, age, sex, and body surface area (BSA). With matching tolerance for valve size and gender of 0%, for age and BSA of 5%, 57 patient-pairs were yielded. Operative data, clinical, and hemodynamic outcome were analyzed. Results: Except for slightly higher left ventricular function and lower procedural times in the SFS group, preoperative, operative, and postoperative characteristics of patient-pairs did not differ significantly. Mean pressure gradients, effective orifice areas (EOAs), and indexed EOAs were comparable. Corresponding to valve sizes of 21, 23, 25, and 27 mm, the indexed EOAs of the LDP and SFS prostheses were 1.08 ± 0.33, 0.92 ± 0.19, 0.93 ± 0.24, 0.99 ± 0.13 cm2/m2 and 0.81 ± 0.13, 0.92 ± 0.28, 0.95 ± 0.20, 1.04 ± 0.27 cm2/m2, respectively. Conclusion: Contemporary stented and stentless pericardial bioprostheses showed excellent hemodynamic properties without significant differences in EOAs and indexed EOAs. PMID:28890465

  12. Quantitative comparison of hemodynamics in simulated and 3D angiography models of cerebral aneurysms by use of computational fluid dynamics.

    PubMed

    Saho, Tatsunori; Onishi, Hideo

    2015-07-01

    In this study, we evaluated hemodynamics using simulated models and determined how cerebral aneurysms develop in simulated and patient-specific models based on medical images. Computational fluid dynamics (CFD) was analyzed by use of OpenFOAM software. Flow velocity, stream line, and wall shear stress (WSS) were evaluated in a simulated model aneurysm with known geometry and in a three-dimensional angiographic model. The ratio of WSS at the aneurysm compared with that at the basilar artery was 1:10 in simulated model aneurysms with a diameter of 10 mm and 1:18 in the angiographic model, indicating similar tendencies. Vortex flow occurred in both model aneurysms, and the WSS decreased in larger model aneurysms. The angiographic model provided accurate CFD information, and the tendencies of simulated and angiographic models were similar. These findings indicate that hemodynamic effects are involved in the development of aneurysms.

  13. Clinical utility and validation of the Couple's Communicative Evaluation Scale.

    PubMed

    West, Craig E

    2005-10-01

    This study assessed the validity and clinical utility of a new test, the Couple's Communicative Evaluation Scale. With 24 couples from a variety of resources, e.g., churches, newspaper, and colleges, a discriminant analysis using the Dyadic Adjustment Scale, indicated that satisfied couples could be discriminated from issatisfied couples with 91-96% accuracy. Significant differences on the scale were found for means between 7 distressed and 16 nondistressed couples using the satisfaction/dissatisfaction cutoff score of 200 on the Dyadic Adjustment Scale and significant differences on the individual scales were found for means between 16 distressed and 31 nondistressed individuals using the satisfaction/dissatisfaction cutoff score of 100 on the Dyadic Adjustment Scale. Demographic variables, e.g., age, marriage length, were statistically significant. Scale scores were highly correlated with those on the Dyadic Adjustment Scale, indicating good validity. Using all 400 items, an alpha of .99 indicated good internal consistency for the verbal, nonverbal, and listening communication scores.

  14. HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.

    PubMed

    Kim, J; Kasabov, N

    1999-11-01

    This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.

  15. Clinical indications for high-field 1.5 T intraoperative magnetic resonance imaging and neuro-navigation for neurosurgical procedures. Review of initial 100 cases.

    PubMed

    Maesawa, Satoshi; Fujii, Masazumi; Nakahara, Norimoto; Watanabe, Tadashi; Saito, Kiyoshi; Kajita, Yasukazu; Nagatani, Tetsuya; Wakabayashi, Toshihiko; Yoshida, Jun

    2009-08-01

    Initial experiences are reviewed in an integrated operation theater equipped with an intraoperative high-field (1.5 T) magnetic resonance (MR) imager and neuro-navigation (BrainSUITE), to evaluate the indications and limitations. One hundred consecutive cases were treated, consisting of 38 gliomas, 49 other tumors, 11 cerebrovascular diseases, and 2 functional diseases. The feasibility and usefulness of the integrated theater were evaluated for individual diseases, focusing on whether intraoperative images (including diffusion tensor imaging) affected the surgical strategy. The extent of resection and outcomes in each histological category of brain tumors were examined. Intraoperative high-field MR imaging frequently affected or modified the surgical strategy in the glioma group (27/38 cases, 71.1%), but less in the other tumor group (13/49 cases, 26.5%). The surgical strategy was not modified in cerebrovascular or functional diseases, but the success of procedures and the absence of complications could be confirmed. In glioma surgery, subtotal or greater resection was achieved in 22 of the 31 patients (71%) excluding biopsies, and intraoperative images revealed tumor remnants resulting in the extension of resection in 21 of the 22 patients (95.4%), the highest rate of extension among all types of pathologies. The integrated neuro-navigation improved workflow. The best indication for intraoperative high-field MR imaging and integrated neuro-navigation is brain tumors, especially gliomas, and is supplementary in assuring quality in surgery for cerebrovascular or functional diseases. Immediate quality assurance is provided in several types of neurosurgical procedures.

  16. Optimal control of CPR procedure using hemodynamic circulation model

    DOEpatents

    Lenhart, Suzanne M.; Protopopescu, Vladimir A.; Jung, Eunok

    2007-12-25

    A method for determining a chest pressure profile for cardiopulmonary resuscitation (CPR) includes the steps of representing a hemodynamic circulation model based on a plurality of difference equations for a patient, applying an optimal control (OC) algorithm to the circulation model, and determining a chest pressure profile. The chest pressure profile defines a timing pattern of externally applied pressure to a chest of the patient to maximize blood flow through the patient. A CPR device includes a chest compressor, a controller communicably connected to the chest compressor, and a computer communicably connected to the controller. The computer determines the chest pressure profile by applying an OC algorithm to a hemodynamic circulation model based on the plurality of difference equations.

  17. [Indicators of general, cerebral, and regional hemodynamics in myopic schoolchildren aged 13-15 years].

    PubMed

    Iastrebtseva, T A; Chuprov, A D; Plotnikova, Iu A

    2002-01-01

    110 schoolchildren aged 13-15 years were examined. 24 of them had pseudomyopia and 6 patients myopia of various forms. A control group consisted of 38 children. Central hemodynamics was estimated by average dynamic pressure, cerebral hemodynamics--by rheoencephalography, regional hemodynamics--by dopplerography of the internal carotid and suprapubic arteries. It was found that with myopia progression, the average dynamic pressure positively comes down with reduction of reographic waves amplitude in rheogram. The blood flow rate in internal carotid and suprapubic arteries has no substantial impact on myopia course. Predisposition to arterial hypotension is a risk factor for myopia development and progression.

  18. Prevalence and hemodynamic effects of leaning during CPR

    PubMed Central

    Niles, Dana E.; Sutton, Robert M.; Nadkarni, Vinay M.; Glatz, Andrew; Zuercher, Mathias; Maltese, Matthew R.; Eilevstjønn, Joar; Abella, Benjamin S.; Becker, Lance B.; Berg, Robert A.

    2013-01-01

    Background Cardiopulmonary resuscitation (CPR) guidelines recommend complete release between chest compressions (CC). Objective Evaluate the hemodynamic effects of leaning (incomplete chest wall release) during CPR and the prevalence of leaning during CPR. Results In piglet ventricular fibrillation cardiac arrests, 10% and 20% (1.8 kg and 3.6 kg, respectively), leaning during CPR increased right atrial pressures, decreased coronary perfusion pressures, and decreased cardiac index and left ventricular myocardial blood flow by nearly 50%. In contrast, residual leaning of a 260 g accelerometer/ force feedback device did not adversely affect cardiac index or myocardial blood flow. Among 108 adult in-hospital CPR events, leaning ≥2.5 kg was demonstrable in 91% of the events and 12% of the evaluated CC. For 12 children with in-hospital CPR, 28% of CC had residual leaning ≥2.5 kg and 89% had residual leaning ≥0.5 kg. Conclusions Leaning during CPR increases intrathoracic pressure, decreases coronary perfusion pressure, and decreases cardiac output and myocardial blood flow. Leaning is common during CPR. PMID:22208173

  19. Normative Data for the NeuroCom Sensory Organization Test in US Military Special Operations Forces.

    PubMed

    Pletcher, Erin R; Williams, Valerie J; Abt, John P; Morgan, Paul M; Parr, Jeffrey J; Wohleber, Meleesa F; Lovalekar, Mita; Sell, Timothy C

    2017-02-01

    Postural stability is the ability to control the center of mass in relation to a person's base of support and can be affected by both musculoskeletal injury and traumatic brain injury. The NeuroCom Sensory Organization Test (SOT) can be used to objectively quantify impairments to postural stability. The ability of postural stability to predict injury and be used as an acute injury-evaluation tool makes it essential to the screening and rehabilitation process. To our knowledge, no published normative data for the SOT from a healthy, highly active population are available for use as a reference for clinical decision making. To present a normative database of SOT scores from a US Military Special Operations population that can be used for future comparison. Cross-sectional study. Human performance research laboratory. A total of 542 active military operators from Naval Special Warfare Combatant-Craft Crewmen (n = 149), Naval Special Warfare Command, Sea, Air, and Land (n = 101), US Army Special Operations Command (n = 171), and Air Force Special Operations Command (n = 121). Participants performed each of the 6 SOT conditions 3 times. Scores for each condition, total equilibrium composite score, and ratio scores for the somatosensory, visual, and vestibular systems were recorded. Differences were present across all groups for SOT conditions 1 (P < .001), 2 (P = .001), 4 (P > .001), 5 (P > .001), and 6 (P = .001) and total equilibrium composite (P = .000), visual (P > .001), vestibular (P = .002), and preference (P > .001) NeuroCom scores. Statistical differences were evident in the distribution of postural stability across US Special Operations Forces personnel. This normative database for postural stability, as assessed by the NeuroCom SOT, can provide context when clinicians assess a Special Operations Forces population or any other groups that maintain a high level of conditioning and training.

  20. [Clinical and therapeutic differences in neuro-ophthalmological involvement secondary to syphilis].

    PubMed

    Crespo-Burillo, J A; Gil-Perez, D; Alarcia-Alejos, R; Hernando-Quintana, N; Garcia-Rubio, S; Martin-Martinez, J

    2014-09-16

    INTRODUCTION. There are many forms of neuro-ophthalmological involvement secondary to syphilis, and not all of them are well known. Our aim is to determine the clinical and therapeutic differences in these patients. CASE REPORTS. Our sample included eight patients diagnosed with an ocular and neuro-ophthalmological disorder due to syphilis over the years 2012 and 2013. Five of them presented uveitis, pan-eveitis being the most frequent, with three cases. Two cases presented papilloedema and another displayed retrobulbar optic neuropathy. A total of 62.5% were diagnosed with neurosyphilis, the presence of which was related with compromise of the optic nerve (p = 0.035). None of them gave positive for VDRL in cerebrospinal fluid and they were diagnosed by the presence of FTA antibodies together with high protein levels in cerebrospinal fluid, lymphocytic pleocytosis or intrathecal synthesis of antibodies. In the absence of uveitis, diagnosis was delayed by a mean time of 2.6 months (p = 0.047). All the patients, except one who required a vitrectomy, progressed favourably with intravenous antibiotic therapy. CONCLUSIONS. In cases of neuro-ophthalmological compromise, whether inflammatory or non-inflammatory, the physician must bear syphilis in mind as a potential causation in order to avoid delays in the diagnosis, since early well-tailored treatment can prevent permanent loss of sight.

  1. Effect of increased venous pressure on renal hemodynamics.

    DOT National Transportation Integrated Search

    1962-10-01

    Conflicting evidence exists in regard to the effects of increased venous pressure on renal hemodynamics. Experiments to clarify its role were carried on twenty-eight intact innervated or isolated perfused dog kidneys. Findings indicate the absence of...

  2. Photoacoustic microscopy of cerebral hemodynamic and oxygen-metabolic responses to anesthetics

    NASA Astrophysics Data System (ADS)

    Cao, Rui; Li, Jun; Ning, Bo; Sun, Naidi; Wang, Tianxiong; Zuo, Zhiyi; Hu, Song

    2017-02-01

    General anesthetics are known to have profound effects on cerebral hemodynamics and neuronal activities. However, it remains a challenge to directly assess anesthetics-induced hemodynamic and oxygen-metabolic changes from the true baseline under wakefulness at the microscopic level, due to the lack of an enabling technology for high-resolution functional imaging of the awake mouse brain. To address this challenge, we have developed head-restrained photoacoustic microscopy (PAM), which enables simultaneous imaging of the cerebrovascular anatomy, total concentration and oxygen saturation of hemoglobin (CHb and sO2), and blood flow in awake mice. From these hemodynamic measurements, two important metabolic parameters, oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen (CMRO2), can be derived. Side-by-side comparison of the mouse brain under wakefulness and anesthesia revealed multifaceted cerebral responses to isoflurane, a volatile anesthetic widely used in preclinical research and clinical practice. Key observations include elevated cerebral blood flow (CBF) and reduced oxygen extraction and metabolism.

  3. Endoscopy in neuro-otologic surgery.

    PubMed

    Wackym, Phillip A; King, Wesley A; Meyer, Glenn A; Poe, Dennis S

    2002-04-01

    Endoscopy offers several distinct advantages over the operating microscope during neuro-otologic surgery that make it an excellent adjunctive tool to the microscope or independent modality during cranial base surgery. The high magnification gives excellent definition of perforating blood vessels, cranial nerves, and neural structures, which in many cases is superior to that achieved with the microscope. Furthermore, the use of angled or flexible endoscopes allows one to look around corners and behind anatomic structures blocking the view seen via a 0 degree microscope. Endoscopy also has the theoretical advantage that a less invasive operative procedure is required, which should reduce the operative morbidity. Several notable disadvantages of endoscopy include the problems associated with blood soiling the endoscope, making visualization difficult or impossible, the lack of readily available instrumentation designed specifically for endoscopic neuro-otology, and the poor overview of the operative field. This last point is an important one because the endoscope is placed adjacent to the lesion and does not allow one to look backward to prevent [figure: see text] injury to structures next to the shaft of the telescope. Furthermore, the surgeon must be cognizant of potential thermal injury to structures caused by the heat generated by the light source. The present endoscopic technology limits the image that the surgeon sees to two dimensions, which results in certain unique problems when operating in a three-dimensional milieu. Because of this, there is a steep learning curve to acquire endoscopic dexterity and three-dimensional orientation. Finally, bimanual operation requires the use of an articulated endoscope holder or the commitment of the co-surgeon to hold the endoscope. One of the limitations of the operative microscope is that the angle of view is determined by the distance of the lens to the skull, retractor, or obstructing tissue, which is a function of the

  4. Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Karandeev, D.

    2015-10-01

    The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.

  5. Friend or foe: the dichotomous impact of T cells on neuro-de/re-generation during aging.

    PubMed

    Coder, Brandon; Wang, Weikan; Wang, Liefeng; Wu, Zhongdao; Zhuge, Qichuan; Su, Dong-Ming

    2017-01-24

    The interaction between T cells and the central nervous system (CNS) in homeostasis and injury has been recognized being both pathogenic (CD4+ T-helper 1 - Th1, Th17 and γδT) and ameliorative (Th2 and regulatory T cells - Tregs). However, in-depth studies aimed to elucidate the precise in the aged microenvironment and the dichotomous role of Tregs have just begun and many aspects remain unclear. This is due, not only to a mutual dependency and reciprocal causation of alterations and diseases between the nervous and T cell immune systems, but also to an inconsistent aging of the two systems, which dynamically changes with CNS injury/recovery and/or aging process. Cellular immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution - sources of chronic inflammation in the elderly (termed inflammaging), potentially induces an acceleration of brain aging and memory loss. In turn, aging of the brain via neuro-endocrine-immune network drives total body systemic aging, including that of the immune system. Therefore, immunotherapeutics including vaccination and "protective autoimmunity" provide promising means to rejuvenate neuro-inflammatory disorders and repair CNS acute injury and chronic neuro-degeneration. We review the current understanding and recent discoveries linking the aging immune system with CNS injury and neuro-degeneration. Additionally, we discuss potential recovery and rejuvenation strategies, focusing on targeting the aging T cell immune system in an effort to alleviate acute brain injury and chronic neuro-degeneration during aging, via the "thymus-inflammaging-neurodegeneration axis".

  6. Friend or foe: the dichotomous impact of T cells on neuro-de/re-generation during aging

    PubMed Central

    Wang, Liefeng; Wu, Zhongdao; Zhuge, Qichuan; Su, Dong-Ming

    2017-01-01

    The interaction between T cells and the central nervous system (CNS) in homeostasis and injury has been recognized being both pathogenic (CD4+ T-helper 1 - Th1, Th17 and γδT) and ameliorative (Th2 and regulatory T cells - Tregs). However, in-depth studies aimed to elucidate the precise in the aged microenvironment and the dichotomous role of Tregs have just begun and many aspects remain unclear. This is due, not only to a mutual dependency and reciprocal causation of alterations and diseases between the nervous and T cell immune systems, but also to an inconsistent aging of the two systems, which dynamically changes with CNS injury/recovery and/or aging process. Cellular immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution - sources of chronic inflammation in the elderly (termed inflammaging), potentially induces an acceleration of brain aging and memory loss. In turn, aging of the brain via neuro-endocrine-immune network drives total body systemic aging, including that of the immune system. Therefore, immunotherapeutics including vaccination and “protective autoimmunity” provide promising means to rejuvenate neuro-inflammatory disorders and repair CNS acute injury and chronic neuro-degeneration. We review the current understanding and recent discoveries linking the aging immune system with CNS injury and neuro-degeneration. Additionally, we discuss potential recovery and rejuvenation strategies, focusing on targeting the aging T cell immune system in an effort to alleviate acute brain injury and chronic neuro-degeneration during aging, via the “thymus-inflammaging-neurodegeneration axis”. PMID:27738345

  7. Neuro-fuzzy control of structures using acceleration feedback

    NASA Astrophysics Data System (ADS)

    Schurter, Kyle C.; Roschke, Paul N.

    2001-08-01

    This paper described a new approach for the reduction of environmentally induced vibration in constructed facilities by way of a neuro-fuzzy technique. The new control technique is presented and tested in a numerical study that involves two types of building models. The energy of each building is dissipated through magnetorheological (MR) dampers whose damping properties are continuously updated by a fuzzy controller. This semi-active control scheme relies on the development of a correlation between the accelerations of the building (controller input) and the voltage applied to the MR damper (controller output). This correlation forms the basis for the development of an intelligent neuro-fuzzy control strategy. To establish a context for assessing the effectiveness of the semi-active control scheme, responses to earthquake excitation are compared with passive strategies that have similar authority for control. According to numerical simulation, MR dampers are less effective control mechanisms than passive dampers with respect to a single degree of freedom (DOF) building model. On the other hand, MR dampers are predicted to be superior when used with multiple DOF structures for reduction of lateral acceleration.

  8. Intraoperative non-record-keeping usage of anesthesia information management system workstations and associated hemodynamic variability and aberrancies.

    PubMed

    Wax, David B; Lin, Hung-Mo; Reich, David L

    2012-12-01

    Anesthesia information management system workstations in the anesthesia workspace that allow usage of non-record-keeping applications could lead to distraction from patient care. We evaluated whether non-record-keeping usage of the computer workstation was associated with hemodynamic variability and aberrancies. Auditing data were collected on eight anesthesia information management system workstations and linked to their corresponding electronic anesthesia records to identify which application was active at any given time during the case. For each case, the periods spent using the anesthesia information management system record-keeping module were separated from those spent using non-record-keeping applications. The variability of heart rate and blood pressure were also calculated, as were the incidence of hypotension, hypertension, and tachycardia. Analysis was performed to identify whether non-record-keeping activity was a significant predictor of these hemodynamic outcomes. Data were analyzed for 1,061 cases performed by 171 clinicians. Median (interquartile range) non-record-keeping activity time was 14 (1, 38) min, representing 16 (3, 33)% of a median 80 (39, 143) min of procedure time. Variables associated with greater non-record-keeping activity included attending anesthesiologists working unassisted, longer case duration, lower American Society of Anesthesiologists status, and general anesthesia. Overall, there was no independent association between non-record-keeping workstation use and hemodynamic variability or aberrancies during anesthesia either between cases or within cases. Anesthesia providers spent sizable portions of case time performing non-record-keeping applications on anesthesia information management system workstations. This use, however, was not independently associated with greater hemodynamic variability or aberrancies in patients during maintenance of general anesthesia for predominantly general surgical and gynecologic procedures.

  9. [Second Clinical Consensus of the Ibero-American Society of Neonatology: hemodynamic management of newborns].

    PubMed

    Golombek, Sergio G; Fariña, Diana; Sola, Augusto; Baquero, Hernando; Cabañas, Fernando; Dominguez, Fernando; Fajardo, Carlos; Goldsmit, Gustavo S; Flores, Gabriel Lara; Lee, Mario; Varela, Lourdes Lemus; Mariani, Gonzalo; Miura, Ernani; Pérez, Jose Maria; Zambosco, Guillermo; Pellicer, Adelina; Bancalari, Eduardo

    2011-04-01

    This study reports on the process and results of the Second Clinical Consensus of the Ibero-American Society of Neonatology. Eighty neonatologists from 23 countries were invited to collaborate and participate in the event. Several questions of clinical-physiological importance in the hemodynamic management of newborns were addressed. Participants were divided into groups to facilitate interaction and teamwork, with instructions to respond to three to five questions by analyzing the literature and local factors. Meeting in Mar del Plata, Argentina, the Consensus Group served as a form for various presentations and discussions. In all, 54 neonatologists from 21 countries attended, with the objective of reaching a consensus on such matters as concepts and definitions of hemodynamic instability, the physiopathology of hemodynamic compromise, recommended therapy strategies, and hemodynamic monitoring. It is hoped that this international experience will serve as a useful initiative for future consensus building and reduction of the existing disparities among the countries of the Region in terms of treatment and outcomes.

  10. Intraoperative brain hemodynamic response assessment with real-time hyperspectral optical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Laurence, Audrey; Pichette, Julien; Angulo-Rodríguez, Leticia M.; Saint Pierre, Catherine; Lesage, Frédéric; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frédéric

    2016-03-01

    Following normal neuronal activity, there is an increase in cerebral blood flow and cerebral blood volume to provide oxygenated hemoglobin to active neurons. For abnormal activity such as epileptiform discharges, this hemodynamic response may be inadequate to meet the high metabolic demands. To verify this hypothesis, we developed a novel hyperspectral imaging system able to monitor real-time cortical hemodynamic changes during brain surgery. The imaging system is directly integrated into a surgical microscope, using the white-light source for illumination. A snapshot hyperspectral camera is used for detection (4x4 mosaic filter array detecting 16 wavelengths simultaneously). We present calibration experiments where phantoms made of intralipid and food dyes were imaged. Relative concentrations of three dyes were recovered at a video rate of 30 frames per second. We also present hyperspectral recordings during brain surgery of epileptic patients with concurrent electrocorticography recordings. Relative concentration maps of oxygenated and deoxygenated hemoglobin were extracted from the data, allowing real-time studies of hemodynamic changes with a good spatial resolution. Finally, we present preliminary results on phantoms obtained with an integrated spatial frequency domain imaging system to recover tissue optical properties. This additional module, used together with the hyperspectral imaging system, will allow quantification of hemoglobin concentrations maps. Our hyperspectral imaging system offers a new tool to analyze hemodynamic changes, especially in the case of epileptiform discharges. It also offers an opportunity to study brain connectivity by analyzing correlations between hemodynamic responses of different tissue regions.

  11. Seizure Duration and Hemodynamic State during Electroconvulsive Therapy: Sodium Thiopental versus Propofol

    PubMed Central

    Jarineshin, Hashem; Kashani, Saeed; Fekrat, Fereydoon; Vatankhah, Majid; Golmirzaei, Javad; Alimolaee, Esmaeel; Zafarpour, Hamid

    2016-01-01

    Introduction: General anesthesia is required for Electroconvulsive Therapy (ECT) and it is usually provided by a hypnotic agent. The seizure duration is important for the treatment, and it is usually accompanied by severe hemodynamic changes. The aim of this study was to compare the effects of sodium thiopental versus Propofol on seizure duration and hemodynamic variables during ECT. Methods: A number of 100 patient-sessions of ECT were included in this randomized clinical trial. The initial hemodynamic state of each patient was recorded. Anesthesia was induced by Sodium thiopental in the 1st group and with Propofol in 2nd group. All the patients received the muscle relaxant succinylcholine. The hemodynamic variables after seizure and seizure duration were recorded. The data were analyzed through SPSS 20 and independent t-test. P<0.05 was considered significant. Results: The mean duration of seizure in the sodium thiopental group was significantly longer than the Propofol group (40.3±16.6 sec versus 32±11.3 sec) (P=0.001). There was no statistically significant difference between the mean energy level applied in the two groups (20.5±3.81 joules in the sodium thiopental versus 20.2±3.49 joules in the Propofol group). The mean systolic and diastolic blood pressure at all times after seizure and mean heart rate at 3 and 5 minutes after seizure were significantly lower in Propofol than sodium thiopental groups. Discussion and Conclusion: Propofol provides a more stable hemodynamic state for the ECT procedures, and its use is highly preferred over sodium thiopental in patients with cardiovascular disease. PMID:26383207

  12. Usefulness of Neuro-Fuzzy Models' Application for Tobacco Control

    NASA Astrophysics Data System (ADS)

    Petrovic-Lazarevic, Sonja; Zhang, Jian Ying

    2007-12-01

    The paper presents neuro-fuzzy models' application appropriate for tobacco control: the fuzzy control model, Adaptive Network Based Fuzzy Inference System, Evolving Fuzzy Neural Network models, and EVOlving POLicies. We propose further the use of Fuzzy Casual Networks to help tobacco control decision makers develop policies and measure their impact on social regulation.

  13. [Communicating effectively: neuro-linguistic programming in the psychiatric interview].

    PubMed

    Ducasse, Déborah; Fond, Guillaume

    2014-01-01

    Neuro-linguistic programming is a set of practices and knowledge which seeks to "model" and then imitate the best communication practices. Applying the key concepts to the care relationship in mental health care helps to improve the quality of the contact, the clarity of the communication and to create an openness to change.

  14. Neuro-Linguistic Programming: Developing Effective Communication in the Classroom.

    ERIC Educational Resources Information Center

    Torres, Cresencio; Katz, Judy H.

    Neuro-Linguistic Programming (NLP) is a method that teachers can use to increase their communication effectiveness by matching their communication patterns with those of their students. The basic premise of NLP is that people operate and make sense of their experience through information received from the world around them. This information is…

  15. In vivo study of rat cortical hemodynamics using a stereotaxic-apparatus-compatible photoacoustic microscope.

    PubMed

    Guo, Heng; Chen, Qian; Qi, Weizhi; Chen, Xingxing; Xi, Lei

    2018-04-19

    Brain imaging is an important technique in cognitive neuroscience. In this article, we designed a stereotaxic-apparatus-compatible photoacoustic microscope for the studies of rat cortical hemodynamics. Compared with existing optical resolution photoacoustic microscopy (ORPAM) systems, the probe owns feature of fast, light and miniature. In this microscope, we integrated a miniaturized ultrasound transducer with a center frequency of 10 MHz to detect photoacoustic signals and a 2-dimensional (2D) microelectromechanical system (MEMS) scanner to achieve raster scanning of the optical focus. Based on phantom evaluation, this imaging probe has a high lateral resolution of 3.8 μm and an effective imaging domain of 2 × 2 mm 2 . Different from conventional ORPAMs, combining with standard stereotaxic apparatus enables broad studies of rodent brains without any motion artifact. To show its capability, we successfully captured red blood cell flow in the capillary, monitored the vascular changes during bleeding and blood infusion and visualized cortical hemodynamics induced by middle cerebral artery occlusion. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Differentiation of Constriction and Restriction: Complex Cardiovascular Hemodynamics.

    PubMed

    Geske, Jeffrey B; Anavekar, Nandan S; Nishimura, Rick A; Oh, Jae K; Gersh, Bernard J

    2016-11-29

    Differentiation of constrictive pericarditis (CP) from restrictive cardiomyopathy (RCM) is a complex and often challenging process. Because CP is a potentially curable cause of heart failure and therapeutic options for RCM are limited, distinction of these 2 conditions is critical. Although different in regard to etiology, prognosis, and treatment, CP and RCM share a common clinical presentation of predominantly right-sided heart failure, in the absence of significant left ventricular systolic dysfunction or valve disease, due to impaired ventricular diastolic filling. Fundamental to the diagnosis of either condition is a clear understanding of the underlying hemodynamic principles and pathophysiology. We present a contemporary review of the pathophysiology, hemodynamics, diagnostic assessment, and therapeutic approach to patients presenting with CP and RCM. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  17. Comparison of tricuspid and bicuspid aortic valve hemodynamics under steady flow conditions

    NASA Astrophysics Data System (ADS)

    Seaman, Clara; Ward, James; Sucosky, Philippe

    2011-11-01

    The bicuspid aortic valve (BAV), a congenital valvular defect consisting of two leaflets instead of three, is associated with a high prevalence of calcific aortic valve disease (CAVD). CAVD also develops in the normal tricuspid aortic valve (TAV) but its progression in the BAV is more severe and rapid. Although hemodynamic abnormalities are increasingly considered potential pathogenic contributor, the native BAV hemodynamics remain largely unknown. Therefore, this study aims at comparing experimentally the hemodynamic environments in TAV and BAV anatomies. Particle-image velocimetry was used to characterize the flow downstream of a native TAV and a model BAV mounted in a left-heart simulator and subjected to three steady flow rates characterizing different phases of the cardiac cycle. While the TAV developed a jet aligned along the valve axis, the BAV was shown to develop a skewed systolic jet with skewness decreasing with increasing flow rate. Measurement of the transvalvular pressure revealed a valvular resistance up to 50% larger in the BAV than in the TAV. The increase in velocity between the TAV and BAV leads to an increase in shear stress downstream of the valve. This study reveals strong hemodynamic abnormalities in the BAV, which may contribute to CAVD pathogenesis.

  18. Donor Hemodynamics as a Predictor of Outcomes After Kidney Transplantation From Donors After Cardiac Death.

    PubMed

    Allen, M B; Billig, E; Reese, P P; Shults, J; Hasz, R; West, S; Abt, P L

    2016-01-01

    Donation after cardiac death is an important source of transplantable organs, but evidence suggests donor warm ischemia contributes to inferior outcomes. Attempts to predict recipient outcome using donor hemodynamic measurements have not yielded statistically significant results. We evaluated novel measures of donor hemodynamics as predictors of delayed graft function and graft failure in a cohort of 1050 kidneys from 566 donors. Hemodynamics were described using regression line slopes, areas under the curve, and time beyond thresholds for systolic blood pressure, oxygen saturation, and shock index (heart rate divided by systolic blood pressure). A logistic generalized estimation equation model showed that area under the curve for systolic blood pressure was predictive of delayed graft function (above median: odds ratio 1.42, 95% confidence interval [CI] 1.06-1.90). Multivariable Cox regression demonstrated that slope of oxygen saturation during the first 10 minutes after extubation was associated with graft failure (below median: hazard ratio 1.30, 95% CI 1.03-1.64), with 5-year graft survival of 70.0% (95%CI 64.5%-74.8%) for donors above the median versus 61.4% (95%CI 55.5%-66.7%) for those below the median. Among older donors, increased shock index slope was associated with increased hazard of graft failure. Validation of these findings is necessary to determine the utility of characterizing donor warm ischemia to predict recipient outcome. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  19. Direct right ventricular puncture for hemodynamic evaluation of a mechanical tricuspid valve prosthesis: a new indication for an old procedure.

    PubMed

    Gibson, M A; Carell, E S

    1997-11-01

    The advent of transvenous right heart catheterization has relegated direct transthoracic right ventricular puncture largely to the role of "interesting historical footnote." However, in the case of a right ventricle that is "protected" by a mechanical tricuspid valve prosthesis, direct right ventricular puncture represents a reasonable alternative for obtaining accurate hemodynamic information.

  20. Hemodynamic changes by drug interaction of adrenaline with chlorpromazine.

    PubMed

    Higuchi, Hitoshi; Yabuki, Akiko; Ishii-Maruhama, Minako; Tomoyasu, Yumiko; Maeda, Shigeru; Miyawaki, Takuya

    2014-01-01

    Adrenaline (epinephrine) is included in dental local anesthesia for the purpose of vasoconstriction. In Japan, adrenaline is contraindicated for use in patients receiving antipsychotic therapy, because the combination of adrenaline and an antipsychotic is considered to cause severe hypotension; however, there is insufficient evidence supporting this claim. The purpose of the present study was to clarify the changes in hemodynamics caused by drug interaction between adrenaline and an antipsychotic and to evaluate the safety of the combined use of adrenaline and an antipsychotic in an animal study. Male Sprague-Dawley rats were anesthetized with sodium pentobarbital. A catheter was inserted into the femoral artery to measure blood pressure and pulse rate. Rats were pretreated by intraperitoneal injection of chlorpromazine or chlorpromazine and propranolol, and after 20 minutes, saline or 1 of 3 different doses of adrenaline was administered by intraperitoneal injection. Changes in the ratio of mean arterial blood pressure and pulse rate were measured after the injection of adrenaline. Significant hypotension and tachycardia were observed after the injection of adrenaline in the chlorpromazine-pretreated rats. These effects were in a dose-dependent manner, and 100 μg/kg adrenaline induced significant hemodynamic changes. Furthermore, in the chlorpromazine and propranolol-pretreated rats, modest hypertension was induced by adrenaline, but hypotension and tachycardia were not significantly shown. Hypotension was caused by a drug interaction between adrenaline and chlorpromazine through the activation of the β-adrenergic receptor and showed a dose-dependent effect. Low-dose adrenaline similar to what might be used in human dental treatment did not result in a significant homodynamic change.