Science.gov

Sample records for evaluating neuro-hemodynamic coupling

  1. Intracranial microprobe for evaluating neuro-hemodynamic coupling in unanesthetized human neocortex

    PubMed Central

    Keller, Corey J.; Cash, Sydney S.; Narayanan, Suresh; Wang, Chunmao; Kuzniecky, Ruben; Carlson, Chad; Devinsky, Orrin; Thesen, Thomas; Doyle, Werner; Sassaroli, Angelo; Boas, David A.; Ulbert, Istvan; Halgren, Eric

    2009-01-01

    Measurement of the blood-oxygen-level dependent (BOLD) response with fMRI has revolutionized cognitive neuroscience and is increasingly important in clinical care. The BOLD response reflects changes in deoxy-hemoglobin concentration, blood volume, and blood flow. These hemodynamic changes ultimately result from neuronal firing and synaptic activity, but the linkage between these domains is complex, poorly understood, and may differ across species, cortical areas, diseases, and cognitive states. We describe here a technique that can measure neural and hemodynamic changes simultaneously from cortical microdomains in waking humans. We utilize a “laminar optode,” a linear array of microelectrodes for electrophysiological measures paired with a micro-optical device for hemodynamic measurements. Optical measurements include laser Doppler to estimate cerebral blood flow as well as point spectroscopy to estimate oxy- and deoxy-hemoglobin concentrations. The microelectrode array records local field potential gradients (PG) and multi-unit activity (MUA) at 24 locations spanning the cortical depth, permitting estimation of population trans-membrane current flows (Current Source Density, CSD) and population cell firing in each cortical lamina. Comparison of the laminar CSD/MUA profile with the origins and terminations of cortical circuits allows activity in specific neuronal circuits to be inferred and then directly compared to hemodynamics. Access is obtained in epileptic patients during diagnostic evaluation for surgical therapy. Validation tests with relatively well-understood manipulations (EKG, breath-holding, cortical electrical stimulation) demonstrate the expected responses. This device can provide a new and robust means for obtaining detailed, quantitative data for defining neurovascular coupling in awake humans. PMID:19428529

  2. Intracranial microprobe for evaluating neuro-hemodynamic coupling in unanesthetized human neocortex.

    PubMed

    Keller, Corey J; Cash, Sydney S; Narayanan, Suresh; Wang, Chunmao; Kuzniecky, Ruben; Carlson, Chad; Devinsky, Orrin; Thesen, Thomas; Doyle, Werner; Sassaroli, Angelo; Boas, David A; Ulbert, Istvan; Halgren, Eric

    2009-05-15

    Measurement of the blood-oxygen-level dependent (BOLD) response with fMRI has revolutionized cognitive neuroscience and is increasingly important in clinical care. The BOLD response reflects changes in deoxy-hemoglobin concentration, blood volume, and blood flow. These hemodynamic changes ultimately result from neuronal firing and synaptic activity, but the linkage between these domains is complex, poorly understood, and may differ across species, cortical areas, diseases, and cognitive states. We describe here a technique that can measure neural and hemodynamic changes simultaneously from cortical microdomains in waking humans. We utilize a "laminar optode," a linear array of microelectrodes for electrophysiological measures paired with a micro-optical device for hemodynamic measurements. Optical measurements include laser Doppler to estimate cerebral blood flow as well as point spectroscopy to estimate oxy- and deoxy-hemoglobin concentrations. The microelectrode array records local field potential gradients (PG) and multi-unit activity (MUA) at 24 locations spanning the cortical depth, permitting estimation of population trans-membrane current flows (Current Source Density, CSD) and population cell firing in each cortical lamina. Comparison of the laminar CSD/MUA profile with the origins and terminations of cortical circuits allows activity in specific neuronal circuits to be inferred and then directly compared to hemodynamics. Access is obtained in epileptic patients during diagnostic evaluation for surgical therapy. Validation tests with relatively well-understood manipulations (EKG, breath-holding, cortical electrical stimulation) demonstrate the expected responses. This device can provide a new and robust means for obtaining detailed, quantitative data for defining neurovascular coupling in awake humans.

  3. Evaluation of Coupled Precipitator Two

    SciTech Connect

    Stone, M.E.

    1999-11-08

    The offline testing of the Coupled Precipitator Two (CP-2) has been completed. The tests were conducted and are documented. The tests were conducted at an offline test rack near the Drain Tube Test Stand facility in 672-T.

  4. Evaluation of coupling approaches for thermomechanical simulations

    DOE PAGES

    Novascone, S. R.; Spencer, B. W.; Hales, J. D.; ...

    2015-08-10

    Many problems of interest, particularly in the nuclear engineering field, involve coupling between the thermal and mechanical response of an engineered system. The strength of the two-way feedback between the thermal and mechanical solution fields can vary significantly depending on the problem. Contact problems exhibit a particularly high degree of two-way feedback between those fields. This paper describes and demonstrates the application of a flexible simulation environment that permits the solution of coupled physics problems using either a tightly coupled approach or a loosely coupled approach. In the tight coupling approach, Newton iterations include the coupling effects between all physics,more » while in the loosely coupled approach, the individual physics models are solved independently, and fixed-point iterations are performed until the coupled system is converged. These approaches are applied to simple demonstration problems and to realistic nuclear engineering applications. The demonstration problems consist of single and multi-domain thermomechanics with and without thermal and mechanical contact. Simulations of a reactor pressure vessel under pressurized thermal shock conditions and a simulation of light water reactor fuel are also presented. Here, problems that include thermal and mechanical contact, such as the contact between the fuel and cladding in the fuel simulation, exhibit much stronger two-way feedback between the thermal and mechanical solutions, and as a result, are better solved using a tight coupling strategy.« less

  5. Evaluation of coupling approaches for thermomechanical simulations

    SciTech Connect

    Novascone, S. R.; Spencer, B. W.; Hales, J. D.; Williamson, R. L.

    2015-08-10

    Many problems of interest, particularly in the nuclear engineering field, involve coupling between the thermal and mechanical response of an engineered system. The strength of the two-way feedback between the thermal and mechanical solution fields can vary significantly depending on the problem. Contact problems exhibit a particularly high degree of two-way feedback between those fields. This paper describes and demonstrates the application of a flexible simulation environment that permits the solution of coupled physics problems using either a tightly coupled approach or a loosely coupled approach. In the tight coupling approach, Newton iterations include the coupling effects between all physics, while in the loosely coupled approach, the individual physics models are solved independently, and fixed-point iterations are performed until the coupled system is converged. These approaches are applied to simple demonstration problems and to realistic nuclear engineering applications. The demonstration problems consist of single and multi-domain thermomechanics with and without thermal and mechanical contact. Simulations of a reactor pressure vessel under pressurized thermal shock conditions and a simulation of light water reactor fuel are also presented. Here, problems that include thermal and mechanical contact, such as the contact between the fuel and cladding in the fuel simulation, exhibit much stronger two-way feedback between the thermal and mechanical solutions, and as a result, are better solved using a tight coupling strategy.

  6. An Evaluation of the Coupled LVT Concept.

    DTIC Science & Technology

    1979-11-01

    8217jV I C rr*p r, CL . f" co YO > ~~ U 41,k II *j ~ - 5 4 R-?Q8r (3T - JJ 1 >. ~f4 ~ 4 ........... -76-’ - .2.. SINGLE VEHICLE I/ COUPLED VEHICLE --7...GRA17I1O0 2 Ju 1 6 3 16 C2;) Peot No): L2-12n9 ll-1-Rev-Lt I,-U Mjn t tr) r, 113 InIrLJdcJ "e , ,son letter 0 dOated 10 Dec 68. See alIso AD-835 9.42L

  7. Neural attention and evaluative responses to gay and lesbian couples.

    PubMed

    Dickter, Cheryl L; Forestell, Catherine A; Mulder, Blakely E

    2015-01-01

    The goal of the current study was to examine whether differential neural attentional capture and evaluative responses for out-group homosexual relative to in-group heterosexual targets occur during social categorization. To this end, 36 heterosexual participants were presented with pictures of heterosexual and homosexual couples in a picture-viewing task that was designed to assess implicit levels of discomfort toward homosexuality and explicit evaluations of pleasantness toward the images. Neural activity in the form of electroencephalogram was recorded during the presentation of the pictures, and event-related potentials resulting from these stimuli were examined. Participants also completed questionnaires that assessed the degree to which they socialized with gays and lesbians. Results demonstrated that relative to straight couples, larger P2 amplitude was observed in response to gay but not to lesbian couples. However, both gay and lesbian couples yielded a larger late positive potential than straight couples. Moreover, the degree to which participants differentially directed early neural attention to out-group lesbian versus in-group straight couples was related to their familiarity with homosexual individuals. This work, which provides an initial understanding of the neural underpinnings of attention toward homosexual couples, suggests that differences in the processing of sexual orientation can occur as early as 200 ms and may be moderated by familiarity.

  8. Coded waveforms for optimised air-coupled ultrasonic nondestructive evaluation.

    PubMed

    Hutchins, David; Burrascano, Pietro; Davis, Lee; Laureti, Stefano; Ricci, Marco

    2014-09-01

    This paper investigates various types of coded waveforms that could be used for air-coupled ultrasound, using a pulse compression approach to signal processing. These are needed because of the low signal-to-noise ratios that are found in many air-coupled ultrasonic nondestructive evaluation measurements, due to the large acoustic mismatch between air and many solid materials. The various waveforms, including both swept-frequency signals and those with binary modulation, are described, and their performance in the presence of noise is compared. It is shown that the optimum choice of modulation signal depends on the bandwidth available and the type of measurement being made.

  9. Investigation of capacitively coupled ultrasonic transducer system for nondestructive evaluation.

    PubMed

    Zhong, Cheng Huan; Wilcox, Paul D; Croxford, Anthony J

    2013-12-01

    Capacitive coupling offers a simple solution to wirelessly probe ultrasonic transducers. This paper investigates the theory, feasibility, and optimization of such a capacitively coupled transducer system (CCTS) in the context of nondestructive evaluation (NDE) applications. The noncontact interface relies on an electric field formed between four metal plates-two plates are physically connected to the electrodes of a transducer, the other two are in a separate probing unit connected to the transmit/receive channel of the instrumentation. The complete system is modeled as an electric network with the measured impedance of a bonded piezoelectric ceramic disc representing a transducer attached to an arbitrary solid substrate. A transmission line model is developed which is a function of the physical parameters of the capacitively coupled system, such as the permittivity of the material between the plates, the size of the metal plates, and their relative positions. This model provides immediate prediction of electric input impedance, pulse-echo response, and the effect of plate misalignment. The model has been validated experimentally and has enabled optimization of the various parameters. It is shown that placing a tuning inductor and series resistor on the transmitting side of the circuit can significantly improve the system performance in terms of the signal-to-crosstalk ratio. Practically, bulk-wave CCTSs have been built and demonstrated for underwater and through-composite testing. It has been found that electrical conduction in the media between the plates limits their applications.

  10. “Overview and Evaluation of AQMEII Phase 2 Coupled ...

    EPA Pesticide Factsheets

    This presentation provides an overview of the second phase of the Air Quality Model Evaluation International Initative (AQMEII). Activities in this phase are focused on the application and evaluation of coupled meteorology-chemistry models to assess how well these models can simulate the observed spatio-temporal variability in the optical and radiative characteristics of atmospheric aerosols and associated feedbacks among aerosols, radiation, clouds, and precipitation. To this end, these modeling systems are being applied for annual simulations over both North America and Europe using common emissions and boundary conditions for all modeling groups. We present an overview of these common input datasets, observational datasets for model evaluation, and case studies for diagnostic evaluation. In addition to this overview, we also present results from AQMEII Phase 2 WRF/CMAQ simulations over North America for both 2006 and 2010. The time period between 2006 and 2010 was characterized by a 35% reduction in U.S. SO2 emissions and 20% reduction in U.S. NOx emissions, providing an opportunity for dynamic model evaluation by investigating the impact of emission reductions on ambient concentrations as well as aerosol/radiation feedback effects. We present results of this dynamic evaluation. We also present a brief overview of initial results from WRF-Chem and GEM-MACH simulations performed for the same time period and domain as part of AQMEII Phase 2. The National Exposu

  11. “Overview and Evaluation of AQMEII Phase 2 Coupled ...

    EPA Pesticide Factsheets

    This presentation provides an overview of the second phase of the Air Quality Model Evaluation International Initative (AQMEII). Activities in this phase are focused on the application and evaluation of coupled meteorology-chemistry models to assess how well these models can simulate the observed spatio-temporal variability in the optical and radiative characteristics of atmospheric aerosols and associated feedbacks among aerosols, radiation, clouds, and precipitation. To this end, these modeling systems are being applied for annual simulations over both North America and Europe using common emissions and boundary conditions for all modeling groups. We present an overview of these common input datasets, observational datasets for model evaluation, and case studies for diagnostic evaluation. In addition to this overview, we also present results from AQMEII Phase 2 WRF/CMAQ simulations over North America for both 2006 and 2010. The time period between 2006 and 2010 was characterized by a 35% reduction in U.S. SO2 emissions and 20% reduction in U.S. NOx emissions, providing an opportunity for dynamic model evaluation by investigating the impact of emission reductions on ambient concentrations as well as aerosol/radiation feedback effects. We present results of this dynamic evaluation. We also present a brief overview of initial results from WRF-Chem and GEM-MACH simulations performed for the same time period and domain as part of AQMEII Phase 2. The National Exposu

  12. Analytic evaluation of the nonadiabatic coupling vector between excited states using equation-of-motion coupled-cluster theory

    NASA Astrophysics Data System (ADS)

    Tajti, Attila; Szalay, Péter G.

    2009-09-01

    Theory and implementation for evaluation of the nonadiabatic coupling vector between excited electronic states described by equation-of-motion excitation energy coupled-cluster singles and doubles (EOMEE-CCSD) method is presented. Problems arising from the non-Hermitian nature of the theory are discussed in detail. The performance of the new approach is demonstrated by the nice agreement of the nonadiabatic coupling curves for LiH obtained at the EOMEE-CCSD and MR-CISD levels. Using the tools developed we also present a computational procedure to evaluate the interstate coupling constants used in vibronic coupling theories. As an application of this part of the implementation we present simulation of the electronic absorption spectrum of the pyrazine molecule within the linear vibronic coupling model.

  13. Analytic evaluation of the nonadiabatic coupling vector between excited states using equation-of-motion coupled-cluster theory.

    PubMed

    Tajti, Attila; Szalay, Péter G

    2009-09-28

    Theory and implementation for evaluation of the nonadiabatic coupling vector between excited electronic states described by equation-of-motion excitation energy coupled-cluster singles and doubles (EOMEE-CCSD) method is presented. Problems arising from the non-Hermitian nature of the theory are discussed in detail. The performance of the new approach is demonstrated by the nice agreement of the nonadiabatic coupling curves for LiH obtained at the EOMEE-CCSD and MR-CISD levels. Using the tools developed we also present a computational procedure to evaluate the interstate coupling constants used in vibronic coupling theories. As an application of this part of the implementation we present simulation of the electronic absorption spectrum of the pyrazine molecule within the linear vibronic coupling model.

  14. Couples' voluntary HIV counseling and testing provider training evaluation, Zambia.

    PubMed

    Wu, Kathleen Y; Oppert, Marydale; Wall, Kristin M; Inambao, Mubiana; Simpungwe, Matildah K; Ahmed, Nurilign; Abdallah, Joseph F; Tichacek, Amanda; Allen, Susan A

    2017-01-23

    With the expansion of couples' voluntary HIV counseling and testing (CVCT) in urban Zambia, there is a growing need to evaluate CVCT provider trainings to ensure that couples are receiving quality counseling and care. We evaluated provider knowledge scores, pre- and post-training and predictors of pre- and post-training test scores. Providers operating in 67 government clinics in four Copperbelt Province cities were trained from 2008 to 2013 in three domains: counseling, rapid HIV laboratory testing and data management. Trainees received pre- and post-training tests on domain-specific topics. Pre- and post-training test scores were tabulated by provider demographics and training type, and paired t-tests evaluated differences in pre- and post-training test scores. Multivariable ANCOVA determined predictors of pre- and post-training test scores. We trained 1226 providers, and average test scores increased from 68.8% pre-training to 83.8% post-training (p < 0.001). Test scores increased significantly for every demographic group and training type (p < 0.001) with one exception-test scores did not significantly increase for those receiving counseling or data management training who had less than a high school education. In multivariable analysis, higher educational level and having a medical background were predictive of a higher pre-test score; higher pre-test scores and having a medical background were predictive of higher post-test scores. Pre- and post-test assessments are critical to ensure quality services, particularly as task-shifting from medical to lay staff becomes more common. Assessments showed that our CVCT trainings are successful at increasing knowledge, and that those with lower education may benefit from repeat trainings.

  15. Evaluation of Air Coupled Ultrasound for Composite Aerospace Structure

    NASA Astrophysics Data System (ADS)

    Tat, H.; Georgeson, G.; Bossi, R.

    2009-03-01

    Non-contact air coupled ultrasound suffers from the high acoustic impedance mismatch characteristics of air to solid interfaces. Advances in transducer technology, particularly MEMS, have improved the acoustic impedance match at the transmission stage and the signal to noise at the reception stage. Comparisons of through transmission (TTU) scanning of laminate and honeycomb test samples using conventional piezoelectric air coupled transducers, new MEMS air coupled transducers, and standard water coupled inspections have been performed to assess the capability. An additional issue for air coupled UT inspection is the need for a lean implementation for both manufacturing and in-service operations. Concepts and applications utilizing magnetic coupling of transducers have been developed that allows air coupled inspection operations in compact low cost configurations.

  16. Acoustic mode coupling induced by nonlinear internal waves: evaluation of the mode coupling matrices and applications.

    PubMed

    Yang, T C

    2014-02-01

    This paper applies the mode coupling equation to calculate the mode-coupling matrix for nonlinear internal waves appearing as a train of solitons. The calculation is applied to an individual soliton up to second order expansion in sound speed perturbation in the Dyson series. The expansion is valid so long as the fractional sound speed change due to a single soliton, integrated over range and depth, times the wavenumber is smaller than unity. Scattering between the solitons are included by coupling the mode coupling matrices between the solitons. Acoustic fields calculated using this mode-coupling matrix formulation are compared with that obtained using a parabolic equation (PE) code. The results agree very well in terms of the depth integrated acoustic energy at the receivers for moving solitary internal waves. The advantages of using the proposed approach are: (1) The effects of mode coupling can be studied as a function of range and time as the solitons travel along the propagation path, and (2) it allows speedy calculations of sound propagation through a packet or packets of solitons saving orders of magnitude computations compared with the PE code. The mode coupling theory is applied to at-sea data to illustrate the underlying physics.

  17. An Integration and Evaluation Framework for ESPC Coupled Models

    DTIC Science & Technology

    2014-09-30

    Models PI: Ben Kirtman University of Miami – RSMAS Atmospheric Sciences 4600 Rickenbacker Causeway Miami, FL 33149 Phone: (305) 421-4046...annual report. 7 ESPC Testbed: Interactive ensemble Initial prototype of multi- model interactive ensemble coupling infrastructure. Initial...get HYCOM integrated. Enhanced the interactive ensemble so that multiple atmosphere, land and ice component models can be simultaneously coupled

  18. PyFREC: Software for Förster electronic coupling evaluation in molecular fragments.

    PubMed

    Kosenkov, Dmytro

    2016-07-15

    Electronic couplings are crucial for understanding exciton dynamics and associated energy transfer in artificial and natural chromophores. The proposed PyFREC (Python FRagment Electronic Coupling) software enables evaluation of electronic couplings based on the Förster model. PyFREC features the decomposition of electronic couplings, obtained through quantum chemical calculations, into the orientation and dipole strength components. Furthermore, the variation method to evaluate energies of coupled electronic excited states and delocalization of electronic excitations is implemented in the software. PyFREC has been tested on the S22 benchmark dataset of non-covalent complexes and water clusters. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  20. Land-atmosphere coupling in EURO-CORDEX evaluation experiments

    NASA Astrophysics Data System (ADS)

    Knist, Sebastian; Goergen, Klaus; Buonomo, Erasmo; Christensen, Ole Bøssing; Colette, Augustin; Cardoso, Rita M.; Fealy, Rowan; Fernández, Jesús; García-Díez, Markel; Jacob, Daniela; Kartsios, Stergios; Katragkou, Eleni; Keuler, Klaus; Mayer, Stephanie; van Meijgaard, Erik; Nikulin, Grigory; Soares, Pedro M. M.; Sobolowski, Stefan; Szepszo, Gabriella; Teichmann, Claas; Vautard, Robert; Warrach-Sagi, Kirsten; Wulfmeyer, Volker; Simmer, Clemens

    2017-01-01

    Interactions between the land surface and the atmosphere play a fundamental role in the weather and climate system. Here we present a comparison of summertime land-atmosphere coupling strength found in a subset of the ERA-Interim-driven European domain Coordinated Regional Climate Downscaling Experiment (EURO-CORDEX) model ensemble (1989-2008). Most of the regional climate models (RCMs) reproduce the overall soil moisture interannual variability, spatial patterns, and annual cycles of surface exchange fluxes for the different European climate zones suggested by the observational Global Land Evaporation Amsterdam Model (GLEAM) and FLUXNET data sets. However, some RCMs differ substantially from FLUXNET observations for some regions. The coupling strength is quantified by the correlation between the surface sensible and the latent heat flux, and by the correlation between the latent heat flux and 2 m temperature. The first correlation is compared to its estimate from the few available long-term European high-quality FLUXNET observations, and the latter to results from gridded GLEAM data. The RCM simulations agree with both observational datasets in the large-scale pattern characterized by strong coupling in southern Europe and weak coupling in northern Europe. However, in the transition zone from strong to weak coupling covering large parts of central Europe many of the RCMs tend to overestimate the coupling strength in comparison to both FLUXNET and GLEAM. The RCM ensemble spread is caused primarily by the different land surface models applied, and by the model-specific weather conditions resulting from different atmospheric parameterizations.

  1. Evaluation of nonuniform field exposures with coupling factors.

    PubMed

    Sunohara, Tetsu; Hirata, Akimasa; Laakso, Ilkka; De Santis, Valerio; Onishi, Teruo

    2015-10-21

    In this study, the safety compliance for nonuniform field exposures is discussed using coupling factor concepts. The coupling factor, which is defined in the International Electrotechnical Commission 62311 standard, is extended to consider the effects of harmonics and also to apply to the specific absorption rate (for frequencies up to 30 MHz). The proposed compliance procedure is applied to and demonstrated for a prototype wireless power transfer (WPT) system with induction coupling operating at the fundamental frequency in 140 kHz band. First, measurements confirm that the perturbation of the external magnetic field strength and S11 parameter of a one-loop antenna by a human-equivalent phantom are sufficiently small, suggesting the applicability of the magneto-quasi-static approximation to frequencies up to 30 MHz. Then, the frequency characteristics of the coupling factor are derived for the WPT system. For the prototype system that is not optimized for commercial usage, the maximum allowable transmitting power is relaxed by a factor of 23 with the proposed procedure. The contribution of the harmonics decreased the allowable transmitting power by 39%, indicating their importance for safety compliance.

  2. Evaluation of nonuniform field exposures with coupling factors

    NASA Astrophysics Data System (ADS)

    Sunohara, Tetsu; Hirata, Akimasa; Laakso, Ilkka; De Santis, Valerio; Onishi, Teruo

    2015-10-01

    In this study, the safety compliance for nonuniform field exposures is discussed using coupling factor concepts. The coupling factor, which is defined in the International Electrotechnical Commission 62311 standard, is extended to consider the effects of harmonics and also to apply to the specific absorption rate (for frequencies up to 30 MHz). The proposed compliance procedure is applied to and demonstrated for a prototype wireless power transfer (WPT) system with induction coupling operating at the fundamental frequency in 140 kHz band. First, measurements confirm that the perturbation of the external magnetic field strength and S11 parameter of a one-loop antenna by a human-equivalent phantom are sufficiently small, suggesting the applicability of the magneto-quasi-static approximation to frequencies up to 30 MHz. Then, the frequency characteristics of the coupling factor are derived for the WPT system. For the prototype system that is not optimized for commercial usage, the maximum allowable transmitting power is relaxed by a factor of 23 with the proposed procedure. The contribution of the harmonics decreased the allowable transmitting power by 39%, indicating their importance for safety compliance.

  3. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism

    SciTech Connect

    Colwell, Frederick; Radtke, Corey; Newby, Deborah; Delwiche, Mark; Crawf, Ronald L.; Paszczynski, Andrzej; Strap, Janice; Conrad, Mark; Brodic, Eoin; Starr, Robert; Lee, Hope

    2006-04-05

    Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires 'lines of evidence' indicating that the wastes are effectively destroyed. Our research will study the coupled biogeochemical processes that dictate the rate of TCE co-metabolism in contaminated aquifers first at the Idaho National Laboratory and then at Paducah or the Savannah River Site, where natural attenuation of TCE is occurring. We will use flow-through in situ reactors to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. We will use new approaches (e.g., stable isotope probing, enzyme activity probes, real-time reverse transcriptase polymerase chain reaction, proteomics) to assay the TCE co-metabolic rates, and interpret these rates in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different methane concentrations and groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites that are contaminated with chlorinated hydrocarbons.

  4. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism

    SciTech Connect

    Rick Colwell; Corey Radtke; Mark Delwiche; Deborah Newby; Lynn Petzke; Mark Conrad; Eoin Brodie; Hope Lee; Bob Starr; Dana Dettmers; Ron Crawford; Andrzej Paszczynski; Nick Bernardini; Ravi Paidisetti; Tonia Green

    2006-06-01

    Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires different ?lines of evidence? indicating that the wastes are effectively destroyed. We are studying the coupled biogeochemical processes that dictate the rate of TCE co-metabolism first in the medial zone (TCE concentration: 1,000 to 20,000 ?g/L) of a plume at the Idaho National Laboratory?s Test Area North (TAN) site and then at Paducah or the Savannah River Site. We will use flow-through in situ reactors (FTISR) to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. TCE co-metabolic rates at TAN are being assessed and interpreted in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial co-metabolism relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites contaminated with chlorinated hydrocarbons.

  5. An Evaluation of a Program to Help Dual-Earner Couples Share the Second Shift.

    ERIC Educational Resources Information Center

    Hawkins, Alan J.; And Others

    1994-01-01

    Used both traditional scientific and feminist methodologies to evaluate effectiveness of family life education program designed to help dual-earner couples (n=14 couples) share domestic labor. Both quantitative and qualitative data suggest that program produced small increases in husbands' involvement in both housework and child care and large…

  6. Investigating couples' sleep: an evaluation of actigraphic analysis techniques.

    PubMed

    Meadows, R; Venn, S; Hislop, J; Stanley, N; Arber, S

    2005-12-01

    'Blip' analysis, fast wavelet transformations (FWT) and correlation analysis have all been used to actigraphically assess the impact one person is having on another's sleep, yet no review exists as to the differences between, and applicability of, these methods for investigating couples' sleep. Using actigraphy data and audio sleep diaries collected from 18 couples, this paper provides such a review. This paper constructs and assesses two novel, analytical methods: Lotjonen's sleep/wake algorithm, and the partner impact on sleep wake analysis (PISWA). Both 'blip' analysis and correlation suggest that the strongest relationship between bed partners occurs on an epoch-to-epoch basis. However, 'blips' deal strictly with onset of movement and fail to incorporate strength and duration of movement. Conversely, correlation analysis incorporates some elements of strength and duration of movement but makes identification of onset problematic. FWT offer useful 'relativistic' pattern recognition, identifying onset, strength and duration of movement, but are difficult to quantify. Although audio diary data support the potential of Lotjonen's sleep/wake algorithm to identify sleep non-movement, sleep movement, wake non-movement (or quiet wakefulness) and wake movement, the problem remains that this method also relies on visualization. Of most promise, we argue, is the PISWA, which examines 'impact' of bed partners through incorporating elements of 'blip' analysis and the sleep/wake algorithm.

  7. Air-coupled ultrasonic evaluation of food materials.

    PubMed

    Pallav, P; Hutchins, D A; Gan, T H

    2009-02-01

    This research was performed with the aim of detecting foreign bodies and additives within food products, and to measure selected acoustic properties, without contact to the sample. This would allow use in manufacturing plants on production lines, where contacting the product for ultrasonic inspection would not be feasible. Images of internal structure are reported. The air-coupled system uses capacitive devices which are able to provide sufficient bandwidth for many measurements, including the detection of foreign bodies in cheese, the detection of deliberate additives to chocolate, the detection of fill level and content of metallic food cans, and measurements of frozen dough products. The approach demonstrates that ultrasound has the potential for application to many industrial food packaging environments where non-metallic objects within food need to be detected.

  8. Air-coupled acoustic thermography for in-situ evaluation

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N. (Inventor); Winfree, William P. (Inventor); Yost, William T. (Inventor)

    2010-01-01

    Acoustic thermography uses a housing configured for thermal, acoustic and infrared radiation shielding. For in-situ applications, the housing has an open side adapted to be sealingly coupled to a surface region of a structure such that an enclosed chamber filled with air is defined. One or more acoustic sources are positioned to direct acoustic waves through the air in the enclosed chamber and towards the surface region. To activate and control each acoustic source, a pulsed signal is applied thereto. An infrared imager focused on the surface region detects a thermal image of the surface region. A data capture device records the thermal image in synchronicity with each pulse of the pulsed signal such that a time series of thermal images is generated. For enhanced sensitivity and/or repeatability, sound and/or vibrations at the surface region can be used in feedback control of the pulsed signal applied to the acoustic sources.

  9. Evaluation of microalgae production coupled with wastewater treatment.

    PubMed

    De Francisci, Davide; Su, Yixi; Iital, Arvo; Angelidaki, Irini

    2017-04-05

    In the present study, the feasibility of microalgae production coupled with wastewater treatment was assessed. Continuous cultivation of Chlorella sorokiniana with wastewater was tested in lab-scale flat-panel photobioreactors. Nitrogen and phosphorus removals were found to be inversely proportional to the four dilution rates, while chemical oxygen demand removal was found to be 50% at all the tested conditions. The biomass obtained at the highest dilution rate was characterized for its content of lipids, proteins and pigments. The average yields of fatty acid methyl esters (FAMEs), protein, lutein, chlorophylls and β-carotene was 62.4, 388.2, 1.03, 11.82 and 0.44 mg per gram dry biomass, respectively. Economic analysis revealed that potentially more than 70% of revenue was from the production of pigments, that is, chlorophyllin (59.6%), lutein (8.9%) and β-carotene (5.0%) while reduction in discharging costs of the treated wastewaters could account for 19.6% of the revenue. Due to the low market price of biodiesel, the revenue from the above was found to be the least profitable (1.4%). Even when combining all these different revenues, this cultivation strategy was found with the current prices to be uneconomical. Power consumption for artificial light was responsible for the 94.5% of the production costs.

  10. Experimental Effects of Student Evaluations Coupled with Collaborative Consultation on College Professors' Instructional Skills

    ERIC Educational Resources Information Center

    Knol, Mariska H.; in't Veld, Rachna; Vorst, Harrie C. M.; van Driel, Jan H.; Mellenbergh, Gideon J.

    2013-01-01

    This experimental study concerned the effects of repeated students' evaluations of teaching coupled with collaborative consultation on professors' instructional skills. Twenty-five psychology professors from a Dutch university were randomly assigned to either a control group or an experimental group. During their course, students evaluated them…

  11. “Overview and Evaluation of AQMEII Phase 2 Coupled Simulations over North America”

    EPA Science Inventory

    This presentation provides an overview of the second phase of the Air Quality Model Evaluation International Initative (AQMEII). Activities in this phase are focused on the application and evaluation of coupled meteorology-chemistry models to assess how well these models can simu...

  12. Experimental Effects of Student Evaluations Coupled with Collaborative Consultation on College Professors' Instructional Skills

    ERIC Educational Resources Information Center

    Knol, Mariska H.; in't Veld, Rachna; Vorst, Harrie C. M.; van Driel, Jan H.; Mellenbergh, Gideon J.

    2013-01-01

    This experimental study concerned the effects of repeated students' evaluations of teaching coupled with collaborative consultation on professors' instructional skills. Twenty-five psychology professors from a Dutch university were randomly assigned to either a control group or an experimental group. During their course, students evaluated them…

  13. “Overview and Evaluation of AQMEII Phase 2 Coupled Simulations over North America”

    EPA Science Inventory

    This presentation provides an overview of the second phase of the Air Quality Model Evaluation International Initative (AQMEII). Activities in this phase are focused on the application and evaluation of coupled meteorology-chemistry models to assess how well these models can simu...

  14. Imaging quality evaluation method of pixel coupled electro-optical imaging system

    NASA Astrophysics Data System (ADS)

    He, Xu; Yuan, Li; Jin, Chunqi; Zhang, Xiaohui

    2017-09-01

    With advancements in high-resolution imaging optical fiber bundle fabrication technology, traditional photoelectric imaging system have become ;flexible; with greatly reduced volume and weight. However, traditional image quality evaluation models are limited by the coupling discrete sampling effect of fiber-optic image bundles and charge-coupled device (CCD) pixels. This limitation substantially complicates the design, optimization, assembly, and evaluation image quality of the coupled discrete sampling imaging system. Based on the transfer process of grayscale cosine distribution optical signal in the fiber-optic image bundle and CCD, a mathematical model of coupled modulation transfer function (coupled-MTF) is established. This model can be used as a basis for following studies on the convergence and periodically oscillating characteristics of the function. We also propose the concept of the average coupled-MTF, which is consistent with the definition of traditional MTF. Based on this concept, the relationships among core distance, core layer radius, and average coupled-MTF are investigated.

  15. Space Station Freedom coupling tasks: An evaluation of their telerobotic and EVA compatibility

    NASA Technical Reports Server (NTRS)

    Sampaio, Carlos E.; Bierschwale, John M.; Fleming, Terence F.; Stuart, Mark A.

    1993-01-01

    Of the couplings included in this study, several design components were found to be of interest. With respect to the operation of the couplings, the various concepts resulted in differing reactions from the four subjects who participated in this study. The purpose of this study was not to conceive the final coupling design. Rather, it was intended as a step along an interactive process. The newly modified coupling will be included in a series of further controlled, as well as subjective, evaluations. This part of the ongoing work in the Remote Operator Interaction Laboratory (ROIL) designed to enhance the overall interface by improving design at both the teleoperator and telerobot ends of the system.

  16. Evaluation and coupling of a membraneless nanofluidic device for low-power applications

    NASA Astrophysics Data System (ADS)

    Gurrola, M. P.; Ortiz-Ortega, E.; Farias-Zuñiga, C.; Chávez-Ramírez, A. U.; Ledesma-García, J.; Arriaga, L. G.

    2016-03-01

    This work presents the construction and evaluation of a membraneless nanofluidic fuel cell made with fiberglass using flow-through porous electrodes based on Toray paper, coupled with a microelectronic interface to supply energy to low-power demand applications. The device performance is optimized for different operating conditions related with flow rate, stoichiometry and concentration and employing formic acid as fuel. Evaluation tests were performed with a homemade testing station using a commercial varying resistance.

  17. An evaluation of time-limited psychodynamic psychotherapy for couples: a pilot study.

    PubMed

    Balfour, Andrew; Lanman, Monica

    2012-09-01

    Psychodynamic Couple Psychotherapy has developed as a modality in only a few organizations in the public and voluntary sectors in this country. Varieties of couple therapy have evolved due to economic or other constraints, some more open-ended, others involving differing time limits or behavioural techniques. In this study, a time limit of 40 sessions was imposed on the Psychodynamic therapy to improve comparability with other therapeutic approaches. We examined work with 18 couples, employing various measures which, while not in the context of a full controlled trial, produced some interesting and indicative results. We aimed to investigate (1) the effects of time-limited psychodynamic couple psychotherapy, and (2) whether the measures used produce interesting results after 40 weeks. Within a normal clinical setting, measurements of individual and couple functioning would be taken at fixed points in the course of 40-week couple therapies, and analysed for evidence of significant change. Due to funding and clinical limitations within the setting, a baseline period before therapy started was used instead of a control group. Couples were invited to opt in to the study when applying to the agency for therapy. They were provided with 40 weekly sessions of couple therapy. Videotapes of sessions at beginning, middle, and end of the therapies were rated by independent observer, using the Personal Relatedness Profile (PRP) (Hobson, Patrick, & Valentine, 1998) adapted for couples (Lanman, Grier, & Evans, 2003), alongside two individual self-report measures, Clinical Outcomes in Routine Evaluation (CORE) (Evans et al., 2000), and the Golombok Rust Inventory of Marital Satisfaction (GRIMS) (Rust, Bennun, Crow, & Golumbok, 1990). The couples showed improvement as rated both by therapists and observers (rating the videotaped sessions) on the PRP after 40 sessions. On the CORE measure, participants showed improvement at both 20 and 40 sessions. On the GRIMS measure of marital

  18. Determination of plutonium in urine: evaluation of electrothermal vaporization inductively coupled plasma mass spectroscopy

    SciTech Connect

    Pietrzak, R.; Kaplan, E.

    1996-11-01

    Mass spectroscopy has the distinct advantage of detecting atoms rather than radioactive decay products for nuclides of low specific activity. Electrothermal vaporization (ETV) is an efficient means of introducing small volumes of prepared samples into an inductively coupled mass spectrometer to achieve the lowest absolute detection limits. The operational characteristics and capabilities of electrothermal vaporization inductively coupled mass spectrometer mass spectroscopy were evaluated. We describe its application as a detection method for determining Pu in urine, in conjunction with a preliminary separation technique to avoid matrix suppression of the signal.

  19. Communication: An efficient algorithm for evaluating the Breit and spin-spin coupling integrals

    NASA Astrophysics Data System (ADS)

    Shiozaki, Toru

    2013-03-01

    We present an efficient algorithm for evaluating a class of two-electron integrals of the form {r}_{12}⊗ {r}_{12}/r_{12}^n over one-electron Gaussian basis functions. The full Breit interaction in four-component relativistic theories beyond the Gaunt term is such an operator with n = 3. Another example is the direct spin-spin coupling term in the quasi-relativistic Breit-Pauli Hamiltonian (n = 5). These integrals have been conventionally evaluated by expensive derivative techniques. Our algorithm is based on tailored Gaussian quadrature, similar to the Rys quadrature for electron repulsion integrals (ERIs), and can utilize the so-called horizontal recurrence relation to reduce the computational cost. The CPU time for computing all six Cartesian components of the Breit or spin-spin coupling integrals is found to be only 3 to 4 times that of the ERI evaluation.

  20. Development and evaluation of new coupling system for lower limb prostheses with acoustic alarm system.

    PubMed

    Eshraghi, Arezoo; Osman, Noor Azuan Abu; Gholizadeh, Hossein; Ahmadian, Jalil; Rahmati, Bizhan; Abas, Wan Abu Bakar Wan

    2013-01-01

    Individuals with lower limb amputation need a secure suspension system for their prosthetic devices. A new coupling system was developed that is capable of suspending the prosthesis. The system's safety is ensured through an acoustic alarm system. This article explains how the system works and provides an in vivo evaluation of the device with regard to pistoning during walking. The system was designed to be used with silicone liners and is based on the requirements of prosthetic suspension systems. Mechanical testing was performed using a universal testing machine. The pistoning during walking was measured using a motion analysis system. The new coupling device produced significantly less pistoning compared to a common suspension system (pin/lock). The safety alarm system would buzz if the suspension was going to fail. The new coupling system could securely suspend the prostheses in transtibial amputees and produced less vertical movement than the pin/lock system.

  1. Evaluation of electrical capacitance tomography sensor based on the coupling of fluid field and electrostatic field

    NASA Astrophysics Data System (ADS)

    Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-07-01

    Electrical capacitance tomography (ECT) is based on capacitance measurements from electrode pairs mounted outside of a pipe or vessel. The structure of ECT sensors is vital to image quality. In this paper, issues with the number of electrodes and the electrode covering ratio for complex liquid-solids flows in a rotating device are investigated based on a new coupling simulation model. The number of electrodes is increased from 4 to 32 while the electrode covering ratio is changed from 0.1 to 0.9. Using the coupling simulation method, real permittivity distributions and the corresponding capacitance data at 0, 0.5, 1, 2, 3, 5, and 8 s with a rotation speed of 96 rotations per minute (rpm) are collected. Linear back projection (LBP) and Landweber iteration algorithms are used for image reconstruction. The quality of reconstructed images is evaluated by correlation coefficient compared with the real permittivity distributions obtained from the coupling simulation. The sensitivity for each sensor is analyzed and compared with the correlation coefficient. The capacitance data with a range of signal-to-noise ratios (SNRs) of 45, 50, 55 and 60 dB are generated to evaluate the effect of data noise on the performance of ECT sensors. Furthermore, the SNRs of experimental data are analyzed for a stationary pipe with permittivity distribution. Based on the coupling simulation, 16-electrode ECT sensors are recommended to achieve good image quality.

  2. Evaluation model coupling exploitable groundwater resources and land subsidence control in regional loose sediments

    NASA Astrophysics Data System (ADS)

    Luo, Z. J.; Zhao, S. J.; Jin, WZ; Ma, Q. S.; Wu, X. H.

    2016-08-01

    The loose sediments in the Yangtze River Delta, the North China Plain, the plain of Northern Jiangsu and other districts in China are of great thickness, complex in structure and abundant in groundwater. Groundwater overexploitation easily results in geological disasters of land subsidence. Aiming at the issues, assessment models coupling exploitable groundwater resources and land subsidence control in regional loose sediments were brought up in this paper. The two models were: (1) a three dimensional groundwater seepage model with land subsidence based on the one dimensional Terzaghi consolidation theory; (2) a three dimensional full coupling model on groundwater seepage and land subsidence based on the Biot consolidation theory to simulate and calculate. It can be used to simulate and calculate the problems in real situations. Thus, the groundwater seepage and land subsidence were coupled together in the model to evaluate the amount of exploitable groundwater under the specific requirements of land subsidence control. The full coupling model, which considers the non-linear characteristics of soil mass and the dynamic changes of soil permeability with stress state based on the Biot consolidation theory, is more coincident with the variation characteristics of the hydraulic and mechanical properties of soil mass during the pumping process, making the evaluation results more scientific and reasonable.

  3. Numerical evaluation of aperture coupling in resonant cavities and frequency perturbation analysis

    NASA Astrophysics Data System (ADS)

    Dash, R.; Nayak, B.; Sharma, A.; Mittal, K. C.

    2014-01-01

    This paper presents a general formulation for numerical evaluation of the coupling between two identical resonant cavities by a small elliptical aperture in a plane common wall of arbitrary thickness. It is organized into two parts. In the first one we discuss the aperture coupling that is expressed in terms of electric and magnetic dipole moments and polarizabilities using Carlson symmetric elliptical integrals. Carlson integrals have been numerically evaluated and under zero thickness approximation, the results match with the complete elliptical integrals of first and second kind. It is found that with zero wall thickness, the results obtained are the same as those of Bethe and Collin for an elliptical and circular aperture of zero thickness. In the second part, Slater's perturbation method is applied to find the frequency changes due to apertures of finite thickness on the cavity wall.

  4. NRC-BNL Benchmark Program on Evaluation of Methods for Seismic Analysis of Coupled Systems

    SciTech Connect

    Chokshi, N.; DeGrassi, G.; Xu, J.

    1999-03-24

    A NRC-BNL benchmark program for evaluation of state-of-the-art analysis methods and computer programs for seismic analysis of coupled structures with non-classical damping is described. The program includes a series of benchmarking problems designed to investigate various aspects of complexities, applications and limitations associated with methods for analysis of non-classically damped structures. Discussions are provided on the benchmarking process, benchmark structural models, and the evaluation approach, as well as benchmarking ground rules. It is expected that the findings and insights, as well as recommendations from this program will be useful in developing new acceptance criteria and providing guidance for future regulatory activities involving licensing applications of these alternate methods to coupled systems.

  5. NRC-BNL BENCHMARK PROGRAM ON EVALUATION OF METHODS FOR SEISMIC ANALYSIS OF COUPLED SYSTEMS.

    SciTech Connect

    XU,J.

    1999-08-15

    A NRC-BNL benchmark program for evaluation of state-of-the-art analysis methods and computer programs for seismic analysis of coupled structures with non-classical damping is described. The program includes a series of benchmarking problems designed to investigate various aspects of complexities, applications and limitations associated with methods for analysis of non-classically damped structures. Discussions are provided on the benchmarking process, benchmark structural models, and the evaluation approach, as well as benchmarking ground rules. It is expected that the findings and insights, as well as recommendations from this program will be useful in developing new acceptance criteria and providing guidance for future regulatory activities involving licensing applications of these alternate methods to coupled systems.

  6. The Couples' Illness Communication Scale (CICS): development and evaluation of a brief measure assessing illness-related couple communication.

    PubMed

    Arden-Close, Emily; Moss-Morris, Rona; Dennison, Laura; Bayne, Louise; Gidron, Yori

    2010-09-01

    When one member of a couple has a chronic illness, communication about the illness is important for both patient and partner well-being. This study aimed to develop and test a brief self-report measure of illness-related couple communication. A combination of correlations and multiple regression were used to assess the internal consistency and validity of the Couples' Illness Communication Scale (CICS). A scale to provide insight into both patient and partner illness communication was developed. The CICS was then tested on patients with ovarian cancer (N=123) and their partners (N=101), as well as patients with early stage multiple sclerosis (MS) who had stable partnerships (N=64). The CICS demonstrated good acceptability, internal consistency, convergent validity (correlations with general couple communication and marital adjustment), construct validity (correlations with intrusive thoughts, social/family well-being, emotional impact of the illness, and psychological distress), and test-retest reliability. The CICS meets the majority of psychometric criteria for assessment measures in both a life-threatening illness (ovarian cancer) and a chronic progressive disease (MS). Further research is required to understand its suitability for use in other populations. Adoption of the CICS into couple-related research will improve understanding of the role of illness-related communication in adjustment to illness. Use of this short, simple tool in a clinical setting can provide a springboard for addressing difficulties with illness-related couple communication and could aid decision making for referrals to couple counselling.

  7. Fast Numerical Evaluation of Time-Derivative Nonadiabatic Couplings for Mixed Quantum-Classical Methods.

    PubMed

    Ryabinkin, Ilya G; Nagesh, Jayashree; Izmaylov, Artur F

    2015-11-05

    We have developed a numerical differentiation scheme that eliminates evaluation of overlap determinants in calculating the time-derivative nonadiabatic couplings (TDNACs). Evaluation of these determinants was the bottleneck in previous implementations of mixed quantum-classical methods using numerical differentiation of electronic wave functions in the Slater determinant representation. The central idea of our approach is, first, to reduce the analytic time derivatives of Slater determinants to time derivatives of molecular orbitals and then to apply a finite-difference formula. Benchmark calculations prove the efficiency of the proposed scheme showing impressive several-order-of-magnitude speedups of the TDNAC calculation step for midsize molecules.

  8. Cross-compartment evaluation of a fully-coupled hydrometeorological modeling system using comprehensive observation data

    NASA Astrophysics Data System (ADS)

    Fersch, Benjamin; Senatore, Alfonso; Kunstmann, Harald

    2017-04-01

    Fully-coupled hydrometeorological modeling enables investigations about the complex and often non-linear exchange mechanisms among subsurface, land, and atmosphere with respect to water and energy fluxes. The consideration of lateral redistribution of surface and subsurface water in such modeling systems is a crucial enhancement, allowing for a better representation of surface spatial patterns and providing also channel discharge predictions. However, the evaluation of fully-coupled simulations is difficult since the amount of physical detail along with feedback mechanisms leads to high degrees of freedom. Therefore, comprehensive observation data is required to obtain meaningful model configurations. We present a case study for a medium-sized river catchment in southern Germany that includes the calibration of the stand-alone and the evaluation of the fully-coupled WRF-Hydro modeling system with a horizontal resolution of 1 x 1 km2, for the period June to August 2015. ECMWF ERA-Interim reanalysis is used for model driving. Land-surface processes are represented by the Noah-MP land surface model. Land-cover is described by the EU CORINE data set. Observations for model evaluation are obtained from the TERENO Pre-Alpine observatory (http://www.imk-ifu.kit.edu/tereno.php) and are complemented by further measurements from the ScaleX campaign (http://scalex.imk-ifu.kit.edu) such as atmospheric profiles obtained from radiometer sounding and airborne systems as well as soil moisture and -temperature networks. We show how well water budgets and heat-fluxes are being reproduced by the stand-alone WRF, the stand-alone WRF-Hydro and the fully-coupled WRF-Hydro model.

  9. Introductory tests to in vivo evaluation: magnetic coupling influence in motor controller.

    PubMed

    Bock, Eduardo; Andrade, Aron; Dinkhuysen, Jarbas; Arruda, Celso; Fonseca, Jeison; Leme, Juliana; Utiyama, Bruno; Leao, Tarcisio; Uebelhart, Beatriz; Antunes, Pedro; Sugita, Yoichi; Motomura, Tadashi; Nosé, Yukihiko

    2011-01-01

    An implantable centrifugal blood pump has been developed with original features for a ventricle assist device (VAD). This pump is part of a multicenter and international study with objective to offer simple, affordable, and reliable devices to developing countries. Previous computational fluid dynamics investigations were performed followed by prototyping and in vitro tests. Also, previous blood tests for assessment of hemolysis showed mean normalized index of hemolysis (NIH) results of 0.0054 ± 2.46 × 10⁻³ mg/100 L (at 5 L/min and 100 mm Hg). To precede in vivo evaluation, measurements of magnetic coupling interference and enhancements of actuator control were necessary. Methodology was based on the study of two different work situations (1 and 2) studied with two different types of motors (A and B). Situation 1 is when the rotor of pump is closest to the motor and situation 2 its opposite. Torque and mechanical power were collected with a dynamometer (80 g/cm) and then plotted and compared for two situations and both motors. The results showed that motor A has better mechanical behavior and less influence of coupling. Results for situation 1 showed that it is more often under magnetic coupling influence than situation 2. The studies lead to the conclusion that motor A is the best option for in vivo studies as it has less influence of magnetic coupling in both situations.

  10. Gearbox Reliability Collaborative Analytic Formulation for the Evaluation of Spline Couplings

    SciTech Connect

    Guo, Y.; Keller, J.; Errichello, R.; Halse, C.

    2013-12-01

    Gearboxes in wind turbines have not been achieving their expected design life; however, they commonly meet and exceed the design criteria specified in current standards in the gear, bearing, and wind turbine industry as well as third-party certification criteria. The cost of gearbox replacements and rebuilds, as well as the down time associated with these failures, has elevated the cost of wind energy. The National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) was established by the U.S. Department of Energy in 2006; its key goal is to understand the root causes of premature gearbox failures and improve their reliability using a combined approach of dynamometer testing, field testing, and modeling. As part of the GRC program, this paper investigates the design of the spline coupling often used in modern wind turbine gearboxes to connect the planetary and helical gear stages. Aside from transmitting the driving torque, another common function of the spline coupling is to allow the sun to float between the planets. The amount the sun can float is determined by the spline design and the sun shaft flexibility subject to the operational loads. Current standards address spline coupling design requirements in varying detail. This report provides additional insight beyond these current standards to quickly evaluate spline coupling designs.

  11. Analytic evaluation of the dipole Hessian matrix in coupled-cluster theory

    NASA Astrophysics Data System (ADS)

    Jagau, Thomas-C.; Gauss, Jürgen; Ruud, Kenneth

    2013-10-01

    The general theory required for the calculation of analytic third energy derivatives at the coupled-cluster level of theory is presented and connected to preceding special formulations for hyperpolarizabilities and polarizability gradients. Based on our theory, we have implemented a scheme for calculating the dipole Hessian matrix in a fully analytical manner within the coupled-cluster singles and doubles approximation. The dipole Hessian matrix is the second geometrical derivative of the dipole moment and thus a third derivative of the energy. It plays a crucial role in IR spectroscopy when taking into account anharmonic effects and is also essential for computing vibrational corrections to dipole moments. The superior accuracy of the analytic evaluation of third energy derivatives as compared to numerical differentiation schemes is demonstrated in some pilot calculations.

  12. Humidity and aggregate content correction factors for air-coupled ultrasonic evaluation of concrete.

    PubMed

    Berriman, J; Purnell, P; Hutchins, D A; Neild, A

    2005-02-01

    This paper describes the use of non-contact ultrasound for the evaluation of concrete. Micromachined capacitance transducers are used to transmit ultrasonic longitudinal chirp signals through concrete samples using air as the coupling medium, and a pulse compression technique is then employed for measurement of time of flight through the sample. The effect on the ultrasonic wave speed of storing concrete samples, made with the same water/cement ratio, at different humidity levels is investigated. It is shown that there is a correlation between humidity and speed of sound, allowing a correction factor for humidity to be derived. A strong positive linear correlation between aggregate content and speed of sound was then observed; there was no obvious correlation between compressive strength and speed of sound. The results from the non-contact system are compared with that from a contact system, and conclusions drawn concerning coupling of energy into the samples.

  13. [Chromosomal evaluation in couples with reproductive disorders--retrospective study of a selected group of 266 couples].

    PubMed

    Butnariu, Lăcrămioara; Covic, M; Onofriescu, M; Grămescu, Mihaela; Bujoran, C; Caba, Lavinia; Gorduza, E V

    2010-01-01

    Reproductive Disorders (RD), manifested by the biological inability to conceive (primary sterility) or inability to carry a pregnancy to full-term (infertility), affect 10-15% of reproductive-aged couples. The genetic etiology of RD is represented, in the majority of cases, by the chromosomal abnormalities. To retrospectively analyze the karyotype results in a selected group of couples with RD. The present study was performed in 266 couples with RD: 80 (30.07%) with primary sterility (ST), 149 (56.01%) with Recurrent Spontaneous Abortions (RSA) and 37 (13.90%) with Stillborn Children (SC). A GTG-banded karyotype was performed on both partners of each couple. We identified a chromosomal abnormality in 43 individuals (16.16%): 20 cases (7.51%) with ST, 13 cases (4.88%) with RSA and 10 cases (3.75%) with SC. The affected partner was female in 23 cases (8.64%) and male in 20 cases (7.51%). A X chromosome (numerical or structural) abnormality was detected in 18 cases (6.76%), most frequent X chromosome monosomy mosaicism in female and trisomy XXY in male; a balanced structural chromosomal abnormality (BSC) was detected in 23 couples (8.64%); in other two males with ST, the karyotype result was 46,XX. The results of our study are similar to other reported studies and underline the major etiologic role of chromosomal abnormalities in RD and the importance of chromosomal analysis for the etiologic diagnosis and genetic counseling of these patients.

  14. Refining multi-model projections of temperature extremes by evaluation against land-atmosphere coupling diagnostics

    NASA Astrophysics Data System (ADS)

    Sippel, Sebastian; Zscheischler, Jakob; Mahecha, Miguel D.; Orth, Rene; Reichstein, Markus; Vogel, Martha; Seneviratne, Sonia I.

    2017-05-01

    and present-day climate extremes are affected to a lesser extent by the applied constraint, i.e. projected changes are reduced locally by around 0.5 to 1 °C - but this remains a local effect in regions that are highly sensitive to land-atmosphere coupling. In summary, our approach offers a physically consistent, diagnostic-based avenue to evaluate multi-model ensembles and subsequently reduce model biases in simulated and projected extreme temperatures.

  15. Alcohol-Focused Spouse Involvement and Behavioral Couples Therapy: Evaluation of Enhancements to Drinking Reduction Treatment for Male Problem Drinkers

    ERIC Educational Resources Information Center

    Walitzer, Kimberly S.; Dermen, Kurt H.

    2004-01-01

    This study evaluated the effects of alcohol-focused spouse involvement and behavioral couples therapy (BCT) in group drinking reduction treatment for male problem drinkers. Sixty-four male clients and their female partners were randomly assigned to 1 of 3 conditions: treatment for problem drinkers only (PDO), couples alcohol-focused treatment, or…

  16. Development of polypropylene/wood flour ecocomposites. Evaluation of silane as coupling agent

    SciTech Connect

    Bouza, R.; Barral, L.; Abad, M. J.; Montero, B.

    2010-06-02

    The effects of Pinus Sylvestris wood flour as filler in polypropylene matrix was evaluated. The mechanical properties and the morphology of different wood flour/polypropylene composites (WPC) were studied. The composites materials were prepared with several amounts of wood flour from 10 to 30% wt. Mechanical properties show that the wood flour incorporation increases the rigidity of the composites. Morphological analysis indicates that agglomerates are formed, with amounts exceeding 30% of wood flour. For the silane--treated composites, the dispersion of the filler into the polypropylene (PP) matrix improved. Shore D hardness of the composites is decreased with the addition of the coupling agent.

  17. Using Coupled Energy, Airflow and IAQ Software (TRNSYS/CONTAM) to Evaluate Building Ventilation Strategies

    PubMed Central

    Dols, W. Stuart.; Emmerich, Steven J.; Polidoro, Brian J.

    2016-01-01

    Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. Practical Application CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will

  18. Development of polypropylene/wood flour ecocomposites. Evaluation of silane as coupling agent

    NASA Astrophysics Data System (ADS)

    Bouza, R.; Barral, L.; Abad, M. J.; Montero, B.

    2010-06-01

    The effects of Pinus Sylvestris wood flour as filler in polypropylene matrix was evaluated. The mechanical properties and the morphology of different wood flour/polypropylene composites (WPC) were studied. The composites materials were prepared with several amounts of wood flour from 10 to 30% wt. Mechanical properties show that the wood flour incorporation increases the rigidity of the composites. Morphological analysis indicates that agglomerates are formed, with amounts exceeding 30% of wood flour. For the silane—treated composites, the dispersion of the filler into the polypropylene (PP) matrix improved. Shore D hardness of the composites is decreased with the addition of the coupling agent.

  19. Using Coupled Energy, Airflow and IAQ Software (TRNSYS/CONTAM) to Evaluate Building Ventilation Strategies.

    PubMed

    Dols, W Stuart; Emmerich, Steven J; Polidoro, Brian J

    2016-03-01

    Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will enable users to apply the

  20. Evaluation of Wave-Dependent Surface Roughness Parameterization Using a Coupled Atmosphere-Wave Model

    NASA Astrophysics Data System (ADS)

    Kim, T.

    2016-02-01

    The coupling of waves to the atmosphere is an obvious and necessary step toward a unified approach in order to improve the description of the atmospheric boundary layer and the forecast of ocean waves. There have been a number of studies on the effect of surface waves on air-sea transfer process, especially at high winds over the sea such as typhoons and hurricanes. Although an air-sea coupling in tropical cyclones is useful for improving model intensity forecasts, the wave-dependent surface parameterization at the air-sea interface has a strong influence on tropical cyclone structure and intensity. In this study, several wave-dependent surface roughness parameterizations are evaluated, and sensitivity of tropical cyclone simulations to the parameterizations is examined using a coupled atmosphere-wave model. The sea surface roughness estimated by several parameterizations may lead to the significant difference on both wave fields and typhoon intensity. A change of drag coefficients due to the roughness parameterizations makes the change of typhoon intensity because of frictional convergence changes, which results in alteration of wind fields, and then wave fields. Further details will be presented in the conference.

  1. Evaluation on Hope and Psychological Symptoms in Infertile Couples Undergoing Assisted Reproduction Treatment.

    PubMed

    Omani Samani, Reza; Vesali, Samira; Navid, Behnaz; Vakiliniya, Bahareh; Mohammadi, Maryam

    2017-01-01

    This study evaluated hope, depression, anxiety, and stress among three groups of infertile couples. This cross-sectional study consisted of three groups of infertile couples-candidates for oocyte donation (n=60), embryo donation (n=60), and normal infertile (n=60). Participants included couples seen at Royan Institute, Tehran, Iran between 2013-2014 who were at least 18 years of age and could read and write in Persian. Participants provided demographic and general characteristics and completed the Persian version of the Adult Trait Hope Scale (hope, agency and pathway) and Depression, Anxiety, and Stress Scale (DASS). Data was analyzed by the paired t test, ANOVA, ANCOVA and Pearson correlation tests using SPSS statistical software. Overall, 180 infertile couples participated in the three groups. There was a significant higher mean score for hope in husbands compared to wives in the normal infertile group (P=0.046). Husbands in the normal infertile group also had a significantly higher mean score for pathway (P=0.032). The frequency of anxiety significantly differed in female subjects (P=0.028). In the normal infertile group, the anxiety distribution significantly differed between wives and husbands (P=0.006). There was a significantly different stress frequency in male subjects (P=0.048). In the embryo donation group, stress significantly differed between wives and husbands (P=0.002). In the normal infertile group, stress also significantly differed between wives and husbands (P=0.05). The results have suggested that hope might be important in reducing psychological symptoms and psychological adjustment in those exposed to infertility problems who follow medical recommendations, which accelerates recovery. It is recommended to hold psychological counseling sessions (hope therapy) during reproduction cycles.

  2. Evaluation of Phase-Amplitude Coupling in Resting State Magnetoencephalographic Signals: Effect of Surrogates and Evaluation Approach

    PubMed Central

    Gohel, Bakul; Lim, Sanghyun; Kim, Min-Young; An, Kyung-min; Kim, Ji-Eun; Kwon, Hyukchan; Kim, Kiwoong

    2016-01-01

    Phase-amplitude coupling (PAC) plays an important role in neural communication and computation. Interestingly, recent studies have indicated the presence of ubiquitous PAC phenomenon even during the resting state. Despite the importance of PAC phenomenon, estimation of significant physiological PAC is challenging because of the lack of appropriate surrogate measures to control false positives caused by non-physiological PAC. Therefore, in the present study, we evaluated PAC phenomenon during resting-state magnetoencephalography (MEG) signal and considered various surrogate measures and computational approaches widely used in the literature in addition to proposing new ones. We evaluated PAC phenomenon over the entire length of the MEG signal and for multiple shorter time segments. The results indicate that the extent of PAC phenomenon mainly depends on the surrogate measures and PAC computational methods used, as well as the evaluation approach. After a careful and critical evaluation, we found that resting-state MEG signals failed to exhibit ubiquitous PAC phenomenon, contrary to what has been suggested previously. PMID:27932971

  3. Numerical simulation and evaluation of a new hydrological model coupled with GRAPES

    NASA Astrophysics Data System (ADS)

    Zheng, Ziyan; Zhang, Wanchang; Xu, Jingwen; Zhao, Linna; Chen, Jing; Yan, Zhongwei

    2012-10-01

    Hydrological processes exert enormous influences on the land surface water and energy balance, and have a close relationship with human society. We have developed a new hydrological runoff parameterization called XXT to improve the performance of a coupled land surface-atmosphere modeling system. The XXT parameterization, which is based upon the Xinanjiang hydrological model and TOPMODEL, includes an optimized function of runoff calculation with a new soil moisture storage capacity distribution curve (SMSCC). We then couple XXT with the Global/Regional Assimilation Prediction System (GRAPES) and compare it to GRAPES coupled with a simple water balance model (SWB). For the model evaluation and comparison, we perform 72-h online simulations using GRAPES-XXT and GRAPES-SWB during two torrential events in August 2007 and July 2008, respectively. The results show that GRAPES can reproduce the rainfall distribution and intensity fairly well in both cases. Differences in the representation of feedback processes between surface hydrology and the atmosphere result in differences in the distributions and amounts of precipitation simulated by GRAPES-XXT and GRAPES-SWB. The runoff simulations are greatly improved by the use of XXT in place of SWB, particularly with respect to the distribution and amount of runoff. The average runoff depth is nearly doubled in the rainbelt area, and unreasonable runoff distributions simulated by GRAPES-SWB are made more realistic by the introduction of XXT. Differences in surface soil moisture between GRAPES-XXT and GRAPES-SWB show that the XXT model changes infiltration and increases surface runoff. We also evaluate river flood discharge in the Yishu River basin. The peak values of flood discharge calculated from the output of GRAPES-XXT agree more closely with observations than those calculated from the output of GRAPES-SWB.

  4. Regional effects of atmospheric aerosols on temperature: an evaluation of an ensemble of online coupled models

    NASA Astrophysics Data System (ADS)

    Baró, Rocío; Palacios-Peña, Laura; Baklanov, Alexander; Balzarini, Alessandra; Brunner, Dominik; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Pérez, Juan Luis; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela; Jiménez-Guerrero, Pedro

    2017-08-01

    The climate effect of atmospheric aerosols is associated with their influence on the radiative budget of the Earth due to the direct aerosol-radiation interactions (ARIs) and indirect effects, resulting from aerosol-cloud-radiation interactions (ACIs). Online coupled meteorology-chemistry models permit the description of these effects on the basis of simulated atmospheric aerosol concentrations, although there is still some uncertainty associated with the use of these models. Thus, the objective of this work is to assess whether the inclusion of atmospheric aerosol radiative feedbacks of an ensemble of online coupled models improves the simulation results for maximum, mean and minimum temperature at 2 m over Europe. The evaluated models outputs originate from EuMetChem COST Action ES1004 simulations for Europe, differing in the inclusion (or omission) of ARI and ACI in the various models. The cases studies cover two important atmospheric aerosol episodes over Europe in the year 2010: (i) a heat wave event and a forest fire episode (July-August 2010) and (ii) a more humid episode including a Saharan desert dust outbreak in October 2010. The simulation results are evaluated against observational data from the E-OBS gridded database. The results indicate that, although there is only a slight improvement in the bias of the simulation results when including the radiative feedbacks, the spatiotemporal variability and correlation coefficients are improved for the cases under study when atmospheric aerosol radiative effects are included.

  5. A pilot evaluation of the efficacy of a couple-tailored print intervention on colorectal cancer screening practices among non-adherent couples

    PubMed Central

    Manne, Sharon L.; Kashy, Deborah A.; Weinberg, David S.; Boscarino, Joseph A.; Bowen, Deborah J.; Worhach, Sara

    2013-01-01

    The objective of this study was to evaluate the efficacy of a couple-tailored print intervention on colorectal cancer screening (CRCS), CRCS intentions and on knowledge and attitudes among couples in which neither partner is on schedule with regard to CRCS. A total of 168 married couples with both members non-adherent with CRCS were randomly assigned to receive either a couple-tailored print (CTP) pamphlet accompanied by a generic print pamphlet or a generic print pamphlet only (GP). Couples completed measures of CRCS, intentions, relational perspective on CRCS, discussions about CRCS, spouse support for CRCS, spouse influence strategies, CRC knowledge, perceived CRC risk, and CRCS benefits and barriers. Results indicated there was no significant benefit of CTP versus GP on CRCS, but there was a significant increase in CRCS intentions in CTP compared to GP. There was also a significant increase in relationship perspective on CRCS, a significant increase in husbands’ support of their wives’ CRCS, and a significant increase in CRCS benefits in CTP. In summary, CTP did not increase CRCS practices but increased intentions and perceived benefits of CRCS as well as improving couples’ ability to view CRCS as having benefit for the marital relationship. PMID:23570567

  6. A pilot evaluation of the efficacy of a couple-tailored print intervention on colorectal cancer screening practices among non-adherent couples.

    PubMed

    Manne, Sharon L; Kashy, Deborah A; Weinberg, David S; Boscarino, Joseph A; Bowen, Deborah J; Worhach, Sara

    2013-01-01

    The objective of this study was to evaluate the efficacy of a couple-tailored print (CTP) intervention on colorectal cancer screening (CRCS), CRCS intentions, and on knowledge and attitudes among couples in which neither partner is on schedule with regard to CRCS. A total of 168 married couples with both members non-adherent with CRCS were randomly assigned to receive either a CTP pamphlet accompanied by a generic print (GP) pamphlet or a GP pamphlet only. Couples completed measures of CRCS, intentions, relational perspective on CRCS, discussions about CRCS, spouse support for CRCS, spouse influence strategies, CRC knowledge, perceived CRC risk, and CRCS benefits and barriers. Results indicated there was no significant benefit of CTP vs. GP on CRCS, but there was a significant increase in CRCS intentions in CTP compared with GP. There was also a significant increase in relationship perspective on CRCS, a significant increase in husbands' support of their wives' CRCS, and a significant increase in CRCS benefits in CTP. In summary, CTP did not increase CRCS practices but increased intentions and perceived benefits of CRCS as well as improving couples' ability to view CRCS as having benefit for the marital relationship.

  7. An evaluation of a coupled atmosphere-ocean modelling system for regional climate studies: extreme events in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Mooney, Priscilla A.; Mulligan, Frank J.

    2013-04-01

    We investigate the ability of a coupled regional atmosphere-ocean modelling system to simulate two extreme events in the North Atlantic. In this study we use the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner et al.) modelling system with only the atmosphere and ocean models activated. COAWST couples the atmosphere model (Weather Research and Forecasting model; WRF) to the ocean model (Regional Ocean Modelling System; ROMS) with the Model Coupling Toolkit. Results from the coupled system are compared with atmosphere only simulations of North Atlantic storms to evaluate the performance of the coupled modelling system. Two extreme events (Hurricane Katia and Hurricane Irene) were chosen to assess the level of improvement (or otherwise) arising from coupling WRF with ROMS. These two hurricanes involve different dynamics and present different challenges to the modeling system. This provides a robust assessment of the advantages or disadvantages of coupling WRF with ROMS for regional climate modelling studies of extreme events in the North Atlantic. We examine the ability of the coupled modelling system to simulate these two extreme events by comparing modelled storm tracks, storm intensities, wind speeds and sea surface temperatures with observations in all cases. The effect of domain size, and two different planetary boundary layers used in WRF are also reported.

  8. Magnetoelastic coupling in multilayered ferroelectric/ferromagnetic thin films: A quantitative evaluation

    NASA Astrophysics Data System (ADS)

    Chiolerio, A.; Quaglio, M.; Lamberti, A.; Celegato, F.; Balma, D.; Allia, P.

    2012-08-01

    The electrical control of magnetization in a thin film, achieved by means of magnetoelastic coupling between a ferroelectric and a ferromagnetic layer represents an attractive way to implement magnetic information storage and processing within logical architectures known as Magnetic Quantum Cellular Automata (MQCA). Such systems have been addressed as multiferroics. We exploited cost-effective techniques to realize multi-layered multiferroic systems, such as sol-gel deposition and RF sputtering, introducing a specific technique to control the crystal structure and film roughness effect on the magnetic domain wall motion and reconfiguration, induced by magnetoelastic coupling, by evaluating the 2-dimensional statistical properties of enhanced MFM matrices. A RF sputtered 50-nm-thick Co layer on a Si/SiO2/Si3N4/Ti/Pt/PbTiO3/Pb(Zr0.53Ti0.47)O3 substrate was realized, exploiting two differently engineered PZT nano-crystalline structures and the conditions leading to a favorable compromise in order to realize functional devices were elucidated.

  9. Air-coupled acoustic method for testing and evaluation of microscale structures.

    PubMed

    Ricci, Justin; Cetinkaya, Cetin

    2007-05-01

    A noncontact testing and characterization approach for microscale structures based on air-coupled acoustic excitation and optical sensing is proposed and demonstrated. Using an air-coupled transducer to externally excite and a laser Doppler vibrometer/interferometer to capture transient displacement wave forms, the experimental approach results in a technique to determine mechanical properties of microscale structural elements. The effectiveness of this method has been demonstrated on commercially available microcantilever beams and microscale rotational oscillators fabricated for this study. The resonance frequencies and mechanical properties (Young's modulus and stiffness) extracted from the transient displacement wave forms have been compared, with good agreement, to computational and simplified analytical models for each case. It is also shown that the technique could serve to diagnose stiction problems of microscale structures. Some potential advantages of the approach described include the simplicity of the test setup, functionality at room conditions, noncontact and nondestructive operations, and repeatability and rapid turn-around time for the evaluation of modal parameters and mechanical properties of microscale structures.

  10. Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.

    PubMed

    Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo

    2010-06-01

    A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads.

  11. A Satellite Emulator for Evaluating Sea Ice Volume in Coupled Earth System Models

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Bench, K.; Maslowski, W.; Farrell, S. L.

    2016-12-01

    We introduce a method for evaluating monthly to decadal sea ice volume in coupled earth system models using freeboard measurements from individual ground tracks from ICESat, Operation IceBridge (OIB), CryoSat-2, and ICESat-2. There are three facets to this work. First, spatiotemporal disparities between model grid cells and track-wise satellite observations have been overcome by exploiting scaling relationships we have discovered in freeboard measurements from ICESat and OIB. Second, we evaluate sea ice model freeboard, rather than ice thickness, to remove sources of observational error associated with snow thickness, as well as ice, snow and seawater density. We also improve the comparison of modeled and observed freeboard by exploiting accompanying research that quantifies an isostatic length scale and variable porosity of ridges in a new sea ice model ridging parameterization. Finally, we have developed a metric to quantify model skill and bias with accompanying statistical significance that indicates the contribution of both ice and snow thickness to differences between modeled and observed freeboard. A version of this `satellite emulator' is used to evaluate sea ice volume in a suite of simulations from the Regional Arctic System Model (RASM) for the entire ICESat campaign, and we present plans to make this satellite emulator available in a community sea ice code for use with ICESat-2 data from 2018 onwards.

  12. Annual Application and Evaluation of the Online Coupled WRF‐CMAQ System over North America under AQMEII Phase 2

    EPA Science Inventory

    We present an application of the online coupled WRF-CMAQ modeling system to two annual simulations over North America performed under Phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII). Operational evaluation shows that model performance is comparable t...

  13. Annual Application and Evaluation of the Online Coupled WRF‐CMAQ System over North America under AQMEII Phase 2

    EPA Science Inventory

    We present an application of the online coupled WRF-CMAQ modeling system to two annual simulations over North America performed under Phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII). Operational evaluation shows that model performance is comparable t...

  14. Waterless Coupling of Ultrasound from Planar Contact Transducers to Curved and Irregular Surfaces during Non-destructive Ultrasonic Evaluations

    SciTech Connect

    Denslow, Kayte M.; Diaz, Aaron A.; Jones, Anthony M.; Meyer, Ryan M.; Cinson, Anthony D.; Wells, Mondell D.

    2012-04-30

    The Applied Physics group at the Pacific The Applied Physics group at the Pacific Northwest National Laboratory (PNNL) in Richland, WA has evaluated a method for waterless/liquidless coupling of ultrasonic energy from planar ultrasonic contact transducers to irregular test surfaces for ultrasonic non-destructive evaluation applications. Dry couplant material placed between a planar transducer face and a curved or uneven steel or plastic surface allows for effective sound energy coupling and preserves the integrity of the planar transducer sound field by serving as an acoustic impedance matching layer, providing good surface area contact between geometrically dissimilar surfaces and conforming to rough and unsmooth surfaces. Sound fields radiating from planar ultrasonic contact transducers coupled to curved and uneven surfaces using the dry coupling method were scanned and mapped using a Pinducer receiver connected to a raster scanner. Transducer sound field coverage at several ultrasonic frequencies and several distances from the transducer contact locations were found to be in good agreement with theoretical beam divergence and sound field coverage predictions for planar transducers coupled to simple, planar surfaces. This method is valuable for applications that do not allow for the use of traditional liquid-based ultrasonic couplants due to the sensitivity of the test materials to liquids and for applications that might otherwise require curved transducers or custom coupling wedges. The selection of dry coupling material is reported along with the results of theoretical sound field predictions, the laboratory testing apparatus and the empirical sound field data.

  15. Waterless coupling of ultrasound from planar contact transducers to curved and irregular surfaces during non-destructive ultrasonic evaluations

    NASA Astrophysics Data System (ADS)

    Denslow, Kayte; Diaz, Aaron; Jones, Mark; Meyer, Ryan; Cinson, Anthony; Wells, Mondell

    2012-04-01

    The Applied Physics group at the Pacific Northwest National Laboratory (PNNL) in Richland, WA has evaluated a method for waterless/liquidless coupling of ultrasonic energy from planar ultrasonic contact transducers to irregular test surfaces for ultrasonic non-destructive evaluation applications. Dry couplant material placed between a planar transducer face and a curved or uneven steel or plastic surface allows for effective sound energy coupling and preserves the integrity of the planar transducer sound field by serving as an acoustic impedance matching layer, providing good surface area contact between geometrically dissimilar surfaces and conforming to rough and unsmooth surfaces. Sound fields radiating from planar ultrasonic contact transducers coupled to curved and uneven surfaces using the dry coupling method were scanned and mapped using a Pinducer receiver connected to a raster scanner. Transducer sound field coverage at several ultrasonic frequencies and several distances from the transducer contact locations were found to be in good agreement with theoretical beam divergence and sound field coverage predictions for planar transducers coupled to simple, planar surfaces. This method is valuable for applications that do not allow for the use of traditional liquid-based ultrasonic couplants due to the sensitivity of the test materials to liquids and for applications that might otherwise require curved transducers or custom coupling wedges. The selection of dry coupling material is reported along with the results of theoretical sound field predictions, the laboratory testing apparatus and the empirical sound field data.

  16. Quality evaluation of moluodan concentrated pill using high-performance liquid chromatography fingerprinting coupled with chemometrics.

    PubMed

    Tao, Lingyan; Zhang, Qing; Wu, Yongjiang; Liu, Xuesong

    2016-12-01

    In this study, a fast and effective high-performance liquid chromatography method was developed to obtain a fingerprint chromatogram and quantitative analysis simultaneously of four indexes including gallic acid, chlorogenic acid, albiflorin and paeoniflorin of the traditional Chinese medicine Moluodan Concentrated Pill. The method was performed by using a Waters X-bridge C18 reversed phase column on an Agilent 1200S high-performance liquid chromatography system coupled with diode array detection. The mobile phase of the high-performance liquid chromatography method was composed of 20 mmol/L phosphate solution and acetonitrile with a 1 mL/min eluent velocity, under a detection temperature of 30°C and a UV detection wavelength of 254 nm. After the methodology validation, 16 batches of Moluodan Concentrated Pill were analyzed by this high-performance liquid chromatography method and both qualitative and quantitative evaluation results were achieved by similarity analysis, principal component analysis and hierarchical cluster analysis. The results of these three chemometrics were in good agreement and all indicated that batch 10 and batch 16 showed significant differences with the other 14 batches. This suggested that the developed high-performance liquid chromatography method could be applied in the quality evaluation of Moluodan Concentrated Pill.

  17. Communication: spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme.

    PubMed

    Datta, Dipayan; Gauss, Jürgen

    2015-07-07

    We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and MS = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating the analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH2CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.

  18. Evaluation of an 18-couple module composed of improved performance SiGe unicouples

    SciTech Connect

    Kelly, C.E.; Klee, P.M.; Nakahara, J.F.; Hartman, R.F.

    1995-12-31

    Radioisotope Thermoelectric Generators (RTGs) have played a major role in providing spacecraft electrical power for interplanetary exploration. Silicon Germanium alloys are the thermoelectric material employed in RTGs. Over the past several years a number of investigations have reported improvements in the figure of merit of these alloys. These improvements are attractive to mission planners because they result in enhanced RTG specific power (watts/lb) and improved efficiency which leads to lower fuel costs. This paper describes the fabrication and testing of an 18-couple module device utilizing unicouples with improved SiGe alloys. The unicouples were fabricated using materials with over a 10% improvement in the 573 to 1,273 K integrated average figure-of-merit over Cassini materials. The p-type material was fabricated by the standard vacuum casting and hot pressing method while the n-type material containing GaP was fabricated by a new method of mechanical alloying and hot isostatic pressing. The unicouples were fabricated in a similar fashion to standard unicouples except that the thermoelectric materials were bonded to the SiMo hot shoe in two thermal cycles due to the disparity of the melting points. A sufficient quantity of unicouples was fabricated to assemble an 18-couple module to evaluate the thermoelectric performance of the improved SiGe materials. The module was brought up to operating temperature following the same heatup rate as previous modules. The module was stabilized at a hot shoe temperature of 1,308 K. Initial performance was compared to the established SiGe database and found to show no improvement thermally or electrically.

  19. Evaluation of event position reconstruction in monolithic crystals that are optically coupled.

    PubMed

    Morrocchi, M; Hunter, W C J; Del Guerra, A; Lewellen, T K; Kinahan, P E; MacDonald, L R; Bisogni, M G; Miyaoka, R S

    2016-12-07

    A PET detector featuring a pseudo-monolithic crystal is being developed as a more cost-effective alternative to a full monolithic crystal PET detector. This work evaluates different methods to localize the scintillation events in quartered monolithic crystals that are optically coupled. A semi-monolithic crystal assembly was formed using four 26  ×  26  ×  10 mm(3) LYSO crystals optically coupled together using optical adhesive, to mimic a 52  ×  52  ×  10 mm(3) monolithic crystal detector. The crystal assembly was coupled to a 64-channel multi-anode photomultiplier tube using silicon grease. The detector was calibrated using a 34  ×  34 scan grid. Events were first filtered and depth separated using a multi-Lorentzian fit to the collected light distribution. Next, three different techniques were explored to generate the look up tables for the event positioning. The first technique was 'standard interpolation' across the interface. The second technique was 'central extrapolation', where a bin was placed at the midpoint of the interface and events positioned within the interface region were discarded. The third technique used a 'central overlap' method where an extended region was extrapolated at each interface. Events were then positioned using least-squares minimization and maximum likelihood methods. The least-squares minimization applied to the look up table generated with the standard interpolation technique had the best full width at half maximum (FWHM) intrinsic spatial resolution and the lowest bias. However, there were discontinuities in the event positioning that would most likely lead to artifacts in the reconstructed image. The central extrapolation technique also had discontinuities and a 30% sensitivity loss near the crystal-crystal interfaces. The central overlap technique had slightly degraded performance metrics, but it still provided ~2.1 mm intrinsic spatial resolution at the crystal

  20. Evaluating Approaches to a Coupled Model for Arctic Coastal Erosion, Infrastructure Risk, and Associated Coastal Hazards

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Bull, D. L.; Jones, C.; Roberts, J.; Thomas, M. A.

    2016-12-01

    Arctic coastlines are receding at accelerated rates, putting existing and future activities in the developing coastal Arctic environment at extreme risk. For example, at Oliktok Long Range Radar Site, erosion that was not expected until 2040 was reached as of 2014 (Alaska Public Media). As the Arctic Ocean becomes increasingly ice-free, rates of coastal erosion will likely continue to increase as (a) increased ice-free waters generate larger waves, (b) sea levels rise, and (c) coastal permafrost soils warm and lose strength/cohesion. Due to the complex and rapidly varying nature of the Arctic region, little is known about the increasing waves, changing circulation, permafrost soil degradation, and the response of the coastline to changes in these combined conditions. However, as scientific focus has been shifting towards the polar regions, Arctic science is rapidly advancing, increasing our understanding of complex Arctic processes. Our present understanding allows us to begin to develop and evaluate the coupled models necessary for the prediction of coastal erosion in support of Arctic risk assessments. What are the best steps towards the development of a coupled model for Arctic coastal erosion? This work focuses on our current understanding of Arctic conditions and identifying the tools and methods required to develop an integrated framework capable of accurately predicting Arctic coastline erosion and assessing coastal risk and hazards. We will present a summary of the state-of-the-science, and identify existing tools and methods required to develop an integrated diagnostic and monitoring framework capable of accurately predicting and assessing Arctic coastline erosion, infrastructure risk, and coastal hazards. The summary will describe the key coastal processes to simulate, appropriate models to use, effective methods to couple existing models, and identify gaps in knowledge that require further attention to make progress in our understanding of Arctic coastal

  1. Evaluation of event position reconstruction in monolithic crystals that are optically coupled

    NASA Astrophysics Data System (ADS)

    Morrocchi, M.; Hunter, W. C. J.; Del Guerra, A.; Lewellen, T. K.; Kinahan, P. E.; MacDonald, L. R.; Bisogni, M. G.; Miyaoka, R. S.

    2016-12-01

    A PET detector featuring a pseudo-monolithic crystal is being developed as a more cost-effective alternative to a full monolithic crystal PET detector. This work evaluates different methods to localize the scintillation events in quartered monolithic crystals that are optically coupled. A semi-monolithic crystal assembly was formed using four 26  ×  26  ×  10 mm3 LYSO crystals optically coupled together using optical adhesive, to mimic a 52  ×  52  ×  10 mm3 monolithic crystal detector. The crystal assembly was coupled to a 64-channel multi-anode photomultiplier tube using silicon grease. The detector was calibrated using a 34  ×  34 scan grid. Events were first filtered and depth separated using a multi-Lorentzian fit to the collected light distribution. Next, three different techniques were explored to generate the look up tables for the event positioning. The first technique was ‘standard interpolation’ across the interface. The second technique was ‘central extrapolation’, where a bin was placed at the midpoint of the interface and events positioned within the interface region were discarded. The third technique used a ‘central overlap’ method where an extended region was extrapolated at each interface. Events were then positioned using least-squares minimization and maximum likelihood methods. The least-squares minimization applied to the look up table generated with the standard interpolation technique had the best full width at half maximum (FWHM) intrinsic spatial resolution and the lowest bias. However, there were discontinuities in the event positioning that would most likely lead to artifacts in the reconstructed image. The central extrapolation technique also had discontinuities and a 30% sensitivity loss near the crystal-crystal interfaces. The central overlap technique had slightly degraded performance metrics, but it still provided ~2.1 mm intrinsic spatial resolution at the crystal

  2. Observational Evaluation of Simulated Land-Atmosphere Coupling on the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Phillips, T. J.; Klein, S. A.

    2014-12-01

    In a recent study of observed features of land-atmosphere coupling (LAC) at the ARM Southern Great Plains (ARM SGP) site in northern Oklahoma (Phillips and Klein, 2014 Journal of Geophysical Research), we identified statistically significant interactions between 1997-2008 summertime daily averages of soil moisture (at 10 cm depth) and a number of surface atmospheric variables, such as surface evaporation, relative humidity, and temperature. Here we will report on an evaluation of similar features of LAC simulated by version 5 of the global Community Atmosphere Model (CAM5), coupled to its native CLM4 land model, and downscaled to the vicinity of the ARM SGP site. In these case studies, the CAM5 was initialized from a 6-hourly atmospheric reanalysis for each day of the years 2008 and 2009 (where the CLM4 land state was equilibrated to the atmospheric model state), thus permitting a close comparison of the modeled and observed summer daily average features of the LAC in these years. Correlation coefficients R and "sensitivity indices" I (a measure of the comparative change of an atmospheric variable for a one-standard-deviation change in soil moisture) provided quantitative measures of the respective coupling strengths. Such a comparison of observed versus modeled LAC is complicated by differences in atmospheric forcings of the land; for example, the CAM5's summertime precipitation is too scant, and thus the model's upper soil layer often is drier than observed. The modeled daily average covariations of soil moisture with lower atmospheric variables also display less coherence (lower R values), but sometimes greater "sensitivity" (higher I values) than are observed at the ARM SGP site. Since the observational estimate of LAC may itself be sensitive to soil moisture measurement biases, we also will report on a planned investigation of the dependence of LAC on several alternative choices of soil moisture data sets local to the ARM SGP site. AcknowledgmentsThis work was

  3. A Modeling Approach for Evaluating the Coupled Riparian Vegetation-Geomorphic Response to Altered Flow Regimes

    NASA Astrophysics Data System (ADS)

    Manners, R.; Wilcox, A. C.; Merritt, D. M.

    2016-12-01

    The ecogeomorphic response of riparian ecosystems to a change in hydrologic properties is difficult to predict because of the interactions and feedbacks among plants, water, and sediment. Most riparian models of community dynamics assume a static channel, yet geomorphic processes strongly control the establishment and survival of riparian vegetation. Using a combination of approaches that includes empirical relationships and hydrodynamic models, we model the coupled vegetation-topographic response of three cross-sections on the Yampa and Green Rivers in Dinosaur National Monument, to a shift in the flow regime. The locations represent the variable geomorphology and vegetation composition of these canyon-bound rivers. We account for the inundation and hydraulic properties of vegetation plots surveyed over three years within International River Interface Cooperative (iRIC) Fastmech, equipped with a vegetation module that accounts for flexible stems and plant reconfiguration. The presence of functional groupings of plants, or those plants that respond similarly to environmental factors such as water availability and disturbance are determined from flow response curves developed for the Yampa River. Using field measurements of vegetation morphology, distance from the channel centerline, and dominant particle size and modeled inundation properties we develop an empirical relationship between these variables and topographic change. We evaluate vegetation and channel form changes over decadal timescales, allowing for the integration of processes over time. From our analyses, we identify thresholds in the flow regime that alter the distribution of plants and reduce geomorphic complexity, predominately through side-channel and backwater infilling. Simplification of some processes (e.g., empirically-derived sedimentation) and detailed treatment of others (e.g., plant-flow interactions) allows us to model the coupled dynamics of riparian ecosystems and evaluate the impact of

  4. Matrix interference evaluation employing GC and LC coupled to triple quadrupole tandem mass spectrometry.

    PubMed

    Uclés, S; Lozano, A; Sosa, A; Parrilla Vázquez, P; Valverde, A; Fernández-Alba, A R

    2017-11-01

    Gas and liquid chromatography coupled to triple quadrupole tandem mass spectrometry are currently the most powerful tools employed for the routine analysis of pesticide residues in food control laboratories. However, whatever the multiresidue extraction method, there will be a residual matrix effect making it difficult to identify/quantify some specific compounds in certain cases. Two main effects stand out: (i) co-elution with isobaric matrix interferents, which can be a major drawback for unequivocal identification, and therefore false negative detections, and (ii) signal suppression/enhancement, commonly called the "matrix effect", which may cause serious problems including inaccurate quantitation, low analyte detectability and increased method uncertainty. The aim of this analytical study is to provide a framework for evaluating the maximum expected errors associated with the matrix effects. The worst-case study contrived to give an estimation of the extreme errors caused by matrix effects when extraction/determination protocols are applied in routine multiresidue analysis. Twenty-five different blank matrices extracted with the four most common extraction methods used in routine analysis (citrate QuEChERS with/without PSA clean-up, ethyl acetate and the Dutch mini-Luke "NL" methods) were evaluated by both GC-QqQ-MS/MS and LC-QqQ-MS/MS. The results showed that the presence of matrix compounds with isobaric transitions to target pesticides was higher in GC than under LC in the experimental conditions tested. In a second study, the number of "potential" false negatives was evaluated. For that, ten matrices with higher percentages of natural interfering components were checked. Additionally, the results showed that for more than 90% of the cases, pesticide quantification was not affected by matrix-matched standard calibration when an interferent was kept constant along the calibration curve. The error in quantification depended on the concentration level. In a

  5. Genital heat stress in men of barren couples: a prospective evaluation by means of a questionnaire.

    PubMed

    Jung, A; Schill, W-B; Schuppe, H-C

    2002-12-01

    Exposure to genital heat stress among men of barren couples was evaluated in a prospective study. Five hundred and forty-two consecutive patients referred for andrological examination were asked to complete a specific questionnaire at their first visit. For 449 patients who answered all questions, the individual score values could be calculated by scoring each answer with points. Patients with 'idiopathic' oligoasthenoteratozoospermia had significantly higher score values when compared with men showing normozoospermia (P < 0.01), 'symptomatic' oligoasthenoteratozoospermia as a result of defined andrological disorders (P < 0.01), cryptozoospermia (P < 0.01) or other pathological semen profiles (P < 0.05). These data support the hypothesis that patients with 'idiopathic' oligoasthenoteratozoospermia are more exposed to genital heat stress than normozoospermic men. Moreover, in patients with a varicocele impairment semen quality was associated with significantly higher score values compared with the subgroup of men with normal semen profiles (P < 0.05). In contrast, the score values did not significantly differ between equivalent subgroups of men with a history of a retractile testis. Our observations indicate that the questionnaire used in the present study allows an integrative assessment of genital heat stress, which is superior to single factor analysis. Notably, the group of men with 'idiopathic' oligoasthenoteratozoospermia showed the highest mean score values for 10 of the 18 questions compared with the other groups. Prolonged sitting in a vehicle represented the only single factor with significantly different score values in patients with 'idiopathic' oligoasthenoteratozoospermia and those with normozoospermia (P < 0.05).

  6. Evaluation of Irrigation Physics in a Land Surface Modeling Framework and Impacts on Coupled Prediction

    NASA Astrophysics Data System (ADS)

    Lawston, P.; Santanello, J. A., Jr.

    2015-12-01

    Soil moisture controls water and energy fluxes from the land surface to the planetary boundary layer and determines plant stress and productivity. Therefore, developing a realistic representation of irrigation is critical to understanding land-atmosphere interactions in agricultural areas. Irrigation parameterizations are becoming more common in land surface models and are growing in sophistication, but there is difficulty in assessing the realism of these schemes, due to limited observations (e.g., soil moisture, evapotranspiration, etc.) and unknown timing of human practices and real world application. This study addresses some of these issues by using a high-resolution soil moisture observational product and detailed field-scale irrigation data to evaluate the following: 1) the realism of irrigation amounts and timing simulated by the sprinkler irrigation algorithm in NASA's Land Information System (LIS), 2) the irrigation water's impact on soil moisture and fluxes, and 3) the effects of realistic irrigation-induced soil moisture changes on land-atmosphere energy exchanges as simulated by the NASA-Unified WRF (NU-WRF) coupled to LIS.

  7. Evaluation of optical and chromatic properties under electrical and thermal coupling in solid state lighting systems

    NASA Astrophysics Data System (ADS)

    Fu, Han-Kuei; Peng, Yi-Ping; Wang, Chien-Ping; Chiang, Hsin-Chien; Chen, Tzung-Te; Chen, Chiu-Ling; Chou, Pei-Ting

    2013-09-01

    For energy-saving, high efficiency and low pollution, the lighting of LED systems is important for the future of green energy technology industry. The solid state lighting becomes the replacement of traditional lighting, such as, light bulbs and compact fluorescent lamps. Because of the semiconductor characteristics, the luminous efficiency of LEDs is sensitive to the operating temperature. Besides increasing the luminous efficiency, effective controlling electricity and thermal characteristics in the design of LED lighting products is the key point to achieve the best results. LED modules can be combined with multi-grain process or through a combination of multiple LED chips. Accurate analysis of this LED module for the electrical, thermal characteristics and high reliability is the critical knowledge of modular design. In this report, we studied the electrical and thermal coupling phenomenon in solid state lighting systems to analyze their reliability. By experiments and simulations, we obtained the apparent variation of temperature distribution of LED system due to differences of their forward voltages and thermal resistances. These events may reduce their reliability. Besides, the evaluation of optical and chromatic properties was based on the variation of temperature distribution and current of LED system. This is the key technology to predict the optical and chromatic properties of LED system in use.

  8. Evaluation of MPLM Design and Mission 6A Coupled Loads Analyses

    NASA Technical Reports Server (NTRS)

    Bookout, Paul S.; Ricks, Ed

    1999-01-01

    Through the development of a space shuttle payload, there are usually several coupled loads analyses (CLA) performed: preliminary design, critical design, final design and verification loads analysis (VLA). A final design CLA is the last analysis conducted prior to model delivery to the shuttle program for the VLA. The finite element models used in the final design CLA and the VLA are test verified dynamic math models. Mission 6A is the first of many flights of the Multi-Purpose Logistics Module (MPLM). The MPLM was developed by Alenia Spazio S.p.A. (an Italian aerospace company) and houses the International Standard Payload Racks (ISPR) for transportation to the space station in the shuttle. Marshall Space Flight Center (MSFC), the payload integrator of the MPLM for Mission 6A, performed the final design CLA using the M6.OZC shuttle data for liftoff and landing conditions using the proper shuttle cargo manifest. Alenia performed the preliminary and critical design CLAs for the development of the MPLM. However, these CLAs did not use the current Mission 6A cargo manifest. An evaluation of the preliminary and critical design performed by Alenia and the final design performed by MSFC is presented.

  9. Graphical Analysis of B-737 Airplane Pathloss Data for GPS and Evaluation of Coupling Mitigation Techniques

    NASA Technical Reports Server (NTRS)

    Jafri, Madiha J.; Ely, Jay J.; Vahala, Linda

    2004-01-01

    The use of Portable Electronic Devices (PEDs) onboard commercial airliners is considered to be desirable for many passengers, However, the possibility of Electromagnetic Interference (EMI) caused by these devices may affect flight safety. PEDs may act as transmitters, both intentional and unintentional, and their signals may be detected by the various navigation and communication radios onboard the aircraft. Interference Pathloss (IPL) is defined as the measurement of the radiated field coupling between passenger cabin locations and aircraft communication and navigation receivers, via their antennas. This paper first focuses on IPL measurements for GPS, taken on an out-of-service United Airlines B-737-200. IPL pattern symmetry is verified by analyzing data obtained on the windows of the Port as well as the Starboard side of the aircraft. Further graphical analysis is performed with the door and exit seams sealed with conductive tape in order to better understand the effects of shielding on IPL patterns. Shielding effects are analyzed from window data for VHF and LOC systems. In addition the shielding benefit of applying electrically conductive film to aircraft windows is evaluated for GPS and TCAS systems.

  10. Graphical Analysis of B-737 Airplane Pathloss Data for GPS and Evaluation of Coupling Mitigation Techniques

    NASA Technical Reports Server (NTRS)

    Jafri, Madiha J.; Ely, Jay J.; Vahala, Linda

    2004-01-01

    The use of Portable Electronic Devices (PEDs) onboard commercial airliners is considered to be desirable for many passengers, However, the possibility of Electromagnetic Interference (EMI) caused by these devices may affect flight safety. PEDs may act as transmitters, both intentional and unintentional, and their signals may be detected by the various navigation and communication radios onboard the aircraft. Interference Pathloss (IPL) is defined as the measurement of the radiated field coupling between passenger cabin locations and aircraft communication and navigation receivers, via their antennas. This paper first focuses on IPL measurements for GPS, taken on an out-of-service United Airlines B-737-200. IPL pattern symmetry is verified by analyzing data obtained on the windows of the Port as well as the Starboard side of the aircraft. Further graphical analysis is performed with the door and exit seams sealed with conductive tape in order to better understand the effects of shielding on IPL patterns. Shielding effects are analyzed from window data for VHF and LOC systems. In addition the shielding benefit of applying electrically conductive film to aircraft windows is evaluated for GPS and TCAS systems.

  11. Non-Destructive Evaluation of Grain Structure Using Air-Coupled Ultrasonics

    SciTech Connect

    Belvin, A. D.; Burrell, R. K.; Cole, E.G.

    2009-08-01

    Cast material has a grain structure that is relatively non-uniform. There is a desire to evaluate the grain structure of this material non-destructively. Traditionally, grain size measurement is a destructive process involving the sectioning and metallographic imaging of the material. Generally, this is performed on a representative sample on a periodic basis. Sampling is inefficient and costly. Furthermore, the resulting data may not provide an accurate description of the entire part's average grain size or grain size variation. This project is designed to develop a non-destructive acoustic scanning technique, using Chirp waveforms, to quantify average grain size and grain size variation across the surface of a cast material. A Chirp is a signal in which the frequency increases or decreases over time (frequency modulation). As a Chirp passes through a material, the material's grains reduce the signal (attenuation) by absorbing the signal energy. Geophysics research has shown a direct correlation with Chirp wave attenuation and mean grain size in geological structures. The goal of this project is to demonstrate that Chirp waveform attenuation can be used to measure grain size and grain variation in cast metals (uranium and other materials of interest). An off-axis ultrasonic inspection technique using air-coupled ultrasonics has been developed to determine grain size in cast materials. The technique gives a uniform response across the volume of the component. This technique has been demonstrated to provide generalized trends of grain variation over the samples investigated.

  12. Towards an online-coupled chemistry-climate model: evaluation of COSMO-ART

    NASA Astrophysics Data System (ADS)

    Knote, C.; Brunner, D.; Vogel, H.; Allan, J.; Asmi, A.; Äijälä, M.; Carbone, S.; van der Gon, H. D.; Jimenez, J. L.; Kiendler-Scharr, A.; Mohr, C.; Poulain, L.; Prévôt, A. S. H.; Swietlicki, E.; Vogel, B.

    2011-08-01

    The online-coupled, regional chemistry transport model COSMO-ART is evaluated for periods in all seasons against several measurement datasets to assess its ability to represent gaseous pollutants and ambient aerosol characteristics over the European domain. Measurements used in the comparison include long-term station observations, satellite and ground-based remote sensing products, and complex datasets of aerosol chemical composition and number size distribution from recent field campaigns. This is the first time these comprehensive measurements of aerosol characteristics in Europe are used to evaluate a regional chemistry transport model. We show a detailed analysis of the simulated size-resolved chemical composition under different meteorological conditions. The model is able to represent trace gas concentrations with good accuracy and reproduces bulk aerosol properties rather well though with a clear tendency to underestimate both total mass (PM10 and PM2.5) and aerosol optical depth. We find indications of an overestimation of shipping emissions. Time evolution of aerosol chemical composition is captured, although some biases are found in relative composition. Nitrate aerosol components are on average overestimated, and sulfates underestimated. The accuracy of simulated organics depends strongly on season and location. While strongly underestimated during summer, organic mass is comparable in spring and autumn. We see indications for an overestimated fractional contribution of primary organic matter in urban areas and an underestimation of SOA at many locations. Aerosol number concentrations can be simulated well, size distributions are comparable. Our work sets the basis for subsequent studies of aerosol characteristics and climate impacts with COSMO-ART, and highlights areas where improvements are necessary for current regional modeling systems in general.

  13. Evaluating Electronic Couplings for Excited State Charge Transfer Based on Maximum Occupation Method ΔSCF Quasi-Adiabatic States.

    PubMed

    Liu, Junzi; Zhang, Yong; Bao, Peng; Yi, Yuanping

    2017-02-14

    Electronic couplings of charge-transfer states with the ground state and localized excited states at the donor/acceptor interface are crucial parameters for controlling the dynamics of exciton dissociation and charge recombination processes in organic solar cells. Here we propose a quasi-adiabatic state approach to evaluate electronic couplings through combining maximum occupation method (mom)-ΔSCF and state diabatization schemes. Compared with time-dependent density functional theory (TDDFT) using global hybrid functional, mom-ΔSCF is superior to estimate the excitation energies of charge-transfer states; moreover it can also provide good excited electronic state for property calculation. Our approach is hence reliable to evaluate electronic couplings for excited state electron transfer processes, which is demonstrated by calculations on a typical organic photovoltaic system, oligothiophene/perylenediimide complex.

  14. Evaluating the representation of aerosol optical properties using an online coupled model over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Palacios-Peña, Laura; Baró, Rocío; Guerrero-Rascado, Juan Luis; Alados-Arboledas, Lucas; Brunner, Dominik; Jiménez-Guerrero, Pedro

    2017-01-01

    The effects of atmospheric aerosol particles on the Earth's climate mainly depend on their optical, microphysical and chemical properties, which modify the Earth's radiative budget. The aerosol radiative effects can be divided into direct and semi-direct effects, produced by the aerosol-radiation interactions (ARIs), and indirect effects, produced by aerosol-cloud interactions (ACIs). In this sense the objective of this work is to assess whether the inclusion of aerosol radiative feedbacks in the online coupled WRF-Chem model improves the modelling outputs over the Iberian Peninsula (IP) and surrounding water areas. For this purpose, the methodology is based on the evaluation of modelled aerosol optical properties under different simulation scenarios. The evaluated data come from two WRF-Chem simulations for the IP differing in the inclusion/no-inclusion of ARIs and ACIs (RF/NRF simulations). The case studies cover two episodes with different aerosol types over the IP in 2010, namely a Saharan dust outbreak and a forest fire episode. The evaluation uses observational data from AERONET (Aerosol Robotic Network) stations and MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, including aerosol optical depth (AOD) and Ångström exponent (AE). Experimental data of aerosol vertical distribution from the EARLINET (European Aerosol Research Lidar Network) Granada station are used for checking the models. The results indicate that for the spatial distribution the best-represented variable is AOD and the largest improvements when including the aerosol radiative feedbacks are found for the vertical distribution. In the case of the dust outbreak, a slight improvement (worsening) is produced over the areas with medium (high/low) levels of AOD(-9 % / +12 % of improvement) when including the aerosol radiative feedbacks. For the wildfire episode, improvements of AOD representation (up to 11 %) over areas further away from emission sources are estimated

  15. Synthesis of adriamycin-coupled polyglutaraldehyde microspheres and evaluation of their cytostatic activity

    NASA Technical Reports Server (NTRS)

    Tokes, Z. A.; Rogers, K. E.; Rembaum, A.

    1982-01-01

    Adriamycin was coupled to polyglutaraldehyde microspheres having an average diameter of 4500 A. The coupled microspheres remained stable during incubation with cells. Full cytostatic activity was observed when the coupled adriamycin was tested with murine or human leukemia and murine sarcoma cell lines. A 10-fold increase in sensitivity was obtained with drug-resistant human leukemia cell lines. Repeated use of the coupled microspheres in the cytostatic assays did not decrease their activity, indicating that these complexes can be recycled. The results suggest that coupled adriamycin sufficiently perturbs the plasma membrane to lead to cytostatic activity. It is proposed that this mode of drug delivery provides multiple and repetitious sites for drug-cell interactions. In addition, the drug-polymer complexes may overcome those forms of resistance that are the result of decreased drug binding at the cell surface.

  16. Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyong; Zhou, Ping; Chen, Gang; Guo, Ledong

    2014-11-01

    This study investigated the performance and potential of a hybrid model that combined the discrete wavelet transform and support vector regression (the DWT-SVR model) for daily and monthly streamflow forecasting. Three key factors of the wavelet decomposition phase (mother wavelet, decomposition level, and edge effect) were proposed to consider for improving the accuracy of the DWT-SVR model. The performance of DWT-SVR models with different combinations of these three factors was compared with the regular SVR model. The effectiveness of these models was evaluated using the root-mean-squared error (RMSE) and Nash-Sutcliffe model efficiency coefficient (NSE). Daily and monthly streamflow data observed at two stations in Indiana, United States, were used to test the forecasting skill of these models. The results demonstrated that the different hybrid models did not always outperform the SVR model for 1-day and 1-month lead time streamflow forecasting. This suggests that it is crucial to consider and compare the three key factors when using the DWT-SVR model (or other machine learning methods coupled with the wavelet transform), rather than choosing them based on personal preferences. We then combined forecasts from multiple candidate DWT-SVR models using a model averaging technique based upon Akaike's information criterion (AIC). This ensemble prediction was superior to the single best DWT-SVR model and regular SVR model for both 1-day and 1-month ahead predictions. With respect to longer lead times (i.e., 2- and 3-day and 2-month), the ensemble predictions using the AIC averaging technique were consistently better than the best DWT-SVR model and SVR model. Therefore, integrating model averaging techniques with the hybrid DWT-SVR model would be a promising approach for daily and monthly streamflow forecasting. Additionally, we strongly recommend considering these three key factors when using wavelet-based SVR models (or other wavelet-based forecasting models).

  17. Evaluation and Sensitivity Analysis of An Ensemble-based Coupled Flash Flood and Landslide Modelling System Using Remote Sensing Forcing

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Hong, Y.; Gourley, J. J.; Xue, X.; He, X.

    2015-12-01

    Heavy rainfall-triggered landslides are often associated with flood events and cause additional loss of life and property. It is pertinent to build a robust coupled flash flood and landslide disaster early warning system for disaster preparedness and hazard management based. In this study, we built an ensemble-based coupled flash flood and landslide disaster early warning system, which is aimed for operational use by the US National Weather Service, by integrating the Coupled Routing and Excess STorage (CREST) model and Sacramento Soil Moisture Accounting Model (SAC-SMA) with the physically based SLope-Infiltration-Distributed Equilibrium (SLIDE) landslide prediction model. We further evaluated this ensemble-based prototype warning system by conducting multi-year simulations driven by the Multi-Radar Multi-Sensor (MRMS) rainfall estimates in North Carolina and Oregon. We comprehensively evaluated the predictive capabilities of this system against observed and reported flood and landslides events. We then evaluated the sensitivity of the coupled system to the simulated hydrological processes. Our results show that the system is generally capable of making accurate predictions of flash flood and landslide events in terms of their locations and time of occurrence. The occurrence of predicted landslides show high sensitivity to total infiltration and soil water content, highlighting the importance of accurately simulating the hydrological processes on the accurate forecasting of rainfall triggered landslide events.

  18. Evaluating Land-Atmosphere Coupling Strength Over CONUS Using Satellite-based Remote Sensing

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Ferguson, C.

    2008-12-01

    Understanding the coupling strength between land and its overlying boundary layer is important to establishing the role of the surface state in boundary layer development and related processes. Much of our current understanding has resulted from model diagnostics carried out by Alan K. Betts using the European Center's (ECMWF) forecast and reanalysis model outputs. Other model based analysis under the GEWEX Land Atmospheric Coupling Experiments (GLACE), lead by Randy Koster, has suggested that models with strong coupling have inferred "hot spots" that imply enhanced predictability of seasonal precipitation. Other analysis (Mitchell, personal communication) suggests that models with strong coupling fail to represent the observed diurnal cycle of precipitation across the central U.S. Dirmeyer et al. in 2006 compared the coupling strength (using Betts" measure that relates surface soil moisture to the lifting condensation level (LCL) pressure) for a number of models from the GLACE experiment, which showed a wide range of strength. This presentation utilizes space-based remote sensing (RS) observations to estimate the strength of warm season land-atmosphere coupling over the continental US. The remote sensing products are derived from the suite of sensors on-board NASA Aqua, including AMSR-E (soil moisture), AIRS (relative humidity, air temperature, skin temperature), MODIS (LAI, NDVI), and CERES (radiation). The relative strength of coupling is quantified in terms of observational diagnostics set forth by the work of Alan Betts, based on his work with the ERA40 model output data set, and Fendall and Eltahir, based on radiosonde data. While the analysis covers the continental US (CONUS), emphasis is placed on the southern Great Plains where dense in-situ measurements enable direct comparison between coupling strengths obtained from ground observations and those from remote sensing, and a region that previous studies by Koster et al. have inferred to be a coupling "hot

  19. Experimental procedure for the evaluation of tooth stiffness in spline coupling including angular misalignment

    NASA Astrophysics Data System (ADS)

    Curà, Francesca; Mura, Andrea

    2013-11-01

    Tooth stiffness is a very important parameter in studying both static and dynamic behaviour of spline couplings and gears. Many works concerning tooth stiffness calculation are available in the literature, but experimental results are very rare, above all considering spline couplings. In this work experimental values of spline coupling tooth stiffness have been obtained by means of a special hexapod measuring device. Experimental results have been compared with the corresponding theoretical and numerical ones. Also the effect of angular misalignments between hub and shaft has been investigated in the experimental planning.

  20. A hydrodynamics-reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation.

    PubMed

    Wang, Xu; Ding, Jie; Guo, Wan-Qian; Ren, Nan-Qi

    2010-12-01

    Investigating how a bioreactor functions is a necessary precursor for successful reactor design and operation. Traditional methods used to investigate flow-field cannot meet this challenge accurately and economically. Hydrodynamics model can solve this problem, but to understand a bioreactor in sufficient depth, it is often insufficient. In this paper, a coupled hydrodynamics-reaction kinetics model was formulated from computational fluid dynamics (CFD) code to simulate a gas-liquid-solid three-phase biotreatment system for the first time. The hydrodynamics model is used to formulate prediction of the flow field and the reaction kinetics model then portrays the reaction conversion process. The coupled model is verified and used to simulate the behavior of an expanded granular sludge bed (EGSB) reactor for biohydrogen production. The flow patterns were visualized and analyzed. The coupled model also demonstrates a qualitative relationship between hydrodynamics and biohydrogen production. The advantages and limitations of applying this coupled model are discussed.

  1. Dimer and cluster approach for the evaluation of electronic couplings governing charge transport: Application to two pentacene polymorphs

    NASA Astrophysics Data System (ADS)

    Canola, Sofia; Pecoraro, Claudia; Negri, Fabrizia

    2016-10-01

    Hole transport properties are modeled for two polymorphs of pentacene: the single crystal polymorph and the thin film polymorph relevant for organic thin-film transistor applications. Electronic couplings are evaluated in the standard dimer approach but also considering a cluster approach in which the central molecule is surrounded by a large number of molecules quantum-chemically described. The effective electronic couplings suitable for the parametrization of a tight-binding model are derived either from the orthogonalization scheme limited to HOMO orbitals and from the orthogonalization of the full basis of molecular orbitals. The angular dependent mobilities estimated for the two polymorphs using the predicted pattern of couplings display different anisotropy characteristics as suggested from experimental investigations.

  2. Objective evaluation of interior trim effects on sound quality and noise reduction of a coupled plate cavity system

    NASA Astrophysics Data System (ADS)

    Egab, Laith; Wang, Xu

    2016-03-01

    In this study, the impedance mobility and psychoacoustic analysis methods are combined to develop a structural-acoustic model of a plate-cavity coupling system. The objective is to evaluate the effect of interior trim materials on sound loudness and sharpness of a plate-cavity coupling system. The impedance mobility method is applied to calculate the pressure frequency responses of the interior acoustic field for the plate-cavity coupling system. The sound pressure results calculated by the impedance mobility method are then directly used to calculate the psychoacoustic metrics using psychoacoustic analysis method. A good agreement was found between the experimental and analytical results. The results show that the interior trim has a large influence on the distribution of the sound loudness and sharpness inside the cavity in the middle and high frequency ranges.

  3. Evaluation of Hydrodynamic Chromatography Coupled with UV-Visible, Fluorescence and Inductively Coupled Plasma Mass Spectrometry Detectors for Sizing and Quantifying Colloids in Environmental Media

    PubMed Central

    Philippe, Allan; Schaumann, Gabriele E.

    2014-01-01

    In this study, we evaluated hydrodynamic chromatography (HDC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) for the analysis of nanoparticles in environmental samples. Using two commercially available columns (Polymer Labs-PDSA type 1 and 2), a set of well characterised calibrants and a new external time marking method, we showed that flow rate and eluent composition have few influence on the size resolution and, therefore, can be adapted to the sample particularity. Monitoring the agglomeration of polystyrene nanoparticles over time succeeded without observable disagglomeration suggesting that even weak agglomerates can be measured using HDC. Simultaneous determination of gold colloid concentration and size using ICP-MS detection was validated for elemental concentrations in the ppb range. HDC-ICP-MS was successfully applied to samples containing a high organic and ionic background. Indeed, online combination of UV-visible, fluorescence and ICP-MS detectors allowed distinguishing between organic molecules and inorganic colloids during the analysis of Ag nanoparticles in synthetic surface waters and TiO2 and ZnO nanoparticles in commercial sunscreens. Taken together, our results demonstrate that HDC-ICP-MS is a flexible, sensitive and reliable method to measure the size and the concentration of inorganic colloids in complex media and suggest that there may be a promising future for the application of HDC in environmental science. Nonetheless the rigorous measurements of agglomerates and of matrices containing natural colloids still need to be studied in detail. PMID:24587393

  4. Evaluation of hydrodynamic chromatography coupled with UV-visible, fluorescence and inductively coupled plasma mass spectrometry detectors for sizing and quantifying colloids in environmental media.

    PubMed

    Philippe, Allan; Schaumann, Gabriele E

    2014-01-01

    In this study, we evaluated hydrodynamic chromatography (HDC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) for the analysis of nanoparticles in environmental samples. Using two commercially available columns (Polymer Labs-PDSA type 1 and 2), a set of well characterised calibrants and a new external time marking method, we showed that flow rate and eluent composition have few influence on the size resolution and, therefore, can be adapted to the sample particularity. Monitoring the agglomeration of polystyrene nanoparticles over time succeeded without observable disagglomeration suggesting that even weak agglomerates can be measured using HDC. Simultaneous determination of gold colloid concentration and size using ICP-MS detection was validated for elemental concentrations in the ppb range. HDC-ICP-MS was successfully applied to samples containing a high organic and ionic background. Indeed, online combination of UV-visible, fluorescence and ICP-MS detectors allowed distinguishing between organic molecules and inorganic colloids during the analysis of Ag nanoparticles in synthetic surface waters and TiO₂ and ZnO nanoparticles in commercial sunscreens. Taken together, our results demonstrate that HDC-ICP-MS is a flexible, sensitive and reliable method to measure the size and the concentration of inorganic colloids in complex media and suggest that there may be a promising future for the application of HDC in environmental science. Nonetheless the rigorous measurements of agglomerates and of matrices containing natural colloids still need to be studied in detail.

  5. Evaluation of the analytical capability of NIR femtosecond laser ablation-inductively coupled plasma mass spectrometry.

    PubMed

    Hirata, Takafumi; Kon, Yoshiaki

    2008-03-01

    A laser ablation-inductively coupled plasma-mass spectrometric (LA-ICPMS) technique utilizing a titanium-sapphire (TiS) femtosecond laser (fs-laser) has been developed for elemental and isotopic analysis. The signal intensity profile, depth of the ablation pit and level of elemental fractionation were investigated in order to evaluate the analytical capability of the present fs-laser ablation-ICPMS technique. The signal intensity profile of (57)Fe, obtained from iron sulfide (FeS(2)), demonstrated that the resulting signal intensity of (57)Fe achieved by the fs-laser ablation was almost 4-times higher than that obtained by ArF excimer laser ablation under a similar energy fluence (5 J/cm(2)). In fs-laser ablation, there is no significant difference in a depth of the ablation pit between glass and zircon material, while in ArF laser ablation, the resulting crater depth on the zircon crystal was almost half the level than that obtained for glass material. Both the thermal-induced and particle size-related elemental fractionations, which have been thought to be main sources of analytical error in the LA-ICPMS analysis, were measured on a Harvard 91500 zircon crystal. The resulting fractionation indexes on the (206)Pb/(238)U (f(Pb/U)) and (238)U/(232)Th (f(U/Th)) ratios obtained by the present fs-laser ablation system were significantly smaller than those obtained by a conventional ArF excimer laser ablation system, demonstrative of smaller elemental fractionation. Using the present fs-laser ablation technique, the time profile of the signal intensity of (56)Fe and the isotopic ratios ((57)Fe/(54)Fe and (56)Fe/(54)Fe) have been measured on a natural pyrite (FeS(2)) sample. Repeatability in signal intensity of (56)Fe achieved by the fs-laser ablation system was significantly better than that obtained by ArF excimer laser ablation. Moreover, the resulting precision in (57)Fe/(54)Fe and (56)Fe/(54)Fe ratio measurements could be improved by the fs-laser ablation system

  6. Communication: Spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: Analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme

    SciTech Connect

    Datta, Dipayan Gauss, Jürgen

    2015-07-07

    We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and M{sub S} = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating the analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH{sub 2}CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.

  7. Evaluation of the viability of /sup 111/In-abeled DTPA coupled to fibrinogen

    SciTech Connect

    Layne, W.W.; Hnatowich, D.J.; Doherty, P.W.; Childs, R.L.; Lanteigne, D.; Ansell, J.

    1982-07-01

    In earlier work, DTPA has been covalently coupled to albumin via the cyclic anhydride of DTPA. Using fibrinogen, we have studied the effect of such coupling on protein viability by both an in vitro and an in vivo assay. Clotting time remained identical to that of the native protein whether the anhydride-to-protein molar ratio was 1:1 or 5:1. In vivo studies were done in dogs, with human fibrinogen labeled with /sup 125/I and /sup 111/In. Throughout 130 hr, blood clearances for the two tracers agreed whether with 1:1 or 5:1 coupling. In a dog model with a thrombogenic catheter, the clot-to-blood ratios for the two radiotracers agreed within experimental error. Finally, 1:1-coupled canine fibrinogen, labeled with /sup 111/In, was administered to dogs with a catheter in a jugular vein, and scintigrams at 24 hr clearly showed clotting along the length of the catheter. We conclude that fibrinogen, coupled to DTPA, retains its viability, behaving like radioiodinated fibrinogen in vivo, and /sup 111/In labeled fibrinogen looks promising as a clinical diagnostic agent.

  8. Evaluating the Carbon Cycle of a Coupled Atmosphere-Biosphere Model

    SciTech Connect

    Delire, C; Foley, J A; Thompson, S

    2002-08-21

    We investigate how well a coupled biosphere-atmosphere model, CCM3-IBIS, can simulate the functioning of the terrestrial biosphere and the carbon cycling through it. The simulated climate is compared to observations, while the vegetation cover and the carbon cycle are compared to an offline version of the biosphere model IBIS forced with observed climatic variables. The simulated climate presents some local biases that strongly affect the vegetation (e.g., a misrepresentation of the African monsoon). Compared to the offline model, the coupled model simulates well the globally averaged carbon fluxes and vegetation pools. The zonal mean carbon fluxes and the zonal mean seasonal cycle are also well represented except between 0{sup o} and 20{sup o}N due to the misrepresentation of the African monsoon. These results suggest that, despite regional biases in climate and ecosystem simulations, this coupled atmosphere-biosphere model can be used to explore geographic and temporal variations in the global carbon cycle.

  9. Experimental evaluation of the electron{endash}intramolecular-vibration coupling constants of tetramethyltetrathiafulvalene

    SciTech Connect

    Meneghetti, M.; Toffoletti, A.; Pasimeni, L.

    1996-12-01

    The relevant electron-intramolecular vibrations coupling constants of tetramethyltetrathiafulvalene (TMTTF) have been experimentally obtained. The determination was possible studying the optical properties of dimers of TMTTF{sup +} in polymethyl-methacrylate films on the basis of a Holstein-Hubbard dimer model. Electron paramagnetic resonance measurements of the singlet-triplet energy gap of the dimers made possible the calculation of the coupling constants without the need for absolute values of the optical spectra and the knowledge of structural parameters. The values of the coupling constants show differences with previously reported values for TMTTF or related molecules like TTF and bis-ethylenedithio-TTF (BEDT-TTF). {copyright} {ital 1996 The American Physical Society.}

  10. Evaluation of high-resolution typing methods for Chlamydia trachomatis in samples from heterosexual couples.

    PubMed

    Bom, Reinier J M; Christerson, Linus; Schim van der Loeff, Maarten F; Coutinho, Roel A; Herrmann, Björn; Bruisten, Sylvia M

    2011-08-01

    We aimed to compare conventional ompA typing of Chlamydia trachomatis with multilocus sequence typing (MLST) and multilocus variable-number tandem-repeat (VNTR) analysis (MLVA). Previously used MLST and MLVA systems were compared to modified versions that used shorter target regions and nested PCR. Heterosexual couples were selected from among persons with urogenital C. trachomatis infections visiting the sexually transmitted infection outpatient clinic in Amsterdam, The Netherlands. We identified 30 couples with a total of 65 C. trachomatis-positive samples on which MLST and MLVA for eight target regions were performed. All regions were successfully sequenced in 52 samples, resulting in a complete profile for 18 couples and 12 individuals. Nine ompA genovars from D to K, with two variants of genovar G, were found. The numbers of sequence type and MLVA type profiles were 20 for MLST and 21 for MLVA, and a combination of MLST and MLVA yielded 28 profiles, with discriminatory indexes (D) ranging from 0.95 to 0.99. Partners in 17 couples shared identical profiles, while partners in 1 couple had completely different profiles. Three persons had infections at multiple anatomical locations, and within each of these three individuals, all profiles were identical. The discriminatory capacity of all MLST and MLVA methods is much higher than that of ompA genotyping (D = 0.78). No genotype variation was found within the samples of the same person or from heterosexual couples with a putative single transmission. This shows that the chlamydial genome in clinical specimens has an appropriate polymorphism to enable epidemiological cluster analysis using MLST and MLVA.

  11. A comparative evaluation between conditions of the wrist band capacitively-coupled ECG recording through signal-to-noise ratio.

    PubMed

    Nakamura, Hideo; Shimada, Koichiro; Fujie, Tatsuro

    2007-01-01

    The purpose of this study is to evaluate the performance to measure ECG recording based on signal-to-noise ratio of ECG signals recorded with three types of electrodes in four experimental conditions for discussion on appropriate form of the electrodes. The wrist band shaped capacitively-coupled electrodes have been developed. We evaluated the signal-to-noise ratios with statistical methods when the reference and the properties of the electrodes were substituted. From our results, it is indicated that not only performance of the electrodes themselves but also stabilization of electrodes around skin are important for steady ECG recording.

  12. A coupled modeling approach to evaluate nitrogen retention within the Shanmei Reservoir watershed, China

    NASA Astrophysics Data System (ADS)

    Liu, Meibing; Chen, Xingwei; Yao, Huaxia; Chen, Ying

    2015-12-01

    To simulate impacts of nitrogen retention in the reservoir on nitrogen nutrient transported from the upland watershed to the ocean, a coupled watershed-reservoir modeling system, consisting of a watershed distributed model (SWAT) and a two-dimensional water quality model (CE-QUAL-W2), was developed. The coupled modeling system was well calibrated, and simulated values mainly agreed with observed data, demonstrating that the SWAT and CE-QUAL-W2 coupled modeling system can be used to assess hydrodynamic and water quality processes in a complex watershed comprised of an upland watershed and a downstream reservoir. Applying the coupled model, a long time simulation was conducted to analyze the temporal characteristics of nitrogen exported from the watershed and to reveal the effect of nitrogen retention in the reservoir at annual, monthly and daily scales. The results showed that nitrogen export from the watershed is closely associated with precipitation and runoff. The wet season was the critical period of nitrogen loss, whereas the dry season is the critical period for water quality management. The reservoir serves mainly as a nitrogen sink at annual scale due to the effect of nitrogen retention, but within the year, it may act as a sink during the wet season and a source during the dry season, which is significantly influenced by inflow runoff, nitrogen load and reservoir regulation.

  13. Impact Damage Evaluation Method of Friction Disc Based on High-Speed Photography and Tooth-Root Stress Coupling

    NASA Astrophysics Data System (ADS)

    Yin, L.; Shao, Y. M.; Liu, J.; Zheng, H. L.

    2015-07-01

    The stability of friction disc could be seriously affected by the tooth surface damage due to poor working conditions of the wet multi-disc brake in heavy trucks. There are few current works focused on the damage of the friction disc caused by torsion-vibration impacts. Hence, it is necessary to investigate its damage mechanisms and evaluation methods. In this paper, a damage mechanism description and evaluation method of a friction disc based on the high-speed photography and tooth-root stress coupling is proposed. According to the HighSpeed Photography, the collision process between the friction disc and hub is recorded, which can be used to determine the contact position and deformation. Combined with the strain-stress data obtained by the strain gauge at the place of the tooth-root, the impact force and property are studied. In order to obtain the evaluation method, the damage surface morphology data of the friction disc extracted by 3D Super Depth Digital Microscope (VH-Z100R) is compared with the impact force and property. The quantitative relationships between the amount of deformation and collision number are obtained using a fitting analysis method. The experimental results show that the damage of the friction disc can be evaluated by the proposed impact damage evaluation method based on the high-speed photography and tooth-root stress coupling.

  14. Development and Evaluation of Novel Coupling Agents for Kenaf-Fiber-Reinforced Unsaturated Polyester Composites

    NASA Astrophysics Data System (ADS)

    Ren, Xiaofeng

    Natural fibers are gaining popularity as reinforcement materials for thermoset resins over the last two decades. Natural fibers are inexpensive, abundant, renewable and environmentally friendly. Kenaf fibers are one of the natural fibers that can potentially be used for reinforcing unsaturated polyester (UPE). As a polymer matrix, UPE enjoys a 40% market share of all the thermoset composites. This widespread application is due to many favorable characteristics including low cost, ease of cure at room temperature, ease of molding, a good balance of mechanical, electrical and chemical properties. One of the barriers for the full utilization of the kenaf fiber reinforced UPE composites, however, is the poor interfacial adhesion between the natural fibers and the UPE resins. The good interfacial adhesion between kenaf fibers and UPE matrix is essential for generating the desired properties of kenaf-UPE composites for most of the end applications. Use of a coupling agent is one of the most effective ways of improving the interfacial adhesion. In this study, six novel effective coupling agents were developed and investigated for kenaf-UPE composites: DIH-HEA, MFA, NMA, AESO-DIH, AESO-MDI, and AESO-PMDI. All the coupling agents were able to improve the interfacial adhesion between kanaf and UPE resins. The coupling agents were found to significantly enhance the flexural properties and water resistance of the kenaf-UPE composites. Fourier transform infrared spectroscopy (FTIR) confirmed all the coupling agents were covalently bonded onto kenaf fibers. Scanning electron microscopy (SEM) images of the composites revealed the improved interfacial adhesion between kanaf fibers and UPE resins.

  15. An experimental evaluation of the fully coupled hysteretic electro-mechanical behaviour of piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Butcher, Mark; Davino, Daniele; Giustiniani, Alessandro; Masi, Alessandro

    2016-04-01

    Piezoelectrics are the most commonly used of the multifunctional smart materials in industrial applications, because of their relatively low cost and ease of use in electric and electronic oriented applications. Nevertheless, while datasheets usually give just small signal quasi-static parameters, their full potential can only be exploited only if a full characterization is available because the maximum stroke or the higher piezo coupling coefficients are available at different electro-mechanical biases, where often small signal analysis is not valid. In this paper a method to get the quasi-static fully coupled characterization is presented. The method is tested on a commercial piezo actuator but can be extended to similar devices.

  16. Evaluation of bremsstrahlung contribution to photon transport in coupled photon-electron problems

    NASA Astrophysics Data System (ADS)

    Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio; Salvat, Francesc

    2015-11-01

    The most accurate description of the radiation field in x-ray spectrometry requires the modeling of coupled photon-electron transport. Compton scattering and the photoelectric effect actually produce electrons as secondary particles which contribute to the photon field through conversion mechanisms like bremsstrahlung (which produces a continuous photon energy spectrum) and inner-shell impact ionization (ISII) (which gives characteristic lines). The solution of the coupled problem is time consuming because the electrons interact continuously and therefore, the number of electron collisions to be considered is always very high. This complex problem is frequently simplified by neglecting the contributions of the secondary electrons. Recent works (Fernández et al., 2013; Fernández et al., 2014) have shown the possibility to include a separately computed coupled photon-electron contribution like ISII in a photon calculation for improving such a crude approximation while preserving the speed of the pure photon transport model. By means of a similar approach and the Monte Carlo code PENELOPE (coupled photon-electron Monte Carlo), the bremsstrahlung contribution is characterized in this work. The angular distribution of the photons due to bremsstrahlung can be safely considered as isotropic, with the point of emission located at the same place of the photon collision. A new photon kernel describing the bremsstrahlung contribution is introduced: it can be included in photon transport codes (deterministic or Monte Carlo) with a minimal effort. A data library to describe the energy dependence of the bremsstrahlung emission has been generated for all elements Z=1-92 in the energy range 1-150 keV. The bremsstrahlung energy distribution for an arbitrary energy is obtained by interpolating in the database. A comparison between a PENELOPE direct simulation and the interpolated distribution using the data base shows an almost perfect agreement. The use of the data base increases

  17. Proton Strong Coupling in Heteronuclear Systems. Theoretical and Experimental Evaluation in Quantitative Analysis of SQC NOESY Spectra of Biopolymers

    NASA Astrophysics Data System (ADS)

    Esposito, G.; Fogolari, F.; Molinari, H.; Pegna, M.; Zetta, L.

    Hydrogen-detected NOE-relayed heteronuclear correlation via single-quantum coherence spectra (SQC-NOESY) may be affected by second-order anomalies when |(ω I ± π JIS) - ω I'| ≤ 20π JII', where I and I' are protons and S the heterospin coupled only to I. When the above condition applies, coherences of type SαIβ (α, β = x, y, z) undergo oscillatory transfer to SαI' β coherences without the need for any pulse perturbation. Thus the INEPT transfers, as well as the t1 precession step of the SQC-NOESY scheme, will no longer be effective in sorting out only antiphase or transverse coherences of the proton spin directly coupled to the heteronucleus S. In practice the process leads to measurable amplitude contributions to both auto- and cross-peak volumes, despite the fact that the effects developed during the INEPT steps are often negligible and the theoretical net transfer expected from the t1 evolution is null. Since during tm and t2 (provided heteronuclear decoupling is applied) no effect is expected from the direct-heteronuclear-coupling operator, any strong-coupling contribution arising in these conditions can be computed using the specific parameters of the system under investigation. Thus auto- and cross-peak volumes can be corrected before internuclear distances are evaluated, In natural-abundance or slightly enriched 1H- 13C biopolymer systems, assuming JII'/ JIS = 0.06 and t1 = 10-20 ms, a correction amounting to 0-7% of the auto- and cross-peak volume sum should be applied to the connectivities of the strongly coupled pair, depending on Δω I.

  18. Development of Advanced Eco-hydrologic and Biogeochemical Coupling Model to Re-evaluate Greenhouse Gas Budget of Biosphere

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Maksyutov, S. S.

    2015-12-01

    Inland waters including rivers, lakes, and groundwater are suggested to act as a transport pathway for water and dissolved substances, and play some role in continental biogeochemical cycling (Cole et al., 2007; Battin et al., 2009). The authors have developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (2014, 2015, etc.), which includes feedback between hydrologic-geomorphic-ecological processes. In this study, NICE was further developed to couple with various biogeochemical cycle models in biosphere, those for water quality in aquatic ecosystems, and those for carbon weathering. The NICE-biogeochemical coupling model incorporates connectivity of the biogeochemical cycle accompanied by hydrologic cycle between surface water and groundwater, hillslopes and river networks, and other intermediate regions. The model also includes reaction between inorganic and organic carbons, and its relation to nitrogen and phosphorus in terrestrial-aquatic continuum. The coupled model showed to improve the accuracy of inundation stress mechanism such as photosynthesis and primary production, which attributes to improvement of CH4 flux in wetland sensitive to fluctuations of shallow groundwater. The model also simulated CO2 evasion from inland water in global scale, and was relatively in good agreement in empirical relation (Aufdenkampe et al., 2011) which has relatively an uncertainty in the calculated flux because of pCO2 data missing in some region and effect of small tributaries, etc. Further, the model evaluated how the expected CO2 evasion might change as inland waters become polluted with nutrients and eutrophication increases from agriculture and urban areas (Pacheco et al., 2013). This advanced eco-hydrologic and biogeochemical coupling model would play important role to re-evaluate greenhouse gas budget of the biosphere, and to bridge gap between top-down and bottom-up approaches (Battin et al., 2009; Regnier et al., 2013).

  19. Statistical evaluation of an inductively coupled plasma atomic emission spectrometric method for routine water quality testing

    USGS Publications Warehouse

    Garbarino, J.R.; Jones, B.E.; Stein, G.P.

    1985-01-01

    In an interlaboratory test, inductively coupled plasma atomic emission spectrometry (ICP-AES) was compared with flame atomic absorption spectrometry and molecular absorption spectrophotometry for the determination of 17 major and trace elements in 100 filtered natural water samples. No unacceptable biases were detected. The analysis precision of ICP-AES was found to be equal to or better than alternative methods. Known-addition recovery experiments demonstrated that the ICP-AES determinations are accurate to between plus or minus 2 and plus or minus 10 percent; four-fifths of the tests yielded average recoveries of 95-105 percent, with an average relative standard deviation of about 5 percent.

  20. Design Evaluation of Wind Turbine Spline Couplings Using an Analytical Model: Preprint

    SciTech Connect

    Guo, Y.; Keller, J.; Wallen, R.; Errichello, R.; Halse, C.; Lambert, S.

    2015-02-01

    Articulated splines are commonly used in the planetary stage of wind turbine gearboxes for transmitting the driving torque and improving load sharing. Direct measurement of spline loads and performance is extremely challenging because of limited accessibility. This paper presents an analytical model for the analysis of articulated spline coupling designs. For a given torque and shaft misalignment, this analytical model quickly yields insights into relationships between the spline design parameters and resulting loads; bending, contact, and shear stresses; and safety factors considering various heat treatment methods. Comparisons of this analytical model against previously published computational approaches are also presented.

  1. “Application and evaluation of the two-way coupled WRF ...

    EPA Pesticide Factsheets

    The DISCOVER-AQ project (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality), is a joint collaboration between NASA, U.S. EPA and a number of other local organizations with the goal of characterizing air quality in urban areas using satellite, aircraft, vertical profiler and ground based measurements (http://discover-aq.larc.nasa.gov). In July 2011, the DISCOVER-AQ project conducted intensive air quality measurements in the Baltimore, MD and Washington, D.C. area in the eastern U.S. To take advantage of these unique data, the Community Multiscale Air Quality (CMAQ) model, coupled with the Weather Research and Forecasting (WRF) model is used to simulate the meteorology and air quality in the same region using 12-km, 4-km and 1-km horizontal grid spacings. The goal of the modeling exercise is to demonstrate the capability of the coupled WRF-CMAQ modeling system to simulate air quality at fine grid spacings in an urban area. Development of new data assimilation techniques and the use of higher resolution input data for the WRF model have been implemented to improve the meteorological results, particularly at the 4-km and 1-km grid resolutions. In addition, a number of updates to the CMAQ model were made to enhance the capability of the modeling system to accurately represent the magnitude and spatial distribution of pollutants at fine model resolutions. Data collected during the 2011 DISCOVER-AQ campa

  2. Application of Air-Coupled Ultrasound to Noncontact Evaluation of Paper Surface Roughness

    NASA Astrophysics Data System (ADS)

    Saniman, M. N. F.; Ihara, I.

    2014-06-01

    An approach for characterizing paper surface quality by ultrasound as an alternative non-contact method is presented. In this work, an air-coupled ultrasound at frequency range from 0.3 MHz to 4.2 MHz has been applied to surface roughness characterization, where a series of sandpapers and pure papers having random and relatively wide range of root-mean-square of roughness Rq from 2.0 to 92.8 are employed as specimens. The amplitude of reflected wave from each specimen is measured with pulse-echo configuration at normal incidence. A Kirchhoff-based scattering model is used to express the scattering phenomena from random rough surfaces and the relations between the normalized amplitude of the reflected wave and surface roughness parameters are then examined. It has been shown through the experiments that high frequency air-coupled ultrasound up to 4 MHz is useful to characterize surface roughness in the order of few microns of Rq. In addition, it has been suggested that an irregularity of paper surface geometry such as skewness could be characterized from the deviation of the normalized amplitude.

  3. In vitro evaluation of genotoxic effects under magnetic resonant coupling wireless power transfer.

    PubMed

    Mizuno, Kohei; Shinohara, Naoki; Miyakoshi, Junji

    2015-04-07

    Wireless power transfer (WPT) technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity.

  4. Evaluation of the brain-specific delivery of radioiodinated (iodophenyl)alkyl-substituted amines coupled to a dihydropyridine carrier

    SciTech Connect

    Tedjamulia, M.L.; Srivastava, P.C.; Knapp, F.F. Jr.

    1985-11-01

    To evaluate the potential usefulness of radioiodinated phenylamines attached to dihydropyridine carriers as a means of brain-specific delivery of radiopharmaceuticals, 1-methyl-3-(N-(beta- (4-(125I)iodophenyl)ethyl)carbamoyl)-1,4-dihydropyridine ((125I)-9) and 1-methyl-3-(N-(4-(125I)iodophenyl)carbamoyl)-1,4-dihydropyridine ((125I)-13) have been prepared by dithionite reduction of the corresponding pyridinium precursors, (125I)-8 and (125I)-12, respectively. Formation of 8 involved coupling of (p-aminophenyl)ethylamine with N-succinimidyl (1-methyl-3-pyridinio)formate iodide (4) followed by transformation to the corresponding N-piperidinyl- (6) or (diethylamino)- (7) triazines that were converted to 8 by treatment with HI. Alternatively, 12 was prepared by initial conversion of (4-amino-phenyl)mercuric acetate (10) to 4-iodoaniline (11) by treatment with I2 and then coupling with 4. The radioiodinated quaternary products, 8 and 12, showed low brain uptake and low brain to blood ratios, whereas the dihydropyridine analogues, 9 and 13, showed comparatively good brain uptake and good brain to blood ratios in rats. These data demonstrate that dihydropyridine-coupled radiopharmaceuticals can cross the blood-brain barrier and the technique may be useful for the measurement of cerebral blood perfusion.

  5. Evaluation of Model Coupling Frameworks for Use by the Community Surface Dynamics Modeling System (CSDMS)

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.; Syvitski, J. P.

    2007-12-01

    The Community Surface Dynamics Modeling System (CSDMS) is a recently NSF-funded project that represents an effort to bring together a diverse community of surface dynamics modelers and model users. Key goals of the CSDMS project are to (1) promote open-source code sharing and re-use, (2) to develop a review process for code contributions, (3) promote recognition of contributors, (4) develop a "library" of low-level software tools and higher-level models that can be linked as easily as possible into new applications and (5) provide resources to simplify the efforts of surface dynamics modelers. The architectural framework of CSDMS is being designed to allow code contributions to be in any of several different programming languages (language independence), to support a migration towards parallel computation and to support multiple operating systems (platform independence). In addition, the architecture should permit structured, unstructured and adaptive grids. A variety of different "coupling frameworks" are currently in use or under development in support of similar projects in other communities. One of these, ESMF (Earth System Modeling Framework), is primarily centered on Fortran90, structured grids and Unix-based platforms. ESMF has significant buy-in from the climate modeling community in the U.S.; a closely-related framework called OASIS4 has been adopted by many climate modelers in Europe. OpenMI has emerged from the hydrologic community in Europe and is likely to be adopted for the NSF-funded CUAHSI project. OpenMI is primarily centered on the Windows platform and a programming language called "C-sharp" and is not oriented toward parallel computing. A third, DOE-funded framework called CCA (Common Component Architecture) achieves language interoperability using a tool called Babel. It fully supports parallel computation and virtually any operating system. CCA has also been shown to be interoperable with ESMF and MCT (Model Coupling Toolkit) and would appear

  6. Evaluation of aerosol properties simulated by the high resolution global coupled chemistry-aerosol-microphysics model C-IFS-GLOMAP

    NASA Astrophysics Data System (ADS)

    Dhomse, Sandip; Mann, Graham; Carslaw, Ken; Flemming, Johannes; Morcrette, Jean-Jacques; Engelen, Richard; Remy, Samuel; Boucher, Olivier; Benduhn, Francois; Hewson, Will; Woodhouse, Matthew

    2016-04-01

    The EU Framework Programme GEMS and MACC consortium projects co-ordinated by the European Centre for Medium-range Weather Forecasts (ECMWF) have developed an operational global forecasting and reanalysis system (Composition-IFS) for atmospheric composition including greenhouse gases, reactive gases and aerosol. The current operational C-IFS system uses a mass-based aerosol model coupled to data assimilation of Aerosol Optical Depth measured by satellite (MODIS) to predict global aerosol properties. During MACC, the GLOMAP-mode aerosol microphysics scheme was added to the system, providing information on aerosol size and number for improved representation of aerosol-radiation and aerosol-cloud interactions, accounting also for simulated global variations in size distribution and internally-mixed particle composition. The IFS-GLOMAP system has recently been upgraded to couple with the sulphur cycle simulated in the online TM5 tropospheric chemistry module for global reactive gases. This C-IFS-GLOMAP system is also being upgraded to use a new "nitrate-extended" version of GLOMAP which realistically treats the size-resolved gas-particle partitioning of semi volatile gases ammonia and nitric acid. In this poster we described C-IFS-GLOMAP and present an evaluation of the global sulphate aerosol distribution simulated in this coupled aerosol-chemistry C-IFS-GLOMAP, comparing to surface observations in Europe, North America and the North Atlantic and contrasting to the fixed timescale sulphate production scheme developed in GEMS. We show that the coupling to the TM5 sulphur chemistry improves the seasonal cycle of sulphate aerosol, for example addressing a persistent wintertime sulphate high bias in northern Europe. The improved skill in simulated sulphate aerosol seasonal cycle is a pre-requisite to realistically characterise nitrate aerosol since biases in sulphate affect the amount of free ammonia available to form ammonium nitrate.

  7. Wing motion transformation to evaluate aerodynamic coupling in flapping wing flight.

    PubMed

    Faruque, Imraan A; Humbert, J Sean

    2014-12-21

    Whether the remarkable flight performance of insects is because the animals leverage inherent physics at this scale or because they employ specialized neural feedback mechanisms is an active research question. In this study, an empirically derived aerodynamics model is used with a transformation involving a delay and a rotation to identify a class of kinematics that provide favorable roll-yaw coupling. The transformation is also used to transform both synthetic and experimentally measured wing motions onto the manifold representing proverse yaw and to quantify the degree to which freely flying insects make use of passive aerodynamic mechanisms to provide proverse roll-yaw turn coordination. The transformation indicates that recorded insect kinematics do act to provide proverse yaw for a variety of maneuvers. This finding suggests that passive aerodynamic mechanisms can act to reduce the neural feedback demands of an insect׳s flight control strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Evaluation of a virtual phase charged-coupled device as an imaging X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Stern, R. A.; Liewer, K.; Janesick, J. R.

    1983-01-01

    The X-ray response of an 800 x 800 Texas Instruments virtual phase charge-coupled device (CCD) has been measured in the range 1-8 keV. In the single-photon counting mode, excellent energy resolution (approximately 250 eV FWHM is found for single-pixel Fe-55 X-ray events at a spatial resolution of 15 microns. The detector quantum efficiency for all events is 65% at 2.3 keV (S K line) and approximately 34% at 5.9 keV (Mn K line from Fe-55). The CCD response is linear in energy to a few percent over the 1-8 keV energy range. These results demonstrate that virtual phase CCDs are superior imaging X-ray spectrometers with applications for X-ray astronomy and laboratory plasma research.

  9. Performance evaluation of nonlinear energy harvesting with magnetically coupled dual beams

    NASA Astrophysics Data System (ADS)

    Lan, Chunbo; Tang, Lihua; Qin, Weiyang

    2017-04-01

    To enhance the output power and broaden the operation bandwidth of vibration energy harvesters (VEH), nonlinear two degree-of-freedom (DOF) energy harvesters have attracted wide attention recently. In this paper, we investigate the performance of a nonlinear VEH with magnetically coupled dual beams and compare it with the typical Duffing-type VEH to find the advantages and drawbacks of this nonlinear 2-DOF VEH. First, based on the lumped parameter model, the characteristics of potential energy shapes and static equilibriums are analyzed. It is noted that the dual beam configuration is much easy to be transformed from a mono-stable state into a bi-stable state when the repulsive magnet force increases. Based on the equilibrium positions and different kinds of nonlinearities, four nonlinearity regimes are determined. Second, the performance of 1-DOF and 2-DOF configurations are compared respectively in these four nonlinearity regimes by simulating the forward sweep responses of these two nonlinear VEHs under different acceleration levels. Several meaningful conclusions are obtained. First, the main alternative to enlarge the operation bandwidth for dual-beam configuration is chaotic oscillation, in which two beams jump between two stable positions chaotically. However, the large-amplitude periodic oscillations, such as inter-well oscillation, cannot take place in both piezoelectric and parasitic beams at the same time. Generally speaking, both of the magnetically coupled dual-beam energy harvester and Duffingtype energy harvester, have their own advantages and disadvantages, while given a large enough base excitation, the maximum voltages of these two systems are almost the same in all these four regimes.

  10. Task-based evaluation of practical lens designs for lens-coupled digital mammography systems

    NASA Astrophysics Data System (ADS)

    Chen, Liying; Foo, Leslie D.; Cortesi, Rebecca L.; Thompson, Kevin P.; Barrett, Harrison H.

    2007-03-01

    Recent developments in low-noise, large-area CCD detectors have renewed interest in radiographic systems that use a lens to couple light from a scintillation screen to a detector. The lenses for this application must have very large numerical apertures and high spatial resolution over a FOV. This paper expands on our earlier work by applying the principles of task-based assessment of image quality to development of meaningful figures of merit for the lenses. The task considered in this study is detection of a lesion in a mammogram, and the figure of merit used is the lesion detectability, expressed as a task-based signal-to-noise ratio (SNR), for a channelized Hotelling observer (CHO). As in the previous work, the statistical model accounts for the random structure in the breast, the statistical properties of the scintillation screen, the random coupling of light to the CCD, the detailed structure of the shift-variant lens point spread function (PSF), and Poisson noise of the X-ray flux. The lenses considered range from F/0.9 to F/1.2. All yield nominally the same spot size at a given field. Among the F/0.9 lenses, some of them were designed by conventional means for high resolution and some for high contrast, and the shapes of the PSF differ considerably. The results show that excessively large lens numerical apertures do not improve the task-based SNR but dramatically increase the optics fabrication cost. Contrary to common wisdom, high-contrast designs have higher task-based SNRs than high-resolution designs when the signal is small. Additionally, we constructed a merit function to successfully tune the lenses to perform equally well anywhere in the FOV.

  11. Evaluation of promising algal strains for sustainable exploitation coupled with CO2 fixation.

    PubMed

    Singh, Shailendra Kumar; Rahman, Akhlaqur; Dixit, Kritika; Nath, Adi; Sundaram, Shanthy

    2016-01-01

    The photosynthetic activity of three microalgae, Chlamydomonas reinhardtii, Chlorella AU1, Scenedesmus AU1, and six cyanobacteria, Spirulina platensis, Anabaena cylindrica, Oscillatoria AU1, Nostoc muscurum, Synechococcus AU1, Synechocystis sp. PCC6803, was investigated. Strains S. platensis, Scenedesmus AU1 sp. and Chlorella AU1 sp. showed the highest fluorescence quenching than other strains tested. Thus, these were selected for CO2 mitigation analysis in a designed tubular photobioreactor system at 0.06%, 6%, 12%, 18% and 24% CO2 concentrations. Spirulina showed maximum biomass productivity of 1.03 g L(-1) d(-1) with the highest CO2 fixation rate of 0.678 g [Formula: see text] L(-1) d(-1) at 6% CO2 concentration. The maximum protein content (66.63%) was also achieved in Spirulina sp. at 6% CO2 concentration. Thus, Spirulina could be utilized as a source of protein supplement coupled with CO2 fixation. Maximum carbohydrate proportion (51.71%) was noted with Scenedesmus AU1 sp. at 12% CO2. Scenedesmus AU1 sp. also accumulated the maximum lipid content (25.07%) at 6% CO2 concentration, which was further analysed for biodiesel production. The extracted Scenedesmus oil was mainly rich in short chain fatty acids (C-16 : 0, C-18:1, C-18:2, C-18:3) which is an ideal combination for efficient biodiesel. Thus, this is vital in helping to choose Scenedesmus as a biodiesel feedstock, coupled with CO2 fixation.

  12. Evaluation on the impact of IMU grades on BDS + GPS PPP/INS tightly coupled integration

    NASA Astrophysics Data System (ADS)

    Gao, Zhouzheng; Ge, Maorong; Shen, Wenbin; Li, You; Chen, Qijin; Zhang, Hongping; Niu, Xiaoji

    2017-09-01

    The unexpected observing environments in dynamic applications may lead to partial and/or complete satellite signal outages frequently, which can definitely impact on the positioning performance of the Precise Point Positioning (PPP) in terms of decreasing available satellite numbers, breaking the continuity of observations, and degrading PPP's positioning accuracy. Generally, both the Inertial Navigation System (INS) and the multi-constellation Global Navigation Satellite System (GNSS) can be used to enhance the performance of PPP. This paper introduces the mathematical models of the multi-GNSS PPP/INS Tightly Coupled Integration (TCI), and investigates its performance from several aspects. Specifically, it covers (1) the use of the BDS/GPS PPP, PPP/INS, and their combination; (2) three positioning modes including PPP, PPP/INS TCI, and PPP/INS Loosely Coupled Integration (LCI); (3) the use of four various INS systems named navigation grade, tactical grade, auto grade, and Micro-Electro-Mechanical-Sensors (MEMS) one; (4) three PPP observation scenarios including PPP available, partially available, and fully outage. According to the statistics results, (1) the positioning performance of the PPP/INS (either TCI or LCI) mode is insignificantly depended on the grade of inertial sensor, when there are enough available satellites; (2) after the complete GNSS outages, the TCI mode expresses both higher convergence speed and more accurate positioning solutions than the LCI mode. Furthermore, in the TCI mode, using a higher grade inertial sensor is beneficial for the PPP convergence; (3) under the partial GNSS outage situations, the PPP/INS TCI mode position divergence speed is also restrained significantly; and (4) the attitude determination accuracy of the PPP/INS integration is highly correlated with the grade of inertial sensor.

  13. Regional effects of atmospheric aerosols on temperature: an evaluation of an ensemble of on-line coupled models

    NASA Astrophysics Data System (ADS)

    Baró, Rocío; Palacios-Peña, Laura; Baklanov, Alexander; Balzarini, Alessandra; Brunner, Dominik; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Pérez, Juan Luis; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Zabkar, Rahela; Jiménez-Guerrero, Pedro

    2017-04-01

    The climate effect of atmospheric aerosols is associated to their influence on the radiative budget of the Earth due to direct aerosol-radiation interactions (ARI) and indirect effects, resulting from aerosol-cloud interactions (ACI). On-line coupled meteorology-chemistry models permit the description of these effects on the basis of simulated atmospheric aerosol concentrations, although there is still some uncertainty associated to the use of these models. In this sense, the objective of this work is to assess whether the inclusion of atmospheric aerosol radiative feedbacks of an ensemble of on-line coupled models improves the simulation results for maximum, mean and minimum temperature over Europe. The evaluated model outputs originate from EuMetChem COST Action ES1004 simulations for Europe, differing in the inclusion (or omission) of ARI and ACI in the various models. The case studies cover two important atmospheric aerosol episodes over Europe in the year 2010, a heat wave and forest fires episode (July-August 2010) and a more humid episode including a Saharan desert dust outbreak in October 2010. The simulation results are evaluated against observational data from E-OBS gridded database. The results indicate that, although there is only a slight improvement in the bias of the simulation results when including the radiative feedbacks, the spatio-temporal variability and correlation coefficients are improved for the cases under study when atmospheric aerosol radiative effects are included, especially for those areas closest to emissions sources of atmospheric aerosols.

  14. Using the Coupled Biosphere-Atmosphere Model SiB3-RAMS to Evaluate Fossil Fuel Emissions Estimates

    NASA Astrophysics Data System (ADS)

    Corbin, K. D.; Denning, A. S.; Parazoo, N.; Schuh, A.; Baker, I.; Lu, L.

    2006-12-01

    Using atmospheric tracer transport models, inverse modelers can estimate the strengths and spatial distribution of carbon sources and sinks; however, fossil fuel CO2 emissions must be accurately estimated to isolate and quantify biospheric and oceanic fluxes. To help achieve unbiased estimates of carbon exchange, high-resolution fossil fuel emissions estimates (36 km spatial resolution at timescales of one hour) are being produced for the United States [Gurney, 2006]. The goal of this research is use the coupled biosphere-atmosphere model SiB-RAMS to evaluate these emissions estimates. We have coupled the latest version of the Simple Biosphere Model (SiB3) to the CSU Regional Atmospheric Modeling System (RAMS) and have developed the capability to calculate the respiration factor and initial soil moisture for each grid cell using offline SiB3. In addition, we have implemented the capability to set the initial CO2 field to concentrations from the Parameterized Chemical Transport Model (PCTM) and to nudge lateral boundary concentrations to PCTM mixing ratios, which have a three-hour time-step. Carbon monoxide production and oxidation will be simulated using prescribed fields of the hydroxyl radical and methane. To investigate fossil fuel emissions, SiB3-RAMS simulations across large urban airsheds will be evaluated against CO and CO2 observations.

  15. Evaluation of dynamic mass redistribution technology for pharmacological studies of recombinant and endogenously expressed g protein-coupled receptors.

    PubMed

    Lee, Paul H; Gao, Alice; van Staden, Carlo; Ly, Jenny; Salon, John; Xu, Arron; Fang, Ye; Verkleeren, Ron

    2008-02-01

    The Epic cell assay technology (Corning Inc., Corning, NY) uses a resonant waveguide grating optical biosensor to measure cellular response to ligands manifested through dynamic mass redistribution (DMR) of cellular contents. The DMR measurement is a noninvasive, label-free assay that can be used to assess the pharmacological properties of compounds. In this study, a panel of 12 compounds was evaluated against two G protein-coupled receptor (GPCR) targets in recombinant expressed cell lines using the Corning Epic system in 384-well microplates. The evaluation was performed in a double-blinded fashion such that the identity and properties of both the GPCR targets and compounds were unknown to the researchers at the time of the study. Analysis of the DMR response from cell stimulation was used to identify compounds that functioned as agonists or antagonists and to evaluate the associated efficacy and potency. DMR results were shown to have good agreement with data obtained from cyclic AMP and calcium flux assays for compounds evaluated. A further analysis was performed and successfully identified the signaling pathways that the two GPCRs activated. In addition, the DMR measurement was able to detect responses from an endogenous receptor in these cells. The Epic DMR technology provides a generic platform amenable to pharmacological evaluation of cellular responses to GPCR activation in a label-free live cell assay format.

  16. The development and evaluation of new runoff parameterization representations coupled with Noah Land Surface Model

    NASA Astrophysics Data System (ADS)

    Zheng, Z.; Zhang, W.; Xu, J.

    2011-12-01

    As a key component of the global water cycle, runoff plays an important role in earth climate system by affecting the land surface water and energy balance. Realistic runoff parameterization within land surface model (LSM) is significant for accurate land surface modeling and numerical weather and climate prediction. Hence, optimization and refinement of runoff formulation in LSM can further improve model predictive capability of surface-to-atmosphere fluxes which influences the complex interactions between the land surface and atmosphere. Moreover, the performance of runoff simulation in LSM would essential to drought and flood prediction and warning. In this study, a new runoff parameterization named XXT (Xin'anjiang x TOPMODEL) was developed by introducing the water table depth into the soil moisture storage capacity distribution curve (SMSCC) from Xin'anjiang model for surface runoff calculation improvement and then integrating with a TOPMODEL-based groundwater scheme. Several studies had already found a strong correlation between the water table depth and land surface processes. In this runoff parameterization, the dynamic variation of surface and subsurface runoff calculation is connected in a systematic way through the change of water table depth. The XXT runoff parameterization was calibrated and validated with datasets both from observation and Weather Research & Forecasting model (WRF) outputs, the results with high Nash-efficiency coefficient indicated that it has reliable capability of runoff simulation in different climate regions. After model test, the XXT runoff parameterization is coupled with the unified Noah LSM 3.2 instead of simple water balance model (SWB) in order to alleviate the runoff simulating bias which may lead to poor energy partition and evaporation. The impact of XXT is investigated through application of a whole year (1998) simulation at surface flux site of Champaign, Illinois (40.01°N, 88.37°W). The results show that Noah

  17. Evaluation of Temperature and Precipitation in Coupled Regional Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Fischer, Andreas M.; Weigel, Andreas P.; Liniger, Mark A.; Buser, Christoph; Appenzeller, Christof

    2010-05-01

    Climate change is expected to have major impacts on society and ecosystems during the upcoming decades. The exact quantification of the climate change signal to be expected, however, is still associated with many uncertainties. For an atmosphere-ocean general circulation model (AOGCM) uncertainties in projecting future climate arise from a number of different sources: uncertainties in physical process understanding and model formulation, natural climate variability, and the amount of future anthropogenic greenhouse gas levels in the atmosphere. When analyzing AOGCM-driven regional climate model (RCM) simulations, which are often applied to provide local climate change information to the impacts community and policy makers, a further level of model uncertainty is introduced. An important step towards quantifying model uncertainty is the analysis of systematic model biases and of the the inter-model spread of the climate change signals obtained. Here, we compare RCM simulations of temperature and precipitation from the FP6-ENSEMBLES project among each other and against observations over Europe, and in greater detail over Switzerland. The RCMs (at 25 km horizontal resolution) were driven by AOGCMs and run in transient mode over the period 1950 to 2050 based on the A1B emission scenario. Some of the RCMs were forced by the same AOGCM, hence allowing to study the spread of different RCMs under the same boundary conditions. Climate change over Switzerland is assessed for the period 2021-50 as seasonal means over distinct climatic regions. The coupled RCM-GCM models exhibit remarkably large systematic biases in temperature and precipitation. Over selected European regions the absolute temperature bias can be as high as 5 K, although the annual cycle is relatively well reproduced. In general, the models simulate too wet conditions with biases of 50 - 100 % above observations during wintertime. Over Switzerland the interannual variability is generally overestimated

  18. Authenticity of Benin metalworks evaluated by inductively coupled plasma mass spectrometry and lead isotope analyses

    NASA Astrophysics Data System (ADS)

    Fabbri, E.; Soffritti, C.; Merlin, M.; Vaccaro, C.; Garagnani, G. L.

    2017-05-01

    Two metal plaques and a cock statuette belonging to a private collection and stylistically consistent with the Royal Art of Benin (Nigeria) were investigated in order to verify their authenticity. The characterization of alloys and patinas were carried out by inductively coupled plasma mass spectrometry, optical microscopy, scanning electron microscopy and energy dispersion spectroscopy, and X-Ray diffraction spectrometry. Furthermore, thermal ionization mass spectrometry was used to assess the abundances of lead isotopes and to attempt a dating by the measurement of 210Pb/204Pb ratio. The results showed that all three artefacts were mainly composed of low lead-brass alloys, with relatively high concentrations of zinc, antimony, cadmium and aluminum in the solid copper solution. Microstructures were mostly dendritic, typical of as-cast brasses, and characterized by recrystallized non-homogeneous twinned grains in areas corresponding to surface decorations, probably due to multiple hammering steps followed by partial annealing treatments. The matrix was composed of a cored α-Cu solid solution together with non-metallic inclusions, lead globules and Sn-rich precipitates in interdendritic spaces. On the surface of all metalworks, both copper and zinc oxides, a non-continuous layer of sulphur-containing contaminants and chloride-containing compounds, were identified. The lead isotope results were consistent with brasses produced shortly before or after 1900 CE. Overall, the data obtained by different techniques supported the hypothesis that the three artefacts were not authentic.

  19. Toward a microscopic-macroscopic coupled evaluation of the stability of a landslide dam during overtopping

    NASA Astrophysics Data System (ADS)

    Feng, Qingfeng; Liu, Detian; Fu, Xudong

    2016-04-01

    We explore the failure process of a landslide dam during overtopping, using a microscopic-macroscopic coupled simulation method. The numerical simulation contains two parts: the FVM (finite volume method) calculation for macroscopic external and internal erosion and the LBM (lattice Boltzmann Method)-DEM (discrete element method) calculation for microscopic shear failure. The FVM module provides the boundary condition (e.g., water discharge, confining pressure) and internal condition (e.g., porosity, gradation of soil particles) of each sub-region of a landslide dam. The LBM-DEM module calculates the shearing process of soil particles within each sub-region. The location and size of shear zone is identified in each sub-region and then integrated into shear zones across sub-regions. The shear zones changing during the overtopping process are captured and analyzed. We assume that, if some shear zones form into an area with strong concentration and connectivity at the macroscopic scale, the dam will be unstable and is undergoing the failure process. Two real cases of landslide dam in the "May 12, 2008" Wenchuan Earthquake hit region are analyzed. The potential applicability of the present method is demonstrated.

  20. Closed-Form Evaluation of Mutual Coupling in a Planar Array of Circular Apertures

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1996-01-01

    The integral expression for the mutual admittance between circular apertures in a planar array is evaluated in closed form. Very good accuracy is realized when compared with values that were obtained by numerical integration. Utilization of this closed-form expression, for all element pairs that are separated by more than one element spacing, yields extremely accurate results and significantly reduces the computation time that is required to analyze the performance of a large electronically scanning antenna array.

  1. Evaluation of down scaling predicted precipitation in a coupled modeling system

    SciTech Connect

    Costigan, K. R.; Tomkins, C. D.; Springer, E. P.; Winter, C. L.; Stalker, J. R.; Langley, D. L.

    2001-01-01

    With limited supplies and increasing demands for water resources, especially in arid and semi-arid regions, it is becoming increasingly important to understand the workings of the hydrologic cycle within river basins. A thorough understanding of the typical precipitation and runoff and the nature of the their variability is vital for planning the best use of these water resources. In the long term, all aspects of the hydrologic cycle affect the availability of water and it is therefore important to explore the entire cycle in order to understand the potential effects of increased water use and of changes in the regional climate. To simulate water resources, we are coupling a series of existing and previously tested models that address the multitude of physical processes and temporal and spatial scales that are important (Bossert, et al., 1999). The modeling system (Figure 1) includes the Regional Atmospheric Modeling System (RAMS) (Pielke et al., 1992), which simulates regional climate and provides meteorological variables and precipitation to the Los Alamos Distributed Hydrologic System (LADHS), a land-surface hydrology model. The Finite Element Heat and Mass (FEHM) model (Zyvoloski et al, 1997) is being added to the system to include ground water in the simulations. This modeling system is being applied to the upper Rio Grande Basin of Colorado and New Mexico. The headwaters of the Rio Grande are located in the San Juan Mountains of southwestern Colorado and the upper portions of the river are fed primarily by snowmelt from winter storms. In contrast, the lower portions of the river accumulate runoff from thunderstorms of tho summer monsoon season.

  2. Evaluation of the capacitively coupled resistivity (line antenna) method for the characterization of vadose zone dynamics

    NASA Astrophysics Data System (ADS)

    Niu, Qifei; Wang, Yu-Hsing; Zhao, Kairan

    2014-07-01

    The electrical resistivity survey, traditionally realized by the direct current (DC) resistivity method, has shown great value for characterizing vadose zone dynamics. Compared with the DC resistivity method, the capacitively coupled (CC) resistivity method has a higher ratio of measurement speed to data density, and thus is economically preferred for resistivity surveys that require high data density, e.g., hydrological characterizations. To test the applicability of the CC resistivity method to the study of vadose zone dynamics, we conducted time-lapse resistivity surveys using a commercial CC resistivity (line antenna) system, the OhmMapper, to monitor the water content change in an unsaturated zone due to artificial rainfall infiltration. Special considerations were paid to the inversion of CC resistivity (line antenna) measurements in order to increase the accuracy of inversion results. The derived resistivity of the subsurface clearly captures the water movement in the vadose zone and shows the applicability of the CC resistivity method. The experiment also showed a limitation of the equipment: when the ground surface became extremely conductive, the OhmMapper falsely interpreted the current level. If the wrong current level is identified in the measurement, the measured resistance should be corrected accordingly. The overestimation of the ground resistivity of the CC resistivity method, arising from the decrease in the ground resistivity, was also examined and discussed. Although the measurement bias was found to be negligible in our study, one should still be cautious about it when using the CC resistivity method for similar applications, especially when the measurement is made with a short dipole cable.

  3. Evaluating steady-state soil thickness by coupling uranium series and 10Be cosmogenic radionuclides

    NASA Astrophysics Data System (ADS)

    Vanacker, Veerle; Schoonejans, Jerome; Opfergelt, Sophie; Granet, Matthieu; Christl, Marcus; Chabaux, Francois

    2017-04-01

    Within the Critical Zone, the development of the regolith mantle is controlled by the downwards propagation of the weathering front into the bedrock and denudation at the surface of the regolith by mass movements, water and wind erosion. When the removal of surface material is approximately balanced by the soil production, the soil system is assumed to be in steady-state. The steady state soil thickness (or so-called SSST) can be considered as a dynamic equilibrium of the system, where the thickness of the soil mantle stays relatively constant over time. In this study, we present and compare analytical data from two independent isotopic techniques: in-situ produced cosmogenic nuclides and U-series disequilibria to constrain soil development under semi-arid climatic conditions. The Spanish Betic Cordillera (Southeast Spain) was selected for this study, as it offers us a unique opportunity to analyze soil thickness steady-state conditions for thin soils of semiarid environments. Three soil profiles were sampled across the Betic Ranges, at the ridge crest of zero-order catchments with distinct topographic relief, hillslope gradient and 10Be-derived denudation rate. The magnitude of soil production rates determined based on U-series isotopes (238U, 234U, 230Th and 226Ra) is in the same order of magnitude as the 10Be-derived denudation rates, suggesting steady state soil thickness in two out of three sampling sites. The results suggest that coupling U-series isotopes with in-situ produced radionuclides can provide new insights in the rates of soil development; and also illustrate the potential frontiers in applying U-series disequilibria to track soil production in rapidly eroding landscapes characterized by thin weathering depths.

  4. Evaluation of a numerical simulation model for a system coupling atmospheric gas, surface water and unsaturated or saturated porous medium.

    PubMed

    Hibi, Yoshihiko; Tomigashi, Akira; Hirose, Masafumi

    2015-12-01

    Numerical simulations that couple flow in a surface fluid with that in a porous medium are useful for examining problems of pollution that involve interactions among the atmosphere, surface water and groundwater, including, for example, saltwater intrusion along coasts. We previously developed a numerical simulation method for simulating a coupled atmospheric gas, surface water, and groundwater system (called the ASG method) that employs a saturation equation for flow in a porous medium; this equation allows both the void fraction of water in the surface system and water saturation in the porous medium to be solved simultaneously. It remained necessary, however, to evaluate how global pressure, including gas pressure, water pressure, and capillary pressure, should be specified at the boundary between the surface and the porous medium. Therefore, in this study, we derived a new equation for global pressure and integrated it into the ASG method. We then simulated water saturation in a porous medium and the void fraction of water in a surface system by the ASG method and reproduced fairly well the results of two column experiments. Next, we simulated water saturation in a porous medium (sand) with a bank, by using both the ASG method and a modified Picard (MP) method. We found only a slight difference in water saturation between the ASG and MP simulations. This result confirmed that the derived equation for global pressure was valid for a porous medium, and that the global pressure value could thus be used with the saturation equation for porous media. Finally, we used the ASG method to simulate a system coupling atmosphere, surface water, and a porous medium (110m wide and 50m high) with a trapezoidal bank. The ASG method was able to simulate the complex flow of fluids in this system and the interaction between the porous medium and the surface water or the atmosphere.

  5. Molecular modeling of G-protein coupled receptor kinase 2: docking and biochemical evaluation of inhibitors.

    PubMed

    Kassack, M U; Högger, P; Gschwend, D A; Kameyama, K; Haga, T; Graul, R C; Sadée, W

    2000-01-01

    G-protein coupled receptor kinase 2 (GRK2) regulates the activity of many receptors. Because potent inhibitors of GRK2 are thus far limited to polyanionic compounds like heparin, we searched for new inhibitors with the aid of a molecular model of GRK2. We used the available crystal structure of cAMP dependent protein kinase (cAPK) as a template to construct a 3D homology model of GRK2. Known cAPK and GRK2 inhibitors were docked into the active sites of GRK2 and cAPK using DOCK v3.5. H8 docked into the hydrophobic pocket of the adenosine 5'-triphosphate (ATP) binding site of cAPK, consistent with its known competitive cAPK inhibition relative to ATP. Similarly, 3 of 4 known GRK2 inhibitors docked into the ATP binding pocket of GRK2 with good scores. Screening the Fine Chemicals Directory (FCD, containing the 3D structures of 13,000 compounds) for docking into the active sites of GRK2 identified H8 and the known GRK2 inhibitor trifluoperazine as candidates. Whereas H8 indeed inhibited light-dependent phosphorylation of rhodopsin by GRK2, but with low potency, 3 additional FCD compounds with promising GRK2 scores failed to inhibit GRK2. This result demonstrates limitations of the GRK2 model in predicting activity among diverse chemical structures. Docking suramin, an inhibitor of protein kinase C (not present in FCD) yielded a good fit into the ATP binding site of GRK2 over cAPK. Suramin did inhibit GRK2 with IC50 32 microM (pA26.39 for competitive inhibition of ATP). Suramin congeners with fewer sulfonic acid residues (NF062, NF503 [IC50 14 microM]) or representing half of the suramin molecule (NF520) also inhibited GRK2 as predicted by docking. In conclusion, suramin and analogues are lead compounds in the development of more potent and selective inhibitors of GRK2.

  6. Evaluating the one-way coupling of WRF-Hydro for flood forecasting

    NASA Astrophysics Data System (ADS)

    Yucel, Ismail; Onen, Alper; Yilmaz, Koray; Gochis, David

    2016-04-01

    A fully-distributed, multi-physics, multi-scale hydrologic and hydraulic modeling system, WRF-Hydro, is used to assess the potential for skillful flood forecasting based on precipitation inputs derived from the Weather Research and Forecasting (WRF) model and the EUMETSAT Multi-sensor Precipitation Estimates (MPEs). Similar to past studies it was found that WRF model precipitation forecast errors related to model initial conditions are reduced when the three dimensional atmospheric data assimilation (3DVAR) scheme in the WRF model simulations is used. A comparative evaluation of the impact of MPE versus WRF precipitation estimates, both with and without data assimilation, in driving WRF-Hydro simulated streamflow is then made. The ten rainfall-runoff events that occurred in the Black Sea Region were used for testing and evaluation. With the availability of streamflow data across rainfall-runoff events, the cal- ibration is only performed on the Bartin sub-basin using two events and the calibrated parameters are then transferred to other neighboring three ungauged sub-basins in the study area. The rest of the events from all sub-basins are then used to evaluate the performance of the WRF-Hydro system with the cali- brated parameters. Following model calibration, the WRF-Hydro system was capable of skillfully repro- ducing observed flood hydrographs in terms of the volume of the runoff produced and the overall shape of the hydrograph. Streamflow simulation skill was significantly improved for those WRF model simula- tions where storm precipitation was accurately depicted with respect to timing, location and amount. Accurate streamflow simulations were more evident in WRF model simulations where the 3DVAR scheme was used compared to when it was not used. Because of substantial dry bias feature of MPE, as compared with surface rain gauges, streamflow derived using this precipitation product is in general very poor. Overall, root mean squared errors for runoff were

  7. Asymptotic evaluation of the pulse train radiated by an angled beam and fluid coupled rectangular ultrasonic transducer.

    PubMed

    Zakharov, D D; Fradkin, L Ju

    2010-03-01

    The near field underneath the ultrasonic probe fluid coupled to an isotropic solid is approximated in the frequency domain by a closed form asymptotic solution. The approximation is based on the problem decomposition and uses the stationary phase method evaluating the response to an equivalent surface source. This results in a sum of contributions, each dominating in a specific geometrical region, the main beam or a side lobe. The transitional zones are also described. The pulse trains are computed using the harmonic synthesis and compared with the results obtained by direct calculation of Fourier integrals. It is shown that the asymptotic approach permits us to elucidate the physics of problem and leads to a numerical algorithm which is about 10(4) times faster than the direct computations.

  8. Evaluation of electromechanical coupling parameters of piezoelectric materials by using piezoelectric cantilever with coplanar electrode structure in quasi-stasis.

    PubMed

    Zheng, Xuejun; Zhu, Yuankun; Liu, Xun; Liu, Jing; Zhang, Yong; Chen, Jianguo

    2014-02-01

    Based on Timoshenko beam theory, a principle model is proposed to establish the relationship between electric charge and excitation acceleration, and in quasi-stasis we apply the direct piezoelectric effect of multilayer cantilever with coplanar electrode structure to evaluate the piezoelectric strain coefficient d15 and electromechanical coupling coefficient k15. They are measured as 678 pC/N and 0.74 for the commercial piezoelectric ceramic lead zirconate titanate (PZT-51) bulk specimen and 656 pC/N and 0.63 for the lead magnesium niobate (PMN) bulk specimen, and they are in agreement with the calibration and simulation values. The maximum of relative errors is less than 4.2%, so the proposed method is reliable and convenient.

  9. Evaluating Global Streamflow Simulations by a Physically-based Routing Model Coupled with the Community Land Model

    SciTech Connect

    Li, Hongyi; Leung, Lai-Yung R.; Getirana, Augusto; Huang, Maoyi; Wu, Huan; Xu, Yubin; Guo, Jiali; Voisin, Nathalie

    2015-04-15

    Accurately simulating hydrological processes such as streamflow is important in land surface modeling because they can influence other land surface processes, such as carbon cycle dynamics, through various interaction pathways. This study aims to evaluate the global application of a recently developed Model for Scale Adaptive River Transport (MOSART)coupled with theCommunity Land Model, version 4 (CLM4). To support the global implementation of MOSART, a comprehensive global hydrography dataset has been derived at multiple resolutions from different sources. The simulated runoff fields are first evaluated against the composite runoff map from theGlobal RunoffData Centre (GRDC). The simulated streamflow is then shown to reproduce reasonably well the observed daily andmonthly streamflow at over 1600 of the world’smajor river stations in terms of annual, seasonal, and daily flow statistics. The impacts of model structure complexity are evaluated, and results show that the spatial and temporal variability of river velocity simulated byMOSART is necessary for capturing streamflow seasonality and annual maximum flood. Other sources of the simulation bias include uncertainties in the atmospheric forcing, as revealed by simulations driven by four different climate datasets, and human influences, based on a classification framework that quantifies the impact levels of large dams on the streamflow worldwide.

  10. Evaluation of liposome populations using a sucrose density gradient centrifugation approach coupled to a continuous flow system.

    PubMed

    Sánchez-López, V; Fernández-Romero, J M; Gómez-Hens, A

    2009-07-10

    A method for the evaluation of liposome size populations using sucrose density gradient centrifugation coupled with a continuous flow system is presented. Liposomes, prepared using different methods (rapid solvent evaporation, rehydration, and detergent removal) and modified by assaying several procedures (shaking, sonication and extrusion) were evaluated according to the type of liposome, size and polydispersity. The preparation of liposomes was carried out in the presence of the fluorophor cresyl violet. Extracts of the liposomes were homogenised and centrifuged at 20,073 x g at 4 degrees C for 30 min using sucrose density gradient centrifugation programmes, which provide efficient liposome separation in different sizes. The results of the separation procedure were tested by aspiration of the extracts into a continuous flow system in which the liposomes were disrupted by the continuous mixing with a Triton X-100 solution, prior to their translation to the detector. The luminescence provided by the liberation of the encapsulated fluorophor indicates the distribution of liposomes in each density gradient stage. Three zones were obtained: zone alpha, containing giant unilamellar and multivesicular vesicles, zone beta, with large and medium size liposomes, and zone gamma, which contained small size liposomes. The precision of the separation zones obtained, expressed as RSD%, was lower than 5.6% in all instances. The method provides a relative rapid way to evaluate the liposome polydispersity and size after using conventional methods of synthesis and mechanical modifications.

  11. Maple procedures for the coupling of angular momenta II. Sum rule evaluation

    NASA Astrophysics Data System (ADS)

    Fritzsche, S.; Varga, S.; Geschke, D.; Fricke, B.

    1998-06-01

    In a previous paper (S. Fritzsche, Comput. Phys. Commun. 103 (1997) 51), we defined data structures to deal with typical expressions from Racah algebra within the framework of Maple. Such expressions arise very frequently in various fields, for instance, by treating composite wave functions and tensor operators in many-particle physics. Often, these Racah expressions are written in terms of Clebsch-Gordan coefficients and Wigner n-j symbols. Our previous set of Maple procedures mainly concerned numerical computations on such symbols, the simplification by special values as well as the use of recursion relations. The full elegance of applying Racah algebra techniques in daily research work is, however, only revealed by the analytic simplification of more complex expressions. In practise, this even requires the major effort in dealing with these techniques. Its success closely depends on the knowledge of sum rules which typically include a number of dummy summation indices. The application of these sum rules is a rather straightforward task but may become very tedious for more difficult expressions due to the large number of symmetries of the Clebsch-Gordan coefficients and Wigner n-j symbols. We therefore extended the Racah program to facilitate sum rule evaluations in the given framework. A set of new and revised procedures now supports the evaluation of Racah algebra expressions by applying the orthogonality properties of the Wigner symbols and a variety of sum rules. More than 40 sum rules known from the literature and involving products of up to six Wigner n-j symbols have been implemented and are available for interactive use. The applicability of this new tool will be demonstrated by three examples from many-particle physics.

  12. Using ARM Observations to Evaluate Model Predictions of Land-Atmosphere Coupling on the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Phillips, T. J.; Klein, S. A.; Ma, H. Y.

    2015-12-01

    Statistically significant interactions between summertime soil moisture and a number of atmospheric surface and boundary-layer variables have been observed at the U.S. Southern Great Plains Central Facility (SGP CF) site that is maintained by the Department of Energy's Atmospheric Radiation Measurement (ARM) program in northern Oklahoma (Phillips and Klein, 2014 JGR). The observed land-atmosphere coupling (LAC) strength was assessed by means of correlation coefficients R and "sensitivity indices" I (a measure of the comparative change in an atmospheric variable for a one-standard-deviation change in soil moisture). In the current study, we evaluate similar features of LAC in global predictions generated by version 5.1 of the Community Atmosphere Model (CAM5.1), when coupled to the CLM4 land model and downscaled to the ARM SGP site. Each day's prediction was made after initializing the CAM5 atmosphere with ERA Interim reanalysis state variables, while other needed variables were obtained from a nudging simulation. In addition, the CLM4 daily initial conditions were determined by running the land model offline using observed surface net radiation, precipitation, and wind as forcings. Different aspects of LAC in the CAM5 will be compared with those found in the ARM observations during the summers of 2003-2011, when 3 independent measurements of soil moisture are available to provide an estimate of the inherent uncertainties in the LAC strengths determined from the ARM observations. This evaluation may uncover some unrealistic aspects of LAC in the CAM5 model that point toward potential deficiencies in its land or atmospheric model parameterizations. AcknowledgmentsThis work was funded by the U.S. Department of Energy Office of Science and was performed at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Coupling ecology and GIS to evaluate efficacy of marine protected areas in Hawaii.

    PubMed

    Friedlander, Alan M; Brown, Eric K; Monaco, Mark E

    2007-04-01

    In order to properly determine the efficacy of marine protected areas (MPAs), a seascape perspective that integrates ecosystem elements at the appropriate ecological scale is necessary. Over the past four decades, Hawaii has developed a system of 11 Marine Life Conservation Districts (MLCDs) to conserve and replenish marine resources around the state. Initially established to provide opportunities for public interaction with the marine environment, these MLCDs vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning MPA design and function using multiple discrete sampling units. Digital benthic habitat maps for all MLCDs and adjacent habitats were used to evaluate the efficacy of existing MLCDs using a spatially explicit stratified random sampling design. Analysis of benthic cover validated the a priori classification of habitat types and provided justification for using these habitat strata to conduct stratified random sampling and analyses of fish habitat utilization patterns. Results showed that a number of fish assemblage characteristics (e.g., species richness, biomass, diversity) vary among habitat types, but were significantly higher in MLCDs compared with adjacent fished areas across all habitat types. Overall fish biomass was 2.6 times greater in the MLCDs compared to open areas. In addition, apex predators and other species were more abundant and larger in the MLCDs, illustrating the effectiveness of these closures in conserving fish populations within their boundaries. Habitat type, protected area size, and level of protection from fishing were all important determinates of MLCD effectiveness with respect to their associated fish assemblages. Although size of these protected areas was positively correlated with a number of fish assemblage characteristics, all appear too small to have any measurable influence on the adjacent fished areas. These protected areas were not designed for

  14. Performance and evaluation of a coupled prognostic model TAPM over a mountainous complex terrain industrial area

    NASA Astrophysics Data System (ADS)

    Matthaios, Vasileios N.; Triantafyllou, Athanasios G.; Albanis, Triantafyllos A.; Sakkas, Vasileios; Garas, Stelios

    2017-04-01

    Atmospheric modeling is considered an important tool with several applications such as prediction of air pollution levels, air quality management, and environmental impact assessment studies. Therefore, evaluation studies must be continuously made, in order to improve the accuracy and the approaches of the air quality models. In the present work, an attempt is made to examine the air pollution model (TAPM) efficiency in simulating the surface meteorology, as well as the SO2 concentrations in a mountainous complex terrain industrial area. Three configurations under different circumstances, firstly with default datasets, secondly with data assimilation, and thirdly with updated land use, ran in order to investigate the surface meteorology for a 3-year period (2009-2011) and one configuration applied to predict SO2 concentration levels for the year of 2011.The modeled hourly averaged meteorological and SO2 concentration values were statistically compared with those from five monitoring stations across the domain to evaluate the model's performance. Statistical measures showed that the surface temperature and relative humidity are predicted well in all three simulations, with index of agreement (IOA) higher than 0.94 and 0.70 correspondingly, in all monitoring sites, while an overprediction of extreme low temperature values is noted, with mountain altitudes to have an important role. However, the results also showed that the model's performance is related to the configuration regarding the wind. TAPM default dataset predicted better the wind variables in the center of the simulation than in the boundaries, while improvement in the boundary horizontal winds implied the performance of TAPM with updated land use. TAPM assimilation predicted the wind variables fairly good in the whole domain with IOA higher than 0.83 for the wind speed and higher than 0.85 for the horizontal wind components. Finally, the SO2 concentrations were assessed by the model with IOA varied from 0

  15. Characterization and evaluation of Aspergillus oryzae lactase coupled to a regenerable support

    SciTech Connect

    Friend, B.A.; Shahani, K.M.

    1982-03-01

    A derivative of crosslinked Sepharose, p-(N-acetyl-L-tyrosine azo) benzamidoethyl-CL-Sepharose 4B, was synthesized and used for the selective immobilization of thermostable lactase from Aspergillus oryzae. Preparations of soluble and immobilized lactase were evaluated under initial velocity conditions in a batch process. Immobilization had no significant effect on the pH optimum at 50 degrees C or kinetic parameters at pH 4.5 or pH 6.5 and 50 degrees C. At pH 4.5, the soluble enzyme possessed maximum activity at 60 degrees C and the immobilized at 55 degrees C; at pH 6.5 both showed maximum activity at 55 degrees C. The activation energy, entropy, and enthalpy decreased significantly with immobilization at pH 4.5 but not at pH 6.5. When the immobilized enzyme was placed in a packed-bed reactor, the effect of temperature on activity was altered as reflected by a marked decrease in the thermodynamic parameters of activation at both pH levels. Upon immobilization there was also a dramatic increase in the apparent thermal stability of the lactase, and the mean half-life at 50 degrees C was increased from 7.2 to 13 days at pH 4.5 and from 3.8 to 16 days at pH 6.5. (Refs. 45).

  16. Enhancing the bandwidth of piezoelectric composite transducers for air-coupled non-destructive evaluation.

    PubMed

    Banks, Robert; O'Leary, Richard L; Hayward, Gordon

    2017-03-01

    This paper details the development of a novel method for increasing the operational bandwidth of piezocomposites without the need for lossy backing material, the aim being to increase fractional bandwith by geometrical design. Removing the need for lossy backing materials, should in turn increase the transmit efficiency in the desired direction of propagation. Finite element analysis has been employed to determine the mode of operation of the new piezocomposite devices and shows good correlation with that derived experimentally. Through a series of practical and analytical methods it has been shown that additional thickness mode resonances can be introduced into the structure by a simple machining process. The shaped composites described in this paper offer increased operational bandwidth. A simple example of a two step thickness design is described to validate and illustrate the principle. A more complex conical design is presented that illustrates a possible tenfold increase in bandwidth from 30kHz to 300kHz, operating in air without backing. An illustration of the applicability of this type of transducer technology for frequency agile guided mode non-destructive evaluation is then presented.

  17. Final Progress Report: Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Cometabolism

    SciTech Connect

    Crawford, Ronald L; Paszczynski, Andrzej J

    2010-02-19

    spectrometry and genomic analyses using RT-PCR to characterize these enzyme systems. UI’s specific objectives were to develop the proteomics and genomic tools to assess the presence of the methane monooxygenase (MMO) proteins in the aquifers under study and relate this to the enumeration of methanotrophic microorganisms. We targeted the identification of both sMMO and pMMO. We believe that the copper level in the TAN aquifer is most likely suppressing the expression of sMMO and mediates the higher levels of pMMO expression. Hence our investigations included the identification of both forms of MMOs, and we expected a higher concentration of pMMO proteins in TAN samples. The amounts of these proteins present were correlated with numbers of methanotrophs determined by us and other members of the research team using PCR-based methods. In summary, to accomplish our objectives we applied environmental proteomics techniques to monitor proteins that are involved in the co-metabolic degradation of trichloroethylene (TCE) in groundwater of the INL TAN site on Department of Energy ands of near Idaho Falls, ID USA. To acquire peptides sequences information we used an ultra performance chromatography (UPLC) system coupled with QToF Premiere nano-electrospray tandem quadropole-time of flight mass spectrometer. Our goal was to identify signature peptides of methane monooxygenases (MMOs) within methanotrophic bacteria that are active in cometabolic degradation of TCE. We developed a new method for extracting total proteins from environmental planktonic and/or biofilm samples that involve a new time course cell lysis and protein extraction method in combination with chromatographic separation of peptide and tandem mass spectrometry sequencing. The techniques resulted in successful extraction and identification of MMO-based peptides from both pure cultures and TAN site samples. The work confirmed the importance of mathonotrophs in the co-metabolic removal of TCE from the TAN site aquifer.

  18. Microtoming coupled to microarray analysis to evaluate the spatial metabolic status of Geobacter sulfurreducens biofilms.

    PubMed

    Franks, Ashley E; Nevin, Kelly P; Glaven, Richard H; Lovley, Derek R

    2010-04-01

    Further insight into the metabolic status of cells within anode biofilms is essential for understanding the functioning of microbial fuel cells and developing strategies to optimize their power output. Cells throughout anode biofilms of Geobacter sulfurreducens reduced the metabolic stains: 5-cyano-2,3-ditolyl tetrazolium chloride and Redox Green, suggesting metabolic activity throughout the biofilm. To compare the metabolic status of cells growing close to the anode versus cells in the outer portion of the anode biofilm, anode biofilms were encased in resin and sectioned into inner (0-20 microm from anode surface) and outer (30-60 microm) fractions. Transcriptional analysis revealed that, at a twofold threshold, 146 genes had significant (P<0.05) differences in transcript abundance between the inner and outer biofilm sections. Only 1 gene, GSU0093, a hypothetical ATP-binding cassette transporter, had significantly higher transcript abundances in the outer biofilm. Genes with lower transcript abundance in the outer biofilm included genes for ribosomal proteins and NADH dehydrogenase, suggesting lower metabolic rates. However, differences in transcript abundance were relatively low (evaluating gene expression with depth in a diversity of microbial biofilms.

  19. Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model

    NASA Astrophysics Data System (ADS)

    Franz, Martina; Simpson, David; Arneth, Almut; Zaehle, Sönke

    2017-01-01

    Ozone (O3) is a toxic air pollutant that can damage plant leaves and substantially affect the plant's gross primary production (GPP) and health. Realistic estimates of the effects of tropospheric anthropogenic O3 on GPP are thus potentially important to assess the strength of the terrestrial biosphere as a carbon sink. To better understand the impact of ozone damage on the terrestrial carbon cycle, we developed a module to estimate O3 uptake and damage of plants for a state-of-the-art global terrestrial biosphere model called OCN. Our approach accounts for ozone damage by calculating (a) O3 transport from 45 m height to leaf level, (b) O3 flux into the leaf, and (c) ozone damage of photosynthesis as a function of the accumulated O3 uptake over the lifetime of a leaf. A comparison of modelled canopy conductance, GPP, and latent heat to FLUXNET data across European forest and grassland sites shows a general good performance of OCN including ozone damage. This comparison provides a good baseline on top of which ozone damage can be evaluated. In comparison to literature values, we demonstrate that the new model version produces realistic O3 surface resistances, O3 deposition velocities, and stomatal to total O3 flux ratios. A sensitivity study reveals that key metrics of the air-to-leaf O3 transport and O3 deposition, in particular the stomatal O3 uptake, are reasonably robust against uncertainty in the underlying parameterisation of the deposition scheme. Nevertheless, correctly estimating canopy conductance plays a pivotal role in the estimate of cumulative O3 uptake. We further find that accounting for stomatal and non-stomatal uptake processes substantially affects simulated plant O3 uptake and accumulation, because aerodynamic resistance and non-stomatal O3 destruction reduce the predicted leaf-level O3 concentrations. Ozone impacts on GPP and transpiration in a Europe-wide simulation indicate that tropospheric O3 impacts the regional carbon and water cycling less

  20. Evaluating storm-scale groundwater recharge dynamics with coupled weather radar data and unsaturated zone modeling

    NASA Astrophysics Data System (ADS)

    Nasta, P.; Gates, J. B.; Lock, N.; Houston, A. L.

    2013-12-01

    generation until late winter, even when intense convective storms took place. For this reason, about 86% of all precipitation events produce insignificant recharge contributions. Recharge responses to individual storms were nonlinear and did not cluster well with either storm amount or storm classification type. For example, ~7% of rainfall events fall near the 1:1 rainfall/recharge line and these events represent about 37% of cumulative recharge, and individual storms accounted for up to 4% of their annual totals. However, recharge events in late winter are mainly triggered by stratiform precipitation whereas in spring they are generally generated by convective storms. This novel approach to assessing storm-scale recharge may be relevant to several current challenges in the characterization of groundwater recharge processes, including the evaluation of their spatiotemporal distributions and the impacts of climate change on groundwater.

  1. Evaluating Coupled Human-Hydrologic Systems in High Altitude Regions: A Case Study of the Arun Watershed, Eastern Nepal

    NASA Astrophysics Data System (ADS)

    Voss, K.; Bookhagen, B.; Tague, C.; Lopez-Carr, D.

    2014-12-01

    The Himalaya exhibit dynamic ecological, hydrological, and climatic extremes that magnify the variability and extent of natural hazards, resulting in destruction to both physical and human landscapes. Coupled with poverty, these factors intensify local communities' vulnerability to climate change. This study highlights the Arun watershed in eastern Nepal as a case study to evaluate how local communities in high altitude regions are managing their water for domestic and agricultural needs while coping with extreme events, such as floods and landslides. Remotely-sensed precipitation, snowpack and glacial extent data from the past decade are combined with preliminary results from extensive field-based community surveys in the Arun watershed. The analysis of remotely-sensed data will describe seasonal trends in water availability, glacial lake growth, and the spatial variation of these trends within the basin. These hydrologic changes will be linked to the human survey analysis, which will provide an understanding of locals' perceptions of water challenges and the current water management strategies within the basin. Particular attention will be given to a comparison between the eastern and western tributaries of the Arun River, where the catchments are mainly rain-fed (eastern) versus glacial-fed (western). This contrast will highlight how different hydrologic scenarios evidenced from remote-sensing data motivate diverse human water management responses as defined in field surveys. A particular focus will be given to management decisions related to agriculture expansion and hydropower development. This synthesis of remote-sensing and social research methodologies provides a valuable perspective on coupled human-hydrologic systems.

  2. Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China.

    PubMed

    Zhang, Baoqing; He, Chansheng; Burnham, Morey; Zhang, Lanhui

    2016-01-01

    In this study, the coupling effects of climate aridity and vegetation restoration on runoff and sediment yield over the Loess Plateau were examined and characterized. To take into consideration the complexity of drought, as well as the varied strengths and weaknesses of different drought measures, two drought indices are selected to identify and evaluate drought variability. The Normalized Difference Vegetation Index (NDVI) data were obtained to monitor and express spatiotemporal variations in vegetation cover. The results show that most regions of the Loess Plateau experienced increasingly severe droughts over the past 40years, and these regions comprise the major source of the Yellow River sediment. Climatic drying initially occurred in the 1990s, and became statistically significant in 2000s. The increasingly severe droughts could negatively impact surface and groundwater supplies as well as soil water storage, but may also minimize surface runoff yield, which is one of the major causes of soil erosion on the Loess Plateau. Vegetation cover on the Loess Plateau was significantly improved after the implementation of "Grain for Green" project, which were helpful for controlling severe soil erosion. With the impacts of the construction of check dams, terraces and large reservoirs, runoff and sediment yield over the Loess Plateau initially exhibited downward trends between 1970 and 1990. After 1990, with the effects of the climate warming and drying, a second sharp reduction in runoff and sediment yield occurred. The coupling effects of climate aridity and vegetation restoration have led to a third significant decrease in runoff and sediment yield over the Loess Plateau after 2000. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic {beta}-cell mass

    SciTech Connect

    Cline, Gary W.; Zhao, Xiaojian; Jakowski, Amy B.; Soeller, Walter C.; Treadway, Judith L.

    2011-09-02

    Highlights: {yields} We screened G-protein coupled receptors for imaging pancreatic. {yields} Database mining and immunohistochemistry identified GPCRs enriched in {beta}-cells. {yields} In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. {yields} GPCR candidates for imaging of {beta}-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic {beta}-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity to islet {beta}-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 {approx} GLP-1R > mGluR5. Favorable islet selectivity and biodistribution

  4. Evaluation of Solid-Solution Hardening in Several Binary Alloy Systems Using Diffusion Couples Combined with Nanoindentation

    NASA Astrophysics Data System (ADS)

    Kadambi, Sourabh B.; Divya, V. D.; Ramamurty, U.

    2017-10-01

    Analysis of solid-solution hardening (SSH) in alloys requires the synthesis of large composition libraries and the measurement of strength or hardness from these compositions. Conventional methods of synthesis and testing, however, are not efficient and high-throughput approaches have been developed in the past. In the present study, we use a high-throughput combinatorial approach to examine SSH at large concentrations in binary alloys of Fe-Ni, Fe-Co, Pt-Ni, Pt-Co, Ni-Co, Ni-Mo, and Co-Mo. The diffusion couple (DC) method is used to generate concentration ( c) gradients and the nanoindentation (NI) technique to measure the hardness ( H) along these gradients. The obtained H -c profiles are analyzed within the framework of the Labusch model of SSH, and the c^{2/3} dependence of H predicted by the model is found to be generally applicable. The SSH behavior obtained using the combinatorial method is found to be largely consistent with that observed in the literature using conventional and DC-NI methods. This study evaluates SSH in Fe-, Ni-, Co-, and Pt-based binary alloys and confirms the applicability of the DC-NI approach for rapidly screening various solute elements for their SSH ability.

  5. Novel 9′-substituted-noscapines: Synthesis with Suzuki cross-coupling, structure elucidation and biological evaluation

    PubMed Central

    Porcù, Elena; Sipos, Attila; Basso, Giuseppe; Hamel, Ernest; Bai, Ruoli; Stempfer, Verena; Udvardy, Antal; Bényei, Attila Cs.; Schmidhammer, Helmut; Antus, Sàndor; Viola, Giampietro

    2014-01-01

    Tubulin is a major molecular target for anticancer drugs. The dynamic process of microtubule assembly and disassembly can be blocked by various agents that bind to distinct sites on tubulin, usually its β-subunit. Among the antimitotic agents that perturb microtubule dynamics, noscapinoids represent an emerging class of agents. In particular, 9′-bromonoscapine (EM011) has been identified as a potent noscapine analog. Here we present high yielding, efficient synthetic methods based on Suzuki coupling of 9′-alkyl and 9′-arylnoscapines and an evaluation of their antiproliferative properties. Our results showed that 9′-alkyl and 9′-aryl derivatives inhibit proliferation of human cancer cells. The most active compounds were the 9′-methyl and the 9′-phenyl derivatives, which showed similar cytotoxic potency in comparison to the 9′-brominated derivative. Interestingly these newly synthesized derivatives did not induce cell death in normal human lymphocytes, suggesting that the compounds may be selective against cancer cells. All of these derivatives, except 9′-(2-methoxyphenyl)-noscapine, efficiently induced a cell cycle arrest in the G2/M phase of the cell cycle in HeLa and Jurkat cells. Furthermore, we showed that the most active compounds in HeLa cells induced apoptosis following the mitochondrial pathway with the activation of both caspase-9 and caspase-3. In addition, these compounds significantly reduced the expression of the antiapoptotic proteins Mcl-1 and Bcl-2. PMID:25050880

  6. Evaluation of Pentafluoroethane and 1,1-Difluoroethane for a Dielectric Etch Application in an Inductively Coupled Plasma Etch Tool

    NASA Astrophysics Data System (ADS)

    Karecki, Simon; Chatterjee, Ritwik; Pruette, Laura; Reif, Rafael; Sparks, Terry; Beu, Laurie; Vartanian, Victor

    2000-07-01

    In this work, a combination of two hydrofluorocarbon compounds, pentafluoroethane (FC-125, C2HF5) and 1,1-difluoroethane (FC-152a, CF2H-CH3), was evaluated as a potential replacement for perfluorocompounds in dielectric etch applications. A high aspect ratio oxide via etch was used as the test vehicle for this study, which was conducted in a commercial inductively coupled high density plasma etch tool. Both process and emissions data were collected and compared to those provided by a process utilizing a standard perfluorinated etch chemistry (C2F6). Global warming (CF4, C2F6, CHF3) and hygroscopic gas (HF, SiF4) emissions were characterized using Fourier transform infrared (FTIR) spectroscopy. FC-125/FC-152a was found to produce significant reductions in global warming emissions, on the order of 68 to 76% relative to the reference process. Although etch stopping, caused by a high degree of polymer deposition inside the etched features, was observed, process data otherwise appeared promising for an initial study, with good resist selectivity and etch rates being achieved.

  7. Evaluation of microwave-assisted extraction for aristolochic acid from Aristolochiae Fructus by chromatographic analysis coupled with nephrotoxicity studies.

    PubMed

    Zhou, Ting; Xiao, Xiao-Hua; Wang, Jia-Yue; Chen, Jin-Ling; Xu, Xian-Fang; He, Zhi-Feng; Li, Gong-Ke

    2012-02-01

    In this paper, a microwave-assisted extraction (MAE) method was established for aristolochic acid-I from Aristolochiae Fructus, and the advantage of MAE was evaluated by chromatographic analysis coupled with nephrotoxicity studies. The experimental parameters of MAE for aristolochic acid-I in Aristolochiae Fructus were investigated and MAE was compared with Soxhlet extraction and ultrasound-assisted extraction in terms of extraction yields and extraction conditions. Under the optimum conditions, MAE could provide higher extraction yields of aristolochic acid-I (1.10 mg/g) than ultrasound-assisted extraction (0.82 mg/g) and Soxhlet extraction (0.95 mg/g), in addition to using less solvent and having a shorter extraction time. Furthermore, the nephrotoxicities of the extracts of Aristolochiae Fructus from different extraction procedures were investigated in Sprague-Dawley rats. The results of nephrotoxicity studies of, for example, general conditions, biochemistry parameters and histopathology examination showed no significantly differences in the nephrotoxicity levels of the extracts from MAE and that from Soxhlet extraction. These results indicated that MAE technique is a simple, rapid and effective extraction method, and the microwave irradiation during MAE procedure did not have any influence on the nephrotoxicity of Aristolochiae Fructus compared with Soxhlet extraction.

  8. Quality control evaluation of nutraceutical products from Ginkgo biloba using liquid chromatography coupled to high resolution mass spectrometry.

    PubMed

    López-Gutiérrez, Noelia; Romero-González, Roberto; Martínez Vidal, José Luis; Garrido Frenich, Antonia

    2016-03-20

    Analysis of 11 commercial nutraceutical products obtained from ginkgo has been performed using ultra-high performance liquid chromatography coupled to single-stage Orbitrap high resolution mass spectrometry (UHPLC-Orbitrap-MS). The main phytochemicals present in these samples were detected and quantified, utilizing a database containing 65 compounds. Phytochemicals were extracted using a mixture of an aqueous solution of methanol:water (80:20, v/v) in two sequential solid-liquid extractions. Adequate validation parameters were obtained. The validated compounds exhibited suitable linearity with determination coefficients (R(2)) higher than 0.99, and intra and inter-day precision were lower than 17 and 22%, respectively. Limits of detection (LODs) and quantification (LOQs) were calculated, ranging from 2 to 10 μg L(-1), except for myricetin (LOD, 150 μg L(-1) and LOQ, 300 μg L(-1)). Results indicate that the amount of terpenoids greatly varies among samples, ranging from 1133 (C7) to 12706 mg kg(-1) (C11). This emphasizes the importance of improve quality control in ginkgo-based products. Moreover, retrospective analysis allowed the detection of some undesirable substances as ginkgolic acid in the samples evaluated.

  9. TU-F-17A-03: A 4D Lung Phantom for Coupled Registration/Segmentation Evaluation

    SciTech Connect

    Markel, D; El Naqa, I; Levesque, I

    2014-06-15

    Purpose: Coupling the processes of segmentation and registration (regmentation) is a recent development that allows improved efficiency and accuracy for both steps and may improve the clinical feasibility of online adaptive radiotherapy. Presented is a multimodality animal tissue model designed specifically to provide a ground truth to simultaneously evaluate segmentation and registration errors during respiratory motion. Methods: Tumor surrogates were constructed from vacuum sealed hydrated natural sea sponges with catheters used for the injection of PET radiotracer. These contained two compartments allowing for two concentrations of radiotracer mimicking both tumor and background signals. The lungs were inflated to different volumes using an air pump and flow valve and scanned using PET/CT and MRI. Anatomical landmarks were used to evaluate the registration accuracy using an automated bifurcation tracking pipeline for reproducibility. The bifurcation tracking accuracy was assessed using virtual deformations of 2.6 cm, 5.2 cm and 7.8 cm of a CT scan of a corresponding human thorax. Bifurcations were detected in the deformed dataset and compared to known deformation coordinates for 76 points. Results: The bifurcation tracking accuracy was found to have a mean error of −0.94, 0.79 and −0.57 voxels in the left-right, anterior-posterior and inferior-superior axes using a 1×1×5 mm3 resolution after the CT volume was deformed 7.8 cm. The tumor surrogates provided a segmentation ground truth after being registered to the phantom image. Conclusion: A swine lung model in conjunction with vacuum sealed sponges and a bifurcation tracking algorithm is presented that is MRI, PET and CT compatible and anatomically and kinetically realistic. Corresponding software for tracking anatomical landmarks within the phantom shows sub-voxel accuracy. Vacuum sealed sponges provide realistic tumor surrogate with a known boundary. A ground truth with minimal uncertainty is thus

  10. Interlaboratory Evaluation of Automated, Multiplexed Peptide Immunoaffinity Enrichment Coupled to Multiple Reaction Monitoring Mass Spectrometry for Quantifying Proteins in Plasma*

    PubMed Central

    Kuhn, Eric; Whiteaker, Jeffrey R.; Mani, D. R.; Jackson, Angela M.; Zhao, Lei; Pope, Matthew E.; Smith, Derek; Rivera, Keith D.; Anderson, N. Leigh; Skates, Steven J.; Pearson, Terry W.; Paulovich, Amanda G.; Carr, Steven A.

    2012-01-01

    The inability to quantify large numbers of proteins in tissues and biofluids with high precision, sensitivity, and throughput is a major bottleneck in biomarker studies. We previously demonstrated that coupling immunoaffinity enrichment using anti-peptide antibodies (SISCAPA) to multiple reaction monitoring mass spectrometry (MRM-MS) produces Immunoprecipitation MRM-MS (immuno-MRM-MS) assays that can be multiplexed to quantify proteins in plasma with high sensitivity, specificity, and precision. Here we report the first systematic evaluation of the interlaboratory performance of multiplexed (8-plex) immuno-MRM-MS in three independent labs. A staged study was carried out in which the effect of each processing and analysis step on assay coefficient of variance, limit of detection, limit of quantification, and recovery was evaluated. Limits of detection were at or below 1 ng/ml for the assayed proteins in 30 μl of plasma. Assay reproducibility was acceptable for verification studies, with median intra- and interlaboratory coefficients of variance above the limit of quantification of 11% and <14%, respectively, for the entire immuno-MRM-MS assay process, including enzymatic digestion of plasma. Trypsin digestion and its requisite sample handling contributed the most to assay variability and reduced the recovery of target peptides from digested proteins. Using a stable isotope-labeled protein as an internal standard instead of stable isotope-labeled peptides to account for losses in the digestion process nearly doubled assay accuracy for this while improving assay precision 5%. Our results demonstrate that multiplexed immuno-MRM-MS can be made reproducible across independent laboratories and has the potential to be adopted widely for assaying proteins in matrices as complex as plasma. PMID:22199228

  11. Interlaboratory evaluation of trace element determination in workplace air filter samples by inductively coupled plasma mass spectrometry†‡

    PubMed Central

    Shulman, Stanley A.; Brisson, Michael J.; Howe, Alan M.

    2015-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is becoming more widely used for trace elemental analysis in the occupational hygiene field, and consequently new ICP-MS international standard procedures have been promulgated by ASTM International and ISO. However, there is a dearth of interlaboratory performance data for this analytical methodology. In an effort to fill this data void, an interlaboratory evaluation of ICP-MS for determining trace elements in workplace air samples was conducted, towards fulfillment of method validation requirements for international voluntary consensus standard test methods. The study was performed in accordance with applicable statistical procedures for investigating interlaboratory precision. The evaluation was carried out using certified 37-mm diameter mixed-cellulose ester (MCE) filters that were fortified with 21 elements of concern in occupational hygiene. Elements were spiked at levels ranging from 0.025 to 10 μg filter−1, with three different filter loadings denoted “Low”, “Medium” and “High”. Participating laboratories were recruited from a pool of over fifty invitees; ultimately twenty laboratories from Europe, North America and Asia submitted results. Triplicates of each certified filter with elemental contents at three different levels, plus media blanks spiked with reagent, were conveyed to each volunteer laboratory. Each participant was also provided a copy of the test method which each participant was asked to follow; spiking levels were unknown to the participants. The laboratories were requested to prepare the filters by one of three sample preparation procedures, i.e., hotplate digestion, microwave digestion or hot block extraction, which were described in the test method. Participants were then asked to analyze aliquots of the prepared samples by ICP-MS, and to report their data in units of μg filter−1. Most interlaboratory precision estimates were acceptable for medium- and high

  12. Do the Effects of a Relationship Education Program Vary for Different Types of Couples? Exploratory Subgroup Analysis in the Supporting Healthy Marriage Evaluation. OPRE Report 2014-22

    ERIC Educational Resources Information Center

    Gubits, Daniel; Lowenstein, Amy E.; Harris, Jorgen; Hsueh, JoAnn

    2014-01-01

    The Supporting Healthy Marriage (SHM) evaluation was launched in 2003 to test the effectiveness of a skills-based relationship education program designed to help low-and modest-income married couples strengthen their relationships and to support more stable and more nurturing home environments and more positive outcomes for parents and their…

  13. Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part II: Particulate Matter

    EPA Science Inventory

    The second phase of the Air Quality Model Evaluation International Initiative (AQMEII) brought together seventeen modeling groups from Europe and North America, running eight operational online-coupled air quality models over Europe and North America on common emissions and bound...

  14. Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part 1: Ozone”

    EPA Science Inventory

    The second phase of the Air Quality Model Evaluation International Initiative (AQMEII) brought together sixteen modeling groups from Europe and North America, running eight operational online-coupled air quality models over Europe and North America on common emissions and boundar...

  15. Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part II: Particulate Matter

    EPA Science Inventory

    The second phase of the Air Quality Model Evaluation International Initiative (AQMEII) brought together seventeen modeling groups from Europe and North America, running eight operational online-coupled air quality models over Europe and North America on common emissions and bound...

  16. Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part 1: Ozone”

    EPA Science Inventory

    The second phase of the Air Quality Model Evaluation International Initiative (AQMEII) brought together sixteen modeling groups from Europe and North America, running eight operational online-coupled air quality models over Europe and North America on common emissions and boundar...

  17. Coupled optical and thermal detailed simulations for the accurate evaluation and performance improvement of molten salts solar towers

    NASA Astrophysics Data System (ADS)

    García-Barberena, Javier; Mutuberria, Amaia; Palacin, Luis G.; Sanz, Javier L.; Pereira, Daniel; Bernardos, Ana; Sanchez, Marcelino; Rocha, Alberto R.

    2017-06-01

    The National Renewable Energy Centre of Spain, CENER, and the Technology & Innovation area of ACS Cobra, as a result of their long term expertise in the CSP field, have developed a high-quality and high level of detail optical and thermal simulation software for the accurate evaluation of Molten Salts Solar Towers. The main purpose of this software is to make a step forward in the state-of-the-art of the Solar Towers simulation programs. Generally, these programs deal with the most critical systems of such plants, i.e. the solar field and the receiver, on an independent basis. Therefore, these programs typically neglect relevant aspects in the operation of the plant as heliostat aiming strategies, solar flux shapes onto the receiver, material physical and operational limitations, transient processes as preheating and secure cloud passing operating modes, and more. The modelling approach implemented in the developed program consists on effectively coupling detailed optical simulations of the heliostat field with also detailed and full-transient thermal simulations of the molten salts tube-based external receiver. The optical model is based on an accurate Monte Carlo ray-tracing method which solves the complete solar field by simulating each of the heliostats at once according to their specific layout in the field. In the thermal side, the tube-based cylindrical external receiver of a Molten Salts Solar Tower is modelled assuming one representative tube per panel, and implementing the specific connection layout of the panels as well as the internal receiver pipes. Each tube is longitudinally discretized and the transient energy and mass balances in the temperature dependent molten salts and steel tube models are solved. For this, a one dimensional radial heat transfer model based is used. The thermal model is completed with a detailed control and operation strategy module, able to represent the appropriate operation of the plant. An integration framework has been

  18. ProsCan for Couples: a feasibility study for evaluating peer support within a controlled research design.

    PubMed

    Chambers, Suzanne K; Schover, Leslie; Halford, Kim; Ferguson, Megan; Gardiner, R A; Occhipinti, Stefano; Dunn, Jeff

    2013-02-01

    The present study assessed the feasibility of delivering peer support for couples coping with prostate cancer within a trial design. Ten peer volunteers completed training in research protocols and delivering tele-based couples support to men with prostate cancer and their partners. Twenty couples received an eight session intervention and were assessed before surgery and 3 and 6 months subsequently for adjustment outcomes. A focus group investigated the peers' experiences. Peers were motivated by altruism, a belief in research, and reported personal growth. The research protocol at times conflicted with lay models of helping, and the focus on sexuality and couples was challenging. Distress decreased over time but more so for partners; unmet sexuality needs did not improve. Peer support appears promising as a model to support couples facing prostate cancer. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Rating systems for evaluation of functional ankle instability: prospective evaluation in a cohort of patients treated with monopolar capacitive-coupled radiofrequency.

    PubMed

    Cronkey, Joseph; LaPorta, Guido

    2012-10-01

    Evaluation of patient outcomes should include the use of validated scoring systems to determine disease-specific outcomes. Many scoring systems are being used for disorders of the ankle joint. However, not all instruments are capable of detecting changes associated with functional ankle instability (FAI), since their focus is toward pathological entities with greater impact on individual's physical and mental well-being. In this prospective study, 6 instruments were used to evaluate outcomes associated with an intervention aimed at improving FAI. Twenty ankles that had been unsuccessfully treated for FAI were treated with a single session of noninvasive monopolar capacitive-coupled radiofrequency (mcRF) and followed prospectively. Five out of 6 instruments failed to show changes that could be correlated with patients' outcomes. Only one instrument, the Cumberland Ankle Instability Tool (CAIT) demonstrated enough sensitivity and correlated well with meaningful clinical differences. Based on study's success criteria (proper function, no pain, no adverse events, and patient satisfaction), 78% of the ankles treated had successful outcomes whereas 87.5% evidenced significant improvement based on CAIT (P < .001). No adverse events were present during the study. The study of FAI is hampered by the lack of disease-specific questionnaires, which oftentimes introduce ceiling or flooring effects. The CAIT was capable of detecting changes in patients' condition and response to the noninvasive mcRF procedure without evidencing ceiling or flooring effects. In this study, the CAIT was found to be reliable, valid, sensitive to changes of clinical importance, in addition to being short and practical to use.

  20. Lumbar motion trends and correlation with low back pain. Part I. A roentgenological evaluation of coupled lumbar motion in lateral bending.

    PubMed

    Haas, M; Nyiendo, J; Peterson, C; Thiel, H; Sellers, T; Dal Mas, E; Kirton, C; Cassidy, D

    1992-01-01

    A radiographic study was undertaken to describe the relationship between coupled lumbar motion in lateral bending and the presence of low back pain symptomatology, evaluate trends of coupled motion and determine if these trends were attributable to chance confluence of independent motions. Survey. Chiropractic college student health center and private chiropractic clinic. 249 subjects: 114 with low back pain, 29 asymptomatic with no history and 106 asymptomatic with history. Of these, 194 were freshman volunteers and 55 were new private clinic low back pain patients. None. Lumbar segmental coupled motion categories according to the scheme of Cassidy and Grice, as well as a modified scheme. Statistical analysis demonstrated no significant relationship (p = .01) between coupled lumbar motion and low back pain. When viewed intersegmentally, approximately half of all lumbar motion was type II; symmetric motion was rare and attributable to chance confluence of individual segmental motion. This study suggests that back pain is not an indication for the routine use of lateral bending films for the identification of abnormal coupled motion. Furthermore, each segmental categorization appears to be independent of contralateral categorization as well as motion at all other segmental levels. It is also suggested that type II motion cannot be ruled out as a normal variant. Finally, the ubiquity of coupled motion asymmetry suggests that symmetry must be reevaluated as a criterion for normal spinal function.

  1. A BENCHMARK PROGRAM FOR EVALUATION OF METHODS FOR COMPUTING SEISMIC RESPONSE OF COUPLED BUILDING-PIPING/EQUIPMENT WITH NON-CLASSICAL DAMPING.

    SciTech Connect

    Xu, J.; Degrassi, G.; Chokshi, N.

    2001-03-22

    Under the auspices of the US Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) developed a comprehensive program to evaluate state-of-the-art methods and computer programs for seismic analysis of typical coupled nuclear power plant (NPP) systems with nonclassical damping. In this program, four benchmark models of coupled building-piping/equipment systems with different damping characteristics were analyzed for a suite of earthquakes by program participants applying their uniquely developed methods and computer programs. This paper presents the results of their analyses, and their comparison to the benchmark solutions generated by BNL using time domain direct integration methods. The participant's analysis results established using complex modal time history methods showed good comparison with the BNL solutions, while the analyses produced with either complex-mode response spectrum methods or classical normal-mode response spectrum method, in general, produced more conservative results, when averaged over a suite of earthquakes. However, when coupling due to damping is significant, complex-mode response spectrum methods performed better than the classical normal-mode response spectrum method. Furthermore, as part of the program objectives, a parametric assessment is also presented in this paper, aimed at evaluation of the applicability of various analysis methods to problems with different dynamic characteristics unique to coupled NPP systems. It is believed that the findings and insights learned from this program will be useful in developing new acceptance criteria and providing guidance for future regulatory activities involving licensing applications of these alternate methods to coupled systems.

  2. Evaluation of 3D radio-frequency electromagnetic fields for any matching and coupling conditions by the use of basis functions.

    PubMed

    Tiberi, Gianluigi; Fontana, Nunzia; Monorchio, Agostino; Stara, Riccardo; Retico, Alessandra; Tosetti, Michela

    2015-12-01

    A procedure for evaluating radio-frequency electromagnetic fields in anatomical human models for any matching and coupling conditions is introduced. The procedure resorts to the extraction of basis functions: such basis functions, which represent the fields produced by each individual port without any residual coupling, are derived through an algebraic procedure which uses the S parameter matrix and the fields calculated in one (only) full-wave simulation. The basis functions are then used as building-blocks for calculating the fields for any other S parameter matrix. The proposed approach can be used both for volume coil driven in quadrature and for parallel transmission configuration.

  3. Evaluation of 3D radio-frequency electromagnetic fields for any matching and coupling conditions by the use of basis functions

    NASA Astrophysics Data System (ADS)

    Tiberi, Gianluigi; Fontana, Nunzia; Monorchio, Agostino; Stara, Riccardo; Retico, Alessandra; Tosetti, Michela

    2015-12-01

    A procedure for evaluating radio-frequency electromagnetic fields in anatomical human models for any matching and coupling conditions is introduced. The procedure resorts to the extraction of basis functions: such basis functions, which represent the fields produced by each individual port without any residual coupling, are derived through an algebraic procedure which uses the S parameter matrix and the fields calculated in one (only) full-wave simulation. The basis functions are then used as building-blocks for calculating the fields for any other S parameter matrix. The proposed approach can be used both for volume coil driven in quadrature and for parallel transmission configuration.

  4. Coupling Soil Water Movement and Discrete Element Method for Evaluating the Effects of Shrinkage Cracking on Soil Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Jabakhanji, R.

    2010-12-01

    Due to the heterogeneous nature of the soil medium and the dynamic relationship between structure, function, and water movement, soil-water movement phenomena are complex systems with emergent behavior that varies across spatiotemporal scales of observation. Understanding how information is transferred from one scale to another is essential to produce accurate hydrologic and transport models and for proper scaling and integration of processes, constitutive models, and parameters from various measurement scales. We propose a modeling approach that couple soil water movement with the mechanical deformations it induces. The aim is to capture the formation of shrinkage and/or swelling cracks, and track them, in order to evaluate their effect on the hydraulic properties of the soil observed at the field scale compared to the properties determined at the laboratory scale. This approach is based on the Pedostructure soil-water model proposed by Braudeau et al., and a discrete representation of the soil medium. The latter will be shared by a discrete element method (DEM) mechanical model and a water movement model represented as a network of reservoirs and connecting pipes. Moisture will flow from one reservoir to another depending on the potential difference between the reservoirs and the conductivity of the connecting pipe. Consequently, water potentials and conductivities, as well as the volume of each reservoir, will be updated according to the Pedostructure model. The volumetric strains induced by this water movement will feed into the mechanical DEM model, and the forces between the reservoirs will be calculated. If a contact force reaches failure, it will be severed and moisture exchange will stop through this pipe, in turn altering the path of the subsequent mechanical steps. We will present some preliminary results showing promising agreement between the discrete water movement model and existing experimental data in determining soil moisture profile evolution.

  5. Lake on life support: Evaluating urban lake management measures by using a coupled 1D-modelling approach

    NASA Astrophysics Data System (ADS)

    Ladwig, Robert; Kirillin, Georgiy; Hinkelmann, Reinhard; Hupfer, Michael

    2017-04-01

    Urban surface water systems and especially lakes are heavily stressed and modified systems to comply with water management goals and expectations. In this study we focus on Lake Tegel in Berlin, Germany, as a representative of heavily modified urban lakes. In the 20th century, Lake Tegel received increased loadings of nutrients and leached heavy metals from an upstream sewage farm resulting in severe eutrophication problems. The construction of two upstream treatment plants caused a lowering of nutrient concentrations and a re-oligotrophication of the lake. Additionally, artificial aerators, to keep the hypolimnion oxic, and a lake pipeline, to bypass water for maintaining a minimum discharge, went into operation. Lake Tegel is still heavily used for drinking water extraction by bank filtration. These interacting management measures make the system vulnerable to changing climate conditions and pollutant loads. Past modelling studies have shown the complex hydrodynamics of the lake. Here, we are following a simplified approach by using a less computational time consuming vertical 1D-model to simulate the hydrodynamics and the ecological interactions of the system by coupling the General Lake Model to the Aquatic Ecodynamics Model Library 2. For calibration of the multidimensional parameter space we applied the Covariance Matrix Adaption-Evolution Strategy algorithm. The model is able to sufficiently replicate the vertical field temperature profiles of Lake Tegel as well as to simulate similar concentration ranges of phosphate, dissolved oxygen and nitrate. The calibrated model is used to run an uncertainty analysis by sampling the simulated data within the meaning of the Metropolis-Hastings algorithm. Finally, we are evaluating different scenarios: (1) changing air temperatures, precipitation and wind speed due to effects of climate change, (2) decreased discharges into the lake due to bypassing treated effluents into a near stream instead of Lake Tegel, and (3

  6. [PAHs concentrations in aquatic products and food safety evaluation in the coupled mangrove planting-aquaculture ecological system].

    PubMed

    Chen, Guan-Qiu; Li, Yao-Chu; Huang, Jin-Mu; Nan, Yan; Lin, Mao-Hong

    2012-06-01

    In order to know about the PAHs concentration in aquatic products from mangrove planting-aquaculture ecological system and to make sure of food quality and food safety, HPLC was used to determine concentrations of 13 polycyclic aromatic hydrocarbons (PAHs) in the Tilapia mossambica, Mugil cephalu and Concha ostreae from coupled mangrove planting-aquaculture ponds, food safety in aquatic products was also evaluated. The 13 PAHs were Fluorene (Flu), Phenanthrene (Phe), Anthracene (Ant), Fluoranthene (Fla), Pyrene (Pyr), Benz[a] anthraces (BaA), Chrysene (Chr), Benzo[b] fluoranthene (BbF), Benzo[k] fluoranthene (BkF), Benzo[a] Pyrene (BaP), Dibenzo [a, h] anthercene (DahA), Benzo [g, h, i] perylene (BghiP) and Indeno [1,2,3-c, d] pyrene (InP). Concentrations of PAHs were the highest in Concha ostreae which were in the range of 89.79-98.49 microg x kg(-1) dry weight, while those were in the range of 25.97-34.64 microg x kg(-1) in Mugil cephalu and 12.31-14.41 microg x kg(-1) in Tilapia mossambica. The content of fat affected the levels of PAHs content in different aquatic products. The individual composition of PAHs was characterized by 3 rings in samples with the range of 41.58% - 83.35%. Comparing with other areas, PAHs pollution of aquatic products in the studied area was in the mild level. Values of the total BaP(eq) concentration ranged from 0.0689 microg x kg(-1) to 1.0373 microg x kg(-1), which were lower than the maximum level set by European Union.

  7. Decadal predictions with the HiGEM high resolution global coupled climate model: description and basic evaluation

    NASA Astrophysics Data System (ADS)

    Shaffrey, L. C.; Hodson, D.; Robson, J.; Stevens, D. P.; Hawkins, E.; Polo, I.; Stevens, I.; Sutton, R. T.; Lister, G.; Iwi, A.; Smith, D.; Stephens, A.

    2017-01-01

    This paper describes the development and basic evaluation of decadal predictions produced using the HiGEM coupled climate model. HiGEM is a higher resolution version of the HadGEM1 Met Office Unified Model. The horizontal resolution in HiGEM has been increased to 1.25° × 0.83° in longitude and latitude for the atmosphere, and 1/3° × 1/3° globally for the ocean. The HiGEM decadal predictions are initialised using an anomaly assimilation scheme that relaxes anomalies of ocean temperature and salinity to observed anomalies. 10 year hindcasts are produced for 10 start dates (1960, 1965,..., 2000, 2005). To determine the relative contributions to prediction skill from initial conditions and external forcing, the HiGEM decadal predictions are compared to uninitialised HiGEM transient experiments. The HiGEM decadal predictions have substantial skill for predictions of annual mean surface air temperature and 100 m upper ocean temperature. For lead times up to 10 years, anomaly correlations (ACC) over large areas of the North Atlantic Ocean, the Western Pacific Ocean and the Indian Ocean exceed values of 0.6. Initialisation of the HiGEM decadal predictions significantly increases skill over regions of the Atlantic Ocean, the Maritime Continent and regions of the subtropical North and South Pacific Ocean. In particular, HiGEM produces skillful predictions of the North Atlantic subpolar gyre for up to 4 years lead time (with ACC > 0.7), which are significantly larger than the uninitialised HiGEM transient experiments.

  8. Relativistic four-component calculations of indirect nuclear spin-spin couplings with efficient evaluation of the exchange-correlation response kernel

    NASA Astrophysics Data System (ADS)

    Křístková, Anežka; Komorovsky, Stanislav; Repisky, Michal; Malkin, Vladimir G.; Malkina, Olga L.

    2015-03-01

    In this work, we report on the development and implementation of a new scheme for efficient calculation of indirect nuclear spin-spin couplings in the framework of four-component matrix Dirac-Kohn-Sham approach termed matrix Dirac-Kohn-Sham restricted magnetic balance resolution of identity for J and K, which takes advantage of the previous restricted magnetic balance formalism and the density fitting approach for the rapid evaluation of density functional theory exchange-correlation response kernels. The new approach is aimed to speedup the bottleneck in the solution of the coupled perturbed equations: evaluation of the matrix elements of the kernel of the exchange-correlation potential. The performance of the new scheme has been tested on a representative set of indirect nuclear spin-spin couplings. The obtained results have been compared with the corresponding results of the reference method with traditional evaluation of the exchange-correlation kernel, i.e., without employing the fitted electron densities. Overall good agreement between both methods was observed, though the new approach tends to give values by about 4%-5% higher than the reference method. On the average, the solution of the coupled perturbed equations with the new scheme is about 8.5 times faster compared to the reference method.

  9. Relativistic four-component calculations of indirect nuclear spin-spin couplings with efficient evaluation of the exchange-correlation response kernel

    SciTech Connect

    Křístková, Anežka; Malkin, Vladimir G.; Komorovsky, Stanislav; Repisky, Michal; Malkina, Olga L.

    2015-03-21

    In this work, we report on the development and implementation of a new scheme for efficient calculation of indirect nuclear spin-spin couplings in the framework of four-component matrix Dirac-Kohn-Sham approach termed matrix Dirac-Kohn-Sham restricted magnetic balance resolution of identity for J and K, which takes advantage of the previous restricted magnetic balance formalism and the density fitting approach for the rapid evaluation of density functional theory exchange-correlation response kernels. The new approach is aimed to speedup the bottleneck in the solution of the coupled perturbed equations: evaluation of the matrix elements of the kernel of the exchange-correlation potential. The performance of the new scheme has been tested on a representative set of indirect nuclear spin-spin couplings. The obtained results have been compared with the corresponding results of the reference method with traditional evaluation of the exchange-correlation kernel, i.e., without employing the fitted electron densities. Overall good agreement between both methods was observed, though the new approach tends to give values by about 4%-5% higher than the reference method. On the average, the solution of the coupled perturbed equations with the new scheme is about 8.5 times faster compared to the reference method.

  10. Towards an online-coupled chemistry-climate model: evaluation of trace gases and aerosols in COSMO-ART

    NASA Astrophysics Data System (ADS)

    Knote, C.; Brunner, D.; Vogel, H.; Allan, J.; Asmi, A.; Äijälä, M.; Carbone, S.; van der Gon, H. D.; Jimenez, J. L.; Kiendler-Scharr, A.; Mohr, C.; Poulain, L.; Prévôt, A. S. H.; Swietlicki, E.; Vogel, B.

    2011-12-01

    The online-coupled, regional chemistry transport model COSMO-ART is evaluated for periods in all seasons against several measurement datasets to assess its ability to represent gaseous pollutants and ambient aerosol characteristics over the European domain. Measurements used in the comparison include long-term station observations, satellite and ground-based remote sensing products, and complex datasets of aerosol chemical composition and number size distribution from recent field campaigns. This is the first time these comprehensive measurements of aerosol characteristics in Europe are used to evaluate a regional chemistry transport model. We show a detailed analysis of the simulated size-resolved chemical composition under different meteorological conditions. Mean, variability and spatial distribution of the concentrations of O3 and NOx are well reproduced. SO2 is found to be overestimated, simulated PM2.5 and PM10 levels are on average underestimated, as is AOD. We find indications of an overestimation of shipping emissions. Time evolution of aerosol chemical composition is captured, although some biases are found in relative composition. Nitrate aerosol components are on average overestimated, and sulfates underestimated. The accuracy of simulated organics depends strongly on season and location. While strongly underestimated during summer, organic mass is comparable in spring and autumn. We see indications for an overestimated fractional contribution of primary organic matter in urban areas and an underestimation of SOA at many locations. Aerosol number concentrations compare well with measurements for larger size ranges, but overestimations of particle number concentration with factors of 2-5 are found for particles smaller than 50 nm. Size distribution characteristics are often close to measurements, but show discrepancies at polluted sites. Suggestions for further improvement of the modeling system consist of the inclusion of a revised secondary organic

  11. Evaluation of a highly nonlinear microstructured optical fiber by near-field scanning optical microscopy and simulations: nonlinear coefficient and coupling losses

    NASA Astrophysics Data System (ADS)

    Moison, J. M.; Apetrei, A. M.; Levenson, J. A.; Mélin, G.; Lempereur, S.; Fleureau, A.; Bourov, E.; Gasca, L.

    2005-01-01

    We report on the evaluation of a microstructured optical fiber (MOF) designed for non-linear signal processing applications, i.e., with a very small guided mode (waist ˜1 μm). Calculations predict an intrinsic (assuming propagation in the fundamental mode and zero-loss coupling) non-linear γ coefficient of 40 W-1 km-1 at λ=1.55 μm, but they also predict a basic multimode character. NSOM measurements validate directly the high intrinsic γ value (32±10 W-1 km-1) and also show that with an optimized coupling, the overall losses in efficiency taking into account coupling losses and weak excitation of higher-order modes and leaky modes are only 2.5 dB. This performance is adequate for use in all-optical data processing lines, all the more since it is maintained for relevant propagation lengths and peak power densities.

  12. Evaluation of the masseter muscle elasticity with the use of acoustic coupling agents as references in strain sonoelastography.

    PubMed

    Nakayama, M; Ariji, Y; Nishiyama, W; Ariji, E

    2015-01-01

    To verify the use of a single coupling agent as a reference to obtain the elasticity index (EI) ratios and to investigate the EI ratios of the masseter muscles of healthy volunteers. Muscle phantoms with known elasticity (20, 40 and 60 kPa in the Young's modulus) were examined by strain-type sonoelastography using a coupling agent as the reference. Eight examiners tested soft (with 7 kPa) and hard (with 40 kpa) reference coupling agents separately. The correlation coefficients were determined between the EI ratio and Young's modulus of muscle phantoms. The interclass correlation coefficients were calculated for inter- and intraexaminer agreement. Strong correlations were found between the EI ratios and Young's modulus for both soft and hard references. The variations of the EI ratios were larger with soft coupling agents than those with hard coupling agents, and they increased in phantoms with 60 kPa elasticity. There were no differences in the EI ratios of the masseter muscle at rest between males and females or between the right and left sides. The ratio increased during clenching. The hard reference coupling agent was suitable for obtaining EI ratio of the masseter muscle. No differences were found in the EI ratios of the masseter muscle either between sexes or between the right and left sides at rest, and the ratios increased with the widening of their variations during clenching.

  13. Evaluation of the masseter muscle elasticity with the use of acoustic coupling agents as references in strain sonoelastography

    PubMed Central

    Ariji, Y; Nishiyama, W; Ariji, E

    2015-01-01

    Objectives: To verify the use of a single coupling agent as a reference to obtain the elasticity index (EI) ratios and to investigate the EI ratios of the masseter muscles of healthy volunteers. Methods: Muscle phantoms with known elasticity (20, 40 and 60 kPa in the Young's modulus) were examined by strain-type sonoelastography using a coupling agent as the reference. Eight examiners tested soft (with 7 kPa) and hard (with 40 kpa) reference coupling agents separately. The correlation coefficients were determined between the EI ratio and Young's modulus of muscle phantoms. The interclass correlation coefficients were calculated for inter- and intraexaminer agreement. Results: Strong correlations were found between the EI ratios and Young's modulus for both soft and hard references. The variations of the EI ratios were larger with soft coupling agents than those with hard coupling agents, and they increased in phantoms with 60 kPa elasticity. There were no differences in the EI ratios of the masseter muscle at rest between males and females or between the right and left sides. The ratio increased during clenching. Conclusions: The hard reference coupling agent was suitable for obtaining EI ratio of the masseter muscle. No differences were found in the EI ratios of the masseter muscle either between sexes or between the right and left sides at rest, and the ratios increased with the widening of their variations during clenching. PMID:25411712

  14. Using ARM Observations to Evaluate Climate Model Representation of Land-Atmosphere Coupling on the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Phillips, T. J.; Klein, S. A.; Ma, H. Y.; Tang, Q.

    2016-12-01

    Statistically significant coupling between summertime soil moisture and various atmospheric variables has been observed at the U.S. Southern Great Plains (SGP) facilities maintained by the U.S. DOE Atmospheric Radiation Measurement (ARM) program (Phillips and Klein, 2014 JGR). In the current study, we employ several independent measurements of shallow-depth soil moisture (SM) and of the surface evaporative fraction (EF) over multiple summers in order to estimate the range of SM-EF coupling strength at seven sites, and to approximate the SGP regional-scale coupling strength (and its uncertainty). We will use this estimate of regional-scale SM-EF coupling strength to evaluate its representation in version 5.1 of the global Community Atmosphere Model (CAM5.1) coupled to the CLM4 Land Model. Two experimental cases are considered for the 2003-2011 study period: 1) an Atmospheric Model Intercomparison Project (AMIP) run with historically observed sea surface temperatures specified, and 2) a more constrained hindcast run in which the CAM5.1 atmospheric state is initialized each day from the ERA Interim reanalysis, while the CLM4 initial conditions are obtained from an offline run of the land model using observed surface net radiation, precipitation, and wind as forcings. These twin experimental cases allow a distinction to be drawn between the land-atmosphere coupling in the free-running CAM5.1/CLM4 model and that in which the land and atmospheric states are constrained to remain closer to "reality". The constrained hindcast case, for example, should allow model errors in coupling strength to be related more closely to potential deficiencies in land-surface or atmospheric boundary-layer parameterizations. AcknowledgmentsThis work was funded by the U.S. Department of Energy Office of Science and was performed at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Fire severity estimated from remote sensing data to evaluate the Coupled Atmosphere-Wildland Fire-Environment (CAWFE) model

    NASA Astrophysics Data System (ADS)

    Oliva, P.; Coen, J.; Schroeder, W.

    2013-12-01

    Fire severity defined as the degree of damage originated from fire on soils and vegetation immediately after the fire, is affected by weather conditions (i.e. wind, air humidity), terrain characteristics (i.e. slope, aspect) and fuel properties (i.e. tree density, fuel moisture content). In this study we evaluated the relationships between fire severity estimated from Earth Observing Advance Land Imager (EO-ALI) images and the heat fluxes produced by the Coupled Atmosphere-Wildland Fire-Environment (CAWFE) model (Coen 2013). We present the results for a large fire occurred in New Mexico in June 2012 which burned 44,330 acres. The EO-ALI sensor (30 m spatial resolution) has nine spectral bands, six of them were designed to mimic Landsat bands and the three additional bands cover 443, 867.5 and 1250 nm. We used a physically-based approach to estimate fire severity developed by De Santis et al. (2009). This method classifies the satellite image into Geophysical Composite burned index (GeoCBI) values, which represent the fire severity within the fire-affected area, using radiative transfer model simulated spectra as reference. This method has been used to characterize fire severity levels using Landsat images and validated with field data (R2 > 0.85). Based on those results we expected a better performance of EO-ALI images due to its improved spectral resolution. On the other hand, CAWFE is composed of two parts: a numerical weather prediction model and a fire behavior module that represents the growth of a wildland fire in response to factors such as wind, terrain, and fuels, and includes the fire's impact on the atmosphere. To perform the evaluation we selected a stratified random sample by fire severity level. The values of maximum heat flux (sensible, latent), and total heat flux showed a higher correlation with the higher levels of fire severity (GeoCBI: 2.8-3) than with the medium levels of fire severity (GeoCBI: 2.3-2.8). However, the total heat flux proved to

  16. Systematic evaluation of matrix effects in hydrophilic interaction chromatography versus reversed phase liquid chromatography coupled to mass spectrometry.

    PubMed

    Periat, Aurélie; Kohler, Isabelle; Thomas, Aurélien; Nicoli, Raul; Boccard, Julien; Veuthey, Jean-Luc; Schappler, Julie; Guillarme, Davy

    2016-03-25

    Reversed phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) is the gold standard technique in bioanalysis. However, hydrophilic interaction chromatography (HILIC) could represent a viable alternative to RPLC for the analysis of polar and/or ionizable compounds, as it often provides higher MS sensitivity and alternative selectivity. Nevertheless, this technique can be also prone to matrix effects (ME). ME are one of the major issues in quantitative LC-MS bioanalysis. To ensure acceptable method performance (i.e., trueness and precision), a careful evaluation and minimization of ME is required. In the present study, the incidence of ME in HILIC-MS/MS and RPLC-MS/MS was compared for plasma and urine samples using two representative sets of 38 pharmaceutical compounds and 40 doping agents, respectively. The optimal generic chromatographic conditions in terms of selectivity with respect to interfering compounds were established in both chromatographic modes by testing three different stationary phases in each mode with different mobile phase pH. A second step involved the assessment of ME in RPLC and HILIC under the best generic conditions, using the post-extraction addition method. Biological samples were prepared using two different sample pre-treatments, i.e., a non-selective sample clean-up procedure (protein precipitation and simple dilution for plasma and urine samples, respectively) and a selective sample preparation, i.e., solid phase extraction for both matrices. The non-selective pretreatments led to significantly less ME in RPLC vs. HILIC conditions regardless of the matrix. On the contrary, HILIC appeared as a valuable alternative to RPLC for plasma and urine samples treated by a selective sample preparation. Indeed, in the case of selective sample preparation, the compounds influenced by ME were different in HILIC and RPLC, and lower and similar ME occurrence was generally observed in RPLC vs. HILIC for urine and plasma samples

  17. Evaluating Diurnal Variations of Summer Precipitation over the Asian Monsoon Region based on TRMM Satellite Data and Coupled model outputs

    NASA Astrophysics Data System (ADS)

    Mao, J.; Wu, G.

    2013-12-01

    Climatological characteristics of diurnal variations in summer precipitation over the entire Asian monsoon region are comprehensively investigated based on the Tropical Rainfall Measuring Mission (TRMM) satellite data during 1998-2008. The amplitude and phase of diurnal precipitation show a distinct geographical pattern. Significant diurnal variations occur over most of continental and coastal areas including the Maritime Continent, with the relative amplitude exceeding 40%, indicating that the precipitation peak is 1.4 times the 24-h mean. Although the diurnal variations of summer precipitation over the continental areas are characterized by an afternoon peak (1500-1800 Local Solar Time (LST)), over the central Indochina Peninsula and central and southern Indian Peninsula the diurnal phase is delayed to after 2100 LST, suggesting the diurnal behaviors over these areas different from the general continental areas. The weak diurnal variations with relative amplitudes less than 40% exist mainly over oceanic areas in the western Pacific and most of Indian Ocean, with the rainfall peak mainly occurring from midnight to early morning (0000-0600 LST), indicating a typical oceanic regime characterized by an early morning peak. However, apparent exceptions occur over the South China Sea (SCS), Bay of Bengal (BOB), and eastern Arabian Sea, with the rainfall peak occurring in daytime (0900-1500 LST). Prominent meridional propagations of the diurnal phase exist in South Asia and East Asia. The diurnal precipitation variations are also evaluated using the simulated outputs from several coupled general circulation models (CGCMs) participating in CMIP3 (such as CNRM-CM3 and MRI-GCGM2.3.2) and CMIP5 (FGOALS-g2). As compared with those from TRMM data, current state-of-the-art CGCMs still have significant problems in simulating the diurnal variability of the Asian summer monsoon. Although most models can capture the amplitude and phase of the diurnal rainfall cycle over continental

  18. Coupled 1-D sewer and street networks and 2-D flooding model to rapidly evaluate surface inundation

    NASA Astrophysics Data System (ADS)

    Kao, Hong-Ming; Hsu, Hao-Ming

    2017-04-01

    Flash floods have occurred frequently in the urban areas around the world and cause the infrastructure and people living to expose continuously in the high risk level of pluvial flooding. According to historical surveys, the major reasons of severe surface inundations in the urban areas can be attributed to heavy rainfall in the short time and/or drainage system failure. In order to obtain real-time flood forecasting with high accuracy and less uncertainty, an appropriate system for predicting floods is necessary. For the reason, this study coupled 1-D sewer and street networks and 2-D flooding model as an operational modelling system for rapidly evaluating surface inundation. The proposed system is constructed by three significant components: (1) all the rainfall-runoff of a sub-catchment collected via gullies is simulated by the RUNOFF module of the Storm Water Management Model (SWMM); (2) and directly drained to the 1-D sewer and street networks via manholes as inflow discharges to conduct flow routing by using the EXTRAN module of SWMM; (3) after the 1-D simulations, the surcharges from manholes are considered as point sources in 2-D overland flow simulations that are executed by the WASH123D model. It can thus be used for urban flood modelling that reflects the rainfall-runoff processes, and the dynamic flow interactions between the storm sewer system and the ground surface in urban areas. In the present study, we adopted the Huwei Science and Technology Park, located in the south-western part of Taiwan, as the demonstration area because of its high industrial values. The region has an area about 1 km2 with approximately 1 km in both length and width. It is as isolated urban drainage area in which there is a complete sewer system that collects the runoff and drains to the detention pond. Based on the simulated results, the proposed modelling system was found that the simulated floods fit to the survey records because the physical rainfall-runoff phenomena in

  19. Uniting anion relay chemistry with Pd-mediated cross coupling: design, synthesis and evaluation of bifunctional aryl and vinyl silane linchpins.

    PubMed

    Smith, Amos B; Kim, Won-Suk; Tong, Rongbiao

    2010-02-05

    Union of type II Anion Relay Chemistry (ARC) with Pd-induced Cross Coupling Reactions (CCR) has been achieved, in conjunction with the design, synthesis, and evaluation of a new class of bifunctional linchpins, comprising a series of vinyl silanes bearing beta- or gamma-electrophilic sites. The synthetic tactic permits both alkylation and Pd-mediated CCR of the anions derived via 1,4-silyl C(sp(2))-->O Brook Rearrangements.

  20. [Coupling coordination evaluation method between eco-environment quality and economic development level in contiguous special poverty-stricken areas of China].

    PubMed

    Wang, Yan-hui; Li, Jing-yi

    2015-05-01

    It is one of the important strategies in the new period of national poverty alleviation and development to maintain the basic balance between the ecological environment and economic development, and to promote the coordinated sustainable development of economy and ecological environment. Taking six contiguous special poverty-stricken areas as the study areas, a coupling coordination evaluation method between eco-environment quality and economic development level in contiguous special poverty-stricken areas was explored in this paper. The region' s ecological poverty index system was proposed based on the natural attribute of ecological environment, and the ecological environment quality evaluation method was built up by using AHP weighting method, followed by the design of the coupling coordination evaluation method between the ecological environment indices and the county economic poverty comprehensive indices. The coupling coordination degrees were calculated and their spatial representation differentiations were analyzed respectively at district, province, city, and county scales. Results showed that approximately half of the counties in the study areas achieved the harmoniously coordinated development. However, the ecological environmental quality and the economic development in most counties could not be synchronized, where mountains, rivers and other geographic features existed roughly as a dividing line of the coordinated development types. The phenomena of dislocation between the ecological environment and economic development in state-level poor counties were more serious than those of local poor counties.

  1. Coupled Cluster Evaluation of the Stability of Atmospheric Acid-Base Clusters with up to 10 Molecules.

    PubMed

    Myllys, Nanna; Elm, Jonas; Halonen, Roope; Kurtén, Theo; Vehkamäki, Hanna

    2016-02-04

    We investigate the utilization of the domain local pair natural orbital coupled cluster (DLPNO-CCSD(T)) method for calculating binding energies of atmospherical molecular clusters. Applied to small complexes of atmospherical relevance we find that the DLPNO method significantly reduces the scatter in the binding energy, which is commonly present in DFT calculations. For medium sized clusters consisting of sulfuric acid and bases the DLPNO method yields a systematic underestimation of the binding energy compared to canonical coupled cluster results. The errors in the DFT binding energies appear to be more random, while the systematic nature of the DLPNO results allows the establishment of a scaling factor, to better mimic the canonical coupled cluster calculations. Based on the trends identified for the small and medium sized systems, we further extend the application of the DLPNO method to large acid - base clusters consisting of up to 10 molecules, which have previously been out of reach with accurate coupled cluster methods. Using the Atmospheric Cluster Dynamics Code (ACDC) we compare the sulfuric acid dimer formation based on the new DLPNO binding energies with previously published RI-CC2/aug-cc-pV(T+d)Z results. We also compare the simulated sulfuric acid dimer concentration as a function of the base concentration with measurement data from the CLOUD chamber and flow tube experiments. The DLPNO method, even after scaling, underpredicts the dimer concentration significantly. Reasons for this are discussed.

  2. Evaluating Physical Processes during the Freeze-Up Season using a Coupled Sea Ice-Ocean-Atmosphere Forecast Model

    NASA Astrophysics Data System (ADS)

    Solomon, Amy; Intrieri, Janet; Persson, Ola; Cox, Christopher; Hughes, Mimi; Grachev, Andrey; Capotondi, Antonietta; de Boer, Gijs

    2017-04-01

    Improved sea ice forecasting must be based on improved model representation of coupled system processes that impact the sea ice thermodynamic and dynamic state. Pertinent coupled system processes remain uncertain and include surface energy fluxes, clouds, precipitation, boundary layer structure, momentum transfer and sea-ice dynamics, interactions between large-scale circulation and local processes, and others. In this presentation, we use a fully-coupled ocean-sea ice-atmosphere forecast system as a testbed for investigating biases in 0-10 day forecasts, with a focus on processes that determine fluxes at the ocean-ice-air interface. Model results and validation examples from an experimental, weather-scale, coupled ice-ocean-atmosphere model for 2015 and 2016 fall, sea ice freeze-up season will be presented. The model, a limited-area, fully-coupled atmosphere-ice-ocean model (named, RASM-ESRL), was developed from the larger-scale Regional Arctic System Model (RASM) architecture. RASM-ESRL includes the Weather Research and Forecasting (WRF) atmospheric model, Parallel Ocean Program (POP2) model, Community Ice Model (CICE5) and the NCAR Community Land Model. The domain is limited to the Arctic and all components are run with 10 km horizontal resolution. Components are coupled using a regionalized version of the CESM flux coupler (CPL7), which includes modifications important for resolving the sea ice pack's inertial response to transient (i.e. weather) events. The model is initialized with a GFS atmosphere, satellite-derived sea ice analyses using AMSR-2, and forced by 3-hourly GFS forecasts at the lateral boundaries. Experimental forecasts were run daily from late-July through mid-November in 2015 and 2016. These daily forecasts have been compared with observations of surface fluxes and vertical atmospheric profiles at the International Arctic Systems for Observing the Atmosphere (IASOA) stations, and with atmospheric and oceanic observations obtained within the sea

  3. Towards Fully Coupled Atmosphere-Hydrology Model Systems: Recent Developments and Performance Evaluation For Different Climate Regions

    NASA Astrophysics Data System (ADS)

    Kunstmann, Harald; Fersch, Benjamin; Rummler, Thomas; Wagner, Sven; Arnault, Joel; Senatore, Alfonso; Gochis, David

    2015-04-01

    Limitations in the adequate representation of terrestrial hydrologic processes controlling the land-atmosphere coupling are assumed to be a significant factor currently limiting prediction skills of regional atmospheric models. The necessity for more comprehensive process descriptions accounting for the interdependencies between water- and energy fluxes at the compartmental interfaces are driving recent developments in hydrometeorological modeling towards more sophisticated treatment of terrestrial hydrologic processes. It is particularly the lateral surface and subsurface water fluxes that are neglected in standard regional atmospheric models. Current developments in enhanced lateral hydrological process descriptions in the WRF model system will be presented. Based on WRF and WRF-Hydro, new modules and concepts for integrating the saturated zone by a 2-dim groundwater scheme and coupling approaches to the unsaturated zone will be presented. The fully coupled model system allows to model the complete regional water cycle, from the top of the atmosphere, via the boundary layer, the land surface, the unsaturated zone and the saturated zone till the flow in the river beds. With this increasing complexity, that also allows to describe the complex interaction of the regional water cycle on different spatial and temporal scales, the reliability and predictability of model simulations can only be shown, if performance is tested for a variety of hydrological variables for different climatological environments. We will show results of fully coupled simulations for the regions of sempiternal humid Southern Bavaria/Germany (rivers Isar and Ammer) and semiarid to subhumid Westafrica (river Sissilli). In both regions, in addition to streamflow measurements, also the validation of heat fluxes is possible via Eddy-Covariance stations within hydrometeorological testbeds. In the German Isar/Ammer region, e.g., we apply the extended WRF-Hydro modeling system in 3km atmospheric- grid

  4. Theoretical and numerical evaluation of polarimeter using counter-circularly-polarized-probing-laser under the coupling between Faraday and Cotton-Mouton effect

    NASA Astrophysics Data System (ADS)

    Imazawa, Ryota; Kawano, Yasunori; Itami, Kiyoshi

    2016-04-01

    This study evaluated an effect of an coupling between the Faraday and Cotton-Mouton effect to a measurement signal of the Dodel-Kunz method which uses counter-circular-polarized probing-laser for measuring the Faraday effect. When the coupling is small (the Faraday effect is dominant and the characteristic eigenmodes are approximately circularly polarized), the measurement signal can be algebraically expressed and it is shown that the finite effect of the coupling is still significant. When the Faraday effect is not dominant, a numerical calculation is necessary. The numerical calculation under an ITER-like condition (Bt = 5.3 T, Ip = 15 MA, a = 2 m, ne = 1020 m-3 and λ = 119 μm) showed that difference between the pure Faraday rotation and the measurement signal of the Dodel-Kunz method was an order of one degree, which exceeds allowable error of ITER poloidal polarimeter. In conclusion, similar to other polarimeter techniques, the Dodel-Kunz method is not free from the coupling between the Faraday and Cotton-Mouton effect.

  5. Theoretical and numerical evaluation of polarimeter using counter-circularly-polarized-probing-laser under the coupling between Faraday and Cotton-Mouton effect.

    PubMed

    Imazawa, Ryota; Kawano, Yasunori; Itami, Kiyoshi

    2016-04-01

    This study evaluated an effect of an coupling between the Faraday and Cotton-Mouton effect to a measurement signal of the Dodel-Kunz method which uses counter-circular-polarized probing-laser for measuring the Faraday effect. When the coupling is small (the Faraday effect is dominant and the characteristic eigenmodes are approximately circularly polarized), the measurement signal can be algebraically expressed and it is shown that the finite effect of the coupling is still significant. When the Faraday effect is not dominant, a numerical calculation is necessary. The numerical calculation under an ITER-like condition (Bt = 5.3 T, Ip = 15 MA, a = 2 m, ne = 10(20) m(-3) and λ = 119 μm) showed that difference between the pure Faraday rotation and the measurement signal of the Dodel-Kunz method was an order of one degree, which exceeds allowable error of ITER poloidal polarimeter. In conclusion, similar to other polarimeter techniques, the Dodel-Kunz method is not free from the coupling between the Faraday and Cotton-Mouton effect.

  6. Coupling meteorological and hydrological models to evaluate the uncertainty in runoff forecasting: the case study of Maggiore Lake basin

    NASA Astrophysics Data System (ADS)

    Ceppi, A.; Ravazzani, G.; Rabuffetti, D.; Mancini, M.

    2009-04-01

    observed data to run the control simulations were supplied by ARPA-Piemonte. The study is focused on Maggiore Lake basin, an alpine basin between North-West of Italy and Southern Switzerland; results and statistical testing of the re-analyses shown in this presentation, are subdivided for each of three smaller sub-basins: Toce, Ticino and Maggia, in order to demonstrate the research progress on coupling meteorological and hydrological models in particular orographic features. It is presented how the meteorological forecasts are efficient into hydrological forecasting system, how the ensemble predictions are powerful to evaluate the uncertainty of the QPF which affects the QDF and the whole hydro-meteorological alert system for a mountain catchment. Further, in order to control the quality of the hydrological predictions in the short and medium term, statistical methods are used to calculate how the skill scores can be applied for hydrological applications and how the ensemble forecasts can help the users for decision making in management situations. Two significant events are analysed in order to compare the behaviour of the model driven by different weather scenarios: one convective in June that has yielded a high peak flow and one light stratiform in November that has been studied for the snow melt temperature which has affected the liquid precipitation and therefore the forecasted runoff. It is shown how the entire rainfall, the liquid precipitation and the runoff change in function of an areal the sub-basin scale, in order to understand where the errors are more frequently encountered.

  7. Evaluation and development of hydrological parameterisations for the atmosphere, ocean and land surface coupled model developed by the UK Environmental Prediction (UKEP) Prototype project

    NASA Astrophysics Data System (ADS)

    Martinez-de la Torre, Alberto; Blyth, Eleanor; Ashton, Heather; Lewis, Huw

    2016-04-01

    The UKEP project brings together atmosphere, ocean and land surface models and scientist to build a coupled prediction system for the UK at 1.5 km scale. JULES (Joint UK Land-Environment Simulator) is the land surface model that generates runoff and simulates soil hydrology within the coupled prediction system. Here we present an evaluation of JULES performance at producing river flow for 13 selected catchments in Great Britain, where we use daily river flow observations at the catchment outlets. The evaluation is based on the Nush-Sutcliffe metric and bias. Results suggest that the inclusion of a new linear topographic slope dependency in the S0 parameter of the PDM (Probability Distributed Model, scheme that generates saturation excess runoff at the land surface when the soil water storage reaches S0), improves results for all catchments, constraining the surface runoff production for flatter catchments during rainy episodes. The new hydrological configuration developed offline using the JULES model has been implemented in the coupled prediction system for an intense winter storm case study. We found significant changes in accumulated runoff and total column soil moisture, and results consistent with the offline experiments with an increase in surface runoff on the high slopes of Scotland.

  8. Late-Stage C-H Coupling Enables Rapid Identification of HDAC Inhibitors: Synthesis and Evaluation of NCH-31 Analogues.

    PubMed

    Sekizawa, Hiromi; Amaike, Kazuma; Itoh, Yukihiro; Suzuki, Takayoshi; Itami, Kenichiro; Yamaguchi, Junichiro

    2014-05-08

    We previously reported the discovery of NCH-31, a potent histone deacetylase (HDAC) inhibitor. By utilizing our C-H coupling reaction, we rapidly synthesized 16 analogues (IYS-1 through IYS-15 and IYS-Me) of NCH-31 with different aryl groups at the C4-position of 2-aminothiazole core of NCH-31. Subsequent biological testing of these derivatives revealed that 3-fluorophenyl (IYS-10) and 4-fluorophenyl (IYS-15) derivatives act as potent pan-HDAC inhibitor. Additionally, 4-methylphenyl (IYS-1) and 3-fluoro-4-methylphenyl (IYS-14) derivatives acted as HDAC6-insensitive inhibitors. The present work clearly shows the power of the late-stage C-H coupling approach to rapidly identify novel and highly active/selective biofunctional molecules.

  9. Late-Stage C–H Coupling Enables Rapid Identification of HDAC Inhibitors: Synthesis and Evaluation of NCH-31 Analogues

    PubMed Central

    2014-01-01

    We previously reported the discovery of NCH-31, a potent histone deacetylase (HDAC) inhibitor. By utilizing our C–H coupling reaction, we rapidly synthesized 16 analogues (IYS-1 through IYS-15 and IYS-Me) of NCH-31 with different aryl groups at the C4-position of 2-aminothiazole core of NCH-31. Subsequent biological testing of these derivatives revealed that 3-fluorophenyl (IYS-10) and 4-fluorophenyl (IYS-15) derivatives act as potent pan-HDAC inhibitor. Additionally, 4-methylphenyl (IYS-1) and 3-fluoro-4-methylphenyl (IYS-14) derivatives acted as HDAC6-insensitive inhibitors. The present work clearly shows the power of the late-stage C–H coupling approach to rapidly identify novel and highly active/selective biofunctional molecules. PMID:24900884

  10. Fabrication and Evaluation of Thin-Film Spiral-Antenna-Coupled VOx Microbolometer by Metal-Organic Decomposition

    NASA Astrophysics Data System (ADS)

    Son, Le Ngoc; Tachiki, Takashi; Uchida, Takashi

    2013-04-01

    A VOx microbolometer coupled with thin-film spiral antenna was fabricated on a fused-quartz substrate by metal-organic decomposition (MOD). The size of the bolometer was 1 ×52 µm2, and the antenna was designed for operating at 75-110 GHz. The DC sensitivity and responsivity of the bolometer were 540 W-1 and 124 V/W at the bias current of 0.5 mA under the irradiation of a 94 GHz electromagnetic wave, respectively. These values were over one order higher than those of the Bi microbolometer, which is conventionally utilized as a detector in terahertz and infrared regions. The antenna-coupled VOx microbolometer with a high responsivity was realized by MOD.

  11. Evaluation of Computational Fluid Dynamics and Coupled Fluid-Solid Modeling for a Direct Transfer Preswirl System.

    PubMed

    Javiya, Umesh; Chew, John; Hills, Nick; Dullenkopf, Klaus; Scanlon, Timothy

    2013-05-01

    The prediction of the preswirl cooling air delivery and disk metal temperature are important for the cooling system performance and the rotor disk thermal stresses and life assessment. In this paper, standalone 3D steady and unsteady computation fluid dynamics (CFD), and coupled FE-CFD calculations are presented for prediction of these temperatures. CFD results are compared with previous measurements from a direct transfer preswirl test rig. The predicted cooling air temperatures agree well with the measurement, but the nozzle discharge coefficients are under predicted. Results from the coupled FE-CFD analyses are compared directly with thermocouple temperature measurements and with heat transfer coefficients on the rotor disk previously obtained from a rotor disk heat conduction solution. Considering the modeling limitations, the coupled approach predicted the solid metal temperatures well. Heat transfer coefficients on the rotor disk from CFD show some effect of the temperature variations on the heat transfer coefficients. Reasonable agreement is obtained with values deduced from the previous heat conduction solution.

  12. Evaluation of a regional air-quality model with bidirectional NH3 exchange coupled to an agroecosystem model

    NASA Astrophysics Data System (ADS)

    Bash, J. O.; Cooter, E. J.; Dennis, R. L.; Walker, J. T.; Pleim, J. E.

    2013-03-01

    Atmospheric ammonia (NH3) is the primary atmospheric base and an important precursor for inorganic particulate matter and when deposited NH3 contributes to surface water eutrophication, soil acidification and decline in species biodiversity. Flux measurements indicate that the air-surface exchange of NH3 is bidirectional. However, the effects of bidirectional exchange, soil biogeochemistry and human activity are not parameterized in air quality models. The US Environmental Protection Agency's (EPA) Community Multiscale Air-Quality (CMAQ) model with bidirectional NH3 exchange has been coupled with the United States Department of Agriculture's (USDA) Environmental Policy Integrated Climate (EPIC) agroecosystem model. The coupled CMAQ-EPIC model relies on EPIC fertilization timing, rate and composition while CMAQ models the soil ammonium (NH4+) pool by conserving the ammonium mass due to fertilization, evasion, deposition, and nitrification processes. This mechanistically coupled modeling system reduced the biases and error in NHx (NH3 + NH4+) wet deposition and in ambient aerosol concentrations in an annual 2002 Continental US (CONUS) domain simulation when compared to a 2002 annual simulation of CMAQ without bidirectional exchange. Fertilizer emissions estimated in CMAQ 5.0 with bidirectional exchange exhibits markedly different seasonal dynamics than the US EPA's National Emissions Inventory (NEI), with lower emissions in the spring and fall and higher emissions in July.

  13. Solvent dynamical effects in electron transfer: Evaluation of electronic matrix coupling elements for metallocene self-exchange reactions

    NASA Astrophysics Data System (ADS)

    McManis, George E.; Nielson, Roger M.; Gochev, Alexander; Weaver, Michael J.

    1989-07-01

    The functional dependence of the rate constants for self exchange, k sub ex, for a series of metallocene redox couples to solvent-induced variations in the nuclear frequency factor, nu, engendered by alterations in the longitudinal solvent relaxation time, tau sub L, are utilized to deduce values of the electronic matrix coupling element, H12, for electron exchange. The analysis exploits the sensitivity of the k sub ex tau sub L -1 dependence to the degree of reaction adiabaticity and hence H12 for a given electron exchange reaction. Six metallocene couples are examined: Cp2Co+/o, Cp2Fe+/o (Cp = cyclopentadienyl) and the decamethyl derivatives Cp2Co+/o and Cp2Fe+/o scrutinized previously, additional solvent-dependent k sub ex values for carboxymethyl (cobaltocenium-cobaltocene) (Cp(e)Z Co+/o, e= ester) and hydroxymethyl (ferrocenium-ferrocene) (HMFc+/o.) Kinetic data are examined in 15 solvents, including 11 debye solvents for which it is anticipated that is proportioned to 1/tau sub L. Corrections to k sub ex for the solvent-dependent variations in the barrier height were obtained by corresponding measurements of the optical electron transfer energies for the related binuclear complex biferrocenylacetylene, yielding barrier corrected rate constants, k sub ex. The relationship between H12 superscript o and metallocene electronic structure is briefly discussed. The analysis also enables effective solvent relaxation times for adiabatic barrier crossing in non-Debye media including primary alcohols, to be extracted.

  14. Magnetic properties of weakly exchange-coupled high spin Co(II) ions in pseudooctahedral coordination evaluated by single crystal X-band EPR spectroscopy and magnetic measurements.

    PubMed

    Neuman, Nicolás I; Winkler, Elín; Peña, Octavio; Passeggi, Mario C G; Rizzi, Alberto C; Brondino, Carlos D

    2014-03-03

    We report single-crystal X-band EPR and magnetic measurements of the coordination polymer catena-(trans-(μ2-fumarato)tetraaquacobalt(II)), 1, and the Co(II)-doped Zn(II) analogue, 2, in different Zn:Co ratios. 1 presents two magnetically inequivalent high spin S = 3/2 Co(II) ions per unit cell, named A and B, in a distorted octahedral environment coordinated to four water oxygen atoms and trans coordinated to two carboxylic oxygen atoms from the fumarate anions, in which the Co(II) ions are linked by hydrogen bonds and fumarate molecules. Magnetic susceptibility and magnetization measurements of 1 indicate weak antiferromagnetic exchange interactions between the S = 3/2 spins of the Co(II) ions in the crystal lattice. Oriented single crystal EPR experiments of 1 and 2 were used to evaluate the molecular g-tensor and the different exchange coupling constants between the Co(II) ions, assuming an effective spin S′= 1/2. Unexpectedly, the eigenvectors of the molecular g-tensor were not lying along any preferential bond direction, indicating that, in high spin Co(II) ions in roughly octahedral geometry with approximately axial EPR signals, the presence of molecular pseudo axes in the metal site does not determine preferential directions for the molecular g-tensor. The EPR experiment and magnetic measurements, together with a theoretical analysis relating the coupling constants obtained from both techniques, allowed us to evaluate selectively the exchange coupling constant associated with hydrogen bonds that connect magnetically inequivalent Co(II) ions (|JAB(1/2)| = 0.055(2) cm(–1)) and the exchange coupling constant associated with a fumarate bridge connecting equivalent Co(II) ions (|JAA(1/2)| ≈ 0.25 (1) cm(–1)), in good agreement with the average J(3/2) value determined from magnetic measurements.

  15. Evaluation of nitrogen nuclear hyperfine and quadrupole coupling parameters for the proximal imidazole in myoglobin-azide, -cyanide, and -mercaptoethanol complexes by electron spin echo envelope modulation spectroscopy.

    PubMed

    Magliozzo, R S; Peisach, J

    1993-08-24

    Electron spin echo envelope modulation (ESEEM) spectroscopy and computer simulation of spectra has been used to evaluate the nitrogen nuclear hyperfine and quadrupole coupling parameters for the proximal imidazole nitrogen directly coordinated to iron in three low-spin heme complexes, myoglobin-azide, -cyanide, and -mercaptoethanol (MbN3, MbCN, and MbRS). The variability in the weak electron-nuclear coupling parameters reveals the electronic flexibility within the heme group that depends on properties of the exogenous ligands. For example, the isotropic component of the nitrogen nuclear hyperfine coupling ranges from 4.4 MHz for MbN3 to 2.2 MHz for both MbCN and MbRS. The weaker coupling in MbCN and MbRS is taken as evidence for delocalization of unpaired electron spin from iron into the exogenous anionic ligands. The value of e2Qq, the nuclear quadrupole coupling constant for the axial imidazole nitrogen in MbCN and MbRS, was 2.5 MHz but was significantly larger, 3.2 MHz, in MbN3. This large value is considered evidence for a weakened sigma bond between the proximal imidazole and ferric iron in this form, and for a feature contributing to the origin of the high spin-low spin equilibrium exhibited by MbN3 [Beetlestone, J., & George, P. (1964) Biochemistry 5, 707-714]. The ESEEM results have allowed a correlation to be made between the orientation of the g tensor axes, the orientation of the p-pi orbital of the proximal imidazole nitrogen, and sigma- and pi-bonding features of the axial ligands. Furthermore, the proximal imidazole is suggested to act as a pi-acceptor in low-spin heme complexes in order to support strong sigma electron donation from the lone pair orbital to iron. An evaluation of the nitrogen nuclear hyperfine coupling parameters for the porphyrin pyrrole sites in MbRS reveals a large inequivalence in isotropic components consistent with an orientation of rhombic axes (and g tensor axes) that eclipses the Fe-Npyrrole vector directions.

  16. Using Coupled Hydrologic and Agro-economic Models to Evaluate the Impact of Agricultural Activity on Streamflows

    NASA Astrophysics Data System (ADS)

    Brugger, D. R.; Maneta, M. P.

    2014-12-01

    Irrigation substantially alters the timing and magnitude of surface water flows, and continued agricultural intensification to keep up with demand means perpetual stress on surface water resources. A critical challenge is to manage irrigation in a way that balances ecosystem health with sustaining agricultural economies. Coupled hydrologic-agroeconomic models are promising tools for meeting this challenge: the models can quantify 1) how water withdrawal for irrigation impacts streamflows, 2) how these impacts propagate through a surface water system, 3) how the amount of water available for irrigation changes the allocation of resources (e.g. land, water) to available crops, and 4) the impact of water availability on agricultural economies. However, these models can be very data intensive, which limits their applicability. We present a parsimonious coupled hydrologic-agroeconomic model that uses the Positive Mathematical Programming (PMP) method, extensively used in agricultural resource economics, and calibrates to data on allotment of agricultural inputs, available from sources such as the USDA's National Agricultural Statistics Service. PMP assumes that farmers allocate resources to maximize net revenues, justifying the use of optimality conditions to constrain the parameters of the agroeconomic model. We improve the standard PMP model by 1) having the calibrated model reproduce not only the observed input allotment but also the observed yield, and 2) using the ensemble Kalman filter equations to solve the mathematical programming problem recursively, which permits refinement of the model calibration as new observations become available. We demonstrate the proposed agroeconomic model by coupling it to HEC-HMS, a hydrologic model capable of simulating regional natural and man-made water distribution networks, to investigate the sensitivity of streamflows to the allocation of agricultural inputs (land and water) in response to changes in climatic and economic

  17. Development of a 3D finite element model evaluating air-coupled ultrasonic measurements of nonlinear Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Uhrig, Matthias P.; Kim, Jin-Yeon; Jacobs, Laurence J.

    2016-02-01

    This research presents a 3D numerical finite element (FE) model which, previously developed, precisely simulates non-contact, air-coupled measurements of nonlinear Rayleigh wave propagation. The commercial FE-solver ABAQUS is used to perform the simulations. First, frequency dependent pressure wave attenuation is investigated numerically to reconstruct the sound pressure distribution along the active surface of the non-contact receiver. Second, constitutive law and excitation source properties are optimized to match nonlinear ultrasonic experimental data. Finally, the FE-model data are fit with analytical solutions showing a good agreement and thus, indicating the significance of the study performed.

  18. Gear Spline Coupling Program

    SciTech Connect

    Guo, Yi; Errichello, Robert

    2013-08-29

    An analytical model is developed to evaluate the design of a spline coupling. For a given torque and shaft misalignment, the model calculates the number of teeth in contact, tooth loads, stiffnesses, stresses, and safety factors. The analytic model provides essential spline coupling design and modeling information and could be easily integrated into gearbox design and simulation tools.

  19. Evaluation of a fully coupled large-eddy atmosphere and land surface simulation model over heterogeneous surfaces

    NASA Astrophysics Data System (ADS)

    Liu, S.; Shao, Y.; Hintz, M.

    2011-12-01

    In this study, we present a fully coupled large-eddy atmosphere and land-surface simulation model (LES-ALM) which integrates a radiation parameterization, a large-eddy flow model for the atmospheric boundary layer with explicit consideration of the canopy drag effect, and a land surface model to investigate the atmosphere and land surface interactions over heterogeneous areas. A 12-hour model simulation is carried out and the model performance is validated with the field measurements collected during the FLUXPAT experiment of the German SFB/TR32 project "Patterns in Soil-Vegetation-Atmosphere System: Monitoring, Modeling and Data Assimilation". The simulated surface fluxes, near-surface atmospheric state variables, soil temperature, and the vertical profiles of atmospheric boundary layer quantities are compared with the data. There is a good agreement between the model simulations and the observation at both footprint- and domain-averaged scales. This suggests that the fully coupled model can be used as a tool for studying the complex atmosphere and land-surface interactions.

  20. Evaluation of heading performance with vibrotactile guidance: the benefits of information-movement coupling compared with spatial language.

    PubMed

    Faugloire, Elise; Lejeune, Laure

    2014-12-01

    This study quantified the effectiveness of tactile guidance in indicating a direction to turn to and measured its benefits compared to spatial language. The device (CAYLAR), which was composed of 8 vibrators, specified the requested direction by a vibration at the corresponding location around the waist. Twelve participants were tested in normal light and in total darkness with 3 guidance conditions: spatial language, a long tactile rhythm (1 s on/4 s off vibrations) providing a single stimulation before movement, and a short rhythm (200 ms on/200 ms off vibrations) allowing information-movement coupling during body rotation. We measured response time, heading error, and asked participants to rate task easiness, intuitiveness and perceived accuracy for each guidance mode. Accuracy was higher and participants' ratings were more positive with the short tactile mode than with the 2 other modes. Compared to spatial language, tactile guidance, regardless of the vibration rhythm, also allowed faster responses and did not impair accuracy in the absence of vision. These findings quantitatively demonstrate that tactile guidance is particularly effective when it is reciprocally related to movement. We discuss implications of the benefits of perception-action coupling for the design of tactile navigation devices. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  1. An evaluation of a coupled microstructural approach for the analysis of functionally graded composites via the finite-element method

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Dunn, Patrick

    1995-01-01

    A comparison is presented between the predictions of the finite-element analysis and a recently developed higher-order theory for functionally graded materials subjected to a thorough-thickness temperature gradient. In contrast to existing micromechanical theories that utilize classical (i.e., uncoupled) homogenization schemes to calculate micro-level and macro-level stress and displacement fields in materials with uniform or nonuniform fiber spacing (i.e., functionally graded materials), the new theory explicitly couples the microstructural details with the macrostructure of the composite. Previous thermo-elastic analysis has demonstrated that such coupling is necessary when: the temperature gradient is large with respect to the dimension of the reinforcement; the characteristic dimension of the reinforcement is large relative to the global dimensions of the composite and the number of reinforcing fibers or inclusions is small. In these circumstances, the standard micromechanical analyses based on the concept of the representative volume element used to determine average composite properties produce questionable results. The comparison between the predictions of the finite-element method and the higher-order theory presented herein establish the theory's accuracy in predicting thermal and stress fields within composites with a finite number of fibers in the thickness direction subjected to a thorough-thickness thermal gradient.

  2. Quantitative evaluation of positive ϕ angle propensity in flexible regions of proteins from three-bond J couplings.

    PubMed

    Lee, Jung Ho; Ying, Jinfa; Bax, Ad

    2016-02-17

    (3)JHNHα and (3)JC'C' couplings can be readily measured in isotopically enriched proteins and were shown to contain precise information on the backbone torsion angles, ϕ, sampled in disordered regions of proteins. However, quantitative interpretation of these couplings required the population of conformers with positive ϕ angles to be very small. Here, we demonstrate that this restriction can be removed by measurement of (3)JC'Hα values. Even though the functional forms of the (3)JC'Hα and (3)JHNHα Karplus equations are the same, large differences in their coefficients enable accurate determination of the fraction of time that positive ϕ angles are sampled. A four-dimensional triple resonance HACANH[C'] E.COSY experiment is introduced to simultaneously measure (3)JC'Hα and (3)JHNC' in the typically very congested spectra of disordered proteins. High resolution in these spectra is obtained by non-uniform sampling (in the 0.1-0.5% range). Application to the intrinsically disordered protein α-synuclein shows that while most residues have close-to-zero positive ϕ angle populations, up to 16% positive ϕ population is observed for Asn residues. Positive ϕ angle populations determined with the new approach agree closely with consensus values from protein coil libraries and prior analysis of a large set of other NMR parameters. The combination of (3)JHNC' and (3)JC'C' provides information about the amplitude of ϕ angle dynamics.

  3. The 1-way on-line coupled model system MECO(n) - Part 4: Chemical evaluation (based on MESSy v2.52)

    NASA Astrophysics Data System (ADS)

    Mertens, Mariano; Kerkweg, Astrid; Jöckel, Patrick; Tost, Holger; Hofmann, Christiane

    2016-10-01

    For the first time, a simulation incorporating tropospheric and stratospheric chemistry using the newly developed MECO(n) model system is performed. MECO(n) is short for MESSy-fied ECHAM and COSMO models nested n times. It features an online coupling of the COSMO-CLM model, equipped with the Modular Earth Submodel System (MESSy) interface (called COSMO/MESSy), with the global atmospheric chemistry model ECHAM5/MESSy for Atmospheric Chemistry (EMAC). This online coupling allows a consistent model chain with respect to chemical and meteorological boundary conditions from the global scale down to the regional kilometre scale. A MECO(2) simulation incorporating one regional instance over Europe with 50 km resolution and one instance over Germany with 12 km resolution is conducted for the evaluation of MECO(n) with respect to tropospheric gas-phase chemistry. The main goal of this evaluation is to ensure that the chemistry-related MESSy submodels and the online coupling with respect to the chemistry are correctly implemented. This evaluation is a prerequisite for the further usage of MECO(n) in atmospheric chemistry-related studies. Results of EMAC and the two COSMO/MESSy instances are compared with satellite, ground-based and aircraft in situ observations, focusing on ozone, carbon monoxide and nitrogen dioxide. Further, the methane lifetimes in EMAC and the two COSMO/MESSy instances are analysed in view of the tropospheric oxidation capacity. From this evaluation, we conclude that the chemistry-related submodels and the online coupling with respect to the chemistry are correctly implemented. In comparison with observations, both EMAC and COSMO/MESSy show strengths and weaknesses. Especially in comparison to aircraft in situ observations, COSMO/MESSy shows very promising results. However, the amplitude of the diurnal cycle of ground-level ozone measurements is underestimated. Most of the differences between COSMO/MESSy and EMAC can be attributed to differences in the

  4. An evaluation of 20th century climate for the Southeastern United States as simulated by Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models

    USGS Publications Warehouse

    David E. Rupp,

    2016-05-05

    The 20th century climate for the Southeastern United States and surrounding areas as simulated by global climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) was evaluated. A suite of statistics that characterize various aspects of the regional climate was calculated from both model simulations and observation-based datasets. CMIP5 global climate models were ranked by their ability to reproduce the observed climate. Differences in the performance of the models between regions of the United States (the Southeastern and Northwestern United States) warrant a regional-scale assessment of CMIP5 models.

  5. Kinematic evaluation of the finger's interphalangeal joints coupling mechanism--variability, flexion-extension differences, triggers, locking swanneck deformities, anthropometric correlations.

    PubMed

    Leijnse, J N A L; Quesada, P M; Spoor, C W

    2010-08-26

    The human finger contains tendon/ligament mechanisms essential for proper control. One mechanism couples the movements of the interphalangeal joints when the (unloaded) finger is flexed with active deep flexor. This study's aim was to accurately determine in a large finger sample the kinematics and variability of the coupled interphalangeal joint motions, for potential clinical and finger model validation applications. The data could also be applied to humanoid robotic hands. Sixty-eight fingers were measured in seventeen hands in nine subjects. Fingers exhibited great joint mobility variability, with passive proximal interphalangeal hyperextension ranging from zero to almost fifty degrees. Increased measurement accuracy was obtained by using marker frames to amplify finger segment motions. Gravitational forces on the marker frames were not found to invalidate measurements. The recorded interphalangeal joint trajectories were highly consistent, demonstrating the underlying coupling mechanism. The increased accuracy and large sample size allowed for evaluation of detailed trajectory variability, systematic differences between flexion and extension trajectories, and three trigger types, distinct from flexor tendon triggers, involving initial flexion deficits in either proximal or distal interphalangeal joint. The experimental methods, data and analysis should advance insight into normal and pathological finger biomechanics (e.g., swanneck deformities), and could help improve clinical differential diagnostics of trigger finger causes. The marker frame measuring method may be useful to quantify interphalangeal joints trajectories in surgical/rehabilitative outcome studies. The data as a whole provide the most comprehensive collection of interphalangeal joint trajectories for clinical reference and model validation known to us to date.

  6. Cluster Randomized Controlled Trial Evaluation of a Gender Equity and Family Planning Intervention for Married Men and Couples in Rural India.

    PubMed

    Raj, Anita; Ghule, Mohan; Ritter, Julie; Battala, Madhusudana; Gajanan, Velhal; Nair, Saritha; Dasgupta, Anindita; Silverman, Jay G; Balaiah, Donta; Saggurti, Niranjan

    2016-01-01

    Despite ongoing recommendations to increase male engagement and gender-equity (GE) counseling in family planning (FP) services, few such programs have been implemented and rigorously evaluated. This study evaluates the impact of CHARM, a three-session GE+FP counseling intervention delivered by male health care providers to married men, alone (sessions 1&2) and with their wives (session 3) in India. A two-armed cluster randomized controlled trial was conducted with young married couples (N = 1081 couples) recruited from 50 geographic clusters (25 clusters randomized to CHARM and a control condition, respectively) in rural Maharashtra, India. Couples were surveyed on demographics, contraceptive behaviors, and intimate partner violence (IPV) attitudes and behaviors at baseline and 9 &18-month follow-ups, with pregnancy testing at baseline and 18-month follow-up. Outcome effects on contraceptive use and incident pregnancy, and secondarily, on contraceptive communication and men's IPV attitudes and behaviors, were assessed using logistic generalized linear mixed models. Most men recruited from CHARM communities (91.3%) received at least one CHARM intervention session; 52.5% received the couple's session with their wife. Findings document that women from the CHARM condition, relative to controls, were more likely to report contraceptive communication at 9-month follow-up (AOR = 1.77, p = 0.04) and modern contraceptive use at 9 and 18-month follow-ups (AORs = 1.57-1.58, p = 0.05), and they were less likely to report sexual IPV at 18-month follow-up (AOR = 0.48, p = 0.01). Men in the CHARM condition were less likely than those in the control clusters to report attitudes accepting of sexual IPV at 9-month (AOR = 0.64, p = 0.03) and 18-month (AOR = 0.51, p = 0.004) follow-up, and attitudes accepting of physical IPV at 18-month follow-up (AOR = 0.64, p = 0.02). No significant effect on pregnancy was seen. Findings demonstrate that men can be engaged in FP programming in rural

  7. Evaluating a Coupled Carbon and Nitrogen Cycle Model at a Pacific Northwest Douglas-fir Forest in Canada

    NASA Astrophysics Data System (ADS)

    Arain, M.; Yuan, F.; Shaikh, M.; Black, T.

    2004-05-01

    Nitrogen availability could be a key factor to enhance or limit plant photosynthesis under global climate change. This study presents a coupled nitrogen and carbon cycle model incorporated in the Canadian Land Surface Scheme (CLASS) which is used in the Canadian General Circulation Model. The nitrogen cycle model, which follows Dickinson et al., 2002 is coupled to a previously derived carbon model in CLASS. Nitrogen cycling processes taken into account include biological fixation, soil mineralization, immobilization, nitrification, denitrification, volatilization, leaching, root uptake and allocation to various plant components. Root nitrogen uptake depends on soil mineral nitrogen content, ion physical transport, root interface, and also on plant-growth demand for this nutrient. Leaf Rubisco-nitrogen concentration was modeled to determine variations in maximum rate of Rubisco activity,Vcmax. The coupled carbon and nitrogen model was tested at a Douglas-fir forest, growing on Vancouver Island, British Columbia, Canada, using observed eddy covariance flux data from 1998 to 2000. Simulated carbon and nitrogen uptake/loss rates were in broad agreement with observation. The simulated annual soil mineralized nitrogen was 6.3, 5.3, and 6.0 g m-2 in 1998, 1999 and 2000, respectively. The annual nitrogen uptake was 1.78, 1.65, and 1.76 g m-2, respectively. The simulated leaf nitrogen ranged from 1.81 to 1.87 g m-2 leaf area in the growing season, while observed leaf nitrogen values were 1.7 g m-2 in the lower canopy, and 2.56 g m-2 in the upper canopy. Observed Rubisco nitrogen was about 17% of total leaf nitrogen as compared to 16% simulated value. The modeled Vcmax in top leaves (Vcmax0) was as low as 15 imol C m-2 s-1 during the non-growing season, and as high as 80 imol C m-2 s-1 during the full growing season. Comparison of half-hourly observed and simulated gross ecosystem productivity (GEP), ecosystem respiration (R) and net ecosystem productivity (NEP) from 1998

  8. Evaluation of wind regimes and their impact on vertical mixing and coupling in a moderately dense forest

    NASA Astrophysics Data System (ADS)

    Wunder, Tobias; Ehrnsperger, Laura; Thomas, Christoph

    2017-04-01

    In the last decades much attention has been devoted to improving our understanding of organized motions in plant canopies. Particularly the impact of coherent structures on turbulent flows and vertical mixing in near-neutral conditions has been the focus of many experimental and modeling studies. Despite this progress, the weak-wind subcanopy airflow in concert with stable or weak-wind above-canopy conditions remains poorly understood. In these conditions, evidence is mounting that larger-scale motions, so called sub-meso motions which occupy time scales from minutes to hours and spatial scales from tens of meters to kilometers, dominate transport and turbulent mixing particularly in the subcanopy, because of generally weaker background flow as a result of the enhanced friction due to the plant material. We collected observations from a network of fast-response sensor across the vertical and horizontal dimensions during the INTRAMIX experiment at the Fluxnet site Waldstein/ Weidenbrunnen (DE-Bay) in a moderately dense Norway spruce (Picea Abies) forest over a period of ten weeks. Its main goal was to investigate the role of the submeso-structures on the turbulent wind field and the mixing mechanisms including coherent structures. In a first step, coupling regimes differentiating between weak and strong flows and day- and nighttime-conditions are determined. Subsequently, each of the regimes is analyzed for its dominant flow dynamics identified by wavelet analysis. It is hypothesized that strong vertical wind directional shear does not necessarily indicate a decoupling of vertical layers, but on the contrary may create situations of significant coupling of the sub-canopy with the canopy layers above. Moreover, rapid changes of wind direction or even reversals may generate substantial turbulence and induce intermittent coupling on a variety of time scales. The overarching goal is to improve diagnostics for vertical mixing in plant canopies incorporating turbulence

  9. Build an Ensemble-based Remote-Sensing Driven Coupled Flash Flood and Landslide Warning System and Its Evaluation Across the United States

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Hong, Y.; Gourley, J. J.; Vergara, H. J.; Xue, X.; Lu, N.; Wooten, R.

    2014-12-01

    Flooding and flash flooding are the most costly weather-related natural hazards in the United States and world. Heavy rainfall-triggered landslides are often associated with flash flood events and cause additional loss of life and property. Therefore, it is important to understand the linkage and interaction between flash flood events and landslides. It is also pertinent to build a robust coupled flash flood and landslide disaster early warning system for disaster preparedness and hazard management. In this study, we built a coupled flash flood and landslide disaster early warning system, which is aimed for operational use by the US National Weather Service, based on an existing ensemble framework by extending the model ensemble and coupling a set of distributed hydrologic models, the Coupled Routing and Excess STorage (CREST) model and the SACramento Soil Moisture Accounting (SAC-SMA) model, with two physically based landslide prediction models, the SLope-Infiltration-Distributed Equilibrium (SLIDE) model and the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability (TRIGRS) model. We tested this prototype warning system by conducting multi-year simulations driven by the Multi-Radar Multi-Sensor (MRMS) rainfall estimates at selected basins across the United States. We then comprehensively evaluated the predictive capabilities of this system against observed and reported flood and landslides events. Our results show that the system is generally capable of making accurate predictions of flash flood and landslide events in terms of their locations and time of occurrence. The recently developed ensemble framework also enables us to quantify the uncertainty of the predictions and the probabilities of anticipated disaster events.

  10. An application for tunes and coupling evaluation from turn-by-turn data at the Fermilab Booster

    SciTech Connect

    Marsh, W.; Alexahin, Y.; Gianfelice-Wendt, E.; /Fermilab

    2011-03-01

    A console application using the phasing of Turn-by-Turn signals from the different BPMs has been tested at the Fermilab Booster. This technique allows the on-line detection of the beam tunes during the fast Booster ramp in conditions where other algorithms were unsuccessful. The application has been recently expanded to include the computation of the linear coupling coefficients. Algorithm and measurement results are presented. Although improved by the phased sum technique the automatic identification of the tunes is not always successful. This makes the use of the on-line application difficult. Ideas for further improvements are under investigation. Measurements have indicated that the effect of the skew quadrupoles is by a factor 3 weaker than expected from the nominal optics. A calibration of the skew quadrupole circuits using the TBT data is planned.

  11. Using the coupled wake boundary layer model to evaluate the effect of turbulence intensity on wind farm performance

    NASA Astrophysics Data System (ADS)

    Stevens, Richard J. A. M.; Gayme, Dennice; Meneveau, Charles

    2015-06-01

    We use the recently introduced coupled wake boundary layer (CWBL) model to predict the effect of turbulence intensity on the performance of a wind farm. The CWBL model combines a standard wake model with a “top-down” approach to get improved predictions for the power output compared to a stand-alone wake model. Here we compare the CWBL model results for different turbulence intensities with the Horns Rev field measurements by Hansen et al., Wind Energy 15, 183196 (2012). We show that the main trends as function of the turbulence intensity are captured very well by the model and discuss differences between the field measurements and model results based on comparisons with LES results from Wu and Porté-Agel, Renewable Energy 75, 945-955 (2015).

  12. Study of laser heated propulsion devices. Part 1: Evaluation of laser devices, fuels and energy coupling mechanisms

    NASA Technical Reports Server (NTRS)

    Hofer, O. C.

    1982-01-01

    Closed cycle, CW waveform and short wavelength laser devices are desirable characteristics for laser propulsion. The choice of specific wavelengths for hydrogen fuel affects the operational conditions under which a laser supported absorption (LSA) wave is initiated and maintained. The mechanisms of initiating and maintaining LSA waves depend on the wavelength of the laser. Consequently, the shape and size of the hot core plasma is also dependent on wavelength and pressure. Detailed modeling of these mechanisms must be performed before their actual significance can be ascertained. Inverse bremsstrahlung absorption mechanism is the dominant mechanism for coupling energy into the plasma, but other mechanisms which are wavelength dependent can dictate the LSA wave plasma initiation and maintenance conditions. Multiphoton mechanisms become important at visible or shorter wavelengths. These are important mechanisms in creating the initial H2 gas breakdown and supplying the precursor electrons required to sustain the plasma.

  13. Development and evaluation of high resolution quadrupole mass analyzer and an inductively coupled plasma-Mach disk

    SciTech Connect

    Amad, Ma'an Hazem

    1999-12-10

    By definition a plasma is an electrically conducting gaseous mixture containing a significant concentration of cations and electrons. The Inductively Coupled Plasma (ICP) is an electrodeless discharge in a gas at atmospheric pressure. This discharge is an excellent one for vaporizing, atomizing, and ionizing elements. The early development of the ICP began in 1942 by Babat and then by Reed in the early 1960s. This was then followed by the pioneering work of Fassel and coworkers in the late 1960s. Commercial ICP spectrometers were introduced in the mid 1970s. A major breakthrough in the area of ICP took place in the early 1980s when the ICP was shown to be an excellent ion source for mass spectrometry.

  14. Toward reducing systematic errors in NWP - cross-evaluation of common physics from 6h-regional to 6d-global to 6mon-coupled applications

    NASA Astrophysics Data System (ADS)

    Benjamin, S.

    2015-12-01

    An integrated evaluation system against gridded data and observations is being applied against global models (FIM, GFS) and regional models (WRF-ARW applications for RAP/HRRR). An overview will be presented on wind, relative humidity, and temperature model errors as measured against rawinsonde and aircraft observations in common at 12h forecast duration for global and regional models. Systematic errors common to both applications will be presented. A common problem with deficient cloud cover has been evident in both 6h (3km HRRR-WRF-ARW) regional forecasts and 6-month coupled-global (FIM-HYCOM) forecasts, allowing improvements in a common deep/shallow convection scheme (Grell-Freitas) with subgrid-scale clouds to be evaluated across time scales.

  15. Dose performance evaluation of a charge coupled device and a flat-panel digital fluoroscopy system recently installed in an interventional cardiology laboratory.

    PubMed

    Tsapaki, Virginia; Kottou, Sophia; Kollaros, Nikolaos; Dafnomili, Paraskevi; Kyriakidis, Zinon; Neofotistou, Vassiliki

    2004-01-01

    The purpose of the study was to evaluate the dose performance of a flat-panel (FP) and an image intensifier (II) charge coupled device (CCD) digital fluoroscopy X-ray systems newly installed in an Interventional Cardiology (IC) department. Filter entrance dose rate, detector dose rate (during fluoroscopy) and filter entrance dose per image were measured at 70 cm from the focus using 2 mm copper sheets to mimic normal size patient. Image quality was also evaluated. The patient dose survey included 277 patients, which had either a Coronary Angiography (CA) or a Percutaneous Transluminal Coronary Angioplasty (PTCA). Dose area product (DAP), fluoroscopy time (T) and total number of frames (F) values were also collected. The results showed that both systems performed within international recommendations with the exception of higher cine radiation doses, stressing the fact that neither specific protocols of measurement nor reference values for digital equipment were provided by the official bodies.

  16. Energy-dispersive x-ray fluorescence spectroscopy and inductively coupled plasma emission spectrometry evaluated for multielement analysis in complex biological matrices.

    PubMed

    Irons, R D; Schenk, E A; Giauque, R D

    1976-12-01

    Energy-dispersive x-ray spectroscopy and inductively coupled plasma emission spectrometry were evaluated as methods for routine multielement analysis of biological material. Standard samples included Standard Reference Materials (National Bureau of Standards), compounded mixtures, and supplements that provided a wide range of elemental concentrations for analysis. Elements included in this study were Zn, Pb, Ni, Mn, Fe, Mg, Cu, Ca, As, Se, Br, Rb, and Sr. Standards were analyzed as unknowns by participating laboratories. The two methods were evaluated for sensitivity, precision, and accuracy, and the results compared to those obtained for atomic absorption spectrometric analysis of identical standard unknowns. Both methods compared favorably and both were determined to be highly reliable for such an application. Advantages and disadvantages of each method are compared and discussed.

  17. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

    DOE PAGES

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; ...

    2016-05-30

    In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat flux profiles on the receivermore » and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.« less

  18. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

    SciTech Connect

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; Ho, Clifford; Yellowhair, Julius; Dutta, Pradip

    2016-05-30

    In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat flux profiles on the receiver and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.

  19. Statistical Safety Evaluation of BWR Turbine Trip Scenario Using Coupled Neutron Kinetics and Thermal Hydraulics Analysis Code SKETCH-INS/TRACE5.0

    NASA Astrophysics Data System (ADS)

    Ichikawa, Ryoko; Masuhara, Yasuhiro; Kasahara, Fumio

    The Best Estimate Plus Uncertainty (BEPU) method has been prepared for the regulatory cross-check analysis at Japan Nuclear Energy Safety Organization (JNES) on base of the three-dimensional neutron-kinetics/thermal- hydraulics coupled code SKETCH-INS/TRACE5.0. In the preparation, TRACE5.0 is verified against the large-scale thermal-hydraulic tests carried out with NUPEC facility. These tests were focused on the pressure drop of steam-liquid two phase flow and void fraction distribution. From the comparison of the experimental data with other codes (RELAP5/MOD3.3 and TRAC-BF1), TRACE5.0 was judged better than other codes. It was confirmed that TRACE5.0 has high reliability for thermal hydraulics behavior and are used as a best-estimate code for the statistical safety evaluation. Next, the coupled code SKETCH-INS/TRACE5.0 was applied to turbine trip tests performed at the Peach Bottom-2 BWR4 Plant. The turbine trip event shows the rapid power peak due to the voids collapse with the pressure increase. The analyzed peak value of core power is better simulated than the previous version SKETCH-INS/TRAC-BF1. And the statistical safety evaluation using SKETCH-INS/TRACE5.0 was applied to the loss of load transient for examining the influence of the choice of sampling method.

  20. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

    SciTech Connect

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; Ho, Clifford; Yellowhair, Julius; Dutta, Pradip

    2016-05-30

    In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat flux profiles on the receiver and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.

  1. Small wind turbine performance evaluation using field test data and a coupled aero-electro-mechanical model

    NASA Astrophysics Data System (ADS)

    Wallace, Brian D.

    A series of field tests and theoretical analyses were performed on various wind turbine rotor designs at two Penn State residential-scale wind-electric facilities. This work involved the prediction and experimental measurement of the electrical and aerodynamic performance of three wind turbines; a 3 kW rated Whisper 175, 2.4 kW rated Skystream 3.7, and the Penn State designed Carolus wind turbine. Both the Skystream and Whisper 175 wind turbines are OEM blades which were originally installed at the facilities. The Carolus rotor is a carbon-fiber composite 2-bladed machine, designed and assembled at Penn State, with the intent of replacing the Whisper 175 rotor at the off-grid system. Rotor aerodynamic performance is modeled using WT_Perf, a National Renewable Energy Laboratory developed Blade Element Momentum theory based performance prediction code. Steady-state power curves are predicted by coupling experimentally determined electrical characteristics with the aerodynamic performance of the rotor simulated with WT_Perf. A dynamometer test stand is used to establish the electromechanical efficiencies of the wind-electric system generator. Through the coupling of WT_Perf and dynamometer test results, an aero-electro-mechanical analysis procedure is developed and provides accurate predictions of wind system performance. The analysis of three different wind turbines gives a comprehensive assessment of the capability of the field test facilities and the accuracy of aero-electro-mechanical analysis procedures. Results from this study show that the Carolus and Whisper 175 rotors are running at higher tip-speed ratios than are optimum for power production. The aero-electro-mechanical analysis predicted the high operating tip-speed ratios of the rotors and was accurate at predicting output power for the systems. It is shown that the wind turbines operate at high tip-speeds because of a miss-match between the aerodynamic drive torque and the operating torque of the wind

  2. First step toward near-infrared continuous glucose monitoring: in vivo evaluation of antibody coupled biomaterials

    PubMed Central

    Gellynck, Karolien; Kodeck, Valérie; Van De Walle, Elke; Kersemans, Ken; De Vos, Filip; Declercq, Heidi; Dubruel, Peter; Vlaminck, Lieven

    2015-01-01

    Continuous glucose monitoring (CGM) is crucial in diabetic care. Long-term CGM systems however require an accurate sensor as well as a suitable measuring environment. Since large intravenous sensors are not feasible, measuring inside the interstitial fluid is considered the best alternative. This option, unfortunately, has the drawback of a lag time with blood glucose values. A good strategy to circumvent this is to enhance tissue integration and enrich the peri-implant vasculature. Implants of different optically transparent biomaterials (poly(methyl-methacrylate) [PMMA] and poly(dimethylsiloxane) [PDMS]) – enabling glucose monitoring in the near-infrared (NIR) spectrum – were surface-treated and subsequently implanted in goats at various implantation sites for up to 3 months. The overall in vivo biocompatibility, tissue integration, and vascularization at close proximity of the surfaces of these materials were assessed. Histological screening showed similar tissue reactions independent of the implantation site. No significant inflammation reaction was observed. Tissue integration and vascularization correlated, to some extent, with the biomaterial composition. A modification strategy, in which a vascular endothelial-cadherin antibody was coupled to the biomaterials surface through a dopamine layer, showed significantly enhanced vascularization 3 months after subcutaneous implantation. Our results suggest that the developed strategy enables the creation of tissue interactive NIR transparent packaging materials, opening the possibility of continuous glucose monitoring. PMID:25304314

  3. Development and characterization of a Pseudomonas aeruginosa in vitro coupled transcription-translation assay system for evaluation of translation inhibitors

    PubMed Central

    Fyfe, Corey; Sutcliffe, Joyce A.; Grossman, Trudy H.

    2013-01-01

    Bacterial transcription and translation have proven to be effective targets for broad-spectrum antimicrobial therapies owing to the critical role they play in bacterial propagation and the overall conservation of the associated machinery involved. Escherichia coli is the most common source of S30 extract used in bacterial in vitro coupled transcription-translation assays, however, transcription-translation assays in other important pathogens including Staphylococcus aureus and Streptococcus pneumoniae have been described (Murray et al., 2001; Dandliker et al., 2003). Pseudomonas aeruginosa is an important and difficult-to-treat Gram-negative pathogen. In a drug discovery program, to de-risk any potential species specificity of novel inhibitors, we developed and optimized a robust method for the preparation of S30 extract from P. aeruginosa strain PAO1. Further, a P. aeruginosa transcription-translation assay using a firefly luciferase reporter plasmid was validated and compared to an E. coli S30-based system using a wide range of antibiotics encompassing multiple classes of translation inhibitors. Results showed a similar ranking of the activities of known inhibitors, illustrative of the high degree of conservation between the transcription-translation pathways in both organisms. PMID:22677604

  4. Evaluation of climate sensitivity to the representation of aerosols in a coupled ocean-atmosphere global model

    NASA Astrophysics Data System (ADS)

    Watson, Laura; Michou, Martine; Nabat, Pierre; Saint-Martin, David

    2017-04-01

    Aerosol radiative forcing is one of the greatest sources of uncertainty when projecting future climate change. Aerosols vary in time and in space and alter the Earth's radiative balance directly, by absorbing and scattering radiation, and indirectly, by interacting with clouds and altering cloud microphysics. A series of sensitivity tests were performed using the coupled ocean-atmosphere general circulation model CNRM-CM in order to investigate how the representation of aerosols within the model can affect climate. These tests included looking at the difference between using constant emissions versus using emissions that evolve over a period of thirty years; examining the impacts of including indirect effects from sea salt and organics; altering the aerosol optical properties; altering the vertical distribution of aerosols, and using an interactive aerosol scheme versus using 2-D climatologies. The results of these sensitivity tests show how modifying certain aspects of the aerosol scheme can significantly affect radiative flux, the cloud radiative effect and global surface temperatures. Of particular note is the importance of the indirect effect of sea salt aerosols, which has more of a significant impact upon climate than the direct radiative forcing of sea salt aerosols; and the impact of using an interactive aerosol scheme instead of 2-D climatologies, which results in more net radiative flux at the top of the atmosphere and slightly warmer temperatures at land surfaces.

  5. First step toward near-infrared continuous glucose monitoring: in vivo evaluation of antibody coupled biomaterials.

    PubMed

    Gellynck, Karolien; Kodeck, Valérie; Van De Walle, Elke; Kersemans, Ken; De Vos, Filip; Declercq, Heidi; Dubruel, Peter; Vlaminck, Lieven; Cornelissen, Maria

    2015-04-01

    Continuous glucose monitoring (CGM) is crucial in diabetic care. Long-term CGM systems however require an accurate sensor as well as a suitable measuring environment. Since large intravenous sensors are not feasible, measuring inside the interstitial fluid is considered the best alternative. This option, unfortunately, has the drawback of a lag time with blood glucose values. A good strategy to circumvent this is to enhance tissue integration and enrich the peri-implant vasculature. Implants of different optically transparent biomaterials (poly(methyl-methacrylate) [PMMA] and poly(dimethylsiloxane) [PDMS]) - enabling glucose monitoring in the near-infrared (NIR) spectrum - were surface-treated and subsequently implanted in goats at various implantation sites for up to 3 months. The overall in vivo biocompatibility, tissue integration, and vascularization at close proximity of the surfaces of these materials were assessed. Histological screening showed similar tissue reactions independent of the implantation site. No significant inflammation reaction was observed. Tissue integration and vascularization correlated, to some extent, with the biomaterial composition. A modification strategy, in which a vascular endothelial-cadherin antibody was coupled to the biomaterials surface through a dopamine layer, showed significantly enhanced vascularization 3 months after subcutaneous implantation. Our results suggest that the developed strategy enables the creation of tissue interactive NIR transparent packaging materials, opening the possibility of continuous glucose monitoring.

  6. Initial results of fully coupled water cycle EURO-CORDEX evaluation simulations with TerrSysMP from 1989-2008

    NASA Astrophysics Data System (ADS)

    Kulkarni, Ketan; Keune, Jessica; Gasper, Fabian; Sharples, Wendy; Naz, Bibi; Goergen, Klaus; Kollet, Stefan

    2017-04-01

    Interactions and feedbacks between the sub-surface including groundwater, the land surface and the atmosphere are highly relevant for weather and the climate system. However, many state of the art global and regional earth system models do not consider the impacts of groundwater dynamics, which are critical for the closure of the hydrological cycle on different spatial and temporal scales. In this study we implement the coupled Terrestrial Systems Modelling Platform over the EURO-CORDEX domain for evaluation experiments in line with the CORDEX experiment design in order to study how the explicit treatment of groundwater affects states and fluxes of the terrestrial water and energy cycle over a continental domain on longer simulation time spans and in relation to existing uncoupled EURO-CORDEX RCM simulations. The Terrestrial Systems Modelling Platform (TerrSysMP) is a fully coupled scale-consistent numerical modelling system, currently consisting of the COSMO NWP model, the Community Land Model (CLM) and the ParFlow variably saturated surface and subsurface hydrological model, coupled with the external coupler OASIS3(-MCT). TerrSysMP allows for a physically-based representation of transport processes across scales down to sub-km resolution with explicit feedbacks between the individual compartments, including 3D groundwater dynamics and a full representation of the terrestrial hydrological cycle. The land surface-groundwater subsystem is spun up with a 1979-1989 cyclic climatological forcing derived from ERA-Interim reanalysis until an equilibrated groundwater state is achieved. Using this as the initial conditions, the fully coupled simulation for the period from 1989 to 2008 are carried out over the EURO-CORDEX domain at 12 km resolution using ERA-Interim as lateral boundary forcing. COSMO physics settings are in line with the CCLM consortium runs done for EURO-CORDEX to allow for a better comparison. The JUBE2 (Juelich Benchmarking Environment) workflow engine

  7. Evaluation of a coupled model for numerical simulation of a multiphase flow system in a porous medium and a surface fluid.

    PubMed

    Hibi, Yoshihiko; Tomigashi, Akira

    2015-09-01

    Numerical simulations that couple flow in a surface fluid with that in a porous medium are useful for examining problems of pollution that involve interactions among atmosphere, water, and groundwater, including saltwater intrusion along coasts. Coupled numerical simulations of such problems must consider both vertical flow between the surface fluid and the porous medium and complicated boundary conditions at their interface. In this study, a numerical simulation method coupling Navier-Stokes equations for surface fluid flow and Darcy equations for flow in a porous medium was developed. Then, the basic ability of the coupled model to reproduce (1) the drawdown of a surface fluid observed in square-pillar experiments, using pillars filled with only fluid or with fluid and a porous medium and (2) the migration of saltwater (salt concentration 0.5%) in the porous medium using the pillar filled with fluid and a porous medium was evaluated. Simulations that assumed slippery walls reproduced well the results with drawdowns of 10-30 cm when the pillars were filled with packed sand, gas, and water. Moreover, in the simulation of saltwater infiltration by the method developed in this study, velocity was precisely reproduced because the experimental salt concentration in the porous medium after saltwater infiltration was similar to that obtained in the simulation. Furthermore, conditions across the boundary between the porous medium and the surface fluid were satisfied in these numerical simulations of square-pillar experiments in which vertical flow predominated. Similarly, the velocity obtained by the simulation for a system coupling flow in surface fluid with that in a porous medium when horizontal flow predominated satisfied the conditions across the boundary. Finally, it was confirmed that the present simulation method was able to simulate a practical-scale surface fluid and porous medium system. All of these numerical simulations, however, required a great deal of

  8. Cluster Randomized Controlled Trial Evaluation of a Gender Equity and Family Planning Intervention for Married Men and Couples in Rural India

    PubMed Central

    Raj, Anita; Ghule, Mohan; Ritter, Julie; Battala, Madhusudana; Gajanan, Velhal; Nair, Saritha; Dasgupta, Anindita; Silverman, Jay G.; Balaiah, Donta; Saggurti, Niranjan

    2016-01-01

    Background Despite ongoing recommendations to increase male engagement and gender-equity (GE) counseling in family planning (FP) services, few such programs have been implemented and rigorously evaluated. This study evaluates the impact of CHARM, a three-session GE+FP counseling intervention delivered by male health care providers to married men, alone (sessions 1&2) and with their wives (session 3) in India. Methods and Findings A two-armed cluster randomized controlled trial was conducted with young married couples (N = 1081 couples) recruited from 50 geographic clusters (25 clusters randomized to CHARM and a control condition, respectively) in rural Maharashtra, India. Couples were surveyed on demographics, contraceptive behaviors, and intimate partner violence (IPV) attitudes and behaviors at baseline and 9 &18-month follow-ups, with pregnancy testing at baseline and 18-month follow-up. Outcome effects on contraceptive use and incident pregnancy, and secondarily, on contraceptive communication and men’s IPV attitudes and behaviors, were assessed using logistic generalized linear mixed models. Most men recruited from CHARM communities (91.3%) received at least one CHARM intervention session; 52.5% received the couple’s session with their wife. Findings document that women from the CHARM condition, relative to controls, were more likely to report contraceptive communication at 9-month follow-up (AOR = 1.77, p = 0.04) and modern contraceptive use at 9 and 18-month follow-ups (AORs = 1.57–1.58, p = 0.05), and they were less likely to report sexual IPV at 18-month follow-up (AOR = 0.48, p = 0.01). Men in the CHARM condition were less likely than those in the control clusters to report attitudes accepting of sexual IPV at 9-month (AOR = 0.64, p = 0.03) and 18-month (AOR = 0.51, p = 0.004) follow-up, and attitudes accepting of physical IPV at 18-month follow-up (AOR = 0.64, p = 0.02). No significant effect on pregnancy was seen. Conclusions Findings demonstrate

  9. Evaluation of ELISA coupled with Western blot as a surveillance tool for Trichinella infection in wild boar (Sus scrofa).

    PubMed

    Cuttell, Leigh; Gómez-Morales, Maria Angeles; Cookson, Beth; Adams, Peter J; Reid, Simon A; Vanderlinde, Paul B; Jackson, Louise A; Gray, C; Traub, Rebecca J

    2014-01-31

    Trichinella surveillance in wildlife relies on muscle digestion of large samples which are logistically difficult to store and transport in remote and tropical regions as well as labour-intensive to process. Serological methods such as enzyme-linked immunosorbent assays (ELISAs) offer rapid, cost-effective alternatives for surveillance but should be paired with additional tests because of the high false-positive rates encountered in wildlife. We investigated the utility of ELISAs coupled with Western blot (WB) in providing evidence of Trichinella exposure or infection in wild boar. Serum samples were collected from 673 wild boar from a high- and low-risk region for Trichinella introduction within mainland Australia, which is considered Trichinella-free. Sera were examined using both an 'in-house' and a commercially available indirect-ELISA that used excretory-secretory (E/S) antigens. Cut-off values for positive results were determined using sera from the low-risk population. All wild boar from the high-risk region (352) and 139/321 (43.3%) of the wild boar from the low-risk region were tested by artificial digestion. Testing by Western blot using E/S antigens, and a Trichinella-specific real-time PCR was also carried out on all ELISA-positive samples. The two ELISAs correctly classified all positive controls as well as one naturally infected wild boar from Gabba Island in the Torres Strait. In both the high- and low-risk populations, the ELISA results showed substantial agreement (k-value=0.66) that increased to very good (k-value=0.82) when WB-positive only samples were compared. The results of testing sera collected from the Australian mainland showed the Trichinella seroprevalence was 3.5% (95% C.I. 0.0-8.0) and 2.3% (95% C.I. 0.0-5.6) using the in-house and commercial ELISA coupled with WB respectively. These estimates were significantly higher (P<0.05) than the artificial digestion estimate of 0.0% (95% C.I. 0.0-1.1). Real-time PCR testing of muscle from

  10. Storm and fair-weather driven sediment-transport within Poverty Bay, New Zealand, evaluated using coupled numerical models

    NASA Astrophysics Data System (ADS)

    Bever, Aaron J.; Harris, Courtney K.

    2014-09-01

    The Waipaoa River Sedimentary System in New Zealand, a focus site of the MARGINS Source-to-Sink program, contains both a terrestrial and marine component. Poverty Bay serves as the interface between the fluvial and oceanic portions of this dispersal system. This study used a three-dimensional hydrodynamic and sediment-transport numerical model, the Regional Ocean Modeling System (ROMS), coupled to the Simulated WAves Nearshore (SWAN) wave model to investigate sediment-transport dynamics within Poverty Bay and the mechanisms by which sediment travels from the Waipaoa River to the continental shelf. Two sets of model calculations were analyzed; the first represented a winter storm season, January-September, 2006; and the second an approximately 40 year recurrence interval storm that occurred on 21-23 October 2005. Model results indicated that hydrodynamics and sediment-transport pathways within Poverty Bay differed during wet storms that included river runoff and locally generated waves, compared to dry storms driven by oceanic swell. During wet storms the model estimated significant deposition within Poverty Bay, although much of the discharged sediment was exported from the Bay during the discharge pulse. Later resuspension events generated by Southern Ocean swell reworked and modified the initial deposit, providing subsequent pulses of sediment from the Bay to the continental shelf. In this manner, transit through Poverty Bay modified the input fluvial signal, so that the sediment characteristics and timing of export to the continental shelf differed from the Waipaoa River discharge. Sensitivity studies showed that feedback mechanisms between sediment-transport, currents, and waves were important within the model calculations.

  11. Evaluation of the metal uptake of several algae strains in a multicomponent matrix utilizing inductively coupled plasma emission spectrometry.

    PubMed

    Mahan, C A; Majidi, V; Holcombe, J A

    1989-03-15

    Three freshwater heat-killed, lyophilized blue-green algae strains have been characterized as to their ability to accumulate heavy metals with a focus on the utilization of these algae as an analytical preconcentration technique. This study examines the metal uptake in several multicomponent mixtures by using inductively coupled plasma optical emission spectrometry (ICP-OES). Six milligrams of a pure strain of algae was added to 20-mL aliquots of buffered (pH 5.5-6.5) multielement solutions containing 0.1, 0.5, 1.0, 2.0, and 4.0 mg/L of K, Mg, Ca, Fe, Sr, Co, Cu, Mn, Ni, V, Zn, As, Cd, Mo, Pb, and Se. All three algae strains exhibit relatively high adsorption affinities for Fe, Pb, and Cu, with uptake between 70 and 98% at the 4 ppm concentration level. Biosorption occurs for essentially every element with the relative affinities decreasing in the order Pb greater than Fe greater than Cu greater than Cd greater than Zn greater than Mn greater than Mo greater than Sr greater than Ni greater than V greater than Se greater than As greater than Co for Chlorella pyrenoidosa at the 4 mg/L concentration level. Although some minor differences were seen, the other algae strains (Stichococcus bacillaris and Chlamydomonas reinharti) displayed similar adsorption behavior over the concentration range studied, indicating similar cell wall binding sites. Langmuirian isotherms exhibited a minimum of two slopes over the concentration range of 0.1-4.0 mg/L, indicating the probable existence of at least two adsorption mechanisms.

  12. Design and evaluation of capillary coupled with optical fiber light-emitting diode induced fluorescence detection for capillary electrophoresis.

    PubMed

    Ji, Hongyun; Li, Meng; Guo, Lihong; Yuan, Hongyan; Wang, Chunling; Xiao, Dan

    2013-09-01

    A new detector, capillary coupled with optical fiber LED-induced fluorescence detector (CCOF-LED-IFD, using CCOF for short), is introduced for CE. The strategy of the present work was that the optical fiber and separation capillary were, in the parallel direction, fastened in a fixation capillary with larger inner diameter. By employing larger inner diameter, the fixation capillary allowed the large diameter of the optical fiber to be inserted into it. By transmitting an enhanced excitation light through the optical fiber, the detection sensitivity was improved. The advantages of the CCOF-CE system were validated by the detection of riboflavin, and the results were compared to those obtained by the in-capillary common optical fiber LED-induced fluorescence detector (IC-COF-LED-IFD, using COF for short). The LODs of CCOF-CE and COF-CE were 0.29 nM and 11.0 nM (S/N = 3), respectively. The intraday (n = 6) repeatability and interday (n = 6) reproducibility of migration time and corresponding peak area for both types of CE were all less than 1.10 and 3.30%, respectively. The accuracy of the proposed method was judged by employing standard addition method, and recoveries obtained were in the range of 98.0-102.4%. The results indicated that the sensitivity of the proposed system was largely improved, and that its reproducibility and accuracy were satisfactory. The proposed system was successfully applied to separate and determine riboflavin in real sample.

  13. Evaluation of coupled perturbed and density functional methods of computing the parity-violating energy difference between enantiomers.

    PubMed

    MacDermott, A J; Hyde, G O; Cohen, A J

    2009-10-01

    We present new coupled-perturbed Hartree-Fock (CPHF) and density functional theory (DFT) computations of the parity-violating energy difference (PVED) between enantiomers for H(2)O(2) and H(2)S(2). Our DFT PVED computations are the first for H(2)S(2) and the first with the new HCTH and OLYP functionals. Like other "second generation" PVED computations, our results are an order of magnitude larger than the original "first generation" uncoupled-perturbed Hartree-Fock computations of Mason and Tranter. We offer an explanation for the dramatically larger size in terms of cancellation of contributions of opposing signs, which also explains the basis set sensitivity of the PVED, and its conformational hypersensitivity (addressed in the following paper). This paper also serves as a review of the different types of "second generation" PVED computations: we set our work in context, comparing our results with those of four other groups, and noting the good agreement between results obtained by very different methods. DFT PVEDs tend to be somewhat inflated compared to the CPHF values, but this is not a problem when only sign and order of magnitude are required. Our results with the new OLYP functional are less inflated than those with other functionals, and OLYP is also more efficient computationally. We therefore conclude that DFT computation offers a promising approach for low-cost extension to larger biosystems, especially polymers. The following two papers extend to terrestrial and extra-terrestrial amino acids respectively, and later work will extend to polymers.

  14. Performance evaluation of a sub-millimeter spatial resolution PET detector module using a digital silicon photomultiplier coupled LGSO array

    NASA Astrophysics Data System (ADS)

    Leem, Hyun Tae; Choi, Yong; Kim, Kyu Bom; Lee, Sangwon; Yamamoto, Seiichi; Yeom, Jung-Yeol

    2017-02-01

    In positron emission tomography (PET) for breast, brain and small animal imaging, the spatial resolution of a PET detector is crucial to obtain high quality PET images. In this study, a PET detector for sub-millimeter spatial resolution imaging purpose was assembled using 4×4 pixels of a digital silicon photomultiplier (dSiPM, DPC-3200-22-44, Philips) coupled with a 15×15 LGSO array with BaSO4 reflector, and a 1 mm thick acrylic light guide for light distribution between the dSiPM pixels. The active area of each dSiPM pixel was 3.2×3.9 mm2 and the size of each LGSO scintillator element was 0.7×0.7×6 mm3. In this paper, we experimentally demonstrated the performance of the PET detector by measuring the energy resolution, 2D flood map, peak to valley (P/V) ratio, and coincidence resolving time (CRT). All measurements were performed at a temperature of 10±1 ℃. The average energy resolution was 15.6% (without correcting for saturation effects) at 511 keV and the best CRT was 242±5 ps. The 2D flood map obtained with an energy window of 400-600 keV demonstrated clear identification of all pixels, and the average P/V ratio of the X- and Y-directions were 7.31 and 7.81, respectively. This study demonstrated that the PET detector could be suitable for application in high resolution PET while achieving good timing resolution.

  15. Evaluation of soil nitrogen emissions from riparian zones coupling simple process-oriented models with remote sensing data.

    PubMed

    Wang, Xuelei; Mannaerts, C M; Yang, Shengtian; Gao, Yunfei; Zheng, Donghai

    2010-07-15

    Riparian ecosystems have critical impacts on controlling the non-point source pollution and maintaining the health of aquatic ecosystems. In this study, a process oriented soil denitrification model was extended with algorithms from a simple nitrogen (N) cycle model and coupled to land surface remote sensing data to enhance its performance in spatial and temporal prediction of gaseous N emissions from soils in the riparian buffer zone surrounding the Guanting reservoir (China). The N emission model is based on chemical and physical relationships that govern the heat budget, soil moisture variations and nitrogen movement in soils. Besides soil water and heat processes, it includes nitrification, denitrification and ammonia (NH(3)) volatilization. SPOT-5 and Landsat-5 TM satellite data were used to derive spatial land surface information and the temporal variation in land cover parameters was also used to drive the model. A laboratory-scale anaerobic incubation experiment was used to estimate the soil denitrification model parameters for the different soil types. An in situ field-scale experiment was conducted to calibrate and validate the soil temperature, moisture and nitrogen sub-models. An indirect method was used to verify simulated N emissions, resulting in a coefficient of determination of R(2)=0.83 between simulated and observed values. Then the model was applied to the whole riparian buffer zone catchment, using the spatial resolution (10m) of the SPOT-5 image. Model sensitivity analysis showed that soil moisture was the most sensitive parameter for gaseous N emissions and soil denitrification was the main process affecting N losses to the atmosphere in the riparian area. From the aspect of land use management around the Guanting reservoir, the spatial structure and distribution of land cover and land use types in the riparian area should be adapted, to enhance faster ecological restoration of the wetland ecological system surrounding this strategically

  16. Evaluation of the metal uptake of several algae strains in a multicomponent matrix utilizing inductively coupled plasma emission spectrometry

    SciTech Connect

    Mahan, C.A.; Majidi, V.; Holcombe, J.A.

    1989-03-15

    Three freshwater heat-killed, lyophilized blue-green algae strains have been characterized as to their ability to accumulate heavy metals with a focus on the utilization of these algae as an analytical preconcentration technique. This study examines the metal uptake in several multicomponent mixtures by using inductively coupled plasma optical emission spectrometry (ICP-OES). Six milligrams of a pure strain of algae was added to 20-mL aliquots of buffered (pH 5.5-6.5) multielement solutions containing 0.1, 0.5, 1.0, 2.0, and 4.0 mg/L of K, Mg, Ca, Fe, Sr, Co, Cu, Mn, Ni, V, Zn, As, Cd, Mo, Pb, and Se. All three algae strains exhibit relatively high adsorption affinities for Fe, Pb, and Cu, with uptake between 70 and 98% at the 4 ppm concentration level. Biosorption occurs for essentially every element with the relative affinities decreasing in the order Pb greater than Fe greater than Cu greater than Cd greater than Zn greater than Mn greater than Mo greater than Sr greater than Ni greater than V greater than Se greater than As greater than Co for Chlorella pyrenoidosa at the 4 mg/L concentration level. Although some minor differences were seen, the other algae strains (Stichococcus bacillaris and Chlamydomonas reinharti) displayed similar adsorption behavior over the concentration range studied, indicating similar cell wall binding sites. Langmuirian isotherms exhibited a minimum of two slopes over the concentration range of 0.1-4.0 mg/L, indicating the probable existence of at least two adsorption mechanisms.

  17. Evaluation and comparison of different RCMs simulations of the Mediterranean climate: a view on the impact of model resolution and Mediterranean sea coupling.

    NASA Astrophysics Data System (ADS)

    Panthou, Gérémy; Vrac, Mathieu; Drobinski, Philippe; Bastin, Sophie; Somot, Samuel; Li, Laurent

    2015-04-01

    As regularly stated by numerous authors, the Mediterranean climate is considered as one major climate 'hot spot'. At least, three reasons may explain this statement. First, this region is known for being regularly affected by extreme hydro-meteorological events (heavy precipitation and flash-floods during the autumn season; droughts and heat waves during spring and summer). Second, the vulnerability of populations in regard of these extreme events is expected to increase during the XXIst century (at least due to the projected population growth in this region). At last, Global Circulation Models project that this regional climate will be highly sensitive to climate change. Moreover, global warming is expected to intensify the hydrological cycle and thus to increase the frequency of extreme hydro-meteorological events. In order to propose adaptation strategies, the robust estimation of the future evolution of the Mediterranean climate and the associated extreme hydro-meteorological events (in terms of intensity/frequency) is of great relevance. However, these projections are characterized by large uncertainties. Many components of the simulation chain can explain these large uncertainties : (i) uncertainties concerning the emission scenario; (ii) climate model simulations suffer of parametrization errors and uncertainties concerning the initial state of the climate; and (iii) the additional uncertainties given by the (dynamical or statistical) downscaling techniques and the impact model. Narrowing (as fine as possible) these uncertainties is a major challenge of the actual climate research. One way for that is to reduce the uncertainties associated with each component. In this study, we are interested in evaluating the potential improvement of : (i) coupled RCM simulations (with the Mediterranean Sea) in comparison with atmosphere only (stand-alone) RCM simulations and (ii) RCM simulations at a finer resolution in comparison with larger resolution. For that, three

  18. Evaluate the urban effect on summer convective precipitation by coupling a urban canopy model with a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Liu, S.; Xue, Y.; Oleson, K. W.

    2013-12-01

    One of the most significant urbanization in the world occurred in Great Beijing Area of China during the past several decades. The land use and land cover changes modifies the land surface physical characteristics, including the anthropogenic heat and thermo-dynamic conduction. All of those play important roles in the urban regional climate changes. We developed a single layer urban canopy module based on the Community Land Surface Model Urban Module (CLMU). We have made further improvements in the urban module: the energy balances on the five surface conditions are considered separately: building roof, sun side and shade side wall, pervious and impervious land surface. Over each surface, a method to calculate sky view factor (SVF) is developed based on the physically process while most urban models simply provide an empirical value; A new scheme for calculating the latent heat flux is applied on both wall and impervious land; anthropogenic heat is considered in terms of industrial production, domestic wastes, vehicle and air condition. All of these developments improve the accuracy of surface energy balance processing in urban area. The urban effect on summer convective precipitation under the unstable atmospheric condition in the Great Beijing Area was investigated by simulating a heavy rainfall event in July 21st 2012. In this storm, strong meso-scale convective complexes (MCC) brought precipitation of averagely 164 mm within 6 hours, which is the record of past 60 years in the region. Numerical simulating experiment was set up by coupling MCLMU with WRF. Several condition/blank control cases were also set up. The horizontal resolution in all simulations was 2 km. While all of the control results drastically underestimate the urban precipitation, the result of WRF-MCLMU is much closer to the observation though still underestimated. More sensitive experiments gave a preliminary conclusion of how the urban canopy physics processing affects the local precipitation

  19. Evaluation of metal concentrations in mentha herbal teas (Mentha piperita, Mentha pulegium and Mentha species) by inductively coupled plasma spectrometry.

    PubMed

    Rubio, C; Lucas, J R D; Gutiérrez, A J; Glez-Weller, D; Pérez Marrero, B; Caballero, J M; Revert, C; Hardisson, A

    2012-12-01

    Phytopharmaceuticals are gaining popularity worldwide; however, cases of adverse effects and drug interactions have also increased. One reason is in the high metal content both as ingredients but also as contaminants. Metal monitoring in food, like herbal teas, provides basic information on safety aspects in regulatory processes as well as nutritional values. In the present work, Cd, Pb, K, Na, Ca, Mg, Al, B, Ba, Co, Cr, Cu, Fe, Mn, Zn, Li, Ni, and Mo were determined by inductively coupled plasma spectrometry (ICPS) in 36 samples of Mentha sp. Mint tea bags and loose leaves were randomly obtained from supermarkets, traditional markets, herbal stores, and pharmacies in Tenerife (Canary Islands, Spain). Metal contents varied significantly, dependent on the stores the products were purchased in and on tea packaging (loose leaves versus tea bags). Pb analyses revealed levels (0.65±0.71mg/kg) below legal limits. The maximum permissible limit for Cd, 0.3mg/kg, set by the WHO for medicinal plants, was exceeded by 19.44% of the samples (0.22±0.13mg/kg), but all values were below the limit given in the European Pharmacopoeia for this metal (4mg/kg). We observed high Al (151.24±162.73mg/kg) and Li (5.46±3.94mg/kg) levels. B, Ba, Co, Cr, Cu, Fe, Mn, Ni, Zn, and Mo mean levels were 20.51, 14.15, 0.26, 1.65, 10.65, 406.00, 55.05, 1.72, 33.67, and 0.73mg/kg, respectively. Mean Ca, Mg, K, and Na were detected in concentrations of 10.32, 3.83, 7.23 and 1.17g/kg, respectively. In conclusion, metal exposure through herbal mint teas does not seem to be of health concern, as to most of the studied metals, but regulatory limits for Al contents should be imposed.

  20. Climate-related Indicators and Data Provenance: Evaluating Coupled Boundary Objects for Science, Innovation, and Decision-Making

    NASA Astrophysics Data System (ADS)

    Wiggins, A.; Young, A.; Brody, C.; Gerst, M.; Kenney, M. A.; Lamoureux, A.; Rice, A.; Wolfinger, F.

    2015-12-01

    Boundary object theory focuses on the role of artifacts, such as indicator images, in translation and communication across the boundaries of social groups. We use this framework for understanding how data can communicate across contexts to answer the question: Can coupling climate-related indicators with data provenance support scientific innovation and science translation? To address this question we conducted a study to understand the features and capabilities necessary for indicators and data provenance for scientific uses, using the recently online-released U.S. Global Change Research Program (USGCRP) Indicators and Global Change Information System (GCIS) as linked boundary objects. We conducted semi-structured interviews with professional researchers in which we asked the researchers to explore and describe what they observed that was useful or frustrating for a subset of the USGCRP Indicators, related GCIS content, and other similar indicator and metadata websites. Participants found these sites' navigation and the labeling and description of their assets frustrating and confusing, but were able to clearly articulate the metadata and provenance information they needed to both understand and trust the indicators. In addition to identifying desired features that are likely to be specific to this audience (e.g., references or citations for indicators), scientists wanted clear, easier-to-access provenance information of the type usually recommended for documenting research data. Notably, they felt the information would be best presented in a fashion accessible to a broader audience, as those with more technical expertise should be able to infer additional contextual details given the provenance information that they had identified as key. Such results are useful for the improvement of indicator systems, such as the prototype released by USGCRP. We note in particular that the consistency of responses across the multi-disciplinary sample, which included scholars in

  1. Evaluation of a direct injection nebulizer interface for flow injection analysis and high performance liquid chromatography with inductively coupled plasma-atomic emission spectroscopic detection

    SciTech Connect

    LaFreniere, K.E.

    1986-06-01

    A direct injection nebulizer (DIN) was designed, developed, and evaluated to determine its potential utilization as an effective interface for flow injection analysis (FIA) and high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-atomic emission spectroscopic detection. The analytical figures of merit for the DIN when used as an interface for FIA-ICP-AES were found to be comparable to or better than those obtained with conventional pneumatic nebulization in terms of limits of detection (LODs), reproducibility, linearity, and interelement effects. Stable plasma operation was maintained for the DIN sample introduction of a variety of pure organic solvents, including acetonitrile, methanol, methylisobutylketone, and pyridine. The HPLC-DIN-ICP-AES facility was specifically applied for the speciation of inorganic and organometallic species contained in synthetic mixtures, vanilla extracts, and a variety of energy-related materials, such as shale oil process water, coal extracts, shale oil, crude oil, and an SRC II. Suggestions for future research are also considered. 227 refs., 44 figs., 15 tabs.

  2. Analytic first derivatives for a spin-adapted open-shell coupled cluster theory: Evaluation of first-order electrical properties

    SciTech Connect

    Datta, Dipayan Gauss, Jürgen

    2014-09-14

    An analytic scheme is presented for the evaluation of first derivatives of the energy for a unitary group based spin-adapted coupled cluster (CC) theory, namely, the combinatoric open-shell CC (COSCC) approach within the singles and doubles approximation. The widely used Lagrange multiplier approach is employed for the derivation of an analytical expression for the first derivative of the energy, which in combination with the well-established density-matrix formulation, is used for the computation of first-order electrical properties. Derivations of the spin-adapted lambda equations for determining the Lagrange multipliers and the expressions for the spin-free effective density matrices for the COSCC approach are presented. Orbital-relaxation effects due to the electric-field perturbation are treated via the Z-vector technique. We present calculations of the dipole moments for a number of doublet radicals in their ground states using restricted open-shell Hartree-Fock (ROHF) and quasi-restricted HF (QRHF) orbitals in order to demonstrate the applicability of our analytic scheme for computing energy derivatives. We also report calculations of the chlorine electric-field gradients and nuclear quadrupole-coupling constants for the CCl, CH{sub 2}Cl, ClO{sub 2}, and SiCl radicals.

  3. Evaluation of the predictive capability of coupled thermo-hydro-mechanical models for a heated bentonite/clay system (HE-E) in the Mont Terri Rock Laboratory

    DOE PAGES

    Garitte, B.; Shao, H.; Wang, X. R.; ...

    2017-01-09

    Process understanding and parameter identification using numerical methods based on experimental findings are a key aspect of the international cooperative project DECOVALEX. Comparing the predictions from numerical models against experimental results increases confidence in the site selection and site evaluation process for a radioactive waste repository in deep geological formations. In the present phase of the project, DECOVALEX-2015, eight research teams have developed and applied models for simulating an in-situ heater experiment HE-E in the Opalinus Clay in the Mont Terri Rock Laboratory in Switzerland. The modelling task was divided into two study stages, related to prediction and interpretation ofmore » the experiment. A blind prediction of the HE-E experiment was performed based on calibrated parameter values for both the Opalinus Clay, that were based on the modelling of another in-situ experiment (HE-D), and modelling of laboratory column experiments on MX80 granular bentonite and a sand/bentonite mixture .. After publication of the experimental data, additional coupling functions were analysed and considered in the different models. Moreover, parameter values were varied to interpret the measured temperature, relative humidity and pore pressure evolution. The analysis of the predictive and interpretative results reveals the current state of understanding and predictability of coupled THM behaviours associated with geologic nuclear waste disposal in clay formations.« less

  4. Evaluation of Superparamagnetic Silica Nanoparticles for Extraction of Triazines in Magnetic in-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography.

    PubMed

    González-Fuenzalida, R A; Moliner-Martínez, Y; Prima-Garcia, Helena; Ribera, Antonio; Campins-Falcó, P; Zaragozá, Ramon J

    2014-04-02

    The use of magnetic nanomaterials for analytical applications has increased in the recent years. In particular, magnetic nanomaterials have shown great potential as adsorbent phase in several extraction procedures due to the significant advantages over the conventional methods. In the present work, the influence of magnetic forces over the extraction efficiency of triazines using superparamagnetic silica nanoparticles (NPs) in magnetic in tube solid phase microextraction (Magnetic-IT-SPME) coupled to CapLC has been evaluated. Atrazine, terbutylazine and simazine has been selected as target analytes. The superparamagnetic silica nanomaterial (SiO₂-Fe₃O₄) deposited onto the surface of a capillary column gave rise to a magnetic extraction phase for IT-SPME that provided a enhancemment of the extraction efficiency for triazines. This improvement is based on two phenomena, the superparamegnetic behavior of Fe₃O₄ NPs and the diamagnetic repulsions that take place in a microfluidic device such a capillary column. A systematic study of analytes adsorption and desorption was conducted as function of the magnetic field and the relationship with triazines magnetic susceptibility. The positive influence of magnetism on the extraction procedure was demonstrated. The analytical characteristics of the optimized procedure were established and the method was applied to the determination of the target analytes in water samples with satisfactory results. When coupling Magnetic-IT-SPME with CapLC, improved adsorption efficiencies (60%-63%) were achieved compared with conventional adsorption materials (0.8%-3%).

  5. Analytic first derivatives for a spin-adapted open-shell coupled cluster theory: evaluation of first-order electrical properties.

    PubMed

    Datta, Dipayan; Gauss, Jürgen

    2014-09-14

    An analytic scheme is presented for the evaluation of first derivatives of the energy for a unitary group based spin-adapted coupled cluster (CC) theory, namely, the combinatoric open-shell CC (COSCC) approach within the singles and doubles approximation. The widely used Lagrange multiplier approach is employed for the derivation of an analytical expression for the first derivative of the energy, which in combination with the well-established density-matrix formulation, is used for the computation of first-order electrical properties. Derivations of the spin-adapted lambda equations for determining the Lagrange multipliers and the expressions for the spin-free effective density matrices for the COSCC approach are presented. Orbital-relaxation effects due to the electric-field perturbation are treated via the Z-vector technique. We present calculations of the dipole moments for a number of doublet radicals in their ground states using restricted open-shell Hartree-Fock (ROHF) and quasi-restricted HF (QRHF) orbitals in order to demonstrate the applicability of our analytic scheme for computing energy derivatives. We also report calculations of the chlorine electric-field gradients and nuclear quadrupole-coupling constants for the CCl, CH2Cl, ClO2, and SiCl radicals.

  6. Evaluation of Superparamagnetic Silica Nanoparticles for Extraction of Triazines in Magnetic in-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

    PubMed Central

    González-Fuenzalida, R. A.; Moliner-Martínez, Y.; Prima-Garcia, Helena; Ribera, Antonio; Campins-Falcó, P.; Zaragozá, Ramon J.

    2014-01-01

    The use of magnetic nanomaterials for analytical applications has increased in the recent years. In particular, magnetic nanomaterials have shown great potential as adsorbent phase in several extraction procedures due to the significant advantages over the conventional methods. In the present work, the influence of magnetic forces over the extraction efficiency of triazines using superparamagnetic silica nanoparticles (NPs) in magnetic in tube solid phase microextraction (Magnetic-IT-SPME) coupled to CapLC has been evaluated. Atrazine, terbutylazine and simazine has been selected as target analytes. The superparamagnetic silica nanomaterial (SiO2-Fe3O4) deposited onto the surface of a capillary column gave rise to a magnetic extraction phase for IT-SPME that provided a enhancemment of the extraction efficiency for triazines. This improvement is based on two phenomena, the superparamegnetic behavior of Fe3O4 NPs and the diamagnetic repulsions that take place in a microfluidic device such a capillary column. A systematic study of analytes adsorption and desorption was conducted as function of the magnetic field and the relationship with triazines magnetic susceptibility. The positive influence of magnetism on the extraction procedure was demonstrated. The analytical characteristics of the optimized procedure were established and the method was applied to the determination of the target analytes in water samples with satisfactory results. When coupling Magnetic-IT-SPME with CapLC, improved adsorption efficiencies (60%–63%) were achieved compared with conventional adsorption materials (0.8%–3%).

  7. Evaluation of dispersive liquid-liquid microextraction coupled with gas chromatography-microelectron capture detection (GC-µECD) for the determination of organochlorine pesticides in water samples.

    PubMed

    Zhao, Zhonghua; Zhang, Lu; Wu, Jinglu; Jin, Miao; Fan, Chengxin

    2011-01-01

    The extraction efficiency of a dispersive liquid-liquid microextraction (DLLME) method coupled with gas chromatography-microelectron capture detection (GC-µECD) for the simultaneous determination of 20 organochlorine pesticides (OCPs) in water samples was evaluated. The optimum conditions of DLLME for OCP measurement in water sample were determined with 10 µL of carbon tetrachloride (CCl(4)) and 1.5 mL of acetone as the extraction and dispersive solvents, respectively, all measurements were conducted under room temperature without the addition of salt. OCPs were extracted with good recoveries (60.35 - 107.89%) by the proposed method, except for heptachlor and aldrin due to the specific physico-chemical properties of these chemicals. Quantitative analysis showed that the relative standard deviations (RSDs) were below 9% and rather wider linear ranges (LRs) of 0.1 - 50 µg/L were obtained. The limits of detection (LODs) were in the range of 0.21 - 11.65 ng/L and no significant matrix effects were observed. Obtained results demonstrated that DLLME coupled with GC-µECD was rapid, convenient and efficient for OCP analysis in water samples.

  8. "Everything I Needed from Her Was Everything She Gave Back to Me:" An Evaluation of Preconception Counseling for U.S. HIV-serodiscordant Couples Desiring Pregnancy.

    PubMed

    Friedman, Emmeline; Orlando, Megan S; Anderson, Jean; Coleman, Jenell S

    2016-01-01

    We sought to evaluate preconception counseling (PCC) through a qualitative examination of the experiences of couples with serodiscordant human immunodeficiency virus (HIV) status desiring pregnancy. Patients involved in HIV-serodiscordant relationships who received PCC between January 2013 and January 2015 were recruited to participate in 40-minute semistructured telephone interviews. Participants were asked about their experiences with PCC and the impact of counseling on their knowledge of safer conception strategies and reproductive decisions. Two researchers independently coded interview transcripts, and delineated common ideas to generate emerging themes from participants' responses. Eleven respondents completed the interviews, including nine women and two men. Six respondents were HIV positive. Our thematic analysis revealed that patients gained knowledge and confidence through PCC that conception was both possible and safe. They had varied reactions to assisted reproductive technologies that correlated with income level, and explored complicated weighing of personal risk of HIV transmission. Patients reported major challenges including poor access to PCC, difficulty identifying peak fertility periods, and lack of long-term conception follow-up. PCC is a valuable resource for patients involved in HIV-serodiscordant relationships. We recommend the following opportunities for improvement: developing practical safer conception clinical and counseling guidelines for HIV-affected couples, increasing patient access to and awareness of PCC services, distributing more helpful resources to identify peak fertility, and providing long-term support for patients. Copyright © 2015 Jacobs Institute of Women's Health. Published by Elsevier Inc. All rights reserved.

  9. Toxicity evaluation in a paper recycling mill effluent by coupling bioindicator of aging with the toxicity identification evaluation method in nematode Caenorhabditis elegans.

    PubMed

    Wang, Xiaoyi; Shen, Lulu; Yu, Hongxia; Wang, Dayong

    2008-01-01

    Toxicity identification evaluation (TIE) can be used to determine the specific toxicant(s) in industrial effluents. In the current study, the authors have attempted to combine the advantages of the model organism, Caenorhabditis elegans, with the virtues of the TIE technique, to evaluate and identify the toxicity on aging from a paper recycling mill effluent. The results indicate that only the toxicities from mixed cellulose (MC) filtration and EDTA treatment are similar to the baseline aging toxicity, suggesting that the suspect toxicants inducing aging toxicity may largely be the heavy metal substances in this industrial effluent. Examination of the accumulation of intestinal autofluorescence in adult animals further confirms that the short lifespans are actually due to accelerated aging. In addition, exposure to fractions of EDTA manipulations cannot result in severe defects of reproduction and locomotion behaviors in C. elegans. Moreover, high levels of Ca, Al, and Fe in the effluent may account for the severe toxicity on aging of exposed nematodes, by TIE assay. The study here provides a new method for evaluating environmental risk and identifying toxicant(s) from the industrial effluent using C. elegans.

  10. Helix coupling

    DOEpatents

    Ginell, W.S.

    1982-03-17

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the U sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  11. Helix coupling

    DOEpatents

    Ginell, W.S.

    1989-04-25

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  12. Helix coupling

    DOEpatents

    Ginell, William S.

    1989-04-25

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  13. Evaluation of the Event Driven Phenology Model Coupled with the VegET Evapotranspiration Model Through Comparisons with Reference Datasets in a Spatially Explicit Manner

    NASA Technical Reports Server (NTRS)

    Kovalskyy, V.; Henebry, G. M.; Adusei, B.; Hansen, M.; Roy, D. P.; Senay, G.; Mocko, D. M.

    2011-01-01

    A new model coupling scheme with remote sensing data assimilation was developed for estimation of daily actual evapotranspiration (ET). The scheme represents a mix of the VegET, a physically based model to estimate ET from a water balance, and an event driven phenology model (EDPM), where the EDPM is an empirically derived crop specific model capable of producing seasonal trajectories of canopy attributes. In this experiment, the scheme was deployed in a spatially explicit manner within the croplands of the Northern Great Plains. The evaluation was carried out using 2007-2009 land surface forcing data from the North American Land Data Assimilation System (NLDAS) and crop maps derived from remotely sensed data of NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compared the canopy parameters produced by the phenology model with normalized difference vegetation index (NDVI) data derived from the MODIS nadir bi-directional reflectance distribution function (BRDF) adjusted reflectance (NBAR) product. The expectations of the EDPM performance in prognostic mode were met, producing determination coefficient (r2) of 0.8 +/-.0.15. Model estimates of NDVI yielded root mean square error (RMSE) of 0.1 +/-.0.035 for the entire study area. Retrospective correction of canopy dynamics with MODIS NDVI brought the errors down to just below 10% of observed data range. The ET estimates produced by the coupled scheme were compared with ones from the MODIS land product suite. The expected r2=0.7 +/-.15 and RMSE = 11.2 +/-.4 mm per 8 days were met and even exceeded by the coupling scheme0 functioning in both prognostic and retrospective modes. Minor setbacks of the EDPM and VegET performance (r2 about 0.5 and additional 30 % of RMSR) were found on the peripheries of the study area and attributed to the insufficient EDPM training and to spatially varying accuracy of crop maps. Overall the experiment provided sufficient evidence of soundness and robustness of the EDPM and

  14. Coupling data from U-series and 10Be CRN to evaluate soil steady-state in the Betic Cordillera

    NASA Astrophysics Data System (ADS)

    Schoonejans, Jerome; Vanacker, Veerle; Opfergelt, Sophie; Granet, Mathieu; Chabaux, François

    2015-04-01

    from first simulations of the U-series disequilibrium model rather suggest that soil production rates are of the same order of magnitude in the Sierra Estancias and Cabrera. In the Sierra Filabres, the U-series disequilibrium in the depth profile do not respect the hypotheses of the model therefore no rates of soil production could be constrain for this profile. Thanks to the coupling of the two isotopic datasets the long term soil development will be explored in two profiles. This study highlights that comparison and combination of analytical techniques is useful to further unravel the mechanisms of chemical and physical weathering in such dynamic environments. Bellin, N., Vanacker, V., and Kubik, P. W., 2014, Denudation rates and tectonic geomorphology of the Spanish Betic Cordillera: Earth and Planetary Science Letters, v. 390, p. 19-30.

  15. Development and evaluation of materials for thermochemical heat storage based on the CaO/CaCO3 reaction couple

    NASA Astrophysics Data System (ADS)

    Sakellariou, Kyriaki G.; Tsongidis, Nikolaos I.; Karagiannakis, George; Konstandopoulos, Athanasios G.; Baciu, Diana; Charalambopoulou, Georgia; Steriotis, Theodore; Stubos, Athanasios; Arlt, Wolfgang

    2016-05-01

    The current work relates to the development of synthetic calcium oxide (CaO) based compositions as candidate materials for energy storage under a cyclic carbonation/decarbonation reaction scheme. Although under such a cyclic scheme the energy density of natural lime based CaO is high (˜ 3MJ/kg), the particular materials suffer from notable cycle-to-cycle deactivation. To this direction, pure CaO and CaO/Al2O3 composites have been prepared and preliminarily evaluated under the suggested cyclic carbonation/decarbonation scheme in the temperature range of 600-800°C. For the composite materials, Ca/Al molar ratios were in the range between 95/5 and 52/48 and upon calcination the formation of mixed Ca/Al phases was verified. The preliminary evaluation of materials studied was conducted under 3 carbonation/decarbonation cycles and the loss of activity for the case of natural CaO was obvious. Synthetic materials with superior stability/capture c.f. natural CaO were further subjected to multi-cyclic carbonation/decarbonation, via which the positive effect of alumina addition was made evident. Selected compositions exhibited adequately high CO2 capture capacity and stable performance during multi-cyclic operation. Moreover, this study contains preliminary experiments referring to proof-of-principle validation of a concept based on the utilization of a CaO-based honeycomb reactor/heat exchanger preliminary design. In particular, cordierite monolithic structures were coated with natural CaO and in total 11 cycles were conducted. Upon operation, clear signs of heat dissipation by the imposed flow in the duration of the exothermic reaction step were identified.

  16. Quantitative analysis and chromatographic fingerprinting for the quality evaluation of Forsythia suspensa extract by HPLC coupled with photodiode array detector.

    PubMed

    Xia, Yonggang; Yang, Bingyou; Wang, Qiuhong; Liang, Jun; Wei, Youhe; Yu, Hedan; Zhang, Qingbo; Kuang, Haixue

    2009-12-01

    A simple and reproducible HPLC-photodiode array detector method has been described for evaluating and controlling quality of Forsythia suspensa extract (FSE). First, by analysis of chromatographic fingerprints, the similarities of chromatograms of FSE samples from the same pharmaceutical company exceeded 0.999, 0.997 and 0.960, respectively, although they were much lower from different pharmaceutical companies. Second, by further comparing many batches of extract chromatograph charts with the corresponding reference herb materials, the "common peaks" 3, 5, 7 and 10 were defined as "marker peaks", which were identified as (+)-pinoresinol-beta-D-glucoside, forsythiaside, phillyrin and phillygenin, respectively. Third, four "marker peaks" were simultaneously determined based on fingerprint chromatogram for further controlling the quality of FSE quantitatively. Namely, the newly developed method was successfully applied to analyze 38 batches of FSE samples supplied by three pharmaceutical factories, which showed acceptable linearity, intra-day precision (RSD<2.76%), inter-day precision (RSD<3.43%) and the average recovery rates in the range of (95.38+/-2.96)% to (101.60+/-3.08)%. At last, hierarchical clustering analysis and Bayes discriminant analysis statistical methods were used to classify and differentiate the 38 FSE samples to provide the basis for guiding reasonable use of FSE and controlling its quality better.

  17. Evaluation of mycotoxins and their metabolites in human breast milk using liquid chromatography coupled to high resolution mass spectrometry.

    PubMed

    Rubert, Josep; León, Nuria; Sáez, Carmen; Martins, Claudia P B; Godula, Michal; Yusà, Vicent; Mañes, Jordi; Soriano, José Miguel; Soler, Carla

    2014-04-11

    Humans can be exposed to mycotoxins through the food chain. Mycotoxins are mainly found as contaminants in food and could be subsequently excreted via biological fluids such as urine or human breast milk in native or metabolised form. Since breast milk is usually supposed as the only food for new-borns, the occurrence of mycotoxins in thirty-five human milk samples was evaluated by a newly developed method based on QuEChERS extraction and UHPLC-HRMS detection. The method described here allows the detection of target mycotoxins in order to determine the quality of this initial feeding. The method has been fully validated, with recoveries ranging from 64% to 93% and relative standard deviations (RSD, %) being lower than 20%. Using the method described, non-metabolised mycotoxins such as ZEA, NEO, NIV, ENA, ENA1, ENB, ENB1 and metabolites, such as ZEA metabolites, HT-2, DOM and T-2 triol were detected in human milk samples. Results obtained help to estimate the exposure of mothers and infants to mycotoxins. Moreover, to the best of our knowledge, this is the first work describing the simultaneous detection, quantification and screening of mycotoxins and their metabolites in human mature milk.

  18. Qualitative study of sexual functioning in couples with erectile dysfunction: prospective evaluation of the thermography diagnostic system.

    PubMed

    Ng, Wan Kee; Ng, Yin Kwee; Tan, Yung Khan

    2009-01-01

    To evaluate the prospective use of the thermography diagnostic system in assessing sexual function in patients with erectile dysfunction (ED). Thermographs were taken on 14 subjects in a clinical trial conducted at Tan Tock Seng Hospital. After a thorough clinical interview with a standardized questionnaire, patients were scanned for baseline temperature profile before being given an oral dose of sildenafil 100 mg. Subjects were scanned again in the same setting an hour later. If so desired, subjects were given visual stimulation and were allowed minimum direct stimulation, excluding the penis, to elicit erection. Temperature profiles were analyzed using the thermography analysis software in the VarioCAM camera. Three representative cases are presented to illustrate the potential for using the Infrared thermography (IR) diagnostic system in differentiating psychogenic ED. IR was able to capture a significant difference in blood flow to the corpus cavernosum. Subjects with psychogenic ED have higher surface temperatures (34.3 degrees C +/- 0.71 in the flaccid state and 35.3 degrees C +/- 0.2 during erection) compared to subjects with organic ED (33.64 degrees C +/- 0.4 in flaccid and 33.55 degrees C +/- 0.91 during erection). The difference in surface temperature between flaccid and erected states in subjects with organic ED was not significant. The proposed diagnostic test based on IR has tremendous clinical potential in differentiating psychogenic ED from organic ED. IR could potentially be a portable, noninvasive and convenient adjunct in the diagnosis and management of ED.

  19. Coupling spectroscopic and chromatographic techniques for evaluation of the depositional history of hydrocarbons in a subtropical estuary.

    PubMed

    Martins, César C; Doumer, Marta E; Gallice, Wellington C; Dauner, Ana Lúcia L; Cabral, Ana Caroline; Cardoso, Fernanda D; Dolci, Natiely N; Camargo, Luana M; Ferreira, Paulo A L; Figueira, Rubens C L; Mangrich, Antonio S

    2015-10-01

    Spectroscopic and chromatographic techniques can be used together to evaluate hydrocarbon inputs to coastal environments such as the Paranaguá estuarine system (PES), located in the SW Atlantic, Brazil. Historical inputs of aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) were analyzed using two sediment cores from the PES. The AHs were related to the presence of biogenic organic matter and degraded oil residues. The PAHs were associated with mixed sources. The highest hydrocarbon concentrations were related to oil spills, while relatively low levels could be attributed to the decrease in oil usage during the global oil crisis. The results of electron paramagnetic resonance were in agreement with the absolute AHs and PAHs concentrations measured by chromatographic techniques, while near-infrared spectroscopy results were consistent with unresolved complex mixture (UCM)/total n-alkanes ratios. These findings suggest that the use of a combination of techniques can increase the accuracy of assessment of contamination in sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Bioequivalence evaluation of two roxithromycin formulations in healthy human volunteers by high performance liquid cromatography coupled to tandem mass spectrometry.

    PubMed

    Motta, M; Ribeiro, W; Ifa, D R; Moares, M E; Moraes, M O; Corrado, A P; De Nucci, G

    1999-01-01

    The bioequivalence of two different formulations containing roxithromycin (SPE-712-1). Oral suspension 300 mg/15 mL as test formulation and Rotram, tablets 300 mg as reference formulation, both by Schering Plough S.A., Brazil) was evaluated in 24 healthy volunteers of both sexes (12 male and 12 female). The study was conducted open with randomized two-period crossover design and a 14-day washout period. Each subject received 300 mg of each roxithromycin formulation. Plasma samples were obtained over a 72-hour interval and roxithromycin concentrations were analyzed by combined LC-MS/MS with positive ion electrospray ionization using selected ion monitoring method. From the plasma roxithromycin concentration vs time curves the following pharmacokinetic parameters were obtained: AUC(0-72 h), AUC(0-infinity), Cmax, t1/2 ratios and tmax individual differences. The 90% for confidence interval (CI) of geometric mean SPE-712-L/Rotram individual percent ratio were 105.0-128.3% for AUC(0-72 h), and 78.4-96.9 for Cmax. Although this 90% CI were marginally outside the interval proposed by the Food and Drug Administration, the probability assessed by the two-one sided West for ratios was included in the 0.8-1.25 interval, as we concluded that SPE-712-L oral suspension formulation was bioequivalent to Rotram tablet formulation for the extent and rate of absorption.

  1. Evaluating 20th Century precipitation characteristics between multi-scale atmospheric models with different land-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Phillips, M.; Denning, A. S.; Randall, D. A.; Branson, M.

    2016-12-01

    Multi-scale models of the atmosphere provide an opportunity to investigate processes that are unresolved by traditional Global Climate Models while at the same time remaining viable in terms of computational resources for climate-length time scales. The MMF represents a shift away from large horizontal grid spacing in traditional GCMs that leads to overabundant light precipitation and lack of heavy events, toward a model where precipitation intensity is allowed to vary over a much wider range of values. Resolving atmospheric motions on the scale of 4 km makes it possible to recover features of precipitation, such as intense downpours, that were previously only obtained by computationally expensive regional simulations. These heavy precipitation events may have little impact on large-scale moisture and energy budgets, but are outstanding in terms of interaction with the land surface and potential impact on human life. Three versions of the Community Earth System Model were used in this study; the standard CESM, the multi-scale `Super-Parameterized' CESM where large-scale parameterizations have been replaced with a 2D cloud-permitting model, and a multi-instance land version of the SP-CESM where each column of the 2D CRM is allowed to interact with an individual land unit. These simulations were carried out using prescribed Sea Surface Temperatures for the period from 1979-2006 with daily precipitation saved for all 28 years. Comparisons of the statistical properties of precipitation between model architectures and against observations from rain gauges were made, with specific focus on detection and evaluation of extreme precipitation events.

  2. Clinical evaluation of a third-generation thermal uterine balloon therapy system for menorrhagia coupled with curettage.

    PubMed

    Garza-Leal, Jose; Pena, Alex; Donovan, Arthur; Cash, Charles; Romanowski, Christine; Ilie, Bogdan; Lin, Linda

    2010-01-01

    To estimate the incidence of amenorrhea 12 months after treatment with a third-generation thermal uterine balloon therapy (UBT) system. Secondary objectives were to compare the incidence of amenorrhea observed with this third-generation system with that of a first-generation system, to estimate the effect of postprocedure curettage on patient outcome, and to evaluate the workings of this new system. Multicenter, controlled study (Canadian Task Force classification I). Thirteen hospitals: 12 in the United States and 1 in Mexico. Two hundred fifty premenopausal women aged 30 years or older with menorrhagia not responsive to previous medical therapy for at least 3 months. After treatment with a third-generation thermal UBT system, patients were randomly assigned to receive postprocedure curettage or no further treatment. The rate of amenorrhea 12 months after treatment with the third-generation thermal UBT system was similar in patients receiving postprocedure curettage (33.3%) and those receiving no further treatment (37.1%; p=.53). In addition, postprocedure curettage did not have any significant effect on any other patient outcome, for example, pain. Patients who were matched to historic control patients treated with the original first-generation system demonstrated a significantly greater success rate (amenorrhea) at 12 months (32.6%) compared with those treated with the first-generation system (13.7%). The third-generation thermal UBT instrument functioned as designed, with no unanticipated adverse device effects. The third-generation thermal UBT system shows greater efficacy in producing amenorrhea than the original first-generation system, with no significant safety issues. Postprocedural curettage did not alter amennorhea rates. Copyright (c) 2010 AAGL. Published by Elsevier Inc. All rights reserved.

  3. Evaluation of Fenton oxidation process coupled with biological treatment for the removal of reactive black 5 from aqueous solution

    PubMed Central

    2013-01-01

    Biodegradation of azo dyes is difficult due to their complex structures and low BOD to COD ratios. In the present study, the efficiency of using Fenton’s reagent (H2O2 + Fe2+) as a pretreatment process to enhance microbial transformation of reactive black 5 (RB5) in an aqueous system was evaluated. The RB5 with an initial concentration of 250 mg/L was decolorized up to 90% in 60 h by using a bacterial consortium. Fenton’s reagent at a Fe2+ concentration of 0.5 mM and H2O2 concentration of 2.9 mM (molar ratio, 1:5.8) was most effective for decolorization at pH = 3.0. The extent of RB5 removal by the combined Fenton–biotreatment was about 2 times higher than that of biotreatment alone. The production of some aromatic amines intermediates implied partial mineralization of the RB5 in Fenton treatment alone; in addition, decreasing of GC-MS peaks suggested that dearomatization occurred in Fenton-biological process. Fenton pretreatment seems to be a cost–effective option for the biotreatment of azo dyes, due mainly to the lower doses of chemicals, lower sludge generation, and saving of time. Our results demonstrated positive effects of inoculating bacterial consortium which was capable of dye biodegradation with a Fenton’s pretreatment step as well as the benefits of low time required for the biological process. In addition, the potential of field performance of Fenton-biological process because of using bacterial consortium is an other positive effect of it. PMID:24499597

  4. Evaluation of microwave and ultrasound extraction procedures for arsenic speciation in bivalve mollusks by liquid chromatography-inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Santos, Clarissa M. M.; Nunes, Matheus A. G.; Barbosa, Isa S.; Santos, Gabriel L.; Peso-Aguiar, Marlene C.; Korn, Maria G. A.; Flores, Erico M. M.; Dressler, Valderi L.

    2013-08-01

    Liquid chromatography-inductively coupled plasma-mass spectrometry (LC-ICP-MS) was used for arsenic speciation analysis in tissues of bivalve mollusks (Anomalocardia brasiliana sp. and Macoma constricta sp.). Microwave and ultrasound radiation, combined with different extraction conditions (solvent, sample amount, time, and temperature), were evaluated for As-species extraction from the mollusks' tissues. Accuracy, extraction efficiency, and the stability of As species were evaluated by analyzing certified reference materials (DORM-2, dogfish muscle; BCR-627, tuna fish tissue; and SRM 1566b, oyster tissue) and analyte recovery tests. The best conditions were found to be microwave-assisted extraction using 200 mg of samples and water at 80 °C for 6 min. The agreement of As-species concentration in samples ranged from 97% to 102%. Arsenobetaine (AsB) was the main species present in bivalve mollusk tissues, while monomethylarsonic acid (MMA) and arsenate (As(V)) were below the limit of quantification (0.001 and 0.003 μg g- 1, respectively). Two unidentified As species also were detected and quantified. The sum of the As-species concentration was in agreement (90 to 104%), with the total As content determined by ICP-MS after sample digestion.

  5. Coupled Evaluation of Below- and Above-Ground Energy and Water Cycle Variables from Reanalysis Products Over Five Flux Tower Sites in the U.S

    NASA Astrophysics Data System (ADS)

    Lytle, William

    Reanalysis products are widely used to study the land-atmosphere exchanges of energy, water, and carbon fluxes, and have been evaluated using in situ data above or below ground. Here measurements for several years at five flux tower sites in the U.S. (with a total of 315,576 hours of data) are used for the coupled evaluation of both below- and above-ground processes from three global reanalysis products and six global land data assimilation products. All products show systematic errors in precipitation, snow depth, and the timing of the melting and onset of snow. Despite the biases in soil moisture, all products show significant correlations with observed daily soil moisture for the periods with unfrozen soil. While errors in 2 meter air temperature are highly correlated with errors in skin temperature for all sites, the correlations between skin and soil temperature errors are weaker, particularly over the sites with seasonal snow. While net shortwave and longwave radiation flux errors have opposite signs across all products, the net radiation and ground heat flux errors are usually smaller in magnitude than turbulent flux errors. On the other hand, the all-product averages usually agree well with the observations on the evaporative fraction, defined as the ratio of latent heat over the sum of latent and sensible heat fluxes. This study identifies the strengths and weaknesses of these widely-used products, and helps understand the connection of their errors in above- versus below-ground quantities.

  6. Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method.

    PubMed

    Daniels, Alice; Zhu, Meiling; Tiwari, Ashutosh

    2013-12-01

    Piezoelectric material properties have substantial influence on electrical power output from piezoelectric energy harvesters (PEHs). Understanding their influences is the first step in designing effective PEHs to generate higher power outputs. This paper uses a coupled piezoelectric-circuit-finite element method to study the power outputs of different types of piezoelectric materials, including single crystal, polyvinylidene fluoride (PVDF), and soft and hard lead zirconate titanate (PZT) materials. The purpose of this study is to try to gain an understanding of which piezoelectric material property--the elastic compliance s11, the piezoelectric strain constant d31, the piezoelectric stress constant g31, and the relative dielectric constant ϵ(T)r33, and the associated material properties of the d31 × g31, called the figure of merit (FOM), and the coupling coefficient k31--dominates the power output. A rectangular piezoelectric plate under a low-frequency excitation is used to evaluate piezoelectric material properties for a higher power output. It was found that 1) d31 is a more dominant material property over other material properties for higher power output; 2) FOM was more linearly related to the power output than either the k31 or the d31; and 3) ϵ(T)r33 had some role; when the materials have an identical d31; a lower ϵ(T)r33 was preferred. Because of unexplained outliers, no single material parameter was able to be recommended as selection criteria, but combined FOM with d31 parameters is recommended for selection of piezoelectric material for a higher power output from PEHs.

  7. A method coupled with remote sensing data to evaluate non-point source pollution in the Xin'anjiang catchment of China.

    PubMed

    Wang, Xuelei; Wang, Qiao; Wu, Chuanqing; Liang, Tao; Zheng, Donghai; Wei, Xingfeng

    2012-07-15

    Non-point source (NPS) pollution has been recognized as the largest threat to water resources throughout the world, and the evaluation of NPS loads is a priority. In China, some models, such as SWAT (Soil and Water Assessment Tools) model, have been widely used at the watershed scale. However, variations in natural and social factors make it difficult to find a proper model to use on NPS pollution management in China. In this study, a "Dualistic Structure" model is coupled with remote sensing data to capture the spatial and temporal processes of NPS pollution. Land parameters were derived from HJ-1A and HJ-1B satellite data (resolution 30 m), which offered greatly enhanced spatial resolution. This approach offers the advantage of being a rapid estimation system with fairly precise knowledge of the distribution, sources and quantities of NPS pollutants, and it can be used at the country scale, including in areas with insufficient data. The method is used in the Xin'anjiang catchment, an important water source for Hangzhou city, China. The simulation in this study includes the spatial distribution of monthly total nitrogen (TN), total phosphorous (TP), ammonia nitrogen (NH(4)-N) and chemical oxygen demand (COD(cr)) loads and the total production of NPS pollutants. The simulations were compared to pollution census (PC) data in 2010 and the results of SWAT model, with an average R(2) larger than 0.7. Additionally, the impacts of soil erosion and human activities on NPS pollution were assessed, indicating that soil and water conservation is very significant factor in the Xin'anjiang catchment. Results indicate that by coupling remote sensing data and parameter retrieval techniques to "Dualistic Structure" models, estimations of NPS loads on the catchment scale can be improved by spatial pixel-based modeling. This rapid NPS estimation system will offer effective support to policy makers for environmental management in China.

  8. Authentication of Kalix (N.E. Sweden) vendace caviar using inductively coupled plasma-based analytical techniques: evaluation of different approaches.

    PubMed

    Rodushkin, I; Bergman, T; Douglas, G; Engström, E; Sörlin, D; Baxter, D C

    2007-02-05

    Different analytical approaches for origin differentiation between vendace and whitefish caviars from brackish- and freshwaters were tested using inductively coupled plasma double focusing sector field mass spectrometry (ICP-SFMS) and multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). These approaches involve identifying differences in elemental concentrations or sample-specific isotopic composition (Sr and Os) variations. Concentrations of 72 elements were determined by ICP-SFMS following microwave-assisted digestion in vendace and whitefish caviar samples from Sweden (from both brackish and freshwater), Finland and USA, as well as in unprocessed vendace roe and salt used in caviar production. This data set allows identification of elements whose contents in caviar can be affected by salt addition as well as by contamination during production and packaging. Long-term method reproducibility was assessed for all analytes based on replicate caviar preparations/analyses and variations in element concentrations in caviar from different harvests were evaluated. The greatest utility for differentiation was demonstrated for elements with varying concentrations between brackish and freshwaters (e.g. As, Br, Sr). Elemental ratios, specifically Sr/Ca, Sr/Mg and Sr/Ba, are especially useful for authentication of vendace caviar processed from brackish water roe, due to the significant differences between caviar from different sources, limited between-harvest variations and relatively high concentrations in samples, allowing precise determination by modern analytical instrumentation. Variations in the 87Sr/86Sr ratio for vendace caviar from different harvests (on the order of 0.05-0.1%) is at least 10-fold less than differences between caviar processed from brackish and freshwater roe. Hence, Sr isotope ratio measurements (either by ICP-SFMS or by MC-ICP-MS) have great potential for origin differentiation. On the contrary, it was impossible to

  9. An evaluation of uncertainty in the aerosol optical properties as represented by satellites and an ensemble of chemistry-climate coupled models over Europe

    NASA Astrophysics Data System (ADS)

    Palacios-Peña, Laura; Baró, Rocío; Jiménez-Guerrero, Pedro

    2016-04-01

    The changes in Earth's climate are produced by forcing agents such as greenhouse gases, clouds and atmospheric aerosols. The latter modify the Earth's radiative budget due to their optical, microphysical and chemical properties, and are considered to be the most uncertain forcing agent. There are two main approaches to the study of aerosols: (1) ground-based and remote sensing observations and (2) atmospheric modelling. With the aim of characterizing the uncertainties associated with these approaches, and estimating the radiative forcing caused by aerosols, the main objective of this work is to assess the representation of aerosol optical properties by different remote sensing sensors and online-coupled chemistry-climate models and to determine whether the inclusion of aerosol radiative feedbacks in this type of models improves the modelling outputs over Europe. Two case studies have been selected under the framework of the EuMetChem COST Action ES1004, when important aerosol episodes during 2010 over Europe took place: a Russian wildfires episode and a Saharan desert dust outbreak covering most of Europe. Model data comes from an ensemble of regional air quality-climate simulations performed by the working group 2 of EuMetChem, that investigates the importance of different processes and feedbacks in on-line coupled chemistry-climate models. These simulations are run for three different configurations for each model, differing in the inclusion (or not) of aerosol-radiation and aerosol-cloud interactions. The remote sensing data comes from three different sensors, MODIS (Moderate Resolution Imaging Spectroradiometer), OMI (Ozone Monitoring Instrument) and SeaWIFS (Sea-viewing Wide Field-of-view Sensor). The evaluation has been performed by using classical statistical metrics, comparing modelled and remotely sensed data versus a ground-based instrument network (AERONET). The evaluated variables are aerosol optical depth (AOD) and the Angström exponent (AE) at

  10. Nonadiabatic Coupling

    NASA Astrophysics Data System (ADS)

    Kryachko, Eugene S.

    The general features of the nonadiabatic coupling and its relation to molecular properties are surveyed. Some consequences of the [`]equation of motion', formally expressing a [`]smoothness' of a given molecular property within the diabatic basis, are demonstrated. A particular emphasis is made on the relation between a [`]smoothness' of the electronic dipole moment and the generalized Mulliken-Hush formula for the diabatic electronic coupling.

  11. CHARM, a gender equity and family planning intervention for men and couples in rural India: protocol for the cluster randomized controlled trial evaluation.

    PubMed

    Yore, Jennifer; Dasgupta, Anindita; Ghule, Mohan; Battala, Madhusadana; Nair, Saritha; Silverman, Jay; Saggurti, Niranjan; Balaiah, Donta; Raj, Anita

    2016-02-20

    Globally, 41% of all pregnancies are unintended, increasing risk for unsafe abortion, miscarriage and maternal and child morbidities and mortality. One in four pregnancies in India (3.3 million pregnancies, annually) are unintended; 2/3 of these occur in the context of no modern contraceptive use. In addition, no contraceptive use until desired number and sex composition of children is achieved remains a norm in India. Research shows that globally and in India, the youngest and most newly married wives are least likely to use contraception and most likely to report husband's exclusive family planning decision-making control, suggesting that male engagement and family planning support is important for this group. Thus, the Counseling Husbands to Achieve Reproductive Health and Marital Equity (CHARM) intervention was developed in recognition of the need for more male engagement family planning models that include gender equity counseling and focus on spacing contraception use in rural India. For this study, a multi-session intervention delivered to men but inclusive of their wives was developed and evaluated as a two-armed cluster randomized controlled design study conducted across 50 mapped clusters in rural Maharashtra, India. Eligible rural young husbands and their wives (N = 1081) participated in a three session gender-equity focused family planning program delivered to the men (Sessions 1 and 2) and their wives (Session 3) by village health providers in rural India. Survey assessments were conducted at baseline and 9&18 month follow-ups with eligible men and their wives, and pregnancy tests were obtained from wives at baseline and 18-month follow-up. Additional in-depth understanding of how intervention impact occurred was assessed via in-depth interviews at 18 month follow-up with VHPs and a subsample of couples (n = 50, 2 couples per intervention cluster). Process evaluation was conducted to collect feedback from husbands, wives, and VHPs on program

  12. Coupling high-resolution precipitation forecasts and discharge predictions to evaluate the impact of spatial uncertainty in numerical weather prediction model outputs

    NASA Astrophysics Data System (ADS)

    Diomede, Tommaso; Marsigli, Chiara; Nerozzi, Fabrizio; Papetti, Paola; Paccagnella, Tiziana

    2008-11-01

    River hydrograph forecasts are highly sensitive to the space-time variability of the meteorological inputs, particularly in the case of watersheds characterised by a complex topography and whose hydrological processes are simulated by means of distributed rainfall-runoff models. An accurate representation of the space-time structure of the event that might occur is, therefore, essential when atmospheric and hydrological models are coupled in order to achieve successful streamflow predictions for medium-sized catchments. Even though the scale compatibility between atmospheric and hydrological models no longer seems to represent a serious problem for a direct one-way coupling, the quality and the reliability of deterministic quantitative precipitation forecasts (QPFs) are often unsatisfactory in driving hydrological models. This is because uncertainties in QPFs are, nowadays, still considerable at the scales of interest for hydrological purposes. In this work, different configurations of the non-hydrostatic meteorological model Lokal Modell (LM) have been tested for four rain events, with the aim of improving the description of the phenomena related to the precipitation. Then, LM QPFs have been coupled with the distributed rainfall-runoff model TOPKAPI, in order to assess the results in terms of discharge forecast over the Reno river basin, a medium-sized catchment in northern Italy. The coupling of atmospheric and hydrological models offers a complementary tool to evaluate the meteorological model performance. In addition, an empirical approach is proposed in order to take into account the spatial uncertainty affecting the precipitation forecast. The methodology is based on an ensemble of future rainfall scenarios, which is built by shifting in eight different directions the precipitation patterns forecasted by LM. An ensemble of discharge forecasts is then generated by feeding the hydrological model with these rain time series, thus, enabling a probabilistic

  13. Coupling of abiotic and biotic parameters to evaluate performance of combining natural lagooning and use of two sand filters in the treatment of landfill leachates.

    PubMed

    Aleya, L; Khattabi, H; Belle, E; Grisey, H; Mudry, J; Mania, J

    2007-02-01

    A study in the Etueffont landfill, located in Belfort (France), was conducted to evaluate the performance of combining natural lagooning and use of two sand filters for treating leachates through the coupling estimation of several abiotic and biotic parameters. Two gravel filters were installed in the upstream of the first basin which communicates with the remaing 2, 3 and 4 basins. The distribution of physical-chemical (T, pH, Eh, EC, O2, SM, SO4(2-), Cl-, Zn, Fe, Mg, Ni, Al, As, Ba, Cu, Sn, Zn, BOD, COD, KN, NH4+, NO2+ ,TP, AOX: absorbable organic halides, VFA: volatile fatty acids, and atrazine) and biological (bacteria, protozoa, phytoplankton) parameters was assessed in the leachate entering in basin 1, and downstream of the filters. The results showed slight variations in the physical-chemical composition of the leachate between 1999 and 2000, most likely ascribed to the maturation of the landfill but a very significant removal of SM (suspended matter) by the sand filters. This, applied to the majority of the studied parameters. Thus, the sand filter treatment of the leachates combined with natural lagooning was efficient in the improvement of water clarification.

  14. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Structural and creep-fatigue evaluation

    SciTech Connect

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; Ho, Clifford; Dutta, Pradip

    2016-06-06

    A supercritical carbon dioxide (sCO2) Brayton cycle is an emerging high energy-density cycle undergoing extensive research due to the appealing thermo-physical properties of sCO2 and single phase operation. Development of a solar receiver capable of delivering sCO2 at 20 MPa and 700 °C is required for implementation of the high efficiency (~50%) solar powered sCO2 Brayton cycle. In this work, extensive candidate materials are review along with tube size optimization using the ASME Boiler and Pressure Vessel Code. Moreover, temperature and pressure distribution obtained from the thermal-fluid modeling (presented in a complementary publication) are used to evaluate the thermal and mechanical stresses along with detailed creep-fatigue analysis of the tubes. The lifetime performance of the receiver tubes were approximated using the resulting body stresses. A cyclic loading analysis is performed by coupling the Strain-Life approach and the Larson-Miller creep model. The structural integrity of the receiver was examined and it was found that the stresses can be withstood by specific tubes, determined by a parametric geometric analysis. Furthermore, the creep-fatigue analysis displayed the damage accumulation due to cycling and the permanent deformation on the tubes showed that the tubes can operate for the full lifetime of the receiver.

  15. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Structural and creep-fatigue evaluation

    DOE PAGES

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; ...

    2016-06-06

    A supercritical carbon dioxide (sCO2) Brayton cycle is an emerging high energy-density cycle undergoing extensive research due to the appealing thermo-physical properties of sCO2 and single phase operation. Development of a solar receiver capable of delivering sCO2 at 20 MPa and 700 °C is required for implementation of the high efficiency (~50%) solar powered sCO2 Brayton cycle. In this work, extensive candidate materials are review along with tube size optimization using the ASME Boiler and Pressure Vessel Code. Moreover, temperature and pressure distribution obtained from the thermal-fluid modeling (presented in a complementary publication) are used to evaluate the thermal andmore » mechanical stresses along with detailed creep-fatigue analysis of the tubes. The lifetime performance of the receiver tubes were approximated using the resulting body stresses. A cyclic loading analysis is performed by coupling the Strain-Life approach and the Larson-Miller creep model. The structural integrity of the receiver was examined and it was found that the stresses can be withstood by specific tubes, determined by a parametric geometric analysis. Furthermore, the creep-fatigue analysis displayed the damage accumulation due to cycling and the permanent deformation on the tubes showed that the tubes can operate for the full lifetime of the receiver.« less

  16. An evaluation of microwave-assisted fusion and microwave-assisted acid digestion methods for determining elemental impurities in carbon nanostructures using inductively coupled plasma optical emission spectrometry.

    PubMed

    Patole, Shashikant P; Simões, Filipa; Yapici, Tahir F; Warsama, Bashir H; Anjum, Dalaver H; Costa, Pedro M F J

    2016-02-01

    It is common for as-prepared carbon nanotube (CNT) and graphene samples to contain remnants of the transition metals used to catalyze their growth; contamination may also leave other trace elemental impurities in the samples. Although a full quantification of impurities in as-prepared samples of carbon nanostructures is difficult, particularly when trace elements are intercalated or encapsulated within a protective layer of graphitic carbon, reliable information is essential for reasons such as quantifying the adulteration of physico-chemical properties of the materials and for evaluating environmental issues. Here, we introduce a microwave-based fusion method to degrade single- and double-walled CNTs and graphene nanoplatelets into a fusion flux thereby thoroughly leaching all metallic impurities. Subsequent dissolution of the fusion product in diluted hydrochloric and nitric acid allowed us to identify their trace elemental impurities using inductively coupled plasma optical emission spectrometry. Comparisons of the results from the proposed microwave-assisted fusion method against those of a more classical microwave-assisted acid digestion approach suggest complementarity between the two that ultimately could lead to a more reliable and less costly determination of trace elemental impurities in carbon nanostructured materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Structural and creep-fatigue evaluation

    SciTech Connect

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; Ho, Clifford; Dutta, Pradip

    2016-06-06

    A supercritical carbon dioxide (sCO2) Brayton cycle is an emerging high energy-density cycle undergoing extensive research due to the appealing thermo-physical properties of sCO2 and single phase operation. Development of a solar receiver capable of delivering sCO2 at 20 MPa and 700 °C is required for implementation of the high efficiency (~50%) solar powered sCO2 Brayton cycle. In this work, extensive candidate materials are review along with tube size optimization using the ASME Boiler and Pressure Vessel Code. Moreover, temperature and pressure distribution obtained from the thermal-fluid modeling (presented in a complementary publication) are used to evaluate the thermal and mechanical stresses along with detailed creep-fatigue analysis of the tubes. For resulting body stresses were used to approximate the lifetime performance of the receiver tubes. A cyclic loading analysis is performed by coupling the Strain-Life approach and the Larson-Miller creep model. The structural integrity of the receiver was examined and it was found that the stresses can be withstood by specific tubes, determined by a parametric geometric analysis. The creep-fatigue analysis display the damage accumulation due to cycling and the permanent deformation on the tubes showed that the tubes can operate for the full lifetime of the receiver.

  18. Microwave-assisted cross-coupling and hydrogenation chemistry by using heterogeneous transition-metal catalysts: an evaluation of the role of selective catalyst heating.

    PubMed

    Irfan, Muhammed; Fuchs, Michael; Glasnov, Toma N; Kappe, C Oliver

    2009-11-02

    The concept of specific microwave effects in solid/liquid catalytic processes resulting from the selective heating of a microwave-absorbing heterogeneous transition-metal catalyst by using 2.45 GHz microwave irradiation was evaluated. As model transformations Ni/C-, Cu/C-, Pd/C-, and Pd/Al2O3-catalyzed carbon-carbon/carbon-heteroatom cross-couplings and hydrogenation reactions were investigated. To probe the existence of specific microwave effects by means of selective catalyst heating in these transformations, control experiments comparing microwave dielectric heating and conventional thermal heating at the same reaction temperature were performed. Although the supported metal catalysts were experimentally found to be strongly microwave absorbing, for all chemistry examples investigated herein no differences in reaction rate or selectivity between microwave and conventional heating experiments under carefully controlled conditions were observed. This was true also for reactions that use low-absorbing or microwave transparent solvents, and was independent of the microwave absorbtivity of the catalyst support material. In the case of hydrogenation reactions, the stirring speed was found to be a critical factor on the mass transfer between gas and liquid phase, influencing the rate of the hydrogenation in both microwave and conventionally heated experiments.

  19. Binary chromatographic fingerprinting for quality evaluation of Radix Ophiopogonis by high-performance liquid chromatography coupled with ultraviolet and evaporative light-scattering detectors.

    PubMed

    Liu, Li; Lu, Yun; Shao, Qing; Cheng, Yi-Yu; Qu, Hai-Bin

    2007-11-01

    Radix Ophiopogonis is a widely used traditional Chinese medicine. The quality of Radix Ophiopogonis available in the market varies, and some confusing or fake herbs exist. In order to improve the quality control of Radix Ophiopogonis, a novel fingerprinting method was established using HPLC coupled with UV and evaporative light-scattering detectors (ELSDs). Extraction with methanol and liquid-liquid extraction with water-saturated n-butanol were employed for the preparation of the sample solution. Chromatographic separation was performed on a Lichrospher C(18) column (250x4.6 mm id, 5.0 microm particle size) with a linear gradient elution program. UV detection at 280 nm and evaporative light-scattering detection were utilized to obtain two subfingerprinting chromatograms. A novel protocol for data processing was proposed, in order to identify and remove redundant data obtained by the two detectors, and balance the weight of the two subfingerprints on the similarity values. The method was validated and applied to quality evaluation of 16 samples of Radix Ophiopogonis and related herbs.

  20. Reconfigured, close-coupled reconfigured, and Wyodak coal integrated two-stage coal liquefaction process materials from the Wilsonville facility: Chemical and toxicological evaluation

    SciTech Connect

    Wright, C.W.

    1987-03-01

    This document reports the results of the chemical analysis and toxicological testing of process materials sampled during the operation of the Advanced Coal Liquefaction Research and Development Facility (Wilsonville, AL) in the reconfigured, integrated (RITSL run No. 247), the close-coupled, reconfigured, integrated (CCRITSL run No. 249), and the Wyodak coal integrated (ITSL run No. 246) two-stage liquefaction operating modes. Chemical methods of analysis included proton nuclear magnetic resonance spectroscopy, adsorption column chromatography, high resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. Toxicological evaluation of the process materials included a histidine reversion assay for microbial mutagenicity, an initiation/promotion assay for tumorigenicity in mouse skin, and an aquatic toxicity assay using Daphnia magna. The results of these analyses and tests are compared to the previously reported results derived from the Illinois No. 6 coal ITSL and nonintegrated two-stage liquefaction (NTSL) process materials from the Wilsonville facility. 21 refs., 13 figs., 21 tabs.

  1. Evaluation of Dietary Supplement Contamination by Xenobiotic and Essential Elements Using Microwave-Enhanced Sample Digestion and Inductively Coupled Plasma-Mass Spectrometry.

    PubMed

    Zinn, Gregory M; Rahman, G M Mizanur; Faber, Scott; Wolle, Mesay Mulugeta; Pamuku, Matt; Kingston, H M Skip

    2016-01-01

    Dietary supplements were analyzed by evaluating the elemental content in six widely consumed products manufactured by four well-known companies. The elements included the neurotoxic and carcinogenic elements cadmium, mercury, aluminum, lead, arsenic, and antimony, as well as the essential elements zinc, selenium, chromium, iron, and copper, which were often not listed as ingredients on the product labels. Contamination from either xenobiotic or essential elements was found in all samples analyzed. The samples were prepared using US Environmental Protection Agency (EPA) Method 3052, microwave-enhanced digestion. The resulting digests were analyzed by Inductively Coupled Plasma-Mass Spectrometry based on EPA Method 6020B. The analytical protocols were validated by analyzing a multivitamin standard reference material, the National Institute of Standards and Technology Standard Reference Material 3280. The application of EPA standard methods demonstrated their utility in making accurate and precise measurements in complex matrices with multiple ingredients and excipients. In the future, the use of these methods could provide a uniform quality assurance protocol that can be implemented along with other industry guidelines to improve the production of dietary supplements.

  2. Nonadiabatic couplings from the Kohn-Sham derivative matrix: Formulation by time-dependent density-functional theory and evaluation in the pseudopotential framework

    NASA Astrophysics Data System (ADS)

    Hu, Chunping; Sugino, Osamu; Hirai, Hirotoshi; Tateyama, Yoshitaka

    2010-12-01

    We study the time-dependent density-functional theory formulation of nonadiabatic couplings (NAC’s) to settle problems regarding practical calculations. NAC’s have so far been rigorously formulated on the basis of the density response scheme and expressed using the nuclear derivative of the Hamiltonian, ∂H/∂R, whereby causing the pseudopotential problem. When rewritten using the nuclear derivative operator, ∂/∂R, or the d operator, the formula is found free of the problem and thus provides a working numerical scheme. The d-operator-based formulation also allows us to lay a foundation on the empirical Slater transition-state method and to show an improved way of using the auxiliary excited-state wave-function ansatz, both of which have been utilized in previous works. Evaluation of NAC near either the Jahn-Teller or the Renner-Teller intersection in various molecular systems shows that the values of NAC are much improved over previous calculations when the d-operator formula is implemented in the pseudopotential framework.

  3. Evaluation of a SiPM array coupled to a Gd3Al2Ga3O12:Ce (GAGG:Ce) discrete scintillator.

    PubMed

    David, S; Georgiou, M; Fysikopoulos, E; Loudos, G

    2015-11-01

    In this study, we present the results of the evaluation of the SensL ArraySL-4 photo-detector, coupled to a 6 × 6 GAGG:Ce scintillator array, with 2 × 2 × 5 mm(3) crystal size elements for possible applications in medical imaging detectors with focus in PET applications. Experimental evaluation was carried out with (22)Na and (137)Cs radioactive sources and the parameters studied were energy resolution and peak to valley ratio. ArraySL-4 is a commercially available, 4 × 4 array detector covering an active area of 13.4 mm(2). The GAGG:Ce scintillator array used in this study has 0.1 mm thickness BaSO4 reflector material between the crystal elements. A symmetric resistive voltage division matrix was applied, which reduces the 16 outputs of the array to 4 position signals. A Field Programmable Gate Array was used for triggering and digital processing of the signal pulses acquired using free running Analog to Digital Converters. Raw images and horizontal profiles of the 6 × 6 GAGG:Ce scintillator array produced under 511 keV and 662 keV excitation are illustrated. Moreover, the energy spectra obtained with (22)Na and (137)Cs radioactive sources from a single 2 × 2 × 5 mm(3) GAGG:Ce scintillator are shown. The peak to valley ratio and the mean energy resolution values are reported. The acquired raw image of the GAGG:Ce crystal array under 511 keV excitation shows a clear visualization of all discrete scintillator elements with a mean peak to valley ratio equal to 40. The mean energy resolution was measured equal to 10.5% and 9% respectively under 511 keV and 662 keV irradiation. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. FLEXIBLE COUPLING

    DOEpatents

    Babelay, E.F.

    1962-02-13

    A flexible shaft coupling for operation at speeds in excess of 14,000 rpm is designed which requires no lubrication. A driving sleeve member and a driven sleeve member are placed in concentric spaced relationship. A torque force is transmitted to the driven member from the driving member through a plurality of nylon balls symmetrically disposed between the spaced sleeves. The balls extend into races and recesses within the respective sleeve members. The sleeve members have a suitable clearance therebetween and the balls have a suitable radial clearance during operation of the coupling to provide a relatively loose coupling. These clearances accommodate for both parallel and/or angular misalignments and avoid metal-tometal contact between the sleeve members during operation. Thus, no lubrication is needed, and a minimum of vibrations is transmitted between the sleeve members. (AEC)

  5. Prosthesis coupling

    NASA Technical Reports Server (NTRS)

    Reswick, J. B.; Mooney, V.; Bright, C. W.; Owens, L. J. (Inventor)

    1979-01-01

    A coupling for use in an apparatus for connecting a prosthesis to the bone of a stump of an amputated limb is described which permits a bio-compatible carbon sleeve forming a part of the prosthesis connector to float so as to prevent disturbing the skin seal around the carbon sleeve. The coupling includes a flexible member interposed between a socket that is inserted within an intermedullary cavity of the bone and the sleeve. A lock pin is carried by the prosthesis and has a stem portion which is adapted to be coaxially disposed and slideably within the tubular female socket for securing the prosthesis to the stump. The skin around the percutaneous carbon sleeve is able to move as a result of the flexing coupling so as to reduce stresses caused by changes in the stump shape and/or movement between the bone and the flesh portion of the stump.

  6. Module coupling and predictability

    NASA Astrophysics Data System (ADS)

    Knopf, B.; Held, H.

    2003-04-01

    Successive coupling of several nonlinear submodules seems to be the implicit master strategy of the current world-wide modelling endeavour. The process of coupling is investigated by using different methods of examining low order coupled atmosphere-ocean systems. As a first step, a coupled atmosphere-ocean system, based on the Lorenz84 atmosphere is considered, operated in a forced versus the truly coupled mode. In [1] it is shown that forcing cannot emulate the fully coupled system, yet quite the contrary, generates time series of intermittently high predictability ("locking"). Standard linear stability analysis is incapable to explain the locking phenomenon. While regions of linear asymptotic stability can be evaluated, it turns out that this criterion is too conservative and does not explain the standard locking situation, as the trajectory periodically leaves the region of stability during a locking phase. We therefore propose that the locking phenomenon needs to be analysed in the framework of non-linear dynamics. Preliminary analysis of the statistic of locking-periods displays a similarity to type III intermittency. Bifurcation diagrams obtained from the continuation software AUTO indicate a rich phase space structure which makes the interpretation of the locking phenomenon intricate. Systematic variation of coupling constants appears to be a promising task as the key effects could be followed into parameter regimes of more transparent phase space structure. begin{thebibliography}{0} bibitem{Wittenberg98}A. T. Wittenberg, J. L. Anderson. Dynamical implications of prescribing part of a coupled system: Results from a low order model. Nonlinear Processes in Geophysics, 5: 167-179, 1998.

  7. Cell-based bioreporter assay coupled to HPLC micro-fractionation in the evaluation of antimicrobial properties of the basidiomycete fungus Pycnoporus cinnabarinus.

    PubMed

    Järvinen, Päivi; Nybond, Susanna; Marcourt, Laurence; Ferreira Queiroz, Emerson; Wolfender, Jean-Luc; Mettälä, Aila; Karp, Matti; Vuorela, Heikki; Vuorela, Pia; Hatakka, Annele; Tammela, Päivi

    2016-01-01

    Identification of bioactive components from complex natural product extracts can be a tedious process that aggravates the use of natural products in drug discovery campaigns. This study presents a new approach for screening antimicrobial potential of natural product extracts by employing a bioreporter assay amenable to HPLC-based activity profiling. A library of 116 crude extracts was prepared from fungal culture filtrates by liquid-liquid extraction with ethyl acetate, lyophilised, and screened against Escherichia coli using TLC bioautography. Active extracts were studied further with a broth microdilution assay, which was, however, too insensitive for identifying the active microfractions after HPLC separation. Therefore, an assay based on bioluminescent E. coli K-12 (pTetLux1) strain was coupled with HPLC micro-fractionation. Preliminary screening yielded six fungal extracts with potential antimicrobial activity. A crude extract from a culture filtrate of the wood-rotting fungus, Pycnoporus cinnabarinus (Jacq.) P. Karst. (Polyporaceae), was selected for evaluating the functionality of the bioreporter assay in HPLC-based activity profiling. In the bioreporter assay, the IC50 value for the crude extract was 0.10 mg/mL. By integrating the bioreporter assay with HPLC micro-fractionation, the antimicrobial activity was linked to LC-UV peak of a compound in the chromatogram of the extract. This compound was isolated and identified as a fungal pigment phlebiarubrone. HPLC-based activity profiling using the bioreporter-based approach is a valuable tool for identifying antimicrobial compound(s) from complex crude extracts, and offers improved sensitivity and speed compared with traditional antimicrobial assays, such as the turbidimetric measurement.

  8. An evaluation of cis- and trans-retinol contents in juices using dispersive liquid-liquid microextraction coupled to liquid chromatography with fluorimetric detection.

    PubMed

    Viñas, Pilar; Bravo-Bravo, María; López-García, Ignacio; Hernández-Córdoba, Manuel

    2013-01-15

    This study describes a method for coupling dispersive liquid-liquid microextraction (DLLME) and normal-phase liquid chromatography (NP-LC) with fluorescence detection for vitamin A determination with the view to developing a new green sample preparation technique. Parameters affecting DLLME, including the nature and volume of both extractant and disperser solvents, salt addition and time and speed of the centrifugation step, were optimized. The sample was saponified according to European Standards to convert all forms of vitamin A to retinol. For microextraction, 8 mL water were placed in a glass tube with conical bottom and the saponified sample consisting of 2 mL of the methanolic extract containing 100 μL tetrachloroethane was rapidly injected by syringe, thereby forming a cloudy solution. Phase separation was performed by centrifugation, and a volume of 20 μL of the sedimented phase was analyzed by NP-LC. The enrichment factor, calculated as the ratio between the slopes of DLLME-LC and direct LC, was 50 ± 3. The matrix effect was evaluated for different juice samples, and it was concluded that sample quantification can be carried out by aqueous calibration when the standards are also submitted to saponification. The proposed method was applied for determining both cis- and trans-retinol isomers in commercial juices of different types. The intraday and interday precisions were lower than 6% in terms of relative standard deviation. The method was validated using two certified reference materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Evaluation of Nickel and Chromium Ion Release During Fixed Orthodontic Treatment Using Inductively Coupled Plasma-Mass Spectrometer: An In Vivo Study

    PubMed Central

    Nayak, Rabindra S; Khanna, Bharti; Pasha, Azam; Vinay, K; Narayan, Anjali; Chaitra, K

    2015-01-01

    Background: Fixed orthodontic appliances with the use of stainless steel brackets and archwires made of nitinol have a corrosive potential in the oral environment. Nickel and chromium ions released from these appliances act as allergens apart from being cytotoxic, mutagenic and carcinogenic in smaller quantities in the range of nanograms. This study was done to evaluate the release of nickel and chromium ions from orthodontic appliances in the oral cavity using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). Materials and Methods: Saliva samples from 30 orthodontic patients undergoing treatment with 0.022″ MBT mechanotherapy were collected prior to commencement of treatment, after initial aligning wires and after 10-12 months of treatment. Salivary nickel and chromium ion concentration was measured in parts per billion (ppb) using ICP-MS. Results: Mean, standard deviation and range were computed for the concentrations of ions obtained. Results analyzed using ANOVA indicated a statistically significant increase of 10.35 ppb in nickel ion concentration and 33.53 ppb in chromium ion concentration after initial alignment. The ionic concentration at the end of 10-12 months of treatment showed a statistically significant increase in of 17.92 ppb for chromium and a statistically insignificant decrease in nickel ion concentration by 1.58 ppb. Pearson’s correlation coefficient showed a positive correlation for an increase in nickel concentration after aligning, but not at the end of 10-12 months. A positive correlation was seen for an increase in chromium ion concentration at both time intervals. Conclusion: Nickel and chromium ion concentration in saliva even though below the recommended daily allowance should not be ignored in light of the new knowledge regarding effects of these ions at the molecular level and the allergic potential. Careful and detailed medical history of allergy is essential. Nickel free alternatives should form an essential part of an

  10. Individual cognitive-behavioral therapy and behavioral couples therapy in alcohol use disorder: a comparative evaluation in community-based addiction treatment centers.

    PubMed

    Vedel, Ellen; Emmelkamp, Paul M G; Schippers, Gerard M

    2008-01-01

    Alcohol abuse serves as a chronic stressor between partners and has a deleterious effect on relationship functioning. Behavioral Couples Therapy (BCT) for alcohol dependence, studied as an adjunct to individual outpatient counseling, has shown to be effective in decreasing alcohol consumption and enhancing marital functioning, but no study has directly tested the comparative effectiveness of stand-alone BCT versus an individually focused cognitive-behavioral therapy (CBT) in a clinical community sample. The present study is a randomized clinical trial evaluating the effectiveness of stand-alone BCT (n = 30) compared to individual CBT (n = 34) in the treatment of alcohol use disorders in community treatment centers in Dutch male and female alcoholics and their partners. Results show both BCT and CBT to be effective in changing drinking behavior after treatment. BCT was not found to be superior to CBT. Marital satisfaction of the spouse increased significantly in the BCT condition but not in the CBT condition, the differences being significant at the post-test. Patients' self-efficacy to withstand alcohol-related high-risk situations increased significantly in both treatment conditions, but more so in CBT than in BCT after treatment. Treatment involvement of the spouse did not increase retention. Regular practitioners in community treatment centers can effectively deliver both treatments. Stand-alone BCT is as effective as CBT in terms of reduced drinking and to some extent more effective in terms of enhancing relationship satisfaction. However, BCT is a more costly intervention, given that treatment sessions lasted almost twice as long as individual CBT sessions. Copyright 2008 S. Karger AG, Basel.

  11. Toward a chemical reanalysis in a coupled chemistry-climate model: An evaluation of MOPITT CO assimilation and its impact on tropospheric composition

    NASA Astrophysics Data System (ADS)

    Gaubert, B.; Arellano, A. F.; Barré, J.; Worden, H. M.; Emmons, L. K.; Tilmes, S.; Buchholz, R. R.; Vitt, F.; Raeder, K.; Collins, N.; Anderson, J. L.; Wiedinmyer, C.; Martinez Alonso, S.; Edwards, D. P.; Andreae, M. O.; Hannigan, J. W.; Petri, C.; Strong, K.; Jones, N.

    2016-06-01

    We examine in detail a 1 year global reanalysis of carbon monoxide (CO) that is based on joint assimilation of conventional meteorological observations and Measurement of Pollution in The Troposphere (MOPITT) multispectral CO retrievals in the Community Earth System Model (CESM). Our focus is to assess the impact to the chemical system when CO distribution is constrained in a coupled full chemistry-climate model like CESM. To do this, we first evaluate the joint reanalysis (MOPITT Reanalysis) against four sets of independent observations and compare its performance against a reanalysis with no MOPITT assimilation (Control Run). We then investigate the CO burden and chemical response with the aid of tagged sectoral CO tracers. We estimate the total tropospheric CO burden in 2002 (from ensemble mean and spread) to be 371 ± 12% Tg for MOPITT Reanalysis and 291 ± 9% Tg for Control Run. Our multispecies analysis of this difference suggests that (a) direct emissions of CO and hydrocarbons are too low in the inventory used in this study and (b) chemical oxidation, transport, and deposition processes are not accurately and consistently represented in the model. Increases in CO led to net reduction of OH and subsequent longer lifetime of CH4 (Control Run: 8.7 years versus MOPITT Reanalysis: 9.3 years). Yet at the same time, this increase led to 5-10% enhancement of Northern Hemisphere O3 and overall photochemical activity via HOx recycling. Such nonlinear effects further complicate the attribution to uncertainties in direct emissions alone. This has implications to chemistry-climate modeling and inversion studies of longer-lived species.

  12. Evaluation of a methacrylate bonded cyclodextrins as a monolithic chiral stationary phase for capillary electrochromatography (CEC)-UV and CEC coupled to mass spectrometry

    PubMed Central

    Gu, Congying; Shamsi, Shahab A.

    2012-01-01

    Glycidyl methacrylate bonded β-cyclodextin (GMA-β-CD) is synthesized as a new chiral monomer by direct chemical bonding with GMA using a fast and a simple alternative procedure. Very, rigid and homogenous monolithic columns were prepared by polymerization of GMA-β-CD monomer with ethylene dimethacrylate (EDMA), in the presence of commonly used porogens and a charged achiral monomer to form a versatile chiral monolith. This is the first report in which a preparation procedure for a methacrylate-bonded CD is introduced for chiral separations in CEC. The degree of substitution (DS) of GMA-β-CD monomer and mobile phase parameters were optimized to achieve highest enantioselectivity and plate number. To evaluate the GMA-β-CD monolithic column, different classes of chiral compounds were screened. Under the optimized β-CD monolith phase and the optimum mobile phase conditions, 30 neutral and basic chiral compounds and two acidic compounds could be separated. The high chemical and mechanical stability, homogenous microflow and no loss of material at the interface allows for the first time the feasibility of applying this polymer-based monolithic column for CEC coupled to ESI-MS. Compared to CEC-UV, CEC-ESI-MS showed higher sensitivity and lower resolution. However, resolution greater than 1.0 can still be obtained for majority of the select tested compound in CEC-ESI-MS with at least three out of seven compound providing Rs≥1.5. The results reinforce the potential of GMA-β-CD monolithic columns for chiral separations with high sensitivity in CEC-ESI-MS. Finally, using hexobarbital as model chiral analyte, the monolithic column demonstrated excellent stability and reproducibility of retention time and enantioselectivity. PMID:21983821

  13. Evaluation of fritless solid-phase extraction coupled on-line with capillary electrophoresis-mass spectrometry for the analysis of opioid peptides in cerebrospinal fluid.

    PubMed

    Medina-Casanellas, Silvia; Tak, Yvonne H; Benavente, Fernando; Sanz-Nebot, Victoria; Sastre Toraño, Javier; Somsen, Govert W; de Jong, Gerhardus J

    2014-10-01

    Fritless SPE on-line coupled to CE with UV and MS detection (SPE-CE-UV and SPE-CE-MS) was evaluated for the analysis of opioid peptides. A microcartridge of 150 μm id was packed with a C18 sorbent (particle size > 50 μm), which was retained between a short inlet capillary and a separation capillary (50 μm id). Several experimental parameters were optimized by SPE-CE-UV using solutions of dynorphin A (DynA), endomorphin 1 (End1), and methionine-enkephaline (Met). A microcartridge length of 4 mm was selected, sample was loaded for 10 min at 930 mbar and the retained peptides were eluted with 67 nL of an acidic hydro-organic solution. Using SPE-CE-MS, peak area and migration time repeatabilities for the three opioid peptides were 12-27% and 4-5%, respectively. SPE recovery was lower for the less hydrophobic DynA (22%) than for End1 (66%) and Met (78%) and linearity was satisfactory in all cases between 5 and 60 ng/mL. The LODs varied between 0.5 and 1.0 ng/mL which represent an enhancement of two orders of magnitude when compared with CE-MS. Cerebrospinal fluid (CSF) samples spiked with the opioid peptides were analyzed to demonstrate the applicability to biological samples. Peak area and migration time repeatabilities were similar to the standard solutions and the opioid peptides could be detected down to 1.0 ng/mL.

  14. Evaluating the performance of coupled snow-soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site

    NASA Astrophysics Data System (ADS)

    Barrere, Mathieu; Domine, Florent; Decharme, Bertrand; Morin, Samuel; Vionnet, Vincent; Lafaysse, Matthieu

    2017-09-01

    Climate change projections still suffer from a limited representation of the permafrost-carbon feedback. Predicting the response of permafrost temperature to climate change requires accurate simulations of Arctic snow and soil properties. This study assesses the capacity of the coupled land surface and snow models ISBA-Crocus and ISBA-ES to simulate snow and soil properties at Bylot Island, a high Arctic site. Field measurements complemented with ERA-Interim reanalyses were used to drive the models and to evaluate simulation outputs. Snow height, density, temperature, thermal conductivity and thermal insulance are examined to determine the critical variables involved in the soil and snow thermal regime. Simulated soil properties are compared to measurements of thermal conductivity, temperature and water content. The simulated snow density profiles are unrealistic, which is most likely caused by the lack of representation in snow models of the upward water vapor fluxes generated by the strong temperature gradients within the snowpack. The resulting vertical profiles of thermal conductivity are inverted compared to observations, with high simulated values at the bottom of the snowpack. Still, ISBA-Crocus manages to successfully simulate the soil temperature in winter. Results are satisfactory in summer, but the temperature of the top soil could be better reproduced by adequately representing surface organic layers, i.e., mosses and litter, and in particular their water retention capacity. Transition periods (soil freezing and thawing) are the least well reproduced because the high basal snow thermal conductivity induces an excessively rapid heat transfer between the soil and the snow in simulations. Hence, global climate models should carefully consider Arctic snow thermal properties, and especially the thermal conductivity of the basal snow layer, to perform accurate predictions of the permafrost evolution under climate change.

  15. Evaluation of iodine intake and status using inductively coupled plasma mass spectrometry in urban and rural areas in Benin, West Africa.

    PubMed

    Mizéhoun-Adissoda, Carmelle; Desport, Jean-Claude; Houinato, Dismand; Bigot, André; Dalmay, François; Preux, Pierre-Marie; Bovet, Pascal; Moesch, Christian

    2016-05-01

    Iodine deficiency has severe pathological repercussions. The aim of this study was to evaluate iodine intake and status in adults in Benin, West Africa. We randomly selected 420 participants ages 25 to 64 y and free of visible goiter from urban and rural settings of South Benin. The participants had a diet based on carbohydrates and fish. Urine was collected over a 24-h period and samples were assayed for iodine analysis using inductively coupled plasma mass spectrometry. We studied 401 urinary iodine samples. The overall median urinary iodine concentration (UIC) in 24-h urine was 62.9 μg/L (interquartile range: 40-96.2 μg/L). UIC was significantly lower in women than men (56.5 versus 78.6 μg/L; P < 0.001) and in rural versus urban areas (54.7 versus 77.8 μg/L; P < 0.001). In multivariate analysis, low UIC (<100 μg/L) was positively associated with women (odds ratio, 2.48; 95% confidence interval, 1.44-4.26; P = 0.001) and body mass index <25 kg/m(2) (odds ratio, 2.06; 95% confidence interval, 1.20-3.54; P = 0.008). Iodine intake appeared to be fairly low in the Beninese population, according to World Health Organization criteria, and factors associated with low iodine intake were identified. Public health interventions to increase iodine intake, such as iodization of commercial salt and/or fortification of selected nutrients, should be strengthened at the national level. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Gender equality in couples and self-rated health - A survey study evaluating measurements of gender equality and its impact on health.

    PubMed

    Sörlin, Ann; Lindholm, Lars; Ng, Nawi; Ohman, Ann

    2011-08-26

    Men and women have different patterns of health. These differences between the sexes present a challenge to the field of public health. The question why women experience more health problems than men despite their longevity has been discussed extensively, with both social and biological theories being offered as plausible explanations. In this article, we focus on how gender equality in a partnership might be associated with the respondents' perceptions of health. This study was a cross-sectional survey with 1400 respondents. We measured gender equality using two different measures: 1) a self-reported gender equality index, and 2) a self-perceived gender equality question. The aim of comparison of the self-reported gender equality index with the self-perceived gender equality question was to reveal possible disagreements between the normative discourse on gender equality and daily practice in couple relationships. We then evaluated the association with health, measured as self-rated health (SRH). With SRH dichotomized into 'good' and 'poor', logistic regression was used to assess factors associated with the outcome. For the comparison between the self-reported gender equality index and self-perceived gender equality, kappa statistics were used. Associations between gender equality and health found in this study vary with the type of gender equality measurement. Overall, we found little agreement between the self-reported gender equality index and self-perceived gender equality. Further, the patterns of agreement between self-perceived and self-reported gender equality were quite different for men and women: men perceived greater gender equality than they reported in the index, while women perceived less gender equality than they reported. The associations to health were depending on gender equality measurement used. Men and women perceive and report gender equality differently. This means that it is necessary not only to be conscious of the methods and measurements

  17. Evaluation of gel electrophoresis techniques and laser ablation-inductively coupled plasma-mass spectrometry for screening analysis of Zn and Cu-binding proteins in plankton.

    PubMed

    Jiménez, Maria S; Rodriguez, L; Bertolin, Juan R; Gomez, Maria T; Castillo, Juan R

    2013-01-01

    The determination of metal-binding proteins in plankton is important because of their involvement in photosynthesis, which is fundamental to the biogeochemical cycle of the oceans and other ecosystems. We have elaborated a new strategy for screening of Cu and Zn-containing proteins in plankton on the basis of separation of proteins by use of Blue-Native PAGE (BN-PAGE), which entails use of a non-denaturing Tris-tricine system and detection of metals in the proteins by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). For comparison, denaturing PAGE based on Tris-glycine and Tris-tricine systems and Anodic-Native PAGE have also been investigated. A large number of protein bands with MW between 20 and 75 kDa were obtained by use of Tris-glycine PAGE but detection of metals by LA-ICP-MS was unsuccessful because of loss of metals from the proteins during the separation process. Different protein extraction, purification, and preconcentration methods were evaluated, focussing on both issues-achieving the best extraction and characterization of the proteins while maintaining the integrity of metal-protein binding in the plankton sample. Use of 25 mmol L(-1) Tris-HCl and a protease inhibitor as extraction buffer with subsequent ultrafiltration and acetone precipitation was the most efficient means of sample preparation. Two Cu and Zn proteins were detected, a protein band corresponding to a MW of 60 kDa and another poorly resolved band with a MW between 15 and 35 kDa.

  18. Evaluation of a real-time BeO ceramic fiber-coupled luminescence dosimetry system for dose verification of high dose rate brachytherapy.

    PubMed

    Santos, Alexandre M Caraça; Mohammadi, Mohammad; Afshar V, Shahraam

    2015-11-01

    The authors evaluate the capability of a beryllium oxide (BeO) ceramic fiber-coupled luminescence dosimeter, named radioluminescence/optically stimulated luminescence (RL/OSL) BeO FOD, for dosimetric verification of high dose rate (HDR) treatments. The RL/OSL BeO FOD is capable of RL and OSL measurements. The RL/OSL BeO FOD is able to be inserted in 6F proguide needles, used in interstitial HDR treatments. Using a custom built Perspex phantom, 6F proguide needles could be submerged in a water tank at 1 cm separations from each other. A second background fiber was required to correct for the stem effect. The stem effect, dose linearity, reproducibility, depth-dose curves, and angular and temperature dependency of the RL/OSL BeO FOD were characterised using an Ir-192 source. The RL/OSL BeO FOD was also applied to the commissioning of a 10 mm horizontal Leipzig applicator. Both the RL and OSL were found to be reproducible and their percentage depth-dose curves to be in good agreement with those predicted via TG-43. A combined uncertainty of 7.9% and 10.1% (k=1) was estimated for the RL and OSL, respectively. For the 10 mm horizontal Leipzig applicator, measured percentage depth doses were within 5% agreement of the published reference calculations. The output at the 3 mm prescription depth for a 1 Gy delivery was verified to be 0.99±0.08 Gy and 1.01±0.10 Gy by the RL and OSL, respectively. The use of the second background fiber under the current setup means that the two fibers cannot fit into a single 6F needle. Hence, use of the RL is currently not adequate for the purpose of in vivo brachytherapy dosimetry. While not real-time, the OSL is shown to be adequate for in vivo brachytherapy dosimetry.

  19. Quantitative analysis of trace elements in environmental powders with laser ablation inductively coupled mass spectrometry using non-sample-corresponding reference materials for signal evaluation

    NASA Astrophysics Data System (ADS)

    Bauer, Gerald; Limbeck, Andreas

    2015-11-01

    Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) is an attractive alternative to traditional procedures for the analysis of environmental samples (i.e., conventional liquid measurement after sample digestion). However, for accurate quantification, certified reference materials (CRM) are necessary which match the composition of the sample and include all elements of interest at the required concentration levels. The limited availability of appropriate CRMs hampers therefore substantial application. In this work, an LA-ICP-MS procedure allowing for accurate determination of trace element contents in powdered environmental samples is presented. For LA-ICP-MS analysis, the samples are mixed with an internal standard (silver oxide) and a binder (sodium tetra borate) and subsequently pressed to pellets. Quantification is accomplished using a calibration function determined using CRMs with varying matrix composition and analyte content, pre-treated and measured in the same way as the samples. With this approach, matrix-induced ablation differences resulting from varying physical/chemical properties of the individual CRMs could be compensated. Furthermore, ICP-related matrix-effects could be minimized using collision/reaction cell technology. Applicability of the procedure has been demonstrated by assessment of Cd, Cu, Ni, and Zn in four different environmental CRMs (NIST SRM1648a (urban particulate matter), NIST SRM2709 (San Joaquin Soil), BCR144 (sewage sludge), and BCR723 (road dust)). Signal evaluation was performed by alternative use of three CRMs for calculation of the calibration function whereas the remaining fourth CRM acted as unknown sample, resulting in a good agreement between measured and certified values for all elements and reference materials.

  20. Stochastic Coupled Cluster Theory

    NASA Astrophysics Data System (ADS)

    Thom, Alex J. W.

    2010-12-01

    We describe a stochastic coupled cluster theory which represents excitation amplitudes as discrete excitors in the space of excitation amplitudes. Reexpressing the coupled cluster (CC) equations as the dynamics of excitors in this space, we show that a simple set of rules suffices to evolve a distribution of excitors to sample the CC solution and correctly evaluate the CC energy. These rules are not truncation specific and this method can calculate CC solutions to an arbitrary level of truncation. We present results of calculation on the neon atom, and nitrogen and water molecules showing the ability to recover both truncated and full CC results.

  1. Evaluating a multicomponent social behaviour change communication strategy to reduce intimate partner violence among married couples: study protocol for a cluster randomized trial in Nepal.

    PubMed

    Clark, Cari Jo; Spencer, Rachael A; Shrestha, Binita; Ferguson, Gemma; Oakes, J Michael; Gupta, Jhumka

    2017-01-13

    Intimate partner violence (IPV) is a significant public health issue that affects 1 in 3 women globally and a similarly large number of women in Nepal. Over the past decade, important policy and programmatic steps have been taken to address violence against women in Nepal. There remains a dearth of evidence on the effectiveness of primary violence prevention strategies. The Change Starts at Home study begins to fill this gap by utilizing a multi-component social behaviour change communication (SBCC) strategy involving a radio drama and community mobilization to shift attitudes, norms and behaviours that underpin IPV perpetration in Nepal. The study uses a concurrent mixed-methods design. The quantitative aspect of the evaluation is a pair-matched, repeated cross-sectional 2-armed, single-blinded cluster trial (RCT: N = 36 clusters, 1440 individuals), comparing a social behaviour change communication (SBCC) strategy to radio programming alone for its impact on physical and / or sexual IPV at the end of programming (12 months' post-baseline) and 6-months post the cessation of project activities (18-months post baseline). The qualitative aspects of the design include several longitudinal approaches to understand the impact of the intervention and to examine mechanisms of change including in-depth interviews with participants (N = 18 couples), and focus group discussions with community leaders (N = 3 groups), and family members of participants (N = 12 groups). Treatment effects will be estimated with generalized logistic mixed models specified to compare differences in primary outcome from baseline to 12-month follow-up, and baseline to 18-months follow-up in accordance with intention-to-treat principles. The study rigorously evaluates the effectiveness of a promising strategy to prevent IPV. The results of the trial will be immediately useful for governmental, nongovernmental, and donor funded programs targeting partner violence or social norms that

  2. Interlaboratory evaluation of a standardized inductively coupled plasma mass spectrometry method for the determination of trace beryllium in air filter samples.

    PubMed

    Ashley, Kevin; Brisson, Michael J; Howe, Alan M; Bartley, David L

    2009-12-01

    A collaborative interlaboratory evaluation of a newly standardized inductively coupled plasma mass spectrometry (ICP-MS) method for determining trace beryllium in workplace air samples was carried out toward fulfillment of method validation requirements for ASTM International voluntary consensus standard test methods. The interlaboratory study (ILS) was performed in accordance with an applicable ASTM International standard practice, ASTM E691, which describes statistical procedures for investigating interlaboratory precision. Uncertainty was also estimated in accordance with ASTM D7440, which applies the International Organization for Standardization Guide to the Expression of Uncertainty in Measurement to air quality measurements. Performance evaluation materials (PEMs) used consisted of 37 mm diameter mixed cellulose ester filters that were spiked with beryllium at levels of 0.025 (low loading), 0.5 (medium loading), and 10 (high loading) microg Be/filter; these spiked filters were prepared by a contract laboratory. Participating laboratories were recruited from a pool of over 50 invitees; ultimately, 20 laboratories from Europe, North America, and Asia submitted ILS results. Triplicates of each PEM (blanks plus the three different loading levels) were conveyed to each volunteer laboratory, along with a copy of the draft standard test method that each participant was asked to follow; spiking levels were unknown to the participants. The laboratories were requested to prepare the PEMs by one of three sample preparation procedures (hotplate or microwave digestion or hotblock extraction) that were described in the draft standard. Participants were then asked to analyze aliquots of the prepared samples by ICP-MS and to report their data in units of mu g Be/filter sample. Interlaboratory precision estimates from participating laboratories, computed in accordance with ASTM E691, were 0.165, 0.108, and 0.151 (relative standard deviation) for the PEMs spiked at 0.025, 0

  3. Gay and lesbian couples in Italy: comparisons with heterosexual couples.

    PubMed

    Antonelli, Paolo; Dèttore, Davide; Lasagni, Irene; Snyder, Douglas K; Balderrama-Durbin, Christina

    2014-12-01

    Assessing couple relationships across diverse languages and cultures has important implications for both clinical intervention and prevention. This is especially true for nontraditional relationships potentially subject to various expressions of negative societal evaluation or bias. Few empirically validated measures of relationship functioning have been developed for cross-cultural applications, and none have been examined for their psychometric sufficiency for evaluating same-sex couples across different languages and cultures. The current study examined the psychometric properties of an Italian translation of the Marital Satisfaction Inventory - Revised (MSI-R), a 150-item 13-scale measure of couple relationship functioning, for its use in assessing the intimate relationships of gay and lesbian couples in Italy. Results for these couples were compared to data from heterosexual married and unmarried cohabiting couples from the same geographical region, as well as to previously published data for gay, lesbian, and unmarried heterosexual couples from the United States. Findings suggest that, despite unique societal pressures confronting Italian same-sex couples, these relationships appear resilient and fare well both overall and in specific domains of functioning compared to heterosexual couples both in Italy and the United States.

  4. Evaluation of photoinduced change in refractive index of a polymer film doped with an azobenzene liquid crystal by means of a prism-coupling method

    SciTech Connect

    Kurihara, Hideo; Shishido, Atsushi; Ikeda, Tomiki

    2005-10-15

    The photoinduced change in refractive index of poly(methyl methacrylate) films doped with an azobenzene liquid crystal was measured by the prism-coupling method. Upon irradiation of the film with a high-pressure mercury lamp at 366 nm, the coupling angles shifted and then recovered to the initial position by turning off the light. The change in refractive index was found to be 2x10{sup -3}, which is attributed to the reversible photoisomerization of the azobenzene moieties.

  5. Projected coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Qiu, Yiheng; Henderson, Thomas M.; Zhao, Jinmo; Scuseria, Gustavo E.

    2017-08-01

    Coupled cluster theory is the method of choice for weakly correlated systems. But in the strongly correlated regime, it faces a symmetry dilemma, where it either completely fails to describe the system or has to artificially break certain symmetries. On the other hand, projected Hartree-Fock theory captures the essential physics of many kinds of strong correlations via symmetry breaking and restoration. In this work, we combine and try to retain the merits of these two methods by applying symmetry projection to broken symmetry coupled cluster wave functions. The non-orthogonal nature of states resulting from the application of symmetry projection operators furnishes particle-hole excitations to all orders, thus creating an obstacle for the exact evaluation of overlaps. Here we provide a solution via a disentanglement framework theory that can be approximated rigorously and systematically. Results of projected coupled cluster theory are presented for molecules and the Hubbard model, showing that spin projection significantly improves unrestricted coupled cluster theory while restoring good quantum numbers. The energy of projected coupled cluster theory reduces to the unprojected one in the thermodynamic limit, albeit at a much slower rate than projected Hartree-Fock.

  6. Evaluation.

    ERIC Educational Resources Information Center

    McAnany, Emile G.; And Others

    1980-01-01

    Two lead articles set the theme for this issue devoted to evaluation as Emile G. McAnany examines the usefulness of evaluation and Robert C. Hornik addresses four widely accepted myths about evaluation. Additional articles include a report of a field evaluation done by the Accion Cultural Popular (ACPO); a study of the impact of that evaluation by…

  7. Evaluation.

    ERIC Educational Resources Information Center

    McAnany, Emile G.; And Others

    1980-01-01

    Two lead articles set the theme for this issue devoted to evaluation as Emile G. McAnany examines the usefulness of evaluation and Robert C. Hornik addresses four widely accepted myths about evaluation. Additional articles include a report of a field evaluation done by the Accion Cultural Popular (ACPO); a study of the impact of that evaluation by…

  8. Tubular Coupling

    NASA Technical Reports Server (NTRS)

    Rosenbaum, Bernard J. (Inventor)

    2000-01-01

    A system for coupling a vascular overflow graft or cannula to a heart pump. A pump pipe outlet is provided with an external tapered surface which receives the end of a compressible connula. An annular compression ring with a tapered internal bore surface is arranged about the cannula with the tapered internal surface in a facing relationship to the external tapered surface. The angle of inclination of the tapered surfaces is converging such that the spacing between the tapered surfaces decreases from one end of the external tapered surface to the other end thereby providing a clamping action of the tapered surface on a cannula which increases as a function of the length of cannula segment between the tapered surfaces. The annular compression ring is disposed within a tubular locking nut which threadedly couples to the pump and provides a compression force for urging the annular ring onto the cannula between the tapered surfaces. The nut has a threaded connection to the pump body. The threaded coupling to the pump body provides a compression force for the annular ring. The annular ring has an annular enclosure space in which excess cannula material from the compression between the tapered surfaces to "bunch up" in the space and serve as an enlarged annular ring segment to assist holding the cannula in place. The clamped cannula provides a seamless joint connection to the pump pipe outlet where the clamping force is uniformly applied to the cannula because of self alignment of the tapered surfaces. The nut can be easily disconnected to replace the pump if necessary.

  9. Comprehensive evaluation of multi-year real-time air quality forecasting using an online-coupled meteorology-chemistry model over southeastern United States

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Hong, Chaopeng; Yahya, Khairunnisa; Li, Qi; Zhang, Qiang; He, Kebin

    2016-08-01

    An online-coupled meteorology-chemistry model, WRF/Chem-MADRID, has been deployed for real time air quality forecast (RT-AQF) in southeastern U.S. since 2009. A comprehensive evaluation of multi-year RT-AQF shows overall good performance for temperature and relative humidity at 2-m (T2, RH2), downward surface shortwave radiation (SWDOWN) and longwave radiation (LWDOWN), and cloud fraction (CF), ozone (O3) and fine particles (PM2.5) at surface, tropospheric ozone residuals (TOR) in O3 seasons (May-September), and column NO2 in winters (December-February). Moderate-to-large biases exist in wind speed at 10-m (WS10), precipitation (Precip), cloud optical depth (COT), ammonium (NH4+), sulfate (SO42-), and nitrate (NO3-) from the IMPROVE and SEARCH networks, organic carbon (OC) at IMPROVE, and elemental carbon (EC) and OC at SEARCH, aerosol optical depth (AOD) and column carbon monoxide (CO), sulfur dioxide (SO2), and formaldehyde (HCHO) in both O3 and winter seasons, column nitrogen dioxide (NO2) in O3 seasons, and TOR in winters. These biases indicate uncertainties in the boundary layer and cloud process treatments (e.g., surface roughness, microphysics cumulus parameterization), emissions (e.g., O3 and PM precursors, biogenic, mobile, and wildfire emissions), upper boundary conditions for all major gases and PM2.5 species, and chemistry and aerosol treatments (e.g., winter photochemistry, aerosol thermodynamics). The model shows overall good skills in reproducing the observed multi-year trends and inter-seasonal variability in meteorological and radiative variables such as T2, WS10, Precip, SWDOWN, and LWDOWN, and relatively well in reproducing the observed trends in surface O3 and PM2.5, but relatively poor in reproducing the observed column abundances of CO, NO2, SO2, HCHO, TOR, and AOD. The sensitivity simulations using satellite-constrained boundary conditions for O3 and CO show substantial improvement for both spatial distribution and domain-mean performance

  10. Evaluation of a real-time BeO ceramic fiber-coupled luminescence dosimetry system for dose verification of high dose rate brachytherapy

    SciTech Connect

    Santos, Alexandre M. Caraça; Mohammadi, Mohammad; Shahraam, Afshar V.

    2015-11-15

    Purpose: The authors evaluate the capability of a beryllium oxide (BeO) ceramic fiber-coupled luminescence dosimeter, named radioluminescence/optically stimulated luminescence (RL/OSL) BeO FOD, for dosimetric verification of high dose rate (HDR) treatments. The RL/OSL BeO FOD is capable of RL and OSL measurements. Methods: The RL/OSL BeO FOD is able to be inserted in 6F proguide needles, used in interstitial HDR treatments. Using a custom built Perspex phantom, 6F proguide needles could be submerged in a water tank at 1 cm separations from each other. A second background fiber was required to correct for the stem effect. The stem effect, dose linearity, reproducibility, depth-dose curves, and angular and temperature dependency of the RL/OSL BeO FOD were characterised using an Ir-192 source. The RL/OSL BeO FOD was also applied to the commissioning of a 10 mm horizontal Leipzig applicator. Results: Both the RL and OSL were found to be reproducible and their percentage depth-dose curves to be in good agreement with those predicted via TG-43. A combined uncertainty of 7.9% and 10.1% (k = 1) was estimated for the RL and OSL, respectively. For the 10 mm horizontal Leipzig applicator, measured percentage depth doses were within 5% agreement of the published reference calculations. The output at the 3 mm prescription depth for a 1 Gy delivery was verified to be 0.99 ± 0.08 Gy and 1.01 ± 0.10 Gy by the RL and OSL, respectively. Conclusions: The use of the second background fiber under the current setup means that the two fibers cannot fit into a single 6F needle. Hence, use of the RL is currently not adequate for the purpose of in vivo brachytherapy dosimetry. While not real-time, the OSL is shown to be adequate for in vivo brachytherapy dosimetry.

  11. Evaluation of a Minimally Invasive Cell Sampling Device Coupled with Assessment of Trefoil Factor 3 Expression for Diagnosing Barrett's Esophagus: A Multi-Center Case–Control Study

    PubMed Central

    Ross-Innes, Caryn S.; Debiram-Beecham, Irene; O'Donovan, Maria; Walker, Elaine; Varghese, Sibu; Lao-Sirieix, Pierre; Lovat, Laurence; Griffin, Michael; Ragunath, Krish; Haidry, Rehan; Sami, Sarmed S.; Kaye, Philip; Novelli, Marco; Disep, Babett; Ostler, Richard; Aigret, Benoit; North, Bernard V.; Bhandari, Pradeep; Haycock, Adam; Morris, Danielle; Attwood, Stephen; Dhar, Anjan; Rees, Colin; Rutter, Matthew D. D.; Sasieni, Peter D.; Fitzgerald, Rebecca C.

    2015-01-01

    Background Barrett's esophagus (BE) is a commonly undiagnosed condition that predisposes to esophageal adenocarcinoma. Routine endoscopic screening for BE is not recommended because of the burden this would impose on the health care system. The objective of this study was to determine whether a novel approach using a minimally invasive cell sampling device, the Cytosponge, coupled with immunohistochemical staining for the biomarker Trefoil Factor 3 (TFF3), could be used to identify patients who warrant endoscopy to diagnose BE. Methods and Findings A case–control study was performed across 11 UK hospitals between July 2011 and December 2013. In total, 1,110 individuals comprising 463 controls with dyspepsia and reflux symptoms and 647 BE cases swallowed a Cytosponge prior to endoscopy. The primary outcome measures were to evaluate the safety, acceptability, and accuracy of the Cytosponge-TFF3 test compared with endoscopy and biopsy. In all, 1,042 (93.9%) patients successfully swallowed the Cytosponge, and no serious adverse events were attributed to the device. The Cytosponge was rated favorably, using a visual analogue scale, compared with endoscopy (p < 0.001), and patients who were not sedated for endoscopy were more likely to rate the Cytosponge higher than endoscopy (Mann-Whitney test, p < 0.001). The overall sensitivity of the test was 79.9% (95% CI 76.4%–83.0%), increasing to 87.2% (95% CI 83.0%–90.6%) for patients with ≥3 cm of circumferential BE, known to confer a higher cancer risk. The sensitivity increased to 89.7% (95% CI 82.3%–94.8%) in 107 patients who swallowed the device twice during the study course. There was no loss of sensitivity in patients with dysplasia. The specificity for diagnosing BE was 92.4% (95% CI 89.5%–94.7%). The case–control design of the study means that the results are not generalizable to a primary care population. Another limitation is that the acceptability data were limited to a single measure. Conclusions The

  12. Critical evaluation of strategies for single and simultaneous determinations of As, Bi, Sb and Se by hydride generation inductively coupled plasma optical emission spectrometry.

    PubMed

    Welna, Maja; Szymczycha-Madeja, Anna; Pohl, Pawel

    2017-05-15

    A systematic study of hydride generation (HG) of As, Bi, Sb and Se from solutions containing As(III), As(V), Bi(III), Sb(III), Sb(V), Se(IV) and Se(VI) was presented. Hydrides were generated in a gas-liquid phase separation system using a continuous flow vapor generation accessory (VGA) by mixing acidified aqueous sample, HCl and sodium borohydride reductant (NaBH4) solutions on-line. For detection, a simultaneous axially viewed inductively coupled plasma optical emission spectrometer (ICP-OES) was applied. Effects of the HCl concentration (related to sample and additional acid solutions) and type of the pre-reducing agents used for reduction of As(V), Sb(V) and Se(VI) into As(III), Sb(III) and Se(IV) on the analytical responses of As, Bi, Sb and Se were studied and discussed. Two compromised HG reaction conditions for simultaneous measurements of As+Bi+Sb (CC1) or As+Sb+Se (CC2) were established. It was found that choice of the pre-reductant prior to formation of the hydrides is critical in obtaining the dependable results of the analysis. Accordingly, for a As(III)+As(V)+Bi(III)+Sb(III)+Sb(V) mixture and using CC1, thiourea/thiourea-ascorbic acid interfered in Bi determination and hence, total As+Sb could be measured. If L-cysteine/L-cysteine-ascorbic acid were used, measurements of total Bi+Sb was possible in these HG reaction conditions. For a As(III)+As(V)+Sb(III)+Sb(V)+Se(IV)+Se(VI) mixture and using CC2, thiourea/thiourea-ascorbic acid and L-cysteine/L-cysteine-ascorbic acid influenced HG of Se but ensured total As+Sb determination. In contrast, heating a sample solution with HCl, although did not pre-reduce As(V) and Sb(V), assured quantitative reduction of Se(VI) to Se(IV). Finally, considering all favorable pre-reducing and HG conditions, methodologies for reliable determination of total As, Bi, Sb and Se by HG-ICP-OES were proposed. Strategies for single-, two- and three-element measurements were evaluated and validated, obtaining the detection limits

  13. One-way coupling of an integrated assessment model and a water resources model: evaluation and implications of future changes over the US Midwest

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Liu, L.; Hejazi, M.; Tesfa, T.; Li, H.; Huang, M.; Liu, Y.; Leung, L. R.

    2013-11-01

    An integrated model is being developed to advance our understanding of the interactions between human activities, terrestrial system and water cycle, and to evaluate how system interactions will be affected by a changing climate at the regional scale. As a first step towards that goal, a global integrated assessment model, which includes a water-demand model driven by socioeconomics at regional and global scales, is coupled in a one-way fashion with a land surface hydrology-routing-water resources management model. To reconcile the scale differences between the models, a spatial and temporal disaggregation approach is developed to downscale the annual regional water demand simulations into a daily time step and subbasin representation. The model demonstrates reasonable ability to represent the historical flow regulation and water supply over the US Midwest (Missouri, Upper Mississippi, and Ohio river basins). Implications for future flow regulation, water supply, and supply deficit are investigated using climate change projections with the B1 and A2 emission scenarios, which affect both natural flow and water demand. Although natural flow is projected to increase under climate change in both the B1 and A2 scenarios, there is larger uncertainty in the changes of the regulated flow. Over the Ohio and Upper Mississippi river basins, changes in flow regulation are driven by the change in natural flow due to the limited storage capacity. However, both changes in flow and demand have effects on the Missouri River Basin summer regulated flow. Changes in demand are driven by socioeconomic factors, energy and food demands, global markets and prices with rainfed crop demand handled directly by the land surface modeling component. Even though most of the changes in supply deficit (unmet demand) and the actual supply (met demand) are driven primarily by the change in natural flow over the entire region, the integrated framework shows that supply deficit over the Missouri River

  14. Gender equality in couples and self-rated health - A survey study evaluating measurements of gender equality and its impact on health

    PubMed Central

    2011-01-01

    Background Men and women have different patterns of health. These differences between the sexes present a challenge to the field of public health. The question why women experience more health problems than men despite their longevity has been discussed extensively, with both social and biological theories being offered as plausible explanations. In this article, we focus on how gender equality in a partnership might be associated with the respondents' perceptions of health. Methods This study was a cross-sectional survey with 1400 respondents. We measured gender equality using two different measures: 1) a self-reported gender equality index, and 2) a self-perceived gender equality question. The aim of comparison of the self-reported gender equality index with the self-perceived gender equality question was to reveal possible disagreements between the normative discourse on gender equality and daily practice in couple relationships. We then evaluated the association with health, measured as self-rated health (SRH). With SRH dichotomized into 'good' and 'poor', logistic regression was used to assess factors associated with the outcome. For the comparison between the self-reported gender equality index and self-perceived gender equality, kappa statistics were used. Results Associations between gender equality and health found in this study vary with the type of gender equality measurement. Overall, we found little agreement between the self-reported gender equality index and self-perceived gender equality. Further, the patterns of agreement between self-perceived and self-reported gender equality were quite different for men and women: men perceived greater gender equality than they reported in the index, while women perceived less gender equality than they reported. The associations to health were depending on gender equality measurement used. Conclusions Men and women perceive and report gender equality differently. This means that it is necessary not only to be

  15. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF–CMAQ: model description, development, evaluation and regional analysis

    SciTech Connect

    Yu, S.; Mathur, R.; Pleim, J.; Wong, D.; Gilliam, R.; Alapaty, K.; Zhao, C.; Liu, X.

    2014-01-01

    This study implemented first, second and glaciation aerosol indirect effects (AIE) on resolved clouds in the two-way coupled Weather Research and Forecasting Community Multiscale Air Quality (WRF–CMAQ) modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ-predicted aerosol distributions and WRF meteorological conditions. The performance of the newly developed WRF–CMAQ model, with alternate Community Atmospheric Model (CAM) and Rapid Radiative Transfer Model for GCMs (RRTMG) radiation schemes, was evaluated with observations from the Clouds and the See http://ceres.larc.nasa.gov/. Earth's Radiant Energy System (CERES) satellite and surface monitoring networks (AQS, IMPROVE, CASTNET, STN, and PRISM) over the continental US (CONUS) (12 km resolution) and eastern Texas (4 km resolution) during August and September of 2006. The results at the Air Quality System (AQS) surface sites show that in August, the normalized mean bias (NMB) values for PM2.5 over the eastern US (EUS) and the western US (WUS) are 5.3% (-0.1%) and 0.4% (-5.2%) for WRF–CMAQ/CAM (WRF–CMAQ/RRTMG), respectively. The evaluation of PM2.5 chemical composition reveals that in August, WRF–CMAQ/CAM (WRF–CMAQ/RRTMG) consistently underestimated the observed SO42- by -23.0% (-27.7%), -12.5% (-18.9%) and -7.9% (-14.8%) over the EUS at the Clean Air Status Trends Network (CASTNET), Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciated Trends Network (STN) sites, respectively. Both configurations (WRF–CMAQ/CAM, WRF–CMAQ/RRTMG) overestimated the observed mean organic carbon (OC), elemental carbon (EC) and and total carbon (TC) concentrations over the EUS in August at the IMPROVE sites. Both configurations generally underestimated the cloud field (shortwave cloud forcing, SWCF) over the CONUS in August due to the

  16. Evaluation of the relative efficacy of a couple cognitive-behaviour therapy (CBT) for Premenstrual Disorders (PMDs), in comparison to one-to-one CBT and a wait list control: A randomized controlled trial

    PubMed Central

    2017-01-01

    Design A randomised control trial (RCT) was conducted to examine the efficacy of couple-based cognitive behaviour therapy (CBT) for Premenstrual Disorders (PMDs), in comparison to one-to-one CBT and a wait-list control. Methods Triangulation of quantitative and qualitative outcome measures evaluated changes pre-post intervention. Eighty three women were randomly allocated across three conditions, with 63 completing post-intervention measures, a retention rate of 76%. Results Repeated measures analysis of variance found a significant time by group interaction identifying that women in the two CBT conditions reported lower total premenstrual symptoms, emotional reactivity/mood, and premenstrual distress, in comparison to the wait list control. Significantly higher active behavioural coping post-intervention was found in the couple condition than in the one-to-one and wait list control groups. Qualitative analysis provided insight into the subjective experience of PMDs and participation in the intervention study. Across groups, women reported increased awareness and understanding of premenstrual change post-intervention. A larger proportion of women in the CBT conditions reported reduction in intensity and frequency of negative premenstrual emotional reactivity, increased communication and help-seeking, increased understanding and acceptance of embodied change, and the development of coping skills, post-intervention. Increased partner understanding and improved relationship post-intervention was reported by a greater proportion of participants in the CBT conditions, most markedly in the couple condition. Conclusion These findings suggest that one-to-one and couple CBT interventions can significantly reduce women’s premenstrual symptomatology and distress, and improve premenstrual coping. Couple based CBT interventions may have a greater positive impact upon behavioural coping and perceptions of relationship context and support. This suggests that CBT should be

  17. The coupling between inner and outer scales in a zero pressure boundary layer evaluated using a Hölder exponent framework

    NASA Astrophysics Data System (ADS)

    Keylock, Christopher J.; Ganapathasubramani, Bharath; Monty, Jason; Hutchins, Nick; Marusic, Ivan

    2016-04-01

    This work considers the connectivity between large and small scales in boundary-layer turbulence by formalizing the modulation effect of the small scales by the large in terms of the pointwise Hölder condition for the small scales. We re-investigate a previously published dataset from this perspective and are able to characterize the coupling effectively using the (cross-)correlative relations between the large scale velocity and the small scale Hölder exponents. The nature of this coupling varies as a function of dimensionless distance from the wall based on inner-scaling, {y}+, as well as on the boundary-layer height, δ. In terms of the fundamental change in the sign of the coupling between large and small scales, the critical height appears to be {y}+∼ 1000. Below this height, small scale structures are associated with (and occur earlier than) maxima in the large scale velocity. Above this height, while the lag is similar in magnitude, the small scale structures are associated with minima in the large scale velocity. To consider these results further, we introduce a modified quadrant analysis and show that it is the coupling to the large scale low velocity state that is critical for the dynamics.

  18. Coupling of the simultaneous heat and water model with a distributed hydrological model and evaluation of the combined model in a cold region watershed

    USDA-ARS?s Scientific Manuscript database

    To represent the effects of frozen soil on hydrology in cold regions, a new physically based distributed hydrological model has been developed by coupling the simultaneous heat and water model (SHAW) with the geomorphology based distributed hydrological model (GBHM), under the framework of the water...

  19. Evaluation of the two-way coupled WRF-CMAQ modeling system to the 2011 DISCOVER-AQ campaign at 12-km, 4-km and 1-km resolutions

    EPA Science Inventory

    At the 12th Annual CMAS Conference initial results from the application of the coupled WRF-CMAQ modeling system to the 2011 Baltimore-Washington D.C. DISCOVER-AQ campaign were presented, with the focus on updates and new methods applied to the WRF modeling for fine-scale applicat...

  20. Evaluation of the two-way coupled WRF-CMAQ modeling system to the 2011 DISCOVER-AQ campaign at 12-km, 4-km and 1-km resolutions

    EPA Science Inventory

    At the 12th Annual CMAS Conference initial results from the application of the coupled WRF-CMAQ modeling system to the 2011 Baltimore-Washington D.C. DISCOVER-AQ campaign were presented, with the focus on updates and new methods applied to the WRF modeling for fine-scale applicat...

  1. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF-CMAQ: model description, development, evaluation and regional analysis

    EPA Science Inventory

    This study implemented first, second and glaciations aerosol indirect effects (AIE) on resolved clouds in the two-way coupled WRF-CMAQ modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ predicted aerosol distribu...

  2. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF-CMAQ: model description, development, evaluation and regional analysis

    EPA Science Inventory

    This study implemented first, second and glaciations aerosol indirect effects (AIE) on resolved clouds in the two-way coupled WRF-CMAQ modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ predicted aerosol distribu...

  3. Dark coupling

    SciTech Connect

    Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S. E-mail: d.hernandez@uam.es E-mail: omena@ific.uv.es

    2009-07-01

    The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed.

  4. Thermoacoustic couple

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-10-04

    An apparatus and method for determining acoustic power density level and its direction in a fluid using a single sensor are disclosed. The preferred embodiment of the apparatus, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.

  5. Evaluation of sample preparation methods for the detection of total metal content using inductively coupled plasma optical emission spectrometry (ICP-OES) in wastewater and sludge

    NASA Astrophysics Data System (ADS)

    Dimpe, K. M.; Ngila, J. C.; Mabuba, N.; Nomngongo, P. N.

    Heavy metal contamination exists in aqueous wastes and sludge of many industrial discharges and domestic wastewater, among other sources. Determination of metals in the wastewater and sludge requires sample pre-treatment prior to analysis because of certain challenges such as the complexity of the physical state of the sample, which may lead to wrong readings in the measurement. This is particularly the case with low analyte concentration to be detected by the instrument. The purpose of this work was to assess and validate the different sample preparation methods namely, hot plate and microwave-assisted digestion procedures for extraction of metal ions in wastewater and sludge samples prior to their inductively coupled plasma optical emission spectrometric (ICP-OES) determination. For the extraction of As, Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn, three acid mixtures, that is, HNO3/H2O2, HNO3/HClO4/H2O2 and aqua regia + H2O2, were evaluated. Influent wastewater spiked with the SRM (CWW-TM-B) was used for the optimization of acid mixtures affecting the extraction procedure. After sample digestion, the filtration capabilities of cellulose-acetate filter paper and the acrodisc syringe filter with the pore size of 0.45 μm were compared. In terms of performance, acrodisc syringe filter in terms of the improved recoveries obtained, was found to be the best filtration method compared to the filter paper. Based on the analytical results obtained, microwave-assisted digestion (MAD) using aqua regia + H2O2 mixture was found to be the most suitable method for extraction of heavy metals and major elements in all the sample matrices. Therefore, MAD using aqua regia + H2O2 mixture was used for further investigations. The precision of the developed MAD method expressed in terms of relative standard deviations (% RSD) for different metals was found to be <5%. The limits of detection (LOD) and limits of quantification (LOQ) ranged from 0.12% to 2.18 μg L-1 and 0.61% to 3.43 μg L-1

  6. Couple relationship education in Australia.

    PubMed

    Halford, W Kim; Simons, Michele

    2005-06-01

    In Australia, the strengthening of marriage through relationship education has received strong governmental policy support and some modest financial support. Couple relationship education services are offered by a variety of community-based, church-affiliated, and church-based providers. There is a strong emphasis on providing programs that are developed locally in response to perceived couple needs and government policies. Available evaluations show that most couples who attend education value the service, but relationship education providers need to do a better job reaching out to couples at high risk for future relationship problems, and more research is needed on the effects of education on long-term marital outcomes. There is significant scope for building on current initiatives to incorporate evidence-based approaches and to expand the program reach to more couples.

  7. Evaluating the influence of antecedent soil moisture on variability of the North American Monsoon precipitation in the coupled MM5/VIC modeling system

    SciTech Connect

    Zhu, Chunmei; Leung, Lai R.; Gochis, David; Qian, Yun; Lettenmaier, Dennis P.

    2009-11-29

    The influence of antecedent soil moisture on North American monsoon system (NAMS) precipitation variability was explored using the MM5 mesoscale model coupled with the Variable Infiltration Capacity (VIC) land surface model. Sensitivity experiments were performed with extreme wet and dry initial soil moisture conditions for both the 1984 wet monsoon year and the 1989 dry year. The MM5-VIC model reproduced the key features of NAMS in 1984 and 1989 especially over northwestern Mexico. Our modeling results indicate that the land surface has memory of the initial soil wetness prescribed at the onset of the monsoon that persists over most of the region well into the monsoon season (e.g. until August). However, in contrast to the classical thermal contrast concept, where wetter soils lead to cooler surface temperatures, less land-sea thermal contrast, weaker monsoon circulations and less precipitation, the coupled model consistently demonstrated a positive soil moisture – precipitation feedback. Specifically, anomalously wet premonsoon soil moisture always lead to enhanced monsoon precipitation, and the reverse was also true. The surface temperature changes induced by differences in surface energy flux partitioning associated with pre-monsoon soil moisture anomalies changed the surface pressure and consequently the flow field in the coupled model, which in turn changed moisture convergence and, accordingly, precipitation patterns. Both the largescale circulation change and local land-atmospheric interactions in response to premonsoon soil moisture anomalies play important roles in the coupled model’s positive soil moisture monsoon precipitation feedback. However, the former may be sensitive to the strength and location of the thermal anomalies, thus leaving open the possibility of both positive and negative soil moisture precipitation feedbacks.

  8. Finite Elements, Design Optimization, and Nondestructive Evaluation: A Review in Magnetics, and Future Directions in GPU-based, Element-by-Element Coupled Optimization and NDE

    DTIC Science & Technology

    2013-07-18

    Element Coupled Optimization and NDE S. Ratnajeevan H. Hoole1, Victor U. Karthik1, Sivamayam Sivasuthan1, Arunasalam Rahunanthan2, Ravi S...Department of Mathematics and Statistics, University of Toledo , Toledo , OH 43606-3390, USA. 3. The US Army Tank Automotive Research, Development and...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Paramsothy Jayakumar; Ravi Thyagarajan; Arunasalam Rahunanthan; Sivamayam Sivasuthan; Victor Karthik 5d

  9. Low-loss coupling to dielectric resonators

    NASA Technical Reports Server (NTRS)

    Hearn, C. P.; Bradshaw, E. S.; Trew, R. J.; Hefner, B. B., Jr.

    1991-01-01

    A compilation is presented of experimental observations and arguments concerning the use of dielectric resonators in applications requiring both tight coupling (beta greater than 10) and high unloaded Q, such as low loss bandpass filters. The microstrip coupled dielectric resonator is the primary focus, but an alternative coupling technique is discussed and comparatively evaluated. It is concluded that coupling factors as large as 65 are achievable.

  10. Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers.

    PubMed

    Skorobogatiy, Maksim; Saitoh, Kunimasa; Koshiba, Masanori

    2008-09-15

    In the hollow core photonic bandgap fibers, modal losses are strongly differentiated, potentially enabling effectively single mode guidance. However, in the presence of macro-bending, due to mode coupling, power in the low-loss mode launched into a bend is partially transferred into the modes with higher losses, thus resulting in increased propagation loss, and degradation of the beam quality. We show that coupled mode theory formulated in the curvilinear coordinates associated with a bend can describe correctly both the bending induced loss and beam degradation. Suggested approach works both in absorption dominated regime in which fiber modes are square integrable over the fiber crossection, as well as in radiation dominated regime in which leaky modes are not square integrable. It is important to stress that for multimode fibers, full-vectorial coupled mode theory developed in this work is not a simple approximation, but it is on par with such "exact" numerical approaches as finite element and finite difference methods for prediction of macro-bending induced losses.

  11. Evaluation of UV/TiO(2) and UV/ZnO photocatalytic systems coupled to a biological process for the treatment of bleaching pulp mill effluent.

    PubMed

    Botía, Diana C; Rodríguez, Manuel S; Sarria, Víctor M

    2012-10-01

    This paper presents an exploratory study of pulp mill bleaching effluent treatment by a biological-photocatalytic coupled system. A fungus, Trametes pubescens, immobilized on polyurethane foam was used to inoculate the biological pre-treatment system. The pretreated effluent was then exposed to a photocatalytic treatment in which two catalysts (TiO(2) and ZnO) and two supports (aluminum foil and Luffa cylindrica) were tested. Catalyst characterization was carried out by means of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Information about crystalline structure, chemical composition, morphology, homogeneity and distribution on the support surface area was obtained. The overall biological-photocatalytic coupled system achieved degradation of 96% of initial total organic carbon (TOC), 97% of 2-chlorophenol (2-CP), 90% of 2,4-dichlorophenol (2,4-CP) and 99% of 2,4,6-trichlorophenol (2,4,6-TCP). This approach of synergistic coupling of T. pubescens and a semiconductor photocatalyst appears to be a viable alternative for the treatment of these non-biodegradable effluents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Evaluation of Simulated Marine Aerosol Production Using the WaveWatchIII Prognostic Wave Model Coupled to the Community Atmosphere Model within the Community Earth System Model

    SciTech Connect

    Long, M. S.; Keene, William C.; Zhang, J.; Reichl, B.; Shi, Y.; Hara, T.; Reid, J. S.; Fox-Kemper, B.; Craig, A. P.; Erickson, D. J.; Ginis, I.; Webb, A.

    2016-11-08

    Primary marine aerosol (PMA) is emitted into the atmosphere via breaking wind waves on the ocean surface. Most parameterizations of PMA emissions use 10-meter wind speed as a proxy for wave action. This investigation coupled the 3rd generation prognostic WAVEWATCH-III wind-wave model within a coupled Earth system model (ESM) to drive PMA production using wave energy dissipation rate – analogous to whitecapping – in place of 10-meter wind speed. The wind speed parameterization did not capture basin-scale variability in relations between wind and wave fields. Overall, the wave parameterization did not improve comparison between simulated versus measured AOD or Na+, thus highlighting large remaining uncertainties in model physics. Results confirm the efficacy of prognostic wind-wave models for air-sea exchange studies coupled with laboratory- and field-based characterizations of the primary physical drivers of PMA production. No discernible correlations were evident between simulated PMA fields and observed chlorophyll or sea surface temperature.

  13. Design, construction and evaluation of a 12.2 GHz, 4.0 kW-CW coupled-cavity traveling wave tube

    NASA Technical Reports Server (NTRS)

    Ayers, W. R.; Harman, W. A.

    1973-01-01

    An analytical and experimental program to study design techniques and to utilize these techniques to optimize the performance of an X-band 4 kW, CW traveling wave tube ultimately intended for satellite-borne television broadcast transmitters is described. The design is based on the coupled-cavity slow-wave circuit with velocity resynchronization to maximize the conversion efficiency. The design incorporates a collector which is demountable from the tube. This was done to facilitate multistage depressed collector experiments employing a NASA designed axisymmetric, electrostatic collector for linear beam microwave tubes after shipment of the tubes to NASA.

  14. Reply to ``Comment on `Nonadiabatic couplings from the Kohn-Sham derivative matrix: Formulation by time-dependent density-functional theory and evaluation in the pseudopotential framework'''

    NASA Astrophysics Data System (ADS)

    Hu, Chunping; Sugino, Osamu; Hirai, Hirotoshi; Tateyama, Yoshitaka

    2013-11-01

    We reply to the Comment by Proetto on our paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.062508 82, 062508 (2010)] describing correction and extension of our formula. We appreciate the author for correcting a typing mistake in the derivation of our formula, but we also point out that the use of fractional occupation, while being a natural extension for getting the ground-state total energies or excitation energies, is not so straightforward for getting nonadiabatic couplings.

  15. An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5)

    DOE PAGES

    Raczka, Brett; Duarte, Henrique F.; Koven, Charles D.; ...

    2016-09-19

    Land surface models are useful tools to quantify contemporary and future climate impact on terrestrial carbon cycle processes, provided they can be appropriately constrained and tested with observations. Stable carbon isotopes of CO2 offer the potential to improve model representation of the coupled carbon and water cycles because they are strongly influenced by stomatal function. Recently, a representation of stable carbon isotope discrimination was incorporated into the Community Land Model component of the Community Earth System Model. Here, we tested the model's capability to simulate whole-forest isotope discrimination in a subalpine conifer forest at Niwot Ridge, Colorado, USA. We distinguishedmore » between isotopic behavior in response to a decrease of δ13C within atmospheric CO2 (Suess effect) vs. photosynthetic discrimination (Δcanopy), by creating a site-customized atmospheric CO2 and δ13C of CO2 time series. We implemented a seasonally varying Vcmax model calibration that best matched site observations of net CO2 carbon exchange, latent heat exchange, and biomass. The model accurately simulated observed δ13C of needle and stem tissue, but underestimated the δ13C of bulk soil carbon by 1–2 ‰. The model overestimated the multiyear (2006–2012) average Δcanopy relative to prior data-based estimates by 2–4 ‰. The amplitude of the average seasonal cycle of Δcanopy (i.e., higher in spring/fall as compared to summer) was correctly modeled but only when using a revised, fully coupled An − gs (net assimilation rate, stomatal conductance) version of the model in contrast to the partially coupled An − gs version used in the default model. The model attributed most of the seasonal variation in discrimination to An, whereas interannual variation in simulated Δcanopy during the summer months was driven by stomatal response to vapor pressure deficit (VPD). The model simulated a 10 % increase in both photosynthetic discrimination

  16. An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5)

    NASA Astrophysics Data System (ADS)

    Raczka, Brett; Duarte, Henrique F.; Koven, Charles D.; Ricciuto, Daniel; Thornton, Peter E.; Lin, John C.; Bowling, David R.

    2016-09-01

    Land surface models are useful tools to quantify contemporary and future climate impact on terrestrial carbon cycle processes, provided they can be appropriately constrained and tested with observations. Stable carbon isotopes of CO2 offer the potential to improve model representation of the coupled carbon and water cycles because they are strongly influenced by stomatal function. Recently, a representation of stable carbon isotope discrimination was incorporated into the Community Land Model component of the Community Earth System Model. Here, we tested the model's capability to simulate whole-forest isotope discrimination in a subalpine conifer forest at Niwot Ridge, Colorado, USA. We distinguished between isotopic behavior in response to a decrease of δ13C within atmospheric CO2 (Suess effect) vs. photosynthetic discrimination (Δcanopy), by creating a site-customized atmospheric CO2 and δ13C of CO2 time series. We implemented a seasonally varying Vcmax model calibration that best matched site observations of net CO2 carbon exchange, latent heat exchange, and biomass. The model accurately simulated observed δ13C of needle and stem tissue, but underestimated the δ13C of bulk soil carbon by 1-2 ‰. The model overestimated the multiyear (2006-2012) average Δcanopy relative to prior data-based estimates by 2-4 ‰. The amplitude of the average seasonal cycle of Δcanopy (i.e., higher in spring/fall as compared to summer) was correctly modeled but only when using a revised, fully coupled An - gs (net assimilation rate, stomatal conductance) version of the model in contrast to the partially coupled An - gs version used in the default model. The model attributed most of the seasonal variation in discrimination to An, whereas interannual variation in simulated Δcanopy during the summer months was driven by stomatal response to vapor pressure deficit (VPD). The model simulated a 10 % increase in both photosynthetic discrimination and water-use efficiency (WUE

  17. Treatment of anaerobic digestate supernatant in microbial fuel cell coupled constructed wetlands: Evaluation of nitrogen removal, electricity generation, and bacterial community response.

    PubMed

    Wu, Shubiao; Lv, Tao; Lu, Qimin; Ajmal, Zeeshan; Dong, Renjie

    2017-02-15

    The objective of this study was to assess whether the improved configuration of vertical upflow constructed wetlands (CWs) coupled with aeration in the centre part and effluent recirculation can strengthen the treatment performance of high strength anaerobic digestate supernatant. Moreover, electricity generation and bacterial community characteristics were also examined. The results indicated that intermittent aeration in vertical upflow CWs significantly enhanced organic matter (>69%, 214-401g/m(2)d) and ammonium (>92%, 62-138g/m(2)d) removal, regardless of aeration position. However, the removal efficiency of total nitrogen (TN) was limited to 24%-40%. Effluent recirculation was examined to enhance TN removal up to 69% in the central aerated CW, as compared to 44% observed in the bottom aerated CW. Accordingly, significantly higher abundances of denitrifiers (nirK and nirS) and anaerobic ammonium oxidation bacteria (anammox) were found in the bottom layer of the central aerated CW. In addition, the central aerated CW coupled with effluent recirculation generated significantly higher electricity (maximum power density of 112mW/m(2)) than traditional bottom aerated CWs when integrated with a microbial fuel cell (MFC). Results confirmed the application potential of this new configuration of upflow CW integrated with central aeration and effluent recirculation.

  18. Catalyst evaluation for high-purity H2 production by sorption-enhanced steam-methane reforming coupled to a Ca/Cu process

    NASA Astrophysics Data System (ADS)

    Navarro, M. V.; López, J. M.; García, T.; Grasa, G.; Murillo, R.

    2017-09-01

    The operational limits of a commercial nickel-based catalyst under the conditions of a sorption-enhanced steam-methane reforming process coupled to a Ca/Cu chemical loop are investigated for high-purity H2 production in a cyclic operation. The performance of the reforming catalyst is tested by means of a high number of oxidation-reduction-reforming cycles. After 100 oxidation-reduction cycles, this catalyst retains its exceptional reforming activity. The methane conversion values are close to the thermodynamic equilibrium under very demanding conditions: temperature between 500 °C - 700 °C and mass hourly space velocity of 8.8 kgCH4 h-1 kgcat-1. After 200 cycles, the sample shows reduction in its reforming activity in line with a lower dispersion of the Ni species. Sintering of Ni nanocrystals is evidenced during the oxidation-reduction multi-cycles. The performance of the catalyst after 200 oxidation-reduction cycles mixed with a CaO-based CO2 sorbent is studied under optimal conditions calculated for the sorption-enhanced reforming process coupled to a Ca/Cu cycle (temperature of 650 °C, steam/methane ratio of 4, sorbent/catalyst ratio of 4 and space velocity of 0.75 kgCH4 h-1 kgcat-1). Remarkably, an equilibrium value over 92 vol.% H2 concentration is achieved, highlighting this catalyst as a promising candidate for the next steps of the process development.

  19. Internal luminescence efficiencies in InGaP/GaAs/Ge triple-junction solar cells evaluated from photoluminescence through optical coupling between subcells.

    PubMed

    Tex, David M; Imaizumi, Mitsuru; Akiyama, Hidefumi; Kanemitsu, Yoshihiko

    2016-12-08

    In-situ characterization is one of the most powerful techniques to improve material quality and device performance. Especially in view of highly efficient tandem solar cells this is an important issue for improving the cost-performance ratio. Optical techniques are suitable characterization methods, since they are non-destructing and contactless. In this work, we measured the power dependence of photoluminescence (PL) from the InGaP and GaAs subcells of an industry-standard triple-junction solar cell. High luminescence yields enhance the luminescence coupling, which was directly verified by time-resolved PL measurements. We present a new method to determine the internal luminescence efficiencies of InGaP and GaAs subcells with the aid of luminescence coupling. High luminescence efficiencies of 90% for GaAs and more than 20% for InGaP were found, which suggest that the material quality of the grown GaAs layer is excellent while the intrinsic luminescence limit of InGaP is still not reached even for high excitation conditions. The PL method is useful for probing the intrinsic material properties of the subcells in flat band condition, without influence of transport. Since no calibration of absolute PL is required, a fast screening of the material quality is possible, which should be extremely helpful for the solar cell industry.

  20. Internal luminescence efficiencies in InGaP/GaAs/Ge triple-junction solar cells evaluated from photoluminescence through optical coupling between subcells

    PubMed Central

    Tex, David M.; Imaizumi, Mitsuru; Akiyama, Hidefumi; Kanemitsu, Yoshihiko

    2016-01-01

    In-situ characterization is one of the most powerful techniques to improve material quality and device performance. Especially in view of highly efficient tandem solar cells this is an important issue for improving the cost-performance ratio. Optical techniques are suitable characterization methods, since they are non-destructing and contactless. In this work, we measured the power dependence of photoluminescence (PL) from the InGaP and GaAs subcells of an industry-standard triple-junction solar cell. High luminescence yields enhance the luminescence coupling, which was directly verified by time-resolved PL measurements. We present a new method to determine the internal luminescence efficiencies of InGaP and GaAs subcells with the aid of luminescence coupling. High luminescence efficiencies of 90% for GaAs and more than 20% for InGaP were found, which suggest that the material quality of the grown GaAs layer is excellent while the intrinsic luminescence limit of InGaP is still not reached even for high excitation conditions. The PL method is useful for probing the intrinsic material properties of the subcells in flat band condition, without influence of transport. Since no calibration of absolute PL is required, a fast screening of the material quality is possible, which should be extremely helpful for the solar cell industry. PMID:27929037

  1. Evaluation of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for the Quantitative Determination of Lead in Different Parts of Archeological Human Teeth

    PubMed Central

    Bellis, David J.; Parsons, Patrick J.; Jones, Joseph; Amarasiriwardena, Dula

    2011-01-01

    The lead content of teeth or tooth-parts has been used as a biomarker of cumulative lead exposure in clinical, epidemiological, environmental, and archaeological studies. Through the application of laser ablation inductively coupled plasma mass spectrometry, a pilot study of the micrometer-scale distribution and quantification of lead was conducted for two human teeth obtained from an archeological burial site in Manhattan, New York, USA. Lead was highly localized within each tooth, with accumulation in circumpulpal dentine and cementum. The maximum localized lead content in circumpulpal dentine was remarkably high, almost 2000 μg g-1, compared to the mean enamel and dentine content of about 5 μg g-1. The maximum lead content in cementum was approximately 700 μg g-1. The large quantity of cementum found in the teeth suggested that the subjects had hypercementosis (excess cementum formation) of the root, a condition reported to have been prevalent among African-American slave populations. The distribution of lead in these human teeth was remarkably similar to the distribution that we previously reported in the teeth of present-day lead-dosed goats. The data shown demonstrate the feasibility of using laser ablation inductively coupled plasma mass spectrometry to examine lead exposure in archaeological studies. PMID:22467976

  2. Evaluation of the role of g protein-coupled receptor kinase 3 in desensitization of mouse odorant receptors in a Mammalian cell line and in olfactory sensory neurons.

    PubMed

    Kato, Aya; Reisert, Johannes; Ihara, Sayoko; Yoshikawa, Keiichi; Touhara, Kazushige

    2014-11-01

    Thousands of odors are sensed and discriminated by G protein-coupled odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs). G protein-coupled receptor kinases (GRKs) may have a role in desensitization of ORs. However, whether ORs are susceptible to agonist-dependent desensitization and whether GRKs affect odorant responsiveness of OSNs are currently unknown. Here we show that GRK3 attenuated the agonist responsiveness of a specific mouse odorant receptor for eugenol (mOR-EG) upon agonist pretreatment in HEK293 cells, but GRK3 did not affect the response amplitude or the recovery kinetics upon repeated agonist stimulation. We performed electrophysiological recordings of single OSNs which expressed mOR-EG and green fluorescent protein (GFP) in the presence or absence of GRK3. The kinetics and amplitude of agonist responsiveness of individual GFP-labeled mOR-EG neurons were not significantly affected by the absence of GRK3. These results indicate that the role of GRK3 in attenuating ORs responsiveness in OSNs may have been overestimated.

  3. Evaluation of the Role of G Protein-Coupled Receptor Kinase 3 in Desensitization of Mouse Odorant Receptors in a Mammalian Cell Line and in Olfactory Sensory Neurons

    PubMed Central

    Kato, Aya; Reisert, Johannes; Ihara, Sayoko; Yoshikawa, Keiichi

    2014-01-01

    Thousands of odors are sensed and discriminated by G protein-coupled odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs). G protein-coupled receptor kinases (GRKs) may have a role in desensitization of ORs. However, whether ORs are susceptible to agonist-dependent desensitization and whether GRKs affect odorant responsiveness of OSNs are currently unknown. Here we show that GRK3 attenuated the agonist responsiveness of a specific mouse odorant receptor for eugenol (mOR-EG) upon agonist pretreatment in HEK293 cells, but GRK3 did not affect the response amplitude or the recovery kinetics upon repeated agonist stimulation. We performed electrophysiological recordings of single OSNs which expressed mOR-EG and green fluorescent protein (GFP) in the presence or absence of GRK3. The kinetics and amplitude of agonist responsiveness of individual GFP-labeled mOR-EG neurons were not significantly affected by the absence of GRK3. These results indicate that the role of GRK3 in attenuating ORs responsiveness in OSNs may have been overestimated. PMID:25313015

  4. Internal luminescence efficiencies in InGaP/GaAs/Ge triple-junction solar cells evaluated from photoluminescence through optical coupling between subcells

    NASA Astrophysics Data System (ADS)

    Tex, David M.; Imaizumi, Mitsuru; Akiyama, Hidefumi; Kanemitsu, Yoshihiko

    2016-12-01

    In-situ characterization is one of the most powerful techniques to improve material quality and device performance. Especially in view of highly efficient tandem solar cells this is an important issue for improving the cost-performance ratio. Optical techniques are suitable characterization methods, since they are non-destructing and contactless. In this work, we measured the power dependence of photoluminescence (PL) from the InGaP and GaAs subcells of an industry-standard triple-junction solar cell. High luminescence yields enhance the luminescence coupling, which was directly verified by time-resolved PL measurements. We present a new method to determine the internal luminescence efficiencies of InGaP and GaAs subcells with the aid of luminescence coupling. High luminescence efficiencies of 90% for GaAs and more than 20% for InGaP were found, which suggest that the material quality of the grown GaAs layer is excellent while the intrinsic luminescence limit of InGaP is still not reached even for high excitation conditions. The PL method is useful for probing the intrinsic material properties of the subcells in flat band condition, without influence of transport. Since no calibration of absolute PL is required, a fast screening of the material quality is possible, which should be extremely helpful for the solar cell industry.

  5. Highly efficient perturbative + variational strategy based on orthogonal valence bond theory for the evaluation of magnetic coupling constants. Application to the trinuclear Cu(ii) site of multicopper oxidases.

    PubMed

    Tenti, Lorenzo; Maynau, Daniel; Angeli, Celestino; Calzado, Carmen J

    2016-07-21

    A new strategy based on orthogonal valence-bond analysis of the wave function combined with intermediate Hamiltonian theory has been applied to the evaluation of the magnetic coupling constants in two AF systems. This approach provides both a quantitative estimate of the J value and a detailed analysis of the main physical mechanisms controlling the coupling, using a combined perturbative + variational scheme. The procedure requires a selection of the dominant excitations to be treated variationally. Two methods have been employed: a brute-force selection, using a logic similar to that of the CIPSI approach, or entanglement measures, which identify the most interacting orbitals in the system. Once a reduced set of excitations (about 300 determinants) is established, the interaction matrix is dressed at the second-order of perturbation by the remaining excitations of the CI space. The diagonalization of the dressed matrix provides J values in good agreement with experimental ones, at a very low-cost. This approach demonstrates the key role of d → d* excitations in the quantitative description of the magnetic coupling, as well as the importance of using an extended active space, including the bridging ligand orbitals, for the binuclear model of the intermediates of multicopper oxidases. The method is a promising tool for dealing with complex systems containing several active centers, as an alternative to both pure variational and DFT approaches.

  6. Coupling strength versus coupling impact in nonidentical bidirectionally coupled dynamics

    NASA Astrophysics Data System (ADS)

    Laiou, Petroula; Andrzejak, Ralph G.

    2017-01-01

    The understanding of interacting dynamics is important for the characterization of real-world networks. In general, real-world networks are heterogeneous in the sense that each node of the network is a dynamics with different properties. For coupled nonidentical dynamics symmetric interactions are not straightforwardly defined from the coupling strength values. Thus, a challenging issue is whether we can define a symmetric interaction in this asymmetric setting. To address this problem we introduce the notion of the coupling impact. The coupling impact considers not only the coupling strength but also the energy of the individual dynamics, which is conveyed via the coupling. To illustrate this concept, we follow a data-driven approach by analyzing signals from pairs of coupled model dynamics using two different connectivity measures. We find that the coupling impact, but not the coupling strength, correctly detects a symmetric interaction between pairs of coupled dynamics regardless of their degree of asymmetry. Therefore, this approach allows us to reveal the real impact that one dynamics has on the other and hence to define symmetric interactions in pairs of nonidentical dynamics.

  7. Characterization, chemometric evaluation, and human health-related aspects of essential and toxic elements in Italian honey samples by inductively coupled plasma mass spectrometry.

    PubMed

    Quinto, Maurizio; Miedico, Oto; Spadaccino, Giuseppina; Paglia, Giuseppe; Mangiacotti, Michele; Li, Donghao; Centonze, Diego; Chiaravalle, A Eugenio

    2016-12-01

    Concentration values of 24 elements (Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ge, Hg, Mn, Mo, Pb, Sb, Se, Sn, Sr, Ti, Tl, U, V, and Zn) were determined in 72 honey samples produced in Italy by inductively coupled plasma mass spectrometry (ICP-MS). Considering the recommended established heavy metal daily intakes for humans, in this perspective, an equilibrated and ordinary honey consumption should not be considered matter of concerns for human health, even if particular attention should be addressed if honey is consumed by children, due to different maximum daily heavy metal intakes. Chemometric analysis of the results obtained highlights heavy metal content differences in honey samples obtained from notoriously polluted zones, confirming then that honey can be considered a bio-indicator of environmental pollution. Finally, Pearson coefficients highlighted correlations among element contents in honey samples.

  8. The Carbon-Land Model Intercomparison Project (C-LAMP): A Model-Data Comparison System for Evaluation of Coupled Biosphere-Atmosphere Models

    SciTech Connect

    Hoffman, Forrest M; Randerson, Jim; Thornton, Peter E; Mahowald, Natalie; Bonan, Gordon; Running, Steven; Fung, Inez

    2009-01-01

    The need to capture important climate feebacks in general circulation models (GCMs) has resulted in new efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, now often referred to as Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results, suggesting that a more rigorous set of offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are warranted. The Carbon-Land Model Intercomparison Project (C-LAMP) provides a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). C-LAMP provides feedback to the modeling community regarding model improvements and to the measurement community by suggesting new observational campaigns. C-LAMP Experiment 1 consists of a set of uncoupled simulations of terrestrial carbon models specifically designed to examine the ability of the models to reproduce surface carbon and energy fluxes at multiple sites and to exhibit the influence of climate variability, prescribed atmospheric carbon dioxide (CO{sub 2}), nitrogen (N) deposition, and land cover change on projections of terrestrial carbon fluxes during the 20th century. Experiment 2 consists of partially coupled simulations of the terrestrial carbon model with an active atmosphere model exchanging energy and moisture fluxes. In all experiments, atmospheric CO{sub 2} follows the prescribed historical trajectory from C{sup 4}MIP. In Experiment 2, the atmosphere model is forced with prescribed sea surface temperatures (SSTs) and corresponding sea ice concentrations from the Hadley Centre; prescribed CO{sub 2} is radiatively active; and land, fossil fuel, and ocean CO{sub 2} fluxes are advected by the model. Both sets of experiments

  9. Evaluation of the intrinsic magneto-dielectric coupling in LaMn{sub 0.5}Co{sub 0.5}O{sub 3} single crystals

    SciTech Connect

    Manna, Kaustuv; Elizabeth, Suja; Anil Kumar, P. S.; Joshi, Rajeev S.

    2014-05-19

    The magneto-dielectric coupling in (l00) oriented LaMn{sub 0.5}Co{sub 0.5}O{sub 3} single crystals has been investigated using temperature, frequency, and magnetic field dependent dielectric response. Electronic transport data divulges that polaronic hopping arises due to Emin-Holstein adiabatic small polarons. Spin realignment through external magnetic field favors faster polaronic hopping by lowering activation energy for dielectric relaxation. Finally, positive magneto-dielectricity and magnetoloss under increasing magnetic field at high frequency of the exciting ac field confirms intrinsic magneto-dielectric effect in disordered ferromagnetic-insulator LaMn{sub 0.5}Co{sub 0.5}O{sub 3}. This study also emphasizes the need to use single crystals as well as the frequencies higher than the corresponding inverse relaxation time.

  10. Long-range electron transfer in ruthenium-modified cytochrome c: Evaluation of porphyrin-ruthenium electronic couplings in the Candida krusei and horse heart proteins

    SciTech Connect

    Therien, M.J.; Selman, M.; Gray, H.B. ); Chang, I.J.; Winkler, J.R. )

    1990-03-14

    Experiments in several laboratories have shown that electron transfer (ET) can take place at appreciable rates over long distances (> 10 {angstrom}) in organic and inorganic molecules and in proteins. There is a bewildering array of potential ET pathways in proteins; interestingly, the through-peptide routes (if there are any) generally involve so many bonds that they cannot possibly account for the observed rates. In searching for good pathways through cytochrome c, the authors discovered a relatively short route from His-39 to the heme in the Candida krusei (C.k.) protein. Along this route, the crucial shortcut is a hydrogen bond that bridges Gly-41 and the heme. Since experimental information relevant to protein pathway models is lacking, they have extracted donor-acceptor electronic coupling constants from an analysis of the driving-force dependence of ET rates in Ru(His-39)-modified C.k. zinc cytochrome c.

  11. Evaluation of a commercial electro-kinetically pumped sheath-flow nanospray interface coupled to an automated capillary zone electrophoresis system.

    PubMed

    Peuchen, Elizabeth H; Zhu, Guije; Sun, Liangliang; Dovichi, Norman J

    2017-03-01

    Capillary zone electrophoresis-electrospray ionization-mass spectrometry (CZE-ESI-MS) is attracting renewed attention for proteomic and metabolomic analysis. An important reason for this interest is the maturation and commercialization of interfaces for coupling CZE with ESI-MS. One of these interfaces is an electro-kinetically pumped sheath flow nanospray interface developed by the Dovichi group, in which a very low sheath flow is generated based on electroosmosis within a glass emitter. CMP Scientific has commercialized this interface as the EMASS-II ion source. In this work, we compared the performance of the EMASS-II ion source with our in-house system. The performance of the systems is equivalent. We also coupled the EMASS-II ion source with a PrinCE Next|480 capillary electrophoresis autosampler and an Orbitrap mass spectrometer, and analyzed this system's performance in terms of sensitivity, reproducibility, and separation performance for separation of tryptic digests, intact proteins, and amino acids. The system produced reproducible analysis of BSA digest; the RSDs of peptide intensity and migration time across 24 runs were less than 20 and 6%, respectively. The system produced a linear calibration curve of intensity across a 30-fold range of tryptic digest concentration. The combination of a commercial autosampler and electrospray interface efficiently separated amino acids, peptides, and intact proteins, and only required 5 μL of sample for analysis. Graphical Abstract The commercial and locally constructed versions of the interface provide similar numbers of protein identifications from a Xenopus laevis fertilized egg digest.

  12. Evaluation of the combination of a dispersive liquid-liquid microextraction method with micellar electrokinetic chromatography coupled to mass spectrometry for the determination of estrogenic compounds in milk and yogurt.

    PubMed

    D'Orazio, Giovanni; Asensio-Ramos, María; Hernández-Borges, Javier; Rodríguez-Delgado, Miguel Ángel; Fanali, Salvatore

    2015-02-01

    In this work, the suitability of a methodology based on dispersive liquid-liquid microextraction (DLLME) has been evaluated for the extraction of four endoestrogens (estriol, 17α-estradiol, 17β-estradiol, and estrone), an exoestrogen (17α-etynylestradiol), and a mycotoxin (zearalenone), together with some of their major metabolites (2-methoxyestradiol, α-zearalanol, β-zearalanol, α-zearalenol, and β-zearalenol) from different types of milk (whole and skimmed cow milk and semiskimmed goat milk) and whole natural yogurt. The methodology includes a previous protein precipitation with acidified ACN and a defatting step with n-hexane. Separation of the analytes, determination, and quantification were developed by MEKC coupled to ESI-MS using a BGE containing an aqueous solution of ammonium perfluorooctanoate as MS friendly surfactant. Calibration, precision, and accuracy studies of the described DLLME-MEKC-MS/MS method were evaluated obtaining a good linearity and LODs in the low micrograms per liter range.

  13. Quality evaluation of Hypericum ascyron extract by two-dimensional high-performance liquid chromatography coupled with the colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method.

    PubMed

    Li, Xiu-Mei; Luo, Xue-Gang; Zhang, Chao-Zheng; Wang, Nan; Zhang, Tong-Cun

    2015-02-01

    In this paper, a heart-cutting two-dimensional high-performance liquid chromatography coupled with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was established for controlling the quality of different batches of Hypericum ascyron extract for the first time. In comparison with the common one-dimensional fingerprint, the second-dimensional fingerprint compiled additional spectral data and was hence more informative. The quality of H. ascyron extract was further evaluated by similarity measures and the same results were achieved, the correlation coefficients of the similarity of ten batches of H. ascyron extract were >0.99. Furthermore, we also evaluated the quality of the ten batches of H. ascyron extract by antibacterial activity. The result demonstrated that the quality of the ten batches of H. ascyron extract was not significantly different by MTT. Finally, we demonstrated that the second-dimensional fingerprint coupled with the MTT method was a more powerful tool to characterize the quality of samples of batch to batch. Therefore the proposed method could be used to comprehensively conduct the quality control of traditional Chinese medicines.

  14. Multi-year downscaling application of two-way coupled WRF v3.4 and CMAQ v5.0.2 over east Asia for regional climate and air quality modeling: model evaluation and aerosol direct effects

    NASA Astrophysics Data System (ADS)

    Hong, Chaopeng; Zhang, Qiang; Zhang, Yang; Tang, Youhua; Tong, Daniel; He, Kebin

    2017-06-01

    In this study, a regional coupled climate-chemistry modeling system using the dynamical downscaling technique was established by linking the global Community Earth System Model (CESM) and the regional two-way coupled Weather Research and Forecasting - Community Multi-scale Air Quality (WRF-CMAQ) model for the purpose of comprehensive assessments of regional climate change and air quality and their interactions within one modeling framework. The modeling system was applied over east Asia for a multi-year climatological application during 2006-2010, driven with CESM downscaling data under Representative Concentration Pathways 4.5 (RCP4.5), along with a short-term air quality application in representative months in 2013 that was driven with a reanalysis dataset. A comprehensive model evaluation was conducted against observations from surface networks and satellite observations to assess the model's performance. This study presents the first application and evaluation of the two-way coupled WRF-CMAQ model for climatological simulations using the dynamical downscaling technique. The model was able to satisfactorily predict major meteorological variables. The improved statistical performance for the 2 m temperature (T2) in this study (with a mean bias of -0.6 °C) compared with the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-models might be related to the use of the regional model WRF and the bias-correction technique applied for CESM downscaling. The model showed good ability to predict PM2. 5 in winter (with a normalized mean bias (NMB) of 6.4 % in 2013) and O3 in summer (with an NMB of 18.2 % in 2013) in terms of statistical performance and spatial distributions. Compared with global models that tend to underpredict PM2. 5 concentrations in China, WRF-CMAQ was able to capture the high PM2. 5 concentrations in urban areas. In general, the two-way coupled WRF-CMAQ model performed well for both climatological and air quality applications. The coupled

  15. Evaluation and Verification of Channel Transmission Characteristics of Human Body for Optimizing Data Transmission Rate in Electrostatic-Coupling Intra Body Communication System: A Comparative Analysis.

    PubMed

    Tseng, Yuhwai; Su, Chauchin; Ho, Yingchieh

    2016-01-01

    Intra-body communication is a new wireless scheme for transmitting signals through the human body. Understanding the transmission characteristics of the human body is therefore becoming increasingly important. Electrostatic-coupling intra-body communication system in a ground-free situation that integrate electronic products that are discretely located on individuals, such as mobile phones, PDAs, wearable computers, and biomedical sensors, are of particular interest. The human body is modeled as a simplified Resistor-Capacitor network. A virtual ground between the transmitter and receiver in the system is represented by a resister-capacitor network. Value of its resistance and capacitance are determined from a system perspective. The system is characterized by using a mathematical unit step function in digital baseband transmission scheme with and without Manchester code. As a result, the signal-to-noise and to-intersymbol-interference ratios are improved by manipulating the load resistor. The data transmission rate of the system is optimized. A battery-powered transmitter and receiver are developed to validate the proposal. A ground-free system fade signal energy especially for a low-frequency signal limited system transmission rate. The system transmission rate is maximized by simply manipulating the load resistor. Experimental results demonstrate that for a load resistance of 10k-50k Ω, the high-pass 3 dB frequency of the band-pass channel is 400kHz-2MHz in the worst-case scenario. The system allows a Manchester-coded baseband signal to be transmitted at speeds of up to 20M bit per second with signal-to-noise and signal-to-intersymbol-interference ratio of more than 10 dB. The human body can function as a high speed transmission medium with a data transmission rate of 20Mbps in an electrostatic-coupling intra-body communication system. Therefore, a wideband signal can be transmitted directly through the human body with a good signal-to-noise quality of 10 dB if

  16. Evaluation and Verification of Channel Transmission Characteristics of Human Body for Optimizing Data Transmission Rate in Electrostatic-Coupling Intra Body Communication System: A Comparative Analysis

    PubMed Central

    Tseng, Yuhwai; Su, Chauchin; Ho, Yingchieh

    2016-01-01

    Background Intra-body communication is a new wireless scheme for transmitting signals through the human body. Understanding the transmission characteristics of the human body is therefore becoming increasingly important. Electrostatic-coupling intra-body communication system in a ground-free situation that integrate electronic products that are discretely located on individuals, such as mobile phones, PDAs, wearable computers, and biomedical sensors, are of particular interest. Materials and Methods The human body is modeled as a simplified Resistor-Capacitor network. A virtual ground between the transmitter and receiver in the system is represented by a resister-capacitor network. Value of its resistance and capacitance are determined from a system perspective. The system is characterized by using a mathematical unit step function in digital baseband transmission scheme with and without Manchester code. As a result, the signal-to-noise and to-intersymbol-interference ratios are improved by manipulating the load resistor. The data transmission rate of the system is optimized. A battery-powered transmitter and receiver are developed to validate the proposal. Results A ground-free system fade signal energy especially for a low-frequency signal limited system transmission rate. The system transmission rate is maximized by simply manipulating the load resistor. Experimental results demonstrate that for a load resistance of 10k−50k Ω, the high-pass 3 dB frequency of the band-pass channel is 400kHz−2MHz in the worst-case scenario. The system allows a Manchester-coded baseband signal to be transmitted at speeds of up to 20M bit per second with signal-to-noise and signal-to-intersymbol-interference ratio of more than 10 dB. Conclusion The human body can function as a high speed transmission medium with a data transmission rate of 20Mbps in an electrostatic-coupling intra-body communication system. Therefore, a wideband signal can be transmitted directly through the

  17. Analytical evaluation of nebulizers for the introduction of acetic acid extracts aiming at the determination of trace elements by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    de Gois, Jefferson S.; Maranhão, Tatiane de A.; Oliveira, Fernando J. S.; Frescura, Vera L. A.; Curtius, Adilson J.; Borges, Daniel L. G.

    2012-11-01

    Most of the official procedures aiming at classification of solid waste toxicity take into account metal solubility and bioavailability by means of extraction experiments using acetic acid solutions. Hence, the aim of this work was to investigate and optimize conditions to suppress the effect of acetic acid on the determination of trace elements using inductively coupled plasma mass spectrometry. The performance of four nebulizers (cross-flow (CFN), ultrasonic (USN), Meinhard (MN) and MicroMist (MMN)) were compared as to their efficiency in minimizing spectral and non-spectral effects on the determination of Ag, As, Ba, Cd, Cr, Hg, Pb and Se, with the ultimate goal to analyze acetic acid extracts obtained from solid waste residues. Operating conditions (desolvation temperatures for USN, RF power and nebulizer gas flow rates) were optimized individually for each nebulizer and for all analytes maintained in 0.14 mol L- 1 HNO3 solutions and in solutions prepared with acetic acid and acetic acid + NaOH, adjusted to pH 2.88 and 4.93, respectively. Pronounced non-spectral interferences for 75As and 82Se were observed in the presence of acetic acid for CF and MN, although to a less extent also for MMN and USN. Signal increase for blank solutions measured at m/z 208 (208Pb) for CFN and MN, 107 (107Ag) for USN and MN coupled to a cyclonic chamber and, m/z 82 (82Se) for USN was observed, indicating an increased risk of spectral interference upon an increase in the concentration of acetic acid. Signal increase at specific m/z ratios, however, was not significant when the MMN was used, with the exception of m/z 52 (52Cr) in acetic acid solutions, arising from the formation of 40Ar12C+. This same effect was noticed for all nebulizers, although at noticeably different intensities. A signal stability study was performed, demonstrating that variations in the analytical signal were within a 20% range for all analytes, with the exception of Hg, after continuous aspiration for 70 min

  18. Plasma transport theory spanning weak to strong coupling

    SciTech Connect

    Daligault, Jérôme; Baalrud, Scott D.

    2015-06-29

    We describe some of the most striking characteristics of particle transport in strongly coupled plasmas across a wide range of Coulomb coupling strength. We then discuss the effective potential theory, which is an approximation that was recently developed to extend conventional weakly coupled plasma transport theory into the strongly coupled regime in a manner that is practical to evaluate efficiently.

  19. Evaluating the impact of groundwater on cotton growth and root zone water balance using Hydrus-ID coupled with a crop growth model

    USDA-ARS?s Scientific Manuscript database

    Groundwater is an important factor that needs to be considered when evaluating the water balance of the soil-plant-atmosphere system and the sustainable water management. However, the impact of shallow groundwater on the root zone water balance and cotton growth is not fully understood. In this stud...

  20. The Supporting Healthy Marriage Evaluation: Early Lessons from the Implementation of a Relationship and Marriage Skills Program for Low-Income Married Couples

    ERIC Educational Resources Information Center

    Gaubert, Jennifer Miller; Knox, Virginia; Alderson, Desiree Principe; Dalton, Christopher; Fletcher, Kate; McCormick, Meghan

    2010-01-01

    This report presents early implementation and operational lessons from the Supporting Healthy Marriage (SHM) evaluation. Funded by the Administration for Children and Families, SHM uses a rigorous research design to test the effectiveness of a new approach to improving outcomes for low-income children: strengthening the marriages and relationships…

  1. Relaxation Effects in a System of a Spin-1solar2 Nucleus Coupled to a Quadrupolar Spin Subjected to RF Irradiation: Evaluation of Broadband Decoupling Schemes

    NASA Astrophysics Data System (ADS)

    Smith, Scott A.; Murali, Nagarajan

    1999-01-01

    We have investigated the suitability and performance of various decoupling methods on systems in which an observed spin-1/2 nucleusI(13C or15N) is scalar-coupled to a quadrupolar spinS(2H). Simulations and experiments have been conducted by varying the strength of the irradiating radiofrequency (RF) field, RF offset, relaxation times, and decoupling schemes applied in the vicinity of theS-spin resonance. TheT1relaxation of the quadrupolar spin has previously been shown to influence the efficiency of continuous wave (CW) decoupling applied on resonance in such spin systems. Similarly, the performance of broadband decoupling sequences should also be affected by relaxation. However, virtually all of the more commonly used broadband decoupling schemes have been developed without consideration of relaxation effects. As a consequence, it is not obvious how one selects a suitable sequence for decoupling quadrupolar nuclei with exotic relaxation behavior. Herein we demonstrate that, despite its simplicity, WALTZ-16 decoupling is relatively robust under a wide range of conditions. In these systems it performs as well as the more recently developed decoupling schemes for wide bandwidth applications such as GARP-1 and CHIRP-95. It is suggested that in macromolecular motional regimes, broadband deuterium decoupling can be achieved with relatively low RF amplitudes (500-700 Hz) using WALTZ-16 multiple pulse decoupling.

  2. Evaluation of pyrolysis curves for volatile elements in aqueous standards and carbon-containing matrices in electrothermal vaporization inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Silva, A. F.; Welz, B.; de Loos-Vollebregt, M. T. C.

    2008-07-01

    Pyrolysis curves in electrothermal atomic absorption spectrometry (ET AAS) and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) have been compared for As, Se and Pb in lobster hepatopancreas certified reference material using Pd/Mg as the modifier. The ET AAS pyrolysis curves confirm that the analytes are not lost from the graphite furnace up to a pyrolysis temperature of 800 °C. Nevertheless, a downward slope of the pyrolysis curve was observed for these elements in the biological material using ETV-ICP-MS. This could be related to a gain of sensitivity at low pyrolysis temperatures due to the matrix, which can act as carrier and/or promote changes in the plasma ionization equilibrium. Experiments with the addition of ascorbic acid to the aqueous standards confirmed that the higher intensities obtained in ETV-ICP-MS are related to the presence of organic compounds in the slurry. Pyrolysis curves for As, Se and Pb in coal and coal fly ash were also investigated using the same Pd/Mg modifier. Carbon intensities were measured in all samples using different pyrolysis temperatures. It was observed that pyrolysis curves for the three analytes in all slurry samples were similar to the corresponding graphs that show the carbon intensity for the same slurries for pyrolysis temperatures from 200 °C up to 1000 °C.

  3. Analytic evaluation of nonadiabatic coupling terms at the MR-CI level. II. Minima on the crossing seam: formaldehyde and the photodimerization of ethylene.

    PubMed

    Dallos, Michal; Lischka, Hans; Shepard, Ron; Yarkony, David R; Szalay, Peter G

    2004-04-22

    The method for the analytic calculation of the nonadiabatic coupling vector at the multireference configuration-interaction (MR-CI) level and its program implementation into the COLUMBUS program system described in the preceding paper [Lischka et al., J. Chem. Phys. 120, 7322 (2004)] has been combined with automatic searches for minima on the crossing seam (MXS). Based on a perturbative description of the vicinity of a conical intersection, a Lagrange formalism for the determination of MXS has been derived. Geometry optimization by direct inversion in the iterative subspace extrapolation is used to improve the convergence properties of the corresponding Newton-Raphson procedure. Three examples have been investigated: the crossing between the 1(1)B1/2(1)A1 valence states in formaldehyde, the crossing between the 2(1)A1/3(1)A1 pi-pi* valence and ny-3py Rydberg states in formaldehyde, and three crossings in the case of the photodimerization of ethylene. The methods developed allow MXS searches of significantly larger systems at the MR-CI level than have been possible before and significantly more accurate calculations as compared to previous complete-active space self-consistent field approaches.

  4. Quality evaluation of Radix Stemonae through simultaneous quantification of bioactive alkaloids by high-performance liquid chromatography coupled with diode array and evaporative light scattering detectors.

    PubMed

    Li, Song-Lin; Jiang, Ren-Wang; Hon, Po-Ming; Cheng, Ling; Xu, Hong-Xi; Greger, Harald; But, Paul Pui-Hay; Shaw, Pang-Chui

    2007-10-01

    A high-performance liquid chromatography coupled with diode array detection and evaporative light scattering detection (HPLC-DAD-ELSD) method was developed to simultaneously quantify six major bioactive alkaloids belonging to different structure types in Radix Stemonae, Bai-Bu in Chinese, a traditionally used antitussive and insecticidal medicinal material in China and other countries of Southeast Asia. Diode array detector (DAD) with the wavelengths at 307 and 260 nm was used to monitor the conjugated system of protostemonine (2) and maistemonine (4), respectively, whereas evaporative light scattering detector (ELSD) was employed to detect croomine (1), stemoninine (3), neotuberostemonine (5) and tuberostemonine (6), the other four analytes with no or poor chromophores. The assay was validated to be sensitive, precise and accurate, with a detection limit of 3.64-0.04 microg/mL depending on the individual analytes. The overall intra- and inter-day variations were less than 9.3%, and the overall recoveries higher than 91.2%, respectively. The correlation coefficients of the calibration curves were better than 0.996 for all analytes. The newly established method was successfully utilized to determine six major components in the genuine sources of Radix Stemonae: Stemona japonica, S. sessilifolia and S. tuberosa. Significant variations of contents of these components were demonstrated in samples of these three species. This simple, rapid, low-cost and reliable method is suitable for the routine quality control of herbal medicines containing bioactive components with different structure types such as Radix Stemonae.

  5. Evaluation of a TiO2 photocatalysis treatment on nitrophenols and nitramines contaminated plant wastewaters by solid-phase extraction coupled with ESI HPLC-MS.

    PubMed

    Perchet, G; Merlina, G; Revel, J-C; Hafidi, M; Richard, C; Pinelli, E

    2009-07-15

    Nitration reactions of aromatic compounds are commonly involved in different industrial processes for pharmaceutical, pesticide or military uses. For many years, most of the manufacturing sites used lagooning systems to treat their process effluents. In view of a photocatalytic degradation assay, the wastewater of a lagoon was investigated by using HPLC coupled with mass spectrometry. The wastewater was highly concentrated in RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) and two herbicides Dinoterb (2-tert-butyl-4,6-dinitrophenol) and Dinoseb (2-sec-butyl-4,6-dinitrophenol). First of all, an analytical method using solid-phase extraction (SPE) combined with HPLC ESI MS/MS was put in work for identification and titration of RDX, HMX and the two dinitrophenols in a complex natural matrix. Then, the UV/TiO2 treatment was investigated for pollutants removal. Dinitrophenolic compounds were significantly degraded after a 8-h-exposition of the wastewater/TiO2 suspension, whereas RDX and HMX were poorly affected.

  6. Evaluation of microbial fuel cell coupled with aeration chamber and bio-cathode for organic matter and nitrogen removal from synthetic domestic wastewater.

    PubMed

    Cha, J; Kim, C; Choi, S; Lee, G; Chen, G; Lee, T

    2009-01-01

    For simultaneous carbon and nitrogen removal via single stream, a microbial fuel cell (MFC) coupled with an aeration chamber and a bio-cathode was investigated. Without catalysts and any additional buffer, the MFC produced electricity continuously and the power density reached 1.3 W/m3 at a loading rate of 1.6 kg COD/m3 d. Simultaneously, the COD and the nitrate removal rate were 1.4 kg COD/m3 d and 67 g NO3-N/m3 d, respectively. When the hydraulic retention time was changed from 6 to 0.75 hours, the power density significantly increased from 0.2 to 10.8 W/m3 due to an increase of cathodic potential. When the aeration chamber was removed and the nitrate was injected into the cathode, the power density increased to 3.7 W/m3. At a high recirculation rate of 10 ml/min, the power density and the nitrate removal rate greatly increased to 34 W/m3 and 294 g NO3--N/m3 d, respectively.

  7. Evaluation of the Forensic Utility of Scanning Electron Microscopy-Energy Dispersive Spectroscopy and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for Printing Ink Examinations.

    PubMed

    Corzo, Ruthmara; Subedi, Kiran; Trejos, Tatiana; Almirall, José R

    2016-05-01

    Improvements in printing technology have exacerbated the problem of document counterfeiting, prompting the need for analytical techniques that better characterize inks for forensic analysis and comparisons. In this study, 319 printing inks (toner, inkjet, offset, and Intaglio) were analyzed directly on the paper substrate using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). As anticipated, the high sensitivity of LA-ICP-MS pairwise comparisons resulted in excellent discrimination (average of ~ 99.6%) between different ink samples from each of the four ink types and almost 100% correct associations between ink samples known to originate from the same source. SEM-EDS analysis also resulted in very good discrimination for different toner and intaglio inks (>97%) and 100% correct association for samples from the same source. SEM-EDS provided complementary information to LA-ICP-MS for certain ink types but showed limited utility for the discrimination of inkjet and offset inks.

  8. Evaluation of the Corrosion of Five Different Bracket-Archwire Combination: An In-vitro Analysis Using Inductively Coupled Plasma Mass Spectrometry

    PubMed Central

    Behroozi, Zeinab; Momeni Danaei, Shahla; Sardarian, Ali Reza; Moshkelghosha, Vahid; Sardarian, Ahmad Reza

    2016-01-01

    Statement of the Problem: Stainless steel brackets release metallic ions following the process of corrosion in the oral environment. These released ions have potential adverse effects on health, friction between wire and bracket, staining, strength of brackets. Choosing a bracket with favorable corrosive properties; therefore, should be a goal of every practitioner. Purpose: The goal of this study is to compare the amount of corrosion among five different brands of brackets using inductively coupled plasma (ICP) mass spectrometry. Materials and Method: Five different brands of brackets (Dentaurum, 3M, Ortho Organizer, Cobas and O.R.G) were chosen and ten brackets were selected from each brand. A piece of stainless steel wire was ligated to each bracket. The bracket-archwire complex was then immersed in artificial saliva. Subsequently, the samples were analyzed using an ICP device and the levels of iron, chromium, nickel, and manganese ions were measured. Results: The findings of this study demonstrated that iron was released the most from the tested brackets, followed by nickel. We also found that the Cobas bracket had the most ion release among the tested brackets (p< 0.05), while Ortho Organizer and ORG performed favorably. There was no significant difference between Dentaurum and 3M (p> 0.05). Conclusion: Based on the results, Ortho Organizer and ORG brackets are suggested in terms of resistance to corrosion. PMID:27840839

  9. Quality assessment of a formulated Chinese herbal decoction, Kaixinsan, by using rapid resolution liquid chromatography coupled with mass spectrometry: A chemical evaluation of different historical formulae.

    PubMed

    Zhu, Kevin Y; Fu, Q; Xie, Heidi Q; Xu, Sherry L; Cheung, Anna W H; Zheng, Ken Y Z; Luk, Wilson K W; Choi, Roy C Y; Lau, David T W; Dong, Tina T X; Jiang, Zhi Y; Chen, Ji J; Tsim, Karl W K

    2010-12-01

    Kaixinsan is an ancient Chinese herbal decoction mainly prescribed for patients suffering from mental depression. This decoction was created by Sun Si-miao of Tang Dynasty (A.D. 600) in ancient China, and was composed of four herbs: Radix and Rhizome Ginseng, Radix Polygalae, Rhizoma Acori Tatarinowii and Poria. Historically, this decoction has three different formulations, each recorded at a different point in time. In this study, the chemical compositions of all three Kaixinsan formulae were analyzed. By using rapid resolution LC coupled with a diode-array detector and an ESI triple quadrupole tandem MS (QQQ-MS/MS), the Radix and Rhizome Ginseng-derived ginsenosides including Rb(1), Rd, Re, Rg(1), the Radix Polygalae-derived 3,6'-disinapoyl sucrose, the Rhizoma Acori Tatarinowii-derived α- and β-asarone and the Poria-derived pachymic acid were compared among the three different formulations. The results showed variations in the solubility of different chemicals between one formula and the others. This systematic method developed could be used for the quality assessment of this herbal decoction.

  10. Application of a new model using productivity coupled with hydrothermal factors (PCH) for evaluating net primary productivity of grassland in southern China

    NASA Astrophysics Data System (ADS)

    Sun, Zheng-Guo; Liu, Jie; Tang, Hai-Yang

    2017-04-01

    Grassland ecosystems play important roles in the global carbon cycle. The net primary productivity (NPP) of grassland ecosystems has become the hot spot of terrestrial ecosystems. To simulate grassland NPP in southern China, a new model using productivity coupled with hydrothermal factors (PCH) was built and validated based on data recorded from 2003 to 2014. The results show a logarithmic correlation between grassland NPP and mean annual temperature and a linear positive correlation between grassland NPP and mean annual precipitation in southern China, both highly significant relationships. There was a highly significant correlation between simulated and measured NPP (R2 = 0. 8027). Both RMSE and relative root mean square error (RRMSE) were relatively low, showing that the simulation results of the model were reliable. The NPP values in the study area had a decreasing trend from east to west and south to north. Mean NPP was 471.62 g C m-2 from 2003 to 2014. Additionally, the mean annual NPP of southern grassland presented a rising trend, increasing 3.49 g C m-2 yr-1 during the past 12 years. These results document performance and use of a new method to estimate the grassland NPP in southern China.

  11. Dynamics and Predictability of Tropical Cyclone Genesis Evaluated through a Coupled EnKF and 4DVar Data Assimilation Method during GRIP and PREDICT 2010.

    NASA Astrophysics Data System (ADS)

    Reyes, A.; Jenkins, G. S.; Poterjoy, J.; Zhang, F.

    2014-12-01

    The genesis of Hurricane Karl (2010) and Tropical Storm Mathew (2010) are examined and compared using a coupled ensemble Kalman filter and four-dimension variational data assimilation method (E4DVar) to assimilate conventional and field campaign observations. This research makes use of dropsonde and sounding observations, which were collected during both the Genesis and Rapid Intensification Processes (GRIP) and the Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT) field campaigns. E4DVar uses a mix of climatological and flow-dependent background error covariance obtained from ensemble forecasts together with the tangent linear model and its adjoint to perform the four-dimensional data assimilation. As a result, E4DVar analyses are able to capture multi-scale features of the developing disturbances accurately, such as the evolving thermodynamic and kinematic structure of pre-genesis Karl and Mathew. Preliminary diagnostics shows that the genesis of both storms followed a bottom-up process with several mesoscale convective vorticies (MCVs) observed in the pre-genesis stages. To determine the role of these MCVs and to better understand the initial development of the surface cyclone, a two-dimensional spectral decomposition and filtering of model variables, together with a vorticity budget, are performed on high-resolution (1.5 km) simulations of both systems.

  12. One-way coupling of an integrated assessment model and a water resources model: evaluation and implications of future changes over the US Midwest

    SciTech Connect

    Voisin, Nathalie; Liu, Lu; Hejazi, Mohamad I.; Tesfa, Teklu K.; Li, Hongyi; Huang, Maoyi; Liu, Ying; Leung, Lai-Yung R.

    2013-11-18

    An integrated model is being developed to advance our understanding of the interactions between human activities, terrestrial system and water cycle, and how system interactions will be affected by a changing climate at the regional scale. As a first step towards that goal, a global integrated assessment model including a waterdemand model is coupled offline with a land surface hydrology – routing – water resources management model. A spatial and temporal disaggregation approach is developed to project the annual regional water demand simulations into a daily time step and subbasin representation. The model demonstrated reasonable ability to represent the historical flow regulation and water supply over the Midwest (Missouri, Upper Mississippi and Ohio). Implications for the future flow regulation, water supply and supply deficit are investigated using a climate change projection with the B1 emission scenario which affects both natural flow and water demand. Over the Midwest, changes in flow regulation are mostly driven by the change in natural flow due to the limited storage capacity over the Ohio and Upper Mississippi river basins. The changes in flow and demand have a combined effect on the Missouri Summer regulated flow. The supply deficit tends to be driven by the change in flow over the region. Spatial analysis demonstrates the relationship between the supply deficit and the change in demand over urban areas not along a main river or with limited storage, and over areas upstream of groundwater dependent fields with therefore overestimated demand.

  13. Evaluation of beauvericin and enniatins in Italian cereal products and multicereal food by liquid chromatography coupled to triple quadrupole mass spectrometry.

    PubMed

    Juan, Cristina; Mañes, Jordi; Raiola, Assunta; Ritieni, Alberto

    2013-10-15

    In this study, 48 multicereal baby foods samples including 25 of pasta and 23 of multicereal baby foods from supermarkets of Campania region (Italy) were analysed for evaluating the presence of beauvericin (BEA) and enniatins (ENs) A, A1, B, B1 and B4. Subsequently to evaluate the risk exposure of Italian population and infant population over the consumption of pasta or multicereal baby food, was, respectively, evaluated. For the above mentioned evaluation, a method developed in our laboratory by liquid chromatography tandem mass spectrometry was used. A liquid phase dispersion procedure was optimised for the simultaneous extraction of BEA and the five ENs from multicereal baby food samples and pasta. The main parameters affecting extraction yield and selectivity, extraction solvent were evaluated. The method was validated by analysis for pasta and multicereal baby food samples fortified at different concentration levels (from 0.5 to 20μg/kg). Average recoveries (n=5) ranged from 85% to 99% with relative standard deviation lower than 13%. Limits of quantification (LQs) for both matrices ranged from 1 to 10μg/kg. Analytical results showed that the occurrence of BEA, ENA, ENA1, ENB, ENB1 and ENB4 in analysed pasta and multicereal baby food samples were below 68% and 74%, respectively. ENB was the mycotoxin most found and levels in pasta and baby food ranged from

  14. Latinos' Perceptions of Interethnic Couples

    ERIC Educational Resources Information Center

    Garcia, Amber L.; Riggio, Heidi R.; Palavinelu, Subha; Culpepper, Lane Locher

    2012-01-01

    Numerous survey findings indicate that the majority of White Americans are accepting of interracial romantic relationships. However, relatively few studies have looked at how different American ethnic minority groups view such relationships. The current research examined Latinos' evaluations of intraethnic and interethnic couples. Latino…

  15. Evaluating hypotheses for the initiation and development of Alexandrium fundyense blooms in the western Gulf of Maine using a coupled physical biological model

    NASA Astrophysics Data System (ADS)

    Stock, Charles A.; McGillicuddy, Dennis J.; Solow, Andrew R.; Anderson, Donald M.

    2005-09-01

    A coupled physical/biological model and observations are used to investigate the factors governing the initiation and development of an Alexandrium fundyense bloom in the western Gulf of Maine (WGOM) during the spring of 1993 (March 19-June 6). The physical circulation is simulated using a 3D primitive equation model forced by climatological sea-surface elevation and observed winds, irradiance, and river outflow. This is coupled with a biological model constructed from laboratory and field data that estimates the germination and growth rates of A. fundyense as a function of environmental conditions. Four biological model structures of increasing complexity are considered, with each structure representing a hypothesis for factors controlling bloom initiation and development. The model/data fit is optimized over the uncertainty in the parameters to which the model is most sensitive. The significance of changes in the model/data fit between model structures is quantified using a maximum likelihood ratio test. The baseline biological model, which parameterizes growth as only a function of temperature, salinity, and light, severely over-estimates observed A. fundyense abundance in the late spring. It is thus rejected with greater than 99% confidence in favor of biological models that include a mortality term or a dependence of growth on dissolved inorganic nitrogen (DIN). The overall best-fit simulation uses both nitrogen dependence and mortality. However, simulations using one or the other of these factors could not be differentiated from the best-fit case with greater than 90% confidence. The best-fit model captures the general timing and magnitude of the observed bloom and some of its secondary features. However, considerable misfits may exist in the point-to-point comparison, and some regional misfits remain. Diagnosis of the cell budget suggests that germination from a large cyst bed offshore of Casco Bay provides the majority of cells comprising spring A

  16. A Palladium Catalyst System for the Efficient Cross-Coupling Reaction of Aryl Bromides and Chlorides with Phenylboronic Acid: Synthesis and Biological Activity Evaluation.

    PubMed

    Lamia, Boubakri; Chakchouk-Mtibaa, Ahlem; Hallouma, Bilel; Mansour, Lamjed; Mellouli, Lotfi; Özdemir, Ismail; Yaşar, Sedat; Hamdi, Naceur

    2017-03-07

    New benzimidazolium salts 1a-c and their palladium bis-N-heterocyclic carbene complexes 2a-c and palladium PEPPSI-type complexes 3a-c were designed, synthesized and structurally characterized by NMR (1H and 13C), IR, DART-TOF mass spectrometry and elemental analysis. Then these complexes 2-3 were employed in the Suzuki-Miyaura cross-coupling reaction of substituted arenes with phenylboronic acid under mild conditions in toluene and DMF/H2O (1/1) to afford functionalized biaryl derivatives in good to excellent yields. The antibacterial activity of palladium bis-N-heterocyclic carbene complexes 2a-c and palladium PEPPSI-type complexes 3a-c was measured by disc diffusion method against Gram positive and Gram negative bacteria. Compounds 2a, 2c and 3a-c exhibited potential antibacterial activity against four bacterial species among the five used indicator cells. The product 2b inhibits the growth of the all five tested microorganisms. Moreover, the antioxidant activity determination of these complexes 2-3, using 2.2-diphenyl-1-picrylhydrazyl (DPPH) as a reagent, showed that compounds 2a-c and 3b possess DPPH antiradical activity. The higher antioxidant activity was obtained from the product 2b which has radical scavenging activity comparable to that of the two used positive controls (gallic acid "GA" and tutylatedhydroxytoluene "BHT"). Investigation of the anti-acetylcholinesterase activity of the studied complexes showed that compounds 2b, 3a, and 3b exhibited moderate activity at 100 μg/mL and product 2b is the most active.

  17. Evaluation of real-time PCR coupled with immunomagnetic separation or centrifugation for the detection of healthy and sanitizer-injured Salmonella spp. on mung bean sprouts.

    PubMed

    Zheng, Qianwang; Mikš-Krajnik, Marta; Yang, Yishan; Lee, Sang-Myun; Lee, Seung-Cheol; Yuk, Hyun-Gyun

    2016-04-02

    Fresh mung bean sprouts have been identified as a source of many Salmonella outbreaks worldwide. The aim of this study was to develop a rapid and accurate detection methodology for low levels of healthy and sanitizer-injured Salmonella on mung bean sprouts using real-time PCR coupled with either immunomagnetic separation (PCR-IMS) or centrifugation (PCR-cen). Initially, three parameters of IMS; specificity/sensitivity, bacterial concentration and bead incubation time were optimized. Secondly, limit of detection (LOD) was determined for the optimized PCR-IMS and PCR-cen. These two methods were compared against PCR alone (PCR) and the standard culture method (ISO) for their ability to detect Salmonella using inoculated and uninoculated sprouts. Under optimum IMS conditions (10(5)CFU/ml for 30 min), capture efficiency of Salmonella in sprout suspensions was lower than 40%, most probably due to the non-specific binding of the background microbiota. PCR-IMS and PCR-cen had a similar LOD at 10(3)CFU/ml, which was one log unit lower than PCR. Enrichment of 10h was sufficient to detect 100% of the inoculated sprouts with both PCR-IMS and PCR-cen, which was significantly faster compared to PCR and the ISO method. Moreover, the validation study using uninoculated sprouts revealed that PCR-IMS and PCR-cen were equally effective on Salmonella detection, showing 98.3% accuracy. These results suggest that PCR-cen would be the effective and less costly method for the detection of both healthy and sanitizer-injured Salmonella on mung bean sprouts. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Evaluation of proton-coupled folate transporter (SLC46A1) polymorphisms as risk factors for neural tube defects and oral clefts.

    PubMed

    VanderMeer, Julia E; Carter, Tonia C; Pangilinan, Faith; Mitchell, Adam; Kurnat-Thoma, Emma; Kirke, Peadar N; Troendle, James F; Molloy, Anne M; Munger, Ronald G; Feldkamp, Marcia L; Mansilla, Maria A; Mills, James L; Murray, Jeff C; Brody, Lawrence C

    2016-04-01

    Many folate-related genes have been investigated for possible causal roles in neural tube defects (NTDs) and oral clefts. However, no previous reports have examined the major gene responsible for folate uptake, the proton-coupled folate transporter (SLC46A1). We tested for association between these birth defects and single nucleotide polymorphisms in the SLC46A1 gene. The NTD study population included 549 complete and incomplete case-family triads, and 999 controls from Ireland. The oral clefts study population comprised a sample from Utah (495 complete and incomplete case-family triads and 551 controls) and 221 Filipino multiplex cleft families. There was suggestive evidence of increased NTD case risk with the rs17719944 minor allele (odds ratio (OR): 1.29; 95% confidence intervals (CI): [1.00-1.67]), and decreased maternal risk of an NTD pregnancy with the rs4795436 minor allele (OR: 0.62; [0.39-0.99]). In the Utah sample, the rs739439 minor allele was associated with decreased case risk for cleft lip with cleft palate (genotype relative risk (GRR): 0.56 [0.32-0.98]). Additionally, the rs2239907 minor allele was associated with decreased case risk for cleft lip with cleft palate in several models, and with cleft palate only in a recessive model (OR: 0.41; [0.20-0.85]). These associations did not remain statistically significant after correcting for multiple hypothesis testing. Nominal associations between SLC46A1 polymorphisms and both Irish NTDs and oral clefts in the Utah population suggest some role in the etiology of these birth defects, but further investigation in other populations is needed.

  19. Evaluating quality of life and response shift from a couple-based perspective: a study among patients with colorectal cancer and their partners.

    PubMed

    Traa, Marjan J; Braeken, Johan; De Vries, Jolanda; Roukema, Jan A; Orsini, Ricardo G; Den Oudsten, Brenda L

    2015-06-01

    To examine (1) measurement invariance of quality of life (QoL) domains over time for patients with colorectal cancer and partners (i.e., response shift--recalibration, reprioritization, and reconceptualization), (2) between dyad-member measurement invariance and (3) QoL trajectories. Participants completed the WHOQOL-Bref preoperative (Time-0) and 3 (Time-1) and 6 months (Time-2) postoperative. A stepwise procedure, using nested factor models, examined the viability of restricting specific model parameters to be equal across measurements and between dyad members. No reconceptualization and reprioritization was detected, but indications for recalibration were present. Therefore, comparisons were restricted to group-level statistics at factor level. For patients, a decrease in the Physical Health domain occurred at Time-1 (p < 0.001), with partial recovery to baseline at Time-2 (p = 0.055). For partners, factor means in this domain remained constant (p's > 0.05) and were at each time point higher than patients' factor means (p's < 0.05). Patients' and partners' Psychological Health decreased at Time-1 (p's < 0.05), with stabilization at Time-2 (p's > 0.05). Patients and partners' factor means were comparable (p's > 0.05). Patients and partners' Social Relationship factor means decreased at Time-1 (p's < 0.05), which decreased further for patients (p = 0.011) but stabilized for partners (p = 0.214). Partners' factor means were only lower than patients' factor means at Time-1. A similar decrease in the Environmental domain factor means occurred for both patients and partners at Time-1 (p's < 0.05), with stabilization at Time-2 (p's > 0.05). Since both patients and partners are affected by the patients' disease and treatment, we recommend that attention is paid to the couple instead of solely the patient.

  20. On the evaluation of nonadiabatic coupling matrix elements for MCSCF/CI wave functions. IV. Second derivative terms using analytic gradient methods

    NASA Astrophysics Data System (ADS)

    Saxe, Paul; Yarkony, David R.

    1987-01-01

    A recently proposed methodology for determining second derivative nonadiabatic coupling matrix elements h(J,I,Rα,R) ≡<ΨJ(r;R)‖(∂2/∂R2α )ΨI(r;R)>r based on analytic gradient methods is implemented and discussed. Here r denotes the electronic coordinates, R the nuclear coordinates, and the ΨJ (r;R) are eigenfunctions of the nonrelativistic Born-Oppenheimer Hamiltonian at the state averaged MCSCF/CI level. The region of a conical intersection of the 1,2 2A' potential energy surfaces of the Li-H2 system is considered in order to illustrate the potential of this approach. The relation between h(J,I,Rα,R) and the first derivative matrix elements g(J,I,Rα,R) ≡<ΨJ(r;R)‖(∂/∂Rα)ΨI (r;R)>r is considered and the role of symmetry discussed. The h(J,I,Rα,R) are analyzed in terms of contributions from molecular orbital and CI coefficient derivatives and the importance of the various nuclear degree of freedom, Rα, is considered. It is concluded that for the case considered a flexible multiconfiguration wave function is desirable for characterizing h(J,I,Rα,R). This methodology complements recent advances in treating nonadiabatic processes for diatomic and triatomic systems starting with adiabatic states, including the work of Mead, Truhlar, and co-workers on conical (Jahn-Teller) intersections in X3 systems, by providing an essential computational step for the ab initio characterization the relevant electronic structure parameters.

  1. Combining single-particle inductively coupled plasma mass spectrometry and X-ray absorption spectroscopy to evaluate the release of colloidal arsenic from environmental samples.

    PubMed

    Gomez-Gonzalez, Miguel Angel; Bolea, Eduardo; O'Day, Peggy A; Garcia-Guinea, Javier; Garrido, Fernando; Laborda, Francisco

    2016-07-01

    Detection and sizing of natural colloids involved in the release and transport of toxic metals and metalloids is essential to understand and model their environmental effects. Single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) was applied for the detection of arsenic-bearing particles released from mine wastes. Arsenic-bearing particles were detected in leachates from mine wastes, with a mass-per-particle detection limit of 0.64 ng of arsenic. Conversion of the mass-per-particle information provided by SP-ICP-MS into size information requires knowledge of the nature of the particles; therefore, synchrotron-based X-ray absorption spectroscopy (XAS) was used to identify scorodite (FeAsO4·2H2O) as the main species in the colloidal particles isolated by ultrafiltration. The size of the scorodite particles detected in the leachates was below 300-350 nm, in good agreement with the values obtained by TEM. The size of the particles detected by SP-ICP-MS was determined as the average edge of scorodite crystals, which show a rhombic dipyramidal form, achieving a size detection limit of 117 nm. The combined use of SP-ICP-MS and XAS allowed detection, identification, and size determination of scorodite particles released from mine wastes, suggesting their potential to transport arsenic. Graphical abstract Analytical approach for the detection and size characterization of As-bearing particles by SP-ICP-MS and XAS in environmental samples.

  2. Axial forces in centrifugal compressor couplings

    NASA Astrophysics Data System (ADS)

    Ivanov, A. N.; Ivanov, N. M.; Yun, V. K.

    2017-08-01

    The article presents the results of the theoretical and experimental investigation of axial forces arising in the toothed and plate couplings of centrifugal compressor shaft lines. Additional loads on the thrust bearing are considered that can develop in the toothed couplings as a result of coupled rotors misalignment. Design relationships to evaluate the level of axial forces and recommendations for their reduction in the operating conditions are given.

  3. Feasibility study to assess clinical applications of 3-T cine MRI coupled with synchronous audio recording during speech in evaluation of velopharyngeal insufficiency in children.

    PubMed

    Sagar, Pallavi; Nimkin, Katherine

    2015-02-01

    In the past decade, there has been increased utilization of magnetic resonance imaging (MRI) in evaluating and understanding velopharyngeal insufficiency (VPI). To our knowledge, none of the prior studies with MRI has simultaneously linked the audio recordings of speech during cine MRI acquisition with the corresponding images and created a video for evaluating VPI. To develop an MRI protocol with static and cine sequences during phonation to evaluate for VPI in children and compare the findings to nasopharyngoscopy and videofluoroscopy. Five children, ages 8-16 years, with known VPI, who had previously undergone nasopharyngoscopy and videofluoroscopy, were included. MRI examination was performed on a 3-T Siemens scanner. Anatomical data was obtained using an isotropic T2-weighted 3-D SPACE sequence with multiplanar reformation capability. Dynamic data was obtained using 2-D FLASH cine sequences of the airway in three imaging planes during phonation. Audio recordings were captured by a MRI compatible optical microphone. All five cases had MRI and nasopharyngoscopy and four had videofluoroscopy performed. VPI was identified by MRI in all five patients. The location and severity of the velopharyngeal gap, closure pattern, velar size and shape and levator veli palatini (LVP) muscle were identified in all patients. MRI was superior in visualizing the integrity of the LVP muscle. MRI was unable to identify hemipalatal weakness in one case. In a case of stress-induced VPI, occurring only during clarinet playing, cine MRI demonstrated discordant findings of a velopharyngeal gap during phonatory tasks but not with instrument playing. Overall, there was satisfactory correlation among MRI, nasopharyngoscopy and videofluoroscopy findings. Cine MRI of the airway during speech is a noninvasive, well-tolerated diagnostic imaging tool that has the potential to serve as a guide prior to and after surgical correction of VPI. MRI provided superior anatomical detail of the levator

  4. Study on seafood volatile profile characteristics during storage and its potential use for freshness evaluation by headspace solid phase microextraction coupled with gas chromatography-mass spectrometry.

    PubMed

    Zhang, Zhuomin; Li, Gongke; Luo, Lin; Chen, Guonan

    2010-02-05

    Seafood volatile profile characteristics at different storage phases are various and can be used for freshness evaluation during storage. It is imperative to obtain the full volatile information prior to the further study of seafood volatile profile characteristics during storage. Also, the efficient data-processing method is another important factor for the interpretation of seafood volatile profile characteristics during storage and related potential volatile markers. In this work, a new analytical strategy, including the efficient sampling technique, sensitive detection and suitable data-processing method, for seafood freshness evaluation was developed based on the volatile profile characteristics during storage. First, the study of volatiles of seafood samples including razor clam, redspot swimming crab and prawn at different storage phases were conducted by headspace solid phase microextraction (HSSPME) followed by gas chromatography-mass spectrometry (GC-MS) detection. Then, seafood volatile profile characteristics at different storage phases were statistically interpreted by a combination data-processing method including normalization, principle component analysis (PCA) and common model strategy. The different seafood volatile profile characteristics and potential volatile markers were attempted to be distilled. The results tentatively suggested that the different seafood volatile profile characteristics during storage could reflect the transitional changing seafood freshness and provide more precise warning information for seafood spoilage during storage than any single chemical markers. This work developed an analytical method for study of seafood volatile profile characteristics and tentatively proposed a new idea of using seafood volatile profile characteristics during storage for the freshness evaluation from the point of view of analytical chemistry.

  5. Development and Evaluation of an Externally Air-Cooled Low-Flow torch and the Attenuation of Space Charge and Matrix Effects in Inductively Coupled Plasma Mass Spectrometry

    SciTech Connect

    Praphairaksit, Narong

    2000-09-12

    An externally air-cooled low-flow torch has been constructed and successfully demonstrated for applications in inductively coupled plasma mass spectrometry (ICP-MS). The torch is cooled by pressurized air flowing at ~70 L/min through a quartz air jacket onto the exterior of the outer tube. The outer gas flow rate and operating RF forward power are reduced considerably. Although plasmas can be sustained at the operating power as low as 400 W with a 2 L/min of outer gas flow, somewhat higher power and outer gas flows are advisable. A stable and analytical useful plasma can be obtained at 850 W with an outer gas flow rate of ~4 L/min. Under these conditions, the air-cooled plasma produces comparable sensitivities, doubly charged ion ratios, matrix effects and other analytical merits as those produced by a conventional torch while using significantly less argon and power requirements. Metal oxide ion ratios are slightly higher with the air-cooled plasma but can be mitigated by reducing the aerosol gas flow rate slightly with only minor sacrifice in analyte sensitivity. A methodology to alleviate the space charge and matrix effects in ICP-MS has been developed. A supplemental electron source adapted from a conventional electron impact ionizer is added to the base of the skimmer. Electrons supplied from this source downstream of the skimmer with suitable amount and energy can neutralize the positive ions in the beam extracted from the plasma and diminish the space charge repulsion between them. As a result, the overall ion transmission efficiency and consequent analyte ion sensitivities are significantly improved while other important analytical aspects, such as metal oxide ion ratio, doubly charged ion ratio and background ions remain relatively unchanged with the operation of this electron source. This technique not only improves the ion transmission efficiency but also minimizes the matrix effects drastically. The matrix-induced suppression of signal for even the most

  6. Evaluation of Rainfall Impacts on Groundwater Flow and Land Deformation in an Unsaturated Heterogeneous Slope and Slope Stability Using a Fully Coupled Hydrogeomechanical Numerical Model

    NASA Astrophysics Data System (ADS)

    Kihm, J.; Kim, J.

    2006-12-01

    A series of numerical simulations using a fully coupled hydrogeomechanical numerical model, which is named COWADE123D, is performed to analyze groundwater flow and land deformation in an unsaturated heterogeneous slope and its stability under various rainfall rates. The slope is located along a dam lake in Republic of Korea. The slope consists of the Cretaceous granodiorite and can be subdivided into the four layers such as weathered soil, weathered rock, intermediate rock, and hard rock from its ground surface due to weathering process. The numerical simulation results show that both rainfall rate and heterogeneity play important roles in controlling groundwater flow and land deformation in the unsaturated slope. The slope becomes more saturated, and thus its overall hydrogeomechanical stability deteriorates, especially in the weathered rock and weathered soil layers, as the rainfall increases up to the maximum daily rainfall rate in the return period of one year. However, the slope becomes fully saturated, and thus its hydrogeomechanical responses are almost identical under more than such a critical rainfall rate. From the viewpoint of hydrogeology, the pressure head, and hence the hydraulic head increase as the rainfall rate increases. As a result, the groundwater table rises, the unsaturated zone reduces, the seepage face expands from the slope toe toward the slope crest, and the groundwater flow velocity increases along the seepage face. Particularly, the groundwater flow velocity increases significantly in the weathered soil and weathered rock layers as the rainfall rate increases. This is because their hydraulic conductivity is relatively higher than that of the intermediate rock and hard rock layers. From the viewpoint of geomechanics, the horizontal displacement increases, while the vertical displacement decreases toward the slope toe as the rainfall rate increases. This may result from the buoyancy effect associated with the groundwater table rise as the

  7. Evaluation of the multi-element capabilities of collision/reaction cell inductively coupled plasma-mass spectrometry in wine analysis.

    PubMed

    Grindlay, Guillermo; Mora, Juan; de Loos-Vollebregt, Margaretha T C; Vanhaecke, Frank

    2014-10-01

    This work explores the multi-element capabilities of inductively coupled plasma-mass spectrometry with collision/reaction cell technology (CCT-ICP-MS) for the simultaneous determination of both spectrally interfered and non-interfered nuclides in wine samples using a single set of experimental conditions. The influence of the cell gas type (i.e. He, He+H2 and He+NH3), cell gas flow rate and sample pre-treatment (i.e. water dilution or acid digestion) on the background-equivalent concentration (BEC) of several nuclides covering the mass range from 7 to 238u has been studied. Results obtained in this work show that, operating the collision/reaction cell with a compromise cell gas flow rate (i.e. 4 mL min(-1)) improves BEC values for interfered nuclides without a significant effect on the BECs for non-interfered nuclides, with the exception of the light elements Li and Be. Among the different cell gas mixtures tested, the use of He or He+H2 is preferred over He+NH3 because NH3 generates new spectral interferences. No significant influence of the sample pre-treatment methodology (i.e. dilution or digestion) on the multi-element capabilities of CCT-ICP-MS in the context of simultaneous analysis of interfered and non-interfered nuclides was observed. Nonetheless, sample dilution should be kept at minimum to ensure that light nuclides could be quantified in wine. Finally, a direct 5-fold aqueous dilution is recommended for the simultaneous trace and ultra-trace determination of spectrally interfered and non-interfered elements in wine by means of CCT-ICP-MS. The use of the CCT is mandatory for interference-free ultra-trace determination of Ti and Cr. Only Be could not be determined when using the CCT due to a deteriorated limit of detection when compared to conventional ICP-MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Characterization and evaluation of two-dimensional microfluidic chip-HPLC coupled to tandem mass spectrometry for quantitative analysis of 7-aminoflunitrazepam in human urine.

    PubMed

    Bai, Hsin-Yu; Lin, Shu-Ling; Chan, Shen-An; Fuh, Ming-Ren

    2010-10-01

    Microfluidic chip-based high-performance-liquid-chromatography coupled to mass spectrometry (chip-HPLC-MS) has been widely used in proteomic research due to its enhanced sensitivity. We employed a chip-HPLC-MS system for determining small molecules such as drug metabolites in biological fluids. This chip-HPLC-MS system integrates a microfluidic switch, a 2-dimensional column design including an enrichment column (160 nL) for sample pre-concentration and an analytical column for chromatographic separation, as well as a nanospray emitter on a single polyimide chip. In this study, a relatively large sample volume (500 nL) was injected into the enrichment column for pre-concentration and an additional 4 μL of the initial mobile phase was applied to remove un-retained components from the sample matrix prior to chromatographic separation. The 2-dimensional column design provides the advantages of online sample concentration and reducing matrix influence on MS detection. 7-Aminoflunitrazepam (7-aminoFM2), a major metabolite of flunitrazepam (FM2), was determined in urine samples using the integrated chip-HPLC-MS system. The linear range was 0.1-10 ng mL(-1) and the method detection limit (signal-to-noise ratio of 3) was 0.05 ng mL(-1) for 7-aminoFM2. After consecutive liquid-liquid extraction (LLE) and solid-phase extraction (SPE), the chip-HPLC-MS exhibited high correlation between 7-aminoFM2 spiked Milli-Q water and 7-aminoFM2 spiked urine samples. This system also showed good precision (n = 5) and recovery for spiked urine samples at the levels of 0.1, 1.0, and 10 ng mL(-1). Intra-day and inter-day precision were 2.0-7.1% and 4.3-6.0%, respectively. Clinical urine samples were also analyzed by this chip-HPLC-MS system and acceptable relative differences (-1.3 to -13.0%) compared with the results using a GC-MC method were determined. Due to its high sensitivity and ease of operation, the chip-HPLC-MS system can be utilized for the determination of small molecules such

  9. Cable coupling lightning transient qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of instrumentation cabling on the redesigned solid rocket motor was performed. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of instrumentation cable transients on cables within the system tunnel. The maximum short-circuit current induced onto a United Space Boosters, Inc., operational flight cable within the systems tunnel was 92 A, and the maximum induced open-circuit voltage was 316 V. These levels were extrapolated to the worst-case (200 kA) condition of NASA specification NSTS 07636 and were also scaled to full-scale redesigned solid rocket motor dimensions. Testing showed that voltage coupling to cables within the systems tunnel can be reduced 40 to 90 dB and that current coupling to cables within the systems tunnel can be reduced 30 to 70 dB with the use of braided metallic sock shields around cables that are external to the systems tunnel. Testing also showed that current and voltage levels induced onto cables within the systems tunnel are partially dependant on the cables' relative locations within the systems tunnel. Results of current injections to the systems tunnel indicate that the dominant coupling mode on cables within the systems tunnel is not from instrumentation cables but from coupling through the systems tunnel cover seam apertures. It is recommended that methods of improving the electrical bonding between individual sections of the systems tunnel covers be evaluated. Further testing to better characterize redesigned solid rocket motor cable coupling effects as an aid in developing methods to reduce coupling levels, particularly with respect to cable placement within the systems tunnel, is also recommended.

  10. Quantitative and chemical fingerprint analysis for the quality evaluation of Receptaculum Nelumbinis by RP-HPLC coupled with hierarchical clustering analysis.

    PubMed

    Wu, Yan-Bin; Zheng, Li-Jun; Yi, Jun; Wu, Jian-Guo; Chen, Ti-Qiang; Wu, Jin-Zhong

    2013-01-21

    A simple and reliable method of high-performance liquid chromatography with photodiode array detection (HPLC-DAD) was developed to evaluate the quality of Receptaculum Nelumbinis (dried receptacle of Nelumbo nucifera) through establishing chromatographic fingerprint and simultaneous determination of five flavonol glycosides, including hyperoside, isoquercitrin, quercetin-3-O-β-d-glucuronide, isorhamnetin-3-O-β-d-galactoside and syringetin-3-O-β-d-glucoside. In quantitative analysis, the five components showed good regression (R > 0.9998) within linear ranges, and their recoveries were in the range of 98.31%-100.32%. In the chromatographic fingerprint, twelve peaks were selected as the characteristic peaks to assess the similarities of different samples collected from different origins in China according to the State Food and Drug Administration (SFDA) requirements. Furthermore, hierarchical cluster analysis (HCA) was also applied to evaluate the variation of chemical components among different sources of Receptaculum Nelumbinis in China. This study indicated that the combination of quantitative and chromatographic fingerprint analysis can be readily utilized as a quality control method for Receptaculum Nelumbinis and its related traditional Chinese medicinal preparations.

  11. Chemical fingerprint and quantitative analysis for the quality evaluation of Vitex negundo seeds by reversed-phase high-performance liquid chromatography coupled with hierarchical clustering analysis.

    PubMed

    Shu, Zhiheng; Li, Xiuqing; Rahman, Khalid; Qin, Luping; Zheng, Chengjian

    2016-01-01

    A simple and efficient method was developed for the chemical fingerprint analysis and simultaneous determination of four phenylnaphthalene-type lignans in Vitex negundo seeds using high-performance liquid chromatography with diode array detection. For fingerprint analysis, 13 V. negundo seed samples were collected from different regions in China, and the fingerprint chromatograms were matched by the computer-aided Similarity Evaluation System for Chromatographic Fingerprint of TCM (Version 2004A). A total of 21 common peaks found in all the chromatograms were used for evaluating the similarity between these samples. Additionally, simultaneous quantification of four major bioactive ingredients was conducted to assess the quality of V. negundo seeds. Our results indicated that the contents of four lignans in V. negundo seeds varied remarkably in herbal samples collected from different regions. Moreover, the hierarchical clustering analysis grouped these 13 samples into three categories, which was consistent with the chemotypes of those chromatograms. The method developed in this study provides a substantial foundation for the establishment of reasonable quality control standards for V. negundo seeds.

  12. A critical evaluation of digestion procedures for coffee samples using diluted nitric acid in closed vessels for inductively coupled plasma optical emission spectrometry.

    PubMed

    Castro, Jacira T; Santos, Elisângela C; Santos, Wagna P C; Costa, Letícia M; Korn, Mauro; Nóbrega, Joaquim A; Korn, Maria Graças A

    2009-06-15

    The efficiency of diluted nitric acid solutions for digesting regular coffee samples was evaluated employing two closed vessel procedures: one was based on microwave-assisted heating and the other was based on conductive heating using pressurized Parr bomb. The efficiency of digestion was evaluated by determining residual carbon content (RCC) and residual acidity. The digestion was effective using both procedures, i.e. there were no solid residues after the decomposition reactions when using up to 3.5 mol L(-1) nitric acid solutions. It was demonstrated that the digestion procedures are critically dependent on reactions occurring in liquid and gas phase and that the formation of NO and its conversion to NO2 by O2 exerts a major effect in the oxidation of organic matter. These processes are more effective in closed vessels heated by microwave radiation due to the greater volume of these flasks and the temperature gradient that exists during the first step of the digestion process. The proposed model for the digestion processes in diluted nitric acid solution is corroborated by data about consumption of acid during the digestion and by measuring the pressure during the whole process.

  13. Metabolomics approach of infant formula for the evaluation of contamination and degradation using hydrophilic interaction liquid chromatography coupled with mass spectrometry.

    PubMed

    Inoue, Koichi; Tanada, Chihiro; Sakamoto, Tasuku; Tsutsui, Haruhito; Akiba, Takashi; Min, Jun Zhe; Todoroki, Kenichiro; Yamano, Yutaka; Toyo'oka, Toshimasa

    2015-08-15

    In this study including the field of metabolomics approach for food, the evaluation of untargeted compounds using HILIC-ESI/TOF/MS and multivariate statistical analysis method is proposed for the assessment of classification, contamination and degradation of infant formula. HILIC mode is used to monitor more detected numbers in infant formulas in the ESI-positive scan mode than the reversed phase. The repeatability of the non-targeted contents from 4 kinds of infant formulas based on PCA was less than the relative standard deviation of 15% in all groups. The PCA pattern showed that significant differences in the classification of types and origins, the contamination of melamine and the degradations for one week were evaluated using HILIC-ESI/TOF/MS. In the S-plot from the degradation test, we could identify two markers by comparison to standards as nicotinic acid and nicotinamide. With this strategy, the differences from the untargeted compounds could be utilized for quality and safety assessment of infant formula. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Evaluation of the water-treatment ability of silica-doped titanium dioxide-coated glass plates using a cationic coupling reagent based on a flow analytical system.

    PubMed

    Sugita, Tsuyoshi; Mori, Masanobu; Mase, Akinori; Noguchi, Shin-nosuke; Tokutome, Toru; Fujii, Kengo; Hara, Chisato; Katayama, Kenji; Iwamoto, Shinji; Itabashi, Hideyuki

    2015-01-01

    In this study, a photocatalytic plate bound to highly dispersible silica-doped titanium dioxide (SiT) on a trimethoxysilyl-propyldiethylenetriamine (dien)-coated glass plate (dien-plate) was newly synthesized, and was evaluated by a flow analytical (FA) system, which consists of a photocatalytic reactor and a spectrophotometer, to continuously monitor the absorbance of tested chemicals. The method was not required to collect any sample solution at a constant period. The SiT-dien-plate facilitated the photodecomposition of methylene blue (MB) and indigo carmine (InC) in aqueous solutions. Notably, MB was quantitatively photo-decomposed following 18 h of UV-light irradiation, related to the electrostatic adsorption of surface-bound particles. A water-treatment ability of visible-light-responsive vanadium-modified nitrogen/silica co-doped titanium dioxide fixed on the dien-plate was also evaluated by the FA system. It clarified to decompose MB and InC under visible-light irradiation. Finally, the decomposition of a humic substance dissolved from Middle West China peaty soils by the SiT-dien-plate under UV-irradiation was assessed as applying the FA system with a photocatalytic plate.

  15. Medicinal cannabis: Principal cannabinoids concentration and their stability evaluated by a high performance liquid chromatography coupled to diode array and quadrupole time of flight mass spectrometry method.

    PubMed

    Citti, Cinzia; Ciccarella, Giuseppe; Braghiroli, Daniela; Parenti, Carlo; Vandelli, Maria Angela; Cannazza, Giuseppe

    2016-09-05

    In the last few years, there has been a boost in the use of cannabis-based extracts for medicinal purposes, although their preparation procedure has not been standardized but rather decided by the individual pharmacists. The present work describes the development of a simple and rapid high performance liquid chromatography method with UV detection (HPLC-UV) for the qualitative and quantitative determination of the principal cannabinoids (CBD-A, CBD, CBN, THC and THC-A) that could be applied to all cannabis-based medicinal extracts (CMEs) and easily performed by a pharmacist. In order to evaluate the identity and purity of the analytes, a high-resolution mass spectrometry (HPLC-ESI-QTOF) analysis was also carried out. Full method validation has been performed in terms of specificity, selectivity, linearity, recovery, dilution integrity and thermal stability. Moreover, the influence of the solvent (ethyl alcohol and olive oil) was evaluated on cannabinoids degradation rate. An alternative extraction method has then been proposed in order to preserve cannabis monoterpene component in final CMEs.

  16. Evaluation of the Bitterness of Traditional Chinese Medicines using an E-Tongue Coupled with a Robust Partial Least Squares Regression Method.

    PubMed

    Lin, Zhaozhou; Zhang, Qiao; Liu, Ruixin; Gao, Xiaojie; Zhang, Lu; Kang, Bingya; Shi, Junhan; Wu, Zidan; Gui, Xinjing; Li, Xuelin

    2016-01-25

    To accurately, safely, and efficiently evaluate the bitterness of Traditional Chinese Medicines (TCMs), a robust predictor was developed using robust partial least squares (RPLS) regression method based on data obtained from an electronic tongue (e-tongue) system. The data quality was verified by the Grubb's test. Moreover, potential outliers were detected based on both the standardized residual and score distance calculated for each sample. The performance of RPLS on the dataset before and after outlier detection was compared to other state-of-the-art methods including multivariate linear regression, least squares support vector machine, and the plain partial least squares regression. Both R² and root-mean-squares error (RMSE) of cross-validation (CV) were recorded for each model. With four latent variables, a robust RMSECV value of 0.3916 with bitterness values ranging from 0.63 to 4.78 were obtained for the RPLS model that was constructed based on the dataset including outliers. Meanwhile, the RMSECV, which was calculated using the models constructed by other methods, was larger than that of the RPLS model. After six outliers were excluded, the performance of all benchmark methods markedly improved, but the difference between the RPLS model constructed before and after outlier exclusion was negligible. In conclusion, the bitterness of TCM decoctions can be accurately evaluated with the RPLS model constructed using e-tongue data.

  17. Adapting the coupled hydrological model ISBA-TOPMODEL to the long-term hydrological cycles of suburban rivers: Evaluation and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Furusho, C.; Chancibault, K.; Andrieu, H.

    2013-04-01

    SummaryThe hydrological model ISBA-TOPMODEL, initially developed for large rural basins prone to flash floods, has been adapted to suburban basins. Impervious surfaces were taken into account assuming very low infiltration, production of runoff drained through the sewer network when the maximal surface stock capacity is exceeded and groundwater infiltration. This model was evaluated on a French basin, located in the northwestern France, within a suburb of the city of Nantes. A sensitivity study was first performed on the major urban parameters in order to determine which ones had to be calibrated. A ten-year period (2001-2010) was simulated, with the first three years for calibration purposes and the last seven for the actual evaluation. The statistical criteria reveal that the model tends to underestimate total discharge during dry periods while it overestimates discharge during wet weather. The underestimation seems to be caused by an unrealistic deep drainage through the soil, whereas the overestimation can be attributed to impervious surface runoff overestimation. Nevertheless, over the entire simulated period, the statistical criteria still indicate satisfactory results.

  18. Mate Selection among Married and Cohabiting Couples.

    ERIC Educational Resources Information Center

    Blackwell, Debra L.; Lichter, Daniel T.

    2000-01-01

    Examines comparative patterns of educational and racial assortative mating or homogany among married and cohabiting couples, and evaluates whether women and men trade in socioeconomic status and racial caste prestige. Lists several findings, including married/cohabiting couples are highly homogenous with respect to race and education. Suggests…

  19. Evaluation of 3-D turbula mixing coupled with focused subsampling as a method to obtain representative laboratory subsamples of rock and soil for analysis when performing the CARB 435 test protocol

    NASA Astrophysics Data System (ADS)

    Martin, C.; Bailey, R.; Suess, T.

    2012-12-01

    Rock and samples submitted to asbestos testing laboratories for CARB 435 method analysis typically range from one pint (~1 kg) to five gallons (~40kg) in size with contained rock fragments as large as 3" in diameter. Extracting a representative test sample, which requires 8 sample preps containing ~3 mg per grain mount of ~200 mesh powder, is a non-trivial and poorly understood process. The CARB 435 test method calls for crushing and pulverizing of rock/soil samples, but gives no guidance as to how to extract a representative sample from the resulting powdered material, allowing for large errors due to poor lab subsampling protocols (too often a simple scoop off the top). This talk presents the results of a series of experiments which evaluate the efficacy and efficiency of 3-D turbula powder sample mixing coupled with focused multiple sampling thief extractions from the mixed powder to obtain representative subsamples for CARB 435 method analysis.

  20. Synthesis and structural characterization of PHP[(C(5)Me(4))(2)], a monodentate chiral phosphine derived from intramolecular C-C coupling of tetramethylcyclopentadienyl groups: an evaluation of steric and electronic properties.

    PubMed

    Shin, J H; Bridgewater, B M; Churchill, D G; Parkin, G

    2001-10-22

    The chiral monodentate phosphine PhP[(C(5)Me(4))(2)] is readily obtained by oxidation of the lithium complex Li(2)[PhP(C(5)Me(4))(2)] with I(2), which couples the two cyclopentadienyl groups to form a five-membered heterocyclic ring. The steric and electronic properties of PhP[(C(5)Me(4))(2)] have been evaluated by X-ray diffraction and IR spectroscopic studies on a variety of derivatives, including Ph[(C(5)Me(4))(2)]PE (E = S, Se), Cp*MCl(4)[P[(C(5)Me(4))(2)]Ph] (M = Mo, Ta), Ir[P[(C(5)Me(4))(2)]Ph](2)(CO)Cl, and CpFe(CO)[PhP[(C(5)Me(4))(2)

  1. Experimental Evaluation of Turning Vane Designs for High-speed and Coupled Fan-drive Corners of 0.1-scale Model of NASA Lewis Research Center's Proposed Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Gelder, Thomas F.; Moore, Royce D.; Shyne, Rickey J.; Boldman, Donald R.

    1987-01-01

    Two turning vane designs were experimentally evaluated for the fan-drive corner (corner 2) coupled to an upstream diffuser and the high-speed corner (corner 1) of the 0.1 scale model of NASA Lewis Research Center's proposed Altitude Wind Tunnel. For corner 2 both a controlled-diffusion vane design (vane A4) and a circular-arc vane design (vane B) were studied. The corner 2 total pressure loss coefficient was about 0.12 with either vane design. This was about 25 percent less loss than when corner 2 was tested alone. Although the vane A4 design has the advantage of 20 percent fewer vanes than the vane B design, its vane shape is more complex. The effects of simulated inlet flow distortion on the overall losses for corner 1 or 2 were small.

  2. Synthesis and evaluation of the substrate activity of C-6 substituted purine ribosides with E. coli purine nucleoside phosphorylase: palladium mediated cross-coupling of organozinc halides with 6-chloropurine nucleosides.

    PubMed

    Hassan, Abdalla E A; Abou-Elkhair, Reham A I; Riordan, James M; Allan, Paula W; Parker, William B; Khare, Rashmi; Waud, William R; Montgomery, John A; Secrist, John A

    2012-01-01

    A series of C-6 alkyl, cycloalkyl, and aryl-9-(β-d-ribofuranosyl)purines were synthesized and their substrate activities with Escherichia coli purine nucleoside phosphorylase (E. coli PNP) were evaluated. (Ph(3)P)(4)Pd-mediated cross-coupling reactions of 6-chloro-9-(2,3,5-tri-O-acetyl-β-d-ribofuranosyl)-purine (6) with primary alkyl (Me, Et, n-Pr, n-Bu, isoBu) zinc halides followed by treatment with NH(3)/MeOH gave the corresponding 6-alkyl-9-(β-d-ribofuranosyl)purine derivatives 7-11, respectively, in good yields. Reactions of 6 with cycloalkyl(propyl, butyl, pentyl)zinc halides and aryl (phenyl, 2-thienyl)zinc halides gave under similar conditions the corresponding 6-cyclopropyl, cyclobutyl, cyclopentyl, phenyl, and thienyl -9-(β-d-ribofuranosyl)purine derivatives 12-16, respectively in high yields. E. coli PNP showed a high tolerance to the steric and hydrophobic environment at the 6-position of the synthesized purine ribonucleosides. Significant cytotoxic activity was observed for 8, 12, 15, and 16. Evaluation of 12 and 16 against human tumor xenografts in mice did not demonstrate any selective antitumor activity. In addition, 6-methyl-9-(β-d-arabinofuranosyl)purine (18) was prepared and evaluated. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  3. Coupling of Geant4-DNA physics models into the GATE Monte Carlo platform: Evaluation of radiation-induced damage for clinical and preclinical radiation therapy beams

    NASA Astrophysics Data System (ADS)

    Pham, Q. T.; Anne, A.; Bony, M.; Delage, E.; Donnarieix, D.; Dufaure, A.; Gautier, M.; Lee, S. B.; Micheau, P.; Montarou, G.; Perrot, Y.; Shin, J. I.; Incerti, S.; Maigne, L.

    2015-06-01

    The GATE Monte Carlo simulation platform based on the Geant4 toolkit is in constant improvement for dosimetric calculations. In this paper, we present the integration of Geant4-DNA processes into the GATE 7.0 platform in the objective to perform multi-scale simulations (from macroscopic to nanometer scale). We simulated three types of clinical and preclinical beams: a 6 MeV electron clinical beam, a X-ray irradiator beam and a clinical proton beam for which we validated depth dose distributions against measurements in water. Frequencies of energy depositions and DNA damage were evaluated using a specific algorithm in charge of allocating energy depositions to atoms constituting DNA molecules represented by their PDB (Protein Data Bank) description.

  4. Footprint Evaluation for Flux and Concentration Measurements for an Urban-Like Canopy with Coupled Lagrangian Stochastic and Large-Eddy Simulation Models

    NASA Astrophysics Data System (ADS)

    Hellsten, Antti; Luukkonen, Sofia-M.; Steinfeld, Gerald; Kanani-Sühring, Farah; Markkanen, Tiina; Järvi, Leena; Lento, Juha; Vesala, Timo; Raasch, Siegfried

    2015-11-01

    A footprint algorithm, based on a Lagrangian stochastic (LS) model embedded into a parallelized large-eddy simulation (LES) model, is used for the evaluation of flux and concentration footprints of passive scalars in flow in and above an urban-like canopy layer of a neutrally stratified 440 m deep boundary layer. The urban-like canopy layer is realized by an aligned array of cuboids whose height H is 40 m. The canopy flow involves strong small-scale inhomogeneities although it is homogeneous at the large scale. The source height is 1 m (0.025 H) above the ground in the street canyons, roughly mimicking traffic emissions. Footprints are evaluated for four heights from 0.25 H to 2.5 H, and for up to eight different horizontal sensor positions per measurement height, comprising sensor positions inside as well as outside of the street canyon that extend perpendicular to the mean wind direction. The LES-LS footprints are compared with footprints estimated by a conventional model (Kormann and Meixner, in Boundary-Layer Meteorol 99:207-224, 2001). It becomes evident that the local heterogeneity of the flow has a considerable impact on flux and concentration footprints. As expected, footprints for measurements within and right above the canopy layer show complex and completely different footprint shapes compared to the ellipsoidal shape obtained from conventional footprint models that assume horizontal homogeneity of the turbulent flow as well as the sources of passive scalars. Our results show the importance of street-canyon flow and turbulence for the vertical mixing of scalar concentration.

  5. Towards steady-state direct solid sample analysis by inductively coupled plasma atomic emission spectrometry: qualitative evaluation of an intraplasmic powdered sample digester

    NASA Astrophysics Data System (ADS)

    Hamier, Jan; Salin, Eric D.

    1998-08-01

    A new type of reactor designed for continuous halogen-assisted digestion and analysis of powdered samples was evaluated. Two different halogenating gas introduction methods were tested, as well as the use of an internal baffle to increase the residence time of the solids inside the reactor. Studies were carried out on Al 2O 3 and CuO as model compounds for optimization of the reactor's parameters, such as the carrier gas flow, the fraction of halogenating gas and the feed rate, using Freon-12 as the halogenating gas. A qualitative study of a pseudo fluidized bed reactor (PFBR) was also performed on a soil sample certified reference material (SO-4). The internal gas flow rate had to be kept to an absolute minimum in order to minimize cooling of the PFBR's inner walls. Pre-mixing of the halogenating reagent into the solid aerosol carrier resulted in a much more efficient reaction than separate flow introduction. The use of a baffle drastically improved the digestion efficiency by virtue of an increased solid residence time. The argon plasma did not have a sufficiently high heat transfer capability to ensure proper operation of the PFBR under continuous sample loading. The porosity of the graphite used for the PFBR construction caused some tailing and memory effects due to analyte seepage into the reactor's walls.

  6. Quality evaluation of Salvia miltiorrhiza Bge. by ultra high performance liquid chromatography with photodiode array detection and chemical fingerprinting coupled with chemometric analysis.

    PubMed

    Luo, Hongli; Kong, Weijun; Hu, Yichen; Chen, Ping; Wu, Xiaoru; Wan, Li; Yang, Meihua

    2015-05-01

    An ultra high performance liquid chromatography with photodiode array detection method is developed for the simultaneous quantitative determination of five water-soluble compounds including danshensu, protocatechualdehyde, rosmarinic acid, salvianolic acid B, and salvianolic acid A in Salvia miltiorrhiza Bge. Through method optimization, the five compounds all expressed good linearity (R(2) > 0.9990) in a wide concentration range together with satisfactory accuracy, precision, and stability. Moreover, through qualitative analysis of the chemical fingerprint combined with similarity analysis, hierarchical cluster analysis, principle component analysis, and partial least-squares discriminate analysis, we determined that the 13 batches of Salvia miltiorrhiza Bge. were similar in internal quality and the differences resulted from various cultivation environments, recovery elements, and others. Seen from the results of hierarchical cluster analysis and principle component analysis, the classification of 13 batches was in accordance, and partial least-squares discriminate analysis technique was more suitable than the principle component analysis model to provide a distinct classification of test samples on the basis of their different components. Moreover, a permutation test verified the rationality of partial least-squares discriminate analysis and variable importance plot showed that peaks 37 and 38 were the most significant variables in distinguishing the Salvia miltiorrhiza Bge. The idea of the quantitative and qualitative analysis of Salvia miltiorrhiza Bge. was convenient, sensitive, and comprehensive, which could be applied to evaluate the quality of more traditional Chinese medicines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Evaluation of the absorption of methotrexate on cells and its cytotoxicity assay by using an integrated microfluidic device coupled to a mass spectrometer.

    PubMed

    Gao, Dan; Li, Haifang; Wang, Niejun; Lin, Jin-Ming

    2012-11-06

    An integrated microfluidic device was developed for high-throughput drug screening with an online electrospray ionization quadrupole time-of-flight mass spectrometer (ESI-Q-TOF MS). The multiple gradient generator followed by an array of microscale cell culture chambers and on-chip solid-phase extraction (SPE) columns for sample pretreatment prior to mass analysis was integrated in the device which was fabricated in one single step. By using the combination system, the process for characterization of drug absorption and evaluation of cytotoxicity could be simultaneously realized. To validate the feasibility, the absorption of methotrexate and its effects on HepG2 and Caco-2 cells were investigated. With the increasing concentration of drugs, the percentage of apoptotic cells appeared in a dose-dependent fashion. By comparison with the results obtained from ESI-Q-TOF MS analysis and cytotoxicity assay, we found that higher intracellular drug concentration resulted in increased cell cytotoxicity. The technique presented herein provides an easy protocol to screen drugs rapidly with low drug consumption, high throughput, and high sensitivity.

  8. Synthesis and characterization of cyclic polystyrene using copper-catalyzed alkyne-azide cycloaddition coupling - evaluation of physical properties and optimization of cyclization conditions

    NASA Astrophysics Data System (ADS)

    Elupula, Ravinder

    . Whereas, anionically prepared A-PS had much higher reliance on the molecular weight changes for its glass transition temperature. However, in thin films, c-PS films have, within error, no confinement effect. In contrast, A-PS has seen large T g reduction with confinement. Ellipsometry analysis suggests that this invariance of the Tg-confinement effect in c-PS is a result of the weak perturbation to Tg near the free surface (i.e. the polymer-air interface). These weak perturbations are the result of the high packing efficiency of cyclic PS segments. The copper-catalyzed alkyne/azide cycloaddition (CuAAC) click reaction has been used to cyclize many linear polymers with complementary azide and alkyne end groups via unimolecular heterodifunctional approach. Cyclic polymers exhibit unique and potentially useful physical properties compared to their linear analogs, hence increasing interest in techniques for preparing this class of polymers. However, a general route for producing high purity cyclic polymers remained elusive. Prior to the discovery of "click" chemistry, it was difficult to produce highly pure cyclic polymers via the ring-closure approach, requiring extensive post-cyclization purification. However, even minor amounts of linear impurities can influence the physical properties of cyclic polymers. Thermal gradient interaction chromatography (TGIC) coupled with Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-ToF MS) allows the fractionation of cyclic polymer samples and produce valuable data for determining both the quantity and identity of linear impurities. This understanding further enables us to optimize cyclization conditions towards the goal of and efficient, general methodology for producing highly pure cyclic polymers. To solve the ever-growing energy needs of the world and capture the renewable energy that is generated sporadically, we need to create devices that can store high amounts of energy and discharge power at

  9. An analytic Pade-motivated QCD coupling

    SciTech Connect

    Martinez, H. E.; Cvetic, G.

    2010-08-04

    We consider a modification of the Minimal Analytic (MA) coupling of Shirkov and Solovtsov. This modified MA (mMA) coupling reflects the desired analytic properties of the space-like observables. We show that an approximation by Dirac deltas of its discontinuity function {rho} is equivalent to a Pade(rational) approximation of the mMA coupling that keeps its analytic structure. We propose a modification to mMA that, as preliminary results indicate, could be an improvement in the evaluation of low-energy observables compared with other analytic couplings.

  10. Final Project Report - Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloriethylene Co-Metabolism: Co-Metabolic Enzyme Activity Probes and Modeling Co-Metabolism and Attenuation

    SciTech Connect

    Starr, Robert C; Orr, Brennon R; Lee, M Hope; Delwiche, Mark

    2010-02-26

    Trichloroethene (TCE) (also known as trichloroethylene) is a common contaminant in groundwater. TCE is regulated in drinking water at a concentration of 5 µg/L, and a small mass of TCE has the potential to contaminant large volumes of water. The physical and chemical characteristics of TCE allow it to migrate quickly in most subsurface environments, and thus large plumes of contaminated groundwater can form from a single release. The migration and persistence of TCE in groundwater can be limited by biodegradation. TCE can be biodegraded via different processes under either anaerobic or aerobic conditions. Anaerobic biodegradation is widely recognized, but aerobic degradation is less well recognized. Under aerobic conditions, TCE can be oxidized to non hazardous conditions via cometabolic pathways. This study applied enzyme activity probes to demonstrate that cometabolic degradation of TCE occurs in aerobic groundwater at several locations, used laboratory microcosm studies to determine aerobic degradation rates, and extrapolated lab-measured rates to in situ rates based on concentrations of microorganisms with active enzymes involved in cometabolic TCE degradation. Microcosms were constructed using basalt chips that were inoculated with microorganisms to groundwater at the Idaho National Laboratory Test Area North TCE plume by filling a set of Flow-Through In Situ Reactors (FTISRs) with chips and placing the FTISRs into the open interval of a well for several months. A parametric study was performed to evaluate predicted degradation rates and concentration trends using a competitive inhibition kinetic model, which accounts for competition for enzyme active sites by both a growth substrate and a cometabolic substrate. The competitive inhibition kinetic expression was programmed for use in the RT3D reactive transport package. Simulations of TCE plume evolution using both competitive inhibition kinetics and first order decay were performed.

  11. Determination of cannabinoids in hemp nut products in Taiwan by HPLC-MS/MS coupled with chemometric analysis: quality evaluation and a pilot human study.

    PubMed

    Chang, Chih-Wei; Tung, Chun-Wei; Tsai, Chin-Chuan; Wu, Yu-Tse; Hsu, Mei-Chich

    2016-09-02

    Hemp nuts are mature cannabis seeds obtained after shelling and that are commonly used in traditional Chinese medicine for treating functional constipation. In this work, we screened hemp nut products, classified them, and verified the legality of consuming them. A total of 18 products were purchased from Taiwan, China, and Canada. Validated high-performance liquid chromatography with tandem mass spectrometry methods were developed for analyzing the cannabinoid (i.e., Δ(9) -tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol) content of the products and the concentration of urinary 11-nor-9-carboxy-THC. Chemometric techniques, namely hierarchical clustering analysis (HCA) and principal component analysis (PCA), were applied for rapidly classifying 11 concentrated powder products in Taiwan. A pilot human study comprising single and multiple administrations of a product with 1.5 µg/g of THC was conducted to examine the urinary 11-nor-9-carboxy-THC concentration. Through optimization of 3(2) full factorial design, using 60% isopropanol as the extraction solvent exhibited the highest yield of cannabinoids and was applied as the optimal condition in further analysis. The results of HCA and PCA on quality evaluation were in good agreement; however, the tested products possessed distinct CBD-to-THC ratios which ranged widely from 0.1:1 to 46.8:1. Particularly, the products with CBD-to-THC ratios higher than 1:1 were the majority in Taiwan. Our data suggested that all the tested hemp nut products met the Taiwan restriction criterion of 10 µg/g of THC. We propose a usual consumption amount of hemp nut products in Taiwan would unlikely to violate the cut-off point of 15 ng/mL of urinary 11-nor-9-carboxy-THC. Copyright © 2016 John Wiley & Sons, Ltd.

  12. A Bayesian Approach to Estimating Coupling Between Neural Components: Evaluation of the Multiple Component, Event-Related Potential (mcERP) Algorithm

    NASA Technical Reports Server (NTRS)

    Shah, Ankoor S.; Knuth, Kevin H.; Truccolo, Wilson A.; Ding, Ming-Zhou; Bressler, Steven L.; Schroeder, Charles E.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Accurate measurement of single-trial responses is key to a definitive use of complex electromagnetic and hemodynamic measurements in the investigation of brain dynamics. We developed the multiple component, Event-Related Potential (mcERP) approach to single-trial response estimation. To improve our resolution of dynamic interactions between neuronal ensembles located in different layers within a cortical region and/or in different cortical regions. The mcERP model assets that multiple components defined as stereotypic waveforms comprise the stimulus-evoked response and that these components may vary in amplitude and latency from trial to trial. Maximum a posteriori (MAP) solutions for the model are obtained by iterating a set of equations derived from the posterior probability. Our first goal was to use the ANTWERP algorithm to analyze interactions (specifically latency and amplitude correlation) between responses in different layers within a cortical region. Thus, we evaluated the model by applying the algorithm to synthetic data containing two correlated local components and one independent far-field component. Three cases were considered: the local components were correlated by an interaction in their single-trial amplitudes, by an interaction in their single-trial latencies, or by an interaction in both amplitude and latency. We then analyzed the accuracy with which the algorithm estimated the component waveshapes and the single-trial parameters as a function of the linearity of each of these relationships. Extensions of these analyses to real data are discussed as well as ongoing work to incorporate more detailed prior information.

  13. In-line near-infrared (NIR) and Raman spectroscopy coupled with principal component analysis (PCA) for in situ evaluation of the transesterification reaction.

    PubMed

    Fontalvo-Gómez, Miriam; Colucci, José A; Velez, Natasha; Romañach, Rodolfo J

    2013-10-01

    Biodiesel was synthesized from different commercially available oils while in-line Raman and near-infrared (NIR) spectra were obtained simultaneously, and the spectral changes that occurred during the reaction were evaluated with principal component analysis (PCA). Raman and NIR spectra were acquired every 30 s with fiber optic probes inserted into the reaction vessel. The reaction was performed at 60-70 °C using magnetic stirring. The time of reaction was 90 min, and during this time, 180 Raman and NIR spectra were collected. NIR spectra were collected using a transflectance probe and an optical path length of 1 mm at 8 cm(-1) spectral resolution and averaging 32 scans; for Raman spectra a 3 s exposure time and three accumulations were adequate for the analysis. Raman spectroscopy showed the ester conversion as evidenced by the displacement of the C=O band from 1747 to 1744 cm(-1) and the decrease in the intensity of the 1000-1050 cm(-1) band and the 1405 cm(-1) band as methanol was consumed in the reaction. NIR spectra also showed the decrease in methanol concentration with the band in the 4750-5000 cm(-1) region; this signal is present in the spectra of the transesterification reaction but not in the neat oils. The variations in the intensity of the methanol band were a main factor in the in-line monitoring of the transesterification reaction using Raman and NIR spectroscopy. The score plot of the first principal component showed the progress of the reaction. The final product was analyzed using (1)H nuclear magnetic resonance ((1)H NMR) spectroscopy and using mid-infrared spectroscopy, confirming the conversion of the oils to biodiesel.

  14. Evaluation of ultrasound-assisted extraction as sample pre-treatment for quantitative determination of rare earth elements in marine biological tissues by inductively coupled plasma-mass spectrometry.

    PubMed

    Costas, M; Lavilla, I; Gil, S; Pena, F; de la Calle, I; Cabaleiro, N; Bendicho, C

    2010-10-29

    In this work, the determination of rare earth elements (REEs), i.e. Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in marine biological tissues by inductively coupled-mass spectrometry (ICP-MS) after a sample preparation method based on ultrasound-assisted extraction (UAE) is described. The suitability of the extracts for ICP-MS measurements was evaluated. For that, studies were focused on the following issues: (i) use of clean up of extracts with a C18 cartridge for non-polar solid phase extraction; (ii) use of different internal standards; (iii) signal drift caused by changes in the nebulization efficiency and salt deposition on the cones during the analysis. The signal drift produced by direct introduction of biological extracts in the instrument was evaluated using a calibration verification standard for bracketing (standard-sample bracketing, SSB) and cumulative sum (CUSUM) control charts. Parameters influencing extraction such as extractant composition, mass-to-volume ratio, particle size, sonication time and sonication amplitude were optimized. Diluted single acids (HNO(3) and HCl) and mixtures (HNO(3)+HCl) were evaluated for improving the extraction efficiency. Quantitative recoveries for REEs were achieved using 5 mL of 3% (v/v) HNO(3)+2% (v/v) HCl, particle size <200 μm, 3 min of sonication time and 50% of sonication amplitude. Precision, expressed as relative standard deviation from three independent extractions, ranged from 0.1 to 8%. In general, LODs were improved by a factor of 5 in comparison with those obtained after microwave-assisted digestion (MAD). The accuracy of the method was evaluated using the CRM BCR-668 (mussel tissue). Different seafood samples of common consumption were analyzed by ICP-MS after UAE and MAD.

  15. Couple communication in stepfamilies.

    PubMed

    Halford, Kim; Nicholson, Jan; Sanders, Matthew

    2007-12-01

    Effective communication is assumed to help sustain couple relationships and is a key focus of most relationship education programs. We assessed couple problem-solving communication in 65 stepfamily and 52 first-time-marrying couples, with each group stratified into high risk and low risk for relationship problems based on family-of-origin experiences. Relative to partners in first-time couples, partners in stepfamily couples were less positive, less negative, and more likely to withdraw from discussion. Risk was associated with communication in first-time but not stepfamily couples. Stepfamily couples do not exhibit the negative communication evident in high-risk first-time-marrying couples, and available relationship education programs that focus on reducing negative communication are unlikely to meet the needs of stepfamilies.

  16. Development of a dynamic headspace solid-phase microextraction procedure coupled to GC-qMSD for evaluation the chemical profile in alcoholic beverages.

    PubMed

    Rodrigues, F; Caldeira, M; Câmara, J S

    2008-02-18

    In the present study, a simple and sensitive methodology based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography with quadrupole mass detection (GC-qMSD), was developed and optimized for the determination of volatile (VOCs) and semi-volatile (SVOCs) compounds from different alcoholic beverages: wine, beer and whisky. Key experimental factors influencing the equilibrium of the VOCs and SVOCs between the sample and the SPME fibre, as the type of fibre coating, extraction time and temperature, sample stirring and ionic strength, were optimized. The performance of five commercially available SPME fibres was evaluated and compared, namely polydimethylsiloxane (PDMS, 100 microm); polyacrylate (PA, 85 microm); polydimethylsiloxane/divinylbenzene (PDMS/DVB, 65 microm); carboxentrade mark/polydimethylsiloxane (CAR/PDMS, 75 microm) and the divinylbenzene/carboxen on polydimethylsiloxane (DVB/CAR/PDMS, 50/30 microm) (StableFlex). An objective comparison among different alcoholic beverages has been established in terms of qualitative and semi-quantitative differences on volatile and semi-volatile compounds. These compounds belong to several chemical families, including higher alcohols, ethyl esters, fatty acids, higher alcohol acetates, isoamyl esters, carbonyl compounds, furanic compounds, terpenoids, C13-norisoprenoids and volatile phenols. The optimized extraction conditions and GC-qMSD, lead to the successful identification of 44 compounds in white wines, 64 in beers and 104 in whiskys. Some of these compounds were found in all of the examined beverage samples. The main components of the HS-SPME found in white wines were ethyl octanoate (46.9%), ethyl decanoate (30.3%), ethyl 9-decenoate (10.7%), ethyl hexanoate (3.1%), and isoamyl octanoate (2.7%). As for beers, the major compounds were isoamyl alcohol (11.5%), ethyl octanoate (9.1%), isoamyl acetate (8.2%), 2-ethyl-1-hexanol (5.9%), and octanoic acid (5

  17. Active fragments-guided drug discovery and design of selective tropane alkaloids using ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry coupled with virtual calculation and biological evaluation.

    PubMed

    Zhou, Mengge; Ma, Xiaoyao; Sun, Jixue; Ding, Guoyu; Cui, Qingxin; Miao, Yan; Hou, Yuanyuan; Jiang, Min; Bai, Gang

    2017-02-01

    Tropane alkaloids (TAs), rich in the plant of Physochlaina infundibularis Kuang, which is named Huashanshen (HSS) in China, showed good effects on types of spasms. However, no data were collected to explore the relationship between the specificity for muscarinic receptor subtypes and the structures of these TAs. To address this issue, an extracted ion chromatogram (EIC) strategy using ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q/TOF-MS) based on the fragmentation behavior of the TA standards was established to rapidly capture the varied TAs from HSS. Based on the provided structural information of diagnostic ions or neutral loss, 29 TAs were efficiently profiled, especially some trace ingredients. In additional, via virtual validation combined with molecular dynamic simulation, approximately a dozen alkaloids were found with high selectivity for muscarinic receptors. In additional, N-acetyl convolicine was chosen for selectivity evaluation of M2 or M3 receptors through the use of a dual-luciferase reporter assay system at the cellular level and an ACh-induced constricted strip test in vitro. After summarizing the active fragments and the structure-activity relationship (SAR) information, a new modified TA that takes advantage of both the high affinity and high selectivity for M3 receptors was proposed and evaluated successfully. This study provided an effective approach for the discovery and design of natural products based on highly selective drugs by UPLC-Q/TOF-MS coupled with virtual calculation and biological evaluation. Graphical Abstract Active fragments-guided strategy for selective inhibitors from HSS.

  18. Convectively coupled Kelvin waves in CMIP5 coupled climate models

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Li, Tim

    2017-02-01

    This study provided a quantitative evaluation of convectively coupled Kelvin waves (CCKWs) over the Indian Ocean and the Pacific Ocean simulated by 20 coupled climate models that participated in Coupled Model Intercomparison Project phase 5. The two leading empirical orthogonal function (EOF) modes of filtered daily precipitation anomalies are used to represent the eastward propagating CCKWs in both observations and simulations. The eigenvectors and eigenvalues of the EOF modes represent the spatial patterns and intensity of CCKWs respectively, and the lead-lag relationship between the two EOF principle components describe the phase propagation of CCKWs. A non-dimensional metric was designed in consideration of all the three factors (i.e., pattern, amplitude and phase propagation) for evaluation. The relative rankings of the models based on the skill scores calculated by the metric are conducted for the Indian Ocean and the Pacific Ocean, respectively. Two models (NorESM1-M and MPI-ESM-LR) are ranked among the best 20 % for both the regions. Three models (inmcm4, MRI-CGCM3 and HadGEM2-ES) are ranked among the worst 20 % for both the regions. While the observed CCKW amplitude is greater north of the equator in the Pacific, some models overestimate the CCKW ampliutde in the Southern Hemisphere. This bias is related to the mean state precipitation bias along the south Pacific convergence zone.

  19. Response reactions: equilibrium coupling.

    PubMed

    Hoffmann, Eufrozina A; Nagypal, Istvan

    2006-06-01

    It is pointed out and illustrated in the present paper that if a homogeneous multiple equilibrium system containing k components and q species is composed of the reactants actually taken and their reactions contain only k + 1 species, then we have a unique representation with (q - k) stoichiometrically independent reactions (SIRs). We define these as coupling reactions. All the other possible combinations with k + 1 species are the coupled reactions that are in equilibrium when the (q - k) SIRs are in equilibrium. The response of the equilibrium state for perturbation is determined by the coupling and coupled equilibria. Depending on the circumstances and the actual thermodynamic data, the effect of coupled equilibria may overtake the effect of the coupling ones, leading to phenomena that are in apparent contradiction with Le Chatelier's principle.

  20. Three tooth kinematic coupling

    DOEpatents

    Hale, Layton C.

    2000-01-01

    A three tooth kinematic coupling based on having three theoretical line contacts formed by mating teeth rather than six theoretical point contacts. The geometry requires one coupling half to have curved teeth and the other coupling half to have flat teeth. Each coupling half has a relieved center portion which does not effect the kinematics, but in the limit as the face width approaches zero, three line contacts become six point contacts. As a result of having line contact, a three tooth coupling has greater load capacity and stiffness. The kinematic coupling has application for use in precision fixturing for tools or workpieces, and as a registration device for a work or tool changer or for optics in various products.

  1. Determination of Minerals and Trace Elements in Infant Formula and Adult/Pediatric Nutritional Formula by Inductively Coupled Plasma/Mass Spectrometry A Performance Evaluation: Single-Laboratory Validation, First Action 2015.06.

    PubMed

    Thompson, Joseph J; Pacquette, Lawrence; Brunelle, Sharon L

    2015-01-01

    A method for determination of 12 minerals and trace elements (Na, Mg, P, K, Ca, Cr, Mn, Fe, Cu, Zn, Se, and Mo) in infant formula and adult/ pediatric nutritional formula was developed and evaluated in a single-laboratory validation. Some additional reproducibility data were obtained from a small interlaboratory study. The method involves microwave digestion of the sample followed by inductively coupled plasma/MS and uses Ge and Te as internal standards. The method is an extension of Official Method(SM) 2011.19 and was compared to AOAC Standard Method Performance Requirements (SMPRs®) 2011.009 and 2014.004 developed by the AOAC Stakeholder Panel on Infant Formula and Adult Nutritionals (SPIFAN). Repeatability precision for the 12 elements in 11 SPIFAN matrixes and National Institute of Standards and Technology Standard Reference Material (SRM) 1849a was <5%, meeting the SMPR criterion for repeatability. Intermediate reproducibility (8 days, two analysts, two instruments) in the 11 SPIFAN matrixes was <5% for nine (Na, Mg, P, K, Mn, Fe, Cu, Zn, Se) of the 12 elements in all 11 matrixes. The mean reproducibility across 6-7 laboratories and seven SPIFAN matrixes ranged from 2.5% for Cu to 7.1% for P. Recovery from spiked matrixes varied from 90.1 to 109%, and accuracy of determination using SRM 1849a ranged from 96.2 to 107.7%, meeting the requirement of 90-110% recovery/accuracy.

  2. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed).

  3. Development and Evaluation of Reverse Transcription-Loop-Mediated Isothermal Amplification (RT-LAMP) Assay Coupled with a Portable Device for Rapid Diagnosis of Ebola Virus Disease in Guinea

    PubMed Central

    Kurosaki, Yohei; Magassouba, N’Faly; Oloniniyi, Olamide K.; Cherif, Mahamoud S.; Sakabe, Saori; Takada, Ayato; Hirayama, Kenji; Yasuda, Jiro

    2016-01-01

    Given the current absence of specific drugs or vaccines for Ebola virus disease (EVD), rapid, sensitive, and reliable diagnostic methods are required to stem the transmission chain of the disease. We have developed a rapid detection assay for Zaire ebolavirus based on reverse transcription-loop-mediated isothermal amplification (RT-LAMP) and coupled with a novel portable isothermal amplification and detection platform. The RT-LAMP assay is based on primer sets that target the untranscribed trailer region or nucleoprotein coding region of the viral RNA. The test could specifically detect viral RNAs of Central and West African Ebola virus strains within 15 minutes with no cross-reactivity to other hemorrhagic fever viruses and arboviruses, which cause febrile disease. The assay was evaluated using a total of 100 clinical specimens (serum, n = 44; oral swab, n = 56) collected from suspected EVD cases in Guinea. The specificity of this diagnostic test was 100% for both primer sets, while the sensitivity was 100% and 97.9% for the trailer and nucleoprotein primer sets, respectively, compared with a reference standard RT-PCR test. These observations suggest that our diagnostic assay is useful for identifying EVD cases, especially in the field or in settings with insufficient infrastructure. PMID:26900929

  4. Evaluation of glycoalkaloids in tubers of genetically modified virus Y-resistant potato plants (var. Désirée) by non-aqueous capillary electrophoresis coupled with electrospray ionization mass spectrometry (NACE-ESI-MS).

    PubMed

    Bianco, Giuliana; Schmitt-Kopplin, Philippe; Crescenzi, Aniello; Comes, Soccorsa; Kettrup, Antonius; Cataldi, Tommaso R I

    2003-03-01

    The glycoalkaloid content of transgenic potatoes was evaluated by an optimised method based on non-aqueous capillary electrophoresis coupled on-line with electrospray ionization-mass spectrometry (NACE-ESI-MS). The potato material consisted of tubers from a conventional cv. Désirée and from three lines of modified plants resistant, intermediate and susceptible to infection by potato virus Y (PVY). The main glycoalkaloids were confirmed to be alpha-solanine and alpha-chaconine with parent ion masses m/z 852 and 868, respectively. In addition, an unknown minor peak at m/z 850.6 was found both in conventional (control) and susceptible line potato tubers. Such a compound exhibited an MS(2) spectrum with fragments ions at 704 and 396 m/z derived by loss of two ions, i.e. m/z 146 and 307, most likely corresponding to a rhamnose unit and a [glucose-(rhamnose)(2)] moiety, respectively. Up to 30-80-fold higher concentrations of total glycoalkaloids were found in the peel compared to flesh samples of all tubers examined. TGA content was nearly doubled in peel samples of resistant compared to control lines, and these levels were lower than the limit recommended for food safety, i.e. 20-60 mg of TGA per 100 g fresh weight. Moreover, it was established that tubers produced by virus-resistant clones are substantially equivalent in glycoalkaloid contents to those produced by conventional potato varieties.

  5. [Sexuality among infertile couples].

    PubMed

    Alvarez-Díaz, Jorge Alberto

    2007-01-01

    A monographic type, bibliographic and hemerographic study on the sexuality in couples with fertility problems is presented. The study is based on the Rubio Aurioles' model of human sexuality, and the four holones (reproductivity, eroticism, affective bonds, gender) in couples with fertility problems are described. A review of clinical studies on the prevailing sexuality in this kind of couples and some theoretical reflections are also presented.

  6. Evaluation of a combination of isotope dilution and single standard addition as an alternative calibration method for the determination of precious metals in lead fire assay buttons by laser ablation-inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Compernolle, Sien; Wambeke, Dorine; De Raedt, Ine; Vanhaecke, Frank

    2012-01-01

    This paper reports on an evaluation of the application of isotope dilution (for Pt, Pd and Ag) and single standard addition and internal standardization (for the mono-isotopic elements Au and Rh) in the analysis of lead buttons obtained by fire assay using laser ablation-inductively coupled plasma-mass spectrometry as an attempt to improve and evaluate the ultimate accuracy and precision of the analytical method. For this purpose, first, a spike lead button, containing the elements of interest in an altered isotopic composition, was prepared. Subsequently, the spike button thus obtained was checked for its homogeneity in terms of element contents and isotope ratios. Additional inductive melting was shown to further improve its homogeneity. In a next step, appropriate portions of this spike button were melted together with an adequate amount of every sample (lead button) to be analyzed and the resulting 'blend' lead buttons were then analyzed using either isotope dilution or single standard addition/internal standardization for quantification. Also external calibration versus matrix-matched lead standards was performed to determine the precious metal concentrations in the same samples, thus allowing comparison of the figures of merit with those of the combined isotope dilution and standard addition/internal standardization approach. Isotope dilution was shown to provide results for the determination of Pt, Pd, and Ag in lead buttons that are more accurate (average deviation between ID result and reference value of < 2%) than those obtained by external calibration (average deviation between experimental result and reference value ≈ 8%). For the mono-isotopic elements Au and Rh, determined via single standard addition and internal standardization, no significant difference was observed between the results provided by the three methods investigated.

  7. Fuzzy clustering evaluation of the discrimination power of UV-Vis and (±) ESI-MS detection system in individual or coupled RPLC for characterization of Ginkgo Biloba standardized extracts.

    PubMed

    Medvedovici, Andrei; Albu, Florin; Naşcu-Briciu, Rodica Domnica; Sârbu, Costel

    2014-02-01

    Discrimination power evaluation of UV-Vis and (±) electrospray ionization/mass spectrometric techniques, (ESI-MS) individually considered or coupled as detectors to reversed phase liquid chromatography (RPLC) in the characterization of Ginkgo Biloba standardized extracts, is used in herbal medicines and/or dietary supplements with the help of Fuzzy hierarchical clustering (FHC). Seventeen batches of Ginkgo Biloba commercially available standardized extracts from seven manufacturers were measured during experiments. All extracts were within the criteria of the official monograph dedicated to dried refined and quantified Ginkgo extracts, in the European Pharmacopoeia. UV-Vis and (±) ESI-MS spectra of the bulk standardized extracts in methanol were acquired. Additionally, an RPLC separation based on a simple gradient elution profile was applied to the standardized extracts. Detection was made through monitoring UV absorption at 220 nm wavelength or the total ion current (TIC) produced through (±) ESI-MS analysis. FHC was applied to raw, centered and scaled data sets, for evaluating the discrimination power of the method with respect to the origins of the extracts and to the batch to batch variability. The discrimination power increases with the increase of the intrinsic selectivity of the spectral technique being used: UV-Vis

  8. High-performance anion-exchange chromatography coupled with pulsed amperometric detection and capillary zone electrophoresis with indirect ultra violet detection as powerful tools to evaluate prebiotic properties of fructooligosaccharides and inulin.

    PubMed

    Corradini, C; Bianchi, F; Matteuzzi, D; Amoretti, A; Rossi, M; Zanoni, S

    2004-10-29

    Fructooligosaccharides (FOS) and inulin are food grade non-digestible carbohydrates that exert beneficial nutritional effect. This paper describes the suitability of high-performance anion-exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD) and capillary zone electrophoresis (CZE) to evaluate fermentation properties of FOS and inulin in pure Bifidobacterium cultures; and to study their effects on faecal cultures (microbial population and short-chain fatty acids). Prebiotic effectiveness of FOS and inulin of different degrees of polymerization was evaluated monitoring the changes in their molecular weight distribution during the in vitro growth of selected Bifidobacterium strains. The qualitative analysis of the residual soluble oligosaccharides or polysaccharides from Raftilose Synergy, Raftiline HP and Raftilose P95 was carried out by HPAEC-PAD, using a CarboPac PA 100 column and an appositely optimized gradient elution program. Under the optimized gradient elution conditions, glucose, fructose, sucrose were resolved from each other and from fructans with a DP ranging from 3 (1-kestose) to 60. The chromatographic profiles of the spent broths pointed out that almost every strain presented a different capability to ferment fructan chains of variable DP, indicating wide strain to strain differences. To explore the prebiotic effect of FOS and inulin, related to of short chain fatty acids (SCFAs) accumulation in faecal cultures due to fermentative metabolism of intestinal microflora, analysis of SCFAs, acetic and lactic acid was achieved by co-electroosmotic capillary electrophoresis, where the electrophoretic mobility of the anionic analytes and electroosmotic flow (EOF) were similarly directed. Moreover, the use of UV detection for the analyses of our organic anions required a running electrolyte which allowed indirect detection. The optimization of the capillary electrophoretic conditions was carried out by applying a chemometric study

  9. Heightening in couple therapy.

    PubMed

    Owen, Jesse; Quirk, Kelley

    2014-03-01

    Across couple therapeutic modalities, heightening interventions have been proposed as a mechanism of change. The current article describes how behavioral and emotion-focused heightening techniques can be facilitated in couple therapy. We provide actual case examples of psychotherapist interventions aimed at heightening couples' relational or emotional interaction. Ultimately, heightening encourages couples to confront difficult topics together, express vulnerable emotions, and make new meaning of the lived experiences that might be interfering with the quality of their relationship. (c) 2014 APA, all rights reserved.

  10. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes: Part I. Comprehensive model evaluation and trend analysis for 2006 and 2011

    SciTech Connect

    Chen, Ying; Zhang, Yang; Fan, Jiwen; Leung, Lai -Yung; Zhang, Qiang; He, Kebin

    2015-08-18

    Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at the surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO2 but relatively poor for surface concentrations of several species such as CO, NO2, SO2, PM2.5, and PM10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is

  11. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes: Part I. Comprehensive model evaluation and trend analysis for 2006 and 2011

    DOE PAGES

    Chen, Ying; Zhang, Yang; Fan, Jiwen; ...

    2015-08-18

    Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at themore » surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO2 but relatively poor for surface concentrations of several species such as CO, NO2, SO2, PM2.5, and PM10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that

  12. Application of an Online-Coupled Regional Climate Model, WRF-CAM5, over East Asia for Examination of Ice Nucleation Schemes: Part I. Comprehensive Model Evaluation and Trend Analysis for 2006 and 2011

    SciTech Connect

    Chen, Ying; Zhang, Yang; Fan, Jiwen; Leung, Lai-Yung; Zhang, Qiang; He, Kebin

    2015-08-18

    Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at the surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO2 but relatively poor for surface concentrations of several species such as CO, NO2, SO2, PM2.5, and PM10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with

  13. Relative Entropy and Torsion Coupling

    NASA Astrophysics Data System (ADS)

    Lin, Feng-Li; Ning, Bo

    2017-08-01

    Based on the the geometric realization of entanglement entropy via Ryu-Takayanagi formula, in this work we evaluate the relative entropy for the holographic deformed CFT dual to the torsion gravity coupled to the fermions of nonzero vev in the Einstein-Cartan formulation. We find that the positivity and monotonicity of the relative entropy imposes constraint on the strength of axial-current coupling, fermion mass and equation of state. Our work is the first example to demonstrate the nontrivial constraint on the bulk gravity theory from the quantum information inequalities. Especially, this constraint is beyond the symmetry action principle and should be understood as the unitarity constraint. This talk is based on the work [1] of the authors.

  14. Couple resilience to economic pressure.

    PubMed

    Conger, R D; Rueter, M A; Elder, G H

    1999-01-01

    Over 400 married couples participated in a 3-year prospective study of economic pressure and marital relations. The research (a) empirically evaluated the family stress model of economic stress influences on marital distress and (b) extended the model to include specific interactional characteristics of spouses hypothesized to protect against economic pressure. Findings provided support for the basic mediational model, which proposes that economic pressure increases risk for emotional distress, which, in turn, increases risk for marital conflict and subsequent marital distress. Regarding resilience to economic stress, high marital support reduced the association between economic pressure and emotional distress. In addition, effective couple problem solving reduced the adverse influence of marital conflict on marital distress. Overall, the findings provided substantial support for the extended family stress model.

  15. A small signal coupling model for predicting the coupling between LNAs

    NASA Astrophysics Data System (ADS)

    Shi, Junyu; Cui, Dasheng; Wu, Yuming

    2017-07-01

    A small signal coupling model is developed to analyze the coupling between two LNAs. The mutual inductance between the adjacent on-chip inductors is considered responsible for this coupling. A set of formulas have been derived to quantitatively predict the coupling effects. Based on our analysis, a quick estimation can be made to see which pair of inductors plays a key role in evaluating the coupling between the LNAs. Source inductors of two LNAs are placed closely while the load inductors are far apart according to the analysis. To validate the proposed theory, two 2 GHz LNAs are fabricated. The LNAs have a peak gain of 18 dB and NF of 1.4 dB. The coupling between the LNAs is -30 dB. Project supported by the National Natural Science Foundation of China (No. 61401025).

  16. Coupled trivial maps.

    PubMed

    Bunimovich, L. A.; Livi, R.; Martinez-Mekler, G.; Ruffo, S.

    1992-07-01

    The first nontrivial example of coupled map lattices that admits a rigorous analysis in the whole range of the strength of space interactions is considered. This class is generated by one-dimensional maps with a globally attracting superstable periodic trajectory that are coupled by a diffusive nearest-neighbor interaction.

  17. Translation-coupling systems

    DOEpatents

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  18. Translation-coupling systems

    DOEpatents

    Pfleger, Brian; Mendez-Perez, Daniel

    2015-05-19

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent transla