Science.gov

Sample records for evanescent cell sensors

  1. Polymer photonic crystal dye lasers as label free evanescent cell sensors

    NASA Astrophysics Data System (ADS)

    Christiansen, Mads B.; Lopacinska, Joanna M.; Jakobsen, Mogens H.; Mortensen, Niels A.; Dufva, Martin; Kristensen, Anders

    2009-08-01

    Dye doped polymer photonic crystal band edge lasers are applied for evanescent wave sensing of cells. The lasers are rectangular shaped slab waveguides of dye doped polymer on a glass substrate, where a photonic crystal is formed by 100 nm deep air-holes in the surface of the 375 nm high waveguides. The lasers are fabricated by combined nanoimprint and photolithography (CNP) in Ormocore hybrid polymer doped with the laser dye Pyrromethene 597. The lasers emit in the chip plane at a wavelength around 595 nm when pumped with 5 ns pulses from a compact frequency doubled Nd:YAG laser. We investigate the sensitivity of photonic crystal band-edge lasers to partial coverage with HeLa cells. The lasers are chemically activated with a flexible UV activated anthraquinone based linker molecule, which enables selective binding of cells and molecules. When measuring in Phosphate Buffered Saline (PBS), which has a refractive index close to that of the cells, the emission wavelength depends linearly on the cell density on the sensor surface. Our results demonstrate that nanostructured hybrid polymer lasers, which are cheap to fabricate and very simple to operate, can be selectively chemically activated with UV sensitive photolinkers for further bioanalytical applications. This opens the possibility to functionalize arrays of optofluidic laser sensors with different bio-recognition molecules for multiplexed sensing. The linear relationship between cell coverage and wavelength indicates that the slight refractive index perturbation from the partial coverage of the sensor influences the entire optical mode, rather than breaking down the photonic crystal feedback.

  2. Reversible evanescent wave sensors for hydrazine

    NASA Astrophysics Data System (ADS)

    Carter, Michael T.; Smith, Jimmy R.; Mowry, Donald R.; Patel, Jay G.

    1999-02-01

    We report recent progress on development of evanescent wave fiber optic sensors for hydrazine (HZ), monomethylhydrazine (MMH) and unsymmetrical dimethylhydrazine (UDMH). Chemically reversible evanescent sensors capable of detection below 10 ppb were prepared by removing cladding from commercial multimode fiber and coating the exposed core with a hydrazine-sensitive triphenylmethane dye immobilized in an inert polymer matrix, typically poly(vinylchloride). Triphenylmethane dyes bleach reversibly in the presence of hydrazines, enabling colorimetric sensing. The linear dynamic range was typically 0 - 300 ppb and overall dynamic range up to ca. 5 ppm. Sensors optimized for HZ were as much as a factor of 45 less sensitive to MMH and UDMH, suggesting that the sensor film would require optimization for each analyte. Saturation response and relaxation times were on the order of 5 - 8 min, but measurable signals for 10 ppb HZ could be obtained in under 30 s. These sensors demonstrate a novel route to reversible sensing of these highly toxic compounds.

  3. Improved structures for evanescent wave sensors

    NASA Astrophysics Data System (ADS)

    Rehouma, F.; Elflein, W.; Persegol, D.; Kevorkian, A.; Clauss, G.; Benech, P.; Rimet, R.

    1995-03-01

    Integrated optics evanescent wave sensors suffer from attenuation losses and reduced contrast ratio when the sensing layer index is too close to the waveguide index. This is attributed to an increase in mode mismatch at inner interfaces of the devices. By properly balancing the losses on each arm of an integrated Mach-Zehnder the contrast ratio is increased to nearly 100% on the entire index range, furthermore, a new technique used to make a smooth transition between sensing and nonsensing waveguides reduced the losses by 5 dB.

  4. The Fabrication of an Evanescent Field Sensor

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Thompson, Erica J.; Griffin, DeVon (Technical Monitor); Pencil, Eric (Technical Monitor)

    2001-01-01

    We present current results concerning novel sensor-based applications for tilted angle fiber Bragg gratings summarized in a recently filed patent. In addition, concepts involving the coupling of light out of the core region of an optical fiber using ablated corrugations to induce interactions with the surrounding media will also be discussed. The interactions between the media and the coupled light formulate the sensing mechanism for both of these devices. The research illustrated here is an extension of previous work that investigated the affects of intense UV radiation fields on both SiO2 and Ge-doped SiO2-based structures (specifically optical fibers and preforms). Finally, these sensors were devised in order to satisfy an experimental task set forth by NASA Glenn involving the production of a prototype evanescent field sensor capable of real-time, dynamic index of refraction measurements as well as early (ultra-high sensitivity) detection of icing on airplane wings.

  5. Approaches from a single- to a multiparameter evanescent wave sensor

    NASA Astrophysics Data System (ADS)

    Bock, Daniel; Hartmann, Andreas; Kaul, Sepp; Martin, Michael; Schulz, V.; Wolfrum, Juergen M.; Seeger, Stefan

    1996-01-01

    Evanescent wave sensors are an interesting tool for the fast detection of reactions between biomolecules. By using small and inexpensive diode lasers together with fluorescent dyes in the red spectral region, it was possible to construct a highly specific sensor. This was due to the use of the immobilization of receptor molecules via the Langmuir-Blodgett technique which enhances the specificity drastically. As a clinically relevant system an immunoassay of the tumor marker mucine was investigated. Mucine could be detected with a sandwich test using the antibody system BM-2/BM-7. In order to detect several analytes at one time, there are two possible ways: time-resolved detection using multiplex-dyes and the parallelization of the sensor by using several fibers simultaneously. A position-resolved evanescent wave sensor using a CCD camera is described.

  6. Novel hydrogen sensors using evanescent microwave probes

    NASA Astrophysics Data System (ADS)

    Tabib-Azar, M.; Sutapun, B.

    1999-09-01

    Gas sensing using local probes, such as atomic force and scanning tunneling microscopes, enables accurate measurement and detection of very small quantities of gas molecules and chemicals. Here, we report a unique application of the evanescent microwave probes (EMP) in detecting hydrogen. The EMP is extensively used to map resistivity and other nonuniformities in a variety of materials including metals, insulators, semiconductors (both organic and inorganic), composites, and biological specimens. The EMP detects the microwave resistivity of the sample and it has an exponential sensitivity to distance and thickness variations. Here, the EMP is used to detect deflections in a Pd-coated cantilever and to quantify the amount of stress and the resistivity change in the Pd film as a function of hydrogen concentration. The stress was in the range of 5.26-8.59×107Pa for H2 concentrations of 0.5%-1.4% at room temperature, which is about three times larger than that found in the bulk Pd for the same range of H2 concentrations. The Pd film's resistivity changed by 13.5% at 3.0%H2 concentration and it resulted in an 18% change in the EMP signal. The EMP with an appropriate frequency can also be used to resonantly detect various physi-absorbed molecules at the surface of an appropriate material as well. We discuss these possibilities along with some specific experimental data.

  7. Temperature-independent polymer optical fiber evanescent wave sensor.

    PubMed

    Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Zhao, Mingfu; Huang, Yun; Chen, Rong

    2015-06-26

    Although the numerous advantages of polymer optical fibers have been exploited in the fields of sensors and telecommunications, such fibers still experience a critical problem: the temperature dependency. Therefore, we explored the temperature-independent operation of a polymer fiber-optic evanescent wave sensor immersed in distilled water. We investigated variations in the surface morphology, deformation trajectory, refractive index, and weight of the fiber-sensing region with varying water temperature. We also examined the spectral transmission and transmitted light intensity of fibers subjected to a heating-cooling treatment. We observed that the light-transmission modes and sensitivity of the sensor were affected by changes in the surface morphology, diameter, and refractive index of the sensing region caused by changes in temperature. The transmitted light intensity of the sensor was maintained at a constant level after five cycles of the heating-cooling treatment, after which the fibers exhibited a smooth surface, low refractive index, and large fiber diameter. Consequently, we utilized the heating-cooling-treated fiber to realize a temperature-independent, U-shaped polymer fiber-optic evanescent wave sensor. The temperature independence was evaluated using glucose solutions in the range of 10 to 70 °C. The fabricated sensor showed significant temperature independence and high degree of consistency in measuring solutions.

  8. Temperature-independent polymer optical fiber evanescent wave sensor

    PubMed Central

    Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Zhao, Mingfu; Huang, Yun; Chen, Rong

    2015-01-01

    Although the numerous advantages of polymer optical fibers have been exploited in the fields of sensors and telecommunications, such fibers still experience a critical problem: the temperature dependency. Therefore, we explored the temperature-independent operation of a polymer fiber-optic evanescent wave sensor immersed in distilled water. We investigated variations in the surface morphology, deformation trajectory, refractive index, and weight of the fiber-sensing region with varying water temperature. We also examined the spectral transmission and transmitted light intensity of fibers subjected to a heating-cooling treatment. We observed that the light-transmission modes and sensitivity of the sensor were affected by changes in the surface morphology, diameter, and refractive index of the sensing region caused by changes in temperature. The transmitted light intensity of the sensor was maintained at a constant level after five cycles of the heating-cooling treatment, after which the fibers exhibited a smooth surface, low refractive index, and large fiber diameter. Consequently, we utilized the heating-cooling-treated fiber to realize a temperature-independent, U-shaped polymer fiber-optic evanescent wave sensor. The temperature independence was evaluated using glucose solutions in the range of 10 to 70 °C. The fabricated sensor showed significant temperature independence and high degree of consistency in measuring solutions. PMID:26112908

  9. Evanescent field sensors and the implementation of waveguiding nanostructures

    SciTech Connect

    Boerner, Sandra; Orghici, Rozalia; Waldvogel, Siegfried R.; Willer, Ulrike; Schade, Wolfgang

    2009-02-01

    Conventional fiber optic evanescent-field gas sensors are based on a high number of total reflections while the gas is passing the active bare core fiber and of course a suitable laser light source. The use of miniaturized laser sources for sensitive detection of CO2 in gaseous and water-dissolved phase for environmental monitoring are studied for signal enhancing purposes. Additionally, the fiber optic sensor, consisting of a coiled bare multimode fiber core, was sensitized by an active polymer coating for the detection of explosive TNT. The implementation of ZnO waveguiding nanowires is discussed for surface and sensitivity enhancing coating of waveguiding elements, considering computational and experimental results.

  10. Planar Optical Sensors and Evanescent Wave Effects

    NASA Astrophysics Data System (ADS)

    Burke, Conor S.; Stránik, Ondrej; McEvoy, Helen M.; MacCraith, Brian D.

    Recent developments in microsystems technology have led to the widespread application of microfabrication techniques for the production of sensor platforms. These techniques have had a major impact on the development of so-called "Lab-on-a-Chip" devices. The major application areas for theses devices are biomedical diagnostics, industrial process monitoring, environmental monitoring, drug discovery, and defence. In the context of biomedical diagnostic applications, for example, such devices are intended to provide quantitative chemical or biochemical information on samples such as blood, sweat and saliva while using minimal sample volume.

  11. Evanescent-wave spectroscopic fiber optic pH sensor

    NASA Astrophysics Data System (ADS)

    Egami, C.; Takeda, K.; Isai, M.; Ogita, M.

    1996-02-01

    We demonstrate a new type of fiber optic pH sensor, which is the application of evanescent-wave spectroscopic technique. A methyl red (MR)-doped-poly(methyl methacrylate) (PMMA) film that coated as part of cladding does function as a pH sensor probe. In this system MR doped in PMMA is used as indicator dye for pH measurement. The absorption spectrum shift in wavelength of indicator dye enables us to get the pH value. The sensor probe is immersed in water solution containing a small proportion of acetic acid over the wide pH range of 5.0 to 7.0. The chemical interaction between MR in sensor probe and hydrogen ion in the water solution causes a change in the dipole moment of MR, that is, the absorption spectrum macroscopically. The evanescent-wave spectroscopic technique provides the measurement of the absorption spectrum shift over a broad range of visible wavelength. The result of experiment was that MR absorption spectrum shifted by 40 nm every increase of 1.0 in pH. The small change in the pH value can be sensed as a large wavelength shift of pH indicator absorption spectrum.

  12. Melamine sensing based on evanescent field enhanced optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Luo, Ji; Yao, Jun; Wang, Wei-min; Zhuang, Xu-ye; Ma, Wen-ying; Lin, Qiao

    2013-08-01

    Melamine is an insalubrious chemical, and has been frequently added into milk products illegally, to make the products more protein-rich. However, it can cause some various diseases, such as kidney stones and bladder cancer. In this paper, a novel optical fiber sensor with high sensitivity based on absorption of the evanescent field for melamine detection is successfully proposed and developed. Different concentrations of melamine changing from 0 to 10mg/mL have been detected using the micro/nano-sensing fiber decorated with silver nanoparticles cluster layer. As the concentration increases, the sensing fiber's output intensity gradually deceases and the absorption of the analyte becomes large. The concentration changing of 1mg/ml can cause the absorbance varying 0.664 and the limit of the melamine detectable concentration is 1ug/mL. Besides, the coupling properties between silver nanoparticles have also been analyzed by the FDTD method. Overall, this evanescent field enhanced optical fiber sensor has potential to be used in oligo-analyte detection and will promote the development of biomolecular and chemical sensing applications.

  13. 'Rough guide' evanescent wave optrode for colorimetric metalloporphyrine sensors.

    PubMed

    Tuwei, Abraham Kirwa; Williams, Nicholas H; Mulla, Mohammad Yusuf; Di Natale, Corrado; Paolesse, Roberto; Grell, Martin

    2017-03-01

    When films of zinc 5-(4-carboxyphenyl),10,15,20-triphenyl porphyrin (ZnTPP) are exposed to waterborne amine in pH- neutral or alkaline media, both Q- band and Soret band respond with a change of absorbance due to the donation of amine 'lone pair' electrons to the metalloprophyrin π orbital. However, this is difficult to reveal with a conventional spectrometer even under high amine concentration. We therefore introduce optical fibres coated with ZnTPP into a bespoke 'light balance' evanescent wave absorbance meter [doi:10.1016/j.snb.2016.05.065]. The light balance makes absorbance changes clearly visible under only 5μM aqueous amine, making PVC membranes redundant. We find sensitivity is higher, and limit- of- detection lower, in the Soret band rather than the Q- band, reflecting the stronger Soret band absorbance. Also, we find that sensitivity is higher, and limit- of- detection approximately two times lower, when rough rather than smooth fibres are used. We believe the rough fibre surface leads to enhanced evanescence, and therefore better overlap of the wave propagating in the fibre with the ZnTPP fibre cladding. We find a limit of detection to waterborne amines below 1μM, which compares well to other sensors for waterborne amines [Korent, S.M. et.al. Anal. Bioanal. Chem. 387 (2007) 2863-2870; Algarni, S. A. et.al. Talanta 153 (2016) 107-110]. We therefore recommend 'rough guide' evanescent wave optrodes, in combination with sensitive 'light balance' detector, to succeed membrane- embedding of colorimetric sensitisers such as metalloporphyrines. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Chemical detection demonstrated using an evanescent wave graphene optical sensor

    NASA Astrophysics Data System (ADS)

    Maliakal, Ashok; Reith, Leslie; Cabot, Steve

    2016-04-01

    Graphene devices have been constructed on silicon mirrors, and the graphene is optically probed through an evanescent wave interaction in an attenuated total reflectance configuration using an infrared spectrometer. The graphene is electrically biased in order to tune its optical properties. Exposure of the device to the chemicals iodine and ammonia causes observable and reversible changes to graphene's optical absorption spectra in the mid to near infrared range which can be utilized for the purpose of sensing. Electrical current measurements through the graphene are made simultaneously with optical measurements allowing for simultaneous sensing using two separate detection modalities. Our current results reveal sub-ppm detection limits for iodine and approximately 100 ppm detection limits for ammonia. We have also demonstrated that this approach will work at 1.55 μm, which opens up the possibility for graphene optical sensors that leverage commercial telecom light sources.

  15. Fiber optic evanescent wave (FOEW) microbial sensor for dental application

    NASA Astrophysics Data System (ADS)

    Kishen, Anil; John, M. S.; Chen, Jun-Wei; Lim, Chu S.; Hu, Xiao; Asundi, Anand K.

    2001-10-01

    In this work a new approach based on the fiber Optic Evanescent Wave (FOEW) Spectroscopy is developed for the effective determination of dental caries activity in human saliva. The biosensor design utilized the exponentially decaying wave that extends to the lower index region of the optical fiber's core-cladding interface. In order to achieve this, a short length of the cladding is removed and the fiber core surface is coated with a porous glass medium using sol-gel technique. The acidogenic profile resulting from the Streptococcus mutans activity in the human saliva is monitored using an indicator, which was encapsulated within the porous coating. These investigations display the potential benefits of FOEW based microbial sensor to monitor caries activity in human saliva.

  16. Chemical detection demonstrated using an evanescent wave graphene optical sensor

    SciTech Connect

    Maliakal, Ashok; Reith, Leslie; Cabot, Steve

    2016-04-11

    Graphene devices have been constructed on silicon mirrors, and the graphene is optically probed through an evanescent wave interaction in an attenuated total reflectance configuration using an infrared spectrometer. The graphene is electrically biased in order to tune its optical properties. Exposure of the device to the chemicals iodine and ammonia causes observable and reversible changes to graphene's optical absorption spectra in the mid to near infrared range which can be utilized for the purpose of sensing. Electrical current measurements through the graphene are made simultaneously with optical measurements allowing for simultaneous sensing using two separate detection modalities. Our current results reveal sub-ppm detection limits for iodine and approximately 100 ppm detection limits for ammonia. We have also demonstrated that this approach will work at 1.55 μm, which opens up the possibility for graphene optical sensors that leverage commercial telecom light sources.

  17. Theory of fiber-optic, evanescent-wave spectroscopy and sensors

    NASA Astrophysics Data System (ADS)

    Messica, A.; Greenstein, A.; Katzir, A.

    1996-05-01

    A general theory for fiber-optic, evanescent-wave spectroscopy and sensors is presented for straight, uncladded, step-index, multimode fibers. A three-dimensional model is formulated within the framework of geometric optics. The model includes various launching conditions, input and output end-face Fresnel transmission losses, multiple Fresnel reflections, bulk absorption, and evanescent-wave absorption. An evanescent-wave sensor response is analyzed as a function of externally controlled parameters such as coupling angle, f number, fiber length, and diameter. Conclusions are drawn for several experimental apparatuses.

  18. A microvolume molecularly imprinted polymer modified fiber-optic evanescent wave sensor for bisphenol A determination.

    PubMed

    Xiong, Yan; Ye, Zhongbin; Xu, Jing; Liu, Yucheng; Zhang, Hanyin

    2014-04-01

    A fiber-optic evanescent wave sensor for bisphenol A (BPA) determination based on a molecularly imprinted polymer (MIP)-modified fiber column was developed. MIP film immobilized with BPA was synthesized on the fiber column, and the sensor was then constructed by inserting the optical fiber prepared into a transparent capillary. A microchannel (about 2.0 μL) formed between the fiber and the capillary acted as a flow cell. BPA can be selectively adsorbed online by the MIP film and excited to produce fluorescence by the evanescent wave produced on the fiber core surface. The conditions for BPA enrichment, elution, and fluorescence detection are discussed in detail. The analytical measurements were made at 276 nm/306 nm (λ(ex)/λ(em)), and linearity of 3 × 10(-9)-5 × 10(-6) g mL(-1) BPA, a limit of detection of 1.7 × 10(-9) g mL(-1) BPA (3σ), and a relative standard deviation of 2.4% (n = 5) were obtained. The sensor selectivity and MIP binding measurement were also evaluated. The results indicated that the selectivity and sensitivity of the proposed fiber-optic sensor could be greatly improved by using MIP as a recognition and enrichment element. Further, by modification of the sensing and detection elements on the optical fiber, the proposed sensor showed the advantages of easy fabrication and low cost. The novel sensor configuration provided a platform for monitoring other species by simply changing the light source and sensing elements. The sensor presented has been successfully applied to determine BPA released from plastic products treated at different temperatures.

  19. Development of Sensors Using Evanescent Wave Interactions in Sapphire Optical Fibers

    SciTech Connect

    Michael W. Renfro; Eric H. Jordan

    2006-12-31

    The development of tunable diode laser absorption sensors for measurements in industrial boilers, both through direct absorption and evanescent wave absorption have been performed in the work presented here. These sensors use both direct and indirect absorption through the use of evanescent interactions within a coal firing combustion environment. For the direct absorption sensor, wavelength modulation absorption spectroscopy with second-harmonic detection was implemented within a physical probe designed to be placed with the flue stack of a power plant. Measurements were taken of carbon dioxide and water vapor concentration during operation at a local industrial facility. The design of this sensor probe overcomes problems of beam steering and permits a reference gas measurement. Extracted concentration data and design elements from the direct absorption measurements are presented. In addition, development of a sapphire fiber-based sensor using evanescent wave absorption along the outside of the fiber is presented. Evanescent absorption allows for the laser transmission to be maintained in the fiber at all times and may alleviate problems of background emission, beam steering, and especially scattering of the laser beam from solid particles experienced through free path direct absorption measurements in particulated flows. Laboratory measurements using evanescent fiber detection are presented.

  20. Surface functionalisation of TiO2 evanescent waveguide sensor for E.coli monitoring

    NASA Astrophysics Data System (ADS)

    Purniawan, A.; Pandraud, G.; Vakalopoulos, K. A.; French, P. J.; Sarro, P. M.

    2012-04-01

    This work reports the surface functionalisation of evanescent waveguide sensors to immobilise E. coli. In biosensors, the surface functionalisation is an important treatment to ensure that the sensor properly detects the cells of interest. In this paper, we study the thin film surface functionalisation of a TiO2 evanescent waveguide sensor and their effect on light transmission for the early detection of E. coli in post colon surgery. TiO2 deposited using atomic layer deposition (ALD) is used as waveguide material. Four layers are used in the functionalisation : the self-assembled monolayer (SAM), the protein, 1-ethyl-3-(3-dimethylaminopropyl) (EDC) and the antibodies. Aminopropyltriethoxysilane (APTES) is used as SAM and reacts with -OH group (hydroxyl). The -OH group must be provided on substrate. In order to have the proper -OH group we deposited 10 nm SiO2 on the waveguides using PECVD and then treated the samples in oxygen plasma chamber for 2 minutes to create the groups. Afterward APTES is immediately applied on the surface after every layers of the functionalisation process. The second layer (Protein A) of the functionalisation is then put on APTES as interlayer. EDC is used as crosslink agent between APTES and antibodies. The light of Superluminescent light emitting diodes (SLEDs) (λ = 1.3 μm, 400 mA) is channelled using an optical fibre into the functionalised waveguides. The transmitted light is measured with a photodiode. The sensitivity of the sensor was evaluated using several different drain fluid concentrations in medium.

  1. Theoretical and experimental investigation of evanescent-wave absorption sensors for extreme temperature applications

    NASA Astrophysics Data System (ADS)

    Buric, Michael P.; Ohodnicki, Paul; Chorpening, Benjamin

    2013-09-01

    Recently, significant developments in evanescent wave absorption sensors have been demonstrated for high temperature sensing applications based upon the optical responses of advanced thin film materials. We will demonstrate how such sensors can be utilized in a mode that allows for chemical or temperature sensing starting from basic theoretical considerations. We will also present experimental high temperature sensing results for fabricated sensors. Potential applications of the sensors to be discussed include a range of high temperature systems relevant for fossil energy and combustion monitoring such as industrial combustors or reaction vessels, solid oxide fuel cells, and gas turbines. In these applications, even a small increase in operating efficiency realized via careful observation of in-process parameters and implementation of real-time process controls can result in dramatic savings across the energy industry, illustrating the necessity of pursuing such techniques. It is hoped that sensors of the type described here will allow for unprecedented measurement-access to processes which present challenging high-temperature and chemically reactive environments.

  2. Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor

    NASA Astrophysics Data System (ADS)

    John, M. Shelly; Kishen, Anil; Sing, Lim Chu; Asundi, Anand

    2002-12-01

    A novel technique based on fiber-optic evanescent-wave spectroscopy is proposed for the detection of bacterial activity in human saliva. The sensor determines the specific concentration of Streptococcus mutans in saliva, which is a major causative factor in dental caries. In this design, one prepares the fiber-optic bacterial sensor by replacing a portion of the cladding region of a multimode fiber with a dye-encapsulated xerogel, using the solgel technique. The exponential decay of the evanescent wave at the core-cladding interface of a multimode fiber is utilized for the determination of bacterial activity in saliva. The acidogenic profile of Streptococcus mutans is estimated by use of evanescent-wave absorption spectra at various levels of bacterial activity.

  3. Biochemical fiber sensor based on evanescent field for detection persistent organic pollutants (POPs)

    NASA Astrophysics Data System (ADS)

    Prasetyo, Edi; Putri Gitrin, Martia; Marzuki, Ahmad; Suryanti, Venty

    2017-01-01

    Fiber optic is a light waveguides media that are cylindrical. Optical fiber has certain properties when it transmits light so it can be developed to be a sensing device or sensor. Evanescent wave phenomena appear when there are total internal reflections from many modes in an optical fiber. In this research, the Biochemical Fiber Sensor (BFS) using polishing cladding and some of the core fiber will be fabricated. BFS is used to interact with a biochemical compound. The principle of BFS is based on evanescent absorption which absorbs the typical spectrum of a biochemical compound. By measuring the spectrum from the light output in the BFS, evanescent absorption spectra can be analyzed an optical fiber. In this study, the biochemical compounds that used are lindane that is one of the Persistent Organic Pollutants (POPs). The result showed that there is a change from BFS spectra when it was exposed by POPs compound with various concentration. That change showed that there is evanescent absorption in BFS. Concentration of POPs compound is proportional with evanescent absorption of the POPs compound.

  4. Temperature-independent evanescent wave sensor made of a stress-released silica optical fiber taper

    NASA Astrophysics Data System (ADS)

    He, Yongxi; Li, Yingguang; Li, Nanya

    2017-07-01

    Based on a cyclic heating-cooling treatment method, a temperature-independent silica optical fiber evanescent wave sensor is proposed. The cyclic heating-cooling treatment process could significantly release the residual stresses in the taper, achieving a high measurement accuracy in the temperature range of 20-200 °C. After the treatment, the relative light intensity

  5. Waveguide evanescent field fluorescence microscopy & its application in cell biology

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Abdollah

    There are many powerful microscopy technologies available for the investigation of bulk materials as well as for thin film samples. Nevertheless, for imaging an interface, especially live cells on a substrate and ultra thin-films, only Total Internal Reflection Fluorescence (TIRF) microscopy is available. This TIRF microscopy allows imaging without interference of the bulk. Various approaches are employed in fluorescence microscopy applications to restrict the excitation and detection of fluorophores to a thin region of the specimen. Elimination of background fluorescence from outside the focal plane can dramatically improve the signal-to-noise ratio, and consequently, the spatial resolution of the features or events of interest. TIRF microscopy is an evanescent field based microscopy. In this method, fluorescent dyes are only excited within an evanescent field: roughly within 100 nm above a glass coverslip. This will allow imaging surface and interfacial issues of the glass coverslip and an adjacent material. Waveguide evanescent field fluorescence (WEFF) microscopy is a new development for imaging cell-substrate interactions in real time and in vitro. It is an alternative to TIRF microscopy. In this method the light is coupled into a waveguide via an optical grating. The coupled light propagates as a waveguide mode and exhibits an evanescent field on top of the waveguide. This can be used as a surface-bound illumination source to excite fluorophores. This evanescent field serves as an extremely powerful tool for quality control of thin films, to study cell-substrate contacts, and investigating the effect of external agents and drugs on the cell-substrate interaction in real time and in vitro. This new method has been established and optimized to minimize non-uniformity, scattering and photo bleaching issues. Visualizing and quantifying of the cell-substrates and solid thin films have been carried out by WEFF microscopy. The images of the cell-substrate interface

  6. Design method for a distributed Bragg resonator based evanescent field sensor

    NASA Astrophysics Data System (ADS)

    Bischof, David; Kehl, Florian; Michler, Markus

    2016-12-01

    This paper presents an analytic design method for a distributed Bragg resonator based evanescent field sensor. Such sensors can, for example, be used to measure changing refractive indices of the cover medium of a waveguide, as well as molecule adsorption at the sensor surface. For given starting conditions, the presented design method allows the analytical calculation of optimized sensor parameters for quantitative simulation and fabrication. The design process is based on the Fabry-Pérot resonator and analytical solutions of coupled mode theory.

  7. Sol-gel derived optical waveguide films: technological platform for development of planar evanescent wave sensors

    NASA Astrophysics Data System (ADS)

    Karasiński, Paweł

    2015-12-01

    Plane evanescent wave sensors are being developed for over thirty years. However, their full development is somehow limited by the lack of relatively cheap and stable waveguide layers of high refractive index, low optical losses and at the same time resistance to the impact of chemical substances. The paper involves waveguide layers SiO2:TiO2 of high refractive index (˜1.81) satisfying these criteria, fabricated via sol-gel method and dip-coating technique. The parameters of the waveguide layers SiO2:TiO2 were determined using elipsometric and spectrophotometric methods. The presented waveguide layers have excellent optical properties and are suitable for the application in the planar evanescent wave sensors technology. For the best waveguide SiO2:TiO2 layers, the obtained level of optical loss was below 0.2 dB/cm.

  8. Near-ultraviolet evanescent-wave absorption sensor based on a multimode optical fiber.

    PubMed

    Potyrailo, R A; Hobbs, S E; Hieftje, G M

    1998-04-15

    Fiber-optic near-ultraviolet evanescent-wave sensors have been constructed, and their feasibility for practical applications has been demonstrated. The sensors, used for the detection of ozone near the 254-nm peak of the Hartley absorption band, were fabricated from coiled segments of low-cost multimode plastic-clad silica optical fibers. The sensing sections were produced alternatively by stripping only the protective jacket from the fiber to expose the gas-permeable silicone cladding or by stripping the jacket and the cladding to expose the bare-silica fiber core. Response characteristics are given, including sensitivity to ozone, reversibility, and aging effects. The useful lifetime was unacceptably short for the sensor that employed the bare-silica core, whereas the exposed-cladding sensor demonstrated good stability over the entire two-month period of investigation. The latter, more useful sensor demonstrated a linear response to ozone over the range 0.02-0.35 vol% and a reversible response with a time constant on the order of 1 min. Differences in ozone absorption spectra obtained in the transmission and evanescent-wave modes are discussed. Projected applications of the new exposed-cladding sensor include ozone determination in water-treatment processes and ozone production plants.

  9. Evanescent field Sensors Based on Tantalum Pentoxide Waveguides – A Review

    PubMed Central

    Schmitt, Katrin; Oehse, Kerstin; Sulz, Gerd; Hoffmann, Christian

    2008-01-01

    Evanescent field sensors based on waveguide surfaces play an important role where high sensitivity is required. Particularly tantalum pentoxide (Ta2O5) is a suitable material for thin-film waveguides due to its high refractive index and low attenuation. Many label-free biosensor systems such as grating couplers and interferometric sensors as well as fluorescence-based systems benefit from this waveguide material leading to extremely high sensitivity. Some biosensor systems based on Ta2O5 waveguides already took the step into commercialization. This report reviews the various detection systems in terms of limit of detection, the applications, and the suitable surface chemistry. PMID:27879731

  10. Small-volume fiber-optic evanescent-wave absorption sensor for nitrite determination.

    PubMed

    Xiong, Yan; Zhu, Dao-qian; Duan, Chun-feng; Wang, Jian-wei; Guan, Ya-feng

    2010-01-01

    A novel small-volume fiber-optic evanescent-wave absorption sensor based on the Griess-Ilosvay reaction has been developed and evaluated for nitrite determination. The sensor was constructed by inserting a decladded optical fiber into a transparent capillary to form an annular column microchannel. The Evanescent wave (EW) field produced on the optical fiber core surface penetrated into the surrounding medium and interacted with the azo dye, which was generated by the reaction of nitrite and nitrite-sensitive reagents. The detector was designed to be parallel to the axis of the optical fiber. The defined absorbance was linear with the concentration of nitrite in the range from 0.05 to 10 mg L(-1), and the detection limit was 0.02 mg L(-1) (3sigma) with the relative standard deviation (RSD) of 2.6% (n = 8). The present sensor was successfully used to determine nitrite in real samples of mineral water, tap water, rain water, and seawater. The results were consistent with the data obtained by standard spectrophotometric method, showing potential of the proposed sensor for practical application.

  11. A Silver Nanoparticle-Modified Evanescent Field Optical Fiber Sensor for Methylene Blue Detection

    PubMed Central

    Luo, Ji; Yao, Jun; Lu, Yonggang; Ma, Wenying; Zhuang, Xuye

    2013-01-01

    A silver nanoparticle-modified evanescent field optical fiber sensor based on a MEMS microchannel chip has been successfully fabricated. Experimental results show that the sensor response decreases linearly with increasing concentration of analyte. Over a range of methylene blue concentrations from 0 to 0.4 μmol/mL, the sensor response is linear (R = 0.9496). A concentration variation of 0.1 μmol/mL can cause an absorbance change of 0.402 dB. Moreover, the optical responses of the same sensing fiber without decoration and modified with silver nanoparticles have also been compared. It can be observed that the output intensity of the Ag nanoparticle-modified sensor is enhanced and the sensitivity is higher. Meanwhile, the absorbance spectra are found to be more sensitive to concentration changes compared to the spectra of the peak wavelength. PMID:23519353

  12. Evanescent-wave Infrared Optical Fiber Gas Sensor

    NASA Astrophysics Data System (ADS)

    Wang, Yiding; Wang, Di; Zhong, Hong-Jie; Zhang, Zhiguo

    2000-03-01

    We propose the treatment of amblyopia using yellow-green laser diodes.There are amblyopia children in excess of fifty million in the world.Because the causative agent of amblyopia hasn't been well understood,only roughly considered to be concerned with visual sense cell,optic nerve network and function of nerve center,no appropriate treatment is found up to date.The vision of person is determined by the center hollow region of retina,where there are three kinds of cone cell.The corresponding peak wavelength in absorption spectrum locates 447nm(blue light),532nm (green light)and 565nm(yellow light), respectively.When stimulated by white light, excited degree of three kinds of cone cell are identical,or yellow-green light,to which person eye is most sensitive, will significantly takes effects.Therefore the yellow-green laser diode is suitable for treating amblyopia. The weak laser,namely laser power less than mW order of magnitude,shows curative by stimulating bion tissue.When stimulating light power density is less than 0.001W/cm,the compounding speed of nucleic acid DNA is significantly increased.The growth rate of cell,activity of enzyme,content of hemoglobin and the growth of blood vessel,are all increased.However,it's key to control the dose of light.When the dose transcend some value,a inhibition will occur.The little dose of weak laser treatment can be accumulated with a parabolic characteristics,that is the weak laser generate bion response stengthening gradually versus time.Then it will weaken gradually after the peak.When the treatment duration is longer than a certain time,a inhibition also takes place.A suggested theraphy is characterized by little dose and short treatment course. In a conclusion, the yellow-green laser diode should be used for the treatment of amblyopia.The little dose and short treatment couse are to be adopted.

  13. High-sensitivity four-layer polymer fiber-optic evanescent wave sensor.

    PubMed

    Xin, Xin; Zhong, Nianbing; Liao, Qiang; Cen, Yanyan; Wu, Ruohua; Wang, Zhengkun

    2017-05-15

    We present a novel four-layer structure consisting of bottom, second, third, and surface layers in the sensing region, for a D-shaped step-index fiber-optic evanescent wave (FOEW) sensor. To reduce the background noise, the surface of the longitudinal section in the D-shaped region is coated with a light-absorbing film. We check the morphologies of the second and surface layers, examine the refractive indices (RIs) of the third and surface layers, and analyze the composition of the surface layer. We also investigate the effects of the thicknesses and RIs of the third and surface layers and the LA film on the light transmission and sensitivity of the FOEW sensors. The results highlight the very good sensitivity of the proposed FOEW sensor with a four-layer structure, which reached -0.077 (μg/l)(-1) in the detection of the target antibody; the sensitivity of the novel FOEW sensor was 7.60 and 1.52 times better than that of a conventional sensor with a core-cladding structure and an FOEW sensor with a three-layer structure doped with GeO2. The applications of this high-sensitivity FOEW sensor can be extended to biodefense, disease diagnosis, and biomedical and biochemical analysis.

  14. Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection

    DOEpatents

    Wood, Charles B.

    1992-01-01

    A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities.

  15. Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection

    DOEpatents

    Wood, C.B.

    1992-12-15

    A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities. 3 figs.

  16. Effects of surface roughness on optical properties and sensitivity of fiber-optic evanescent wave sensors.

    PubMed

    Zhong, Nianbing; Zhu, Xun; Liao, Qiang; Wang, Yongzhong; Chen, Rong; Sun, Yahui

    2013-06-10

    The effects of surface roughness on the light transmission properties and sensitivity of fiber-optic evanescent wave sensors are investigated. A simple method of increasing the sensitivity based on the surface roughness (pit depth δ and diameter Δ) and incident angle U(i) of light rays on the fiber input end is proposed. We discovered that as 2δ/Δ increases, the transmitted light intensity decreases, but the sensitivity initially increases and then decreases. In sensors containing fibers of various roughnesses, the sensitivity to glucose solutions reached -11.7 mW/riu at 2δ/Δ=0.32 and increased further to -15.3 mW/riu with proper adjustment of U(i).

  17. Miniature Chemical Sensor combining Molecular Recognition with Evanescent Wave Cavity Ring-Down Spectroscopy

    SciTech Connect

    Pipino, Andrew C. R.; Meuse, Curtis W.

    2003-06-15

    To address the chemical sensing needs of DOE, a new class of chemical sensors is being developed that enables qualitative and quantitative, remote, real-time, optical diagnostics of chemical species in hazardous gas, liquid, and semi-solid phases by employing evanescent wave cavity ring-down spectroscopy (EW-CRDS). The feasibility and sensitivity of EW-CRDS was demonstrated previously under Project No.60231. The objective of this project is to enhance the selectivity and domain of application of EW-CRDS. Selectivity is enhanced by using molecular recognition (MR) chemistry and polarized ''fingerprint'' near-IR spectroscopy, while the domain of application is expanded by combining EW-CRDS with the unique optical properties of nanoparticles and by extending the technique to liquids.

  18. Fiber-optic evanescent-field laser sensor for in-situ gas diagnostics.

    PubMed

    Willer, Ulrike; Scheel, Dirk; Kostjucenko, Irina; Bohling, Christian; Schade, Wolfgang; Faber, Eckhard

    2002-09-01

    A compact, rugged and portable fiber-optic evanescent-field laser sensor is developed for the detection of gaseous species in harsh environments such as volcano fumaroles or industrial combustion of glass furnaces. The sensor consists of an optical multi-mode fused silica fiber with jacket and cladding removed and the bare fiber core in direct contact with the surrounding molecules. The beam of a single-mode DFB diode laser with an emission wavelength centered at 1.5705 microm is coupled into the fiber. At the other end of the fiber an infrared detector is used to record the transmitted infrared laser light intensity. Due to the frustrated total reflection (FTR) and the attenuated total reflection (ATR) the laser intensity is attenuated when passing through the fiber. The FTR is related to a change of the index of refraction while the latter one is related to a change of the absorption coefficient. While tuning the DFB laser wavelength across absorption lines of molecules surrounding the fiber a spectral intensity profile is measured. Voigt functions are fitted to the recorded intensity profiles to estimate relative molecule concentrations. In this paper results from first field measurements at the volcano site 'Solfatara' in Italy are reported that use such a sensor device for simultaneous detection of H2S, CO2 and H2O directly in the gas stream of a volcano fumarole.

  19. Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film

    NASA Astrophysics Data System (ADS)

    Qiu, Hengwei; Gao, Saisai; Chen, Peixi; Li, Zhen; Liu, Xiaoyun; Zhang, Chao; Xu, Yuanyuan; Jiang, Shouzhen; Yang, Cheng; Huo, Yanyan; Yue, Weiwei

    2016-05-01

    An evanescent wave absorption (EWA) sensor based on tapered multimode fiber (TMMF) coated with monolayer graphene film for the detection of double-stranded DNA (DS-DNA) is investigated in this work. The TMMF is a silica multimode fiber (nominally at 62.5 μm), which was tapered to symmetric taper with waist diameters of ~30 μm and total length of ~3 mm. Monolayer graphene film was grown on a copper foil via chemical vapor deposition (CVD) technology and transferred onto skinless tapered fiber core via dry transfer technology. All the components of the sensor are coupled together by fusion splicer in order to eliminate the external disturbance. DS-DNA is created by the assembly of two relatively complemented oligonucleotides. The measurements are obtained by using a spectrometer in the optical wavelength range of 400-900 nm. With the increase of DS-DNA concentration, the output light intensity (OPLI) arisen an obvious attenuation. Importantly, the absorbance (A) and the DS-DNA concentrations shown a reasonable linear variation in a wide range of 5-400 μM. Through a series of comparison, the accuracy of TMMF sensor with graphene (G-TMMF) is much better than that without graphene (TMMF), which can be attributed to the molecular enrichment of graphene by π-π stacking.

  20. Potential of 'flat' fibre evanescent wave spectroscopy to discriminate between normal and malignant cells in vitro.

    PubMed

    Hammody, Z; Huleihel, M; Salman, A; Argov, S; Moreh, R; Katzir, A; Mordechai, S

    2007-11-01

    The present study focuses on evaluating the potential of flattened AgClBr fibre-optic evanescent wave spectroscopy (FTIR-FEWS) technique for detection and identification of cancer cells in vitro using cell culture as a model system. The FTIR-FEWS results are compared to those from FTIR-microspectroscopy (FTIR-MSP) method extensively used to identify spectral properties of intact cells. Ten different samples of control and malignant cells were measured in parallel by the above two methods. Our results show a significant similarity between the results obtained by the two methodologies. The absorbance level of Amide I/Amide II, phosphates and carbohydrates were significantly altered in malignant compared to the normal cells using both systems. Thus, common biomarkers such as Amide I/Amide II, phosphate and carbohydrate levels can be derived to discern between normal and cancer cells. However, marked differences are also noted between the two methodologies in the protein bands due to CH3 bending vibration (1480-1350 cm(-1)). The spectral differences may be attributed to the variation in the penetration depth of the two methodologies. The use of flattened fibre rather than the standard cylindrical fibre has several practical advantages and is considered as an important step towards in vivo measurements in real time, such as that of skin nevi and melanoma using special designs of fibre-optic-based sensors.

  1. A highly sensitive, integrable, multimode, interferometric, evanescent-wave chem/bio sensor

    NASA Astrophysics Data System (ADS)

    Lillie, Jeffrey J.

    A fully integrated optical chem/bio sensor complete with integrated source, chemically sensitive waveguide, detector arrays, and associated signal processing electronics on a Si-CMOS chip is a challenging, but highly desirable goal. An evanescent-wave multimode interferometric sensing element is a sensitive method for sensing, which is easily integrated on Si-CMOS. This work is concerned with the design, analysis, and demonstration of a planar multimode interferometric chem/bio sensor that is compatible with the fabrication constraints of Si-CMOS. A 4000-micron-long interferometric that can be adapted for different agents by a particular sensing layer has been fabricated on silicon using silicon dioxide and silicon oxynitride. Hexaflouro-isopropanol substituted polynorbornene is the sensing layer. This sensor has also been fabricated on a Si-CMOS circuit with embedded photodetectors. A sensor on silicon was demonstrated with a minimum detectable index change of 2.0x10 -6 using an accurate gas delivery system and a custom hermetic waveguide test chamber. A modal pattern analysis strategy has also been developed to extract the optimal SNR from the measured modal patterns. An understanding of the noise processes and spatial bandwidth effects has enabled an experimentally-based prediction of the index sensitivity of a fully integrated multimode chem/bio sensor on Si-CMOS at 9.2x10-7. Theoretically, the sensitivity enhancement of high over low index sensing layers and transverse-magnetic over transverse electric modes is described. Also, the sensitivity enhancement of higher-order-transverse modes has been quantified. The wide-angle beam propagation method has been used to simulate the sensor. This simulation showed the relation between the modal pattern repetition period and sensor sensitivity. Further, the modal coupling properties of the multimode y-junction have been described. A second multimode y-junction has been designed to change the modal excitation under the

  2. Evanescent wave absorption based fiber optic pH sensor prepared by dye doped sol-gel immobilization technique

    NASA Astrophysics Data System (ADS)

    Gupta, B. D.; Sharma, D. K.

    1997-02-01

    A fiber optic pH sensor based on evanescent wave absorption is presented. To prepare the probe a small length of the cladding is removed from the middle portion of the fiber. A thin porous film of glass with pH-sensitive dye entrapped in it is deposited on the surface of the unclad portion of the fiber using sol-gel technology. The sensor response and its dynamic range are reported for phenol red, cresol red and bromophenol blue dyes. The sol-gel process has been found to increase the dynamic range of the pH sensor.

  3. Highly responsive sensor on a nanostructured surface via the self-assembly of a biomolecule with an evanescent wave technique.

    PubMed

    Hong, Surin; Kang, Taewook; Moon, Jungwoo; Oh, Seogil; Yi, Jongheop

    2006-11-01

    A self-assembled biomolecule was used to create a highly sensitive sensor surface for detecting toxic chemical species (polychlorinated biphenyls, PCBs). We fabricated the nanostructured sensor surface via the self-assembly of cytochrome c on a Au thin film. Surface plasmon resonance (SPR), an evanescent wave technique possessing maximum sensitivity on the surface and characterized by an exponential decay of sensitivity with distance from the surface, was utilized as the principle for signal transduction. When this sensor surface was used for the detection of PCB, even trace amounts of PCB (from 0.1 ppb to 8.0 ppb) in an aqueous solution were readily detectable.

  4. Fiber-optic sensor based on evanescent wave absorbance around 2.7 μm for determining water content in polar organic solvents

    NASA Astrophysics Data System (ADS)

    Xiong, F. B.; Zhu, W. Z.; Lin, H. F.; Meng, X. G.

    2014-04-01

    The feasibility of sapphire fiber-optic sensors based on evanescent wave absorption spectroscopy in the infrared range for quantitative determination of water content in polar organic solvents has been investigated. Evanescent wave absorption spectra of sapphire fiber-optic sensors in glycerol, ethanol, and glycol with different water concentrations obtained and analyzed, respectively. Evanescent absorbance of the sensors in those organic solvents has been utilized to implement for in situ monitoring water concentration in organic solvents. The evanescent absorbance of sensors in glycerol and glycol has been found to vary linearly with water content in the range 0-30 % and in ethanol in the range 0-10 %, respectively. The fiber-optic sensors based on evanescent absorbance for monitoring water concentrations in those organic solvents are acceptably accurate, cost-effective, and reliable. Some methods to improve the accuracy of predicated water content in those organic solvents are also suggested. Overall, the results demonstrate that the sapphire fiber-optic sensor based on evanescent absorption spectroscopy is a promising candidate for prediction of water content in polar organic solvents in on-line and remote situation.

  5. Detection of the tumor marker mucine with a diode-laser-based evanescent wave sensor

    NASA Astrophysics Data System (ADS)

    Bock, Daniel; Kaul, Sepp; Loescher, Frank; Ruckstuhl, Thomas; Schulz, V.; Ueberfeld, J.; Seeger, Stefan

    1996-11-01

    Optical sensors based on the utilization of the evanescent field arising at the interface between two media in the case of total internal reflection are an excellent tool for the reduction of time consuming and complex chemical analysis. We developed a fiber-optic based set-up with visible diode lasers as excitation sources. As recognition element an optical fiber covered with a photopolymerized antibody monolayer was used. Beside the commercially available cyanine fluorescent dye Cy 5, newly developed fluorescent dyes in the red spectral region were coupled to antibodies. In order to test the set-up in a clinically relevant system the antibodies BM-2 and BM-7 were chosen. With this antibody system the tumor marker mucine in a sandwich immunoassay was investigated. This protein shows increased concentrations in serum and ascites in the case of breast cancer. The combination of semiconductor devices and ultrathin antibody layers together with an antibody system directed against mucine offers the possibility of an on-line detection of the tumor marker.

  6. Far-field evanescent wave propagation using coupled subwavelength gratings for a MEMS sensor.

    PubMed

    Rogers, Al-Aakhir A; Samson, Scott; Kedia, Sunny

    2009-12-01

    A technique was developed to couple near-field evanescent waves into observable diffraction orders in the far-field region. This investigation was of two gratings that have a 1.0 microm grating period in glass and 1.1 microm in silicon and are individually subwavelength, but when coupled together yield an 11.0 microm effective grating period. This effective grating period is not subwavelength to a 1.550 microm infrared incident source and exhibits higher diffraction orders. Optimum evanescent wave coupling efficiency was simulated by varying the grating thickness and the grating separation between the subwavelength gratings. This proposed evanescent wave coupling concept is being investigated for use in a bulk silicon MEMS accelerometer.

  7. Sensitivity enhancement of an in-fiber Michelson interferometer evanescent wave sensor using a silver nanoparticle-polymer composite overlay

    NASA Astrophysics Data System (ADS)

    Sandhu, Sukhpawan S.; Yang, Jian; Xu, C. Q.

    2008-02-01

    Many configurations of fiber optic evanescent wave sensors have recently been explored, with various structural and material modifications applied in attempt to increase their resolution and/or sensitivity. With the aid of long period gratings inscribed within the core of standard single mode fibers, fiber optic evanescent wave sensors with in-fiber interferometric configurations have been realized and have been shown to have excellent resolution due to sharp spectral features. The Michelson interferometer configuration, whereby a single long period grating acts as a beam splitter for the core and cladding modes, is of interest because it operates in reflection mode, which allows for easy signal detection schemes. In this work, it is experimentally demonstrated for the first time that the deposition of a nanoparticle-polymer composite high refractive index overlay film onto the cladding arm surface of such an interferometric sensor greatly increases its sensitivity. Film refractive indices of > 1.7 are achieved and can be further increased to > 2 upon repetition of the nanoparticle synthesis cycle. Sensitivity enhancement factors as large as 16.7 occur in the film index range of 1.9 - 2.1. Experimental data are presented and compared to the theoretical simulation results.

  8. Evanescent-wave optical Cr VI sensor with a flexible fused-silica capillary as a transducer.

    PubMed

    Tao, Shiquan; Sarma, T V S

    2006-05-15

    A light-guiding, flexible fused-silica (FFS) capillary has been used in designing an optical fiber Cr VI sensor for monitoring Cr VI ions in water samples. The FFS capillary is similar to a conventional silica optical fiber in that it can guide light in the wavelength region from the UV to the near IR but different from a conventional optical fiber in that it is a tubular waveguide. The inner surface of the FFS capillary is fused silica, which one can modify to design an optical fiber chemical sensor. The FFS capillary has a cladding layer plus a protective polymer coating on its outside surface. The cladding layer ensures the ability of the FFS capillary to guide light. The protective coating increases the FFS capillary's mechanical strength and makes it robust for practical applications. Compared with conventional silica optical fibers, it is much easier and more feasible to use this FFS capillary to fabricate long-path (tens of meters to thousands of meters) evanescent-wave based chemical sensors. We describe a Cr VI sensor based on the intrinsic evanescent-wave absorption by Cr VI ions in a water sample filled inside the capillary as an example of use of a FFS capillary in chemical sensor design. This simple sensor, using a 30 m light-guiding FFS capillary as a transducer, has the capability of detecting as little as 31 parts in 10(9) of Cr VI in a water sample, which is close to the detection limit of some sophisticated, expensive analytical instruments.

  9. A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe.

    PubMed

    Ton, Xuan-Anh; Acha, Victor; Bonomi, Paolo; Tse Sum Bui, Bernadette; Haupt, Karsten

    2015-02-15

    We have developed a disposable evanescent wave fiber optic sensor by coating a molecularly imprinted polymer (MIP) containing a fluorescent signaling group on a 4-cm long polystyrene optical waveguide. The MIP is composed of a naphthalimide-based fluorescent monomer, which shows fluorescence enhancement upon binding with carboxyl-containing molecules. The herbicide 2,4-dichlorophenoxyacetic acid and the mycotoxin citrinin were used as model analytes. The coating of the MIP was either performed ex-situ, by dip-coating the fiber with MIP particles synthesized beforehand, or in-situ by evanescent-wave photopolymerization on the fiber. The sensing element was interrogated with a fiber-coupled spectrofluorimeter. The fiber optic sensor detects targets in the low nM range and exhibits specific and selective recognition over structural analogs and non-related carboxyl-containing molecules. This technology can be extended to other carboxyl-containing analytes, and to a broader spectrum of targets using different fluorescent monomers. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Fabrication of tapered single mode fiber by chemical etching and used as a chemical sensor based on evanescent field absorption

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Tarun K.; Halder, A.; Das, S.; Paul, M. C.; Pal, M.; Salza, M.; Gagliardi, G.

    2010-12-01

    Single mode tapered fiber (SMTF) has been fabricated with core diameter of 8 μm and reduced cladding diameter up to 11 μm by hydrofluoric acid (HF) etching technique. To obtain the required cladding diameter, the time of etching has been optimized by using different HF concentrations. The mechanism as well as kinetics path of etching reaction on standard optical fiber is discussed. This study is related to surface catalyzed dissociation of HF followed by direct reaction with adsorbate molecules and the surface silicon oxide molecules. The etched tapered fibers are then packaged on quartz substrate to use as sensor element. Finally, the etched fiber is used as an element within chemical sensor based on evanescent field absorption. In this experiment, a 419-ppm cobalt nitrate solution is used for sensing.

  11. Femtosecond laser written optofluidic sensor: Bragg Grating Waveguide evanescent probing of microfluidic channel.

    PubMed

    Maselli, Valeria; Grenier, Jason R; Ho, Stephen; Herman, Peter R

    2009-07-06

    Microfluidic channels and Bragg Grating Waveguides (BGWs) were simultaneously fabricated inside fused silica glass by means of femtosecond laser exposure followed by chemical etching. Evanescent field penetration of the waveguide mode into the parallel microfluidic channel induced Bragg resonant wavelength shifts to enable refractive index characterization of the fluidic medium in the 1 to 1.452 range. Laser exposure was optimized to fabricate devices with optically smooth channel walls and narrow Bragg resonances for high sensing response at 1560 nm wavelength. Reference gratings were also employed in the optical circuit for temperature and strain compensation. These devices open new directions for optical sensing in three-dimensional optofluidic and reactor microsystems.

  12. Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions.

    PubMed

    Jensen, Jesper B; Pedersen, Lars H; Hoiby, Poul E; Nielsen, Lars B; Hansen, T P; Folkenberg, J R; Riishede, J; Noordegraaf, Danny; Nielsen, Kristian; Carlsen, A; Bjarklev, A

    2004-09-01

    We demonstrate highly efficient evanescent-wave detection of fluorophore-labeled biomolecules in aqueous solutions positioned in the air holes of the microstructured part of a photonic crystal fiber. The air-suspended silica structures located between three neighboring air holes in the cladding crystal guide light with a large fraction of the optical field penetrating into the sample even at wavelengths in the visible range. An effective interaction length of several centimeters is obtained when a sample volume of less than 1 microL is used.

  13. Miniature Chemical Sensor Combining Molecular Recognition with Evanescent Wave Cavity Ring-Down Spectroscopy

    SciTech Connect

    Pipino, Andrew C. R.; Meuse, Curt W.

    2004-12-31

    A new chemical detection technology has been realized through EMSP Projects 60231 and 73844 that addresses DOE environmental management needs. The new technology is based on a variant of the sensitive optical absorption technique, cavity ringdown spectroscopy (CRDS). Termed evanescent-wave cavity ring-down spectroscopy (EW-CRDS), the technology employs a miniature solid-state optical resonator having an extremely high Q-factor as the sensing element, where the high-Q is achieved by using ultra-low-attenuation optical materials, ultra-smooth surfaces, and ultra-high reflectivity coatings, as well as low-diffraction-loss designs. At least one total-internal reflection (TIR) mirror is integral to the resonator permitting the concomitant evanescent wave to probe the ambient environment. Several prototypes have been designed, fabricated, characterized, and applied to chemical detection. Moreover, extensions of the sensing concept have been explored to enhance selectivity, sensitivity, and range of application. Operating primarily in the visible and near IR regions, the technology inherently enables remote detection by optical fiber. Producing 11 archival publications, 4 conference proceedings, 5 patents, 19 invited talks, a CRADA, and a patent-license agreement, Projects 60231 and 73844 realized a new chemical detection technology providing >100 times more sensitivity than comparable technologies, while also providing practical advantages.

  14. Optical fiber evanescent wave adsorption sensors for high-temperature gas sensing in advanced coal-fired power plants

    SciTech Connect

    Buric, M.; Ohodnicky, P.; Duy, J.

    2012-01-01

    Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

  15. Optical fiber evanescent absorption sensors for high-temperature gas sensing in advanced coal-fired power plants

    NASA Astrophysics Data System (ADS)

    Buric, Michael P.; Ohodnicky, Paul R.; Duy, Janice

    2012-10-01

    Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

  16. Sensitivity enhancement of evanescent waveguide optical sensor for detecting adulterant traces in petroleum products using SiON technology

    NASA Astrophysics Data System (ADS)

    Dutta, Aradhana; Deka, Bidyut; Sahu, Partha Pratim

    2013-11-01

    The development of an evanescent waveguide optical sensor incorporating planar waveguide geometry using silicon oxynitride as the core layer on silica-silicon wafer and its implementation for detection of adulterant traces in petroleum products is presented in this paper. This work focuses on enhancement of sensitivity and analyzed by using Simple Effective Index Method (SEIM), based on sinusoidal modes. The embedded waveguide of length ~ 10,000 μm and core width ~ 50 μm have been developed using SiON technology and applied for checking adulteration so as to ensure the purity of the fuel such that the engine will give the desired performance including low emissions yielding better accuracy and high sensitivity within a very short pulse. The thin cladding layer acts as the analytes (mixture of adulterated fuel) that supports the waveguiding film having a refractive index smaller than that of the core. The main aim of this present work is to encompass a speedy choice to the time-consuming existing methods for detecting adulterated fuels, which generally requires some time to give the consequence. The developed sensor allows spot determination of the percentage concentration of adulterant in pure petrol without involving any chemical analysis. The waveguide based sensor is polarization independent and the sensitivity of the waveguide sensor is ~10 times more than that of the existing planar waveguide sensors and also 5 times more than that of asymmetric waveguide structure. Advantages include high sensitivity, simple fabrication and easy interrogation without involving the use of solvents or toxic chemicals.

  17. Moisture sensor based on evanescent wave light scattering by porous sol-gel silica coating

    SciTech Connect

    Tao, Shiquan; Singh, Jagdish P.; Winstead, Christopher B.

    2006-05-02

    An optical fiber moisture sensor that can be used to sense moisture present in gas phase in a wide range of concentrations is provided, as well techniques for making the same. The present invention includes a method that utilizes the light scattering phenomenon which occurs in a porous sol-gel silica by coating an optical fiber core with such silica. Thus, a porous sol-gel silica polymer coated on an optical fiber core forms the transducer of an optical fiber moisture sensor according to an embodiment. The resulting optical fiber sensor of the present invention can be used in various applications, including to sense moisture content in indoor/outdoor air, soil, concrete, and low/high temperature gas streams.

  18. Development of an extended-range fiber optic pH sensor using evanescent wave absorption of sol-gel-entrapped pH indicators

    NASA Astrophysics Data System (ADS)

    Butler, Thomas M.; MacCraith, Brian D.; McDonagh, Colette M.

    1995-09-01

    The sol-gel process has been used to entrap pH indicators in porous glass coatings for sensor applications. This sensor is based on evanescent wave absorption using an unclad optical fiber dipcoated with the pH sensitive coating. The entrapped pH indicators show a broadening of the pH range with respect to the behavior in solution giving accurate measurement over three pH units when one indicator is used (bromophenol blue) and over six pH units (pH 3-9) when two indicators are used (bromophenol blue and bromocresol purple). The response of the pH sensor was monitored by measuring absorption at 590 nm referenced against a nonabsorbing region of the spectrum. This enabled the use of LED sources together with low cost photodiodes. The sensor displayed short response time and good repeatability. The thickness and stability of the pH sensitive coatings can be influenced by modifying the composition of the starting sol mixture. The evanescent absorption, and hence the sensitivity of the sensor, can be increased by selectively launching higher order modes in the fiber. These issues together with a full sensor characterization will be reported.

  19. Dye distance mapping using waveguide evanescent field fluorescence microscopy and its application to cell biology.

    PubMed

    Fleissner, Frederik; Morawitz, Michael; Dixon, S Jeffrey; Langbein, Uwe; Mittler, Silvia

    2015-10-01

    Previous studies have measured the distance between cells and the substratum at sites of adhesion via the emission of a fluorescent dye and waveguide methods. Here, we demonstrate a novel approach to measure the position of fluorescent dyes above a waveguide surface in the 10-200 nm distance range throughout an entire area, yielding a 2D dye distance map or a 3D contour plot. The dye is located in a multilayered Langmuir Blodgett (LB) film or in the plasma membrane of a cell. Waveguide evanescent field fluorescence (WEFF) images obtained using two different waveguide modes are employed allowing, with a simple mathematical approach, the calculation of dye distance maps. Ultra-thin steps made using LB technology, adhesion distances and the bending of the plasma membrane between focal adhesions of osteoblastic cells are shown as examples. The errors are discussed. False color representation of a dye distance map with four osteoblasts. The inset represents an overexposed WEFF image of the same field of view. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Oxygen detection using evanescent fields

    DOEpatents

    Duan, Yixiang; Cao, Weenqing

    2007-08-28

    An apparatus and method for the detection of oxygen using optical fiber based evanescent light absorption. Methylene blue was immobilized using a sol-gel process on a portion of the exterior surface of an optical fiber for which the cladding has been removed, thereby forming an optical oxygen sensor. When light is directed through the optical fiber, transmitted light intensity varies as a result of changes in the absorption of evanescent light by the methylene blue in response to the oxygen concentration to which the sensor is exposed. The sensor was found to have a linear response to oxygen concentration on a semi-logarithmic scale within the oxygen concentration range between 0.6% and 20.9%, a response time and a recovery time of about 3 s, ant to exhibit good reversibility and repeatability. An increase in temperature from 21.degree. C. to 35.degree. C. does not affect the net absorption of the sensor.

  1. A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2.

    PubMed

    Zhong, Nianbing; Zhao, Mingfu; Zhong, Lianchao; Liao, Qiang; Zhu, Xun; Luo, Binbin; Li, Yishan

    2016-11-15

    In this paper, we present a high-sensitivity polymer fiber-optic evanescent wave (FOEW) sensor with a three-layer structure that includes bottom, inter-, and surface layers in the sensing region. The bottom layer and inter-layer are POFs composed of standard cladding and the core of the plastic optical fiber, and the surface layer is made of dilute Canada balsam in xylene doped with GeO2. We examine the morphology of the doped GeO2, the refractive index and composition of the surface layer and the surface luminous properties of the sensing region. We investigate the effects of the content and morphology of the GeO2 particles on the sensitivity of the FOEW sensors by using glucose solutions. In addition, we examine the response of sensors incubated with staphylococcal protein A plus mouse IgG isotype to goat anti-mouse IgG solutions. Results indicate very good sensitivity of the three-layer FOEW sensor, which showed a 3.91-fold improvement in the detection of the target antibody relative to a conventional sensor with a core-cladding structure, and the novel sensor showed a lower limit of detection of 0.2ng/l and a response time around 320s. The application of this high-sensitivity FOEW sensor can be extended to biodefense, disease diagnosis, biomedical and biochemical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Evanescent wave absorption sensor with direct-growth MoS2 film based on U-bent tapered multimode fiber

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Zhang, Chao; Han, Yanshun; Gao, Saisai; Sheng, Yingqiang; Zhang, Suzhen; Lu, Zhengyi; Man, Baoyuan; Jiao, Yang; Jiang, Shouzhen

    2017-08-01

    In this work, we presented a novel evanescent wave absorption sensor based on U-bent tapered multimode fiber covered by molybdenum disulfide (MoS2) film (MoS2@TU fiber EWA sensor). The multimode fiber was manufactured by the fused tapered fiber machine, and then heated using a butane candle flame and bent into a U-bent structure. MoS2 was grown on the fiber directly by thermally decomposing the precursor of (NH4)2MoS4. We have demonstrated that the MoS2 can be applied in the filed of EWA sensor, and the EWA sensor based on U-bent tapered multimode fiber (TU fiber) possessed higher sensitivity than that based on U-bent fiber. The sensitivity (ΔA/ΔC) of the developed EWA sensor is 0.34 in detection of ethanol solution. It shows good sensitivity, linearity, repeatability and stability in detection. And the developed EWA sensor also shows good performance in detection of the adenosine solution, this work shows that the developed EWA sensor may have promising applications in biosensing.

  3. Study of Evanescence Wave Absorption in Lindane

    NASA Astrophysics Data System (ADS)

    Marzuki, A.; Prasetyo, E.; Gitrin, M. P.; Suryanti, V.

    2017-02-01

    Evanescent wave field has been studied for the purpose of tailoring fiber sensor capable of detecting lindane concentration in a solution. The mounted fiber was optically polished such that part of the fiber clad is stripped off. To study the evanescent wave field absorption in lindane solution, the unclad fiber was immersed in the solution. Light coming out of the fiber was studied at different wavelength each for different lindane concentration. It was shown that evanescent wave field absorption is stronger at wavelength corresponding to lindane absorption band as has been shown from absorption studies lindane in UV-VIS-NIR spectrophotometer.

  4. Fiber optic NIR evanescent wave absorption sensor systems for in-situ monitoring of hydrocarbon compounds in waste and ground water

    NASA Astrophysics Data System (ADS)

    Buerck, Jochen; Denter, P.; Mensch, M.; Kraemer, K.; Scholz, Michael

    1999-02-01

    In situ measurements with the prototype of a portable fiber- optic sensor system for the monitoring of nonpolar hydrocarbons (HC) in ground water or industrial waste water are presented. This sensor system can be used for quantitative in situ analysis of pollutants such as aromatic solvents, fuels, mineral oils or chlorinated HCs in a broad concentration range from around 200 (mu) g(DOT) L-1 up to a few 100 mg(DOT) L-1. The sensing principle is based on solid phase extraction of analyte molecules into a hydrophobic silicone cladding of a quartz glass optical fiber and the direct absorptiometric measurement of the extracted species in the polymer through the evanescent wave. The sensor can be connected via all-silica fibers with a length of up to 100 m to a filter photometer developed at the IFIA, thus allowing even remote analysis in monitoring wells. This instrument provides a sum concentration signal of the extracted organic compounds by measuring the integral absorption at the C-H overtone bands in the near-infrared spectral range. In situ measurements with the sensor system were performed in a ground water circulation well at the VEGAS research facility (Universitat Stuttgart). Here, the sensor proved to trace the HC sum concentration of xylene isomers in process water pumped from the well to a stripper column. In further experiments the sensor was combined with an oil sampling device and was tested with simulated waste waters of a commercial vehicle plant contaminated with different types of mineral oil. In this case the sensor system was able to detect the presence of mineral oil films floating on water or oil-in-water emulsions with concentrations greater than 20 ppm (v/v) within a few minutes.

  5. Fiber optic evanescent wave biosensor

    NASA Astrophysics Data System (ADS)

    Duveneck, Gert L.; Ehrat, Markus; Widmer, H. M.

    1991-09-01

    The role of modern analytical chemistry is not restricted to quality control and environmental surveillance, but has been extended to process control using on-line analytical techniques. Besides industrial applications, highly specific, ultra-sensitive biochemical analysis becomes increasingly important as a diagnostic tool, both in central clinical laboratories and in the doctor's office. Fiber optic sensor technology can fulfill many of the requirements for both types of applications. As an example, the experimental arrangement of a fiber optic sensor for biochemical affinity assays is presented. The evanescent electromagnetic field, associated with a light ray guided in an optical fiber, is used for the excitation of luminescence labels attached to the biomolecules in solution to be analyzed. Due to the small penetration depth of the evanescent field into the medium, the generation of luminescence is restricted to the close proximity of the fiber, where, e.g., the luminescent analyte molecules combine with their affinity partners, which are immobilized on the fiber. Both cw- and pulsed light excitation can be used in evanescent wave sensor technology, enabling the on-line observation of an affinity assay on a macroscopic time scale (seconds and minutes), as well as on a microscopic, molecular time scale (nanoseconds or microseconds).

  6. Gondola-shaped tetra-rhenium metallacycles modified evanescent wave infrared chemical sensors for selective determination of volatile organic compounds.

    PubMed

    Huang, Genin Gary; Lee, Chung-Jay; Tsai, Bo-Chan; Yang, Jyisy; Sathiyendiran, Malaichamy; Lu, Kuang-Lieh

    2011-07-15

    Water-stable and cavity-contained rhenium metallacycles were synthesized, and their ability to selectively interact with volatile organic compounds (VOCs) systematically studied using attenuated total reflection infrared (ATR-IR) spectroscopy. Integrating the unique properties of rhenium metallacycles into optical sensing technologies significantly improves selectivity in detecting aromatic compounds. To explore the interaction of rhenium metallacycles with VOCs, the surface of ATR sensing elements was modified with the synthesized rhenium metallacycles and used to detect VOCs. The results indicate that rhenium metallacycles have crown ether-like recognition sites, which can selectively interact with aromatic compounds, especially those bearing polar functional groups. The IR absorption bands of rhenium metallacycles shift significantly upon adsorption of aromatic VOCs, revealing a strong interaction between the tetra-rhenium metallacycles and guest aromatic compounds. Optimizing the thickness of the metallacycles coated on the surface of the sensing element led to rapid response in detection. The dynamic range of response was generally up to 30 mg/L with detection limits ca. 30 μg/L. Further studies of the effect of interferences indicate that recovery can be higher than 95% for most of the compounds tested. The results on the flow-cell device indicated that the performances were similar to a static detection system but the detection of VOCs can be largely simplified. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Sapphire fiber evanescent wave absorption in turbid media.

    PubMed

    Zhang, Jian; Xiong, Feibing; Djeu, Nicholas

    2009-08-01

    The influence of particulates on sapphire fiber evanescent wave absorption by water has been studied. Suspensions containing micro-sized graphite flakes and glassy carbon powder were used. Conventional free-space transmittance measurements of these samples showed strong absorption and scattering, which severely screened the absorption by water. However, the absorption on the water band determined from the evanescent wave interaction was unaffected by the presence of the graphite flakes. These results indicate that fiber-optic evanescent wave chemical sensors may be suitable for process control applications involving turbid reactor streams.

  8. Applications of Microbial Cell Sensors

    NASA Astrophysics Data System (ADS)

    Shimomura-Shimizu, Mifumi; Karube, Isao

    Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of microbial cell sensors have been developed as analytical tools. The microbial cell sensor utilizes microbes as a sensing element and a transducer. The characteristics of microbial cell sensors as sensing devices are a complete contrast to those of enzyme sensors or immunosensors, which are highly specific for the substrates of interest, although the specificity of the microbial cell sensor has been improved by genetic modification of the microbe used as the sensing element. Microbial cell sensors have the advantages of tolerance to measuring conditions, a long lifetime, and good cost performance, and have the disadvantage of a long response time. In this review, applications of microbial cell sensors are summarized.

  9. Axial super-resolution evanescent wave tomography.

    PubMed

    Pendharker, Sarang; Shende, Swapnali; Newman, Ward; Ogg, Stephen; Nazemifard, Neda; Jacob, Zubin

    2016-12-01

    Optical tomographic reconstruction of a three-dimensional (3D) nanoscale specimen is hindered by the axial diffraction limit, which is 2-3 times worse than the focal plane resolution. We propose and experimentally demonstrate an axial super-resolution evanescent wave tomography method that enables the use of regular evanescent wave microscopes like the total internal reflection fluorescence microscope beyond surface imaging and achieve a tomographic reconstruction with axial super-resolution. Our proposed method based on Fourier reconstruction achieves axial super-resolution by extracting information from multiple sets of 3D fluorescence images when the sample is illuminated by an evanescent wave. We propose a procedure to extract super-resolution features from the incremental penetration of an evanescent wave and support our theory by one-dimensional (along the optical axis) and 3D simulations. We validate our claims by experimentally demonstrating tomographic reconstruction of microtubules in HeLa cells with an axial resolution of ∼130  nm. Our method does not require any additional optical components or sample preparation. The proposed method can be combined with focal plane super-resolution techniques like stochastic optical reconstruction microscopy and can also be adapted for THz and microwave near-field tomography.

  10. Axial super-resolution evanescent wave tomography

    NASA Astrophysics Data System (ADS)

    Pendharker, Sarang; Shende, Swapnali; Newman, Ward; Ogg, Stephen; Nazemifard, Neda; Jacob, Zubin

    2016-12-01

    Optical tomographic reconstruction of a 3D nanoscale specimen is hindered by the axial diffraction limit, which is 2-3 times worse than the focal plane resolution. We propose and experimentally demonstrate an axial super-resolution evanescent wave tomography (AxSET) method that enables the use of regular evanescent wave microscopes like Total Internal Reflection Fluorescence Microscope (TIRF) beyond surface imaging, and achieve tomographic reconstruction with axial super-resolution. Our proposed method based on Fourier reconstruction achieves axial super-resolution by extracting information from multiple sets of three-dimensional fluorescence images when the sample is illuminated by an evanescent wave. We propose a procedure to extract super-resolution features from the incremental penetration of an evanescent wave and support our theory by 1D (along the optical axis) and 3D simulations. We validate our claims by experimentally demonstrating tomographic reconstruction of microtubules in HeLa cells with an axial resolution of $\\sim$130 nm. Our method does not require any additional optical components or sample preparation. The proposed method can be combined with focal plane super-resolution techniques like STORM and can also be adapted for THz and microwave near-field tomography.

  11. Pathogen detection using evanescent-wave fiber optic biosensor

    NASA Astrophysics Data System (ADS)

    Ferreira, Aldo P.; Werneck, Marcelo M.; Ribeiro, R. M.; Lins, U. G.

    1999-07-01

    This paper describes a real time optical biosensor that utilizes the evanescent field technique for monitoring microorganisms in hospital environment. The biosensor monitors interactions between the analytic (bacteria) and the evanescent field of an optical fiber passing through the culture media where the bacteria grows. The objective is to monitor atmospheres in hospital areas for the Staphylococcus aureus and Streptococcus pneumonia. The results lead us the conclusion that this kind of sensor presents quick response, good performance, easy of construction and low cost. We expect that the sensor will be of great help in controlling the hospital environment.

  12. Fuel cell CO sensor

    DOEpatents

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    1999-12-14

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.

  13. Wigner functions for evanescent waves.

    PubMed

    Petruccelli, Jonathan C; Tian, Lei; Oh, Se Baek; Barbastathis, George

    2012-09-01

    We propose phase space distributions, based on an extension of the Wigner distribution function, to describe fields of any state of coherence that contain evanescent components emitted into a half-space. The evanescent components of the field are described in an optical phase space of spatial position and complex-valued angle. Behavior of these distributions upon propagation is also considered, where the rapid decay of the evanescent components is associated with the exponential decay of the associated phase space distributions. To demonstrate the structure and behavior of these distributions, we consider the fields generated from total internal reflection of a Gaussian Schell-model beam at a planar interface.

  14. Evaluation of Anti-A/Udorn/307/1972 Antibody Specificity to Influenza A/H3N2 Viruses Using an Evanescent-Field Coupled Waveguide-Mode Sensor

    PubMed Central

    Gopinath, Subash C. B.; Awazu, Koichi; Fujimaki, Makoto; Shimizu, Kazufumi

    2013-01-01

    Discrimination of closely related strains is a key issue, particularly for infectious diseases whose incidence fluctuates according to variations in the season and evolutionary changes. Among infectious diseases, influenza viral infections are a worldwide cause of pandemic disease and mortality. With the emergence of different influenza strains, it is vital to develop a method using antibodies that can differentiate between viral types and subtypes. Ideally, such a system would also be user friendly. In this study, a polyclonal antibody generated against A/Udorn/307/1972 (H3N2) was used as a probe to distinguish between influenza H3N2 viruses based on the interaction between the antibody and hemagglutinin, demonstrating its applicability for viral discrimination. Clear discrimination was demonstrated using an evanescent-field-coupled waveguide-mode sensor, which has appealing characteristics over other methods in the viewpoint of improving the sensitivity, measurement time, portability and usability. Further supporting evidence was obtained using enzyme-linked immunosorbent assays, hemagglutination-inhibition assays, and infectivity neutralization assays. The results obtained indicate that the polyclonal antibody used here is a potential probe for distinguishing influenza viruses and, with the aid of a handheld sensor it could be used for influenza surveillance. PMID:24339924

  15. Evanescent Wave Atomic Mirror

    NASA Astrophysics Data System (ADS)

    Ghezali, S.; Taleb, A.

    2008-09-01

    A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely

  16. Glycan profiling analysis using evanescent-field fluorescence-assisted lectin array: Importance of sugar recognition for cellular uptake of exosomes from mesenchymal stem cells.

    PubMed

    Shimoda, Asako; Tahara, Yoshiro; Sawada, Shin-Ichi; Sasaki, Yoshihiro; Akiyoshi, Kazunari

    2017-09-23

    Studies involving the functional analysis of exosomal contents including proteins, DNA, and RNA have been reported. Most membrane proteins and lipids are glycosylated, which controls their physical properties and functions, but little is known about glycans on exosomes owing to the difficulty of analysing them. To shed light on these issues, we collected exosomes from mesenchymal stem cells (MSCs) derived from human adipose tissue for glycan profiling using evanescent-field fluorescence-assisted lectin array as well as analysis of their uptake in vivo. Initial analyses showed that the mean diameter of the collected exosomes was 178 nm and they presented with typical exosomal and MSC markers. Regarding the glycan profiling, exosomes interacted more strongly than the membrane of the original MSCs did with a range of lectins, especially sialic acid-binding lectins. The findings also showed that cellular exosome uptake involved recognition by HeLa cell-surface-bound sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs). Confirming this siglec-related uptake, in vivo experiments involving subcutaneous injection of the fluorescently labelled exosomes into mice showed their transport into lymph nodes and internalization by antigen-presenting cells, particularly those expressing CD11b. Closer analysis revealed the colocalization of the exosomes with siglecs, indicating their involvement in the uptake. These findings provide us with an improved understanding of the importance of exosomal transport and targeting in relation to glycans on exosomal surfaces, potentially enabling us to standardize exosomes when using them for therapeutic purposes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Evanescent Waves Nuclear Magnetic Resonance

    PubMed Central

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad; Kenouche, Samir; Coillot, Christophe; Alibert, Eric; Jabakhanji, Bilal; Schimpf, Remy; Zanca, Michel; Stein, Paul; Goze-Bac, Christophe

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to characterize and model evanescent electromagnetic fields originating from NMR phenomenon. We report that in this experimental configuration the available NMR signal is one order of magnitude larger and follows an exponential decay inversely proportional to the size of the emitters. Those investigations open a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging. PMID:26751800

  18. Verification of evanescent coupling from subwavelength grating pairs

    NASA Astrophysics Data System (ADS)

    Rogers, A.-A. A.; Kedia, S.; Samson, S.; Bhansali, S.

    2011-12-01

    Near-field evanescent wave coupling of various subwavelength grating pairs, using a 1.55 μm infrared semiconductor laser has been demonstrated for use as an optical MEMS sensor. Subwavelength grating pairs were fabricated on both glass and silicon substrates. When coupled together the effective grating period is not subwavelength and can exhibit several diffraction orders. The 1.55 μm infrared source was incident on the coupled pairs and the first-order output intensity was recorded and compared with the output intensity from simulated results. This demonstrated evanescent wave coupling concept can be applied to MEMS systems with nanometer gap separations (e.g., pressure sensors, biosensors, and accelerometers) to allow for subnanometer displacement detection.

  19. Optical and physical characterization of a local evanescent array coupled biosensor: Use of evanescent field perturbations for multianalyte sensing

    PubMed Central

    Stephens, Matthew D.; Yuan, Guangwei; Lear, Kevin L.; Dandy, David S.

    2010-01-01

    The evanescent field surrounding the core of an optical waveguide is very sensitive to refractive index changes near the core. This sensitivity can be exploited to form the basis for a quantitative sensor with high specificity and sensitivity. Selective probe molecules may be attached to the surface of a waveguide core and the evanescent field locally monitored as target analytes are introduced to the system. In this study, probe/analyte regions were simulated using lithographically patterned organic films with thicknesses of 60 nm and 130 nm. The evanescent field strength was measured quantitatively using near field scanning optical microscopy (NSOM). The presence of the organic material on the waveguide caused up to a 70% change in the intensity of the evanescent field over the patterned region and the excitation of a weakly bound higher order mode. The waveguide core and surrounding cladding were numerically simulated using the beam propagation method and these predictions are in quantitative agreement with the experimental results obtained using NSOM. PMID:20436955

  20. Optical immunoassay systems based upon evanescent wave interactions

    NASA Astrophysics Data System (ADS)

    Christensen, Douglas A.; Herron, James N.

    1996-04-01

    Immunoassays based upon evanescent wave interactions are finding increased biosensing application. In these devices, the evanescent tail associated with total internal reflection of an incident beam at the substrate/solution interface provides sensitivity for surface-bound protein over bulk molecules, allowing homogeneous assays and real-time measurement of binding dynamics. Among such systems are surface plasmon resonance sensors and a resonant mirror device. Several research groups are also developing fluorescent fiberoptic or planar waveguide sensors for biomedical applications. We describe a second-generation planar waveguide fluoroimmunoassay system being developed in our laboratory which uses a molded polystyrene sensor. The 633-nm beam from a laser diode is focused into the 500 micrometer- thick planar waveguide by an integral lens. Antibodies to the desired analyte (hCG) are immobilized on the waveguide surface and fluorescence from bound analyte/tracer antibodies in a sandwich format is imaged onto the detector. The geometry of the waveguide allows several zones to be detected, providing the capability for on-sensor calibration. This sensor has shown picomolar sensitivity for the detection of hCG.

  1. Conversion of evanescent Lamb waves into propagating waves via a narrow aperture edge.

    PubMed

    Yan, Xiang; Yuan, Fuh-Gwo

    2015-06-01

    This paper presents a quantitative study of conversion of evanescent Lamb waves into propagating in isotropic plates. The conversion is substantiated by prescribing time-harmonic Lamb displacements/tractions through a narrow aperture at an edge of a semi-infinite plate. Complex-valued dispersion and group velocity curves are employed to characterize the conversion process. The amplitude coefficient of the propagating Lamb modes converted from evanescent is quantified based on the complex reciprocity theorem via a finite element analysis. The power flow generated into the plate can be separated into radiative and reactive parts made on the basis of propagating and evanescent Lamb waves, where propagating Lamb waves are theoretically proved to radiate pure real power flow, and evanescent Lamb waves carry reactive pure imaginary power flow. The propagating power conversion efficiency is then defined to quantitatively describe the conversion. The conversion efficiency is strongly frequency dependent and can be significant. With the converted propagating waves from evanescent, sensors at far-field can recapture some localized damage information that is generally possessed in evanescent waves and may have potential application in structural health monitoring.

  2. Counting cells with a low-cost integrated microfluidics-waveguide sensor.

    PubMed

    Garcia, Daniel; Ghansah, Isaac; Leblanc, John; Butte, Manish J

    2012-03-01

    The capability to count cells from biofluids at low cost has important diagnostic implications in resource-poor settings. Many approaches have been developed to address this important need, and while most envision a low per-test cost, the detector instrument can be quite expensive. In this report, we present a novel device that enables low-cost and rapid counting of cells from a drop of blood. We demonstrate a shallow, buried, planar waveguide fabricated by ion exchange in glass that underlies a microfluidic structure for capturing cells. Laser light transmitted through the waveguide was attenuated by the number of metal nanoparticles tagged to the cells because of the interaction of the metal particles with the evanescent field of the waveguide. Calibration of the sensor using bead-tagged lymphocytes captured from human blood showed that the sensor could semi-quantitatively count as few as 100 cells/µL of blood. This technology enables the enumeration of specifically captured cells, allowing for a point-of-care, hand-held device for fast and affordable cell counting in screening, remote, or resource-poor settings.

  3. Sensor Development for PEM Fuel Cell Systems

    SciTech Connect

    Steve Magee; Richard Gehman

    2005-07-12

    This document reports on the work done by Honeywell Sensing and Control to investigate the feasibility of modifying low cost Commercial Sensors for use inside a PEM Fuel Cell environment. Both stationary and automotive systems were considered. The target environment is hotter (100 C) than the typical commercial sensor maximum of 70 C. It is also far more humid (100% RH condensing) than the more typical 95% RH non-condensing at 40 C (4% RH maximum at 100 C). The work focused on four types of sensors, Temperature, Pressure, Air Flow and Relative Humidity. Initial design goals were established using a market research technique called Market Driven Product Definition (MDPD). A series of interviews were conducted with various users and system designers in their facilities. The interviewing team was trained in data taking and analysis per the MDPD process. The final result was a prioritized and weighted list of both requirements and desires for each sensor. Work proceeded on concept development for the 4 types of sensors. At the same time, users were developing the actual fuel cell systems and gaining knowledge and experience in the use of sensors and controls systems. This resulted in changes to requirements and desires that were not anticipated during the MDPD process. The concepts developed met all the predicted requirements. At the completion of concept development for the Pressure Sensor, it was determined that the Fuel Cell developers were happy with off-the-shelf automotive pressure sensors. Thus, there was no incentive to bring a new Fuel Cell Specific Pressure Sensor into production. Work was therefore suspended. After the experience with the Pressure Sensor, the requirements for a Temperature Sensor were reviewed and a similar situation applied. Commercially available temperature sensors were adequate and cost effective and so the program was not continued from the Concept into the Design Phase.

  4. Polymer slab waveguides for the optical detection of nanoparticles in evanescent field based biosensors

    NASA Astrophysics Data System (ADS)

    Teigell Beneitez, Nuria; Missinne, Jeroen; Schleipen, Jean; Orsel, Joke; Prins, Menno W. J.; Van Steenberge, Geert

    2014-02-01

    We present a polymer optical waveguide integration technology for the detection of nanoparticles in an evanescent field based biosensor. In the proposed biosensor concept, super-paramagnetic nanoparticles are used as optical contrast labels. The nanoparticles capture target molecules from a sample fluid and bind to the sensor surface with biological specificity. The surface-bound nanoparticles are then detected using frustration of an evanescent field. In the current paper we elaborate on the polymer waveguides which are used to generate a well-defined optical field for nanoparticle detection.

  5. Nanoparticle PEBBLE sensors in live cells.

    PubMed

    Lee, Yong-Eun Koo; Kopelman, Raoul

    2012-01-01

    Live cell studies are of fundamental importance to the life sciences and their medical applications. Nanoparticle (NP)-based sensor platforms have many advantages as sensors for intracellular measurements, due to their flexible engineerability, noninvasive nature (due to their nano-size and nontoxic matrix), and, for some of the NPs, intrinsic optical properties. NP-based fluorescent sensors for intracellular measurements, so called PEBBLE sensors, have been developed for many important intracellular analytes and functions, including ions, small molecules, reactive oxygen species, physical properties, and enzyme activities, which are involved in many chemical, biochemical, and physical processes taking place inside the cell. PEBBLE sensors can be used with a standard microscope for simultaneous optical imaging of cellular structures and sensing of composition and function, just like investigations performed with molecular probes. However, PEBBLE sensors of any design and matrix can be delivered into cells by several standard methods, unlike dye molecules that need to be cell permeable. Furthermore, new sensing possibilities are enabled by PEBBLE nanosensors, which are not possible with molecular probes. This review summarizes a variety of designs of the PEBBLE sensors, their characteristics, and their applications to cells.

  6. Model-based optimal design of polymer-coated chemical sensors.

    PubMed

    Phillips, Cynthia; Jakusch, Michael; Steiner, Hannes; Mizaikoff, Boris; Fedorov, Andrei G

    2003-03-01

    A model-based methodology for optimal design of polymer-coated chemical sensors is developed and is illustrated for the example of infrared evanescent field chemical sensors. The methodology is based on rigorous and computationally efficient modeling of combined fluid mechanics and mass transfer, including transport of multiple analytes. A simple algebraic equation for the optimal size of the sensor flow cell is developed to guide sensor design and validated by extensive CFD simulations. Based upon these calculations, optimized geometries of the sensor flow cell are proposed to further improve the response time of chemical sensors.

  7. Extraordinary momentum and spin in evanescent waves.

    PubMed

    Bliokh, Konstantin Y; Bekshaev, Aleksandr Y; Nori, Franco

    2014-03-06

    Momentum and spin represent fundamental dynamic properties of quantum particles and fields. In particular, propagating optical waves (photons) carry momentum and longitudinal spin determined by the wave vector and circular polarization, respectively. Here we show that exactly the opposite can be the case for evanescent optical waves. A single evanescent wave possesses a spin component, which is independent of the polarization and is orthogonal to the wave vector. Furthermore, such a wave carries a momentum component, which is determined by the circular polarization and is also orthogonal to the wave vector. We show that these extraordinary properties reveal a fundamental Belinfante's spin momentum, known in field theory and unobservable in propagating fields. We demonstrate that the transverse momentum and spin push and twist a probe Mie particle in an evanescent field. This allows the observation of 'impossible' properties of light and of a fundamental field-theory quantity, which was previously considered as 'virtual'.

  8. Fast wave evanescence in filamentary boundary plasmas

    SciTech Connect

    Myra, J. R.

    2014-02-15

    Radio frequency waves for heating and current drive of plasmas in tokamaks and other magnetic confinement devices must first traverse the scrape-off-layer (SOL) before they can be put to their intended use. The SOL plasma is strongly turbulent and intermittent in space and time. These turbulent properties of the SOL, which are not routinely taken into account in wave propagation codes, can have an important effect on the coupling of waves through an evanescent SOL or edge plasma region. The effective scale length for fast wave (FW) evanescence in the presence of short-scale field-aligned filamentary plasma turbulence is addressed in this paper. It is shown that although the FW wavelength or evanescent scale length is long compared with the dimensions of the turbulence, the FW does not simply average over the turbulent density; rather, the average is over the exponentiation rate. Implications for practical situations are discussed.

  9. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao

    2003-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  10. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen

    2001-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  11. Improved fuel-cell-type hydrogen sensor

    NASA Technical Reports Server (NTRS)

    Rudek, F. P.; Rutkowski, M. D.

    1968-01-01

    Modified hydrogen sensor replaces oxygen cathode with a cathode consisting of a sealed paste of gold hydroxide and a pure gold current collector. The net reaction which occurs during cell operation is the reduction of the gold hydroxide to gold and water, with a half-cell potential of 1.4 volts.

  12. A magnetic cell-based sensor.

    PubMed

    Wang, Hua; Mahdavi, Alborz; Tirrell, David A; Hajimiri, Ali

    2012-11-07

    Cell-based sensing represents a new paradigm for performing direct and accurate detection of cell- or tissue-specific responses by incorporating living cells or tissues as an integral part of a sensor. Here we report a new magnetic cell-based sensing platform by combining magnetic sensors implemented in the complementary metal-oxide-semiconductor (CMOS) integrated microelectronics process with cardiac progenitor cells that are differentiated directly on-chip. We show that the pulsatile movements of on-chip cardiac progenitor cells can be monitored in a real-time manner. Our work provides a new low-cost approach to enable high-throughput screening systems as used in drug development and hand-held devices for point-of-care (PoC) biomedical diagnostic applications.

  13. Detection of recombinant growth hormone by evanescent cascaded waveguide coupler on silica-on-silicon.

    PubMed

    Ozhikandathil, Jayan; Packirisamy, Muthukumaran

    2013-05-01

    An evanescent wave based biosensor is developed on the silica-on-silicon (SOS) with a cascaded waveguide coupler for the detection of recombinant growth hormone. So far, U -bends and tapered waveguides are demonstrated for increasing the penetration depth and enhancing sensitivity of the evanescent wave sensor. In this work, a monolithically integrated sensor platform containing a cascaded waveguide coupler with optical power splitters and combiners designed with S -bends and tapper waveguides is demonstrated for an enhanced detection of recombinant growth hormone. In the cascaded waveguide coupler, a large surface area to bind the antibody with increased penetration depth of evanescent wave to excite the tagged-rbST is obtained by splitting the waveguide into multiple paths using Y splitters designed with s -bends and subsequently combining them back to a single waveguide through tapered waveguide and combiners. Hence a highly sensitive fluoroimmunoassay sensor is realized. Using the 2D FDTD (Finite-difference time-domain method) simulation of waveguide with a point source in Rsoft FullWAVE, the fluorescence coupling efficiency of straight and bend section of waveguide is analyzed. The sensor is demonstrated for the detection of fluorescently-tagged recombinant growth hormone with the detection limit as low as 25 ng/ml. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Evanescent optical fluorescence excitation: the role of photonic mode density

    NASA Astrophysics Data System (ADS)

    Menges, Bernhard; Sato, Akihiro; Knoll, Wolfgang

    2007-04-01

    In this paper we will discuss a few basic concepts concerning the use of evanescent optical fields for the excitation of fluorescent chromophores placed near the interface. The observation of enhanced fluorescence from chromophores excited by surface plasmon and waveguide modes will be presented and discussed. We attribute the enhancement to the near-field interaction between the chromophores and the increased photonic mode density by surface plasmon and waveguide modes. We determined limits of detection (LOD) of DNA hybridisation using the same sensor architecture by surface plasmon fluorescence spectroscopy (SPFS) and optical waveguide fluorescence spectroscopy (OWFS). Both SPFS and OWFS techniques have the same detection principle using an enhanced electromagnetic field to excite fluorophores and make it possible to monitor DNA hybridisation in real-time with high sensitivity. The relative photonic mode density of each mode was calculated under the resonance condition, and these values are reflected in the LOD values.

  15. Evanescent field excitation of Cy5-conjugated lipid bilayers using optical microcavities

    NASA Astrophysics Data System (ADS)

    Freeman, Lindsay M.; Dayani, Yasaman; Li, Su; Choi, Hong-Seok; Malmstadt, Noah; Armani, Andrea M.

    2011-09-01

    Whispering gallery mode optical microresonators are devices used for performing ultra-sensitive optical detection. Although the majority of the sensor research has been focused on label-free detection strategies for diagnostics, a whispering gallery mode device is ideally suited to perform fluorescent label-based biodetection as well. However, previous research using optical microcavities to excite fluorescent molecules has focused on cavity quantum electrodynamics applications and fundamental studies of the interactions of large fluorescent nanoparticles with the resonant cavity. In the present work, a method for forming self-assembled lipid bilayers, a mimic for cell membranes, on a spherical microresonator is developed. Solid-supported lipid bilayers, which are approximately 5nm thick, have been shown to accurately model cell membranes, and researchers use lipid bilayers in combination with fluorescent microscopy when developing theoretical models for the transport of molecules across the cell membrane. The bilayernature is verified using both fluorescent resonance energy transfer and fluorescence recovery after photobleaching. The evanescent tail of the microresonator is used to excite a Cy5-conjugated lipid located within the bilayer while the underlying optical device behavior is characterized at 633nm and 980nm. The emission wavelength of the Cy5 dye and the optical performance (Q factor) of the microcavity agree with theoretical predictions.

  16. Evanescent cultivation of photosynthetic bacteria on thin waveguides

    NASA Astrophysics Data System (ADS)

    Pierobon, S. C.; Ooms, M. D.; Sinton, D.

    2014-04-01

    Waveguides with thicknesses similar to biofilms (10-100 µm) provide an opportunity to improve the bioenergy density of biofilm photobioreactors, avoiding the fundamental light- and mass-transport productivity limitations of planktonic photobioreactors. This report investigates the biofilm growth of a mutant of Synechococcus elongatus (PCC 7942) in evanescent light fields that can be scaled over large planar areas. In this study, areas of 7.2 cm2 are illuminated via frustrated total internal reflections on planar waveguides. The resulting photosynthetic biofilm growth showed resilience to surface intensities exceeding photosynthetic limits and a more uniform cell density distribution (1.0 ± 0.3 × 109 mL-1) than predicted from surface light distribution profiles. These results indicate potential for larger area biofilms using the uniform lighting conditions identified. The combination of evanescent illumination with biofilms indicates a modular reactor cell density on the order of 108 mL-1, representing a two orders of magnitude improvement over current facility architectures, with significant potential for further improvement through denser biofilms.

  17. Cell Metabolism Monitoring with MEMS Sensor

    NASA Astrophysics Data System (ADS)

    Nakabeppu, Osamu; Sakayori, Junichi

    Cells and living tissue slightly but always generate metabolic heat as long as they are alive. Thus, biological activity can be measured through the observation of metabolic heat, which has been developed as “bio-calorimetry”. On the other hand, further improvements in thermal sensing ability can be expected with use of the MEMS (Micro Electro Mechanical System) technology. The purpose of this study is to develop the monitoring technique of the metabolic heat of cells in as small number as possible with the MEMS technology. If the monitoring technique of metabolism of a few cells or even a single cell is made available, it plays very important rolls in bio- and medical- engineering, pharmaceutical sciences, and so on. In this study, a bio-calorimeter with a MEMS thermopile sensor was made, and its performance and metabolism monitoring of Yeast were tested. The thermopile sensor consisted of 350 thin film thermocouples of Cr and Ni strips of 20 μm width on a 150 μm thick glass plate. The thermopile sensor composed a calorimetric cell as a bottom plate with thick aluminum frame. The calorimetric cell was placed in a triple thermostatic chamber which employs a proportional control with a Peltier device and PID control with heater. The calorimeter showed a sensitivity of 0.62 V/W under the condition of including culture solution, time constant of the calorimetric cell of 90 sec, and a noise equivalent power of 60 nW, which corresponds to metabolic heat of 3 × 103 cells of Yeast. In the growth experiments of Yeast, growth thermograms for 105˜107 cells can be measured with reasonable generation times. It was demonstrated that the detectable number of Yeast cells of the MEMS calorimeter is much smaller than that for the traditional bio-calorimeter.

  18. Microbial Fuel Cells and Sensors

    DTIC Science & Technology

    2007-11-02

    funding foreign research over Quality U.S. research needs to be investigated by government officials. PATENT INFORMATION: Improved fuel cell designs and...Zeikus. Analysis of microbial electrochemical activity in marine sediment. (In preparation) REPOT D CUM NTA ON AGEForm Approved REPOT D CUM NTATON

  19. Wireless sensors powered by microbial fuel cells.

    PubMed

    Shantaram, Avinash; Beyenal, Haluk; Raajan, Raaja; Veluchamy, Angathevar; Lewandowski, Zbigniew

    2005-07-01

    Monitoring parameters characterizing water quality, such as temperature, pH, and concentrations of heavy metals in natural waters, is often followed by transmitting the data to remote receivers using telemetry systems. Such systems are commonly powered by batteries, which can be inconvenient at times because batteries have a limited lifetime and must be recharged or replaced periodically to ensure that sufficient energy is available to power the electronics. To avoid these inconveniences, a microbial fuel cell was designed to power electrochemical sensors and small telemetry systems to transmit the data acquired by the sensors to remote receivers. The microbial fuel cell was combined with low-power, high-efficiency electronic circuitry providing a stable power source for wireless data transmission. To generate enough power for the telemetry system, energy produced by the microbial fuel cell was stored in a capacitor and used in short bursts when needed. Since commercial electronic circuits require a minimum 3.3 V input and our cell was able to deliver a maximum of 2.1 V, a DC-DC converter was used to boost the potential. The DC-DC converter powered a transmitter, which gathered the data from the sensor and transmitted it wirelessly to a remote receiver. To demonstrate the utility of the system, temporal variations in temperature were measured, and the data were wirelessly transmitted to a remote receiver.

  20. Evanescent wave sensing and absorption analysis of herbal tea floral extracts in the presence of silver metal complexes

    NASA Astrophysics Data System (ADS)

    Priyamvada, V. C.; Radhakrishnan, P.

    2017-06-01

    Fiber optic evanescent wave sensors are used for studying the absorption properties of biochemical samples. The studies give precise information regarding the actual ingredients of the samples. Recent studies report the corrosion of silver in the presence glucose dissolved in water and heated to a temperature of 70°C. Based on this report evanescent absorption studies are carried out in hibiscus herbal tea floral extracts in the presence of silver metal complexes. These studies can also lead to the evaluation of the purity of the herbal tea extract.

  1. Evanescent field of vectorial highly non-paraxial beams.

    PubMed

    Martínez-Herrero, R; Mejías, P M; Carnicer, A

    2008-03-03

    In terms of the Fourier spectrum, a simple but general analytical expression is given for the evanescent field associated to a certain kind of non-paraxial exact solutions of the Maxwell equations. This expression enables one to compare the relative weight of the evanescent wave with regard to the propagating field. In addition, in those cases in which the evanescent term is significant, the magnitude of the field components across the transverse profile (including the evanescent features) can be determined. These results are applied to some illustrative examples.

  2. Mammalian Cell-Based Sensor System

    NASA Astrophysics Data System (ADS)

    Banerjee, Pratik; Franz, Briana; Bhunia, Arun K.

    Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.

  3. Highly sensitive evanescent wave combination tapered fiber optic fluorosensor for protein detection

    NASA Astrophysics Data System (ADS)

    Nardone, Vincent; Kapoor, Rakesh

    2008-02-01

    In this paper we are reporting the development of a highly sensitive evanescent wave combination tapered fiber optic fluorosensor. We have demonstrated detection of 5 pM Bovine Serum Albumin (BSA) protein using these fiber optic sensors. The sensor can be easily adopted for detection of other proteins. Six identical probes were prepared and affinity pure Goat anti-BSA antibodies were immobilized on the probe surface. We could detect signal from all the probes kept in 5 pM to 1 nM BSA solution while no signal was detected from the probes kept in 20 nM labeled ESA solution.

  4. Waveguide evanescent field scattering microscopy: bacterial biofilms and their sterilization response via UV irradiation.

    PubMed

    Nahar, Qamrun; Fleißner, Frederik; Shuster, Jeremiah; Morawitz, Michael; Halfpap, Christopher; Stefan, Mihaela; Langbein, Uwe; Southam, Gordon; Mittler, Silvia

    2014-07-01

    Waveguide Evanescent Field Scattering (WEFS) microscopy is introduced as a new and simple tool for label-free, high contrast imaging of bacteria and bacteria sensors. Bacterial microcolonies and single bacteria were discriminated both by their bright field images and by their evanescent scattering intensity. By comparing bright field images with WEFS images, the proportion of planktonic: sessile (i.e., "floating": attached) bacteria were measured. Bacteria were irradiated with UV light, which limited their biofilm forming capability. A quantitative decrease in attachment of individual, sessile bacteria and in attached, microcolony occupied areas was easily determined within the apparent biofilms with increasing UV dose. WEFS microscopy is an ideal tool for providing rapid quantitative data on biofilm formation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A hybrid silicon evanescent quantum dot laser

    NASA Astrophysics Data System (ADS)

    Jang, Bongyong; Tanabe, Katsuaki; Kako, Satoshi; Iwamoto, Satoshi; Tsuchizawa, Tai; Nishi, Hidetaka; Hatori, Nobuaki; Noguchi, Masataka; Nakamura, Takahiro; Takemasa, Keizo; Sugawara, Mitsuru; Arakawa, Yasuhiko

    2016-09-01

    We report the first demonstration of a hybrid silicon quantum dot (QD) laser, evanescently coupled to a silicon waveguide. InAs/GaAs QD laser structures with thin AlGaAs lower cladding layers were transferred by direct wafer bonding onto silicon waveguides defining cavities with adiabatic taper structures and distributed Bragg reflectors. The laser operates at temperatures up to 115 °C under pulsed current conditions, with a characteristic temperature T 0 of 303 K near room temperature. Furthermore, by reducing the width of the GaAs/AlGaAs mesa down to 8 µm, continuous-wave operation is realized at 25 °C.

  6. Evanescent field absorption based photonic polymer waveguide biosensor

    NASA Astrophysics Data System (ADS)

    Boiragi, Indrajit; Makkar, Roshan; Choudhury, Bikash Dev; Mukherji, Soumyo; Chalapathi, K.

    2010-12-01

    This paper details the design and fabrication of an integrated optical waveguide biosensor for antibody/antigen detection. SU-8 polymer is used as the core material to have a bi-conical tapered waveguide fabricated on a silicon substrate. PDMS is used as a buffer layer. The waist diameter of the biconical tapered waveguide has been optimized using Opti-BPM CAD software before fabrication. In addition, the fabrication technique employs simultaneous and single-step formation of the polymer waveguide structures for the guidance of light with V-grooves for low-cost passive alignment of glass optical fiber. The designed biosensor chip demonstrates sensing of FITC tagged goat anti human IgG (GaHIgG) and HIgG immobilized over the sensor surface was the bio receptor. The sensor uses the evanescent field that is present at the surface of the core for rapid and accurate sensing of antibody/antigen in the range of few micrograms per ml.

  7. Evanescent field absorption based photonic polymer waveguide biosensor

    NASA Astrophysics Data System (ADS)

    Boiragi, Indrajit; Makkar, Roshan; Choudhury, Bikash Dev; Mukherji, Soumyo; Chalapathi, K.

    2011-08-01

    This paper details the design and fabrication of an integrated optical waveguide biosensor for antibody/antigen detection. SU-8 polymer is used as the core material to have a bi-conical tapered waveguide fabricated on a silicon substrate. PDMS is used as a buffer layer. The waist diameter of the biconical tapered waveguide has been optimized using Opti-BPM CAD software before fabrication. In addition, the fabrication technique employs simultaneous and single-step formation of the polymer waveguide structures for the guidance of light with V-grooves for low-cost passive alignment of glass optical fiber. The designed biosensor chip demonstrates sensing of FITC tagged goat anti human IgG (GaHIgG) and HIgG immobilized over the sensor surface was the bio receptor. The sensor uses the evanescent field that is present at the surface of the core for rapid and accurate sensing of antibody/antigen in the range of few micrograms per ml.

  8. Evanescent photosynthesis: exciting cyanobacteria in a surface-confined light field.

    PubMed

    Ooms, Matthew D; Sieben, Vincent J; Pierobon, Scott C; Jung, Erica E; Kalontarov, Michael; Erickson, David; Sinton, David

    2012-04-14

    The conversion of solar energy to chemical energy useful for maintaining cellular function in photosynthetic algae and cyanobacteria relies critically on light delivery to the microorganisms. Conventional direct irradiation of a bulk suspension leads to non-uniform light distribution within a strongly absorbing culture, and related inefficiencies. The study of small colonies of cells in controlled microenvironments would benefit from control over wavelength, intensity, and location of light energy on the scale of the microorganism. Here we demonstrate that the evanescent light field, confined near the surface of a waveguide, can be used to direct light into cyanobacteria and successfully drive photosynthesis. The method is enabled by the synergy between the penetration depth of the evanescent field and the size of the photosynthetic bacterium, both on the order of micrometres. Wild type Synechococcus elongatus (ATCC 33912) cells are exposed to evanescent light generated through total internal reflection of red (λ = 633 nm) light on a prism surface. Growth onset is consistently observed at intensity levels of 79 ± 10 W m(-2), as measured 1 μm from the surface, and 60 ± 8 W m(-2) as measured by a 5 μm depthwise average. These threshold values agree well with control experiments and literature values based on direct irradiation with daylight. In contrast, negligible growth is observed with evanescent light penetration depths less than the minor dimension of the rod-like bacterium (achieved at larger light incident angles). Collectively these results indicate that evanescent light waves can be used to tailor and direct light into cyanobacteria, driving photosynthesis.

  9. Optical phased arrays with evanescently-coupled antennas

    DOEpatents

    Sun, Jie; Watts, Michael R; Yaacobi, Ami; Timurdogan, Erman

    2015-03-24

    An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern).

  10. Biotoxin Detection Using Cell-Based Sensors

    PubMed Central

    Banerjee, Pratik; Kintzios, Spyridon; Prabhakarpandian, Balabhaskar

    2013-01-01

    Cell-based biosensors (CBBs) utilize the principles of cell-based assays (CBAs) by employing living cells for detection of different analytes from environment, food, clinical, or other sources. For toxin detection, CBBs are emerging as unique alternatives to other analytical methods. The main advantage of using CBBs for probing biotoxins and toxic agents is that CBBs respond to the toxic exposures in the manner related to actual physiologic responses of the vulnerable subjects. The results obtained from CBBs are based on the toxin-cell interactions, and therefore, reveal functional information (such as mode of action, toxic potency, bioavailability, target tissue or organ, etc.) about the toxin. CBBs incorporate both prokaryotic (bacteria) and eukaryotic (yeast, invertebrate and vertebrate) cells. To create CBB devices, living cells are directly integrated onto the biosensor platform. The sensors report the cellular responses upon exposures to toxins and the resulting cellular signals are transduced by secondary transducers generating optical or electrical signals outputs followed by appropriate read-outs. Examples of the layout and operation of cellular biosensors for detection of selected biotoxins are summarized. PMID:24335754

  11. Sensor apparatus using an electrochemical cell

    DOEpatents

    Thakur, Mrinal

    2003-07-01

    A method for sensing mechanical quantities such as force, stress, strain, pressure and acceleration is disclosed. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics. The electrodes are made of conductors such as metals with dissimilar electro negativities. Significantly enhanced sensitivities, up to three orders of magnitude higher than that of comparable commercial sensors, are obtained. The materials are substantially less expensive than commercially used materials for mechanical sensors. An apparatus for sensing such mechanical quantities using materials such as doped 1,4 cis-polyisopropene and nafion. The 1,4 cis-polyisopropene may be doped with lithium perchlorate or iodine. The output voltage signal increases with an increase of the sensing area for a given stress. The device can be used as an intruder alarm, among other applications.

  12. Sensor apparatus using an electrochemical cell

    DOEpatents

    Thakur, Mrinal

    2002-01-01

    A novel technology for sensing mechanical quantities such as force, stress, strain, pressure and acceleration has been invented. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics. The electrodes are made of conductors such as metals with dissimilar electronegativities. Significantly enhanced sensitivities, up to three orders of magnitude higher than that of comparable commercial sensors, are obtained. The materials are substantially less expensive than commercially used materials for mechanical sensors.

  13. IR fiber-optic evanescent wave spectroscopy (FEWS) for sensing applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Katzir, Abraham

    2016-03-01

    We developed crystalline AgClBr fibers of diameters 0.7-0.9mm that are flexible, non-toxic, insoluble in water and highly transparent between 4-15µm. We used these fibers for various sensing applications. Highly sensitive absorption measurements in the mid-IR may be carried out by Fiber-optic Evanescent Wave Spectroscopy (FEWS). A typical FEWS system is based on three mid-IR components: a tunable source, a detector and a AgClBr fiber sensor that is brought in contact with the samples. We used FTIR spectrometers or tunable gas lasers or quantum cascade lasers (QCLs) as mid-IR sources. We used this FEWS system for measurements on gases, liquids and solids. In particular we used it for several biomedical applications. Measurements in vivo: (1) Early detection of skin diseases (e.g. melanoma). (2) Measurements on cells and bacteria. (3) Measurements on cornea. Measurements in vitro: (4) Characterization of urinary and biliary stones. (5) Blood measurements. The FEWS method is simple, inexpensive and does not require sample processing. It would be useful for diagnostic measurements on the outer part of the body of a patient, as well as for endoscopic measurements. It would also useful for measurements on tissue samples removed from the body. In addition we develop Scanning Near-field Infrared Microscope that will be used for spectral imaging with sub-wavelength resolution in the mid-IR. The various AgClBr fiber-optic sensors are expected to be important diagnostic tools at the hand of physicians in the future.

  14. Recent developments of genetically encoded optical sensors for cell biology.

    PubMed

    Bolbat, Andrey; Schultz, Carsten

    2017-01-01

    Optical sensors are powerful tools for live cell research as they permit to follow the location, concentration changes or activities of key cellular players such as lipids, ions and enzymes. Most of the current sensor probes are based on fluorescence which provides great spatial and temporal precision provided that high-end microscopy is used and that the timescale of the event of interest fits the response time of the sensor. Many of the sensors developed in the past 20 years are genetically encoded. There is a diversity of designs leading to simple or sometimes complicated applications for the use in live cells. Genetically encoded sensors began to emerge after the discovery of fluorescent proteins, engineering of their improved optical properties and the manipulation of their structure through application of circular permutation. In this review, we will describe a variety of genetically encoded biosensor concepts, including those for intensiometric and ratiometric sensors based on single fluorescent proteins, Forster resonance energy transfer-based sensors, sensors utilising bioluminescence, sensors using self-labelling SNAP- and CLIP-tags, and finally tetracysteine-based sensors. We focus on the newer developments and discuss the current approaches and techniques for design and application. This will demonstrate the power of using optical sensors in cell biology and will help opening the field to more systematic applications in the future. © 2016 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  15. The evanescent wavefield part of a cylindrical vector beam

    PubMed Central

    Chen, Rui-Pin; Li, Guoqiang

    2013-01-01

    The evanescent wave of the cylindrical vector field is analyzed using the vector angular spectrum of the electromagnetic beam. Comparison between the contributions of the TE and TM terms of both the propagating and the evanescent waves associated with the cylindrical vector field in free space is demonstrated. The physical pictures of the evanescent wave and the propagating wave are well illustrated from the vectorial structure, which provides a new approach to manipulating laser beams by choosing the states of polarization in the cross-section of the field. PMID:24104116

  16. Evanescent-wave infrared spectroscopy with flattened fibers as sensing elements.

    PubMed

    Raichlin, Y; Fel, L; Katzir, A

    2003-12-01

    Fiber-optic evanescent-wave spectroscopy (FEWS) is a novel method for measuring the absorption spectra of samples in contact with a segment of an optical fiber that serves as a sensing element. We used a cylindrical IR-transmitting AgClBr fiber whose central section, of length L, was flattened to a thickness d. This section was used as the FEWS sensing element. Our theoretical work predicted that the signals obtained in FEWS measurements should be linearly dependent on L and inversely proportional to d. Decreasing the thickness can significantly increase its sensitivity of the sensor. These theoretical results were verified experimentally by measurements of methanol and water.

  17. Analytical scanning evanescent microwave microscope and control stage

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2009-06-23

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  18. Evanescent wave excited luminescence from levitated quantum dot modified colloids.

    PubMed

    Everett, W Neil; Beckham, Richard E; Meissner, Kenith; Bevan, Michael A

    2007-08-14

    Evanescent wave excited luminescence of quantum dot modified polystyrene (QDPS) colloids is investigated to measure potential energy profiles of QDPS colloids electrostatically levitated above a planar glass surface. Luminescence is characterized for three different-sized PS colloids modified with three different-sized QDs using confocal microscopy, emission spectra, flow cytometry, and temporal measurements of levitated and deposited colloids. Colloid-surface potential energy profiles constructed from scattering and luminescence intensity data display excellent agreement with each other, theoretical predictions, and independently measured parameters. QDPS luminescence intensity is indirectly confirmed to have an exponential dependence on height similar to conventional colloidal evanescent wave scattering. Our findings indicate that evanescent wave excited QDPS luminescence could enable total internal reflection microscopy measurements of index-matched hard spheres, multiple specific biomolecular interactions via spectral multiplexing, enhanced morphology-dependent resonance modes, and integrated evanescent wave-video-confocal microscopy experiments not possible with scattering.

  19. Analytical scanning evanescent microwave microscope and control stage

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2013-01-22

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  20. Thermo-acoustic engineering of silicon microresonators via evanescent waves

    SciTech Connect

    Tabrizian, R.; Ayazi, F.

    2015-06-29

    A temperature-compensated silicon micromechanical resonator with a quadratic temperature characteristic is realized by acoustic engineering. Energy-trapped resonance modes are synthesized by acoustic coupling of propagating and evanescent extensional waves in waveguides with rectangular cross section. Highly different temperature sensitivity of propagating and evanescent waves is used to engineer the linear temperature coefficient of frequency. The resulted quadratic temperature characteristic has a well-defined turn-over temperature that can be tailored by relative energy distribution between propagating and evanescent acoustic fields. A 76 MHz prototype is implemented in single crystal silicon. Two high quality factor and closely spaced resonance modes, created from efficient energy trapping of extensional waves, are excited through thin aluminum nitride film. Having different evanescent wave constituents and energy distribution across the device, these modes show different turn over points of 67 °C and 87 °C for their quadratic temperature characteristic.

  1. Platform for a Hydrocarbon Exhaust Gas Sensor Utilizing a Pumping Cell and a Conductometric Sensor

    PubMed Central

    Biskupski, Diana; Geupel, Andrea; Wiesner, Kerstin; Fleischer, Maximilian; Moos, Ralf

    2009-01-01

    Very often, high-temperature operated gas sensors are cross-sensitive to oxygen and/or they cannot be operated in oxygen-deficient (rich) atmospheres. For instance, some metal oxides like Ga2O3 or doped SrTiO3 are excellent materials for conductometric hydrocarbon detection in the rough atmosphere of automotive exhausts, but have to be operated preferably at a constant oxygen concentration. We propose a modular sensor platform that combines a conductometric two-sensor-setup with an electrochemical pumping cell made of YSZ to establish a constant oxygen concentration in the ambient of the conductometric sensor film. In this paper, the platform is introduced, the two-sensor-setup is integrated into this new design, and sensing performance is characterized. Such a platform can be used for other sensor principles as well. PMID:22423212

  2. Quantifying GFP Diffusion in Escherichia coli by Using Continuous Photobleaching with Evanescent Illumination

    PubMed Central

    Slade, Kristin M.; Steele, Bridgett L.; Pielak, Gary J.; Thompson, Nancy L.

    2009-01-01

    Fluorescence recovery after photobleaching and fluorescence correlation spectroscopy are the primary means for studying translational diffusion in biological systems. Both techniques, however, present numerous obstacles for measuring translational mobility in structures only slightly larger than optical resolution. We report a new method using through-prism total internal reflection fluorescence microscopy with continuous photobleaching (TIR-CP) to overcome these obstacles. Small structures, such as prokaryotic cells or isolated eukaryotic organelles, containing fluorescent molecules are adhered to a surface. This surface is continuously illuminated by an evanescent wave created by total internal reflection. The characteristic length describing the decay of the evanescent intensity with distance from the surface is smaller than the structures. The fluorescence decay rate resulting from continuous evanescent illumination is monitored as a function of the excitation intensity. The data at higher excitation intensities provide apparent translational diffusion coefficients for the fluorescent molecules within the structures because the decay results from two competing processes (the intrinsic photobleaching propensity and diffusion in the small structures). We present the theoretical basis for the technique and demonstrate its applicability by measuring the diffusion coefficient, 6.3 ± 1.1 µm2/sec, of green fluorescent protein (GFP) in Escherichia coli cells. PMID:19296673

  3. Fluorometer with a quartz-rod waveguide-integrating sphere configuration to measure evanescent-field luminescence

    USDA-ARS?s Scientific Manuscript database

    A fluorometer was designed to measure evanescent-field luminescence. A quartz-rod waveguide (d = 2 mm) was installed coaxally inside a cylindrical flow-through cell (id = 2.3 mm, od = 6.3 mm, l = 116 mm). An excitation beam from a UV LED or a miniature xenon flashlamp was focused by a ball lens and ...

  4. Electrochemical sensor for monitoring electrochemical potentials of fuel cell components

    DOEpatents

    Kunz, Harold R.; Breault, Richard D.

    1993-01-01

    An electrochemical sensor comprised of wires, a sheath, and a conduit can be utilized to monitor fuel cell component electric potentials during fuel cell shut down or steady state. The electrochemical sensor contacts an electrolyte reservoir plate such that the conduit wicks electrolyte through capillary action to the wires to provide water necessary for the electrolysis reaction which occurs thereon. A voltage is applied across the wires of the electrochemical sensor until hydrogen evolution occurs at the surface of one of the wires, thereby forming a hydrogen reference electrode. The voltage of the fuel cell component is then determined with relation to the hydrogen reference electrode.

  5. Micromachined force sensors for the study of cell mechanics

    NASA Astrophysics Data System (ADS)

    Yang, Shengyuan; Saif, Taher

    2005-04-01

    A technique using micromachined mechanical force sensors to measure the force response of living cells is introduced. The force sensors consist of a probe and flexible beams. The probe is used to indent and stretch the cells, and the flexible beams are used to measure the cell force response. The stiffness of the sensors is designed at several nanonewtons per micrometer, but can be varied over a wide range. The sensors are fabricated by the SCREAM process. The deformation of the cells and the deflection of flexible beams are measured by an optical microscope coupled with a charge-coupled device camera. Experimental demonstrations show the feasibility, simplicity, and versatility of this technique. It addresses several disadvantages of existing related techniques, and is complementary to many of them. We expect that this new technique will attract significant attention and be employed much more in the study of cell mechanics.

  6. Nonlithographic fabrication of microstructured fiber Bragg grating evanescent wave sensors

    NASA Astrophysics Data System (ADS)

    Paladino, D.; Iadicicco, A.; Campopiano, S.; Cutolo, A.; Cusano, A.

    2008-04-01

    This work is devoted to present and demonstrate a novel approach for the fabrication of micro-structured fiber Bragg gratings (MSFBGs). The MSFBG consists in a localized stripping of the cladding layer in a well defined region in the middle of the grating. The introduction of a perturbation along the grating leads to the formation of a defect state in the FBG spectral response that is tunable through the surrounding medium refractive index. Here, a two steps MSFBG fabrication technique, based on arc-discharge technique as fiber pre-treatment and maskless wet chemical etching to sensitize FBG to external refractive index, is proposed. Compared to the lithographic fabrication approach, previously proposed by the same authors and based on laser micromachining tool, this new simple and lowcost technique overcomes some technological drawbacks related to the presence of a mask and consequent undercutting etching. Furthermore, we experimentally demonstrate the potentiality of the presented approach to realize reliable MSFBGs enabling the prototyping of advanced photonics devices based on this technology.

  7. Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model

    NASA Astrophysics Data System (ADS)

    Liu, Ruopeng; Zhao, Bo; Lin, Xian Qi; Cheng, Qiang; Cui, Tie Jun

    2007-03-01

    In this paper, we present both theoretical analysis and experimental verification of evanescent-wave amplification by using a bilayer periodic circuit structure and its effective medium model. We propose a series-shunt capacitor (C-C) structure to simulate a magnetic plasma, whose permittivity is positive and permeability is negative, and a series-shunt inductor (L-L) structure to simulate an electric plasma, whose permittivity is negative and permeability is positive, in which the structure cells are not required to be electrically small. In addition, we derive and define an effective permittivity and permeability for the C-C and L-L structures in closed forms, which are completely different from the published ones. When the two structures are cascaded together to form a bilayer structure, we show that evanescent waves which exist in two single layers independently can be amplified exponentially if a certain resonant condition is satisfied. Such a resonant condition is equivalent to the antimatching condition for the permittivity and permeability of the effectively electric and magnetic plasmas. To show the accuracy of this equivalent medium model, we compare both circuit-simulation results for the C-C and L-L structures and theoretical-prediction results for the effective magnetic and electric plasmas, which have excellent agreement. Finally, we design an experiment using lumped capacitors and inductors mounted on a printed circuit board to verify the amplification of evanescent waves sufficiently. The measurement results have good agreement with the simulation results.

  8. Biochemical affinity sensing systems based on luminescence generation in the evanescent field of optical waveguides

    NASA Astrophysics Data System (ADS)

    Duveneck, Gert L.; Oroszlan, Peter; Abel, A. P.; Klee, B.; Steiner, V.; Ehrat, Markus; Gygax, D.; Widmer, H. M.

    1995-01-01

    We have developed a (bio)chemical analysis system based on luminescence generation and detection in the evanescent field associated with light guiding in an optical fiber. Our intention was directed towards optimization of not only the sensor, including the sensor handling and the immobilization of biochemical recognition elements, but also of the assay chemistry, with special emphasis on methods used for sensor regeneration, of the fluidic system, and of the experimental control software. Goals of this optimization process were not only to achieve high sensitivity, reproducibility and the related precision of the results, but also maximum regenerability of the sensors and system flexibility for a variety of different applications. Four examples of different bioaffinity assays, established on our sensor system, are presented: a competitive immunoassay for atrazine, a sandwich immunoassay for hirudin, a DNA hybridization assay, and first studies for the development of sensors based on membrane- bound receptors. In the atrazine assay, the sensor could be regenerated more than 300 times. In the hybridization assay, a detection limit of 7.5 multiplied by 10-14 M complementary fluorescein-labeled DNA was achieved. The performance of our system is compared with an established enzyme-linked immunosorbent assay (ELISA) on the example of the hirudin assay. In the concluding section of this paper, advantages and disadvantages of our fiberoptic, luminescence-based system, compared with commercialized systems, based on detection of changes of the effective refractive index, are discussed.

  9. Biomimetic chemical sensors using bioengineered olfactory and taste cells

    PubMed Central

    Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping; Wu, Chunsheng

    2014-01-01

    Biological olfactory and taste systems are natural chemical sensing systems with unique performances for the detection of environmental chemical signals. With the advances in olfactory and taste transduction mechanisms, biomimetic chemical sensors have achieved significant progress due to their promising prospects and potential applications. Biomimetic chemical sensors exploit the unique capability of biological functional components for chemical sensing, which are often sourced from sensing units of biological olfactory or taste systems at the tissue level, cellular level, or molecular level. Specifically, at the cellular level, there are mainly two categories of cells have been employed for the development of biomimetic chemical sensors, which are natural cells and bioengineered cells, respectively. Natural cells are directly isolated from biological olfactory and taste systems, which are convenient to achieve. However, natural cells often suffer from the undefined sensing properties and limited amount of identical cells. On the other hand, bioengineered cells have shown decisive advantages to be applied in the development of biomimetic chemical sensors due to the powerful biotechnology for the reconstruction of the cell sensing properties. Here, we briefly summarized the most recent advances of biomimetic chemical sensors using bioengineered olfactory and taste cells. The development challenges and future trends are discussed as well. PMID:25482234

  10. Biomimetic chemical sensors using bioengineered olfactory and taste cells.

    PubMed

    Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping; Wu, Chunsheng

    2014-01-01

    Biological olfactory and taste systems are natural chemical sensing systems with unique performances for the detection of environmental chemical signals. With the advances in olfactory and taste transduction mechanisms, biomimetic chemical sensors have achieved significant progress due to their promising prospects and potential applications. Biomimetic chemical sensors exploit the unique capability of biological functional components for chemical sensing, which are often sourced from sensing units of biological olfactory or taste systems at the tissue level, cellular level, or molecular level. Specifically, at the cellular level, there are mainly two categories of cells have been employed for the development of biomimetic chemical sensors, which are natural cells and bioengineered cells, respectively. Natural cells are directly isolated from biological olfactory and taste systems, which are convenient to achieve. However, natural cells often suffer from the undefined sensing properties and limited amount of identical cells. On the other hand, bioengineered cells have shown decisive advantages to be applied in the development of biomimetic chemical sensors due to the powerful biotechnology for the reconstruction of the cell sensing properties. Here, we briefly summarized the most recent advances of biomimetic chemical sensors using bioengineered olfactory and taste cells. The development challenges and future trends are discussed as well.

  11. Hybrid silicon evanescent approach to optical interconnects

    NASA Astrophysics Data System (ADS)

    Liang, Di; Fang, Alexander W.; Chen, Hui-Wen; Sysak, Matthew N.; Koch, Brian R.; Lively, Erica; Raday, Omri; Kuo, Ying-Hao; Jones, Richard; Bowers, John E.

    2009-06-01

    We discuss the recently developed hybrid silicon evanescent platform (HSEP), and its application as a promising candidate for optical interconnects in silicon. A number of key discrete components and a wafer-scale integration process are reviewed. The motivation behind this work is to realize silicon-based photonic integrated circuits possessing unique advantages of III-V materials and silicon-on-insulator waveguides simultaneously through a complementary metal-oxide semiconductor fabrication process. Electrically pumped hybrid silicon distributed feedback and distributed Bragg reflector lasers with integrated hybrid silicon photodetectors are demonstrated coupled to SOI waveguides, serving as the reliable on-chip single-frequency light sources. For the external signal processing, Mach-Zehnder interferometer modulators are demonstrated, showing a resistance-capacitance-limited, 3 dB electrical bandwidth up to 8 GHz and a modulation efficiency of 1.5 V mm. The successful implementation of quantum well intermixing technique opens up the possibility to realize multiple III-V bandgaps in this platform. Sampled grating DBR devices integrated with electroabsorption modulators (EAM) are fabricated, where the bandgaps in gain, mirror, and EAM regions are 1520, 1440 and 1480 nm, respectively. The high-temperature operation characteristics of the HSEP are studied experimentally and theoretically. An overall characteristic temperature ( T 0) of 51°C, an above threshold characteristic temperature ( T 1) of 100°C, and a thermal impedance ( Z T ) of 41.8°C/W, which agrees with the theoretical prediction of 43.5°C/W, are extracted from the Fabry-Perot devices. Scaling this platform to larger dimensions is demonstrated up to 150 mm wafer diameter. A vertical outgassing channel design is developed to accomplish high-quality III-V epitaxial transfer to silicon in a timely and dimension-independent fashion.

  12. Optical Oxygen Sensors for Applications in Microfluidic Cell Culture

    PubMed Central

    Grist, Samantha M.; Chrostowski, Lukas; Cheung, Karen C.

    2010-01-01

    The presence and concentration of oxygen in biological systems has a large impact on the behavior and viability of many types of cells, including the differentiation of stem cells or the growth of tumor cells. As a result, the integration of oxygen sensors within cell culture environments presents a powerful tool for quantifying the effects of oxygen concentrations on cell behavior, cell viability, and drug effectiveness. Because microfluidic cell culture environments are a promising alternative to traditional cell culture platforms, there is recent interest in integrating oxygen-sensing mechanisms with microfluidics for cell culture applications. Optical, luminescence-based oxygen sensors, in particular, show great promise in their ability to be integrated with microfluidics and cell culture systems. These sensors can be highly sensitive and do not consume oxygen or generate toxic byproducts in their sensing process. This paper presents a review of previously proposed optical oxygen sensor types, materials and formats most applicable to microfluidic cell culture, and analyzes their suitability for this and other in vitro applications. PMID:22163408

  13. Linearly decayed evanescent optical field in planar refractive index well

    NASA Astrophysics Data System (ADS)

    Liu, Jianhua; Tao, Li

    2017-04-01

    Evanescent optical field with linearly decaying profile is theoretically analyzed at the critical angle of incidence in a planar structure of one dimensional refractive index well (RIW). The linearity of the evanescent field is due to the presence of the second refractive index barrier, which also shifts the position of total internal reflection (TIR) away from the critical angle. The decaying rate is determined by the refractive indices of the two barriers, as well as the width of the well. With this linearly decayed evanescent field (LDEF), various profiles across the well, for example uniform one, can be formed via appropriate combination of the LDEFs, which can promote new applications in fields of material analysis and sensing in the molecular scale.

  14. Perfluorinated plastic optical fiber tapers for evanescent wave sensing.

    PubMed

    Gravina, Roberto; Testa, Genni; Bernini, Romeo

    2009-01-01

    In this work we describe the fabrication and the characterization of perfluorinated plastic-cladded optical fiber tapers. The heat-and-pull procedure has been used to fabricate symmetric tapers. Devices with different taper ratio have been produced and the repeatability of the process has been verified. The very low refractive indexes of the core-cladding perfluorinated polymers (n = 1.35-1.34) permit a strong enhancement of the evanescent wave power fraction in aqueous environments (n = 1.33), making them very attractive for evanescent wave sensing. The tapers have been characterized carrying out evanescent field absorbance measurements with different concentrations of methylene blue in water and fluorescence collection measurements in an aqueous solution containing Cy5 dye. A good sensitivity, tightly related to the low refractive index of the core-cladding materials and the geometrical profile, has been shown.

  15. Precise, controlled laser delivery with evanescent optical waves.

    PubMed

    Hooper, B A; Domankevitz, Y; Lin, C P; Anderson, R R

    1999-09-01

    Precise laser surgery is possible with laser pulses at wavelengths that are strongly absorbed at the surface of tissue. However, pulses at these wavelengths (far UV, far infrared) are not compatible with fiber-optic transmission, making endoscopic surgical procedures inside the body difficult. We use evanescent optical waves to demonstrate an alternative for confining energy near the tissue surface. Precise, superficial tissue ablation is achieved with evanescent waves generated at a sapphire-tissue interface by a free-electron laser, where the ablation depth may be varied. A new class of precise, controlled laser surgical tools may be achieved in this novel approach for use in endoscopic procedures. Electromagnetic theory governing evanescent-wave tissue ablation is presented.

  16. Perfluorinated Plastic Optical Fiber Tapers for Evanescent Wave Sensing

    PubMed Central

    Gravina, Roberto; Testa, Genni; Bernini, Romeo

    2009-01-01

    In this work we describe the fabrication and the characterization of perfluorinated plastic-cladded optical fiber tapers. The heat-and-pull procedure has been used to fabricate symmetric tapers. Devices with different taper ratio have been produced and the repeatability of the process has been verified. The very low refractive indexes of the core-cladding perfluorinated polymers (n = 1.35−1.34) permit a strong enhancement of the evanescent wave power fraction in aqueous environments (n = 1.33), making them very attractive for evanescent wave sensing. The tapers have been characterized carrying out evanescent field absorbance measurements with different concentrations of methylene blue in water and fluorescence collection measurements in an aqueous solution containing Cy5 dye. A good sensitivity, tightly related to the low refractive index of the core-cladding materials and the geometrical profile, has been shown. PMID:22303182

  17. Galvanic Cell Type Sensor for Soil Moisture Analysis.

    PubMed

    Gaikwad, Pramod; Devendrachari, Mruthyunjayachari Chattanahalli; Thimmappa, Ravikumar; Paswan, Bhuneshwar; Raja Kottaichamy, Alagar; Makri Nimbegondi Kotresh, Harish; Thotiyl, Musthafa Ottakam

    2015-07-21

    Here we report the first potentiometric sensor for soil moisture analysis by bringing in the concept of Galvanic cells wherein the redox energies of Al and conducting polyaniline are exploited to design a battery type sensor. The sensor consists of only simple architectural components, and as such they are inexpensive and lightweight, making it suitable for on-site analysis. The sensing mechanism is proved to be identical to a battery type discharge reaction wherein polyaniline redox energy changes from the conducting to the nonconducting state with a resulting voltage shift in the presence of soil moisture. Unlike the state of the art soil moisture sensors, a signal derived from the proposed moisture sensor is probe size independent, as it is potentiometric in nature and, hence, can be fabricated in any shape or size and can provide a consistent output signal under the strong aberration conditions often encountered in soil moisture analysis. The sensor is regenerable by treating with 1 M HCl and can be used for multiple analysis with little read out hysteresis. Further, a portable sensor is fabricated which can provide warning signals to the end user when the moisture levels in the soil go below critically low levels, thereby functioning as a smart device. As the sensor is inexpensive, portable, and potentiometric, it opens up avenues for developing effective and energy efficient irrigation strategies, understanding the heat and water transfer at the atmosphere-land interface, understanding soil mechanics, forecasting the risk of natural calamities, and so on.

  18. Evanescent Wave-Assisted Symmetry Breaking of Gold Dipolar Nanoantennas

    PubMed Central

    Yang, Jhen-Hong; Chen, Kuo-Ping

    2016-01-01

    Symmetry-breaking and scattering cancellation were observed in the dark-mode resonance of dipolar gold nanoantennas (NAs) on glass substrates coupled with oblique incidence and total internal reflection. With the assistance of evanescent waves, the coupling efficiency was twice as strong when the incidence angle was larger than the critical angle. The Hamiltonian equation and absorption spectra were used to analyze the hybridization model of symmetric dipolar gold NAs. The antibonding mode could be coupled successfully by both transverse-magnetic (TM) and transverse-electric (TE) polarizations to NAs when the dimers orientation is parallel to the propagation direction of evanescent waves. PMID:27581766

  19. Amplification of acoustic evanescent waves using metamaterial slabs.

    PubMed

    Park, Choon Mahn; Park, Jong Jin; Lee, Seung Hwan; Seo, Yong Mun; Kim, Chul Koo; Lee, Sam H

    2011-11-04

    We amplified acoustic evanescent waves using metamaterial slabs with a negative effective density. For the amplifying effect of the slab to overcome the dissipation, it is necessary that the imaginary part of the effective density is much smaller than the real part, a condition not satisfied so far. We report the construction of membrane-based two-dimensional negative-density metamaterials which exhibited remarkably small dissipation. Using a slab of this metamaterial we realized a 17-fold net amplitude gain at a remote distance from the evanescent wave source. Potential applications include acoustic superlensing.

  20. Evanescent Wave-Assisted Symmetry Breaking of Gold Dipolar Nanoantennas

    NASA Astrophysics Data System (ADS)

    Yang, Jhen-Hong; Chen, Kuo-Ping

    2016-09-01

    Symmetry-breaking and scattering cancellation were observed in the dark-mode resonance of dipolar gold nanoantennas (NAs) on glass substrates coupled with oblique incidence and total internal reflection. With the assistance of evanescent waves, the coupling efficiency was twice as strong when the incidence angle was larger than the critical angle. The Hamiltonian equation and absorption spectra were used to analyze the hybridization model of symmetric dipolar gold NAs. The antibonding mode could be coupled successfully by both transverse-magnetic (TM) and transverse-electric (TE) polarizations to NAs when the dimers orientation is parallel to the propagation direction of evanescent waves.

  1. Transverse multipolar light-matter couplings in evanescent waves

    NASA Astrophysics Data System (ADS)

    Fernandez-Corbaton, Ivan; Zambrana-Puyalto, Xavier; Bonod, Nicolas; Rockstuhl, Carsten

    2016-11-01

    We present an approach to study the interaction between matter and evanescent fields. The approach is based on the decomposition of evanescent plane waves into multipoles of well-defined angular-momentum transverse to both decay and propagation directions. We use the approach to identify the origin of the recently observed directional coupling of emitters into guided modes, and of the opposite Zeeman state excitation of atoms near a fiber. We explain how to rigorously quantify both effects and show that the directionality and the difference in excitation rates grow exponentially with the multipolar order of the light-matter interaction. We also use the approach to study and maximize the transverse torque exerted by an evanescent plane wave onto a given spherical absorbing particle. All the obtained physical insights can be traced back to the two main features of the decomposition of evanescent plane waves into transverse multipolar modes: A polarization independent exponential dominance of modes with large transverse angular momentum, and a polarization-controlled parity selection rule.

  2. Infrared evanescent-absorption spectroscopy with chalcogenide glass fibers.

    PubMed

    Sanghera, J S; Kung, F H; Pureza, P C; Nguyen, V Q; Miklos, R E; Aggarwal, I D

    1994-09-20

    We have used telluride glass fibers fabricated in house to measure the evanescent-absorption spectra of water, methanol, ethanol, isopropanol, acetone, ethanoic acid, hexane, and chloroform. Furthermore, detection limits of less than 2 vol. % solute were obtained for mixtures of water and methanol, ethanol, isopropanol, acetone, and ethanoic acid. Techniques to reduce the detection limits are discussed.

  3. Infrared Fiber Evanescent Wave Spectroscopy For In-Situ Monitoring Of Chemical Processes

    NASA Astrophysics Data System (ADS)

    Margalit, Eli; Dodiuk, H.; Kosower, Edward M.; Katzir, Abraham

    1989-06-01

    A silver halide infrared fiber-optic evanescent wave spectroscopic technique for in-situ monitoring of chemical processes and surface analysis is described. Samples are spread onto a fiber contained in a teflon-lined cell. Attenuated total internal reflectance (AIR) measurement with a Fourier transform infrared (FTIR) spectrometer yields spectra at various stages of a process (for example, the monitoring of adhesive curing and coupling agent polymerization). Changes in known spectroscopic features may be recognized in films as thin as a monolayer. The advantages and limitations of this surface analysis technique are discussed.

  4. Selection of optimal sensors for predicting performance of polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Mao, Lei; Jackson, Lisa

    2016-10-01

    In this paper, sensor selection algorithms are investigated based on a sensitivity analysis, and the capability of optimal sensors in predicting PEM fuel cell performance is also studied using test data. The fuel cell model is developed for generating the sensitivity matrix relating sensor measurements and fuel cell health parameters. From the sensitivity matrix, two sensor selection approaches, including the largest gap method, and exhaustive brute force searching technique, are applied to find the optimal sensors providing reliable predictions. Based on the results, a sensor selection approach considering both sensor sensitivity and noise resistance is proposed to find the optimal sensor set with minimum size. Furthermore, the performance of the optimal sensor set is studied to predict fuel cell performance using test data from a PEM fuel cell system. Results demonstrate that with optimal sensors, the performance of PEM fuel cell can be predicted with good quality.

  5. Nanoparticle PEBBLE sensors in live cells and in vivo.

    PubMed

    Lee, Yong-Eun Koo; Smith, Ron; Kopelman, Raoul

    2009-01-01

    Nanoparticle sensors have been developed for real-time imaging and dynamic monitoring, both in live cells and in vivo, of molecular and ionic components, constructs, forces, and dynamics observed during biological, chemical, and physical processes. With their biocompatible small size and inert matrix, nanoparticle sensors have been successfully applied to noninvasive real-time measurements of analytes and fields in cells and in rodents, with spatial, temporal, physical, and chemical resolution. This review describes the diverse designs of nanoparticle sensors for ions and small molecules, physical fields, and biological features, as well as the characterization, properties, and applications of these nanosensors to in vitro and in vivo measurements. Their floating as well as localization abilities in biological media are captured by the acronym PEBBLE: photonic explorer for bioanalysis with biologically localized embedding.

  6. Nanoparticle PEBBLE sensors in live cells and in vivo

    PubMed Central

    Smith, Ron

    2009-01-01

    Nanoparticle sensors have been developed for imaging and dynamic monitoring, in live cells and in vivo, of the molecular or ionic components, constructs, forces and dynamics, all in real time, during biological/chemical/physical processes. With their biocompatible small size and inert matrix, nanoparticle sensors have been successfully applied for non-invasive real-time measurements of analytes and fields in cells and rodents, with spatial, temporal, physical and chemical resolution. This review describes the diverse designs of nanoparticle sensors for ions and small molecules, physical fields and biological features, as well as the characterization, properties, and applications of these nanosensors to in vitro and in vivo measurements. Their floating as well as localization ability in biological media is captured by the acronym PEBBLE: photonic explorer for bioanalysis with biologically localized embedding. PMID:20098636

  7. Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities

    NASA Astrophysics Data System (ADS)

    Avino, S.; Giorgini, A.; Salza, M.; Fabian, M.; Gagliardi, G.; De Natale, P.

    2013-05-01

    We demonstrate evanescent-wave fiber cavity-enhanced spectroscopy in the liquid phase using a near-infrared frequency comb. Exploiting strong fiber-dispersion effects, we show that liquid absorption spectra can be recorded without any external dispersive element. The fiber cavity is used both as sensor and spectrometer. The resonance modes are frequency locked to the comb teeth while the cavity photon lifetime is measured over 155 nm, from 1515 nm to 1670 nm, where absorption bands of liquid polyamines are detected as a proof of concept. Our fiber spectrometer lends itself to in situ, real-time chemical analysis in environmental monitoring, biomedical assays, and micro-opto-fluidic systems.

  8. A simple acoustofluidic chip for microscale manipulation using evanescent Scholte waves.

    PubMed

    Aubert, Vivian; Wunenburger, Régis; Valier-Brasier, Tony; Rabaud, David; Kleman, Jean-Philippe; Poulain, Cédric

    2016-07-07

    Acoustofluidics is acknowledged as a powerful tool offering a contactless and label-free manipulation of fluids, micro-beads, and living cells. To date, most techniques rely on the use of propagating acoustic waves and take advantage of the associated acoustic radiation force in standing or progressive fields. Here, we present a new approach based on the generation of an evanescent acoustic field above a substrate. This field is obtained by means of subsonic interfacial waves giving rise to a well-defined standing wave pattern. By both imaging and probing the evanescent acoustic field, we show that these interfacial waves are guided waves known as quasi-Scholte acoustic waves. Scholte waves present very interesting features for applications in acoustofluidics. Namely, they confine the acoustic energy to the vicinity of the surface, they are nearly lossless and thus can propagate over long distances along the substrate, and finally they do not require any particular material for the substrate. With a very simple and low-cost device we show several examples of applications including patterning lines or arrays of cells, triggering spinning of living cells, and separating plasma from RBC in a whole blood microdroplet.

  9. Optical waveguides for evanescent field sensing

    NASA Astrophysics Data System (ADS)

    Rehouma, F.; Persegol, D.; Kevorkian, A.

    1994-09-01

    A novel method based on the control of the topography of the guide during its elaboration was presented. This new method aimed to contribute to the working principle of integrated-optics sensors. The proposed technique is easy to use and allows to bury different regions of ion-exchange waveguides selectively. The surface interaction length of the component and the losses of the structure can be controlled by the width and the tilt angle of the mask. Moreover, the method presented a combination of numerous advantages.

  10. CMOS Cell Sensors for Point-of-Care Diagnostics

    PubMed Central

    Adiguzel, Yekbun; Kulah, Haluk

    2012-01-01

    The burden of health-care related services in a global era with continuously increasing population and inefficient dissipation of the resources requires effective solutions. From this perspective, point-of-care diagnostics is a demanded field in clinics. It is also necessary both for prompt diagnosis and for providing health services evenly throughout the population, including the rural districts. The requirements can only be fulfilled by technologies whose productivity has already been proven, such as complementary metal-oxide-semiconductors (CMOS). CMOS-based products can enable clinical tests in a fast, simple, safe, and reliable manner, with improved sensitivities. Portability due to diminished sensor dimensions and compactness of the test set-ups, along with low sample and power consumption, is another vital feature. CMOS-based sensors for cell studies have the potential to become essential counterparts of point-of-care diagnostics technologies. Hence, this review attempts to inform on the sensors fabricated with CMOS technology for point-of-care diagnostic studies, with a focus on CMOS image sensors and capacitance sensors for cell studies. PMID:23112587

  11. CMOS cell sensors for point-of-care diagnostics.

    PubMed

    Adiguzel, Yekbun; Kulah, Haluk

    2012-01-01

    The burden of health-care related services in a global era with continuously increasing population and inefficient dissipation of the resources requires effective solutions. From this perspective, point-of-care diagnostics is a demanded field in clinics. It is also necessary both for prompt diagnosis and for providing health services evenly throughout the population, including the rural districts. The requirements can only be fulfilled by technologies whose productivity has already been proven, such as complementary metal-oxide-semiconductors (CMOS). CMOS-based products can enable clinical tests in a fast, simple, safe, and reliable manner, with improved sensitivities. Portability due to diminished sensor dimensions and compactness of the test set-ups, along with low sample and power consumption, is another vital feature. CMOS-based sensors for cell studies have the potential to become essential counterparts of point-of-care diagnostics technologies. Hence, this review attempts to inform on the sensors fabricated with CMOS technology for point-of-care diagnostic studies, with a focus on CMOS image sensors and capacitance sensors for cell studies.

  12. Development of a highly sensitive galvanic cell oxygen sensor.

    PubMed

    Ogino, H; Asakura, K

    1995-02-01

    A highly sensitive galvanic cell oxygen sensor was successfully developed for determining parts per billion of oxygen in high purity gases such as nitrogen, argon, etc. The response of this improved sensor was proportional in the range of oxygen concentrations from 10.0 ppm to the detection limit. The response speed in this study was improved to within 90 sec for a 90% response. The detection limit was tentatively found to be less than 0.4 ppb corresponding to S N = 2 .

  13. Membrane fluidity sensoring microbial fuel cell.

    PubMed

    Choi, Youngjin; Jung, Eunkyoung; Kim, Sunghyun; Jung, Seunho

    2003-04-01

    A study has been performed to examine the effect of temperature and ethanolic stresses on the coulombic efficiency of a microbial fuel cell. The conventional-type fuel cell containing Gram-negative bacteria, Proteus vulgaris, was investigated as a model system. From current output measurements, it was found that the coulombic yields were altered by environmental stresses such as temperature shock or ethanol treatment to the bacteria. While high-temperature or ethanolic shock led to a remarkable decrement in coulombic output, the low-temperature shock induced a slight increase in microbial fuel cell efficiency. These results indicate that the membrane fluidity is affected considerably by environmental stress, which in turn affects the electron transfer process through the bacterial cell membrane to and from the electrode. This interpretation was confirmed by the cyclic voltammetric study of a mediator on an electrode surface modified with the lipids extracted from the membrane of P. vulgaris under the given stress. Markedly different electrochemical behaviors were observed depending on the environmental stress. A reciprocal relationship between coulomb output and the ratio of saturation/unsaturation of fatty acids has been observed. This is the first report, to our knowledge, that the structural adaptation of membrane fatty acids in response to the environmental shock can regulate the coulombic efficiency of a microbial fuel cell.

  14. Flow-cell fibre-optic enzyme sensor for phenols

    SciTech Connect

    Papkovsky, D.B.; Ghindilis, A.L.; Kurochkin, I.N. )

    1993-07-01

    A solid-state fibre-optic luminescent oxygen sensor was used for flow-through measurements. It acts as a transducer in a new flow-cell enzyme sensor arrangement. This arrangement comprises a flow path, sample injector, microcolumn with the immobilized enzyme, oxygen membrane and fibre-optic connector joined together to form an integral unit. Laccase enzyme was used as a recognition system which provided specific oxidation of the substrates with the dissolved oxygen being monitored. The assay procedure was optimized and performance of the new system studied. The sensor was applied to the determination polyphenol content in tea, brandy, etc. (quality control test). The sensitivity to some important phenolic compounds was tested with the view of industrial wastewater control applications. 5 refs., 6 figs., 1 tab.

  15. Evanescent wave fluorescence biosensors: Advances of the last decade

    PubMed Central

    Taitt, Chris Rowe; Anderson, George P.; Ligler, Frances S.

    2015-01-01

    Biosensor development has been a highly dynamic field of research and has progressed rapidly over the past two decades. The advances have accompanied the breakthroughs in molecular biology, nanomaterial sciences, and most importantly computers and electronics. The subfield of evanescent wave fluorescence biosensors has also matured dramatically during this time. Fundamentally, this review builds on our earlier 2005 review. While a brief mention of seminal early work will be included, this current review will focus on new technological developments as well as technology commercialized in just the last decade. Evanescent wave biosensors have found a wide array applications ranging from clinical diagnostics to biodefense to food testing; advances in those applications and more are described herein. PMID:26232145

  16. Evanescent radiation, quantum mechanics and the Casimir effect

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1989-01-01

    An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.

  17. Manipulation of metallic nanoparticle with evanescent vortex Bessel beam.

    PubMed

    Rui, Guanghao; Wang, Xiaoyan; Cui, Yiping

    2015-10-05

    In this work, we propose a novel strategy to optically trap and manipulate metallic nanoparticles using evanescent vortex Bessel beam (EVBB). A versatile method is presented to generate evanescent Bessel beam with tunable optical angular momentum by focusing a radially polarized vortex beam onto a one-dimensional photonics band gap structure. The behavior of a metallic nanoparticle in the EVBB is numerically studied. We show that such particle can be stably trapped near the surface. The orbital angular momentum drives the metallic nanoparticle to orbit around the beam axis, and the direction of the orbital motion is controlled by the handedness of the helical phase front. The technique demonstrated in this work may open up new avenues for optical manipulation, and the non-contact tunable orbiting dynamics of the trapped particle may find important applications in higher resolution imaging techniques.

  18. Mechanical action of the transverse spin flows in evanescent fields

    NASA Astrophysics Data System (ADS)

    Angelsky, O. V.; Zenkova, C. Yu.; Maksymyak, P. P.; Maksymyak, A. P.; Ivansky, D. I.

    2016-12-01

    Mechanical action caused by the optical forces connected with the canonical momentum density associated with the local wavevector or Belifante's spin angular momentum, the helicity dependent and the helicity independent forces determined by spin momenta of different nature open attractive prospects to use optical structures for manipulating with minute quantities of matter that is of importance in nanophysics, nanooptics and nanotechnologies, precision chemistry and pharmacology and in numerous other areas. The main finding of our study consists in direct experimental demonstration of physical reality and mechanical action of recently discovered extraordinary transverse component of the spin angular momentum arising (in our case) in an evanescent light wave due to the total internal reflection of linearly polarized probing beam with azimuth 450 at the interface `birefringent plate-air', which is oriented perpendicularly to the wave vector of an evanescent wave.

  19. A novel microbial fuel cell sensor with biocathode sensing element.

    PubMed

    Jiang, Yong; Liang, Peng; Liu, Panpan; Wang, Donglin; Miao, Bo; Huang, Xia

    2017-03-02

    The traditional microbial fuel cell (MFC) sensor with bioanode as sensing element delivers limited sensitivity to toxicity monitoring, restricted application to only anaerobic and organic rich water body, and increased potential fault warning to the combined shock of organic matter/toxicity. In this study, the biocathode for oxygen reduction reaction was employed for the first time as the sensing element in MFC sensor for toxicity monitoring. The results shown that the sensitivity of MFC sensor with biocathode sensing element (7.4±2.0 to 67.5±4.0mA%(-1)cm(-2)) was much greater than that showed by bioanode sensing element (3.4±1.5 to 5.5±0.7mA%(-1)cm(-2)). The biocathode sensing element achieved the lowest detection limit reported to date using MFC sensor for formaldehyde detection (0.0005%), while the bioanode was more applicable for higher concentration (>0.0025%). There was a quicker response of biocathode sensing element with the increase of conductivity and dissolved oxygen (DO). The biocathode sensing element made the MFC sensor directly applied to clean water body monitoring, e.g., drinking water and reclaimed water, without the amending of background organic matter, and it also decreased the warning failure when challenged by a combined shock of organic matter/toxicity.

  20. Influence of cell adhesion and spreading on impedance characteristics of cell-based sensors

    PubMed Central

    Asphahani, Fareid; Thein, Myo; Veiseh, Omid; Edmondson, Dennis; Kosai, Ryan; Veiseh, Mandana; Xu, Jian; Zhang, Miqin

    2008-01-01

    Impedance measurements of cell-based sensors are a primary characterization route for detection and analysis of cellular responses to chemical and biological agents in real time. The detection sensitivity and limitation depend on sensor impedance characteristics and thus on cell patterning techniques. This study introduces a cell patterning approach to bind cells on microarrays of gold electrodes and demonstrates that single-cell patterning can substantially improve impedance characteristics of cell-based sensors. Mouse fibroblast cells (NIH3T3) are immobilized on electrodes through a lysine-arginine-glycine-aspartic acid (KRGD) peptide-mediated natural cell adhesion process. Electrodes are made of three sizes and immobilized with either covalently-bound or physically-adsorbed KRGD (c-electrodes or p-electrodes). Cells attached to c-electrodes increase the measurable electrical signal strength by 48.4%, 24.2%, and 19.0% for three electrode sizes, respectively, as compared to cells attached to p-electrodes, demonstrating that both the electrode size and surface chemistry play a key role in cell adhesion and spreading and thus the impedance characteristics of cell-based sensors. Single cells patterned on c-electrodes with dimensions comparable to cell size exhibit well-spread cell morphology and substantially outperform cells patterned on electrodes of other configurations. PMID:18221863

  1. Artificial magnetic field induced by an evanescent wave

    PubMed Central

    Mochol, Małgorzata; Sacha, Krzysztof

    2015-01-01

    Cold atomic gases are perfect laboratories for realization of quantum simulators. In order to simulate solid state systems in the presence of magnetic fields special effort has to be made because atoms are charge neutral. There are different methods for realization of artificial magnetic fields, that is the creation of specific conditions so that the motion of neutral particles mimics the dynamics of charged particles in an effective magnetic field. Here, we consider adiabatic motion of atoms in the presence of an evanescent wave. Theoretical description of the adiabatic motion involves artificial vector and scalar potentials related to the Berry phases. Due to the large gradient of the evanescent field amplitude, the potentials can be strong enough to induce measurable effects in cold atomic gases. We show that the resulting artificial magnetic field is able to induce vortices in a Bose-Einstein condensate trapped close to a surface of a prism where the evanescent wave is created. We also analyze motion of an atomic cloud released from a magneto-optical trap that falls down on the surface of the prism. The artificial magnetic field is able to reflect falling atoms that can be observed experimentally. PMID:25567430

  2. Optical detection of evanescent ultrasound waves in water.

    PubMed

    Nunez, I; Negreira, C

    1998-01-01

    Acoustical perturbation by targets smaller than the wavelength can generate evanescent waves, which decay with the distance of propagation. By putting such targets immediately under the free surface of water, the diffracted acoustical field can excite the surface membrane before evanescence, and it produces a static ripple because of the radiation pressure. A collimated beam of light reflects at the perturbed surface, and it becomes modulated in phase. In this work we show experimental results where we achieve an optical image of the acoustical evanescent waves produced by an array-like target. Arising from the theory, we present a numerical calculus of the optical image produced by the ultrasonic field diffracted from the target in order to verify the experimental results. With this method, we look for a spatial resolution smaller than acoustical wavelength, for normal incidence and plane waves. In our experimental device, we use a sound wavelength in water greater than 1.5 mm, generated by a PZT transducer. We can resolve an array of 1.0 mm of periodicity.

  3. Batteryless, wireless sensor powered by a sediment microbial fuel cell.

    PubMed

    Donovan, Conrad; Dewan, Alim; Heo, Deukhyoun; Beyenal, Haluk

    2008-11-15

    Sediment microbial fuel cells (SMFCs) are considered to be an alternative renewable power source for remote monitoring. There are two main challenges to using SMFCs as power sources: 1) a SMFC produces a low potential at which most sensor electronics do not operate, and 2) a SMFC cannot provide continuous power, so energy from the SMFC must be stored and then used to repower sensor electronics intermittently. In this study, we developed a SMFC and a power management system (PMS) to power a batteryless, wireless sensor. A SMFC operating with a microbial anode and cathode, located in the Palouse River, Pullman, Washington, U.S.A., was used to demonstrate the utility of the developed system. The designed PMS stored microbial energy and then started powering the wireless sensor when the SMFC potential reached 320 mV. It continued powering until the SMFC potential dropped below 52 mV. The system was repowered when the SMFC potential increased to 320 mV, and this repowering continued as long as microbial reactions continued. We demonstrated that a microbial fuel cell with a microbial anode and cathode can be used as an effective renewable power source for remote monitoring using custom-designed electronics.

  4. Blood pH optrode based on evanescent waves and refractive index change

    NASA Astrophysics Data System (ADS)

    Hammarling, Krister; Hilborn, Jöns; Nilsson, Hans-Erik; Manuilskiy, Anatoliy

    2014-02-01

    Sensing pH in blood with an silica multimode optical fiber. This sensor is based on evanescent wave absorption and measures the change of the refractive index and absorption in a cladding made of a biocompatible Polymer. In contrast to many existing fiber optical sensors which are based upon different dyes or florescent material to sense the pH, here presents a solution where a part of the cladding is replaced with a Poly (β-amino ester) made of 1.4-Butanediol diacrylate, Piperazine, and Trimethylolpropane Triacrylate. Piperazine has the feature of changing its volume by swelling or shrinking in response to the pH level. This paper utilizes this dimension effect and measure the refractive index and the absorption of the cladding in respect to different pH-levels. The alteration of refractive index also causes a change in the absorption and therefore the output power changes as a function of the pH level. The sensor is sensitive to pH in a wide spectral range and light absorbency can be observed for wavelengths ranging from UV to far IR.

  5. Cell adhesion and guidance by micropost-array chemical sensors

    NASA Astrophysics Data System (ADS)

    Pantano, Paul; Quah, Soo-Kim; Danowski, Kristine L.

    2002-06-01

    An array of ~50,000 individual polymeric micropost sensors was patterned across a glass coverslip by a photoimprint lithographic technique. Individual micropost sensors were ~3-micrometers tall and ~8-micrometers wide. The O2-sensitive micropost array sensors (MPASs) comprised a ruthenium complex encapsulated in a gas permeable photopolymerizable siloxane. The pH-sensitive MPASs comprised a fluorescein conjugate encapsulated in a photocrosslinkable poly(vinyl alcohol)-based polymer. PO2 and pH were quantitated by acquiring MPAS luminescence images with an epifluorescence microscope/charge coupled device imaging system. O2-sensitive MPASs displayed linear Stern-Volmer quenching behavior with a maximum Io/I of ~8.6. pH-sensitive MPASs displayed sigmoidal calibration curves with a pKa of ~5.8. The adhesion of undifferentiated rat pheochromocytoma (PC12) cells across these two polymeric surface types was investigated. The greatest PC12 cell proliferation and adhesion occurred across the poly(vinyl alcohol)-based micropost arrays relative to planar poly(vinyl alcohol)-based surfaces and both patterned and planar siloxane surfaces. An additional advantage of the patterned MPAS layers relative to planar sensing layers was the ability to direct the growth of biological cells. Preliminary data is presented whereby nerve growth factor-differentiated PC12 cells grew neurite-like processes that extended along paths defined by the micropost architecture.

  6. Fiber-optic evanescent-wave spectroscopy for fast multicomponent analysis of human blood

    NASA Astrophysics Data System (ADS)

    Simhi, Ronit; Gotshal, Yaron; Bunimovich, David; Katzir, Abraham; Sela, Ben-Ami

    1996-07-01

    A spectral analysis of human blood serum was undertaken by fiber-optic evanescent-wave spectroscopy (FEWS) by the use of a Fourier-transform infrared spectrometer. A special cell for the FEWS measurements was designed and built that incorporates an IR-transmitting silver halide fiber and a means for introducing the blood-serum sample. Further improvements in analysis were obtained by the adoption of multivariate calibration techniques that are already used in clinical chemistry. The partial least-squares algorithm was used to calculate the concentrations of cholesterol, total protein, urea, and uric acid in human blood serum. The estimated prediction errors obtained (in percent from the average value) were 6% for total protein, 15% for cholesterol, 30% for urea, and 30% for uric acid. These results were compared with another independent prediction method that used a neural-network model. This model yielded estimated prediction errors of 8.8% for total protein, 25% for cholesterol, and 21% for uric acid. spectroscopy, fiber-optic evanescent-wave spectroscopy, Fourier-transform infrared spectrometer, blood, multivariate calibration, neural networks.

  7. Molecular force sensors to measure stress in cells

    NASA Astrophysics Data System (ADS)

    Prabhune, Meenakshi; Rehfeldt, Florian; Schmidt, Christoph F.

    2017-06-01

    Molecularly generated forces are essential for most activities of biological cells, but also for the maintenance of steady state or homeostasis. To quantitatively understand cellular dynamics in migration, division, or mechanically guided differentiation, it will be important to exactly measure stress fields within the cell and the extracellular matrix. Traction force microscopy and related techniques have been established to determine the stress transmitted from adherent cells to their substrates. However, different approaches are needed to directly assess the stress generated inside the cell. This has recently led to the development of novel molecular force sensors. In this topical review, we briefly mention methods used to measure cell-external forces, and then summarize and explain different designs for the measurement of cell-internal forces with their respective advantages and disadvantages.

  8. Evanescent-Vacuum-Enhanced Photon-Exciton Coupling and Fluorescence Collection

    NASA Astrophysics Data System (ADS)

    Ren, Juanjuan; Gu, Ying; Zhao, Dongxing; Zhang, Fan; Zhang, Tiancai; Gong, Qihuang

    2017-02-01

    An evanescent optical mode existing in various nanophotonic structures always acts as a cavity mode rather than an electromagnetic vacuum in the study of cavity quantum electrodynamics (CQED). Here we show that taking the evanescent mode as an electromagnetic vacuum in which the nanocavity is located is possible through the optical mode design. The proposed evanescent vacuum enables us to enhance both the reversible photon-exciton interaction and fluorescence collection. By embedding the custom-designed plasmon nanocavity into the evanescent vacuum provided by a metallic or dielectric nanowire, the photon-exciton coupling coefficient can achieve 4.2 times that in vacuum due to the exponential decay of the evanescent wave, and spontaneously emitted photons with Rabi splitting can be guided by an evanescent wave with a collection efficiency of 47% at most. Electromagnetic vacuum engineering at subwavelength scale holds promise for controlling the light-matter interaction in quantum optics, CQED, and on-chip quantum information.

  9. Detection rate of blood group alloimmunization based on real-world testing practices and kinetics of antibody induction and evanescence.

    PubMed

    Stack, Gary; Tormey, Christopher A

    2016-11-01

    Failure to detect non-ABO blood group alloantibodies places patients at risk for hemolytic reactions. Suboptimal alloantibody detection could result from posttransfusion testing performed too early, too late, or not at all. Testing performed too early may precede antibody induction, while testing performed too late could miss antibodies that have evanesced. Taking these factors into account, our goal was to determine the percentage of alloantibodies detected with real-world testing practices. The alloantibody detection rate in a general hospital setting was determined based on the frequency and timing of antibody testing after red blood cell (RBC) transfusions and rates of antibody induction and evanescence. Intervals to follow up testing after RBC transfusions (n = 561 RBC units in 100 random patients) were determined retrospectively. Best-fit lines and equations for antibody induction and evanescence were computed on previously published data. Nearly half (271/561; 48.3%) of RBC infusions had either no follow-up antibody screen or testing too soon (<30 days) after transfusion to detect alloimmunization. Of the remaining RBC units, 10.3% (58/561) had follow-up testing 30 to 112 days posttransfusion, 28.7% (161/561) were followed up at more than 112 days, and 12.7% (71/561) were tested at both 30 to 112 days and more than 112 days. By inputting these timing data into best-fit line equations for antibody induction and evanescence, we calculated an alloantibody detection rate of 31.6%. Posttransfusion antibody testing was inadequately timed for optimal alloantibody detection. Real-world compatibility testing was predicted to detect less than one-third of non-ABO antibodies, thereby exposing patients to risks of mismatched transfusion. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  10. Method and apparatus for enhanced evanescent fluorescence and color filtering using a high refractive index thin film coating

    DOEpatents

    Kao, Hung Pin; Schoeniger, Joseph; Yang, Nancy

    2001-01-01

    A technique for increasing the excitation and collection of evanescent fluorescence radiation emanating from a fiber optic sensor having a high refractive index (n.sub.r), dielectric thin film coating has been disclosed and described. The invention comprises a clad optical fiber core whose cladding is removed on a distal end, the distal end coated with a thin, non-porous, titanium dioxide sol-gel coating. It has been shown that such a fiber will exhibit increased fluorescence coupling due in part by 1) increasing the intensity of the evanescent field at the fiber core surface by a constructive interference effect on the propagating light, and 2) increasing the depth of penetration of the field in the sample. The interference effect created by the thin film imposes a wavelength dependence on the collection of the fluorescence and also suggests a novel application of thin films for color filtering as well as increasing collected fluorescence in fiber sensors. Collected fluorescence radiation increased by up to 6-fold over that of a bare fused silica fiber having a numerical aperture (N.A.) of O.6.

  11. Field comparison of optical and clark cell dissolved-oxygen sensors

    USGS Publications Warehouse

    Fulford, J.M.; Davies, W.J.; Garcia, L.

    2005-01-01

    Three multi-parameter water-quality monitors equipped with either Clark cell type or optical type dissolved-oxygen sensors were deployed for 30 days in a brackish (salinity <10 parts per thousand) environment to determine the sensitivity of the sensors to biofouling. The dissolved-oxygen sensors compared periodically to a hand-held dissolved oxygen sensor, but were not serviced or cleaned during the deployment. One of the Clark cell sensors and the optical sensor performed similarly during the deployment. The remaining Clark cell sensor was not aged correctly prior to deployment and did not perform as well as the other sensors. All sensors experienced substantial biofouling that gradually degraded the accuracy of the dissolved-oxygen measurement during the last half of the deployment period. Copyright ASCE 2005.

  12. Hydrogen peroxide regulates cell adhesion through the redox sensor RPSA.

    PubMed

    Vilas-Boas, Filipe; Bagulho, Ana; Tenente, Rita; Teixeira, Vitor H; Martins, Gabriel; da Costa, Gonçalo; Jerónimo, Ana; Cordeiro, Carlos; Machuqueiro, Miguel; Real, Carla

    2016-01-01

    To become metastatic, a tumor cell must acquire new adhesion properties that allow migration into the surrounding connective tissue, transmigration across endothelial cells to reach the blood stream and, at the site of metastasis, adhesion to endothelial cells and transmigration to colonize a new tissue. Hydrogen peroxide (H2O2) is a redox signaling molecule produced in tumor cell microenvironment with high relevance for tumor development. However, the molecular mechanisms regulated by H2O2 in tumor cells are still poorly known. The identification of H2O2-target proteins in tumor cells and the understanding of their role in tumor cell adhesion are essential for the development of novel redox-based therapies for cancer. In this paper, we identified Ribosomal Protein SA (RPSA) as a target of H2O2 and showed that RPSA in the oxidized state accumulates in clusters that contain specific adhesion molecules. Furthermore, we showed that RPSA oxidation improves cell adhesion efficiency to laminin in vitro and promotes cell extravasation in vivo. Our results unravel a new mechanism for H2O2-dependent modulation of cell adhesion properties and identify RPSA as the H2O2 sensor in this process. This work indicates that high levels of RPSA expression might confer a selective advantage to tumor cells in an oxidative environment.

  13. A new principle for low-cost hydrogen sensors for fuel cell technology safety

    NASA Astrophysics Data System (ADS)

    Liess, Martin

    2014-03-01

    Hydrogen sensors are of paramount importance for the safety of hydrogen fuel cell technology as result of the high pressure necessary in fuel tanks and its low explosion limit. I present a novel sensor principle based on thermal conduction that is very sensitive to hydrogen, highly specific and can operate on low temperatures. As opposed to other thermal sensors it can be operated with low cost and low power driving electronics. On top of this, as sensor element a modified standard of-the shelf MEMS thermopile IR-sensor can be used. The sensor principle presented is thus suited for the future mass markets of hydrogen fuel cell technology.S

  14. A new principle for low-cost hydrogen sensors for fuel cell technology safety

    SciTech Connect

    Liess, Martin

    2014-03-24

    Hydrogen sensors are of paramount importance for the safety of hydrogen fuel cell technology as result of the high pressure necessary in fuel tanks and its low explosion limit. I present a novel sensor principle based on thermal conduction that is very sensitive to hydrogen, highly specific and can operate on low temperatures. As opposed to other thermal sensors it can be operated with low cost and low power driving electronics. On top of this, as sensor element a modified standard of-the shelf MEMS thermopile IR-sensor can be used. The sensor principle presented is thus suited for the future mass markets of hydrogen fuel cell technology.S.

  15. Evanescent wave DNA-aptamer biosensor based on long period gratings for the specific recognition of E. coli

    NASA Astrophysics Data System (ADS)

    Queirós, R. B.; Gouveia, C.; Fernandes, J. R. A.; Jorge, P. A. S.

    2013-05-01

    An evanescent wave fiber optic sensor for detection of E. coli outer membranes proteins (EcOMPs) is presented. The sensing probe is achieved by the functionalization of a Long Period Grating (LPG) inscribed in a single mode fiber (SMF28) with poly-L-lysine (PLL) resulting in a label-free configuration capable of specific recognition of EcOMPs in waters due to the resonance wavelength shift variation owing to refractive index changes of the medium (≈100 nm/RIU). The sensing head was characterized and tested against EcOMP and applied to spiked environmental water samples. The sensor displayed linear responses in the range of 1×10-10 M to 1×10-8 M EcOMP and is regenerated (under low pH conditions) and the deviation of the subsequent detection was less than 0.1 %.

  16. Hypersonic evanescent waves generated with a planar spiral coil.

    PubMed

    Stevenson, A C; Araya-Kleinsteuber, B; Sethi, R S; Mehta, H M; Lowe, C R

    2003-09-01

    A planar spiral coil has been used to induce hypersonic evanescent waves in a quartz substrate with the unique ability to focus the acoustic wave down onto the chemical recognition layer. These special sensing conditions were achieved by investigating the application of a radio frequency current to a coaxial waveguide and spiral coil, so that wideband repeating electrical resonance conditions could be established over the MHz to GHz frequency range. At a selected operating frequency of 1.09 GHz, the evanescent wave depth of a quartz crystal hypersonic resonance is reduced to 17 nm, minimising unwanted coupling to the bulk fluid. Verification of the validity of the hypersonic resonance was carried out by characterising the system electrically and acoustically: Impedance calculations of the combined coil and coaxial waveguide demonstrated an excellent fit to the measured data, although above 400 MHz a transition zone was identified where unwanted impedance is parasitic of the coil influence efficiency, so the signal-to-noise ratio is reduced from 3000 to 300. Acoustic quartz crystal resonances at intervals of precisely 13.2138 MHz spacing, from the 6.6 MHz ultrasonic range and onto the desired hypersonic range above 1 GHz, were incrementally detected. Q factor measurements demonstrated that reductions in energy lost from the resonator to the fluid interface were consistent with the anticipated shrinkage of the evanescent wave with increasing operating frequency. Amplitude and frequency reduction in contact with a glucose solution was demonstrated at 1.09 GHz. The complex physical conditions arising at the solid-liquid interface under hypersonic entrainment are discussed with respect to acceleration induced slippage, rupture, longitudinal and shear radiation and multiphase relaxation affects.

  17. Moisture and salt monitoring in concrete by evanescent field dielectrometry

    NASA Astrophysics Data System (ADS)

    Riminesi, C.; Marie-Victoire, E.; Bouichou, M.; Olmi, R.

    2017-01-01

    Monitoring the water content and detecting the presence of soluble salts in concrete is a key issue for its maintenance. Evanescent field dielectrometry, originally developed for the diagnostics of frescoes and mural paintings, is proposed as a tool for monitoring the decay of cement-based materials. A measuring system, based on a scalar network analyzer and a resonant probe, has been realized and tested on concrete samples taken from historical buildings in France or purposely developed in the laboratory. Measurements on water-saturated and oven-dry samples provide the basis for calibrating the instrument for on site monitoring of concrete historical buildings, sculptures and cement-based artifacts.

  18. Quantitative measurement of sheet resistance by evanescent microwave probe

    SciTech Connect

    Wang Zhengyu; Kelly, Michael A.; Shen Zhixun; Shao Lin; Chu, W.-K.; Edwards, Hal

    2005-04-11

    Quantitative measurement of microwave sheet resistance by a novel type of near-field microwave microscope -Evanescent Microwave Probe (EMP) - has been demonstrated. The data cover a wide range of sheet resistance from the metal limit to the insulator limit. Both finite element analysis (FEA) and a simple coaxial ring model have been shown to fit the data well. The demonstration of sheet resistance measurement with high spatial resolution in the GHz range shows the potential of EMP for semiconductor metrology applications. The data also reveal issues related to the large penetration depth, allowing substrate properties to affect the signal.

  19. Evanescent waves and deaf bands in sonic crystals

    NASA Astrophysics Data System (ADS)

    Romero-García, V.; Garcia-Raffi, L. M.; Sánchez-Pérez, J. V.

    2011-12-01

    The properties of sonic crystals (SC) are theoretically investigated in this work by solving the inverse problem k(ω) using the extended plane wave expansion (EPWE). The solution of the resulting eigenvalue problem gives the complex band structure which takes into account both the propagating and the evanescent modes. In this work we show the complete mathematical formulation of the EPWE for SC and the supercell approximation for its use in both a complete SC and a SC with defects. As an example we show a novel interpretation of the deaf bands in a complete SC in good agreement with multiple scattering simulations.

  20. Evanescent wave absorption measurements of corroded materials using optical fibers as remote probes

    NASA Astrophysics Data System (ADS)

    Namkung, Juock; Hoke, Mike; Schwartz, Andy

    2010-04-01

    This research effort is intended to demonstrate an in-situ optical fiber corrosion sensor that operates in conjunction with a Fourier Transform Infrared (FTIR) interferometer as an evanescent wave absorption spectroscopic technique. This technique will allow periodic remote sensing for onboard structural health monitoring of areas of normally inaccessible structural components. The potential advantages of optical fiber sensors result from the fact that the sensing element, the optical fiber, can be embedded in junctions in aircraft structures, in locations where humidity and corrosion can accumulate, but are such that they can not be directly observed. A fiber-optic-FTIR experimental setup, including several samples of field corrosion material has been assembled in the laboratory to spectrally detect Aluminum Hydroxide [Al(OH)3] which is one component of corrosion of aluminum. Absorption spectra of Al(OH)3, have been collected using an Attenuated Total Reflection (ATR) crystal as a reference spectral signature. The spectra of samples from a simulated corrosion process have been collected and compared with Al(OH)3 spectra. The laboratory experimental setup has included samples from the controlled corrosion conditions.

  1. Long-lasting memory from evanescent networks

    PubMed Central

    Routtenberg, Aryeh

    2010-01-01

    Current models of memory typically require a protein synthetic step leading to a more or less permanent structural change in synapses of the network that represent the stored information. This instructive role of protein synthesis has recently been called into question [Routtenberg, A., Rekart, J.L. 2005. Post-translational modification of synaptic proteins as the substrate for long-lasting memory. Trends Neurosci. 28, 12–19]. In its place a new theory is proposed in which post-translational modifications (PTMs) of proteins already synthesized and present within the synapse calibrate synaptic strength. PTM is thus the only mechanism required to sustain long-lasting memories. Activity-induced, PTM-dependent structural modifications within brain synapses then define network formation which is thus a product of the concatenation of cascaded PTMs. This leads to a formulation different from current protein synthesis models in which neural networks initially formed from these individual synaptic PTM-dependent changes is maintained by regulated positive feedback maintains. One such positive feedback mechanism is ‘cryptic rehearsal’ typically referred to as ‘noise’ or ‘spontaneous’ activity. This activity is in fact not random or spontaneous but determined in a stochastic sense by the past history of activation of the nerve cell. To prevent promiscuous network formation, the regulated positive feedback maintains the altered state given specific decay kinetics for the PTM. The up or down state of individual synapses actually exists in an infinite number of intermediate states, never fully ‘up’, nor fully ‘down.’ The networks formed from these uncertain synapses are therefore metastable. A particular memory is also multiply represented by a ‘degenerate code’ so that should loss of a subset of representations occur, erasure can be protected against. This mechanism also solves the flexibility–stability problem by positing that the brain eschews

  2. Sensors based on galvanic cell generated electrochemiluminescence and its application.

    PubMed

    Luo, Lirong; Zhang, Zhujun

    2006-10-27

    In this paper, a novel electrochemiluminescence (ECL) imaging sensor array was developed for determination of hydrogen peroxide (H2O2), which was based on Cu/Zn alloy galvanic cell generated ECL. In alkaline solution, Cu/Zn galvanic cell was formed because of corrosion effect, the galvanic cell could supply stable potential for ECL generation of luminol, and the weak ECL emission could be enhanced by H(2)O(2). The galvanic cell sensor array was designed by putting Cu/Zn alloy in 96-well microtiter plates separately. The relative ECL intensity was proportional with the concentration of hydrogen peroxide in the range of 1.0 x 10(-6) to 1.0 x 10(-4) mol l(-1) and the detection limit was 3.0 x 10(-7) mol l(-1) (3sigma), the relative standard deviation (R.S.D.) for 11 parallel measurements of 1.0 x 10(-5)mol l(-1) H2O2 was 4.0%.

  3. Mast Cells as Cellular Sensors in Inflammation and Immunity

    PubMed Central

    Beghdadi, Walid; Madjene, Lydia Célia; Benhamou, Marc; Charles, Nicolas; Gautier, Gregory; Launay, Pierre; Blank, Ulrich

    2011-01-01

    Mast cells are localized in tissues. Intense research on these cells over the years has demonstrated their role as effector cells in the maintenance of tissue integrity following injury produced by infectious agents, toxins, metabolic states, etc. After stimulation they release a sophisticated array of inflammatory mediators, cytokines, and growth factors to orchestrate an inflammatory response. These mediators can directly initiate tissue responses on resident cells, but they have also been shown to regulate other infiltrating immune cell functions. Research in recent years has revealed that the outcome of mast cell actions is not always detrimental for the host but can also limit disease development. In addition, mast cell functions highly depend on the physiological context in the organism. Depending on the genetic background, strength of the injurious event, the particular microenvironment, mast cells direct responses ranging from pro- to anti-inflammatory. It appears that they have evolved as cellular sensors to discern their environment in order to initiate an appropriate physiological response either aimed to favor inflammation for repair or at the contrary limit the inflammatory process to prevent further damage. Like every sophisticated machinery, its dysregulation leads to pathology. Given the broad distribution of mast cells in tissues this also explains their implication in many inflammatory diseases. PMID:22566827

  4. A novel cell force sensor for quantification of traction during cell spreading and contact guidance.

    PubMed

    Tymchenko, N; Wallentin, J; Petronis, S; Bjursten, L M; Kasemo, B; Gold, J

    2007-07-01

    In this work, we present a ridged, microfabricated, force sensor that can be used to investigate mechanical interactions between cells exhibiting contact guidance and the underlying cell culture substrate, and a proof-of-function evaluation of the force sensor performance. The substrates contain arrays of vertical pillars between solid ridges that were microfabricated in silicon wafers using photolithography and deep reactive ion etching. The spring constant of the pillars was measured by atomic force microscopy. For time-lapse experiments, cells were seeded on the pillared substrates and cultured in an on-stage incubator on a microscope equipped with reflected differential interference contrast optics. Endothelial cells (ECs) and fibroblasts were observed during attachment, spreading, and migration. Custom image analysis software was developed to resolve cell borders, cell alignment to the pillars and migration, displacements of individual pillars, and to quantify cell traction forces. Contact guidance classification was based on cell alignment and movement angles with respect to microfabricated ridges, as well as cell elongation. In initial investigations made with the ridged cell force sensor, we have observed contact guidance in ECs but not in fibroblast cells. A difference in maximal amplitude of mechanical forces was observed between a contact-guided and non-contact-guided, but mobile, EC. However, further experiments are required to determine the statistical significance of this observation. By chance, we observed another feature of cell behavior, namely a reversion of cell force direction. The direction of forces measured under rounded fibroblast cells changed from outwards during early cell attachment to inwards during further observation of the spreading phase. The range of forces measured under fibroblasts (up to 138 nN) was greater than that measured in EC (up to 57 nN), showing that the rigid silicon sensor is capable of resolving a large range of

  5. A Novel Cell Force Sensor for Quantification of Traction during Cell Spreading and Contact Guidance

    PubMed Central

    Tymchenko, N.; Wallentin, J.; Petronis, S.; Bjursten, L. M.; Kasemo, B.; Gold, J.

    2007-01-01

    In this work, we present a ridged, microfabricated, force sensor that can be used to investigate mechanical interactions between cells exhibiting contact guidance and the underlying cell culture substrate, and a proof-of-function evaluation of the force sensor performance. The substrates contain arrays of vertical pillars between solid ridges that were microfabricated in silicon wafers using photolithography and deep reactive ion etching. The spring constant of the pillars was measured by atomic force microscopy. For time-lapse experiments, cells were seeded on the pillared substrates and cultured in an on-stage incubator on a microscope equipped with reflected differential interference contrast optics. Endothelial cells (ECs) and fibroblasts were observed during attachment, spreading, and migration. Custom image analysis software was developed to resolve cell borders, cell alignment to the pillars and migration, displacements of individual pillars, and to quantify cell traction forces. Contact guidance classification was based on cell alignment and movement angles with respect to microfabricated ridges, as well as cell elongation. In initial investigations made with the ridged cell force sensor, we have observed contact guidance in ECs but not in fibroblast cells. A difference in maximal amplitude of mechanical forces was observed between a contact-guided and non-contact-guided, but mobile, EC. However, further experiments are required to determine the statistical significance of this observation. By chance, we observed another feature of cell behavior, namely a reversion of cell force direction. The direction of forces measured under rounded fibroblast cells changed from outwards during early cell attachment to inwards during further observation of the spreading phase. The range of forces measured under fibroblasts (up to 138 nN) was greater than that measured in EC (up to 57 nN), showing that the rigid silicon sensor is capable of resolving a large range of

  6. EN FACE OPTICAL COHERENCE TOMOGRAPHY AND OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF MULTIPLE EVANESCENT WHITE DOT SYNDROME: New Insights Into Pathogenesis.

    PubMed

    Pichi, Francesco; Srvivastava, Sunil K; Chexal, Saradha; Lembo, Andrea; Lima, Luiz H; Neri, Piergiorgio; Saitta, Andrea; Chhablani, Jay; Albini, Thomas A; Nucci, Paolo; Freund, K Bailey; Chung, Hyewon; Lowder, Careen Y; Sarraf, David

    2016-12-01

    retinal microvasculature and choriocapillaris and choroid were entirely unremarkable in 100% of our patients. By combining multimodal imaging, the authors propose that multiple evanescent white dot syndrome is primarily the result of inflammation at the outer photoreceptor level leading to a "photoreceptoritis" and causing loss of the inner and outer segments. Its evanescent nature suggests that the photoreceptor cell bodies remain intact ensuring complete recovery of the photoreceptor inner and outer segments in most cases, compatible with the clinical course of spontaneous resolution of white spots and dots.

  7. EN FACE OPTICAL COHERENCE TOMOGRAPHY AND OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF MULTIPLE EVANESCENT WHITE DOT SYNDROME: New Insights Into Pathogenesis.

    PubMed

    Pichi, Francesco; Srvivastava, Sunil K; Chexal, Saradha; Lembo, Andrea; Lima, Luiz H; Neri, Piergiorgio; Saitta, Andrea; Chhablani, Jay; Albini, Thomas A; Nucci, Paolo; Freund, K Bailey; Chung, Hyewon; Lowder, Careen Y; Sarraf, David

    2016-08-22

    retinal microvasculature and choriocapillaris and choroid were entirely unremarkable in 100% of our patients. By combining multimodal imaging, the authors propose that multiple evanescent white dot syndrome is primarily the result of inflammation at the outer photoreceptor level leading to a "photoreceptoritis" and causing loss of the inner and outer segments. Its evanescent nature suggests that the photoreceptor cell bodies remain intact ensuring complete recovery of the photoreceptor inner and outer segments in most cases, compatible with the clinical course of spontaneous resolution of white spots and dots.

  8. A self-powered acetaldehyde sensor based on biofuel cell.

    PubMed

    Zhang, Lingling; Zhou, Ming; Dong, Shaojun

    2012-12-04

    Acetaldehyde is recognized as a type of organic environmental pollutant all over the world, which makes the sensitive, rapid, simple and low-cost detection of acetaldehyde urgent and significant. Inspired by the biological principle of feedback modulation, we have developed a novel and effective self-powered device for aqueous acetaldehyde detection. In this self-powered device, an ethanol/air enzymatic biofuel cell (BFC) served as the core component, which showed the maximum power output density of 28.5 μW cm(-2) at 0.34 V and the open circuit potential (V(oc)) of 0.64 V. The product of ethanol oxidation, acetaldehyde, would counteract the electrocatalysis at the bioanode and further decrease the power output of the BFC. Based on such principles, the fabricated acetaldehyde sensor exhibited excellent selectivity with wide linear range (5-200 μM) and low detection limit (1 μM), which conforms to the criteria provided by the World Health Organisation (WHO). In addition, the sensor fabrication is simple, fast, inexpensive, and user-friendly, and the detection process is convenient, efficient, and time-saving, requiring no complicated equipment. These make such self-powered acetaldehyde sensors feasible and practical for detecting aqueous acetaldehyde, particularly in the field of quality control and monitoring aimed at water resource protection.

  9. Cell-tower deployment of counter-sniper sensors

    NASA Astrophysics Data System (ADS)

    Storch, Michael T.

    2004-09-01

    Cellular telephone antenna towers are evaluated as sites for rapid, effective & efficient deployment of counter-sniper sensors, especially in urban environments. They are expected to offer a suitable density, excellent LOS, and a generally limited variety of known or readily-characterized mechanical interfaces. Their precise locations are easily mapped in advance of deployment, are easily accessible by ground and air, and are easily spotted by deployment teams in real-time. We survey issues of EMI & RFI, susceptibility to denial & ambush in military scenarios, and the impact of trends in cell tower design & construction.

  10. Evanescent Field Based Photoacoustics: Optical Property Evaluation at Surfaces

    PubMed Central

    Goldschmidt, Benjamin S.; Rudy, Anna M.; Nowak, Charissa A.; Tsay, Yowting; Whiteside, Paul J. D.; Hunt, Heather K.

    2016-01-01

    Here, we present a protocol to estimate material and surface optical properties using the photoacoustic effect combined with total internal reflection. Optical property evaluation of thin films and the surfaces of bulk materials is an important step in understanding new optical material systems and their applications. The method presented can estimate thickness, refractive index, and use absorptive properties of materials for detection. This metrology system uses evanescent field-based photoacoustics (EFPA), a field of research based upon the interaction of an evanescent field with the photoacoustic effect. This interaction and its resulting family of techniques allow the technique to probe optical properties within a few hundred nanometers of the sample surface. This optical near field allows for the highly accurate estimation of material properties on the same scale as the field itself such as refractive index and film thickness. With the use of EFPA and its sub techniques such as total internal reflection photoacoustic spectroscopy (TIRPAS) and optical tunneling photoacoustic spectroscopy (OTPAS), it is possible to evaluate a material at the nanoscale in a consolidated instrument without the need for many instruments and experiments that may be cost prohibitive. PMID:27500652

  11. The intensity correlation function in evanescent wave scattering.

    PubMed

    Cichocki, B; Wajnryb, E; Bławzdziewicz, J; Dhont, J K G; Lang, P R

    2010-02-21

    As a first step toward the interpretation of dynamic light scattering with evanescent illumination from suspensions of interacting spheres, in order to probe their near wall dynamics, we develop a theory for the initial slope of the intensity autocorrelation function. An expression for the first cumulant is derived that is valid for arbitrary concentrations, which generalizes a well-known expression for the short-time, wave-vector dependent collective diffusion coefficient in bulk to the case where a wall is present. Explicit expressions and numerical results for the various contributions to the initial slope are obtained within a leading order virial expansion. The dependence of the initial slope on the components of the wave vector parallel and perpendicular to the wall, as well as the dependence on the evanescent-light penetration depth are discussed. For the hydrodynamic interactions between colloids and between the wall, which are essential for a correct description of the near-interface dynamics, we include both far-field and lubrication contributions. Lubrication contributions are essential to capture the dynamics as probed in experiments with small penetration depths. Simulations have been performed to verify the theory and to estimate the extent of the concentration range where the virial expansion is valid. The computer algorithm developed for this purpose will also be of future importance for the interpretation of experiments and to develop an understanding of near-interface dynamics, at high colloid concentrations.

  12. Evanescent field shapes excitation profile under axial epi-illumination

    PubMed Central

    2012-01-01

    Abstract. Axial epi-illuminating light transmitting a >1.3-numerical-aperture microscope objective creates an excitation volume at focus with size and shape dictated by diffraction and due to refraction by the objective and by the coverslip interface separating a specimen in aqueous buffer from the oil immersion objective. The evanescent field on the coverslip aqueous side affects primarily the excitation volume axial dimension as the specimen in focus approaches the interface to within a few hundred nanometers. Following excitation, an excited stationary dipole moment emits fluorescence in a spatially varying pattern collected over the large objective aperture. Collected light propagates in parallel rays toward the tube lens that forms a real three-dimensional image that is decoded to identify dipole orientation. An integral representation of the excitation and emitted fields for infinity-corrected optics—including effects of finite conjugate illumination, fluorescence emission near an interface, emitter dipole orientation, spherical aberration, light transmission through a dichroic filter, and for real microscopic specifications—accurately models observed field intensities including the substantial excitation from the evanescent field. The goal is to develop and verify the practical depiction of excitation and emission in a real microscope for quantitative interpretation of the 3-D emission pattern. PMID:22734777

  13. A Feasibility Study on Generation of Acoustic Waves Utilizing Evanescent Light

    NASA Astrophysics Data System (ADS)

    Matsuya, I.; Matozaki, K.; Kosugi, A.; Ihara, I.

    2014-06-01

    A new approach of generating acoustic waves utilizing evanescent light is presented. The evanescent light is a non-propagating electromagnetic wave that exhibits exponential decay with distance from the surface at which the total internal reflection of light is formed. In this research, the evanescent light during total internal reflection at prism surface is utilized for generating acoustic waves in aluminium and the feasibility for ultrasonic measurements is discussed. Pulsed Nd:YAG laser with 0.36 J/cm2 power density is used and the incident angle during the total internal reflection is arranged to be 69.0° for generating the evanescent light. It has been demonstrated that the amplitude of the acoustic waves by means of evanescent light is about 1/14 as large as the one generated by the conventional pulsed laser. This reveals the possibility of using a laser ultrasonic technique with near-field optics.

  14. Effect of sensor systems for cow management on milk production, somatic cell count, and reproduction.

    PubMed

    Steeneveld, W; Vernooij, J C M; Hogeveen, H

    2015-06-01

    To improve management on dairy herds, sensor systems have been developed that can measure physiological, behavioral, and production indicators on individual cows. It is not known whether using sensor systems also improves measures of health and production in dairy herds. The objective of this study was to investigate the effect of using sensor systems on measures of health and production in dairy herds. Data of 414 Dutch dairy farms with (n=152) and without (n=262) sensor systems were available. For these herds, information on milk production per cow, days to first service, first calving age, and somatic cell count (SCC) was provided for the years 2003 to 2013. Moreover, year of investment in sensor systems was available. For every farm year, we determined whether that year was before or after the year of investment in sensor systems on farms with an automatic milking system (AMS) or a conventional milking system (CMS), or whether it was a year on a farm that never invested in sensor systems. Separate statistical analyses were performed to determine the effect of sensor systems for mastitis detection (color, SCC, electrical conductivity, and lactate dehydrogenase sensors), estrus detection for dairy cows, estrus detection for young stock, and other sensor systems (weighing platform, rumination time sensor, fat and protein sensor, temperature sensor, milk temperature sensor, urea sensor, β-hydroxybutyrate sensor, and other sensor systems). The AMS farms had a higher average SCC (by 12,000 cells/mL) after sensor investment, and CMS farms with a mastitis detection system had a lower average SCC (by 10,000 cells/mL) in the years after sensor investment. Having sensor systems was associated with a higher average production per cow on AMS farms, and with a lower average production per cow on CMS farms in the years after investment. The most likely reason for this lower milk production after investment was that on 96% of CMS farms, the sensor system investment occurred

  15. Silicon-based microfabricated microbial fuel cell toxicity sensor.

    PubMed

    Dávila, D; Esquivel, J P; Sabaté, N; Mas, J

    2011-01-15

    Microbial fuel cells (MFCs) have been used for several years as biosensors for measuring environmental parameters such as biochemical oxygen demand and water toxicity. The present study is focused on the detection of toxic matter using a novel silicon-based MFC. Like other existing toxicity sensors based on MFCs, this device is capable of detecting the variation on the current produced by the cell when toxic compounds are present in the medium. The MFC approach presented in this work aims to obtain a simple, compact and planar device for its further application as a biosensor in the design and fabrication of equipment for toxicity monitoring. It consists on a proton exchange membrane placed between two microfabricated silicon plates that act as current collectors. An array of square 80 μm × 80 μm vertical channels, 300 μm deep, have been defined trough the plates over an area of 6 mm × 6 mm. The final testing assembly incorporates two perspex pieces positioned onto the plates as reservoirs with a working volume of 144 μL per compartment. The operation of the microdevice as a direct electron transfer MFC has been validated by comparing its performance against a larger scale MFC, run under the same conditions. The device has been tested as a toxicity sensor by setting it at a fixed current while monitoring changes in the output power. A drop in the power production is observed when a toxic compound is added to the anode compartment. The compact design of the device makes it suitable for its incorporation into measurement equipment either as an individual device or as an array of sensors for high throughput processing.

  16. Power optimization in body sensor networks: the case of an autonomous wireless EMG sensor powered by PV-cells.

    PubMed

    Penders, J; Pop, V; Caballero, L; van de Molengraft, J; van Schaijk, R; Vullers, R; Van Hoof, C

    2010-01-01

    Recent advances in ultra-low-power circuits and energy harvesters are making self-powered body sensor nodes a reality. Power optimization at the system and application level is crucial in achieving ultra-low-power consumption for the entire system. This paper reviews system-level power optimization techniques, and illustrates their impact on the case of autonomous wireless EMG monitoring. The resulting prototype, an Autonomous wireless EMG sensor power by PV-cells, is presented.

  17. Microfluidic cell culture systems with integrated sensors for drug screening

    NASA Astrophysics Data System (ADS)

    Grist, Samantha; Yu, Linfen; Chrostowski, Lukas; Cheung, Karen C.

    2012-03-01

    Cell-based testing is a key step in drug screening for cancer treatments. A microfluidic platform can permit more precise control of the cell culture microenvironment, such as gradients in soluble factors. These small-scale devices also permit tracking of low cell numbers. As a new screening paradigm, a microscale system for integrated cell culture and drug screening promises to provide a simple, scalable tool to apply standardized protocols used in cellular response assays. With the ability to dynamically control the microenvironment, we can create temporally varying drug profiles to mimic physiologically measured profiles. In addition, low levels of oxygen in cancerous tumors have been linked with drug resistance and decreased likelihood of successful treatment and patient survival. Our work also integrates a thin-film oxygen sensor with a microfluidic oxygen gradient generator which will in future allow us to create spatial oxygen gradients and study effects of hypoxia on cell response to drug treatment. In future, this technology promises to improve cell-based validation in the drug discovery process, decreasing the cost and increasing the speed in screening large numbers of compounds.

  18. Development of a thermal sensor to probe cell viability and concentration in cell suspensions

    NASA Astrophysics Data System (ADS)

    Park, Byoung Kyoo; Yi, Namwoo; Park, Jaesung; Kim, Yonggoo; Kim, Dongsik

    2014-04-01

    This paper presents a novel biothermal sensor to probe cell viability and concentration of a cell suspension. The sensing technique exploits the thermophysical properties of the suspension, so no labeling of suspended cells is required. When the sensor is periodically heated, the amplitude and phase of the thermal signal are dependent on the thermal properties of the cell suspension, particularly the thermal conductivity k. We measured k of HeLa, hepatocyte, and NIH-3T3 J2 cell suspensions with various concentrations and viabilities. The results demonstrate that the k of a cell suspension has a strong correlation with its concentration and viability. Accordingly, k can be employed as an index of cell concentration and viability. Furthermore, without data processing to obtain k, the electric signal that reflects the thermal response of the sensor can be used as a tool to probe viability of a cell suspension in real time. The proposed thermal sensing technique offers label-free, non-invasive, long-term, and real-time means to probe the viability and concentration of cells in a suspension.

  19. Bidirectional Promoter Engineering for Single Cell MicroRNA Sensors in Embryonic Stem Cells.

    PubMed

    Sladitschek, Hanna L; Neveu, Pierre A

    2016-01-01

    MicroRNAs have emerged as important markers and regulators of cell identity. Precise measurements of cellular miRNA levels rely traditionally on RNA extraction and thus do not allow to follow miRNA expression dynamics at the level of single cells. Non-invasive miRNA sensors present an ideal solution but they critically depend on the performance of suitable ubiquitous promoters that reliably drive expression both in pluripotent and differentiated cell types. Here we describe the engineering of bidirectional promoters that drive the expression of precise ratiometric fluorescent miRNA sensors in single mouse embryonic stem cells (mESCs) and their differentiated derivatives. These promoters are based on combinations of the widely used CAG, EF1α and PGK promoters as well as the CMV and PGK enhancers. miR-142-3p, which is known to be bimodally expressed in mESCs, served as a model miRNA to gauge the precision of the sensors. The performance of the resulting miRNA sensors was assessed by flow cytometry in single stable transgenic mESCs undergoing self-renewal or differentiation. EF1α promoters arranged back-to-back failed to drive the robustly correlated expression of two transgenes. Back-to-back PGK promoters were shut down during mESC differentiation. However, we found that a back-to-back arrangement of CAG promoters with four CMV enhancers provided both robust expression in mESCs undergoing differentiation and the best signal-to-noise for measurement of miRNA activity in single cells among all the sensors we tested. Such a bidirectional promoter is therefore particularly well suited to study the dynamics of miRNA expression during cell fate transitions at the single cell level.

  20. Interplay between evanescence and disorder in deep subwavelength photonic structures

    PubMed Central

    Herzig Sheinfux, Hanan; Kaminer, Ido; Genack, Azriel Z.; Segev, Mordechai

    2016-01-01

    Deep subwavelength features are expected to have minimal impact on wave transport. Here we show that in contrast to this common understanding, disorder can have a dramatic effect in a one-dimensional disordered optical system with spatial features a thousand times smaller than the wavelength. We examine a unique regime of Anderson localization where the localization length is shown to scale linearly with the wavelength instead of diverging, because of the role of evanescent waves. In addition, we demonstrate an unusual order of magnitude enhancement of transmission induced due to localization. These results are described for electromagnetic waves, but are directly relevant to other wave systems such as electrons in multi-quantum-well structures. PMID:27708260

  1. Interplay between evanescence and disorder in deep subwavelength photonic structures

    NASA Astrophysics Data System (ADS)

    Herzig Sheinfux, Hanan; Kaminer, Ido; Genack, Azriel Z.; Segev, Mordechai

    2016-10-01

    Deep subwavelength features are expected to have minimal impact on wave transport. Here we show that in contrast to this common understanding, disorder can have a dramatic effect in a one-dimensional disordered optical system with spatial features a thousand times smaller than the wavelength. We examine a unique regime of Anderson localization where the localization length is shown to scale linearly with the wavelength instead of diverging, because of the role of evanescent waves. In addition, we demonstrate an unusual order of magnitude enhancement of transmission induced due to localization. These results are described for electromagnetic waves, but are directly relevant to other wave systems such as electrons in multi-quantum-well structures.

  2. Evanescent-wave proton postaccelerator driven by intense THz pulse

    NASA Astrophysics Data System (ADS)

    Pálfalvi, L.; Fülöp, J. A.; Tóth, Gy.; Hebling, J.

    2014-03-01

    Hadron therapy motivates research dealing with the production of particle beams with ˜100 MeV/nucleon energy and relative energy fluctuation on the order of 1%. Laser-driven accelerators produce ion beams with only tens of MeV /nucleon energy and an extremely broad spectra. Here, a novel method is proposed for postacceleration and monochromatization of particles, leaving the laser-driven accelerator, by using intense THz pulses. It is based on further developing the idea of using the evanescent field of electromagnetic waves between a pair of dielectric crystals. Simple model calculations show that the energy of a proton bunch can be increased from 40 to 56 MeV in five stages and its initially broad energy distribution can be significantly narrowed down.

  3. Design and application of fiber optic evanescent wave biosensor

    NASA Astrophysics Data System (ADS)

    Huang, Huijie; Zhai, Junhui; Zhao, Yongkai; Yang, Ruifu; Ren, Bingqiang; Cheng, Zhaogu; Du, Longlong; Lu, Dunwu

    2003-12-01

    A fiber-optic biosensor is developed based on the principle of evanescent wave while light propagates in optical fiber. The biosensor uses a red laser diode at 636.85 nm for exciting Cy5 fluorescent dye. Sensitivity limit of 0.01 nnmol/l is obtained from the detection of serial Cy5 solutions with various concentrations. In log-to-log plot, excellent linear response characteristic is seen in the Cy5 concentrations ranging from 0.01 nmlo/l to 100 nmol/l. And a good result of signal-to-noise ratio of 4.61 is obtained when the biosensor is used to measure Legionella pneumophila solution of 0.01 μmol/l. All the results are comparable with those that are obtained by a commercial biochip scanner GeneTAC 1000.

  4. Controlling the directionality of spontaneous emission by evanescent wave coupling

    SciTech Connect

    Wang, Xue-Lun E-mail: gdhao2@hotmail.com; Hao, Guo-Dong E-mail: gdhao2@hotmail.com; Toda, Naoya

    2015-09-28

    We report an approach toward controlling the directionality of spontaneous emissions by employing the evanescent wave coupling effect in a subwavelength-sized ridge or truncated cone structure. An InGaAs/GaAs light-emitting diode in which a stripe-shaped InGaAs/GaAs quantum well with a stripe width of about 100 nm is embedded at the center of a subwavelength-sized GaAs ridge (of width ∼520 nm) is fabricated by micro processing and epitaxial regrowth techniques. Strong directionalities characterized by a half-intensity angle of 43° are observed in planes perpendicular to the ridge axis. The directionality is found to be almost independent of operating conditions.

  5. Cellulose antibody films for highly specific evanescent wave immunosensors

    NASA Astrophysics Data System (ADS)

    Hartmann, Andreas; Bock, Daniel; Jaworek, Thomas; Kaul, Sepp; Schulze, Matthais; Tebbe, H.; Wegner, Gerhard; Seeger, Stefan

    1996-01-01

    For the production of recognition elements for evanescent wave immunosensors optical waveguides have to be coated with ultrathin stable antibody films. In the present work non amphiphilic alkylated cellulose and copolyglutamate films are tested as monolayer matrices for the antibody immobilization using the Langmuir-Blodgett technique. These films are transferred onto optical waveguides and serve as excellent matrices for the immobilization of antibodies in high density and specificity. In addition to the multi-step immobilization of immunoglobulin G(IgG) on photochemically crosslinked and oxidized polymer films, the direct one-step transfer of mixed antibody-polymer films is performed. Both planar waveguides and optical fibers are suitable substrates for the immobilization. The activity and specificity of immobilized antibodies is controlled by the enzyme-linked immunosorbent assay (ELISA) technique. As a result reduced non-specific interactions between antigens and the substrate surface are observed if cinnamoylbutyether-cellulose is used as the film matrix for the antibody immobilization. Using the evanescent wave senor (EWS) technology immunosensor assays are performed in order to determine both the non-specific adsorption of different coated polymethylmethacrylat (PMMA) fibers and the long-term stability of the antibody films. Specificities of one-step transferred IgG-cellulose films are drastically enhanced compared to IgG-copolyglutamate films. Cellulose IgG films are used in enzymatic sandwich assays using mucine as a clinical relevant antigen that is recognized by the antibodies BM2 and BM7. A mucine calibration measurement is recorded. So far the observed detection limit for mucine is about 8 ng/ml.

  6. Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella

    NASA Astrophysics Data System (ADS)

    Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi

    2014-11-01

    A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10-10 M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 102 colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.

  7. Diagnostics of cancer tissues by fiber optic evanescent wave Fourier transform IR (FEW-FTIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Letokhov, Vladilen S.; Golovkina, Viktoriya N.

    1997-08-01

    Fiber optic evanescent wave Fourier transform infrared (FEW- FTIR) spectroscopy using fiberoptic sensors operated in the attenuated total reflection (ATR) regime in the middle infrared (IR) region of the spectrum (850 - 1850 cm-1) has recently found application in the diagnostics of tissues. The method is suitable for noninvasive and rapid (seconds) direct measurements of the spectra of normal and pathological tissues in vitro, ex vivo and in vivo. The aim of our studies is the express testing of various tumor tissues at the early stages of their development. The method is expected to be further developed for endoscopic and biopsy applications. We measured in vivo the skin normal and malignant tissues on surface (directly on patients) in various cases of basaloma, melanoma and nevus. The experiments were performed in operating room for measurements of skin in the depth (under/in the layers of epidermis), human breast, stomach, lung, kidney tissues. The breast and skin tissues at different stages of tumor or cancer were distinguished very clearly in spectra of amide, side cyclic and noncyclic hydrogen bonded fragments of aminoacid residuals, phosphate groups and sugars. Computer monitoring is being developed for diagnostics.

  8. Optical fiber sensing of corroded materials with evanescent wave absorption measurements

    NASA Astrophysics Data System (ADS)

    Namkung, Juock; Schwartz, Andy

    2012-06-01

    This research effort is to demonstrate a remote sensing method using optical fibers with a Fourier Transform Infrared (FTIR) interferometer as an evanescent wave spectroscopic technique. In addition to the usual advantages of optical fiber sensors, such as small size and weight, optical fibers can be embedded in aircraft structures in locations where humidity and corrosion can accumulate but cannot be directly observed. A fiber-optic-FTIR experimental setup, including several samples of field corroded materials, has been assembled to spectrally detect Aluminum Hydroxide [Al(OH)3] which is one of the major components of aluminum corrosion. Absorption spectra of Al(OH)3 have been collected using an Attenuated Total Reflection (ATR) crystal as a reference spectral signature. The absorption spectra of samples from a simulated corrosion process and from the field corroded structures have been collected and compared with the reference Al(OH)3 spectra. Chalcogenide optical fibers are used for remote sensing purposes to detect corrosion. Two distinctive absorption peaks, attributable to aluminum hydroxide, are noticed from the simulated corrosion and from the field corroded structures.

  9. Infrared fiber optic evanescent wave spectroscopy for the study of diffusion in the human skin

    NASA Astrophysics Data System (ADS)

    Raichlin, Yosef; Goldberg, I.; Brenner, Sarah; Shulzinger, Evgeny; Katzir, Abraham

    2002-03-01

    Fourier Transform Infrared (FTIR) spectroscopic systems make use of Attenuated Total Reflection (ATR) elements for the study of skin in dermatology. FTIR - ATR allows real time and reagent-less analysis of several components, simultaneously. The potential for skin studies is increased by the development of the flexible fiber optic sensor made from infrared transparent polycrystalline silver halide. Segments of fibers can replace the ATR sensing elements inside an FTIR system. Moreover a Fiberoptic Evanescent Wave Spectroscopy (FEWS) can also be used for real time in vivo measurement on skin, in situ. We used FEWS to study the diffusion of UV sunscreen lotions from the outer skin layer into the dermis and epidermis, and used the various absorption bands to differentiate between the behavior of the organic and the water molecules in the lotion. FEWS can be a powerful tool for studying the transport of drugs and cosmetic creams through the skin from the stratum corneum to the dermis and epidermis and for studying the lateral diffusion of various molecules into the skin, in vivo and in real time.

  10. Size sensors in bacteria, cell cycle control, and size control

    PubMed Central

    Robert, Lydia

    2015-01-01

    Bacteria proliferate by repetitive cycles of cellular growth and division. The progression into the cell cycle is admitted to be under the control of cell size. However, the molecular basis of this regulation is still unclear. Here I will discuss which mechanisms could allow coupling growth and division by sensing size and transmitting this information to the division machinery. Size sensors could act at different stages of the cell cycle. During septum formation, mechanisms controlling the formation of the Z ring, such as MinCD inhibition or Nucleoid Occlusion (NO) could participate in the size-dependence of the division process. In addition or alternatively, the coupling of growth and division may occur indirectly through the control of DNA replication initiation. The relative importance of these different size-sensing mechanisms could depend on the environmental and genetic context. The recent demonstration of an incremental strategy of size control in bacteria, suggests that DnaA-dependent control of replication initiation could be the major size control mechanism limiting cell size variation. PMID:26074903

  11. Size sensors in bacteria, cell cycle control, and size control.

    PubMed

    Robert, Lydia

    2015-01-01

    Bacteria proliferate by repetitive cycles of cellular growth and division. The progression into the cell cycle is admitted to be under the control of cell size. However, the molecular basis of this regulation is still unclear. Here I will discuss which mechanisms could allow coupling growth and division by sensing size and transmitting this information to the division machinery. Size sensors could act at different stages of the cell cycle. During septum formation, mechanisms controlling the formation of the Z ring, such as MinCD inhibition or Nucleoid Occlusion (NO) could participate in the size-dependence of the division process. In addition or alternatively, the coupling of growth and division may occur indirectly through the control of DNA replication initiation. The relative importance of these different size-sensing mechanisms could depend on the environmental and genetic context. The recent demonstration of an incremental strategy of size control in bacteria, suggests that DnaA-dependent control of replication initiation could be the major size control mechanism limiting cell size variation.

  12. Cell-based capacitance sensor for analysis of EGFR expression on cell membrane

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Myeong; Shin, Yong-Cheol; Ha, Ji Hye; Lee, Jong-Ho; Han, Dong-Wook; Kim, Jong-Man; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2013-02-01

    Cancer cells have many kinds of cancer biomarkers. Among them, the epidermal growth factor (EGF) receptors can show a possibility for a cancer marker because the over-expression of EGF receptor is related with fibrous, colorectal, cervical and gastric tumorigenesis. We fabricated the capacitance sensor with a gap area of 50 μm × 200 μm by using photolithography and lift-off method. Using the capacitance sensor, we investigated the time dependent capacitance changes of different kinds of fibrous cells, such as HT1080 fibrosarcoma, L-929 fibroblast cell line and nHDF dermal fibroblast primary cell. We found that when we put the EGF, the capacitance decreased due to the immobilization of EGF to EGF receptor on the cell membrane. The quantitative determination of EGF receptor level for various fibrous cells was carried out and the results showed good correlation with conventional method. Based on our results, we suggest that the capacitance sensor can measure the expression level of the EGF receptor on cell membrane and be a good candidate as a cancer diagnosis.

  13. Development of sensors and sensing technology for hydrogen fuel cell vehicle applications

    SciTech Connect

    Brosha, Eric L; Sekhar, Praveen K; Mukundan, Rangchary; Williamson, Todd L; Barzon, Fernando H; Woo, Leta Y; Glass, Robert S

    2010-01-01

    One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features.

  14. New method for the improvement of data link dependency of fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Lau, Matthias; Renschen, Claus P.

    1993-03-01

    In the field of optic sensors, in most applications, the measurement of intensity is of main interest. There are many sensors, which by means of fiber optic evanescent spectroscopy are used to measure the temperature, concentration of methane or carbon dioxide in fiber optic transmission cells and glucose or other important substances. Using these sensors, the compensation of the influence at the data link dependencies is problematic. There are several proposals to compensate these influences. Among them there are the utilization of two or more wavelengths, the earliest possible digital conversion and the application of optical bridges. However, these methods are circumstantial and problems cannot be solved in general. A new method for the compensation of fiber optical connectors is presented.

  15. Exploration properties of biased evanescent random walkers on a one-dimensional lattice

    NASA Astrophysics Data System (ADS)

    Esguerra, Jose Perico; Reyes, Jelian

    2017-08-01

    We investigate the combined effects of bias and evanescence on the characteristics of random walks on a one-dimensional lattice. We calculate the time-dependent return probability, eventual return probability, conditional mean return time, and the time-dependent mean number of visited sites of biased immortal and evanescent discrete-time random walkers on a one-dimensional lattice. We then extend the calculations to the case of a continuous-time step-coupled biased evanescent random walk on a one-dimensional lattice with an exponential waiting time distribution.

  16. Study on phase-locked coherence of evanescent wave coupling in solid-state laser

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Liu, Xu; Zhu, Mengzhen; Lu, Changyong; Lu, Yimin; Tan, Caoyong; Wei, Shangfang

    2016-01-01

    The mechanism and characteristics of evanescent-wave coupling in solid-state laser is analyzed theoretically and experimentally. The results shown that self-organized phase locking between laser modes can be realized by evanescentwave coupling in solid-state laser. Based on "mutual injection and evanescent wave" characteristics of corner-cube prism, the paper reveals that far-field output of corner-cube laser is the inner reason and mechanism of coherent combining distribution by theory of evanescent wave and its coherence is better than plane parallel resonator. And "mutually coupled phase locking of six lasers based cube-corner resonator" scheme is proposed on this basis.

  17. Endocytosis and Vacuolar Degradation of the Yeast Cell Surface Glucose Sensors Rgt2 and Snf3*

    PubMed Central

    Roy, Adhiraj; Kim, Jeong-Ho

    2014-01-01

    Sensing and signaling the presence of extracellular glucose is crucial for the yeast Saccharomyces cerevisiae because of its fermentative metabolism, characterized by high glucose flux through glycolysis. The yeast senses glucose through the cell surface glucose sensors Rgt2 and Snf3, which serve as glucose receptors that generate the signal for induction of genes involved in glucose uptake and metabolism. Rgt2 and Snf3 detect high and low glucose concentrations, respectively, perhaps because of their different affinities for glucose. Here, we provide evidence that cell surface levels of glucose sensors are regulated by ubiquitination and degradation. The glucose sensors are removed from the plasma membrane through endocytosis and targeted to the vacuole for degradation upon glucose depletion. The turnover of the glucose sensors is inhibited in endocytosis defective mutants, and the sensor proteins with a mutation at their putative ubiquitin-acceptor lysine residues are resistant to degradation. Of note, the low affinity glucose sensor Rgt2 remains stable only in high glucose grown cells, and the high affinity glucose sensor Snf3 is stable only in cells grown in low glucose. In addition, constitutively active, signaling forms of glucose sensors do not undergo endocytosis, whereas signaling defective sensors are constitutively targeted for degradation, suggesting that the stability of the glucose sensors may be associated with their ability to sense glucose. Therefore, our findings demonstrate that the amount of glucose available dictates the cell surface levels of the glucose sensors and that the regulation of glucose sensors by glucose concentration may enable yeast cells to maintain glucose sensing activity at the cell surface over a wide range of glucose concentrations. PMID:24451370

  18. U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring.

    PubMed

    Zhong, Nianbing; Zhao, Mingfu; Li, Yishan

    2016-02-01

    To monitor biofilm growth on polydimethylsiloxane in a photobioreactor effectively, the biofilm cells and liquids were separated and measured using a sensor with two U-shaped, double-tapered, fiber-optic probes (Sen. and Ref. probes). The probes' Au-coated hemispherical tips enabled double-pass evanescent field absorption. The Sen. probe sensed the cells and liquids inside the biofilm. The polyimide-silica hybrid-film-coated Ref. probe separated the liquids from the biofilm cells and analyzed the liquid concentration. The biofilm structure and active biomass were also examined to confirm the effectiveness of the measurement using a simulation model. The sensor was found to effectively respond to the biofilm growth in the adsorption through exponential phases at thicknesses of 0-536 μm.

  19. U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring

    PubMed Central

    Zhong, Nianbing; Zhao, Mingfu; Li, Yishan

    2016-01-01

    To monitor biofilm growth on polydimethylsiloxane in a photobioreactor effectively, the biofilm cells and liquids were separated and measured using a sensor with two U-shaped, double-tapered, fiber-optic probes (Sen. and Ref. probes). The probes’ Au-coated hemispherical tips enabled double-pass evanescent field absorption. The Sen. probe sensed the cells and liquids inside the biofilm. The polyimide–silica hybrid-film-coated Ref. probe separated the liquids from the biofilm cells and analyzed the liquid concentration. The biofilm structure and active biomass were also examined to confirm the effectiveness of the measurement using a simulation model. The sensor was found to effectively respond to the biofilm growth in the adsorption through exponential phases at thicknesses of 0–536 μm. PMID:26977344

  20. Systematic Transfer of Prokaryotic Sensors and Circuits to Mammalian Cells

    PubMed Central

    2015-01-01

    Prokaryotic regulatory proteins respond to diverse signals and represent a rich resource for building synthetic sensors and circuits. The TetR family contains >105 members that use a simple mechanism to respond to stimuli and bind distinct DNA operators. We present a platform that enables the transfer of these regulators to mammalian cells, which is demonstrated using human embryonic kidney (HEK293) and Chinese hamster ovary (CHO) cells. The repressors are modified to include nuclear localization signals (NLS) and responsive promoters are built by incorporating multiple operators. Activators are also constructed by modifying the protein to include a VP16 domain. Together, this approach yields 15 new regulators that demonstrate 19- to 551-fold induction and retain both the low levels of crosstalk in DNA binding specificity observed between the parent regulators in Escherichia coli, as well as their dynamic range of activity. By taking advantage of the DAPG small molecule sensing mediated by the PhlF repressor, we introduce a new inducible system with 50-fold induction and a threshold of 0.9 μM DAPG, which is comparable to the classic Dox-induced TetR system. A set of NOT gates is constructed from the new repressors and their response function quantified. Finally, the Dox- and DAPG- inducible systems and two new activators are used to build a synthetic enhancer (fuzzy AND gate), requiring the coordination of 5 transcription factors organized into two layers. This work introduces a generic approach for the development of mammalian genetic sensors and circuits to populate a toolbox that can be applied to diverse applications from biomanufacturing to living therapeutics. PMID:25360681

  1. Systematic transfer of prokaryotic sensors and circuits to mammalian cells.

    PubMed

    Stanton, Brynne C; Siciliano, Velia; Ghodasara, Amar; Wroblewska, Liliana; Clancy, Kevin; Trefzer, Axel C; Chesnut, Jonathan D; Weiss, Ron; Voigt, Christopher A

    2014-12-19

    Prokaryotic regulatory proteins respond to diverse signals and represent a rich resource for building synthetic sensors and circuits. The TetR family contains >10(5) members that use a simple mechanism to respond to stimuli and bind distinct DNA operators. We present a platform that enables the transfer of these regulators to mammalian cells, which is demonstrated using human embryonic kidney (HEK293) and Chinese hamster ovary (CHO) cells. The repressors are modified to include nuclear localization signals (NLS) and responsive promoters are built by incorporating multiple operators. Activators are also constructed by modifying the protein to include a VP16 domain. Together, this approach yields 15 new regulators that demonstrate 19- to 551-fold induction and retain both the low levels of crosstalk in DNA binding specificity observed between the parent regulators in Escherichia coli, as well as their dynamic range of activity. By taking advantage of the DAPG small molecule sensing mediated by the PhlF repressor, we introduce a new inducible system with 50-fold induction and a threshold of 0.9 μM DAPG, which is comparable to the classic Dox-induced TetR system. A set of NOT gates is constructed from the new repressors and their response function quantified. Finally, the Dox- and DAPG- inducible systems and two new activators are used to build a synthetic enhancer (fuzzy AND gate), requiring the coordination of 5 transcription factors organized into two layers. This work introduces a generic approach for the development of mammalian genetic sensors and circuits to populate a toolbox that can be applied to diverse applications from biomanufacturing to living therapeutics.

  2. Cell-bionics: tools for real-time sensor processing.

    PubMed

    Toumazou, Chris; Cass, Tony

    2007-08-29

    The accurate monitoring of the physiological status of cells, tissues and whole organisms demands a new generation of devices capable of providing accurate data in real time with minimal perturbation of the system being measured. To deliver on the promise of cell-bionics advances over the past decade in miniaturization, analogue signal processing, low-power electronics, materials science and protein engineering need to be brought together. In this paper we summarize recent advances in our research that is moving us in this direction. Two areas in particular are highlighted: the exploitation of the physical properties inherent in semiconductor devices to perform very low power on chip signal processing and the use of gene technology to tailor proteins for sensor applications. In the context of engineered tissues, cell-bionics could offer the ability to monitor the precise physiological state of the construct, both during 'manufacture' and post-implantation. Monitoring during manufacture, particularly by embedded devices, would offer quality assurance of the materials components and the fabrication process. Post-implantation monitoring would reveal changes in the underlying physiology as a result of the tissue construct adapting to its new environment.

  3. White blood cell counting on smartphone paper electrochemical sensor.

    PubMed

    Wang, Xinhao; Lin, Guohong; Cui, Guangzhe; Zhou, Xiangfei; Liu, Gang Logan

    2017-04-15

    White blood cell (WBC) analysis provides rich information in rapid diagnosis of acute bacterial and viral infections as well as chronic disease management. For patients with immune deficiency or leukemia WBC should be persistently monitored. Current WBC counting method relies on bulky instrument and trained personnel and is time consuming. Rapid, low-cost and portable solution is in highly demand for point of care test. Here we demonstrate a label-free smartphone based electrochemical WBC counting device on microporous paper with patterned gold microelectrodes. WBC separated from whole blood was trapped by the paper with microelectrodes. WBC trapped on the paper leads to the ion diffusion blockage on microelectrodes, therefore cell concentration is determined by peak current on the microelectrodes measured by a differential pulse voltammeter and the quantitative results are collected by a smartphone wirelessly within 1min. We are able to rapidly quantify WBC concentrations covering the common physiological and pathological range (200-20000μL(-1)) with only 10μL sample and high repeatability as low as 10% in CoV (Coefficient of Variation). The unique smartphone paper electrochemical sensor ensures fast cell quantification to achieve rapid and low-cost WBC analysis at the point-of-care under resource limited conditions.

  4. Electrochemical As(III) whole-cell based biochip sensor.

    PubMed

    Cortés-Salazar, Fernando; Beggah, Siham; van der Meer, Jan Roelof; Girault, Hubert H

    2013-09-15

    The development of a whole-cell based sensor for arsenite detection coupling biological engineering and electrochemical techniques is presented. This strategy takes advantage of the natural Escherichia coli resistance mechanism against toxic arsenic species, such as arsenite, which consists of the selective intracellular recognition of arsenite and its pumping out from the cell. A whole-cell based biosensor can be produced by coupling the intracellular recognition of arsenite to the generation of an electrochemical signal. Hereto, E. coli was equipped with a genetic circuit in which synthesis of beta-galactosidase is under control of the arsenite-derepressable arsR-promoter. The E. coli reporter strain was filled in a microchip containing 16 independent electrochemical cells (i.e. two-electrode cell), which was then employed for analysis of tap and groundwater samples. The developed arsenic-sensitive electrochemical biochip is easy to use and outperforms state-of-the-art bacterial bioreporters assays specifically in its simplicity and response time, while keeping a very good limit of detection in tap water, i.e. 0.8ppb. Additionally, a very good linear response in the ranges of concentration tested (0.94ppb to 3.75ppb, R(2)=0.9975 and 3.75 ppb to 30ppb, R(2)=0.9991) was obtained, complying perfectly with the acceptable arsenic concentration limits defined by the World Health Organization for drinking water samples (i.e. 10ppb). Therefore, the proposed assay provides a very good alternative for the portable quantification of As (III) in water as corroborated by the analysis of natural groundwater samples from Swiss mountains, which showed a very good agreement with the results obtained by atomic absorption spectroscopy. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Optical fiber sensor for allergen detection

    NASA Astrophysics Data System (ADS)

    Bendoula, R.; Wacogne, B.; Giust, R.; Cherioux, F.; Sandoz, P.; Gharbi, T.

    2005-08-01

    The sensor is dedicated to the detection of allergens. We use a biochemical reaction in the vicinity of the core of an optical fiber which modifies the propagation conditions of the optical wave by evanescent coupling. The detection involves a intrinsic optical fiber Fabry-Perot interferometer.

  6. An experimental investigation of energy transmission from an evanescent to a propagating region

    NASA Astrophysics Data System (ADS)

    Lee, Allison; Crockett, Julie

    2016-11-01

    Tidal flow over oceanic bathymetry is a well known generator of internal waves. However, in the deep ocean there are many regions of weak stratification and the tides will generate only evanescent waves which decay exponentially as they propagate away from their source. In locations where stronger stratification exists above the weak, evanescent waves can form propagating internal waves as they approach a depth with a stratification corresponding to their frequency (turning depth). An experimental study of the energy transfer from evanescent regions to propagating regions due to evanescent waves passing through a turning depth is presented. The effects of varying exponential stratification profiles and single and multi-peak topographical features are described and results are compared with linear theory approximations.

  7. An intermolecular FRET sensor detects the dynamics of T cell receptor clustering.

    PubMed

    Ma, Yuanqing; Pandzic, Elvis; Nicovich, Philip R; Yamamoto, Yui; Kwiatek, Joanna; Pageon, Sophie V; Benda, Aleš; Rossy, Jérémie; Gaus, Katharina

    2017-04-28

    Clustering of the T-cell receptor (TCR) is thought to initiate downstream signalling. However, the detection of protein clustering with high spatial and temporal resolution remains challenging. Here we establish a Förster resonance energy transfer (FRET) sensor, named CliF, which reports intermolecular associations of neighbouring proteins in live cells. A key advantage of the single-chain FRET sensor is that it can be combined with image correlation spectroscopy (ICS), single-particle tracking (SPT) and fluorescence lifetime imaging microscopy (FLIM). We test the sensor with a light-sensitive actuator that induces protein aggregation upon radiation with blue light. When applied to T cells, the sensor reveals that TCR triggering increases the number of dense TCR-CD3 clusters. Further, we find a correlation between cluster movement within the immunological synapse and cluster density. In conclusion, we develop a sensor that allows us to map the dynamics of protein clustering in live T cells.

  8. Current-Induced Transistor Sensorics with Electrogenic Cells.

    PubMed

    Fromherz, Peter

    2016-04-25

    The concepts of transistor recording of electroactive cells are considered, when the response is determined by a current-induced voltage in the electrolyte due to cellular activity. The relationship to traditional transistor recording, with an interface-induced response due to interactions with the open gate oxide, is addressed. For the geometry of a cell-substrate junction, the theory of a planar core-coat conductor is described with a one-compartment approximation. The fast electrical relaxation of the junction and the slow change of ion concentrations are pointed out. On that basis, various recording situations are considered and documented by experiments. For voltage-gated ion channels under voltage clamp, the effects of a changing extracellular ion concentration and the enhancement/depletion of ion conductances in the adherent membrane are addressed. Inhomogeneous ion conductances are crucial for transistor recording of neuronal action potentials. For a propagating action potential, the effects of an axon-substrate junction and the surrounding volume conductor are distinguished. Finally, a receptor-transistor-sensor is described, where the inhomogeneity of a ligand-activated ion conductance is achieved by diffusion of the agonist and inactivation of the conductance. Problems with regard to a development of reliable biosensors are mentioned.

  9. Current-Induced Transistor Sensorics with Electrogenic Cells

    PubMed Central

    Fromherz, Peter

    2016-01-01

    The concepts of transistor recording of electroactive cells are considered, when the response is determined by a current-induced voltage in the electrolyte due to cellular activity. The relationship to traditional transistor recording, with an interface-induced response due to interactions with the open gate oxide, is addressed. For the geometry of a cell-substrate junction, the theory of a planar core-coat conductor is described with a one-compartment approximation. The fast electrical relaxation of the junction and the slow change of ion concentrations are pointed out. On that basis, various recording situations are considered and documented by experiments. For voltage-gated ion channels under voltage clamp, the effects of a changing extracellular ion concentration and the enhancement/depletion of ion conductances in the adherent membrane are addressed. Inhomogeneous ion conductances are crucial for transistor recording of neuronal action potentials. For a propagating action potential, the effects of an axon-substrate junction and the surrounding volume conductor are distinguished. Finally, a receptor-transistor-sensor is described, where the inhomogeneity of a ligand–activated ion conductance is achieved by diffusion of the agonist and inactivation of the conductance. Problems with regard to a development of reliable biosensors are mentioned. PMID:27120627

  10. Evanescent-Wave Visualizations of the Viscous Sublayer in Turbulent Channel Flow

    DTIC Science & Technology

    2015-09-02

    particle -image velocimetry, to fully resolve wall turbulent flows. The objective of the study described here was to determine whether an even more...recent technique, evanescent-wave particle tracking velocimetry (PTV), could be used to visualize a plane (with 1. REPORT DATE (DD-MM-YYYY) 4. TITLE...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 wall turbulence, evanescent-wave particle velocimetry REPORT

  11. Near-IR Two-Photon Fluorescent Sensor for K(+) Imaging in Live Cells.

    PubMed

    Sui, Binglin; Yue, Xiling; Kim, Bosung; Belfield, Kevin D

    2015-08-19

    A new two-photon excited fluorescent K(+) sensor is reported. The sensor comprises three moieties, a highly selective K(+) chelator as the K(+) recognition unit, a boron-dipyrromethene (BODIPY) derivative modified with phenylethynyl groups as the fluorophore, and two polyethylene glycol chains to afford water solubility. The sensor displays very high selectivity (>52-fold) in detecting K(+) over other physiological metal cations. Upon binding K(+), the sensor switches from nonfluorescent to highly fluorescent, emitting red to near-IR (NIR) fluorescence. The sensor exhibited a good two-photon absorption cross section, 500 GM at 940 nm. Moreover, it is not sensitive to pH in the physiological pH range. Time-dependent cell imaging studies via both one- and two-photon fluorescence microscopy demonstrate that the sensor is suitable for dynamic K(+) sensing in living cells.

  12. High Throughput Micropatterning of Optical Oxygen Sensor for Single Cell Analysis.

    PubMed

    Zhu, Haixin; Tian, Yanqing; Bhushan, Shivani; Su, Fengyu; Meldrum, Deirdre R

    2012-06-01

    In this paper, we present our results from process development and characterization of optical oxygen sensors that are patterned by traditional UV lithography. An oxygen sensitive luminescent probe, platinum octaethylporphyrin (PtOEP), was encapsulated in commercially purchased photoresist (AZ5214) to form uniform thin sensor films on fused silica substrates. Plasticizer ethoxylated trimethylolpropane triacrylate (SR454) was added to the dye-photoresist sensor mixtures to improve the oxygen sensitivity. The optimum sensor mixture composition that can be patterned with maximum sensitivity was identified. The microfabrication process conditions, cell adherence and oxygen sensitivity results from patterned structures were characterized in detail. Down to 3 µm features have been fabricated on fused silica substrates using the developed techniques. The result implies the developed methods can provide a feasible way to miniaturize the optical sensor system for single cell analysis with precise control of sensor volume and response.

  13. High Throughput Micropatterning of Optical Oxygen Sensor for Single Cell Analysis

    PubMed Central

    Zhu, Haixin; Tian, Yanqing; Bhushan, Shivani; Su, Fengyu; Meldrum, Deirdre R.

    2012-01-01

    In this paper, we present our results from process development and characterization of optical oxygen sensors that are patterned by traditional UV lithography. An oxygen sensitive luminescent probe, platinum octaethylporphyrin (PtOEP), was encapsulated in commercially purchased photoresist (AZ5214) to form uniform thin sensor films on fused silica substrates. Plasticizer ethoxylated trimethylolpropane triacrylate (SR454) was added to the dye-photoresist sensor mixtures to improve the oxygen sensitivity. The optimum sensor mixture composition that can be patterned with maximum sensitivity was identified. The microfabrication process conditions, cell adherence and oxygen sensitivity results from patterned structures were characterized in detail. Down to 3 µm features have been fabricated on fused silica substrates using the developed techniques. The result implies the developed methods can provide a feasible way to miniaturize the optical sensor system for single cell analysis with precise control of sensor volume and response PMID:23066352

  14. Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies.

    PubMed

    Ekgasit, Sanong; Thammacharoen, Chuchaat; Yu, Fang; Knoll, Wolfgang

    2004-04-15

    The highly sensitive nature of surface plasmon resonance (SPR) spectroscopy and surface plasmon field-enhanced fluorescence spectroscopy (SPFS) are governed by the strong surface plasmon resonance-generated evanescent field at the metal/dielectric interface. The greatest evanescent field amplitude at the interface and the maximum attenuation of the reflectance are observed when a nonabsorbing dielectric is employed. An absorbing dielectric decreases the evanescent field enhancement at the interface. The SPR curve of an absorbing dielectric is characterized by a greater reflectance minimum and a broader curve, as compared to those of the nonabsorbing dielectric with the same refractive index. For a weakly absorbing dielectric, such as nanometer-thick surface-confined fluorophores, the absorption is too small to induce a significant change in the SPR curve. However, the presence of a minute amount of the fluorophore can be detected by the highly sensitive SPFS. The angle with the maximum fluorescence intensity of an SPFS curve is always smaller than the resonance angle of the corresponding SPR curve. This discrepancy is due to the differences of evanescent field distributions and their decay characteristics within the metal film and the dielectric medium. The fluorescence intensity in an SPFS curve can be expressed in terms of the evanescent field amplitude. Excellent correlations between the experimentally measured fluorescence intensities and the evanescent field amplitudes are observed.

  15. Resonant energy transfer under the influence of the evanescent field from the metal

    NASA Astrophysics Data System (ADS)

    Poudel, Amrit; Chen, Xin; Ratner, Mark A.

    2017-06-01

    We present a quantum framework based on a density matrix of a dimer system to investigate the quantum dynamics of excitation energy transfer (EET) in the presence of the evanescent field from the metal and the phonon bath. Due to the spatial correlation of the electric field in the vicinity of the metal, the spectral density of the evanescent field is similar to that of a shared phonon bath. However, the EET dynamics under the influence of the evanescent field is an open and a new problem. Here we use a thin metallic film to investigate the effect of the evanescent field on the excitation energy transfer in a dimer system based on a density matrix approach. Our results indicate that a thin metallic film enhances the energy transfer rate at the expense of absorbing energy during the process. Since the spectral density of the evanescent field is affected by the geometry of the medium and the distance of a dimer system from the medium, our results demonstrate the possibility to tune EET based on material geometry and distances. Our model also serves as an expansion to quantum heat engine models and provides a framework to investigate the EET in light harvesting molecular networks under the influence of the evanescent field.

  16. Magnetic Relaxometry with an Atomic Magnetometer and SQUID Sensors on Targeted Cancer Cells

    PubMed Central

    Johnson, Cort; Adolphi, Natalie L.; Butler, Kimberly L.; Debbie M, Lovato; Larson, Richard; Schwindt, Peter D.D.; Flynn, Edward R.

    2012-01-01

    Magnetic relaxometry methods have been shown to be very sensitive in detecting cancer cells and other targeted diseases. Superconducting Quantum Interference Device (SQUID) sensors are one of the primary sensor systems used in this methodology because of their high sensitivity with demonstrated capabilities of detecting fewer than 100,000 magnetically-labeled cancer cells. The emerging technology of atomic magnetometers (AM) represents a new detection method for magnetic relaxometry with high sensitivity and without the requirement for cryogens. We report here on a study of magnetic relaxometry using both AM and SQUID sensors to detect cancer cells that are coated with superparamagnetic nanoparticles through antibody targeting. The AM studies conform closely to SQUID sensor results in the measurement of the magnetic decay characteristics following a magnetization pulse. The AM and SQUID sensor data are well described theoretically for superparamagnetic particles bound to cells and the results can be used to determine the number of cells in a cell culture or tumor. The observed fields and magnetic moments of cancer cells are linear with the number of cells over a very large range. The AM sensor demonstrates very high sensitivity for detecting magnetically labeled cells does not require cryogenic cooling and is relatively inexpensive. PMID:22773885

  17. Magnetic relaxometry with an atomic magnetometer and SQUID sensors on targeted cancer cells

    NASA Astrophysics Data System (ADS)

    Johnson, Cort; Adolphi, Natalie L.; Butler, Kimberly L.; Lovato, Debbie M.; Larson, Richard; Schwindt, Peter D. D.; Flynn, Edward R.

    2012-08-01

    Magnetic relaxometry methods have been shown to be very sensitive in detecting cancer cells and other targeted diseases. Superconducting quantum interference device (SQUID) sensors are one of the primary sensor systems used in this methodology because of their high sensitivity with demonstrated capabilities of detecting fewer than 100,000 magnetically-labeled cancer cells. The emerging technology of atomic magnetometers (AMs) represents a new detection method for magnetic relaxometry with high sensitivity and without the requirement for cryogens. We report here on a study of magnetic relaxometry using both AM and SQUID sensors to detect cancer cells that are coated with superparamagnetic nanoparticles through antibody targeting. The AM studies conform closely to SQUID sensor results in the measurement of the magnetic decay characteristics following a magnetization pulse. The AM and SQUID sensor data are well described theoretically for superparamagnetic particles bound to cells and the results can be used to determine the number of cells in a cell culture or tumor. The observed fields and magnetic moments of cancer cells are linear with the number of cells over a very large range. The AM sensor demonstrates very high sensitivity for detecting magnetically labeled cells, does not require cryogenic cooling and is relatively inexpensive.

  18. Evanescent field: A potential light-tool for theranostics application

    NASA Astrophysics Data System (ADS)

    Polley, Nabarun; Singh, Soumendra; Giri, Anupam; Pal, Samir Kumar

    2014-03-01

    A noninvasive or minimally invasive optical approach for theranostics, which would reinforce diagnosis, treatment, and preferably guidance simultaneously, is considered to be major challenge in biomedical instrument design. In the present work, we have developed an evanescent field-based fiber optic strategy for the potential theranostics application in hyperbilirubinemia, an increased concentration of bilirubin in the blood and is a potential cause of permanent brain damage or even death in newborn babies. Potential problem of bilirubin deposition on the hydroxylated fiber surface at physiological pH (7.4), that masks the sensing efficacy and extraction of information of the pigment level, has also been addressed. Removal of bilirubin in a blood-phantom (hemoglobin and human serum albumin) solution from an enhanced level of 77 μM/l (human jaundice >50 μM/l) to ˜30 μM/l (normal level ˜25 μM/l in human) using our strategy has been successfully demonstrated. In a model experiment using chromatography paper as a mimic of biological membrane, we have shown efficient degradation of the bilirubin under continuous monitoring for guidance of immediate/future course of action.

  19. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging.

    PubMed

    Tanaka, Tsuyoshi; Saeki, Tatsuya; Sunaga, Yoshihiko; Matsunaga, Tadashi

    2010-12-15

    A complementary metal oxide semiconductor (CMOS) image sensor was applied to high-content analysis of single cells which were assembled closely or directly onto the CMOS sensor surface. The direct assembling of cell groups on CMOS sensor surface allows large-field (6.66 mm×5.32 mm in entire active area of CMOS sensor) imaging within a second. Trypan blue-stained and non-stained cells in the same field area on the CMOS sensor were successfully distinguished as white- and blue-colored images under white LED light irradiation. Furthermore, the chemiluminescent signals of each cell were successfully visualized as blue-colored images on CMOS sensor only when HeLa cells were placed directly on the micro-lens array of the CMOS sensor. Our proposed approach will be a promising technique for real-time and high-content analysis of single cells in a large-field area based on color imaging.

  20. A cell-surface-anchored ratiometric i-motif sensor for extracellular pH detection.

    PubMed

    Ying, Le; Xie, Nuli; Yang, Yanjing; Yang, Xiaohai; Zhou, Qifeng; Yin, Bincheng; Huang, Jin; Wang, Kemin

    2016-06-14

    A FRET-based sensor is anchored on the cell surface through streptavidin-biotin interactions. Due to the excellent properties of the pH-sensitive i-motif structure, the sensor can detect extracellular pH with high sensitivity and excellent reversibility.

  1. Staying alive! Sensors used for monitoring cell health in bioreactors.

    PubMed

    O'Mara, P; Farrell, A; Bones, J; Twomey, K

    2018-01-01

    Current and next generation sensors such as pH, dissolved oxygen (dO) and temperature sensors that will help drive the use of single-use bioreactors in industry are reviewed. The current trend in bioreactor use is shifting from the traditional fixed bioreactors to the use of single-use bioreactors (SUBs). However as the shift in paradigm occurs there is now a greater need for sensor technology to play 'catch up' with the innovation of bioreactor technology. Many of the sensors still in use today rely on technology created in the 1960's such as the Clark-type dissolved oxygen sensor or glass pH electrodes. This is due to the strict requirements of sensors to monitor bioprocesses resulting in the use of traditional well understood methods, making it difficult to incorporate new sensor technology into industry. A number of advances in sensor technology have been achieved in recent years, a few of these advances and future research will also be discussed in this review. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ratiometric Array of Conjugated Polymers-Fluorescent Protein Provides a Robust Mammalian Cell Sensor.

    PubMed

    Rana, Subinoy; Elci, S Gokhan; Mout, Rubul; Singla, Arvind K; Yazdani, Mahdieh; Bender, Markus; Bajaj, Avinash; Saha, Krishnendu; Bunz, Uwe H F; Jirik, Frank R; Rotello, Vincent M

    2016-04-06

    Supramolecular complexes of a family of positively charged conjugated polymers (CPs) and green fluorescent protein (GFP) create a fluorescence resonance energy transfer (FRET)-based ratiometric biosensor array. Selective multivalent interactions of the CPs with mammalian cell surfaces caused differential change in FRET signals, providing a fingerprint signature for each cell type. The resulting fluorescence signatures allowed the identification of 16 different cell types and discrimination between healthy, cancerous, and metastatic cells, with the same genetic background. While the CP-GFP sensor array completely differentiated between the cell types, only partial classification was achieved for the CPs alone, validating the effectiveness of the ratiometric sensor. The utility of the biosensor was further demonstrated in the detection of blinded unknown samples, where 121 of 128 samples were correctly identified. Notably, this selectivity-based sensor stratified diverse cell types in minutes, using only 2000 cells, without requiring specific biomarkers or cell labeling.

  3. Passive Dew Droplet Removal from Hydrogen Sensors for Fuel Cell Applications

    NASA Astrophysics Data System (ADS)

    Kano, Masataka; Ishii, Makoto; Yoshinaga, Haruo; Esashi, Masayoshi; Tanaka, Shuji

    This paper describes three structures to passively remove condensed water droplets from a gas heat conduction type hydrogen sensor for fuel cell applications. The three structures are A: water-repellent coating surrounded by water-absorbing porous ceramic coating, B: suspended porous membrane over a water-repellent sensor surface and C: wettability gradient for water droplet elimination. A real hydrogen sensor was used as a platform for the water-droplet-removal structures. Using helium instead of hydrogen, A and B type sensors and a reference sensor without water-droplet-removal structures were tested in a wet and hot atmosphere simulating a fuel cell environment. B type sensor showed normal output even after exposure to a dew-condensing atmosphere, while the reference and A type sensors showed abnormal output, suggesting dew condensation on the sensor surfaces. For C type sensor, a photochromic compound film on a super-water-repellent undercoat, which changes its wettability by ultraviolet exposure, was used. It was confirmed that the wettability could be controlled by ultraviolet exposure from 157.9° to 72.8° in water contact angle.

  4. Stretchable Electrochemical Sensor for Real-Time Monitoring of Cells and Tissues.

    PubMed

    Liu, Yan-Ling; Jin, Zi-He; Liu, Yan-Hong; Hu, Xue-Bo; Qin, Yu; Xu, Jia-Quan; Fan, Cui-Fang; Huang, Wei-Hua

    2016-03-24

    Stretchable electrochemical sensors are conceivably a powerful technique that provides important chemical information to unravel elastic and curvilinear living body. However, no breakthrough was made in stretchable electrochemical device for biological detection. Herein, we synthesized Au nanotubes (NTs) with large aspect ratio to construct an effective stretchable electrochemical sensor. Interlacing network of Au NTs endows the sensor with desirable stability against mechanical deformation, and Au nanostructure provides excellent electrochemical performance and biocompatibility. This allows for the first time, real-time electrochemical monitoring of mechanically sensitive cells on the sensor both in their stretching-free and stretching states as well as sensing of the inner lining of blood vessels. The results demonstrate the great potential of this sensor in electrochemical detection of living body, opening a new window for stretchable electrochemical sensor in biological exploration.

  5. Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform.

    PubMed

    Luchansky, Matthew S; Washburn, Adam L; Martin, Teresa A; Iqbal, Muzammil; Gunn, L Cary; Bailey, Ryan C

    2010-12-15

    Silicon photonic microring resonators have emerged as a sensitive and highly multiplexed platform for real-time biomolecule detection. Herein, we profile the evanescent decay of device sensitivity towards molecular binding as a function of distance from the microring surface. By growing multilayers of electrostatically bound polymers extending from the sensor surface, we are able to empirically determine that the evanescent field intensity is characterized by a 1/e response decay distance of 63 nm. We then applied this knowledge to study the growth of biomolecular assemblies consisting of alternating layers of biotinylated antibody and streptavidin, which follow a more complex growth pattern. Additionally, by monitoring the shift in microring resonance wavelength upon the deposition of a radioactively labeled protein, the mass sensitivity of the ring resonator platform was determined to be 14.7±6.7 [pg/mm(2)]/Δpm. By extrapolating to the instrument noise baseline, the mass/area limit of detection is found to be 1.5±0.7 pg/mm(2). Taking the small surface area of the microring sensor into consideration, this value corresponds to an absolute mass detection limit of 125 ag (i.e. 0.8 zmol of IgG), demonstrating the remarkable sensitivity of this promising label-free biomolecular sensing platform.

  6. Online Soft Sensor of Humidity in PEM Fuel Cell Based on Dynamic Partial Least Squares

    PubMed Central

    Long, Rong; Chen, Qihong; Zhang, Liyan; Ma, Longhua; Quan, Shuhai

    2013-01-01

    Online monitoring humidity in the proton exchange membrane (PEM) fuel cell is an important issue in maintaining proper membrane humidity. The cost and size of existing sensors for monitoring humidity are prohibitive for online measurements. Online prediction of humidity using readily available measured data would be beneficial to water management. In this paper, a novel soft sensor method based on dynamic partial least squares (DPLS) regression is proposed and applied to humidity prediction in PEM fuel cell. In order to obtain data of humidity and test the feasibility of the proposed DPLS-based soft sensor a hardware-in-the-loop (HIL) test system is constructed. The time lag of the DPLS-based soft sensor is selected as 30 by comparing the root-mean-square error in different time lag. The performance of the proposed DPLS-based soft sensor is demonstrated by experimental results. PMID:24453923

  7. Highly sensitive and selective odorant sensor using living cells expressing insect olfactory receptors

    PubMed Central

    Misawa, Nobuo; Mitsuno, Hidefumi; Kanzaki, Ryohei; Takeuchi, Shoji

    2010-01-01

    This paper describes a highly sensitive and selective chemical sensor using living cells (Xenopus laevis oocytes) within a portable fluidic device. We constructed an odorant sensor whose sensitivity is a few parts per billion in solution and can simultaneously distinguish different types of chemicals that have only a slight difference in double bond isomerism or functional group such as ─OH, ─CHO and ─C(═O)─. We developed a semiautomatic method to install cells to the fluidic device and achieved stable and reproducible odorant sensing. In addition, we found that the sensor worked for multiple-target chemicals and can be integrated with a robotic system without any noise reduction systems. Our developed sensor is compact and easy to replace in the system. We believe that the sensor can potentially be incorporated into a portable system for monitoring environmental and physical conditions. PMID:20798064

  8. Online soft sensor of humidity in PEM fuel cell based on dynamic partial least squares.

    PubMed

    Long, Rong; Chen, Qihong; Zhang, Liyan; Ma, Longhua; Quan, Shuhai

    2013-01-01

    Online monitoring humidity in the proton exchange membrane (PEM) fuel cell is an important issue in maintaining proper membrane humidity. The cost and size of existing sensors for monitoring humidity are prohibitive for online measurements. Online prediction of humidity using readily available measured data would be beneficial to water management. In this paper, a novel soft sensor method based on dynamic partial least squares (DPLS) regression is proposed and applied to humidity prediction in PEM fuel cell. In order to obtain data of humidity and test the feasibility of the proposed DPLS-based soft sensor a hardware-in-the-loop (HIL) test system is constructed. The time lag of the DPLS-based soft sensor is selected as 30 by comparing the root-mean-square error in different time lag. The performance of the proposed DPLS-based soft sensor is demonstrated by experimental results.

  9. Evaluation of a Multi-Parameter Sensor for Automated, Continuous Cell Culture Monitoring in Bioreactors

    NASA Technical Reports Server (NTRS)

    Pappas, D.; Jeevarajan, A.; Anderson, M. M.

    2004-01-01

    Compact and automated sensors are desired for assessing the health of cell cultures in biotechnology experiments in microgravity. Measurement of cell culture medium allows for the optirn.jzation of culture conditions on orbit to maximize cell growth and minimize unnecessary exchange of medium. While several discrete sensors exist to measure culture health, a multi-parameter sensor would simplify the experimental apparatus. One such sensor, the Paratrend 7, consists of three optical fibers for measuring pH, dissolved oxygen (p02), dissolved carbon dioxide (pC02) , and a thermocouple to measure temperature. The sensor bundle was designed for intra-arterial placement in clinical patients, and potentially can be used in NASA's Space Shuttle and International Space Station biotechnology program bioreactors. Methods: A Paratrend 7 sensor was placed at the outlet of a rotating-wall perfused vessel bioreactor system inoculated with BHK-21 (baby hamster kidney) cells. Cell culture medium (GTSF-2, composed of 40% minimum essential medium, 60% L-15 Leibovitz medium) was manually measured using a bench top blood gas analyzer (BGA, Ciba-Corning). Results: A Paratrend 7 sensor was used over a long-term (>120 day) cell culture experiment. The sensor was able to track changes in cell medium pH, p02, and pC02 due to the consumption of nutrients by the BHK-21. When compared to manually obtained BGA measurements, the sensor had good agreement for pH, p02, and pC02 with bias [and precision] of 0.02 [0.15], 1 mm Hg [18 mm Hg], and -4.0 mm Hg [8.0 mm Hg] respectively. The Paratrend oxygen sensor was recalibrated (offset) periodically due to drift. The bias for the raw (no offset or recalibration) oxygen measurements was 42 mm Hg [38 mm Hg]. The measured response (rise) time of the sensor was 20 +/- 4s for pH, 81 +/- 53s for pC02, 51 +/- 20s for p02. For long-term cell culture measurements, these response times are more than adequate. Based on these findings , the Paratrend sensor could

  10. Slow light in evanescently coupled optical cavities containing quantum dots

    NASA Astrophysics Data System (ADS)

    Ergecen, Emre

    2014-05-01

    Ability to tune the group velocity of a light pulse is of great importance for optical communication applications and realization of quantum information processing. Tunability of group velocity can be achieved by using either optical or electronic resonances. Tunability of an optical resonance depends on the change in refractive index of the cavity material. However, since electro-optical coefficients of non-engineered materials are quite small, the tuning range of optical resonances by electric field is narrow. This makes tuning by electric field impractical for most applications. Quantum dot (QD) coupled to a photonic crystal cavity is a useful hybrid system exhibiting nonlinear features. In this work, we analyze the use of quantum dot - optical cavity hybrid systems to engineer nonlinear waveguides susceptible to electric fields. We start by theoretically analyzing the optical pulse propagation at low-photon number excitation limit in a periodically arranged strongly coupled quantum dot - photonic crystal system. A one dimensional periodic array of evanescently coupled photonic cavities (coupled resonator optical waveguides, CROWs) containing non-interacting quantum dots allows us to tune the group velocity and the bandwidth of the pulse by adjusting the cavity/QD coupling. Tunable group velocity can be achieved by applying an external electric field which will result in a significant decrease in the cavity/QD coupling because of DC Stark effect. We also show that, using this approach, light pulses can be slowed down or stored by compressing the pulse bandwidth adiabatically and reversibly. Adiabatic bandwidth compression can be achieved by slowly decreasing the coupling strength when the light pulse is inside the coupled resonator optical waveguide. The energy splitting and the coupling constant after applying electric field is calculated by using perturbation theory for two level systems. With our approach, nonlinear materials highly susceptible to electric

  11. Development of Sensors and Sensing Technology for Hydrogen Fuel Cell Vehicle Applications

    SciTech Connect

    Brosha, E L; Sekhar, P K; Mukundan, R; Williamson, T; Garzon, F H; Woo, L Y; Glass, R R

    2010-01-06

    One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features. Some of these devices (e.g. yaw sensors for dynamic stability control systems or tire presure warning RF-based devices) may be used on fuel cell vehicles without any modification. However the use of hydrogen as a fuel will dictate the development of completely new technologies for such requirements as the detection of hydrogen leaks, sensors and systems to continuously monitor hydrogen fuel purity and protect the fuel cell stack from poisoning, and for the important, yet often taken for granted, tasks such as determining the state of charge of the hydrogen fuel storage and delivery system. Two such sensors that rely on different transduction mechanisms will be highlighted in this presentation. The first is an electrochemical device for monitoring hydrogen levels in air. The other technology covered in this work, is an acoustic-based approach to determine the state of charge of a hydride storage system.

  12. Detection of cells captured with antigens on shear horizontal surface-acoustic-wave sensors.

    PubMed

    Hao, Hsu-Chao; Chang, Hwan-You; Wang, Tsung-Pao; Yao, Da-Jeng

    2013-02-01

    Techniques to separate cells are widely applied in immunology. The technique to separate a specific antigen on a microfluidic platform involves the use of a shear horizontal surface-acoustic-wave (SH-SAW) sensor. With specific antibodies conjugated onto the surface of the SH-SAW sensors, this technique can serve to identify specific cells in bodily fluids. Jurkat cells, used as a target in this work, provide a model of cells in small abundance (1:1000) for isolation and purification with the ultimate goal of targeting even more dilute cells. T cells were separated from a mixed-cell medium on a chip (Jurkat cells/K562 cells, 1/1000). A novel microchamber was developed to capture cells during the purification, which required a large biosample. Cell detection was demonstrated through the performance of genetic identification on the chip.

  13. Development of RF Sensor Based on Two-Cell Squid

    DTIC Science & Technology

    2011-07-15

    2011 Final Report APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AIR FORCE RESEARCH LABORATORY Sensors Directorate... Puebla G, Steffen L and Wallraff A 2008 Coplanar waveguide resonators for circuit quantum electrodynamics Journal of Applied Physics 104 113904-8

  14. DNA interaction probed by evanescent wave cavity ring-down absorption spectroscopy via functionalized gold nanoparticles.

    PubMed

    Yao, Yi-Ju; Lin, King-Chuen

    2014-04-11

    Evanescent wave cavity ring-down absorption spectroscopy (EW-CRDS) is employed to study interaction and binding kinetics of DNA strands by using gold nanoparticles (Au NPs) as sensitive reporters. These Au NPs are connected to target DNA of study that hybridizes with the complementary DNA fixed on the silica surface. By the absorbance of Au NPs, the interaction between two DNA strands may be examined to yield an adsorption equilibrium constant of 2.2×10(10) M(-1) using Langmuir fit. The binding efficiency that is affected by ion concentration, buffer pH and temperature is also examined. This approach is then applied to the label-free detection of the DNA mutation diseases using the sandwich hybridization assay. For monitoring a gene associated with sickle-cell anemia, the detection limit and the adsorption equilibrium constant is determined to be 1.2 pM and (3.7±0.8)×10(10) M(-1), distinct difference from the perfectly matched DNA sequence that yields the corresponding 0.5 pM and (1.1±0.2)×10(11) M(-1). The EW-CRDS method appears to have great potential for the investigation of the kinetics of a wide range of biological reactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. dsRNA sensors and plasmacytoid dendritic cells in host defense and autoimmunity.

    PubMed

    Wang, Yaming; Swiecki, Melissa; McCartney, Stephen A; Colonna, Marco

    2011-09-01

    The innate immune system detects viruses through molecular sensors that trigger the production of type I interferons (IFN-I) and inflammatory cytokines. As viruses vary tremendously in size, structure, genomic composition, and tissue tropism, multiple sensors are required to detect their presence in various cell types and tissues. In this review, we summarize current knowledge of the diversity, specificity, and signaling pathways downstream of viral sensors and ask whether two distinct sensors that recognize the same viral component are complementary, compensatory, or simply redundant. We also discuss why viral sensors are differentially distributed in distinct cell types and whether a particular cell type dominates the IFN-I response during viral infection. Finally, we review evidence suggesting that inappropriate signaling through viral sensors may induce autoimmunity. The picture emerging from these studies is that disparate viral sensors in different cell types form a dynamic and integrated molecular network that can be exploited for improving vaccination and therapeutic strategies for infectious and autoimmune diseases.

  16. Existence of evanescent electromagnetic waves resulting from seismoelectric conversion at a solid-porous interface

    NASA Astrophysics Data System (ADS)

    Ren, Hengxin; Huang, Qinghua; Chen, Xiaofei

    2016-01-01

    Adopting a model with two half-spaces that consist of solid and porous materials, we numerically investigate the seismoelectric conversion at the solid-porous interface. First, the wave fields in a low-porosity two-layer model are compared with those in a homogeneous full-space model. The consistency of seismic waves is a validation of our program. We are interested in the quasi-coseismic electromagnetic (EM) signals recorded in the solid area near the interface because they seemingly accompany seismic waves. Then, further numerical simulations on an ordinary two-layer model are conducted. On the basis of time slice snapshots and theoretical analysis, we determine that quasi-coseismic EM signals are essentially non-coseismic EM fields, which include radiation and evanescent EM waves. Evanescent EM waves are induced by the seismic waves that arrive at the interface with the incident angle greater than the critical angle. These waves decay faster than radiation EM waves when moving away from the interface. In the porous layer, evanescent EM waves can hardly be recognized unless they are separated from coseismic EM signals. This finding can be the reason why evanescent EM waves have not been identified in previous seismoelectric studies. Awareness of the fact that seismoelectric conversion at an interface can generate evanescent and EM waves is likely to result in a comprehensive understanding and improved interpretation of the seismoelectric coupling phenomenon.

  17. Theoretical and experimental evidence of level repulsion states and evanescent modes in sonic crystal stubbed waveguides

    NASA Astrophysics Data System (ADS)

    Romero-García, V.; Vasseur, J. O.; Garcia-Raffi, L. M.; Hladky-Hennion, A. C.

    2012-02-01

    The complex band structures calculated using the extended plane wave expansion (EPWE) reveal the presence of evanescent modes in periodic systems, never predicted by the classical \\omega(\\vec {k}) methods, providing novel interpretations of several phenomena as well as a complete picture of the system. In this work, we theoretically and experimentally observe that in the ranges of frequencies where a deaf band is traditionally predicted, an evanescent mode with excitable symmetry appears, changing drastically the interpretation of the transmission properties. On the other hand, the simplicity of the sonic crystals in which only the longitudinal polarization can be excited is used to interpret, without loss of generality, the level repulsion between symmetric and antisymmetric bands in sonic crystals as the presence of an evanescent mode connecting both repelled bands. These evanescent modes, obtained using EPWE, explain both the attenuation produced in this range of frequencies and the transfer of symmetry from one band to the other in good agreement with both experimental results and multiple scattering predictions. Thus, the evanescent properties of the periodic system have been revealed to be necessary for the design of new acoustic and electromagnetic applications based on periodicity.

  18. A Nanoparticle-based Sensor Platform for Cell Tracking and Status/Function Assessment

    NASA Astrophysics Data System (ADS)

    Yeo, David; Wiraja, Christian; Chuah, Yon Jin; Gao, Yu; Xu, Chenjie

    2015-10-01

    Nanoparticles are increasingly popular choices for labeling and tracking cells in biomedical applications such as cell therapy. However, all current types of nanoparticles fail to provide real-time, noninvasive monitoring of cell status and functions while often generating false positive signals. Herein, a nanosensor platform to track the real-time expression of specific biomarkers that correlate with cell status and functions is reported. Nanosensors are synthesized by encapsulating various sensor molecules within biodegradable polymeric nanoparticles. Upon intracellular entry, nanosensors reside within the cell cytoplasm, serving as a depot to continuously release sensor molecules for up to 30 days. In the absence of the target biomarkers, the released sensor molecules remain ‘Off’. When the biomarker(s) is expressed, a detectable signal is generated (On). As a proof-of-concept, three nanosensor formulations were synthesized to monitor cell viability, secretion of nitric oxide, and β-actin mRNA expression.

  19. Design of an embedded sensor system for measuring laser scattering on blood cells

    NASA Astrophysics Data System (ADS)

    Iosifidis, C.; Katsaliaki, K.; Kollensperger, P.; Kiziroglou, M. E.

    2017-05-01

    In this paper, a sensor system architecture for laboratory and in-vivo light scattering studies on blood cells is presented. It aims at correlating Mie scattering to compositional and physiological information of blood cells towards a non-invasive blood-cell counting sensor. An overview of previously reported experimental techniques on light scattering from blood cells is presented. State-of-the-art methods such as differential pulse measurements, vessel pressure optimization identified as promising for enhancing the scattering signal in such measurements. Indicative simulations of Mie scattering by blood cells are presented, illustrating the potential for distinguishing among cells and identifying size distribution. A prototype sensor system based on a 640-660 nm laser light source and a photo diode array is implemented and programmed to obtain mean amplitude and scattering angle measurements.

  20. Development of a Microforce Sensor and Its Array Platform for Robotic Cell Microinjection Force Measurement.

    PubMed

    Xie, Yu; Zhou, Yunlei; Lin, Yuzi; Wang, Lingyun; Xi, Wenming

    2016-04-06

    Robot-assisted cell microinjection, which is precise and can enable a high throughput, is attracting interest from researchers. Conventional probe-type cell microforce sensors have some real-time injection force measurement limitations, which prevent their integration in a cell microinjection robot. In this paper, a novel supported-beam based cell micro-force sensor with a piezoelectric polyvinylidine fluoride film used as the sensing element is described, which was designed to solve the real-time force-sensing problem during a robotic microinjection manipulation, and theoretical mechanical and electrical models of the sensor function are derived. Furthermore, an array based cell-holding device with a trapezoidal microstructure is micro-fabricated, which serves to improve the force sensing speed and cell manipulation rates. Tests confirmed that the sensor showed good repeatability and a linearity of 1.82%. Finally, robot-assisted zebrafish embryo microinjection experiments were conducted. These results demonstrated the effectiveness of the sensor working with the robotic cell manipulation system. Moreover, the sensing structure, theoretical model, and fabrication method established in this study are not scale dependent. Smaller cells, e.g., mouse oocytes, could also be manipulated with this approach.

  1. Development of a Microforce Sensor and Its Array Platform for Robotic Cell Microinjection Force Measurement

    PubMed Central

    Xie, Yu; Zhou, Yunlei; Lin, Yuzi; Wang, Lingyun; Xi, Wenming

    2016-01-01

    Robot-assisted cell microinjection, which is precise and can enable a high throughput, is attracting interest from researchers. Conventional probe-type cell microforce sensors have some real-time injection force measurement limitations, which prevent their integration in a cell microinjection robot. In this paper, a novel supported-beam based cell micro-force sensor with a piezoelectric polyvinylidine fluoride film used as the sensing element is described, which was designed to solve the real-time force-sensing problem during a robotic microinjection manipulation, and theoretical mechanical and electrical models of the sensor function are derived. Furthermore, an array based cell-holding device with a trapezoidal microstructure is micro-fabricated, which serves to improve the force sensing speed and cell manipulation rates. Tests confirmed that the sensor showed good repeatability and a linearity of 1.82%. Finally, robot-assisted zebrafish embryo microinjection experiments were conducted. These results demonstrated the effectiveness of the sensor working with the robotic cell manipulation system. Moreover, the sensing structure, theoretical model, and fabrication method established in this study are not scale dependent. Smaller cells, e.g., mouse oocytes, could also be manipulated with this approach. PMID:27058545

  2. Alloy catalysts for fuel cell-based alcohol sensors

    NASA Astrophysics Data System (ADS)

    Ghavidel, Mohammadreza Zamanzad

    Direct ethanol fuel cells (DEFCs) are attractive from both economic and environmental standpoints for generating renewable energy and powering vehicles and portable electronic devices. There is a great interest recently in developing DEFC systems. The cost and performance of the DEFCs are mainly controlled by the Pt-base catalysts used at each electrode. In addition to energy conversion, DEFC technology is commonly employed in the fuel-cell based breath alcohol sensors (BrAS). BrAS is a device commonly used to measure blood alcohol concentration (BAC) and enforce drinking and driving laws. The BrAS is non-invasive and has a fast respond time. However, one of the most important drawback of the commercially available BrAS is the very high loading of Pt employed. One well-known and cost effective method to reduce the Pt loading is developing Pt-alloy catalysts. Recent studies have shown that Pt-transition metal alloy catalysts enhanced the electroactivity while decreasing the required loadings of the Pt catalysts. In this thesis, carbon supported Pt-Mn and Pt-Cu electrocatalysts were synthesized by different methods and the effects of heat treatment and structural modification on the ethanol oxidation reaction (EOR) activity, oxygen reduction reaction (ORR) activity and durability of these samples were thoroughly studied. Finally, the selected Pt-Mn and Pt-Cu samples with the highest EOR activity were examined in a prototype BrAS system and compared to the Pt/C and Pt 3Sn/C commercial electrocatalysts. Studies on the Pt-Mn catalysts produced with and without additives indicate that adding trisodium citrate (SC) to the impregnation solution improved the particle dispersion, decreased particle sizes and reduced the time required for heat treatment. Further studies show that the optimum weight ratio of SC to the metal loading in the impregnation solution was 2:1 and optimum results achieved at pH lower than 4. In addition, powder X-ray diffraction (XRD) analyses indicate

  3. Polymer optical fibre sensor to monitor skin moisture

    NASA Astrophysics Data System (ADS)

    Vaughan, John; Woodyatt, Christopher; Scully, Patricia J.

    2007-07-01

    We present a polymer optical fibre sensor to sense skin moisture and droplet formation when sweating occurs. The sensor used evanescent field attenuation, by exploiting a moisture sensitive cladding with moisture indicator (fluorescein) contained within a porous cladding (HEMA). The sensor was designed to be comfortable to wear and unobtrusive, hygienic, with sterilised interchangeable sensing elements. It had maximum sensitivity between 98% and 100% humidity, and response time of 24 seconds.

  4. Fluorescence-lifetime-based sensors using inhomogeneous waveguiding

    NASA Astrophysics Data System (ADS)

    Draxler, Sonja; Kieslinger, Dietmar; Trznadel, Karolina; Lippitsch, Max E.

    1996-12-01

    Most intrinsic fiberoptic sensors are based on the evanescent-wave scheme, where the evanescent field of modes guided in a fiber reaches out into a chemically sensitive coating. In the commonly used multimode waveguides, the evanescent field contains only a small part of the total energy, however, thus making evanescent-wave sensors rather insensitive. Combining a transparent substrate and a transparent sensing layer of rather similar refractive index into a common waveguiding structure produces an inhomogeneous waveguide, where a large portion of the total energy transverses the sensing layer. This yields much superior sensor performance. The transmission through a waveguide is subject to various disturbing influences. Thus it is advantageous to combine the inhomogeneous waveguiding approach with a measuring scheme that is not prone to those disturbances. Such a scheme is available with fluorescence lifetime-based sensors. The fluorescence lifetime of an indicator incorporated into the sensing layer is changed by the presence of the respective analyte. This lifetime is independent of the transmission through the waveguide. Thus inhomogeneous waveguiding together with fluorescence lifetime measurement paves the way for optical chemical sensors with high analyte sensitivity and immunity to external disturbances.

  5. Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response.

    PubMed

    Densmore, A; Xu, D-X; Janz, S; Waldron, P; Mischki, T; Lopinski, G; Delâge, A; Lapointe, J; Cheben, P; Lamontagne, B; Schmid, J H

    2008-03-15

    We demonstrate a new silicon photonic wire waveguide evanescent field (PWEF) sensor that exploits the strong evanescent field of the transverse magnetic mode of this high-index-contrast, submicrometer-dimension waveguide. High sensitivity is achieved by using a 2 mm long double-spiral waveguide structure that fits within a compact circular area of 150 microm diameter, facilitating compatibility with commercial spotting apparatus and the fabrication of densely spaced sensor arrays. By incorporating the PWEF sensor element into a balanced waveguide Mach-Zehnder interferometer circuit, a minimum detectable mass of approximately 10 fg of streptavidin protein is demonstrated with near temperature-independent response.

  6. Flight Demonstration Of Low Overpressure N-Wave Sonic Booms And Evanescent Waves

    NASA Astrophysics Data System (ADS)

    Haering, Edward A.; Smolka, James W.; Murray, James E.; Plotkin, Kenneth J.

    2006-05-01

    The recent flight demonstration of shaped sonic booms shows the potential for quiet overland supersonic flight, which could revolutionize air transport. To successfully design quiet supersonic aircraft, the upper limit of an acceptable noise level must be determined through quantitative recording and subjective human response measurements. Past efforts have concentrated on the use of sonic boom simulators to assess human response, but simulators often cannot reproduce a realistic sonic boom sound. Until now, molecular relaxation effects on low overpressure rise time had never been compared with flight data. Supersonic flight slower than the cutoff Mach number, which generates evanescent waves, also prevents loud sonic booms from impacting the ground. The loudness of these evanescent waves can be computed, but flight measurement validation is needed. A novel flight demonstration technique that generates low overpressure N-waves using conventional military aircraft is outlined, in addition to initial quantitative flight data. As part of this demonstration, evanescent waves also will be recorded.

  7. Flight Demonstration Of Low Overpressure N-Wave Sonic Booms And Evanescent Waves

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Smolka, James W.; Murray, James E.; Plotkin, Kenneth J.

    2005-01-01

    The recent flight demonstration of shaped sonic booms shows the potential for quiet overland supersonic flight, which could revolutionize air transport. To successfully design quiet supersonic aircraft, the upper limit of an acceptable noise level must be determined through quantitative recording and subjective human response measurements. Past efforts have concentrated on the use of sonic boom simulators to assess human response, but simulators often cannot reproduce a realistic sonic boom sound. Until now, molecular relaxation effects on low overpressure rise time had never been compared with flight data. Supersonic flight slower than the cutoff Mach number, which generates evanescent waves, also prevents loud sonic booms from impacting the ground. The loudness of these evanescent waves can be computed, but flight measurement validation is needed. A novel flight demonstration technique that generates low overpressure N-waves using conventional military aircraft is outlined, in addition to initial quantitative flight data. As part of this demonstration, evanescent waves also will be recorded.

  8. Circular and near-circular polarization states of evanescent monochromatic light fields in total internal reflection.

    PubMed

    Azzam, R M A

    2011-11-20

    Conditions for the production of near-circular polarization states of the evanescent field present in the rarer medium in total internal reflection of incident monochromatic p-polarized light at a dielectric-dielectric planar interface are determined. Such conditions are satisfied if high-index (>3.2) transparent prism materials (e.g., GaP and Ge) are used at angles of incidence well above the critical angle but sufficiently below grazing incidence. Furthermore, elliptical polarization of incident light with nonzero p and s components can be tailored to cause circular polarization of the resultant tangential electric field in the plane of the interface or circular polarization of the transverse electric field in a plane normal to the direction of propagation of the evanescent wave. Such polarization control of the evanescent field is significant, e.g., in the fluorescent excitation of molecules adsorbed at solid-liquid and solid-gas interfaces by total internal reflection.

  9. Curvature-squared multiplets, evanescent effects, and the U(1) anomaly in N =4 supergravity

    NASA Astrophysics Data System (ADS)

    Bern, Zvi; Edison, Alex; Kosower, David; Parra-Martinez, Julio

    2017-09-01

    We evaluate one-loop amplitudes of N =4 supergravity in D dimensions using the double-copy procedure that expresses gravity integrands in terms of corresponding ones in Yang-Mills theory. We organize the calculation in terms of a set of gauge-invariant tensors, allowing us to identify evanescent contributions. Among the latter, we find the matrix elements of supersymmetric completions of curvature-squared operators. In addition, we find that such evanescent terms and the U(1)-anomalous contributions to one-loop N =4 amplitudes are tightly intertwined. The appearance of evanescent operators in N =4 supergravity and their relation to anomalies raises the question of their effect on the known four-loop divergence in this theory. We provide bases of gauge-invariant tensors and corresponding projectors useful for Yang-Mills theories as a by-product of our analysis.

  10. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing.

    PubMed

    Yao, B C; Wu, Y; Zhang, A Q; Rao, Y J; Wang, Z G; Cheng, Y; Gong, Y; Zhang, W L; Chen, Y F; Chiang, K S

    2014-11-17

    Graphene based new physics phenomena are leading to a variety of stimulating graphene-based photonic devices. In this study, the enhancement of surface evanescent field by graphene cylindrical cladding is observed, for the first time, by using a graphene-coated microfiber multi-mode interferometer (GMMI). It is found theoretically and experimentally that the light transmitting in the fiber core is efficiently dragged by the graphene, hence significantly enhancing the evanescent fields, and subsequently improving the sensitivity of the hybrid waveguide. The experimental results for gas sensing verified the theoretical prediction, and ultra-high sensitivities of ~0.1 ppm for NH(3) gas detection and ~0.2 ppm for H(2)O vapor detection are achieved, which could be used for trace analysis. The enhancement of surface evanescent field induced by graphene may pave a new way for developing novel graphene-based all-fiber devices with compactness, low cost, and temperature immunity.

  11. Fiber optic probe of free electron evanescent fields in the optical frequency range

    SciTech Connect

    So, Jin-Kyu MacDonald, Kevin F.; Zheludev, Nikolay I.

    2014-05-19

    We introduce an optical fiber platform which can be used to interrogate proximity interactions between free-electron evanescent fields and photonic nanostructures at optical frequencies in a manner similar to that in which optical evanescent fields are sampled using nanoscale aperture probes in scanning near-field microscopy. Conically profiled optical fiber tips functionalized with nano-gratings are employed to couple electron evanescent fields to light via the Smith-Purcell effect. We demonstrate the interrogation of medium energy (30–50 keV) electron fields with a lateral resolution of a few micrometers via the generation and detection of visible/UV radiation in the 700–300 nm (free-space) wavelength range.

  12. Exploiting evanescent-wave amplification for subwavelength low-contrast particle detection

    NASA Astrophysics Data System (ADS)

    Roy, S.; Pereira, S. F.; Urbach, H. P.; Wei, Xukang; El Gawhary, O.

    2017-07-01

    The classical problem of subwavelength particle detection on a flat surface is especially challenging when the refractive index of the particle is close to that of the substrate. We demonstrate a method to improve the detection ability several times for such a situation, by enhancing the "forbidden" evanescent waves in the substrate using the principle of super-resolution with evanescent waves amplification. The working mechanism of the system and experimental validation from a design with a thin single dielectric layer is presented. The resulting system is a simple but complete example of evanescent-wave generation, amplification, and the consequent modulation of the far field. This principle can have far reaching impact in the field of particle detection in several applications ranging from contamination control to interferometric scattering microscopy for biological samples.

  13. Quantum physics inspired optical effects in evanescently coupled waveguides

    NASA Astrophysics Data System (ADS)

    Thompson, Clinton Edward

    The tight-binding model that has been used for many years in condensed matter physics, due to its analytic and numerical tractability, has recently been used to describe light propagating through an array of evanescently coupled waveguides. This dissertation presents analytic and numerical simulation results of light propagating in a waveguide array. The first result presented is that photonic transport can be achieved in an array where the propagation constant is linearly increasing across the array. For an input at the center waveguide, the breathing modes of the system are observed, while for a phase displaced, asymmetric input, phase-controlled photonic transport is predicted. For an array with a waveguide-dependent, parity-symmetric coupling constant, the wave packet dynamics are predicted to be tunable. In addition to modifying the propagation constant, the coupling between waveguides can also be modified, and the quantum correlations are sensitive to the form of the tunneling function. In addition to modifying the waveguide array parameters in a structured manner, they can be randomized as to mimic the insertion of impurities during the fabrication process. When the refractive indices are randomized and real, the amount of light that localizes to the initial waveguide is found to be dependent on the initial waveguide when the waveguide coupling is non-uniform. In addition, when the variance of the refractive indices is small, light localizes in the initial waveguide as well as the parity-symmetric waveguide. In addition to real valued disorder, complex valued disorder can be introduced into the array through the imaginary component of the refractive index. It is shown that the two-particle correlation function is qualitatively similar to the case when the waveguide coupling is real and random, as both cases preserve the symmetry of the eigenvalues. Lastly, different input fields have been used to investigate the quantum statistical aspects of Anderson

  14. Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells.

    PubMed

    Hou, Bi-Huei; Takanaga, Hitomi; Grossmann, Guido; Chen, Li-Qing; Qu, Xiao-Qing; Jones, Alexander M; Lalonde, Sylvie; Schweissgut, Oliver; Wiechert, Wolfgang; Frommer, Wolf B

    2011-10-27

    Knowledge of the in vivo levels, distribution and flux of ions and metabolites is crucial to our understanding of physiology in both healthy and diseased states. The quantitative analysis of the dynamics of ions and metabolites with subcellular resolution in vivo poses a major challenge for the analysis of metabolic processes. Genetically encoded Förster resonance energy transfer (FRET) sensors can be used for real-time in vivo detection of metabolites. FRET sensor proteins, for example, for glucose, can be targeted genetically to any cellular compartment, or even to subdomains (e.g., a membrane surface), by adding signal sequences or fusing the sensors to specific proteins. The sensors can be used for analyses in individual mammalian cells in culture, in tissue slices and in intact organisms. Applications include gene discovery, high-throughput drug screens or systematic analysis of regulatory networks affecting uptake, efflux and metabolism. Quantitative analyses obtained with the help of FRET sensors for glucose or other ions and metabolites provide valuable data for modeling of flux. Here we provide a detailed protocol for monitoring glucose levels in the cytosol of mammalian cell cultures through the use of FRET glucose sensors; moreover, the protocol can be used for other ions and metabolites and for analyses in other organisms, as has been successfully demonstrated in bacteria, yeast and even intact plants. The whole procedure typically takes ∼4 d including seeding and transfection of mammalian cells; the FRET-based analysis of transfected cells takes ∼5 h.

  15. Wearable Sensor System Powered by a Biofuel Cell for Detection of Lactate Levels in Sweat

    PubMed Central

    Garcia, S. O.; Ulyanova, Y. V.; Figueroa-Teran, R.; Bhatt, K. H.; Singhal, S.; Atanassov, P.

    2016-01-01

    An NAD+-dependent enzymatic sensor with biofuel cell power source system for non-invasive monitoring of lactate in sweat was designed, developed, and tested. The sensor component, based on lactate dehydrogenase, showed linear current response with increasing lactate concentrations with limits of detection from 5 to 100 mM lactate and sensitivity of 0.2 µA.mM−1 in the presence of target analyte. In addition to the sensor patch a power source was also designed, developed and tested. The power source was a biofuel cell designed to oxidize glucose via glucose oxidase. The biofuel cell showed excellent performance, achieving over 80 mA at 0.4 V (16 mW) in a footprint of 3.5 × 3.5 × 0.7 cm. Furthermore, in order to couple the sensor to the power source, system electronic components were designed and fabricated. These consisted of an energy harvester (EH) and a micropotentiostat (MP). The EH was employed for harvesting power provided by the biofuel cell as well as up-converting the voltage to 3.0 V needed for the operation of the MP. The sensor was attached to MP for chronoamperometric detection of lactate. The Sensor Patch System was demonstrated under laboratory conditions. PMID:27375962

  16. Wearable Sensor System Powered by a Biofuel Cell for Detection of Lactate Levels in Sweat.

    PubMed

    Garcia, S O; Ulyanova, Y V; Figueroa-Teran, R; Bhatt, K H; Singhal, S; Atanassov, P

    An NAD(+)-dependent enzymatic sensor with biofuel cell power source system for non-invasive monitoring of lactate in sweat was designed, developed, and tested. The sensor component, based on lactate dehydrogenase, showed linear current response with increasing lactate concentrations with limits of detection from 5 to 100 mM lactate and sensitivity of 0.2 µA.mM(-1) in the presence of target analyte. In addition to the sensor patch a power source was also designed, developed and tested. The power source was a biofuel cell designed to oxidize glucose via glucose oxidase. The biofuel cell showed excellent performance, achieving over 80 mA at 0.4 V (16 mW) in a footprint of 3.5 × 3.5 × 0.7 cm. Furthermore, in order to couple the sensor to the power source, system electronic components were designed and fabricated. These consisted of an energy harvester (EH) and a micropotentiostat (MP). The EH was employed for harvesting power provided by the biofuel cell as well as up-converting the voltage to 3.0 V needed for the operation of the MP. The sensor was attached to MP for chronoamperometric detection of lactate. The Sensor Patch System was demonstrated under laboratory conditions.

  17. Cell-Based Odorant Sensor Array for Odor Discrimination Based on Insect Odorant Receptors.

    PubMed

    Termtanasombat, Maneerat; Mitsuno, Hidefumi; Misawa, Nobuo; Yamahira, Shinya; Sakurai, Takeshi; Yamaguchi, Satoshi; Nagamune, Teruyuki; Kanzaki, Ryohei

    2016-07-01

    The olfactory system of living organisms can accurately discriminate numerous odors by recognizing the pattern of activation of several odorant receptors (ORs). Thus, development of an odorant sensor array based on multiple ORs presents the possibility of mimicking biological odor discrimination mechanisms. Recently, we developed novel odorant sensor elements with high sensitivity and selectivity based on insect OR-expressing Sf21 cells that respond to target odorants by displaying increased fluorescence intensity. Here we introduce the development of an odorant sensor array composed of several Sf21 cell lines expressing different ORs. In this study, an array pattern of four cell lines expressing Or13a, Or56a, BmOR1, and BmOR3 was successfully created using a patterned polydimethylsiloxane film template and cell-immobilizing reagents, termed biocompatible anchor for membrane (BAM). We demonstrated that BAM could create a clear pattern of Sf21 sensor cells without impacting their odorant-sensing performance. Our sensor array showed odorant-specific response patterns toward both odorant mixtures and single odorant stimuli, allowing us to visualize the presence of 1-octen-3-ol, geosmin, bombykol, and bombykal as an increased fluorescence intensity in the region of Or13a, Or56a, BmOR1, and BmOR3 cell lines, respectively. Therefore, we successfully developed a new methodology for creating a cell-based odorant sensor array that enables us to discriminate multiple target odorants. Our method might be expanded into the development of an odorant sensor capable of detecting a large range of environmental odorants that might become a promising tool used in various applications including the study of insect semiochemicals and food contamination.

  18. Contribution of aquaporins to cellular water transport observed by a microfluidic cell volume sensor.

    PubMed

    Heo, Jinseok; Meng, Fanjie; Hua, Susan Z

    2008-09-15

    Here we demonstrate that an impedance-based microfluidic cell volume sensor can be used to study the roles of aquaporin (AQP) in cellular water permeability and screen AQP-specific drugs. Human embryonic kidney (HEK-293) cells were transiently transfected with AQP3- or AQP4-encoding genes to express AQPs in plasma membranes. The swelling of cells in response to hypotonic stimulation was traced in real time using the sensor. Two time constants were obtained by fitting the swelling curves with a two-exponential function, a fast time constant associated with osmotic water permeability of AQP-expressing cells and a slow phase time constant associated mainly with water diffusion through lipid bilayers in the nontransfected cells. The AQP-expressing cells showed at least 10x faster osmotic water transport than control cells. Using the volume sensor, we examined the effects of Hg (2+) and Ni (2+) on the water transport via AQPs. Hg (2+) inhibited the water flux in AQP3-expressing cells irreversibly, while Ni (2+) blocked the AQP3 channels reversibly. Neither of the two ions blocked the AQP4 channels. The microfluidic volume sensor can sense changes in cell volume in real time, which enables perfusion of various reagents sequentially. It provides a convenient tool for studying the effect of reagents on the function and regulation mechanism of AQPs.

  19. New insights into the nanometer-scaled cell-surface interspace by cell-sensor measurements

    SciTech Connect

    Lehmann, Mirko . E-mail: mirko.lehmann@micronas.com; Baumann, Werner

    2005-05-01

    The culture of adherent cells on solid surfaces is an established in vitro method, and the adhesion process of a cell is considered as an important trigger for many cellular processes (e.g., polarity and tumor genesis). However, not all of the eliciting biochemical or biophysical reactions are yet understood. Interestingly, there are not much experimental data about the impact that the interspace between an adherent cell and the (solid) substrate has on the cell's behavior. This interspace is mainly built by the basolateral side of epithelial cells and the substrate. This paper gives some new results of non-invasive and non-optical measurements in the interspace. The measurements were made with silicon cell-sensor hybrids. Measurements of acidification, adhesion, and respiration are analyzed in view of the situation in the interspace. The results show that, in general, the release of an ion or molecule on the basolateral side can have much more influence on the biophysical situation than a release of an ion or molecule on the apical side. In particular, the apical acidification (i.e., amount of extruded protons) of, e.g., epithelial tumor cells is several orders of magnitude higher than the basolateral acidification. These experimental results are a simple consequence of the fact that the basolateral volume of the interspace is several orders of magnitudes smaller than the apical volume. These results have the following consequences for the cell adhesion:a)static situation: if a cell is already adhered to a solid substrate, the basolateral and apical release and uptake of molecules have to be considered in a very differentiated way; b)dynamic situation: if the cell is adhering to the substrate, the then built basolateral side changes in a much stronger way than the apical side. This effect is here discussed as a possible eliciting and general mechanism for essential intracellular changes.

  20. Vaccinia virus interactions with the cell membrane studied by new chromatic vesicle and cell sensor assays.

    PubMed

    Orynbayeva, Z; Kolusheva, S; Groysman, N; Gavrielov, N; Lobel, L; Jelinek, R

    2007-02-01

    The potential danger of cross-species viral infection points to the significance of understanding the contributions of nonspecific membrane interactions with the viral envelope compared to receptor-mediated uptake as a factor in virus internalization and infection. We present a detailed investigation of the interactions of vaccinia virus particles with lipid bilayers and with epithelial cell membranes using newly developed chromatic biomimetic membrane assays. This analytical platform comprises vesicular particles containing lipids interspersed within reporter polymer units that emit intense fluorescence following viral interactions with the lipid domains. The chromatic vesicles were employed as membrane models in cell-free solutions and were also incorporated into the membranes of epithelial cells, thereby functioning as localized membrane sensors on the cell surface. These experiments provide important insight into membrane interactions with and fusion of virions and the kinetic profiles of these processes. In particular, the data emphasize the significance of cholesterol/sphingomyelin domains (lipid rafts) as a crucial factor promoting bilayer insertion of the viral particles. Our analysis of virus interactions with polymer-labeled living cells exposed the significant role of the epidermal growth factor receptor in vaccinia virus infectivity; however, the data also demonstrated the existence of additional non-receptor-mediated mechanisms contributing to attachment of the virus to the cell surface and its internalization.

  1. QCL-based TDLAS sensor for detection of NO toward emission measurements from ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Köhring, M.; Huang, S.; Jahjah, M.; Jiang, W.; Ren, W.; Willer, U.; Caneba, C.; Yang, L.; Nagrath, D.; Schade, W.; Tittel, F. K.

    2014-10-01

    The development of a sensitive sensor for detecting nitric oxide (NO) emissions from biological samples is reported. The sensor is based on tunable diode laser absorption spectroscopy (TDLAS) using a continuous wave, thermoelectrically cooled quantum cascade laser (QCL) and a 100-m astigmatic Herriot cell. A 2 f-wavelength modulation spectroscopy technique was used to obtain QCL-based TDLAS NO emission measurements with an optimum signal-to-noise ratio. An absorption line at 1,900.076 cm-1 was targeted to measure NO with a minimum detection limit of 124 ppt. Positive control measurements with the NO donor DETA NONOate were performed to determine and optimize the sensor performance for measurements of biological samples. Our measurements with NO donor show the potential suitability of the sensor for monitoring NO emission from cancer cells for biological investigations.

  2. Two-photon fluorescent sensor for K+ imaging in live cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sui, Binglin; Yue, Xiling; Kim, Bosung; Belfield, Kevin D.

    2016-03-01

    It is difficult to overstate the physiological importance of potassium for life as its indispensable roles in a variety of biological processes are widely known. As a result, efficient methods for determining physiological levels of potassium are of paramount importance. Despite this, relatively few K+ fluorescence sensors have been reported, with only one being commercially available. A new two-photon excited fluorescent K+ sensor is reported. The sensor is comprised of three moieties, a highly selective K+ chelator as the K+ recognition unit, a boron-dipyrromethene (BODIPY) derivative modified with phenylethynyl groups as the fluorophore, and two polyethylene glycol chains to afford water solubility. The sensor displays very high selectivity (<52-fold) in detecting K+ over other physiological metal cations. Upon binding K+, the sensor switches from non-fluorescent to highly fluorescent, emitting red to near-IR (NIR) fluorescence. The sensor exhibited a good two-photon absorption cross section, 500 GM at 940 nm. Moreover, it is not sensitive to pH in the physiological pH range. Time-dependent cell imaging studies via both one- and two-photon fluorescence microscopy demonstrate that the sensor is suitable for dynamic K+ sensing in living cells.

  3. The Biological Sensor for Detection of Bacterial Cells in Liquid Phase Based on Plate Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Borodina, Irina; Zaitsev, Boris; Shikhabudinov, Alexander; Guliy, Olga; Ignatov, Oleg; Teplykh, Andrey

    The interactions "bacterial cells - bacteriophages", "bacterial cells - antibodies" and "bacterial cells - mini- antibodies" directly in liquid phase were experimentally investigated with a help of acoustic sensor. The acoustic sensor under study represents two-channel delay line based on the plate of Y-X lithium niobate. One channel of delay line was electrically shorted, the second channel was electrically open. The liquid container was glued on plate surface between transducers of delay line. The dependencies of the change in phase and insertion loss on concentration of bacteriophages, antibodies, and mini- antibodies were obtained for both channels of delay line.

  4. Hybridization assay based on evanescent fluorescence excitation and collection

    NASA Astrophysics Data System (ADS)

    Sumner, James J.; Mmerole, Robert U.; Stratis-Cullum, Dimitra N.; Yi, Hyunmin; Bentley, William E.; Gillespie, James B.

    2003-08-01

    There is a great need for high throughput and sensitive sensors for genetic analysis. These sensors can be used for varied purposes from monitoring gene expression in organims to speciation of possible pathogens. Consequently, an instrument capable of these tasks would be a great benefit for food and water safety, medical diagnostics and defense of military and civilian populations from biological threats. This work examines the development of a hybridization-based biosensor using a novel tapered fiber optic rpobe. The immobilization of single-stranded, synthetic ologinucleotides utilizing aminoproplytriethoxysilane and glutaraldehyde was implemented on the fiber optic sensor. Hybridization takes place with a complementary analyte sequence followed by a fluorescent, labeled signaling probe to form a sandwich assay. Following hybridization, the fiber is interrogated with a diode laser source and the resulting fluorescence signal is detected using a miniature spectrometer.

  5. Synaptotagmin-1 and -7 are functionally overlapping Ca2+ sensors for exocytosis in adrenal chromaffin cells.

    PubMed

    Schonn, Jean-Sébastien; Maximov, Anton; Lao, Ye; Südhof, Thomas C; Sørensen, Jakob B

    2008-03-11

    Synaptotagmin-1, the canonical isoform of the synaptotagmin family, is a Ca(2+) sensor for fast synchronous neurotransmitter release in forebrain neurons and chromaffin cells. Even though deletion of synaptotagmin-1 abolishes fast exocytosis in chromaffin cells, it reduces overall secretion by only 20% because of the persistence of slow exocytosis. Therefore, another Ca(2+) sensor dominates release in these cells. Synaptotagmin-7 has a higher Ca(2+) affinity and slower binding kinetics than synaptotagmin-1, matching the proposed properties for the second, slower Ca(2+) sensor. Here, we examined Ca(2+)-triggered exocytosis in chromaffin cells from KO mice lacking synaptotagmin-7, and from knockin mice containing normal levels of a mutant synaptotagmin-7 whose C(2)B domain does not bind Ca(2+). In both types of mutant chromaffin cells, Ca(2+)-triggered exocytosis was decreased dramatically. Moreover, in chromaffin cells lacking both synaptotagmin-1 and -7, only a very slow release component, accounting for approximately 30% of WT exocytosis, persisted. These data establish synaptotagmin-7 as a major Ca(2+) sensor for exocytosis in chromaffin cells, which, together with synaptotagmin-1, mediates almost all of the Ca(2+) triggering of exocytosis in these cells, a surprising result, considering the lack of a role of synaptotagmin-7 in synaptic vesicle exocytosis.

  6. Synaptotagmin-1 and -7 are functionally overlapping Ca2+ sensors for exocytosis in adrenal chromaffin cells

    PubMed Central

    Schonn, Jean-Sébastien; Maximov, Anton; Lao, Ye; Südhof, Thomas C.; Sørensen, Jakob B.

    2008-01-01

    Synaptotagmin-1, the canonical isoform of the synaptotagmin family, is a Ca2+ sensor for fast synchronous neurotransmitter release in forebrain neurons and chromaffin cells. Even though deletion of synaptotagmin-1 abolishes fast exocytosis in chromaffin cells, it reduces overall secretion by only 20% because of the persistence of slow exocytosis. Therefore, another Ca2+ sensor dominates release in these cells. Synaptotagmin-7 has a higher Ca2+ affinity and slower binding kinetics than synaptotagmin-1, matching the proposed properties for the second, slower Ca2+ sensor. Here, we examined Ca2+-triggered exocytosis in chromaffin cells from KO mice lacking synaptotagmin-7, and from knockin mice containing normal levels of a mutant synaptotagmin-7 whose C2B domain does not bind Ca2+. In both types of mutant chromaffin cells, Ca2+-triggered exocytosis was decreased dramatically. Moreover, in chromaffin cells lacking both synaptotagmin-1 and -7, only a very slow release component, accounting for ≈30% of WT exocytosis, persisted. These data establish synaptotagmin-7 as a major Ca2+ sensor for exocytosis in chromaffin cells, which, together with synaptotagmin-1, mediates almost all of the Ca2+ triggering of exocytosis in these cells, a surprising result, considering the lack of a role of synaptotagmin-7 in synaptic vesicle exocytosis. PMID:18308932

  7. Cytosolic DNA Sensor Upregulation Accompanies DNA Electrotransfer in B16.F10 Melanoma Cells

    PubMed Central

    Znidar, Katarina; Bosnjak, Masa; Cemazar, Maja; Heller, Loree C.

    2016-01-01

    In several preclinical tumor models, antitumor effects occur after intratumoral electroporation, also known as electrotransfer, of plasmid DNA devoid of a therapeutic gene. In mouse melanomas, these effects are preceded by significant elevation of several proinflammatory cytokines. These observations implicate the binding and activation of intracellular DNA-specific pattern recognition receptors or DNA sensors in response to DNA electrotransfer. In tumors, IFNβ mRNA and protein levels significantly increased. The mRNAs of several DNA sensors were detected, and DAI, DDX60, and p204 tended to be upregulated. These effects were accompanied with reduced tumor growth and increased tumor necrosis. In B16.F10 cells in culture, IFNβ mRNA and protein levels were significantly upregulated. The mRNAs for several DNA sensors were present in these cells; DNA-dependent activator of interferon regulatory factor (DAI), DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 (DDX60), and p204 were significantly upregulated while DDX60 protein levels were coordinately upregulated. Upregulation of DNA sensors in tumors could be masked by the lower transfection efficiency compared to in vitro or to dilution by other tumor cell types. Mirroring the observation of tumor necrosis, cells underwent a significant DNA concentration-dependent decrease in proliferation and survival. Taken together, these results indicate that DNA electrotransfer may cause the upregulation of several intracellular DNA sensors in B16.F10 cells, inducing effects in vitro and potentially in vivo. PMID:27271988

  8. Pericellular oxygen monitoring with integrated sensor chips for reproducible cell culture experiments.

    PubMed

    Kieninger, J; Aravindalochanan, K; Sandvik, J A; Pettersen, E O; Urban, G A

    2014-04-01

    Here we present an application, in two tumour cell lines, based on the Sensing Cell Culture Flask system as a cell culture monitoring tool for pericellular oxygen sensing. T-47D (human breast cancer) and T98G (human brain cancer) cells were cultured either in atmospheric air or in a glove-box set at 4% oxygen, in both cases with 5% CO2 in the gas phase. Pericellular oxygen tension was measured with the help of an integrated sensor chip comprising oxygen sensor arrays. Obtained results illustrate variation of pericellular oxygen tension in attached cells covered by stagnant medium. Independent of incubation conditions, low pericellular oxygen concentration levels, usually associated with hypoxia, were found in dense cell cultures. Respiration alone brought pericellular oxygen concentration down to levels which could activate hypoxia-sensing regulatory processes in cultures believed to be aerobic. Cells in culture believed to experience conditions of mild hypoxia may, in reality, experience severe hypoxia. This would lead to incorrect assumptions and suggests that pericellular oxygen concentration readings are of great importance to obtain reproducible results when dealing with hypoxic and normoxic (aerobic) incubation conditions. The Sensing Cell Culture Flask system allows continuous monitoring of pericellular oxygen concentration with outstanding long-term stability and no need for recalibration during cell culture experiments. The sensor is integrated into the flask bottom, thus in direct contact with attached cells. No additional equipment needs to be inserted into the flask during culturing. Transparency of the electrochemical sensor chip allows optical inspection of cells attached on top of the sensor. © 2014 John Wiley & Sons Ltd.

  9. Rapid and specific electrochemical detection of prostate cancer cells using an aperture sensor array.

    PubMed

    Moscovici, Mario; Bhimji, Alyajahan; Kelley, Shana O

    2013-03-07

    A rapid, simple and specific cancer cell counting sensor would allow for early detection and better disease management. We have developed a novel cell counting device that can specifically count 125 prostate cancer cells in both complex media with serum and a mixed cell population containing non-target cells within 15 min. The microfabricated glass chip with exposed gold apertures utilizes the anti-EpCAM antibody to selectively count prostate cancer cells via differential pulse voltammetry. The newly developed sensor exhibits excellent sensitivity and selectivity. The cells remain viable throughout the counting process and can be used for further analysis. This device could have utility for future applications in early stage cancer diagnosis.

  10. Thermal microphotonic sensor and sensor array

    DOEpatents

    Watts, Michael R [Albuquerque, NM; Shaw, Michael J [Tijeras, NM; Nielson, Gregory N [Albuquerque, NM; Lentine, Anthony L [Albuquerque, NM

    2010-02-23

    A thermal microphotonic sensor is disclosed for detecting infrared radiation using heat generated by the infrared radiation to shift the resonant frequency of an optical resonator (e.g. a ring resonator) to which the heat is coupled. The shift in the resonant frequency can be determined from light in an optical waveguide which is evanescently coupled to the optical resonator. An infrared absorber can be provided on the optical waveguide either as a coating or as a plate to aid in absorption of the infrared radiation. In some cases, a vertical resonant cavity can be formed about the infrared absorber to further increase the absorption of the infrared radiation. The sensor can be formed as a single device, or as an array for imaging the infrared radiation.

  11. Dye sensitized photovoltaic miniaturized solar cells, used as optical sensors for line of sight detection

    NASA Astrophysics Data System (ADS)

    Cesar, Cortes Torres Carlos; Sampei, Kota; Miho, Ogawa; Masataka, Ozawa; Norihisa, Miki

    2014-11-01

    Dye sensitized photovoltaic devices have been studied as transparent and low-cost solar cells. Our group have miniaturized the cells and used them as transparent optical sensors. This paper reports the design and fabrication of the cells and avoids the cross talk among cells, which was found recently and such effect provokes hardware instability. We use these optical sensors as an eye tracking device. The sensor array detects the difference in the intensity of light reflected from the pupil and the sclera and then determines the pupil position. Each sensor consists of two electrodes and electrolyte; hence our device conformed by only four semi-circular shaped sensors on eyeglasses can detect the view angle in both horizontal and vertical directions. Manufacturing process gives us freedom to easily re-arrange, add or remove sensors. In our prior work we had good performance in stand-alone configuration. We used specialized equipment from National Instruments for our measurements. However we found that: A cell is not 100% independent from the others, is affected by the absence or presence of light at the neighbour cells. When our device is connected to other electronic devices (for data processing), all cells have the same voltage among them; therefore, all cells behave the same way when any of them is affected by light. The root cause is, due to all sensors were interconnected via a micro channel and filled with electrolyte, due to its conductive properties, electrolyte does neither need electrodes nor physical paths to conduct electricity, so it creates a liquid wire between sensors, hence the gap between them become inexistent, consequently when our device is connected to other electronic devices, due to this unique channel and by sharing a common electronic ground, this connection provokes the voltage to be the same among all sensors in the array. Our device becomes four separate voltage lines in a parallel circuit. The device was also in short circuit provoked

  12. Acoustic sensor for monitoring adhesion of Neuro-2A cells in real-time.

    PubMed

    Khraiche, Massoud Louis; Zhou, Anhong; Muthuswamy, Jit

    2005-05-15

    Neuronal adhesion plays a fundamental role in growth, migration, regeneration and plasticity of neurons. However, current methods for studying neuronal adhesion cannot monitor this phenomenon quantitatively in real-time. In this work, we demonstrate the use of an acoustic sensor to measure adhesion of neuro-blastoma cells (Neuro-2A) in real-time. An acoustic sensor consisting of a quartz crystal sandwiched between gold electrodes was placed in a flow cell and filled with 600 microl of phosphate buffered saline (PBS). Two sets of in vitro experiments were performed using sensors that had uncoated gold electrodes and sensors that were coated with a known neuronal adhesion promoter (poly-l-lysine or PLL). The instantaneous resonant frequency and the equivalent motional resistance of the acoustic sensor were monitored every second. Cell Tracker was used to confirm neuronal adhesion to the surface. Addition of 10 microl of media and Neuro-2A cells into the above set-up elicited exponential changes in the resonant frequency and motional resistance of the quartz crystal with time to reach steady state in the range of 2-11 h. The steady-state change in resonant frequency in response to addition of neurons was linearly related to the number of Neuro-2A cells added (R2=0.94). Acoustic sensors coated with the adhesion promoter, PLL showed a much higher change in resonant frequency for approximately the same number of neurons. We conclude that the acoustic sensor has sufficient sensitivity to monitor neuronal adhesion in real-time. This has potential applications in the study of mechanisms of neuron-substrate interactions and the effect of molecular modulators in the extra cellular matrix.

  13. Cell-surface sensors for real-time probing of cellular environments

    PubMed Central

    Zhao, Weian; Schafer, Sebastian; Choi, Jonghoon; Yamanaka, Yvonne J.; Lombardi, Maria L.; Bose, Suman; Carlson, Alicia L.; Phillips, Joseph A.; Teo, Weisuong; Droujinine, Ilia A.; Cui, Cheryl H.; Jain, Rakesh K.; Lammerding, Jan; Love, J. Christopher; Lin, Charles P.; Sarkar, Debanjan; Karnik, Rohit; Karp, Jeffrey M.

    2011-01-01

    The ability to explore cell signalling and cell-to-cell communication is essential for understanding cell biology and developing effective therapeutics. However, it is not yet possible to monitor the interaction of cells with their environments in real time. Here, we show that a fluorescent sensor attached to a cell membrane can detect signalling molecules in the cellular environment. The sensor is an aptamer (a short length of single-stranded DNA) that binds to platelet-derived growth factor (PDGF) and contains a pair of fluorescent dyes. When bound to PDGF, the aptamer changes conformation and the dyes come closer to each other, producing a signal. The sensor, which is covalently attached to the membranes of mesenchymal stem cells, can quantitatively detect with high spatial and temporal resolution PDGF that is added in cell culture medium or secreted by neighbouring cells. The engineered stem cells retain their ability to find their way to the bone marrow and can be monitored in vivo at the single-cell level using intravital microscopy. PMID:21765401

  14. Cell-surface sensors for real-time probing of cellular environments

    NASA Astrophysics Data System (ADS)

    Zhao, Weian; Schafer, Sebastian; Choi, Jonghoon; Yamanaka, Yvonne J.; Lombardi, Maria L.; Bose, Suman; Carlson, Alicia L.; Phillips, Joseph A.; Teo, Weisuong; Droujinine, Ilia A.; Cui, Cheryl H.; Jain, Rakesh K.; Lammerding, Jan; Love, J. Christopher; Lin, Charles P.; Sarkar, Debanjan; Karnik, Rohit; Karp, Jeffrey M.

    2011-08-01

    The ability to explore cell signalling and cell-to-cell communication is essential for understanding cell biology and developing effective therapeutics. However, it is not yet possible to monitor the interaction of cells with their environments in real time. Here, we show that a fluorescent sensor attached to a cell membrane can detect signalling molecules in the cellular environment. The sensor is an aptamer (a short length of single-stranded DNA) that binds to platelet-derived growth factor (PDGF) and contains a pair of fluorescent dyes. When bound to PDGF, the aptamer changes conformation and the dyes come closer to each other, producing a signal. The sensor, which is covalently attached to the membranes of mesenchymal stem cells, can quantitatively detect with high spatial and temporal resolution PDGF that is added in cell culture medium or secreted by neighbouring cells. The engineered stem cells retain their ability to find their way to the bone marrow and can be monitored in vivo at the single-cell level using intravital microscopy.

  15. Visualization of glutamine transporter activities in living cells using genetically encoded glutamine sensors.

    PubMed

    Gruenwald, Katrin; Holland, John Todd; Stromberg, Verlyn; Ahmad, Altaf; Watcharakichkorn, Daisy; Okumoto, Sakiko

    2012-01-01

    Glutamine plays a central role in the metabolism of critical biological molecules such as amino acids, proteins, neurotransmitters, and glutathione. Since glutamine metabolism is regulated through multiple enzymes and transporters, the cellular glutamine concentration is expected to be temporally dynamic. Moreover, differentiation in glutamine metabolism between cell types in the same tissue (e.g. neuronal and glial cells) is often crucial for the proper function of the tissue as a whole, yet assessing cell-type specific activities of transporters and enzymes in such heterogenic tissue by physical fractionation is extremely challenging. Therefore, a method of reporting glutamine dynamics at the cellular level is highly desirable. Genetically encoded sensors can be targeted to a specific cell type, hence addressing this knowledge gap. Here we report the development of Föster Resonance Energy Transfer (FRET) glutamine sensors based on improved cyan and yellow fluorescent proteins, monomeric Teal Fluorescent Protein (mTFP)1 and venus. These sensors were found to be specific to glutamine, and stable to pH-changes within a physiological range. Using cos7 cells expressing the human glutamine transporter ASCT2 as a model, we demonstrate that the properties of the glutamine transporter can easily be analyzed with these sensors. The range of glutamine concentration change in a given cell can also be estimated using sensors with different affinities. Moreover, the mTFP1-venus FRET pair can be duplexed with another FRET pair, mAmetrine and tdTomato, opening up the possibility for real-time imaging of another molecule. These novel glutamine sensors will be useful tools to analyze specificities of glutamine metabolism at the single-cell level.

  16. Visualization of Glutamine Transporter Activities in Living Cells Using Genetically Encoded Glutamine Sensors

    PubMed Central

    Gruenwald, Katrin; Holland, John Todd; Stromberg, Verlyn; Ahmad, Altaf; Watcharakichkorn, Daisy; Okumoto, Sakiko

    2012-01-01

    Glutamine plays a central role in the metabolism of critical biological molecules such as amino acids, proteins, neurotransmitters, and glutathione. Since glutamine metabolism is regulated through multiple enzymes and transporters, the cellular glutamine concentration is expected to be temporally dynamic. Moreover, differentiation in glutamine metabolism between cell types in the same tissue (e.g. neuronal and glial cells) is often crucial for the proper function of the tissue as a whole, yet assessing cell-type specific activities of transporters and enzymes in such heterogenic tissue by physical fractionation is extremely challenging. Therefore, a method of reporting glutamine dynamics at the cellular level is highly desirable. Genetically encoded sensors can be targeted to a specific cell type, hence addressing this knowledge gap. Here we report the development of Föster Resonance Energy Transfer (FRET) glutamine sensors based on improved cyan and yellow fluorescent proteins, monomeric Teal Fluorescent Protein (mTFP)1 and venus. These sensors were found to be specific to glutamine, and stable to pH-changes within a physiological range. Using cos7 cells expressing the human glutamine transporter ASCT2 as a model, we demonstrate that the properties of the glutamine transporter can easily be analyzed with these sensors. The range of glutamine concentration change in a given cell can also be estimated using sensors with different affinities. Moreover, the mTFP1-venus FRET pair can be duplexed with another FRET pair, mAmetrine and tdTomato, opening up the possibility for real-time imaging of another molecule. These novel glutamine sensors will be useful tools to analyze specificities of glutamine metabolism at the single-cell level. PMID:22723868

  17. Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors.

    PubMed

    Clark, H A; Kopelman, R; Tjalkens, R; Philbert, M A

    1999-11-01

    Optical nanosensors, or PEBBLEs (probes encapsulated by biologically localized embedding), have been produced for intracellular measurements of pH and calcium. Five varieties of pH-sensitive sensors and three different calcium-selective sensors are presented and discussed. Each sensor combines an ion-selective fluorescent indicator and an ion-insensitive internal standard entrapped within an acrylamide polymeric matrix. Calibrations and linear ranges are presented for each sensor. The photobleaching of dyes incorporated into PEBBLEs is comparable to that of the respective free dye that is incorporated within the matrix. These PEBBLE sensors are fully reversible over many measurements. The leaching of fluorescent indicator from the polymer is less than 50% over a 48-h period (note that a typical application time is only a few hours). The PEBBLE sensors have also been applied to intracellular analysis of the calcium flux in the cytoplasm of neural cells during the mitochondrial permeability transition. Specifically, a distinct difference is noted between cells of different types (astrocyte vs neuron-derived cells) with respect to their response to the toxicant m-dinitrobenzene (DNB). Use of PEBBLE sensors permits the quantitative discrimination of subtle differences between the ability of human SY5Y neuroblastoma and C6 glioma to respond to challenge with DNB. Specifically, measurement of intracellular calcium, the precursor to cell death, has been achieved.

  18. Development of semiconductor nanomaterial whole cell imaging sensor on glass slides.

    PubMed

    Xu, Hengyi; Aguilar, Zoraida Pascual; Wei, Hua; Wang, Andrew

    2011-06-01

    We report the development of a highly specific semiconductor quantum dots (QDs)-based whole cell imaging sensor that offer rapid, reproducible, accurate, and long term cell imaging system on silanized microscope glass slides. The QD-based imaging sensor involved capture of whole cells with QD labeled highly specific antibodies against over expressed cell membrane proteins. The QDs were first modified with a polymer coating to generate carboxyl groups on the surface. Using the carboxylated QDs, antibodies were covalent conjugated using carbodiimide chemistry to form 2(0)Ab~QD that were used to capture whole cell. The SK-BR3 cell line was used as a model analyte in the sandwich type assay consisting of 1(0)Ab + SK-BR3 + Ab' + 2(0)Ab~QD. The assay was immobilized on an antibody modified silanized microscope slide that was subsequently mounted on a fluorescence microscope for detection. The results indicated that the QD based imaging sensor exhibited brighter signals compared with organic dye Texas red. The QD-based whole cell imaging sensor was visible under the microscope even after one week without fixation.

  19. Strong coupling of gold dipolar nanoantennas by symmetry-breaking in evanescent wave

    NASA Astrophysics Data System (ADS)

    Yang, Jhen-Hong; Chen, Kuo-Ping

    2016-09-01

    Observing the resonance wavelengths of nanoantennas (NAs) with changing incident angles in TM and TE polarization. Extinction cross section shows the dark and bright coupling modes at resonance wavelength of NAs with symmetry breaking oblique incidence. The plasmonic enhancement is stronger under evanescent wave in total internal reflection.

  20. Evanescent Microwave Probes Using Coplanar Waveguide and Stripline for Super-Resolution Imaging of Materials

    NASA Technical Reports Server (NTRS)

    Ponchak, G. E.; Akinwande, D.; Ciocan, R.; LeClair, S. R.; Tabib-Azar, M.

    2000-01-01

    An evanescent field microwave imaging probe based on half-wavelength, microwave transmission line resonators is described. Optimization of the probe tip design, the coupling gap, and the data analysis has resulted in images of metal lines on semiconductor substrates with 2.6 microns spatial resolution and a minimum detectable line width of 0.4 microns at 1 GHz.

  1. Micro-patterning of Mammalian Cells on Suspended MEMS Resonant Sensors for Long-Term Growth Measurements

    PubMed Central

    Corbin, Elise A.; Dorvel, Brian R.; Millet, Larry J.; King, William P.; Bashir, Rashid

    2014-01-01

    MEMS resonant mass sensors can measure the mass of individual cells, though long-term growth measurements are limited by the movement of cells off the sensor area. Micro-patterning techniques are a powerful approach to control the placement of individual cells in an arrayed format. In this work we present a method for micro-patterning cells on fully suspended resonant sensors through select functionalization and passivation of the chip surface. This method combines high-resolution photolithography with a blanket transfer technique for applying photoresist to avoid damaging the sensors. Cells are constrained to the patterned collagen area on the sensor by pluronic acting as a cell adhesion blocker. This micro-patterning method enables long-term growth measurements, which is demonstrated by a measurement of the change in mass of a human breast cancer cell over 18 h. PMID:24535001

  2. Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays.

    PubMed

    Atienza, Josephine M; Zhu, Jenny; Wang, Xiaobo; Xu, Xiao; Abassi, Yama

    2005-12-01

    Cellular interaction with and adhesion on different biological surfaces is a dynamic and integrated process requiring the participation of specialized cell surface receptors, structural proteins, signaling proteins, and the cellular cytoskeleton. In this report, the authors describe a label-free and real-time method for measuring and monitoring cell adhesion on special microplates integrated with electronic cell sensor arrays. These plates were used in conjunction with the real-time cell electronic sensing (RT-CES) system to dynamically and quantitatively monitor the specific interaction of fibroblasts with extracellular matrix (ECM) proteins and compared with standard adhesion techniques. Cell adhesion on ECM-coated cell sensor arrays is dependent on the concentration of ECM proteins coated and is inhibited by agents that disrupt the interaction of ECM with cell surface receptors. Furthermore, the authors demonstrate that the integrity of the actin cytoskeleton is required for productive cell adhesion and spreading on ECM-coated microelectronic sensors. Confirming earlier results, it is shown that interfering with Src expression or activity, via siRNA or small molecule, results in the disruption of adhesion and spreading of Bx PC3 cells. The results indicate that the RT-CES system offers a convenient and quantitative means of assessing the kinetics of cell adhesion in a high-throughput manner.

  3. Engineering a growth sensor to select intracellular antibodies in the cytosol of mammalian cells.

    PubMed

    Nguyen, Thuy Duong; Takasuka, Hitoshi; Kaku, Yoshihiro; Inoue, Satoshi; Nagamune, Teruyuki; Kawahara, Masahiro

    2017-03-16

    Intracellular antibodies (intrabodies) are expected to function as therapeutics as well as tools for elucidating in vivo function of proteins. In this study, we propose a novel intrabody selection method in the cytosol of mammalian cells by utilizing a growth signal, induced by the interaction of the target antigen and an scFv-c-kit growth sensor. Here, we challenge this method to select specific intrabodies against rabies virus nucleoprotein (RV-N) for the first time. As a result, we successfully select antigen-specific intrabodies from a naïve synthetic library using phage panning followed by our growth sensor-based intracellular selection method, demonstrating the feasibility of the method. Additionally, we succeed in improving the response of the growth sensor by re-engineering the linker region of its construction. Collectively, the described selection method utilizing a growth sensor may become a highly efficient platform for selection of functional intrabodies in the future.

  4. Visualization of Synaptic Inhibition with an Optogenetic Sensor Developed by Cell-Free Protein Engineering Automation

    PubMed Central

    Grimley, Joshua S.; Li, Li; Wang, Weina; Wen, Lei; Beese, Lorena S.

    2013-01-01

    We describe an engineered fluorescent optogenetic sensor, SuperClomeleon, that robustly detects inhibitory synaptic activity in single, cultured mouse neurons by reporting intracellular chloride changes produced by exogenous GABA or inhibitory synaptic activity. Using a cell-free protein engineering automation methodology that bypasses gene cloning, we iteratively constructed, produced, and assayed hundreds of mutations in binding-site residues to identify improvements in Clomeleon, a first-generation, suboptimal sensor. Structural analysis revealed that these improvements involve halide contacts and distant side chain rearrangements. The development of optogenetic sensors that respond to neural activity enables cellular tracking of neural activity using optical, rather than electrophysiological, signals. Construction of such sensors using in vitro protein engineering establishes a powerful approach for developing new probes for brain imaging. PMID:24107961

  5. Evanescent field enhancement due to plasmonic resonances of a metamaterial slab.

    PubMed

    Chiu, K P; Kao, T S; Tsai, D P

    2008-02-01

    The characteristics of plasmonic resonance in a dielectric-sandwiched metamaterial film at visible wavelengths of 650 and 568 nm have been investigated (for both p- and s-polarized light). Our calculated results demonstrate that each mode of plasmonic resonance has maximum resonance strength at a particular film thickness of the metamaterial. We also demonstrated that the effect of evanescent field enhancement is due to plasmonic resonances of the sandwiched metamaterial system. And the stronger the plasmonic resonance strength the larger the evanescent field is enhanced at the interfaces of the metamaterial film. Also we see that the plasmonic resonances in a sandwiched metamaterial are influenced not only by the materials that constitute the interfaces but also by the thickness of surrounding dielectrics or distance between evanescent light source and metamaterial film. Finally, our results show that there might be an effective light propagation length that will let the coupling efficiency between evanescent light source and SPs resonance become a maximum. These properties of plasmonic resonances to structure parameters of metamaterial film and its surrounding dielectrics provide a useful way to control the optical responses of an optoelectronic device when the wavelength of light source is fixed. That is, by suitably choosing light polarizations, thickness of the metamaterial thin film or the surrounding dielectrics and the position of evanescent light source, it is possible to modulate the plasmonic resonance wavenumber or resonance strength of the system. Therefore, the optical responses of the system can be modulated. Our results will be helpful for the structure design to control the behaviours of coupled plasmonic resonances and consequently the optical properties of the dielectric-sandwiched metamaterial film.

  6. A portable cell-based impedance sensor for toxicity testing of drinking water.

    PubMed

    Curtis, Theresa M; Widder, Mark W; Brennan, Linda M; Schwager, Steven J; van der Schalie, William H; Fey, Julien; Salazar, Noe

    2009-08-07

    A major limitation to using mammalian cell-based biosensors for field testing of drinking water samples is the difficulty of maintaining cell viability and sterility without an on-site cell culture facility. This paper describes a portable automated bench-top mammalian cell-based toxicity sensor that incorporates enclosed fluidic biochips containing endothelial cells monitored by Electric Cell-substrate Impedance Sensing (ECIS) technology. Long-term maintenance of cells on the biochips is made possible by using a compact, self-contained disposable media delivery system. The toxicity sensor monitors changes in impedance of cell monolayers on the biochips after the introduction of water samples. The fluidic biochip includes an ECIS electronic layer and a polycarbonate channel layer, which together reduce initial impedance disturbances seen in commercially available open well ECIS chips caused by the mechanics of pipetting while maintaining the ability of the cells to respond to toxicants. A curve discrimination program was developed that compares impedance values over time between the control and treatment channels on the fluidic biochip and determines if they are significantly different. Toxicant responses of bovine pulmonary artery endothelial cells grown on fluidic biochips are similar to cells on commercially-available open well chips, and these cells can be maintained in the toxicity sensor device for at least nine days using an automated media delivery system. Longer-term cell storage is possible; bovine lung microvessel endothelial cells survive for up to four months on the fluidic biochips and remain responsive to a model toxicant. This is the first demonstration of a portable bench top system capable of both supporting cell health over extended periods of time and obtaining impedance measurements from endothelial cell monolayers after toxicant exposure.

  7. 3.0-3.7μm infrared sensor system for cell analysis

    NASA Astrophysics Data System (ADS)

    van den Driesche, Sander; Witarski, Wojciech; Vellekoop, Michael J.

    2009-05-01

    In this contribution we present a novel LED-photodiode based infrared absorbance sensor in the wavelength range of 3.0 - 3.7 μm for cell analysis. Instead of using time consuming and expensive labelling and staining techniques to distinguish healthy from malignant cell types, this IR sensor system can perform faster, cheaper and without the need of additional chemicals. Depending on the used narrow bandpass filters, absorbance due to specific molecular vibration can be measured, such as the functional absorbance peaks at 3.38 μm (CH3-antisymmetric stretch), 3.42 μm (CH2- antisymmetric stretch), 3.48 μm (CH3-symmetric stretch) and 3.51 μm (CH2-symmetric stretch). For normalization and baseline correction the absorbance at wavelengths 3.33 and 3.57 μm are used. By recording the IR absorbance spectra of healthy and malignant epithelial kidney cell lines with an IR spectroscope, we found significant differences in the absorbance ratio 3.51 μm / 3.42 μm (CH2-symmetric/antisymmetric stretch). This result has led us to a sensor concept where only four wavelengths are being measured. In the 3.0 - 3.7 μm wavelength region a low cost LED-photodiode system can be used instead of a spectroscope. Yeast cells, which also contain the CH2 symmetric and antisymmetric stretch bands, are used to validate this sensor system and to make a first comparison of the system to spectroscopic recordings. Sensor experiments on dried spots of baker's yeast on calcium-fluoride slides yielded a comparable CH2 stretch ratio with the IR spectroscope measurement. This confirms the usability of the sensor to measure the CH2 stretch ratio and its potential for fast, label-free and low cost screening of cell samples.

  8. Sensor Needs and Requirements for Fuel Cells and CIDI/SIDI Engines

    SciTech Connect

    Glass, R.S.

    2000-03-01

    To reduce U.S. dependence on imported oil, improve urban air quality, and decrease greenhouse gas emissions, the Department of Energy (DOE) is developing advanced vehicle technologies and fuels. Enabling technologies for fuel cell power systems and direct-injection engines are being developed by DOE through the Partnership for a New Generation of Vehicles (PNGV), a government-industry collaboration to produce vehicles having up to three times the fuel economy of conventional mid-size automobiles. Sensors have been identified as a research and development need for both fuel cell and direct-injection systems, because current sensor technologies do not adequately meet requirements. Sensors are needed for emission control, for passenger safety and comfort, to increase system lifetime, and for system performance enhancement through feedback and control. These proceedings document the results of a workshop to define sensor requirements for proton exchange membrane (PEM) fuel cell systems and direct-injection engines for automotive applications. The recommendations from this workshop will be incorporated into the multi-year R&D plan of the DOE Office of Advanced Automotive Technologies. The objectives of the workshop were to: define the requirements for sensors; establish R&D priorities; identify the technical targets and technical barriers; and facilitate collaborations among participants. The recommendations from this workshop will be incorporated into the multi-year R&D plan of the DOE Office of Advanced Automotive Technologies.

  9. Cell suspension concentration monitoring by using a miniaturized serial high frequency SAWR sensor

    PubMed Central

    Li, Jian; Feng, Hailin; Fang, Yiming

    2015-01-01

    In this paper, a miniaturized cell suspension concentration monitoring method was investigated. The sensing unit was a carbon screen-printed electrode (CSPE) in serial with a 433MHz vacuum-packaged surface acoustic wave resonator (SAWR). SAWR provided a stable and high operating frequency, which helps to keep the stability and sensitivity of the monitoring system. Living cells suspensions in different concentrations were prepared and dropcast on CSPE. Frequency responses of the sensor were recorded. Cell quantity variation within the same culture media volume changed the dielectric properties of CSPE and finally affected the SAWR frequency. SAWR frequency declined with the decrease of cell concentration. The proposed sensor provided high sensitivity and remarkable stability for the cell suspensions. PMID:26588250

  10. A Sensitive Sensor Cell Line for the Detection of Oxidative Stress Responses in Cultured Human Keratinocytes

    PubMed Central

    Hofmann, Ute; Priem, Melanie; Bartzsch, Christine; Winckler, Thomas; Feller, Karl-Heinz

    2014-01-01

    In the progress of allergic and irritant contact dermatitis, chemicals that cause the generation of reactive oxygen species trigger a heat shock response in keratinocytes. In this study, an optical sensor cell line based on cultured human keratinocytes (HaCaT cells) expressing green fluorescent protein (GFP) under the control of the stress-inducible HSP70B' promoter were constructed. Exposure of HaCaT sensor cells to 25 μM cadmium, a model substance for oxidative stress induction, provoked a 1.7-fold increase in total glutathione and a ∼300-fold induction of transcript level of the gene coding for heat shock protein HSP70B'. An extract of Arnica montana flowers resulted in a strong induction of the HSP70B' gene and a pronounced decrease of total glutathione in keratinocytes. The HSP70B' promoter-based sensor cells conveniently detected cadmium-induced stress using GFP fluorescence as read-out with a limit of detection of 6 μM cadmium. In addition the sensor cells responded to exposure of cells to A. montana extract with induction of GFP fluorescence. Thus, the HaCaT sensor cells provide a means for the automated detection of the compromised redox status of keratinocytes as an early indicator of the development of human skin disorders and could be applied for the prediction of skin irritation in more complex in vitro 3D human skin models and in the development of micro-total analysis systems (μTAS) that may be utilized in dermatology, toxicology, pharmacology and drug screenings. PMID:24967604

  11. A sensitive sensor cell line for the detection of oxidative stress responses in cultured human keratinocytes.

    PubMed

    Hofmann, Ute; Priem, Melanie; Bartzsch, Christine; Winckler, Thomas; Feller, Karl-Heinz

    2014-06-25

    In the progress of allergic and irritant contact dermatitis, chemicals that cause the generation of reactive oxygen species trigger a heat shock response in keratinocytes. In this study, an optical sensor cell line based on cultured human keratinocytes (HaCaT cells) expressing green fluorescent protein (GFP) under the control of the stress-inducible HSP70B' promoter were constructed. Exposure of HaCaT sensor cells to 25 µM cadmium, a model substance for oxidative stress induction, provoked a 1.7-fold increase in total glutathione and a ~300-fold induction of transcript level of the gene coding for heat shock protein HSP70B'. An extract of Arnica montana flowers resulted in a strong induction of the HSP70B' gene and a pronounced decrease of total glutathione in keratinocytes. The HSP70B' promoter-based sensor cells conveniently detected cadmium-induced stress using GFP fluorescence as read-out with a limit of detection of 6 µM cadmium. In addition the sensor cells responded to exposure of cells to A. montana extract with induction of GFP fluorescence. Thus, the HaCaT sensor cells provide a means for the automated detection of the compromised redox status of keratinocytes as an early indicator of the development of human skin disorders and could be applied for the prediction of skin irritation in more complex in vitro 3D human skin models and in the development of micro-total analysis systems (µTAS) that may be utilized in dermatology, toxicology, pharmacology and drug screenings.

  12. High spatial resolution impedance measurement of EIS sensors for light addressable cell adhesion monitoring.

    PubMed

    Yu, Hui; Wang, Jun; Liu, Qingjun; Zhang, Wei; Cai, Hua; Wang, Ping

    2011-02-15

    In this paper, impedance measurement of electrolyte-insulator-semiconductor (EIS) structure with high spatial resolution was proposed to monitor cell adhesion. The light addressing ability of this work overcomes the geometrical restrict of cell culture on conventional impedance detection devices such as interdigitated electrode (IDE) and electric cell-substrate impedance sensing (ECIS). Instead of studying cells on predetermined sites of IDE and ECIS, cells cultured anywhere on EIS sensor surface can be addressed and selected as target cells. Principle and primary models for high resolution impedance detection were described and tested by experiments. The EIS sensor was investigated in terms of its intrinsic characteristics, like impedance behavior, voltage characteristic, frequency dependency and photovoltaic effect. Optimized working condition was studied for cell experiments. Cell adhesion under treatment of 0.1% Triton X-100 was monitored using rat kidney cells as the source. Results showed good sensitivity (10% change of impedance) and resolution (40 μm) for cell adhesion impedance detection and suggested this work should be suitable for monitoring cell impedance. Further improvements on sensitivity, spatial resolution were discussed as well as the further applications for single cell monitoring and cell adhesion imaging. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: focusing on impact of anodic biofilm on sensor applicability.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2011-10-01

    A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode was required for application of the sensor for microbial activity measurement, while biofilm-colonized anode was needed for utilizing the sensor for BOD content measurement. The current density of SUMFC sensor equipped with a biofilm-colonized anode showed linear relationship with BOD content, to up to 250 mg/L (∼233 ± 1 mA/m(2)), with a response time of <0.67 h. This sensor could, however, not measure microbial activity, as indicated by the indifferent current produced at varying active microorganisms concentration, which was expressed as microbial adenosine-triphosphate (ATP) concentration. On the contrary, the current density (0.6 ± 0.1 to 12.4 ± 0.1 mA/m(2)) of the SUMFC sensor equipped with a fresh anode showed linear relationship, with active microorganism concentrations from 0 to 6.52 nmol-ATP/L, while no correlation between the current and BOD was observed. It was found that temperature, pH, conductivity, and inorganic solid content were significantly affecting the sensitivity of the sensor. Lastly, the sensor was tested with real contaminated groundwater, where the microbial activity and BOD content could be detected in <3.1 h. The microbial activity and BOD concentration measured by SUMFC sensor fitted well with the one measured by the standard methods, with deviations ranging from 15% to 22% and 6% to 16%, respectively. The SUMFC sensor provides a new way for in situ and quantitative monitoring contaminants content and biological activity during bioremediation process in variety of anoxic aquifers.

  14. An unusual OFF-ON fluorescence sensor for detecting mercury ions in aqueous media and living cells.

    PubMed

    Tian, Maozhong; Liu, Libing; Li, Yongjun; Hu, Ruifeng; Liu, Taifeng; Liu, Huibiao; Wang, Shu; Li, Yuliang

    2014-02-25

    A novel azo derivative sensor (BDAA) based on alkynes was designed and utilized to direct detection of Hg(2+) in aqueous solution and living cells. The new strategy achieved off to on switchable fluorescence. permits the highly selective and sensitive detection of Hg(2+). This sensor can be used for imaging of Hg(2+) in living cells.

  15. Microbial fuel cells as power supply of a low-power temperature sensor

    NASA Astrophysics Data System (ADS)

    Khaled, Firas; Ondel, Olivier; Allard, Bruno

    2016-02-01

    Microbial fuel cells (MFCs) show great promise as a concomitant process for water treatment and as renewable energy sources for environmental sensors. The small energy produced by MFCs and the low output voltage limit the applications of MFCs. Specific converter topologies are required to step-up the output voltage of a MFC. A Power Management Unit (PMU) is proposed for operation at low input voltage and at very low power in a completely autonomous way to capture energy from MFCs with the highest possible efficiency. The application of sensors for monitoring systems in remote locations is an important approach. MFCs could be an alternative energy source in this case. Powering a sensor with MFCs may prove the fact that wastewater may be partly turned into renewable energy for realistic applications. The Power Management Unit is demonstrated for 3.6 V output voltage at 1 mW continuous power, based on a low-cost 0.7-L MFC. A temperature sensor may operate continuously on 2-MFCs in continuous flow mode. A flyback converter under discontinuous conduction mode is also tested to power the sensor. One continuously fed MFC was able to efficiently and continuously power the sensor.

  16. Investigation of the electrode kinetics in a solid oxide fuel cell and an oxygen sensor

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Rajesh

    This dissertation investigates the electrode kinetics in a solid oxide fuel cell and an oxygen sensor. The first chapter describes the basics of fuel cell and motivation behind the studies. The second chapter investigates the dependence of cathodic charge transfer reaction resistance (Rct), on three-phase boundary length (lTPB) at various temperatures and oxygen partial pressures ( pO2 ). Impedance spectra were obtained using three-electrode configuration on discs having cathodes with definite lTPB to investigate the La0.8Sr0.2MnO3 (LSM)-Y 0.16Zr0.84O2 (YSZ), platinum (Pt)-YSZ and La 0.8Sr0.2CoO3 (LSC)-Ce0.8Sm0.2 O2 (SDC) half cell reactions at temperatures between 650--800°C and pO2 between 10-3 to 1 atm. For LSM-YSZ and Pt-YSZ, 1/Rct varies linearly with lTPB. LSC-SDC system did not show any specific dependence between R ct and lTPB. The third chapter examines the use of an electrolyte supported cell with externally applied voltage to determine the single electrode overpotential and extending the parameters derived to that of an anode supported fuel cell having thin film electrolyte operating under a chemical potential gradient. Spatial distributions of the electrochemical potential of electrons (ϕ) and oxygen ions ( m˜O-2 ), and chemical potential of oxygen ( mO2 ) for these two cases were obtained. Under fuel cell operating conditions, ϕ, m˜O-2 and mO2 , decreases monotonically from higher value to lower value. For electrolyte supported cell under externally applied voltage mO2 does not vary monotonically; it reaches values above or below that of the boundary values, leading to development of internal electromotive forces (EMFs), which can in turn affect the activity of the interface. The fourth chapter describes design microfabrication and characterization of a series connected potentiometric oxygen sensor. A drawback of potentiometric sensors in general is that the output signal is low when the ratio of the partial pressures at the two electrodes is low

  17. Nanomechanical sensors for single microbial cell growth monitoring.

    PubMed

    Maloney, Niall; Lukacs, Gyongyi; Jensen, Jason; Hegner, Martin

    2014-07-21

    A nanomechanical technique for rapid real time detection and monitoring of microorganism growth will significantly reduce costs and diagnosis times in industrial and clinical settings. Owing to their label free detection mechanism and unprecedented sensitivity to the mass and elastic modulus of biological structures, dynamically operated cantilever arrays provide an opportunity to rapidly detect and track the evolution of microbial growth. Here we report the monitoring of the growth of single Aspergillus niger spores via the multimode response of microcantilevers. The fungal hyphal structure affects the cantilevers' nanomechanical properties as it propagates along the sensor. We demonstrate, for the first time, the mapping of cellular events with great accuracy using a cantilever frequency response. Imaging of growth conditions on the cantilever, which is performed in parallel, allows for verification of these results. Theoretical comparison and finite element modelling confirm experimental findings and allow for determination of the hyphal elastic modulus.

  18. Nanomechanical sensors for single microbial cell growth monitoring

    NASA Astrophysics Data System (ADS)

    Maloney, Niall; Lukacs, Gyongyi; Jensen, Jason; Hegner, Martin

    2014-06-01

    A nanomechanical technique for rapid real time detection and monitoring of microorganism growth will significantly reduce costs and diagnosis times in industrial and clinical settings. Owing to their label free detection mechanism and unprecedented sensitivity to the mass and elastic modulus of biological structures, dynamically operated cantilever arrays provide an opportunity to rapidly detect and track the evolution of microbial growth. Here we report the monitoring of the growth of single Aspergillus niger spores via the multimode response of microcantilevers. The fungal hyphal structure affects the cantilevers' nanomechanical properties as it propagates along the sensor. We demonstrate, for the first time, the mapping of cellular events with great accuracy using a cantilever frequency response. Imaging of growth conditions on the cantilever, which is performed in parallel, allows for verification of these results. Theoretical comparison and finite element modelling confirm experimental findings and allow for determination of the hyphal elastic modulus.A nanomechanical technique for rapid real time detection and monitoring of microorganism growth will significantly reduce costs and diagnosis times in industrial and clinical settings. Owing to their label free detection mechanism and unprecedented sensitivity to the mass and elastic modulus of biological structures, dynamically operated cantilever arrays provide an opportunity to rapidly detect and track the evolution of microbial growth. Here we report the monitoring of the growth of single Aspergillus niger spores via the multimode response of microcantilevers. The fungal hyphal structure affects the cantilevers' nanomechanical properties as it propagates along the sensor. We demonstrate, for the first time, the mapping of cellular events with great accuracy using a cantilever frequency response. Imaging of growth conditions on the cantilever, which is performed in parallel, allows for verification of these

  19. Multi-step surface functionalization of polyimide based evanescent wave photonic biosensors and application for DNA hybridization by Mach-Zehnder interferometer.

    PubMed

    Melnik, Eva; Bruck, Roman; Hainberger, Rainer; Lämmerhofer, Michael

    2011-08-12

    The process of surface functionalization involving silanization, biotinylation and streptavidin bonding as platform for biospecific ligand immobilization was optimized for thin film polyimide spin-coated silicon wafers, of which the polyimide film serves as a wave guiding layer in evanescent wave photonic biosensors. This type of optical sensors make great demands on the materials involved as well as on the layer properties, such as the optical quality, the layer thickness and the surface roughness. In this work we realized the binding of a 3-mercaptopropyl trimethoxysilane on an oxygen plasma activated polyimide surface followed by subsequent derivatization of the reactive thiol groups with maleimide-PEG(2)-biotin and immobilization of streptavidin. The progress of the functionalization was monitored by using different fluorescence labels for optimization of the chemical derivatization steps. Further, X-ray photoelectron spectroscopy and atomic force microscopy were utilized for the characterization of the modified surface. These established analytical methods allowed to derive information like chemical composition of the surface, surface coverage with immobilized streptavidin, as well as parameters of the surface roughness. The proposed functionalization protocol furnished a surface density of 144 fmol mm(-2) streptavidin with good reproducibility (13.9% RSD, n=10) and without inflicted damage to the surface. This surface modification was applied to polyimide based Mach-Zehnder interferometer sensors to realize a real-time measurement of streptavidin binding validating the functionality of the MZI biosensor. Subsequently, this streptavidin surface was employed to immobilize biotinylated single-stranded DNA and utilized for monitoring of selective DNA hybridization. These proved the usability of polyimide based evanescent photonic devices for biosensing application. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Fabrication and Evaluation of a Micro(Bio)Sensor Array Chip for Multiple Parallel Measurements of Important Cell Biomarkers

    PubMed Central

    Pemberton, Roy M.; Cox, Timothy; Tuffin, Rachel; Drago, Guido A.; Griffiths, John; Pittson, Robin; Johnson, Graham; Xu, Jinsheng; Sage, Ian C.; Davies, Rhodri; Jackson, Simon K.; Kenna, Gerry; Luxton, Richard; Hart, John P.

    2014-01-01

    This report describes the design and development of an integrated electrochemical cell culture monitoring system, based on enzyme-biosensors and chemical sensors, for monitoring indicators of mammalian cell metabolic status. MEMS technology was used to fabricate a microwell-format silicon platform including a thermometer, onto which chemical sensors (pH, O2) and screen-printed biosensors (glucose, lactate), were grafted/deposited. Microwells were formed over the fabricated sensors to give 5-well sensor strips which were interfaced with a multipotentiostat via a bespoke connector box interface. The operation of each sensor/biosensor type was examined individually, and examples of operating devices in five microwells in parallel, in either potentiometric (pH sensing) or amperometric (glucose biosensing) mode are shown. The performance characteristics of the sensors/biosensors indicate that the system could readily be applied to cell culture/toxicity studies. PMID:25360580

  1. Fabrication and evaluation of a micro(bio)sensor array chip for multiple parallel measurements of important cell biomarkers.

    PubMed

    Pemberton, Roy M; Cox, Timothy; Tuffin, Rachel; Drago, Guido A; Griffiths, John; Pittson, Robin; Johnson, Graham; Xu, Jinsheng; Sage, Ian C; Davies, Rhodri; Jackson, Simon K; Kenna, Gerry; Luxton, Richard; Hart, John P

    2014-10-30

    This report describes the design and development of an integrated electrochemical cell culture monitoring system, based on enzyme-biosensors and chemical sensors, for monitoring indicators of mammalian cell metabolic status. MEMS technology was used to fabricate a microwell-format silicon platform including a thermometer, onto which chemical sensors (pH, O2) and screen-printed biosensors (glucose, lactate), were grafted/deposited. Microwells were formed over the fabricated sensors to give 5-well sensor strips which were interfaced with a multipotentiostat via a bespoke connector box interface. The operation of each sensor/biosensor type was examined individually, and examples of operating devices in five microwells in parallel, in either potentiometric (pH sensing) or amperometric (glucose biosensing) mode are shown. The performance characteristics of the sensors/biosensors indicate that the system could readily be applied to cell culture/toxicity studies.

  2. Formation, encapsulation, and validation of membrane-based artificial hair cell sensors

    NASA Astrophysics Data System (ADS)

    Garrison, Kevin L.; Sarles, Stephen A.; Leo, Donald J.

    2012-04-01

    Hair cell structures are one of the most common forms of sensing elements found in nature. In nearly all vertebrates hair cells are used for auditory and vestibular sensing. In humans, approximately 16,000 auditory hair cells can be found in the cochlea of the ear. Each hair cell contains a stereocilia, which is the primary structure for sound transduction. This study looks to develop and characterize an artificial hair cell that resembles the stereocilia of the human ear. Recently our research group has shown that a single artificial hair cell can be formed in an open substrate using a single aqueous droplet and a hydrogel. In this study, air was blown across the hair and analyzed using spectral analysis. The results of this study provided the foundation for our current work toward an artificial hair cell that uses two aqueous droplets. In the current study a test fixture was created in order to consistently measure various properties of the encapsulated hair cell. The response of the hair cell was measured with an impulse input at various locations on the test fixture. A frequency response function was then created using the impulse input and the output of the sensor. It was found that the vibration of the hair was only detectable if the test fixture was struck at the correct location. By changing the physical parameters of the hair sensor, such as hair length, we were able to alter the response of the sensor. It was also found that the sensitivity of the sensor was reliant on the size of the lipid bilayer.

  3. Ultrasensitive detection of microbial cells using magnetic focus enhanced lateral flow sensors.

    PubMed

    Ren, Wen; Cho, Il-Hoon; Zhou, Zhongwu; Irudayaraj, Joseph

    2016-04-07

    We report on an improved lateral flow immunoassay (LFIA) sensor with a magnetic focus for ultrasensitive naked-eye detection of pathogenic microorganisms at a near single cell limit without any pre-enrichment steps, by allowing the magnetic probes to focus the labelled pathogens to the target zone of the LF strip.

  4. A bio-inspired aquatic flow sensor using an artificial cell membrane

    NASA Astrophysics Data System (ADS)

    Pinto, Preston A.; Garrison, Kevin; Leo, Donald J.; Sarles, Stephen A.

    2012-04-01

    Receptors known as hair cells give many animals this ability to sense a wide range of stimuli, such as sound, orientation, vibration, and flow. Previous researchers have mimicked natural hair cells by building electromechanical sensor systems that produce an electric response due to the bending of artificial hairs. Inspired by the roles of sensory hairs in fish, this work builds on previous research by investigating the flow dependent electrical response of a 'skin'-encapsulated artificial hair cell in an aqueous flow. This study presents the design, fabrication, and characterization of a flow sensor that will help close the loop between the sensing mechanisms and control strategies that aquatic organisms employ for functions such as locomotion regulation, prey capture, and particulate capture. The system is fabricated with a durable, artificial bilayer that forms at the interface between lipid-encased aqueous volumes contained in a flexible encapsulated polyurethane substrate. Flow experiments are conducted by placing the bio-inspired sensor in a flow chamber and subjecting it to pulse-like flows. Specifically, through temporal responses of the measured current and power spectral density (PSD) analysis, our results show that the amplitude and frequency of the current response are related to the flow over the hair. This preliminary study demonstrates that the encapsulated artificial hair cell flow sensor is capable of sensing changes in flow through a mechanoelectrical response and that its sensing capabilities may be altered by varying its surface morphology.

  5. Metabolically engineered methylotrophic yeast cells and enzymes as sensor biorecognition elements.

    PubMed

    Gonchar, Mykhailo; Maidan, Mykola; Korpan, Yaroslav; Sibirny, Volodymyr; Kotylak, Zbigniew; Sibirny, Andrei

    2002-08-01

    An extended definition of the term metabolic engineering is given and its successful use in the construction of biorecognition elements of sensors is demonstrated. It is shown that genetic and chemical modifications of methylotrophic yeast cells provide directed changes in their physiological responses towards methanol, ethanol and formaldehyde resulting in enhanced selectivity and shorter time response of the corresponding potentiometric and amperometric biosensors.

  6. Low temperature co-fired ceramic packaging of CMOS capacitive sensor chip towards cell viability monitoring

    PubMed Central

    Kilpijärvi, Joni; Sobocinski, Maciej; Datta-Chaudhuri, Timir; Hassinen, Antti; Prakash, Someshekar B; Möller, Peter; Abshire, Pamela; Kellokumpu, Sakari; Lloyd Spetz, Anita

    2016-01-01

    Cell viability monitoring is an important part of biosafety evaluation for the detection of toxic effects on cells caused by nanomaterials, preferably by label-free, noninvasive, fast, and cost effective methods. These requirements can be met by monitoring cell viability with a capacitance-sensing integrated circuit (IC) microchip. The capacitance provides a measurement of the surface attachment of adherent cells as an indication of their health status. However, the moist, warm, and corrosive biological environment requires reliable packaging of the sensor chip. In this work, a second generation of low temperature co-fired ceramic (LTCC) technology was combined with flip-chip bonding to provide a durable package compatible with cell culture. The LTCC-packaged sensor chip was integrated with a printed circuit board, data acquisition device, and measurement-controlling software. The packaged sensor chip functioned well in the presence of cell medium and cells, with output voltages depending on the medium above the capacitors. Moreover, the manufacturing of microfluidic channels in the LTCC package was demonstrated. PMID:28144536

  7. Low temperature co-fired ceramic packaging of CMOS capacitive sensor chip towards cell viability monitoring.

    PubMed

    Halonen, Niina; Kilpijärvi, Joni; Sobocinski, Maciej; Datta-Chaudhuri, Timir; Hassinen, Antti; Prakash, Someshekar B; Möller, Peter; Abshire, Pamela; Kellokumpu, Sakari; Lloyd Spetz, Anita

    2016-01-01

    Cell viability monitoring is an important part of biosafety evaluation for the detection of toxic effects on cells caused by nanomaterials, preferably by label-free, noninvasive, fast, and cost effective methods. These requirements can be met by monitoring cell viability with a capacitance-sensing integrated circuit (IC) microchip. The capacitance provides a measurement of the surface attachment of adherent cells as an indication of their health status. However, the moist, warm, and corrosive biological environment requires reliable packaging of the sensor chip. In this work, a second generation of low temperature co-fired ceramic (LTCC) technology was combined with flip-chip bonding to provide a durable package compatible with cell culture. The LTCC-packaged sensor chip was integrated with a printed circuit board, data acquisition device, and measurement-controlling software. The packaged sensor chip functioned well in the presence of cell medium and cells, with output voltages depending on the medium above the capacitors. Moreover, the manufacturing of microfluidic channels in the LTCC package was demonstrated.

  8. Construction, imaging, and analysis of FRET-based tension sensors in living cells.

    PubMed

    LaCroix, Andrew S; Rothenberg, Katheryn E; Berginski, Matthew E; Urs, Aarti N; Hoffman, Brenton D

    2015-01-01

    Due to an increased appreciation for the importance of mechanical stimuli in many biological contexts, an interest in measuring the forces experienced by specific proteins in living cells has recently emerged. The development and use of Förster resonance energy transfer (FRET)-based molecular tension sensors has enabled these types of studies and led to important insights into the mechanisms those cells utilize to probe and respond to the mechanical nature of their surrounding environment. The process for creating and utilizing FRET-based tension sensors can be divided into three main parts: construction, imaging, and analysis. First we review several methods for the construction of genetically encoded FRET-based tension sensors, including restriction enzyme-based methods as well as the more recently developed overlap extension or Gibson Assembly protocols. Next, we discuss the intricacies associated with imaging tension sensors, including optimizing imaging parameters as well as common techniques for estimating artifacts within standard imaging systems. Then, we detail the analysis of such data and describe how to extract useful information from a FRET experiment. Finally, we provide a discussion on identifying and correcting common artifacts in the imaging of FRET-based tension sensors.

  9. Construction, imaging and analysis of FRET-based tension sensors in living cells

    PubMed Central

    LaCroix, Andrew S.; Rothenberg, Katheryn E.; Berginski, Matthew E.; Urs, Aarti N.; Hoffman, Brenton D.

    2015-01-01

    Due to an increased appreciation for the importance of mechanical stimuli in many biological contexts, an interest in measuring the forces experienced by specific proteins in living cells has recently emerged. The development and use of Forster resonance energy transfer (FRET)-based molecular tension sensors has enabled these types of studies and led to important insights into the mechanisms those cells utilize to probe and respond to the mechanical nature of their surrounding environment. The process for creating and utilizing FRET-based tension sensors can be divided into three main parts: construction, imaging, and analysis. First we review several methods for the construction of genetically encoded FRET-based tension sensors, including restriction enzyme-based methods as well as the more recently developed overlap extension or Gibson Assembly protocols. Next, we discuss the intricacies associated with imaging tension sensors, including optimizing imaging parameters as well as common techniques for estimating artifacts within standard imaging systems. Then, we detail the analysis of such data and describe how to extract useful information from a FRET experiment. Finally, we provide a discussion on identifying and correcting common artifacts in the imaging of FRET-based tension sensors. PMID:25640429

  10. A sensor kinase recognizing the cell-cell signal BDSF (cis-2-dodecenoic acid) regulates virulence in Burkholderia cenocepacia.

    PubMed

    McCarthy, Yvonne; Yang, Liang; Twomey, Kate B; Sass, Andrea; Tolker-Nielsen, Tim; Mahenthiralingam, Eshwar; Dow, J Maxwell; Ryan, Robert P

    2010-09-01

    Burkholderia cenocepacia is an opportunistic human pathogen that uses cis-2-dodecenoic acid (BDSF) as a quorum-sensing signal to control expression of virulence factors. BDSF is a signal molecule of the diffusible signal factor (DSF) family that was first described in the plant pathogen Xanthomonas campestris. The mechanism of perception of this signal and the range of functions regulated in B. cenocepacia are, however, unknown. A screen for transposon mutants unable to respond to exogenous signal identified BCAM0227 as a potential BDSF sensor. BCAM0227 is a histidine sensor kinase with an input domain unrelated to that of RpfC, the DSF sensor found in xanthomonads. Transcriptome profiling established the scope of the BDSF regulon and demonstrated that the sensor controls expression of a subset of these genes. A chimeric sensor kinase in which the input domain of BCAM0227 replaced the input domain of RpfC was active in BDSF signal perception when expressed in X. campestris. Mutation of BCAM0227 gave rise to reduced cytotoxicity to Chinese hamster ovary cells and reduced virulence to Wax moth larvae and in the agar-bead mouse model of pulmonary infection. The findings identify BCAM0227 as a novel BDSF sensor and a potential target for interference in virulence-related signalling in B. cenocepacia. © 2010 Blackwell Publishing Ltd.

  11. Refractive index fiber sensor based on Brillouin fast light

    NASA Astrophysics Data System (ADS)

    Chen, Jiali; Gan, Jiulin; Zhang, Zhishen; Yang, Tong; Deng, Huaqiu; Yang, Zhongmin

    2014-01-01

    A new type of refractive index fiber sensor was invented by combining the evanescent-field scattering sensing mechanism with the Brillouin fast light scheme. Superluminal light was realized using Brillouin lasing oscillation in a fiber ring cavity. The refractive index of the solution around the microfiber within the cavity is related to the group velocity of the fast light. This fast light refractive index sensor offers an alternative for high-accuracy sensing applications.

  12. Microfiber Optical Sensors: A Review

    PubMed Central

    Lou, Jingyi; Wang, Yipei; Tong, Limin

    2014-01-01

    With diameter close to or below the wavelength of guided light and high index contrast between the fiber core and the surrounding, an optical microfiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, evanescent fields and waveguide dispersion. Among various microfiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, fast response, high flexibility and low optical power consumption. Here we review recent progress in microfiber optical sensors regarding their fabrication, waveguide properties and sensing applications. Typical microfiber-based sensing structures, including biconical tapers, optical gratings, circular cavities, Mach-Zehnder interferometers and functionally coated/doped microfibers, are summarized. Categorized by sensing structures, microfiber optical sensors for refractive index, concentration, temperature, humidity, strain and current measurement in gas or liquid environments are reviewed. Finally, we conclude with an outlook for challenges and opportunities of microfiber optical sensors. PMID:24670720

  13. Monitoring the spreading stage of lung cells by silicon nanowire electrical cell impedance sensor for cancer detection purposes.

    PubMed

    Abiri, Hamed; Abdolahad, Mohammad; Gharooni, Milad; Hosseini, Seyed Ali; Janmaleki, Mohsen; Azimi, Soheil; Hosseini, Mohammad; Mohajerzadeh, Shams

    2015-06-15

    We developed a silicon nanowire based electrical cell impedance sensor (SiNW-ECIS) as an instrument that detects cancerous cultured living lung cells by monitoring their spreading state at which the cells stretched and become extended on nanowires. Further current penetration into the extended membrane of malignant cells in respect to normal ones (In the first 6h after cells interaction with surface) are the key mechanism in our diagnosis procedure. The developed device applied to monitor the spreading-induced electrical differences between cancerous and normal lung cells in an integral fashion. Detection was performed so faster than the time required to complete cells mitosis. Morphology and architecture of doped Si nanowires covered microelectrodes observably enhance the contact area between cells and electrodes which support accurate signal recording from stretched cells as indicated by SEM and florescent images. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Passively Q-switched erbium-doped fiber laser using evanescent field interaction with gold-nanosphere based saturable absorber.

    PubMed

    Fan, Dengfeng; Mou, Chengbo; Bai, Xuekun; Wang, Shaofei; Chen, Na; Zeng, Xianglong

    2014-07-28

    We demonstrate an all-fiber passively Q-switched erbium-doped fiber laser (EDFL) using a gold-nanosphere (GNS) based saturable absorber (SA) with evanescent field interaction. Using the interaction of evanescent field for fabricating SAs, long nonlinear interaction length of evanescent wave and GNSs can be achieved. The GNSs are synthesized from mixing solution of chloroauricacid (HAuCl4) and sodium citrate by the heating effects of the microfiber's evanescent field radiation. The proposed passively Q-switched EDFL could give output pulses at 1562 nm with pulse width of 1.78 μs, a repetition rate of 58.1 kHz, a pulse energy of 133 nJ and a output power of 7.7 mW when pumped by a 980 nm laser diode of 237 mW.

  15. From Conscious Experience to Memory Storage and Retrieval:. the Role of Quantum Brain Dynamics and Boson Condensation of Evanescent Photons

    NASA Astrophysics Data System (ADS)

    Jibu, Mari; Pribram, Karl H.; Yasue, Kunio

    A quantum field theoretical formulation of an interaction between the radiation field and the electric dipole field of intracellular and extracellular water in perimembranous dendritic compartments is proposed. The intercellular spaces filled mostly with water are shown to be not just a filler but a proper substrate for dendritic processing composed of a boson condensation of evanescent photons. Macroscopic ordered dynamics of the electric dipoles of water in the perimembranous region immediately adjacent to dendritic membranes provides interactions with the radiation field to produce evanescent photons that ensure that the critical temperature of the boson condensation can be higher than the body temperature. Thus, superconducting phenomena can take place. Such a high-temperature boson condensate of evanescent photons can be understood as a physical substrate for distributed saltatory processing in dendritic arborizations. Memory storage can be understood in terms of processing involving the ionic coating of the dynamically ordered structure of water facilitated by the boson condensate of evanescent photons.

  16. Detecting DNA in Eukaryotic Cells Using an Integrated Microfluidics Electronic Sensor

    NASA Astrophysics Data System (ADS)

    Sohn, L. L.; Saleh, O. A.; Facer, G. R.; Carbeck, J. D.; Beavis, A.; Notterman, D. A.

    2000-03-01

    We have developed an integrated electronic sensor fabricated on a microfluidic chip which can measure the dielectric properties of material flowing through a micron-sized channel. We show that this sensor is advantageous over the usual optical detection techniques for microfluidics as it measures the inherent solid-state property of the analytes to be examined. In this talk, we show that we are able to not only identify small volumes of fluids but, more importantly, detect and diffentiate eukaryotic cells on the basis of DNA content.

  17. Design and Operation of an Electrochemical Methanol Concentration Sensor for Direct Methanol Fuel Cell Systems

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Valdez, T. I.; Chun, W.

    2000-01-01

    The development of a 150-Watt packaged power source based on liquid feed direct methanol fuel cells is being pursued currently at the Jet propulsion Laboratory for defense applications. In our studies we find that the concentration of methanol in the fuel circulation loop affects the electrical performance and efficiency the direct methanol fuel cell systems significantly. The practical operation of direct methanol fuel cell systems, therefore, requires accurate monitoring and control of methanol concentration. The present paper reports on the principle and demonstration of an in-house developed electrochemical sensor suitable for direct methanol fuel cell systems.

  18. Design and Operation of an Electrochemical Methanol Concentration Sensor for Direct Methanol Fuel Cell Systems

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Valdez, T. I.; Chun, W.

    2000-01-01

    The development of a 150-Watt packaged power source based on liquid feed direct methanol fuel cells is being pursued currently at the Jet propulsion Laboratory for defense applications. In our studies we find that the concentration of methanol in the fuel circulation loop affects the electrical performance and efficiency the direct methanol fuel cell systems significantly. The practical operation of direct methanol fuel cell systems, therefore, requires accurate monitoring and control of methanol concentration. The present paper reports on the principle and demonstration of an in-house developed electrochemical sensor suitable for direct methanol fuel cell systems.

  19. Photoacoustic evaluation of surfaces via pulsed evanescent field interaction

    NASA Astrophysics Data System (ADS)

    Goldschmidt, Benjamin S.

    In recent years, major research funding and commercial development has been going toward the production and characterization of increasingly useful nanomaterials. These materials such as quantum dots, nanoparticles, and thin lms can increase the e ciency of solar panels, create new treatments for cancer, and vastly improve the detection capabilities for various optical sensors for biosensing. Unfortunately, to date, very few methods of characterizing these types of materials exist such as scanning electron microscopy and ellipsometry. These techniques are prohibitively expensive, cannot be used with all materials, and require rigorous preparation schemes before scanning. Therefore, a new method to characterize thin lms and detect the properties of nanomaterials is needed. This study proposes a newly revived method, Total Internal Re ection Photoacoustic Spectroscopy, along with related techniques, to deliver cost e ective characterization and detection for nanomaterials and thin lms.

  20. Unidirectional evanescent-wave coupling from circularly polarized electric and magnetic dipoles: An angular spectrum approach

    NASA Astrophysics Data System (ADS)

    Picardi, Michela F.; Manjavacas, Alejandro; Zayats, Anatoly V.; Rodríguez-Fortuño, Francisco J.

    2017-06-01

    Unidirectional evanescent-wave coupling from circularly polarized dipole sources is one of the most striking types of evidence of spin-orbit interactions of light and an inherent property of circularly polarized dipoles. Polarization handedness self-determines propagation direction of guided modes. In this paper, we compare two different approaches currently used to describe this phenomenon: the first requires the evaluation of the coupling amplitude between dipole and waveguide modes, while the second is based on the calculation of the angular spectrum of the dipole. We present an analytical expression of the angular spectrum of dipole radiation, unifying the description for both electric and magnetic dipoles. The symmetries unraveled by the implemented formalism show the existence of specific terms in the dipole spectrum which can be recognized as being directly responsible for directional evanescent-wave coupling. This provides a versatile tool for both a comprehensive understanding of the phenomenon and a fully controllable engineering of directionality of guided modes.

  1. Invisibility Cloaking Scheme by Evanescent Fields Distortion on Composite Plasmonic Waveguides with Si Nano-Spacer.

    PubMed

    Galutin, Yakov; Falek, Eran; Karabchevsky, Alina

    2017-09-21

    A new, composite plasmonic waveguide based electromagnetic cloaking scheme is proposed with Si nano-spacer. Here we show, that the scattering fields of an object located on the cloak do not interact with the evanescent field, resulting in object's invisibility. Finite difference time domain (FDTD) numerical calculations were performed to extract the modal distributions and surface intensities on a composite plasmonic waveguide with a metasurface overlayer. Spatially varying effective permittivity was analytically calculated using transformation optics. Cloaking was demonstrated for a cylindrical object with diameter of 70% from the waveguide width on a high index ridge waveguide structure with silicon nitride guiding layer on silica substrate. Our results open the door to new integrated photonic devices, harnessing from evanescent fields distortion on composite plasmonic waveguides and dielectric nano-spacers for the variety of applications from on-chip optical devices to all-optical processing.

  2. Polarization-resolved evanescent wave scattering from gold-coated tilted fiber gratings.

    PubMed

    Shen, Changyu; Zhou, Wenjun; Albert, Jacques

    2014-03-10

    The scatterings of TE- and TM-polarized evanescent wave on the surface of a tilted fiber Bragg grating (TFBG) with a 50 nm thick gold coating were investigated experimentally by observing radiation patterns from discontinuities in the coating. The scattering intensity for TM-polarized light is larger than for TE light when the evanescent wave propagates from the coating towards the discontinuity. The opposite occurs for light propagating from an uncoated section towards the coating edge. However in the latter case the scattering is much weaker. These results confirm that cladding modes with TE and TM polarization can be excited selectively with a TFBG, and that they scatter light differentially at discontinuities. These results are used to propose a simple polarimeter design based on total scattered light intensity monitoring.

  3. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers

    DOEpatents

    Martinez, Jennifer S.; Swanson, Basil I.; Shively, John E.; Li, Lin

    2009-06-02

    An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  4. Real-time measurements of endogenous CO production from vascular cells using an ultrasensitive laser sensor

    NASA Technical Reports Server (NTRS)

    Morimoto, Y.; Durante, W.; Lancaster, D. G.; Klattenhoff, J.; Tittel, F. K.

    2001-01-01

    Carbon monoxide (CO) has been implicated as a biological messenger molecule analogous to nitric oxide. A compact gas sensor based on a midinfrared laser absorption spectroscopy was developed for direct and real-time measurement of trace levels (in approximate pmol) of CO release by vascular cells. The midinfrared light is generated by difference frequency mixing of two nearinfrared lasers in a nonlinear optical crystal. A strong infrared absorption line of CO (4.61 microm) is chosen for convenient CO detection without interference from other gas species. The generation of CO from cultured vascular smooth muscle cells was detected every 20 s without any chemical modification to the CO. The sensitivity of the sensor reached 6.9 pmol CO. CO synthesis was measured from untreated control cells (0.25 nmol per 10(7) cells/h), sodium nitroprusside-treated cells (0.29 nmol per 10(7) cells/h), and hemin-treated cells (0.49 nmol per 10(7) cells/h). The sensor also detected decreases in CO production after the addition of the heme oxygenase (HO) inhibitor tin protoporphyrin-IX (from 0.49 to 0.02 nmol per 10(7) cells/h) and increases after the administration of the HO substrate hemin (from 0.27 to 0.64 nmol per 10(7) cells/h). These results demonstrate that midinfrared laser absorption spectroscopy is a useful technique for the noninvasive and real-time detection of trace levels of CO from biological tissues.

  5. Real-time measurements of endogenous CO production from vascular cells using an ultrasensitive laser sensor

    NASA Technical Reports Server (NTRS)

    Morimoto, Y.; Durante, W.; Lancaster, D. G.; Klattenhoff, J.; Tittel, F. K.

    2001-01-01

    Carbon monoxide (CO) has been implicated as a biological messenger molecule analogous to nitric oxide. A compact gas sensor based on a midinfrared laser absorption spectroscopy was developed for direct and real-time measurement of trace levels (in approximate pmol) of CO release by vascular cells. The midinfrared light is generated by difference frequency mixing of two nearinfrared lasers in a nonlinear optical crystal. A strong infrared absorption line of CO (4.61 microm) is chosen for convenient CO detection without interference from other gas species. The generation of CO from cultured vascular smooth muscle cells was detected every 20 s without any chemical modification to the CO. The sensitivity of the sensor reached 6.9 pmol CO. CO synthesis was measured from untreated control cells (0.25 nmol per 10(7) cells/h), sodium nitroprusside-treated cells (0.29 nmol per 10(7) cells/h), and hemin-treated cells (0.49 nmol per 10(7) cells/h). The sensor also detected decreases in CO production after the addition of the heme oxygenase (HO) inhibitor tin protoporphyrin-IX (from 0.49 to 0.02 nmol per 10(7) cells/h) and increases after the administration of the HO substrate hemin (from 0.27 to 0.64 nmol per 10(7) cells/h). These results demonstrate that midinfrared laser absorption spectroscopy is a useful technique for the noninvasive and real-time detection of trace levels of CO from biological tissues.

  6. Reusable Floating-Electrode Sensor for Real-Time Electrophysiological Monitoring of Nonadherent Cells

    NASA Astrophysics Data System (ADS)

    Pham Ba, Viet Anh; Ta, Van-Thao; Park, Juhun; Park, Eun Jin; Hong, Seunghun

    2015-03-01

    We herein report the development of a reusable floating-electrode sensor (FES) based on aligned single-walled carbon nanotubes, which allowed quantitatively monitoring the electrophysiological responses from nonadherent cells. The FES was used to measure the real-time responses of normal lung cells and small-cell lung cancer (SCLC) cells to the addition of nicotine. The SCLC cells exhibited rather large electrophysiological responses to nicotine compared to normal cells, which was attributed to the overexpressed nicotinic acetylcholine receptors (nAChRs) in the SCLC cells. Importantly, using only a single device could measure repeatedly the responses of multiple individual cells to various drugs, enabling statistically meaningful measurements without errors from the device-to-device variations of the sensor characteristics. As results, that the treatment with drugs such as genistin or daidzein reduced Ca2+ influx in SCLC cells was found. Moreover, tamoxifen, has been known as an anti-estrogen compound, was found to only partly block the binding of daidzein to nAChRs. Our FES can be a promising tool for various biomedical applications such as drug screening and therapy monitoring.

  7. Distributed multiple-anodes benthic microbial fuel cell as reliable power source for subsea sensors

    NASA Astrophysics Data System (ADS)

    Liu, Bingchuan; Weinstein, Alyssa; Kolln, Michael; Garrett, Caleb; Wang, Lei; Bagtzoglou, Amvrossios; Karra, Udayarka; Li, Yan; Li, Baikun

    2015-07-01

    A new type distributed benthic microbial fuel cell (MFC) (DBMFC) consisting of 18 MFC arrays was developed to enhance the robustness and stability of the power source for subsea sensor networks. A power management system (PMS) was integrated into the DBMFC system to boost the power output for two temperature sensors. The PMS was specifically designed with 18 charge pumps capable of simultaneously harvesting energy from 6 MFC units (18 anodes total) in the DBMFC system. The pilot scale DBMFC (total sediment volume: 1 m3) with continuous ocean water supply showed that the power outputs of individual MFC units were affected by the organic carbon and nitrogen contents in the sediment pore water. The MFC units with higher power output resulted in faster charging/discharging rate of the PMS supercapacitor. Manual disconnection of anodes from the PMS was conducted to simulate the anode malfunction caused by bioturbation. Fewer functional anodes (e.g. 12 out of 18 anodes were disconnected) slowed the charging/discharging rate of the PMS supercapacitor but still supported the PMS to regularly power two sensors. This scale-up DBMFC/PMS/sensor study demonstrated that multiple MFC units with multiple PMS substantially enhanced the stability and robustness of power supply to subsea sensors.

  8. Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Fei; Tian, Lei; He, Zhen

    The application of wireless sensors is an important approach for monitoring natural water systems in remote locations; however, limited power sources are a key challenge for successful application of these sensors. Sediment microbial fuel cells (SMFCs) have shown potential as a sustainable power source with low maintenance requirements to power wireless sensors. This study examines electricity generation in lab-scale SMFCs with the sediment from Lake Michigan. Two SMFCs are operated in parallel with a difference in cathode arrangement (floating cathode vs. bottom cathode). The data show that the SMFC with a floating cathode produces more electricity and results in a shorter charging time when an ultracapacitor is connected to the circuit. To control electricity delivery and voltage elevation to a value that can drive a wireless temperature sensor, a power management system (PMS) is developed. With the PMS, both SMFCs can consistently power the wireless temperature sensor for data transmission to a computer, although the number of recorded data within the same period differs. This research provides an effective PMS for power control and valuable experience in SMFC configurations for the next onsite test of the developed SMFCs in Lake Michigan.

  9. Electrical characterization of single cells using polysilicon wire ion sensor in an isolation window.

    PubMed

    Wu, You-Lin; Hsu, Po-Yen; Hsu, Chung-Ping; Wang, Chih-Cheng; Lee, Li-Wen; Lin, Jing-Jenn

    2011-10-01

    A polysilicon wire (PSW) sensor can detect the H(+) ion density (pH value) of the medium coated on its surface, and different cells produce different extracellular acidification and hence different H(+) ion densities. Based on this, we used a PSW sensor in combination with a mold-cast polydimethylsiloxane (PDMS) isolation window to detect the adhesion, apoptosis and extracellular acidification of single normal cells and single cancer cells. Single living human normal cells WI38, MRC5, and BEAS-2B as well as non-small-cell lung cancer (NSCLC) cells A549, H1299, and CH27 were cultivated separately inside the isolation window. The current flowing through the PSW channel was measured. From the PSW channel current change as a function of time, we determined the cell adhesion time by observing the time required for the current change to saturate, since a stable extracellular ion density was established after the cells were completely adhered to the PSW surface. The apoptosis of cells can also be determined when the channel current change drops to zero. We found that all the NSCLC cells had a higher channel current change and hence a lower pH value than the normal cells anytime after they were seeded. The corresponding average pH values were 5.86 for A549, 6.00 for H1299, 6.20 for CH27, 6.90 for BEAS-2B, 6.96for MRC5, and 7.02 for WI38, respectively, after the cells were completely adhered to the PSW surface. Our results show that NSCLC cells have a stronger cell-substrate adhesion and a higher extracellular acidification rate than normal cells.

  10. Evanescent Effects can Alter Ultraviolet Divergences in Quantum Gravity without Physical Consequences.

    PubMed

    Bern, Zvi; Cheung, Clifford; Chi, Huan-Hang; Davies, Scott; Dixon, Lance; Nohle, Josh

    2015-11-20

    Evanescent operators such as the Gauss-Bonnet term have vanishing perturbative matrix elements in exactly D=4 dimensions. Similarly, evanescent fields do not propagate in D=4; a three-form field is in this class, since it is dual to a cosmological-constant contribution. In this Letter, we show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and determine the coefficient of the associated (nonevanescent) R^{3} counterterm studied long ago by Goroff and Sagnotti. We compare two pairs of theories that are dual in D=4: gravity coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop trace anomaly-the coefficient of the Gauss-Bonnet operator-changes under p-form duality transformations. We concur and also find that the leading R^{3} divergence changes under duality transformations. Nevertheless, in both cases, the physical renormalized two-loop identical-helicity four-graviton amplitude can be chosen to respect duality. In particular, its renormalization-scale dependence is unaltered.

  11. Evanescent effects can alter ultraviolet divergences in quantum gravity without physical consequences

    DOE PAGES

    Bern, Zvi; Cheung, Clifford; Chi, Huan -Hang; ...

    2015-11-17

    Evanescent operators such as the Gauss-Bonnet term have vanishing perturbative matrix elements in exactly D = 4 dimensions. Similarly, evanescent fields do not propagate in D = 4; a three-form field is in this class, since it is dual to a cosmological-constant contribution. In this Letter, we show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and determine the coefficient of the associated (nonevanescent) R3 counterterm studied long ago by Goroff and Sagnotti. We compare two pairs of theories that are dual in Dmore » = 4: gravity coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop trace anomaly—the coefficient of the Gauss-Bonnet operator—changes under p-form duality transformations. In addition, we concur and also find that the leading R3 divergence changes under duality transformations. Nevertheless, in both cases, the physical renormalized two-loop identical-helicity four-graviton amplitude can be chosen to respect duality. In particular, its renormalization-scale dependence is unaltered.« less

  12. Signatures of evanescent transport in ballistic suspended graphene-superconductor junctions

    NASA Astrophysics Data System (ADS)

    Kumaravadivel, Piranavan; Du, Xu

    2016-04-01

    In Dirac materials, the low energy excitations behave like ultra-relativistic massless particles with linear energy dispersion. A particularly intriguing phenomenon arises with the intrinsic charge transport behavior at the Dirac point where the charge density approaches zero. In graphene, a 2-D Dirac fermion gas system, it was predicted that charge transport near the Dirac point is carried by evanescent modes, resulting in unconventional “pseudo-diffusive” charge transport even in the absence of disorder. In the past decade, experimental observation of this phenomenon remained challenging due to the presence of strong disorder in graphene devices which limits the accessibility of the low carrier density regime close enough to the Dirac point. Here we report transport measurements on ballistic suspended graphene-Niobium Josephson weak links that demonstrate a transition from ballistic to pseudo-diffusive like evanescent transport below a carrier density of ~1010 cm‑2. Approaching the Dirac point, the sub-harmonic gap structures due to multiple Andreev reflections display a strong Fermi energy-dependence and become increasingly pronounced, while the normalized excess current through the superconductor-graphene interface decreases sharply. Our observations are in qualitative agreement with the long standing theoretical prediction for the emergence of evanescent transport mediated pseudo-diffusive transport in graphene.

  13. Signatures of evanescent transport in ballistic suspended graphene-superconductor junctions

    PubMed Central

    Kumaravadivel, Piranavan; Du, Xu

    2016-01-01

    In Dirac materials, the low energy excitations behave like ultra-relativistic massless particles with linear energy dispersion. A particularly intriguing phenomenon arises with the intrinsic charge transport behavior at the Dirac point where the charge density approaches zero. In graphene, a 2-D Dirac fermion gas system, it was predicted that charge transport near the Dirac point is carried by evanescent modes, resulting in unconventional “pseudo-diffusive” charge transport even in the absence of disorder. In the past decade, experimental observation of this phenomenon remained challenging due to the presence of strong disorder in graphene devices which limits the accessibility of the low carrier density regime close enough to the Dirac point. Here we report transport measurements on ballistic suspended graphene-Niobium Josephson weak links that demonstrate a transition from ballistic to pseudo-diffusive like evanescent transport below a carrier density of ~1010 cm−2. Approaching the Dirac point, the sub-harmonic gap structures due to multiple Andreev reflections display a strong Fermi energy-dependence and become increasingly pronounced, while the normalized excess current through the superconductor-graphene interface decreases sharply. Our observations are in qualitative agreement with the long standing theoretical prediction for the emergence of evanescent transport mediated pseudo-diffusive transport in graphene. PMID:27080733

  14. Comments on Musha's theorem that an evanescent photon in the microtubule is a superluminal particle.

    PubMed

    Hari, Syamala D

    2014-07-01

    Takaaki Musha's research of high performance quantum computation in living systems is motivated by the theories of Penrose and Hameroff that microtubules in the brain function as quantum computers, and by those of Jibu and Yasue that the quantum states of microtubules depend upon boson condensates of evanescent photons. His work is based on the assumption that the evanescent photons described by Jibu et al. are superluminal and that they are tachyons defined and discussed by well-known physicists such as Sudarshan, Feinberg and Recami. Musha gives a brief justification for the assumption and sometimes calls it a theorem. However, the assumption is not valid because Jibu et al. stated that the evanescent photons have transmission speed smaller than that of light and that their mass is real and momentum is imaginary whereas a tachyon's mass is imaginary and momentum is real. We show here that Musha's proof of the "theorem" has errors and hence his theorem/assumption is not valid. This article is not meant to further discuss any biological aspects of the brain but only to comment on the consistency of the quantum-physical aspects of earlier work by Musha et al.

  15. Polarization characteristics of Whispering-Gallery-Mode fiber lasers based on evanescent-wave-coupled gain.

    PubMed

    Zhang, Yuan-Xian; Pu, Xiao-Yun; Feng, Li; Han, De-Yu; Ren, Yi-Tao

    2013-05-20

    The polarization characteristics of Whispering-Gallery-Mode (WGM) fiber lasers based on evanescent-wave-coupled gain are investigated. For the laser gain is excited by side-pumping scheme, it is found that the polarization property of lasing emission is simply dependent on the polarized states of the pump beams. The polarization property of lasing emission depends on the propagating situation of the pump beams in an optical fiber if the laser gain is excited by evanescent-wave pumping scheme, that is, if the pump beams within the fiber are meridional beams, the lasing emission is a transverse electric (TE) wave that forms a special radial polarization emission. However, if the pump beams within the fiber are skew beams, both transverse magnetic (TM) and TE waves exist simultaneously in lasing emission that forms a special axially and radially mixed polarization emission. Pumped by skew beams, the wave-number differences between TE and TM waves are also investigated quantitatively, the results demonstrate that the wave-number difference decreases with the increase of the fiber diameter and the refractive index (RI) of the cladding solution. The observed polarization characteristics have been well explained based on lasing radiation mechanism of WGM fiber laser of gain coupled by evanescent wave.

  16. Circular synthetic aperture sonar imaging of simple objects illuminated by an evanescent wavefield.

    PubMed

    Plotnick, Daniel S; Marston, Timothy M; Marston, Philip L

    2016-10-01

    This paper is motivated by the case where an underwater object located within the sediment is illuminated by a grazing acoustic beam below the critical angle. The included experimental work uses a liquid-liquid interface and vertically inverted geometry as a stand-in for the water-sediment boundary. In the super-critical regime sound in the water column refracts into the sediment before scattering. However, for sub-critical illumination a rapidly decaying evanescent wavefield is generated in the sediment near the water-sediment interface. For compact objects located in the sediment near the interface this can result in strong backscattering signals suitable for acoustic image reconstruction using synthetic aperture sonar techniques. Certain properties of the evanescent wavefield such as the vertical phase-locking behavior, the rapid amplitude decay with distance from the interface, and the low-pass filter effect have understandable ramifications for the image formation process and for characteristics of the reconstructed image. In particular, circular imaging techniques require correct placement of the imaging plane to properly focus an object; however, for backscattering (monostatic) evanescent image formation the imaging plane may be placed at the interface and the target will remain in focus regardless of burial depth. A laboratory experiment using simple scatterers is presented.

  17. A scalable pathway to nanostructured sapphire optical fiber for evanescent-field sensing and beyond

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Tian, Fei; Kanka, Jiri; Du, Henry

    2015-03-01

    We here report an innovative and scalable strategy of transforming a commercial unclad sapphire optical fiber to an all-alumina nanostructured sapphire optical fiber (NSOF). The strategy entails fiber coating with metal aluminum followed by anodization to form alumina cladding of highly organized pore channel structure. Through experiments and numerical simulation, we demonstrate the utility and benefit of NSOF, analogous to all-silica microstructured optical fiber, for evanescent-field surface-enhanced Raman scattering (SERS) measurements. We experimentally reveal the feasibility of Ag nanoparticles (NPs)-enabled NSOF SERS sensing of 10-6 M Rhodamine 6G (R6G) after thermal treatment at 500 °C for 6 h by taking advantage of porous anodic aluminum oxide (AAO) structure to stabilize the Ag NPs. We show, via numerical simulations, that AAO cladding significantly increases the evanescent-field overlap, lower porosity of AAO results in higher evanescent-field overlap, and optimized AAO nanostructure yields greater SERS enhancement.

  18. A radiation-hardened two transistor memory cell for monolithic active pixel sensors in STAR experiment

    NASA Astrophysics Data System (ADS)

    Wei, X.; Gao, D.; Dorokhov, A.; Hu, Y.

    2011-01-01

    Radiation tolerance of Monolithic Active Pixel Sensors (MAPS) is dramatically decreased when intellectual property (IP) memories are integrated for fast readout application. This paper presents a new solution to improve radiation hardness and avoid latch-up for memory cell design. The tradeoffs among radiation tolerance, area and speed are significantly considered and analyzed. The cell designed in 0.35 μm process satisfies the radiation tolerance requirements of STAR experiment. The cell size is 4.55 × 5.45 μm2. This cell is smaller than the IP memory cell based on the same process and is only 26% of a radiation tolerant 6T SRAM cell used in previous contribution. The write access time of the cell is less than 2 ns, while the read access time is 80 ns.

  19. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network.

    PubMed

    Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian

    2016-05-18

    Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs.

  20. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network

    PubMed Central

    Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian

    2016-01-01

    Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs. PMID:27213346

  1. Real-time Bacterial Detection by Single Cell Based Sensors UsingSynchrotron FTIR Spectromicroscopy

    SciTech Connect

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Bertozzi,Carolyn; Zhang, Miqin

    2005-08-10

    Microarrays of single macrophage cell based sensors weredeveloped and demonstrated for real time bacterium detection bysynchrotron FTIR microscopy. The cells were patterned on gold-SiO2substrates via a surface engineering technique by which the goldelectrodes were immobilized with fibronectin to mediate cell adhesion andthe silicon oxide background were passivated with PEG to resist proteinadsorption and cell adhesion. Cellular morphology and IR spectra ofsingle, double, and triple cells on gold electrodes exposed tolipopolysaccharide (LPS) of different concentrations were compared toreveal the detection capabilities of these biosensors. The single-cellbased sensors were found to generate the most significant IR wave numbervariation and thus provide the highest detection sensitivity. Changes inmorphology and IR spectrum for single cells exposed to LPS were found tobe time- and concentration-dependent and correlated with each other verywell. FTIR spectra from single cell arrays of gold electrodes withsurface area of 25 mu-m2, 100 mu-m2, and 400 mu-m2 were acquired usingboth synchrotron and conventional FTIR spectromicroscopes to study thesensitivity of detection. The results indicated that the developedsingle-cell platform can be used with conventional FTIRspectromicroscopy. This technique provides real-time, label-free, andrapid bacterial detection, and may allow for statistic and highthroughput analyses, and portability.

  2. Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells.

    PubMed

    Roa, Jinae N; Tresguerres, Martin

    2016-08-01

    Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology. Copyright © 2016 the American Physiological Society.

  3. AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function

    PubMed Central

    Hardie, D. Grahame

    2011-01-01

    AMP-activated protein kinase (AMPK) is a sensor of energy status that maintains cellular energy homeostasis. It arose very early during eukaryotic evolution, and its ancestral role may have been in the response to starvation. Recent work shows that the kinase is activated by increases not only in AMP, but also in ADP. Although best known for its effects on metabolism, AMPK has many other functions, including regulation of mitochondrial biogenesis and disposal, autophagy, cell polarity, and cell growth and proliferation. Both tumor cells and viruses establish mechanisms to down-regulate AMPK, allowing them to escape its restraining influences on growth. PMID:21937710

  4. Enhanced Viability of Endothelial Colony Forming Cells in Fibrin Microbeads for Sensor Vascularization.

    PubMed

    Gandhi, Jarel K; Zivkovic, Lada; Fisher, John P; Yoder, Mervin C; Brey, Eric M

    2015-09-18

    Enhanced vascularization at sensor interfaces can improve long-term function. Fibrin, a natural polymer, has shown promise as a biomaterial for sensor coating due to its ability to sustain endothelial cell growth and promote local vascularization. However, the culture of cells, particularly endothelial cells (EC), within 3D scaffolds for more than a few days is challenging due to rapid loss of EC viability. In this manuscript, a robust method for developing fibrin microbead scaffolds for long-term culture of encapsulated ECs is described. Fibrin microbeads are formed using sodium alginate as a structural template. The size, swelling and structural properties of the microbeads were varied with needle gauge and composition and concentration of the pre-gel solution. Endothelial colony-forming cells (ECFCs) were suspended in the fibrin beads and cultured within a perfusion bioreactor system. The perfusion bioreactor enhanced ECFCs viability and genome stability in fibrin beads relative to static culture. Perfusion bioreactors enable 3D culture of ECs within fibrin beads for potential application as a sensor coating.

  5. Investigations of evanescent heat transfer and measurements of the acoustic reflection coefficient for thin metal films

    NASA Astrophysics Data System (ADS)

    Loomis, Jackson J.

    1998-10-01

    Evanescent waves are always present near the surfaces of materials and are generated by the random thermal motion of charges, which produce fluctuating electromagnetic fields that extend approximately a thermal wavelength, /hbar c/KBT beyond the surfaces of the materials. Evanescent waves can transfer energy from one material to another if the second material extends into the region where the evanescent waves have appreciable amplitude. In the first part of this thesis, we present a macroscopic, phenomenological theory for the heat flow mediated by evanescent waves between two material half-spaces of differing temperatures whose surfaces are separated by a vacuum gap of width l. For separations much larger than the thermal wavelength, our result reduces to the Stefan- Boltzmann law and for separations much less than the thermal wavelength, the thermal flux due to evanescent waves is orders of magnitude larger than blackbody radiation. For l sufficiently small, the heat transfer varies as l-2. As a special case, we explore the behavior of the heat flux between Drude materials and found that heat flow exhibits a wide range of behavior for different gap widths and electrical conductivities. In the second part of this thesis, we present a picosecond ultrasonic method for studying the interfacial bonding between a thin metal film and a substrate. In this method, a subpicosecond laser pulse produces a rapid heating of the film. Relaxation of the thermal stress created by the heating sets the film into vibration. The rate at which the film vibrations damp out via sound transmission into the substrate depends on both the interfacial bonding and the acoustic properties of the film and substrate. Measurements of the damping rate thus provide a means of assessing interfacial bond strength. As a demonstration, we modified the interfacial bonding by irradiating small areas of some samples with 2.5 He+ MeV ions, a procedure which is known to improve bonding. Measurements of the

  6. Thin-film spectroscopic sensor

    DOEpatents

    Burgess, Jr., Lloyd W.; Goldman, Don S.

    1992-01-01

    There is disclosed an integrated spectrometer for chemical analysis by evanescent electromagnetic radiation absorption in a reaction volume. The spectrometer comprises a noninteractive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device. There is further disclosed a chemical sensor to determine the pressure and concentration of a chemical species in a mixture comprising an interactive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device.

  7. Live cell refractometry based on non-SPR microparticle sensor.

    PubMed

    Liu, Chang; Chen, David D Y; Yu, Lirong; Luo, Yong

    2013-06-01

    Unlike the nanoparticles with surface plasmon resonance, the optical response of polystyrene microparticles (PSMPs) is insensitive to the chemical components of the surrounding medium under the wavelength-dependent differential interference contrast microscopy. This fact is exploited for the measurement of the refractive index of cytoplasm in this study. PSMPs of 400 nm in diameter were loaded into the cell to contact cytoplasm seamlessly, and the refractive index information of cytoplasm could be extracted by differential interference contrast microscopy operated at 420 nm illumination wavelength through the contrast analysis of PSMPs images. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem.

    PubMed

    Weltin, Andreas; Slotwinski, Kinga; Kieninger, Jochen; Moser, Isabella; Jobst, Gerhard; Wego, Marcus; Ehret, Ralf; Urban, Gerald A

    2014-01-07

    We present a novel, multiparametric microphysiometry system for the dynamic online monitoring of human cancer cell metabolism. The optically transparent, modular, hybrid microsystem is based on a glass chip and combines a cell cultivation chamber, microfluidics and metabolic monitoring with fully integrated chemo- and biosensors. pH and oxygen are measured in the cell culture area, and biosensors for lactate and glucose are connected downstream by microfluidics. The wafer-level fabrication features thin-film platinum and iridium oxide microelectrodes on a glass chip, microfluidics in an epoxy resist, a hybrid assembly and an on-chip reference electrode. The reliable analytical performance of the sensors in cell culture medium was demonstrated. The pH sensors exhibit a long-term stable, linear response. The oxygen sensors show a linear behaviour, which is also observed for low oxygen concentrations. Glucose and lactate measurements show a linear, long-term stable, selective and reversible behaviour in the desired range. T98G human brain cancer cells were cultivated and cell culture metabolism was measured on-chip. Stop/flow cycles were applied and extracellular acidification, respiration, glucose consumption and lactate production were quantified. Long-term metabolic rates were determined and all parameters could be measured in the outlet channel. A placement downstream of the cell cultivation area for biosensors was realised. A highly effective medium exchange and undiluted sampling from the cell culture chamber with low flow rates (2 μl min(-1)) and low volumes (15 μl per cycle) were achieved. The drug screening application was demonstrated by detecting alteration and recovery effects of cellular metabolism induced by the addition of substances to the medium.

  9. Protein-specific localization of a rhodamine-based calcium-sensor in living cells.

    PubMed

    Best, Marcel; Porth, Isabel; Hauke, Sebastian; Braun, Felix; Herten, Dirk-Peter; Wombacher, Richard

    2016-06-28

    A small synthetic calcium sensor that can be site-specifically coupled to proteins in living cells by utilizing the bio-orthogonal HaloTag labeling strategy is presented. We synthesized an iodo-derivatized BAPTA chelator with a tetramethyl rhodamine fluorophore that allows further modification by Sonogashira cross-coupling. The presented calcium sensitive dye shows a 200-fold increase in fluorescence upon calcium binding. The derivatization with an aliphatic linker bearing a terminal haloalkane-function by Sonogashira cross-coupling allows the localization of the calcium sensor to Halo fusion proteins which we successfully demonstrate in in vitro and in vivo experiments. The herein reported highly sensitive tetramethyl rhodamine based calcium indicator, which can be selectively localized to proteins, is a powerful tool to determine changes in calcium levels inside living cells with spatiotemporal resolution.

  10. Method of detecting defects in ion exchange membranes of electrochemical cells by chemochromic sensors

    SciTech Connect

    Brooker, Robert Paul; Mohajeri, Nahid

    2016-01-05

    A method of detecting defects in membranes such as ion exchange membranes of electrochemical cells. The electrochemical cell includes an assembly having an anode side and a cathode side with the ion exchange membrane in between. In a configuration step a chemochromic sensor is placed above the cathode and flow isolation hardware lateral to the ion exchange membrane which prevents a flow of hydrogen (H.sub.2) between the cathode and anode side. The anode side is exposed to a first reactant fluid including hydrogen. The chemochromic sensor is examined after the exposing for a color change. A color change evidences the ion exchange membrane has at least one defect that permits H.sub.2 transmission therethrough.

  11. A smart sensor architecture based on emergent computation in an array of outer-totalistic cells

    NASA Astrophysics Data System (ADS)

    Dogaru, Radu; Dogaru, Ioana; Glesner, Manfred

    2005-06-01

    A novel smart-sensor architecture is proposed, capable to segment and recognize characters in a monochrome image. It is capable to provide a list of ASCII codes representing the recognized characters from the monochrome visual field. It can operate as a blind's aid or for industrial applications. A bio-inspired cellular model with simple linear neurons was found the best to perform the nontrivial task of cropping isolated compact objects such as handwritten digits or characters. By attaching a simple outer-totalistic cell to each pixel sensor, emergent computation in the resulting cellular automata lattice provides a straightforward and compact solution to the otherwise computationally intensive problem of character segmentation. A simple and robust recognition algorithm is built in a compact sequential controller accessing the array of cells so that the integrated device can provide directly a list of codes of the recognized characters. Preliminary simulation tests indicate good performance and robustness to various distortions of the visual field.

  12. Photocatalytically Renewable Micro-electrochemical Sensor for Real-Time Monitoring of Cells.

    PubMed

    Xu, Jia-Quan; Liu, Yan-Ling; Wang, Qian; Duo, Huan-Huan; Zhang, Xin-Wei; Li, Yu-Tao; Huang, Wei-Hua

    2015-11-23

    Electrode fouling and passivation is a substantial and inevitable limitation in electrochemical biosensing, and it is a great challenge to efficiently remove the contaminant without changing the surface structure and electrochemical performance. Herein, we propose a versatile and efficient strategy based on photocatalytic cleaning to construct renewable electrochemical sensors for cell analysis. This kind of sensor was fabricated by controllable assembly of reduced graphene oxide (RGO) and TiO2 to form a sandwiching RGO@TiO2 structure, followed by deposition of Au nanoparticles (NPs) onto the RGO shell. The Au NPs-RGO composite shell provides high electrochemical performance. Meanwhile, the encapsulated TiO2 ensures an excellent photocatalytic cleaning property. Application of this renewable microsensor for detection of nitric oxide (NO) release from cells demonstrates the great potential of this strategy in electrode regeneration and biosensing.

  13. TRPV4 ion channel as important cell sensors.

    PubMed

    Shibasaki, Koji

    2016-12-01

    This review provides a summary of the physiological significance of the TRPV4 ion channel. Although TRPV4 was initially characterized as an osmosensor, we found that TRPV4 can also act as a thermosensor or a mechanosensor in brain neurons or epithelial cells in the urinary bladder. Here, we summarize the newly characterized functions of TRPV4, including the research progress that has been made toward our understanding of TRPV4 physiology, and discuss other recent data pertaining to TRPV4. It is thought that TRPV4 may be an important drug target based on its broad expression patterns and important physiological functions. Possible associations between diseases and TRPV4 are also discussed.

  14. New light sensor molecules of single-cell ciliates

    NASA Astrophysics Data System (ADS)

    Tao, Nengbing; Song, Pill-Soon

    1994-05-01

    The unicellular ciliate, Stentor coeruleus, exhibits sensitive light-avoiding behavior. The photosensor stentorin showed a (M - H)- at 591.1304, which is in accord with the formula C34H23O10. Acetylated stentorin, when FAB-desorbed as (M + H)+, shows a series of ions indicating the presence of eight hydroxyl groups. Additional confirmation is a collisionally activated decomposition (CAD) spectrum of the (M + H)+ of the octaacetate. The NMR spectrum of stentorin shows characteristic signals of isopropyl groups. Similar studies indicate that photosensor blepharismin from Blepharisma japonicum is structurally different from stentorin. Time-resolved fluorescence decays indicated that a primary event occurs within a few picoseconds. The stimulus light signal absorbed/perceived by Stentor and possibly by Blepharisma, is apparently amplified by a transient calcium influx into the cell. Preliminary studies suggest that signal transduction in both organisms utilizes G-protein(s) as an initial transducer and a cGMP-phosphodiesterase as the effector system, analogous to the visual system of higher animals.

  15. Fabricated nano-fiber diameter as liquid concentration sensors

    NASA Astrophysics Data System (ADS)

    Chyad, Radhi M.; Mat Jafri, Mohd Zubir; Ibrahim, Kamarulazizi

    Nanofiber is characterized by thin, long, and very soft silica. Taper fibers are made using an easy and low cost chemical method. Etching is conducted with a HF solution to remove cladding and then a low molarity HF solution to reduce the fiber core diameter. One approach to on-line monitoring of the etching process uses spectrophotometer with a white light source. In the aforementioned technique, this method aims to determine the diameter of the reduced core and show the evolution of the two different processes from the nanofiber regime to the fixed regime in which the mode was remote from the surrounding evanescent field, intensity can propagate outside the segment fiber when the core diameter is less than 500 nm. Manufacturing technologies of nano-fiber sensors offer a number of approved properties of optical fiber sensors utilized in various sensory applications. The nano-fiber sensor is utilized to sense the difference in the concentration of D-glucose in double-distilled deionized water and to measure the refractive index (RI) of a sugar solution. Our proposed method exhibited satisfactory capability based on bimolecular interactions in the biological system. The response of the nano-fiber sensors indicates a different kind of interaction among various groups of AAs. These results can be interpreted in terms of solute-solute and solute-solvent interactions and the structure making or breaking ability of solutes in the given solution. This study utilized spectra photonics to measure the transmission of light through different concentrations of sugar solution, employing cell cumber and nano-optical fibers as sensors.

  16. Mechanical dynamics in live cells and fluorescence-based force/tension sensors.

    PubMed

    Yang, Chao; Zhang, Xiaohan; Guo, Yichen; Meng, Fanjie; Sachs, Frederick; Guo, Jun

    2015-08-01

    Three signaling systems play the fundamental roles in modulating cell activities: chemical, electrical, and mechanical. While the former two are well studied, the mechanical signaling system is still elusive because of the lack of methods to measure structural forces in real time at cellular and subcellular levels. Indeed, almost all biological processes are responsive to modulation by mechanical forces that trigger dispersive downstream electrical and biochemical pathways. Communication among the three systems is essential to make cells and tissues receptive to environmental changes. Cells have evolved many sophisticated mechanisms for the generation, perception and transduction of mechanical forces, including motor proteins and mechanosensors. In this review, we introduce some background information about mechanical dynamics in live cells, including the ubiquitous mechanical activity, various types of mechanical stimuli exerted on cells and the different mechanosensors. We also summarize recent results obtained using genetically encoded FRET (fluorescence resonance energy transfer)-based force/tension sensors; a new technique used to measure mechanical forces in structural proteins. The sensors have been incorporated into many specific structural proteins and have measured the force gradients in real time within live cells, tissues, and animals.

  17. Bioanalytical and chemical sensors using living taste, olfactory, and neural cells and tissues: a short review.

    PubMed

    Wu, Chunsheng; Lillehoj, Peter B; Wang, Ping

    2015-11-07

    Biosensors utilizing living tissues and cells have recently gained significant attention as functional devices for chemical sensing and biochemical analysis. These devices integrate biological components (i.e. single cells, cell networks, tissues) with micro-electro-mechanical systems (MEMS)-based sensors and transducers. Various types of cells and tissues derived from natural and bioengineered sources have been used as recognition and sensing elements, which are generally characterized by high sensitivity and specificity. This review summarizes the state of the art in tissue- and cell-based biosensing platforms with an emphasis on those using taste, olfactory, and neural cells and tissues. Many of these devices employ unique integration strategies and sensing schemes based on sensitive transducers including microelectrode arrays (MEAs), field effect transistors (FETs), and light-addressable potentiometric sensors (LAPSs). Several groups have coupled these hybrid biosensors with microfluidics which offers added benefits of small sample volumes and enhanced automation. While this technology is currently limited to lab settings due to the limited stability of living biological components, further research to enhance their robustness will enable these devices to be employed in field and clinical settings.

  18. Simultaneous Live Cell Imaging Using Dual FRET Sensors with a Single Excitation Light

    PubMed Central

    Niino, Yusuke; Hotta, Kohji; Oka, Kotaro

    2009-01-01

    Fluorescence resonance energy transfer (FRET) between fluorescent proteins is a powerful tool for visualization of signal transduction in living cells, and recently, some strategies for imaging of dual FRET pairs in a single cell have been reported. However, these necessitate alteration of excitation light between two different wavelengths to avoid the spectral overlap, resulting in sequential detection with a lag time. Thus, to follow fast signal dynamics or signal changes in highly motile cells, a single-excitation dual-FRET method should be required. Here we reported this by using four-color imaging with a single excitation light and subsequent linear unmixing to distinguish fluorescent proteins. We constructed new FRET sensors with Sapphire/RFP to combine with CFP/YFP, and accomplished simultaneous imaging of cAMP and cGMP in single cells. We confirmed that signal amplitude of our dual FRET measurement is comparable to of conventional single FRET measurement. Finally, we demonstrated to monitor both intracellular Ca2+ and cAMP in highly motile cardiac myocytes. To cancel out artifacts caused by the movement of the cell, this method expands the applicability of the combined use of dual FRET sensors for cell samples with high motility. PMID:19551140

  19. Mechanical dynamics in live cells and fluorescence-based force/tension sensors

    PubMed Central

    Yang, Chao; Zhang, Xiaohan; Guo, Yichen; Meng, Fanjie; Sachs, Frederick; Guo, Jun

    2016-01-01

    Three signaling systems play the fundamental roles in modulating cell activities: chemical, electrical, and mechanical. While the former two are well studied, the mechanical signaling system is still elusive because of the lack of methods to measure structural forces in real time at cellular and subcellular levels. Indeed, almost all biological processes are responsive to modulation by mechanical forces that trigger dispersive downstream electrical and biochemical pathways. Communication among the three systems is essential to make cells and tissues receptive to environmental changes. Cells have evolved many sophisticated mechanisms for the generation, perception and transduction of mechanical forces, including motor proteins and mechanosensors. In this review, we introduce some background information about mechanical dynamics in live cells, including the ubiquitous mechanical activity, various types of mechanical stimuli exerted on cells and the different mechanosensors. We also summarize recent results obtained using genetically encoded FRET (fluorescence resonance energy transfer)-based force/tension sensors; a new technique used to measure mechanical forces in structural proteins. The sensors have been incorporated into many specific structural proteins and have measured the force gradients in real time within live cells, tissues, and animals. PMID:25958335

  20. Development of a diagnostic sensor for measuring blood cell concentrations during haemoconcentration.

    PubMed

    Robertson, Craig A; Gourlay, Terence

    2017-03-01

    HemoSep(®) is a commercial ultrafiltration and haemoconcentration device for the concentration of residual bypass blood following surgery. This technology is capable of reducing blood loss in cardiac and other types of "clean site" procedures, including paediatric surgery. Clinical feedback suggested that the device would be enhanced by including a sensor technology capable of discerning the concentration level of the processed blood product. We sought to develop a novel sensor that can, using light absorption, give an accurate estimate of packed cell volume (PCV). A sensor-housing unit was 3D printed and the factors influencing the sensor's effectiveness - supply voltage, sensitivity and emitter intensity - were optimised. We developed a smart system, using comparator circuitry capable of visually informing the user when adequate PCV levels (⩾35%) are attained by HemoSep(®) blood processing, which ultimately indicates that the blood is ready for autotransfusion. Our data demonstrated that the device was capable of identifying blood concentration at and beyond the 35% PCV level. The device was found to be 100% accurate at identifying concentration levels of 35% from a starting level of 20%. The sensory capability was integrated into HemoSep's(®) current device and is designed to enhance the user's clinical experience and to optimise the benefits of HemoSep(®) therapy. The present study focused on laboratory studies using bovine blood. Further studies are now planned in the clinical setting to confirm the efficacy of the device.

  1. Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells

    SciTech Connect

    Plotnikov, Yuri Karp, Jason Knobloch, Aaron Kapusta, Chris Lin, David

    2015-03-31

    In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.

  2. Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells

    NASA Astrophysics Data System (ADS)

    Plotnikov, Yuri; Karp, Jason; Knobloch, Aaron; Kapusta, Chris; Lin, David

    2015-03-01

    In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.

  3. Final report on the application of chaos theory to an alumina sensor for aluminum reduction cells

    SciTech Connect

    Williford, R.E.; Windisch, C.F. Jr.

    1992-03-01

    Four chaos-related digital signal analysis (DSA) methods were applied to the analysis of voltage and current signals collected from aluminum electrolysis cells. Two separate data bases were analyzed: bench-scale laboratory experiments and a pilot-scale test. The objective was to assess the feasibility of using these types of data and analysis methods as the basis for a non-intrusive sensor to measure the alumina content in the electrolysis bath. This was the first time chaos theory approaches have been employed to analyze aluminum electrolysis cells.

  4. High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays

    PubMed Central

    Cermak, Nathan; Olcum, Selim; Delgado, Francisco Feijó; Wasserman, Steven C.; Payer, Kristofor R.; Murakami, Mark; Knudsen, Scott M.; Kimmerling, Robert J.; Stevens, Mark M.; Kikuchi, Yuki; Sandikci, Arzu; Ogawa, Masaaki; Agache, Vincent; Baléras, François; Weinstock, David M.; Manalis, Scott R.

    2016-01-01

    Methods to rapidly assess cell growth would be useful for many applications, including drug susceptibility testing, but current technologies have limited sensitivity or throughput. Here we present an approach to precisely and rapidly measure growth rates of many individual cells simultaneously. We flow cells in suspension through a microfluidic channel with 10–12 resonant mass sensors distributed along its length, weighing each cell repeatedly over the 4–20 min it spends in the channel. Because multiple cells traverse the channel at the same time, we obtain growth rates for >60 cells/h with a resolution of 0.2 pg/h for mammalian cells and 0.02 pg/h for bacteria. We measure the growth of single lymphocytic cells, mouse and human T cells, primary human leukemia cells, yeast, Escherichia coli and Enterococcus faecalis. Our system reveals subpopulations of cells with divergent growth kinetics and enables assessment of cellular responses to antibiotics and antimicrobial peptides within minutes. PMID:27598230

  5. Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors

    NASA Astrophysics Data System (ADS)

    Meyer, Andreas; Pellaux, René; Potot, Sébastien; Becker, Katja; Hohmann, Hans-Peter; Panke, Sven; Held, Martin

    2015-08-01

    Microcompartmentalization offers a high-throughput method for screening large numbers of biocatalysts generated from genetic libraries. Here we present a microcompartmentalization protocol for benchmarking the performance of whole-cell biocatalysts. Gel capsules served as nanolitre reactors (nLRs) for the cultivation and analysis of a library of Bacillus subtilis biocatalysts. The B. subtilis cells, which were co-confined with E. coli sensor cells inside the nLRs, converted the starting material cellobiose into the industrial product vitamin B2. Product formation triggered a sequence of reactions in the sensor cells: (1) conversion of B2 into flavin mononucleotide (FMN), (2) binding of FMN by a RNA riboswitch and (3) self-cleavage of RNA, which resulted in (4) the synthesis of a green fluorescent protein (GFP). The intensity of GFP fluorescence was then used to isolate B. subtilis variants that convert cellobiose into vitamin B2 with elevated efficiency. The underlying design principles of the assay are general and enable the development of similar protocols, which ultimately will speed up the optimization of whole-cell biocatalysts.

  6. Microplates with integrated oxygen sensors for kinetic cell respiration measurement and cytotoxicity testing in primary and secondary cell lines.

    PubMed

    Deshpande, Rahul Ravi; Koch-Kirsch, Yvonne; Maas, Ruth; John, Gernot T; Krause, Christian; Heinzle, Elmar

    2005-06-01

    This paper presents a cytotoxicity and cell respiration assay that is nondestructive and kinetic. It makes use of 96-well microplates integrated with oxygen sensors. The oxygen signal monitored on-line gives an indication of the cell viability. We show its application for suspension cell lines (Chinese hamster ovary and HL60 cells) as well as adherent (Caco2 cells) and primary (rat hepatocytes) cells using well-known cytotoxic compounds (sodium azide, diclofenac, clozapine, sodium dodecyl sulfate, 2-thiouracil, tamoxifen, and tranylcypromine). The 50% lethality concentration (LC50) obtained from the assay is compared with the standard 3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyl-2H-tetrazolium bromide end-point assay. The cells can be grown directly in the plates, and the assay requires no further reagents or processing. The cells can be harvested for further analysis, if required. The on-line dynamic measurement allows the calculation of LC50 as a function of exposure time. LC50 was shown to decrease with time in HL60 cells. The dynamics of this process was considerably different for the three compounds sodium dodecyl sulfate, tamoxifen, and diclofenac, indicating a large potential of application of this method for cell death studies. The assay system can be applied to almost any cell-based systems with little adaptation. The assay is robust, flexible, and applicable for medium- to high-throughput systems requiring only minimal handling and no additional agent.

  7. Gas-cell measurements for evaluating longwave-infrared passive-sensor performance

    NASA Astrophysics Data System (ADS)

    Cummings, Alan S.; Combs, Roger J.; Thomas, Mark J.; Curry, Timothy; Kroutil, Robert T.

    2006-10-01

    A longwave-infrared (LWIR) passive-spectrometer performance was evaluated with a short-pathlength gas cell. This cell was accurately positioned between the sensor and a NIST-traceable blackbody radiance source. Cell contents were varied over the Beer's Law absorbance range from the limit of detection to saturation for the gas analytes of sulfur hexafluoride and hexafluoroethane. The spectral impact of saturation on infrared absorbance was demonstrated for the passive sensor configuration. The gas-cell contents for all concentration-pathlength products was monitored with an active traditional-laboratory Fourier Transform Infrared (FTIR) spectrometer and was verified by comparison with the established PNNL/DOE vapor-phase infrared (IR) spectral database. For the passive FTIR measurements, the blackbody source employed a range of background temperatures from 5 °C to 50 °C. The passive measurements without the presence of a gas cell permitted a determination of the noise equivalent spectral noise (NESR) for each set of passive gas-cell measurements. In addition, the no-cell condition allowed the evaluation of the effect of gas cell window materials of low density poly(ethylene), potassium chloride, potassium bromide, and zinc selenide. The components of gas cell, different window materials, temperature differentials, and absorbances of target-analyte gases supplied the means of evaluating the LWIR performance of a passive FTIR spectrometer. The various LWIR-passive measurements were found to simulate those often encountered in open-air scenarios important to both industrial and environmental monitoring applications.

  8. Optofluidic restricted imaging, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids.

    PubMed

    Liang, L; Zuo, Y F; Wu, W; Zhu, X Q; Yang, Y

    2016-08-21

    Conventional flow cytometry (FC) suffers from the diffraction limit for the detection of nanoparticles smaller than 100 nm, whereas traditional total internal reflection (TIR) microscopy can only detect few samples near the solid-liquid interface mostly in static states. Here we demonstrate a novel on-chip optofluidic technique using evanescent wave sensing for single nanoparticle real time detection by combining hydrodynamic focusing and TIR using immiscible flows. The immiscibility of the high-index sheath flow and the low-index core flow naturally generate a smooth, flat and step-index interface that is ideal for the TIR effect, whose evanescent field can penetrate the full width of the core flow. Hydrodynamic focusing can focus on all the nanoparticles in the extreme centre of the core flow with a width smaller than 1 μm. This technique enables us to illuminate every single sample in the running core flow by the evanescent field, leaving none unaffected. Moreover, it works well for samples much smaller than the diffraction limit. We have successfully demonstrated the scattering imaging and counting of 50 nm and 100 nm Au nanoparticles and also the fluorescence imaging and counting of 200 nm beads. The effective counting speeds are estimated as 1500, 2300 and 2000 particles per second for the three types of nanoparticles, respectively. The optical scattering spectra were also measured to determine the size of individual Au nanoparticles. This provides a new technique to detect nanoparticles and we foresee its application in the detection of molecules for biomedical analyses.

  9. Evanescent field enhancement and dipole radiation in the presence of multilayer thin films

    NASA Astrophysics Data System (ADS)

    Luan, Lan

    Weak optical signals, e.g., Raman scattering, fluorescence emission, etc., are typically enhanced by increasing both the excitation field and the collection efficiency. Near a surface, signals can be resonantly enhanced using either surface plasmon polaritons or a resonant dielectric waveguide, provided the sources lie within an evanescent decay length of the surface. We have studied both of these strategies experimentally and also via numerical simulations. The evanescent field can be enhanced by an order of magnitude via surface plasmon resonance, and by several orders with a resonant dielectric waveguide. On the other hand, in order to efficiently collect the resulting emissions, we must know how they are distributed spatially, i.e. we must understand how the outgoing energy flux (the Poynting vector) depends on the radial distance and the polar and azimuthal angles of the observation point relative to the source, which we model as an electric dipole having some specified orientation. We have carried out calculations of these "radiation patterns" using the exact Sommerfeld integral formalism, generalized to apply to a multilayer system, which yields the field intensities at an arbitrary point relative to the source. We have also employed a computationally simpler approach based on the Lorentz reciprocity theorem that yields the fields in the asymptotic limit where the observation point is far from the source point; here only the radiation fields survive. We have compared the radiation patterns calculated by the above two methods for a single dipole positioned above a dielectric half space. We have also conducted a series of optical measurements to determine the dipole radiation patterns associated with embedded rhodamine B dye molecules in various multilayer structures. The radiation patterns are highly structured. Good agreement was achieved between the far-field simulations and the experimental results. A possible setup is proposed for utilizing both the

  10. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris

    DOEpatents

    Martinez, Jennifer S.; Swanson, Basil I.; Grace, Karen M.; Grace, Wynne K.; Shreve, Andrew P.

    2009-06-02

    An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  11. The DARPA HUMS program: revolutionizing magnetic field sensors using multiferroic materials and atomic gas vapor cells

    NASA Astrophysics Data System (ADS)

    Coblenz, William S.; Wartenberg, Scott A.

    2012-06-01

    The Heterostructural Uncooled Magnetic Sensors (HUMS) program sponsored by the Defense Advanced Research Projects Agency (DARPA/DSO) is focused on developing magnetic field sensors that operate at room temperature with an ultra-sensitivity to enable applications such as through-wall imaging, perimeter fences, tagging/tracking, and other man-portable operations. Four teams of researchers are participating in the program, with Virginia Tech and University of Maryland leading multiferroic heterostructural materials development and Princeton University and the National Institute of Standards and Technology (NIST) leading atomic vapor cell development. Leveraging the strengths of these two technologies, each team has made advancements towards the program goal of ground-breaking sensitivity, reduced noise, and portability while operating under room temperature conditions. This paper summarizes the program's achievements so far and highlights the accomplishments made by each team.

  12. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors.

    PubMed

    Chang, In Seop; Moon, Hyunsoo; Jang, Jae Kyung; Kim, Byung Hong

    2005-03-15

    Studies were made to improve the performance of a microbial fuel cell (MFC) as a biochemical oxygen demand (BOD) sensor. The signal from MFCs decreased in the presence of electron acceptors of higher redox potential such as nitrate and oxygen. The addition of azide and cyanide did not change the signal in the absence of the electron acceptors. The respiratory inhibitors eliminated the inhibitory effects of the electron acceptors on the current generation from MFCs. Similar results were obtained using oligotrophic MFCs fed with an environmental sample that contained nitrate. The use of the respiratory inhibitors is therefore recommended for the accurate BOD measurement of environmental samples containing nitrate and/or oxygen with an MFC-type BOD sensor.

  13. Differential microfluidic sensor on printed circuit board for biological cells analysis.

    PubMed

    Shi, Dongyuan; Guo, Jinhong; Chen, Liang; Xia, Chuncheng; Yu, Zhefeng; Ai, Ye; Li, Chang Ming; Kang, Yuejun; Wang, Zhiming

    2015-08-01

    Coulter principal based resistive pulse sensor has been demonstrated as an important platform in biological cell detection and enumeration since several decades ago. Recently, the miniaturized micro-Coulter counter has attracted much attention due to its advantages in point of care diagnostics for on chip detection and enumeration of rare cells, such as circulating tumor cells. In this paper, we present a microfluidic cytometer with differential amplifier based on Coulter principle on a SU-8 coated printed circuit board substrate. The electrical current changes induced by the blockage of the microparticles in the sensing aperture are calibrated by polystyrene particles of standard size. Finally, HeLa cells are used to evaluate the performance of the proposed device for enumeration of biological samples. The proposed cytometer is built upon the cheap and widely available printed circuit board substrate and shows its great potential as personalized healthcare monitor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hippo pathway elements Co-localize with Occludin: A possible sensor system in pancreatic epithelial cells

    PubMed Central

    Cravo, Ana Santos; Carter, Edward; Erkan, Mert; Harvey, Emma; Furutani-Seiki, Makoto; Mrsny, Randall

    2015-01-01

    External adherens junction-based cell-cell contacts involving E-cadherin interactions function to sense planar cell status and modulate epithelial cell proliferation through Hippo (Hpo) and non-canonical Wnt pathways signaling. We hypothesized these regulatory processes should also be sensitive to a similar cell-cell contact sensor associated with apical-basal polarity events at epithelial surfaces. We used 2 human pancreatic cancer cell lines to explore this hypothesis: one with the capacity to form functional tight junction structures and polarize (HPAFII) and one lacking this capacity (AsPc1). Occludin (Ocln), a tetraspanning protein associated with TJ structures and capable of establishing external cell-cell contacts, was observed to partially co-localize with Hpo elements YAP (c-yes associated protein) and TEAD (TEA-dependent), which function to drive a proliferative transcription program. Treatment with dobutamine, known to affect YAP, was shown to suppress proliferation in an Ocln-dependent manner. Blockade of protein kinase C-zeta (PKC-ζ) diminished transepithelial electrical resistance (TER) of HPAFII monolayers that was not corrected by dobutamine treatment while the loss of TER resulting from inhibition of ROCK1 could be partially recovered. Examination of normal and cancerous human pancreatic biopsies showed that the cellular localization of Ocln, c-Yes, YAP, and TEAD were similar to HPAFII for normal cells and AsPc1 for cancerous cells. Together, these results suggest a link between Hpo and signals emanating from cell-cell contacts involving Ocln that may regulate pancreatic cell proliferation through the coordination of planar cell polarity with apical-basal polarity events. PMID:26451343

  15. Hippo pathway elements Co-localize with Occludin: A possible sensor system in pancreatic epithelial cells.

    PubMed

    Cravo, Ana Santos; Carter, Edward; Erkan, Mert; Harvey, Emma; Furutani-Seiki, Makoto; Mrsny, Randall

    2015-01-01

    External adherens junction-based cell-cell contacts involving E-cadherin interactions function to sense planar cell status and modulate epithelial cell proliferation through Hippo (Hpo) and non-canonical Wnt pathways signaling. We hypothesized these regulatory processes should also be sensitive to a similar cell-cell contact sensor associated with apical-basal polarity events at epithelial surfaces. We used 2 human pancreatic cancer cell lines to explore this hypothesis: one with the capacity to form functional tight junction structures and polarize (HPAFII) and one lacking this capacity (AsPc1). Occludin (Ocln), a tetraspanning protein associated with TJ structures and capable of establishing external cell-cell contacts, was observed to partially co-localize with Hpo elements YAP (c-yes associated protein) and TEAD (TEA-dependent), which function to drive a proliferative transcription program. Treatment with dobutamine, known to affect YAP, was shown to suppress proliferation in an Ocln-dependent manner. Blockade of protein kinase C-zeta (PKC-ζ) diminished transepithelial electrical resistance (TER) of HPAFII monolayers that was not corrected by dobutamine treatment while the loss of TER resulting from inhibition of ROCK1 could be partially recovered. Examination of normal and cancerous human pancreatic biopsies showed that the cellular localization of Ocln, c-Yes, YAP, and TEAD were similar to HPAFII for normal cells and AsPc1 for cancerous cells. Together, these results suggest a link between Hpo and signals emanating from cell-cell contacts involving Ocln that may regulate pancreatic cell proliferation through the coordination of planar cell polarity with apical-basal polarity events.

  16. Evanescently pumped optofluidic distributed feedback lasers with aqueous gain fluids (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Karl, Markus; Whitworth, Guy L.; Schubert, Marcel; Dietrich, Christof P.; Samuel, Ifor D. W.; Turnbull, Graham A.; Gather, Malte C.

    2017-03-01

    Optofluidic biolasers are an emerging tool for bio-sensing and diagnostics. However, in order to facilitate waveguiding, the most common optofluidic distributed feedback (DFB) laser design relies on high-refractive index gain materials which are usually not biocompatible. We report the realization and characterization of evanescently pumped optofluidic DFB lasers with biocompatible aqueous gain fluids. Record low pump thresholds were achieved by optimizing the mode shape in the waveguide structure. Measuring the photonic band dispersion permits to sense the refractive index of the fluidic gain material. Different biological gain materials were studied on our devices.

  17. Evanescent-wave coupled right angled buried waveguide: Applications in carbon nanotube mode-locking

    SciTech Connect

    Mary, R.; Thomson, R. R.; Kar, A. K.; Brown, G.; Popa, D.; Sun, Z.; Torrisi, F.; Hasan, T.; Milana, S.; Bonaccorso, F.; Ferrari, A. C.

    2013-11-25

    We present an evanescent-field device based on a right-angled waveguide. This consists of orthogonal waveguides, with their points of intersection lying along an angled facet of the chip. Light guided along one waveguide is incident at the angled dielectric-air facet at an angle exceeding the critical angle, so that the totally internally reflected light is coupled into the second waveguide. By depositing a nanotube film on the angled surface, the chip is then used to mode-lock an Erbium doped fiber ring laser with a repetition rate of 26 MHz, and pulse duration of 800 fs.

  18. Evanescent wave amplification and subwavelength imaging by ultrathin uniaxial μ-near-zero material

    SciTech Connect

    Zhao, Yan

    2014-02-15

    We demonstrate strong evanescent wave amplification by a thin slab of uniaxial μ-near-zero (UMNZ) material. It is found that while retaining the same amplification effect, the slab can be made arbitrarily thin when the negative permeability along the axis of anisotropy approaches zero. Numerical results show that using a single layer of split-ring resonators (SRRs) with its thickness equal three thousandth of the incident wavelength (λ/3000), a subwavelength source distribution with λ/4 resolution can be transferred to a distance of λ/3.

  19. Equivalent material modelling of sandwich beams, evanescent solutions and damping investigations

    NASA Astrophysics Data System (ADS)

    de Rijk, Sophie; Nijman, Eugene

    2016-11-01

    A novel method for representing the transverse vibrations of sandwich beams as equivalent Timoshenko beams is developed. Special attention is given to damping modelling together with the evanescent parts of the solutions to assert applicability of the approach to any boundary conditions. Shear stiffness is evaluated based on current knowledge. The latter is then used to update the reference theory for vibrations in sandwich beams. Analytical case studies are presented to show the performance and limitations of the method and compared with experimental data.

  20. Swept-Source OCT Angiography Shows Sparing of the Choriocapillaris in Multiple Evanescent White Dot Syndrome.

    PubMed

    Yannuzzi, Nicolas A; Swaminathan, Swarup S; Zheng, Fang; Miller, Andrew; Gregori, Giovanni; Davis, Janet L; Rosenfeld, Philip J

    2017-01-01

    Two women with unilateral vision loss from multiple evanescent white dot syndrome were imaged serially with swept-source optical coherence tomography (SS-OCT). En face wide-field structural images revealed peripapillary outer photoreceptor disruption better than conventional fundus autofluorescence imaging. OCT angiography (OCTA) imaging showed preservation of flow within the retinal vasculature and choriocapillaris. As OCTA imaging of the choriocapillaris continues to evolve, these images may lay the groundwork for future investigation. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:69-74.].

  1. Simultaneous acquisition of absorption and fluorescence spectra of strong absorbers utilizing an evanescent supercontinuum.

    PubMed

    Kiefer, Johannes

    2016-12-15

    The determination of the absorption and emission spectra of strongly absorbing molecules is challenging, and the data can be biased by self-absorption of the fluorescence signal. To overcome this problem, a total internal reflection approach is proposed. The strongly absorbing sample is placed in an evanescent field of the radiation of a supercontinuum source. The collimated reflected light encodes the absorption spectrum, and the isotropic fluorescence emission is collected in a direction perpendicular to the surface at the same time. This ensures that the emitted light has a minimum possibility of self-absorption inside the sample.

  2. Single-particle evanescent light scattering simulations for total internal reflection microscopy

    NASA Astrophysics Data System (ADS)

    Helden, Laurent; Eremina, Elena; Riefler, Norbert; Hertlein, Christopher; Bechinger, Clemens; Eremin, Yuri; Wriedt, Thomas

    2006-10-01

    We simulate and measure light scattering of a micrometer-sized spherical particle suspended in solution close to a glass substrate. The model, based on the discrete sources method, is developed to describe the experimental situation of total internal reflection microscopy experiments; i.e., the particle is illuminated by an evanescent light field originating from the glass-solvent interface. In contrast to the well-established assumption of a simple exponential decay of the scattering intensity with distance, we demonstrate significant deviations for a certain range of penetration depths and polarization states of the incident light.

  3. Single-particle evanescent light scattering simulations for total internal reflection microscopy.

    PubMed

    Helden, Laurent; Eremina, Elena; Riefler, Norbert; Hertlein, Christopher; Bechinger, Clemens; Eremin, Yuri; Wriedt, Thomas

    2006-10-01

    We simulate and measure light scattering of a micrometer-sized spherical particle suspended in solution close to a glass substrate. The model, based on the discrete sources method, is developed to describe the experimental situation of total internal reflection microscopy experiments; i.e., the particle is illuminated by an evanescent light field originating from the glass-solvent interface. In contrast to the well-established assumption of a simple exponential decay of the scattering intensity with distance, we demonstrate significant deviations for a certain range of penetration depths and polarization states of the incident light.

  4. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Jang, Sung-Yeon; Han, Won-Suk; Bae, Mi-Kyung

    2010-02-01

    Employing graphene as an intracavity passive power modulating element, we demonstrate the efficient laser pulsation in high pulse-energy regime with evanescent field interaction between the propagating light and graphene layer. Graphene is prepared by the solution based reduction of graphene oxide, and dispersed homogeneously into the water for spray onto an all-fiber substrate, side-polished fiber. With the intracavity power up to 21.41 dBm, we ensure the robust high-energy operation without any thermal damage of graphene. Resultant output pulses have center wavelength, spectral width, and repetition rate of 1561.6 nm, 1.96 nm, and 6.99 MHz, respectively.

  5. PAS kinase as a nutrient sensor in neuroblastoma and hypothalamic cells required for the normal expression and activity of other cellular nutrient and energy sensors.

    PubMed

    Hurtado-Carneiro, Verónica; Roncero, Isabel; Blazquez, Enrique; Alvarez, Elvira; Sanz, Carmen

    2013-12-01

    PAS kinase (PASK) is a nutrient sensor that is highly conserved throughout evolution. PASK-deficient mice reveal a metabolic phenotype similar to that described in S6 kinase-1 S6K1-deficient mice that are protected against obesity. Hypothalamic metabolic sensors, such as AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR), play an important role in feeding behavior, the homeostasis of body weight, and energy balance. These sensors respond to changes in nutrient levels in the hypothalamic areas involved in feeding behavior and in neuroblastoma N2A cells, and we have recently reported that those effects are modulated by the anorexigenic peptide glucagon-like peptide-1 (GLP-1). Here, we identified PASK in both N2A cells and rat VMH and LH areas and found that its expression is regulated by glucose and GLP-1. High levels of glucose decreased Pask gene expression. Furthermore, PASK-silenced N2A cells record an impaired response by the AMPK and mTOR/S6K1 pathways to changes in glucose levels. Likewise, GLP-1 effect on the activity of AMPK, S6K1, and other intermediaries of both pathways and the regulatory role at the level of gene expression were also blocked in PASK-silenced cells. The absence of response to low glucose concentrations in PASK-silenced cells correlates with increased ATP content, low expression of mRNA coding for AMPK upstream kinase LKB1, and enhanced activation of S6K1. Our findings indicate that, at least in N2A cells, PASK is a key kinase in GLP-1 actions and exerts a coordinated response with the other metabolic sensors, suggesting that PASK might play an important role in feeding behavior.

  6. Studies of Hematopoietic Cell Differentiation with a Ratiometric and Reversible Sensor of Mitochondrial Reactive Oxygen Species

    PubMed Central

    Kaur, Amandeep; Jankowska, Karolina; Pilgrim, Chelsea; Fraser, Stuart T.

    2016-01-01

    Abstract Aims: Chronic elevations in cellular redox state are known to result in the onset of various pathological conditions, but transient increases in reactive oxygen species (ROS)/reactive nitrogen species (RNS) are necessary for signal transduction and various physiological functions. There is a distinct lack of reversible fluorescent tools that can aid in studying and unraveling the roles of ROS/RNS in physiology and pathology by monitoring the variations in cellular ROS levels over time. In this work, we report the development of ratiometric fluorescent sensors that reversibly respond to changes in mitochondrial redox state. Results: Photophysical studies of the developed flavin–rhodamine redox sensors, flavin–rhodamine redox sensor 1 (FRR1) and flavin–rhodamine redox sensor 2 (FRR2), confirmed the reversible response of the probes upon reduction and re-oxidation over more than five cycles. The ratiometric output of FRR1 and FRR2 remained unaltered in the presence of other possible cellular interferants (metals and pH). Microscopy studies indicated clear mitochondrial localization of both probes, and FRR2 was shown to report the time-dependent increase of mitochondrial ROS levels after lipopolysaccharide stimulation in macrophages. Moreover, it was used to study the variations in mitochondrial redox state in mouse hematopoietic cells at different stages of embryonic development and maturation. Innovation: This study provides the first ratiometric and reversible probes for ROS, targeted to the mitochondria, which reveal variations in mitochondrial ROS levels at different stages of embryonic and adult blood cell production. Conclusions: Our results suggest that with their ratiometric and reversible outputs, FRR1 and FRR2 are valuable tools for the future study of oxidative stress and its implications in physiology and pathology. Antioxid. Redox Signal. 24, 667–679. PMID:26865422

  7. Micromachined nanocalorimetric sensor for ultra-low-volume cell-based assays.

    PubMed

    Johannessen, Erik A; Weaver, John M R; Bourova, Lenka; Svoboda, Petr; Cobbold, Peter H; Cooper, Jonathan M

    2002-05-01

    Current strategies for cell-based screening generally focus on the development of highly specific assays, which require an understanding of the nature of the signaling molecules and cellular pathways involved. In contrast, changes in temperature of cells provides a measure of altered cellular metabolism that is not stimulus specific and hence could have widespread applications in cell-based screening of receptor agonists and antagonists, as well as in the assessment of toxicity of new lead compounds. Consequently, we have developed a micromachined nanocalorimetric biological sensor using a small number of isolated living cells integrated within a subnanoliter format, which is capable of detecting 13 nW of generated power from the cells, upon exposure to a chemical or pharmaceutical stimulus. The sensor comprises a 10-junction gold and nickel thermopile, integrated on a silicon chip which was back-etched to span a 800-nm-thick membrane of silicon nitride. The thin-film membrane, which supported the sensing junctions of the thermoelectric transducer, gave the system a temperature resolution of 0.125 mK, a low heat capacity of 1.2 nJ mK(-1), and a rapid (unfiltered) response time of 12 ms. The application of the system in ultra-low-volume cell-based assays could provide a rapid endogenous screen. It offers important additional advantages over existing methods in that it is generic in nature, it does not require the use of recombinant cell lines or of detailed assay development, and finally, it can enable the use of primary cell lines or tissue biopsies.

  8. Evaluation of the Paratrend Multi-Analyte Sensor for Potential Utilization in Long-Duration Automated Cell Culture Monitoring

    NASA Technical Reports Server (NTRS)

    Hwang, Emma Y.; Pappas, Dimitri; Jeevarajan, Antony S.; Anderson, Melody M.

    2004-01-01

    BACKGROUND: Compact and automated sensors are desired for assessing the health of cell cultures in biotechnology experiments. While several single-analyte sensors exist to measure culture health, a multi-analyte sensor would simplify the cell culture system. One such multi-analyte sensor, the Paratrend 7 manufactured by Diametrics Medical, consists of three optical fibers for measuring pH, dissolved carbon dioxide (pCO(2)), dissolved oxygen (pO(2)), and a thermocouple to measure temperature. The sensor bundle was designed for intra-vascular measurements in clinical settings, and can be used in bioreactors operated both on the ground and in NASA's Space Shuttle and International Space Station (ISS) experiments. METHODS: A Paratrend 7 sensor was placed at the outlet of a bioreactor inoculated with BHK-21 (baby hamster kidney) cells. The pH, pCO(2), pO(2), and temperature data were transferred continuously to an external computer. Cell culture medium, manually extracted from the bioreactor through a sampling port, was also assayed using a bench top blood gas analyzer (BGA). RESULTS: Two Paratrend 7 sensors were used over a single cell culture experiment (64 days). When compared to the manually obtained BGA samples, the sensor had good agreement for pH, pCO(2), and pO(2) with bias (and precision) 0.005(0.024), 8.0 mmHg (4.4 mmHg), and 11 mmHg (17 mmHg), respectively for the first two sensors. A third Paratrend sensor (operated for 141 days) had similar agreement (0.02+/-0.15 for pH, -4+/-8 mm Hg for pCO(2), and 24+/-18 mmHg for pO(2)). CONCLUSION: The resulting biases and precisions are com- parable to Paratrend sensor clinical results. Although the pO(2) differences may be acceptable for clinically relevant measurement ranges, the O(2) sensor in this bundle may not be reliable enough for the ranges of pO(2) in these cell culture studies without periodic calibration.

  9. Evaluation of the paratrend multi-analyte sensor for potential utilization in long-duration automated cell culture monitoring.

    PubMed

    Hwang, Emma Y; Pappas, Dimitri; Jeevarajan, Antony S; Anderson, Melody M

    2004-09-01

    Compact and automated sensors are desired for assessing the health of cell cultures in biotechnology experiments. While several single-analyte sensors exist to measure culture health, a multi-analyte sensor would simplify the cell culture system. One such multi-analyte sensor, the Paratrend 7 manufactured by Diametrics Medical, consists of three optical fibers for measuring pH, dissolved carbon dioxide (pCO(2)), dissolved oxygen (pO(2)), and a thermocouple to measure temperature. The sensor bundle was designed for intra-vascular measurements in clinical settings, and can be used in bioreactors operated both on the ground and in NASA's Space Shuttle and International Space Station (ISS) experiments. A Paratrend 7 sensor was placed at the outlet of a bioreactor inoculated with BHK-21 (baby hamster kidney) cells. The pH, pCO(2), pO(2), and temperature data were transferred continuously to an external computer. Cell culture medium, manually extracted from the bioreactor through a sampling port, was also assayed using a bench top blood gas analyzer (BGA). Two Paratrend 7 sensors were used over a single cell culture experiment (64 days). When compared to the manually obtained BGA samples, the sensor had good agreement for pH, pCO(2), and pO(2) with bias (and precision) 0.005(0.024), 8.0 mmHg (4.4 mmHg), and 11 mmHg (17 mmHg), respectively for the first two sensors. A third Paratrend sensor (operated for 141 days) had similar agreement (0.02+/-0.15 for pH, -4+/-8 mm Hg for pCO(2), and 24+/-18 mmHg for pO(2)). The resulting biases and precisions are com- parable to Paratrend sensor clinical results. Although the pO(2) differences may be acceptable for clinically relevant measurement ranges, the O(2) sensor in this bundle may not be reliable enough for the ranges of pO(2) in these cell culture studies without periodic calibration.

  10. Evaluation of the Paratrend Multi-Analyte Sensor for Potential Utilization in Long-Duration Automated Cell Culture Monitoring

    NASA Technical Reports Server (NTRS)

    Hwang, Emma Y.; Pappas, Dimitri; Jeevarajan, Antony S.; Anderson, Melody M.

    2004-01-01

    BACKGROUND: Compact and automated sensors are desired for assessing the health of cell cultures in biotechnology experiments. While several single-analyte sensors exist to measure culture health, a multi-analyte sensor would simplify the cell culture system. One such multi-analyte sensor, the Paratrend 7 manufactured by Diametrics Medical, consists of three optical fibers for measuring pH, dissolved carbon dioxide (pCO(2)), dissolved oxygen (pO(2)), and a thermocouple to measure temperature. The sensor bundle was designed for intra-vascular measurements in clinical settings, and can be used in bioreactors operated both on the ground and in NASA's Space Shuttle and International Space Station (ISS) experiments. METHODS: A Paratrend 7 sensor was placed at the outlet of a bioreactor inoculated with BHK-21 (baby hamster kidney) cells. The pH, pCO(2), pO(2), and temperature data were transferred continuously to an external computer. Cell culture medium, manually extracted from the bioreactor through a sampling port, was also assayed using a bench top blood gas analyzer (BGA). RESULTS: Two Paratrend 7 sensors were used over a single cell culture experiment (64 days). When compared to the manually obtained BGA samples, the sensor had good agreement for pH, pCO(2), and pO(2) with bias (and precision) 0.005(0.024), 8.0 mmHg (4.4 mmHg), and 11 mmHg (17 mmHg), respectively for the first two sensors. A third Paratrend sensor (operated for 141 days) had similar agreement (0.02+/-0.15 for pH, -4+/-8 mm Hg for pCO(2), and 24+/-18 mmHg for pO(2)). CONCLUSION: The resulting biases and precisions are com- parable to Paratrend sensor clinical results. Although the pO(2) differences may be acceptable for clinically relevant measurement ranges, the O(2) sensor in this bundle may not be reliable enough for the ranges of pO(2) in these cell culture studies without periodic calibration.

  11. On-chip integrated lensless fluorescence microscopy/spectroscopy module for cell-based sensors

    NASA Astrophysics Data System (ADS)

    Li, Wei; Knoll, Thorsten; Sossalla, Adam; Bueth, Heiko; Thielecke, Hagen

    2011-03-01

    The integration of a fluorescence microscopy/spectroscopy module in cell-based lab-on-a-chip systems is of high interest for applications in cell-based diagnostics and substance evaluation in situ. We present an on-chip integrated lensless fluorescence imaging module applying the principle of contact/proximate optical lithography. The pixel resolution is comparable with a 4 x objective microscope. The module can be used for morphology and fluorescence imaging of mammalian cells (15 - 20 μm) as well as for testing the concentration of a fluorescent substance. The biological samples or solutions are sustained in disposable sterilized microfluidic chips with 1 μm thick silicon nitride (Si3N4) membranes. These chips are assembled on the surface of a 5 megapixel colored CMOS image sensor array with 1.75 μm pixel size, which is coated with an additional interference filter. Each culturing chip consists of a MEMS cavity chip and a PDMS microfluidic interface. The surface of the CMOS image sensor is smoothened using SU-8 photoresist spin-coating for a commercial grade interference filter (optical density >= 5) coating by Plasma-Ion Assisted Deposition thereafter. The function is demonstrated by primary imaging results of the non-/fluorescent mammalian cells/microspheres as well as by differentiating different concentrations of FITC solutions.

  12. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death.

    PubMed

    Duchen, M R

    1999-04-01

    Over recent years, it has become clear that mitochondria play a central role in many key aspects of animal physiology and pathophysiology. Their central and ubiquitous task is clearly the production of ATP. Nevertheless, they also play subtle roles in glucose homeostasis, acting as the sensor for substrate supply in the transduction pathway that promotes insulin secretion by the pancreatic -cell and that modulates the excitability of the hypothalamic glucose-sensitive neurons involved in appetite control. Mitochondria may also act as sensors of availability of oxygen, the other major mitochondrial substrate, in the regulation of respiration. Mitochondria take up calcium, and the high opacity mitochondrial calcium uptake pathway provides a mechanism that couples energy demand to increased ATP production through the calcium-dependent upregulation of mitochondrial enzyme activity. Mitochondrial calcium accumulation may also have a substantial impact on the spatiotemporal dynamics of cellular calcium signals, with subtle differences of detail in different cell types. Recent work has also revealed the centrality of mitochondrial dysfunction as an irreversible step in the pathway to both necrotic and apoptotic cell death. This review looks at recent developments in these rapidly evolving areas of cell physiology in an attempt to draw together disparate areas of research into a common theme.

  13. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis

    PubMed Central

    Córdoba, Ainara López; Ali, Tayyibah; Shevchuk, Andrew; Takahashi, Yasufumi; Novak, Pavel; Edwards, Christopher; Lab, Max; Gopal, Sahana; Chiappini, Ciro; Anand, Uma; Magnani, Luca; Coombes, R. Charles; Gorelik, Julia; Matsue, Tomokazu; Schuhmann, Wolfgang; Klenerman, David; Sviderskaya, Elena V.; Korchev, Yuri

    2016-01-01

    Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements. PMID:26816294

  14. The glucose sensor protein glucokinase is expressed in glucagon-producing alpha-cells.

    PubMed Central

    Heimberg, H; De Vos, A; Moens, K; Quartier, E; Bouwens, L; Pipeleers, D; Van Schaftingen, E; Madsen, O; Schuit, F

    1996-01-01

    Expression of glucokinase in hepatocytes and pancreatic 6-cells is of major physiologic importance to mammalian glucose homeostasis. Liver glucokinase catalyzes the first committed step in the disposal of glucose, and beta-cell glucokinase catalyzes a rate-limiting step required for glucose-regulated insulin release. The present study reports the expression of glucokinase in rat glucagon-producing alpha-cells, which are negatively regulated by glucose. Purified rat alpha-cells express glucokinase mRNA and protein with the same transcript length, nucleotide sequence, and immunoreactivity as the beta-cell isoform. Glucokinase activity accounts for more than 50% of glucose phosphorylation in extracts of alpha-cells and for more than 90% of glucose utilization in intact cells. The glucagon-producing tumor MSL-G-AN also contained glucokinase mRNA, protein, and enzymatic activity. These data indicate that glucokinase may serve as a metabolic glucose sensor in pancreatic alpha-cells and, hence, mediate a mechanism for direct regulation of glucagon release by extracellular glucose. Since these cells do not express Glut2, we suggest that glucose sensing does not necessarily require the coexpression of Glut2 and glucokinase. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8692940

  15. Volatile organic compound specific detection by electrochemical signals using a cell-based sensor.

    PubMed

    Chung, Sang Gwi; Kim, Jo Chun; Park, Chong-Ho; Ahn, Woong-Shick; Kim, Yong-Wan; Choi, Jeong-Woo

    2008-01-01

    A cell-based in vitro exposure system was developed to determine whether oxidative stress plays a role in the cytotoxic effects of volatile organic compounds (VOCs) such as benzene, toluene, xylene, and chlorobenzene, using human epithelial HeLa cells. Thin films based on cysteine-terminated synthetic oligopeptides were fabricated for immobilization of the HeLa cells on a gold (Au) substrate. In addition, an immobilized cell-based sensor was applied to the electrochemical detection of the VOCs. Layer formation and immobilization of the cells were investigated with surface plasmon resonance (SPR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The adhered living cells were exposed to VOCs; this caused a change in the SPR angle and the VOC-specific electrochemical signal. In addition, VOC toxicity was found to correlate with the degree of nitric oxide (NO) generation and EIS. The primary reason for the marked increase in impedance was the change of aqueous electrolyte composition as a result of cell responses. The p53 and NF-kappaB downregulation were closely related to the magnitude of growth inhibition associated with increasing concentrations of each VOC. Therefore, the proposed cell immobilization method, using a self-assembly technique and VOC-specific electrochemical signals, can be applied to construct a cell microarray for onsite VOC monitoring.

  16. Dispersive optomechanical coupling between a SiN nanomechanical oscillator and evanescent fields of a silica optical resonator

    NASA Astrophysics Data System (ADS)

    Dong, Chunhua; Htay Oo, Thein; Fiore, Victor; Wang, Hailin

    2013-03-01

    Tensile stressed SiN nanostrings can feature a picogram effective mass and a mechanical Q-factor exceeding a million. These remarkable nanomechanical oscillators can be dispersively-coupled to an ultra-high finesse optical microresonator via its evanescent field. This composite optomechanical system can potentially lead to a cooperativity that far exceeds that of monolithic optomechanical resonators. Here, we report an experimental study coupling a SiN nanostring to evanescent fields of a whispering gallery mode (WGM) in a silica microsphere. The slight deformation of the microsphere enables us to use free-space optical excitation to probe the optomechanical coupling. The dispersive coupling between a nanostring and the evanescent field of a WGM is generally expected to lead to a red shift in the resonance frequency of the WGM. Our experiments, however, reveal a blue frequency shift of the WGM. Detailed experimental studies and possible physical mechanisms for the blue shift will be presented.

  17. Propagation of evanescent waves in multimode chalcogenide fiber immersed in an aqueous acetone solution: theory and experiment

    NASA Astrophysics Data System (ADS)

    Korsakova, S. V.; Romanova, E. A.; Velmuzhov, A. P.; Kotereva, T. V.; Sukhanov, M. V.; Shiryaev, V. S.

    2017-04-01

    Chalcogenide fibers are considered as a base for creation of a fiber-optical platform for the mid-IR evanescent wave spectroscopy. In this work, transmittance of a multimode fiber made of Ge26As17Se25Te32 glass, immersed into an aqueous acetone solution was measured in the range of wavelengths 5 - 9 microns at various concentrations of the solution. A theoretical approach based on electromagnetic theory of optical fibers has been applied for analysis of evanescent modes propagation in the fiber. Attenuation coefficients calculated for each HE1m evanescent mode increase with the mode radial order m. This effect can be used for optimisation of the fiber-optic sensing elements for the mid-IR spectroscopy.

  18. A feasibility study of the use of bounded beams resembling the shape of evanescent and inhomogeneous waves.

    PubMed

    Declercq, Nico F; Leroy, Oswald

    2011-08-01

    Plane waves are solutions of the visco-elastic wave equation. Their wave vector can be real for homogeneous plane waves or complex for inhomogeneous and evanescent plane waves. Although interesting from a theoretical point of view, complex wave vectors normally only emerge naturally when propagation or scattering is studied of sound under the appearance of damping effects. Because of the particular behavior of inhomogeneous and evanescent waves and their estimated efficiency for surface wave generation, bounded beams, experimentally mimicking their infinite counterparts similar to (wide) Gaussian beams imitating infinite harmonic plane waves, are of special interest in this report. The study describes the behavior of bounded inhomogeneous and bounded evanescent waves in terms of amplitude and phase distribution as well as energy flow direction. The outcome is of importance to the applicability of bounded inhomogeneous ultrasonic waves for nondestructive testing.

  19. Optical Characterization of Commercial Lithiated Graphite Battery Electrodes and in Situ Fiber Optic Evanescent Wave Spectroscopy.

    PubMed

    Ghannoum, AbdulRahman; Norris, Ryan C; Iyer, Krishna; Zdravkova, Liliana; Yu, Aiping; Nieva, Patricia

    2016-07-27

    Optical characterization of graphite anodes in lithium ion batteries (LIB) is presented here for potential use in estimating their state of charge (SOC). The characterization is based on reflectance spectroscopy of the anode of commercial LIB cells and in situ optical measurements using an embedded optical fiber sensor. The optical characterization of the anode using wavelengths ranging from 500 to 900 nm supports the dominance of graphite over the solid electrolyte interface in governing the anode's reflectance properties. It is demonstrated that lithiated graphite's reflectance has a significant change in the near-infrared band, 750-900 nm, compared with the visible spectrum as a function of SOC. An embedded optical sensor is used to measure the transmittance of graphite anode in the near-infrared band, and the results suggest that a unique inexpensive method may be developed to estimate the SOC of a LIB.

  20. Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser.

    PubMed

    Lin, Yung-Hsiang; Yang, Chun-Yu; Liou, Jia-Hong; Yu, Chin-Ping; Lin, Gong-Ru

    2013-07-15

    A photonic crystal fiber (PCF) with high-quality graphene nano-particles uniformly dispersed in the hole cladding are demonstrated to passively mode-lock the erbium-doped fiber laser (EDFL) by evanescent-wave interaction. The few-layer graphene nano-particles are obtained by a stabilized electrochemical exfoliation at a threshold bias. These slowly and softly exfoliated graphene nano-particle exhibits an intense 2D band and an almost disappeared D band in the Raman scattering spectrum. The saturable phenomena of the extinction coefficient β in the cladding provides a loss modulation for the intracavity photon intensity by the evanescent-wave interaction. The evanescent-wave mode-locking scheme effectively enlarges the interaction length of saturable absorption with graphene nano-particle to provide an increasing transmittance ΔT of 5% and modulation depth of 13%. By comparing the core-wave and evanescent-wave mode-locking under the same linear transmittance, the transmittance of the graphene nano-particles on the end-face of SMF only enlarges from 0.54 to 0.578 with ΔT = 3.8% and the modulation depth of 10.8%. The evanescent wave interaction is found to be better than the traditional approach which confines the graphene nano-particles at the interface of two SMF patchcords. When enlarging the intra-cavity gain by simultaneously increasing the pumping current of 980-nm and 1480-nm pumping laser diodes (LDs) to 900 mA, the passively mode-locked EDFL shortens its pulsewidth to 650 fs and broadens its spectral linewidth to 3.92 nm. An extremely low carrier amplitude jitter (CAJ) of 1.2-1.6% is observed to confirm the stable EDFL pulse-train with the cladding graphene nano-particle based evanescent-wave mode-locking.

  1. Impact of Substrate Bias on Fixed-Pattern-Noise in Active Pixel Sensor Cells

    NASA Astrophysics Data System (ADS)

    Terauchi, Mamoru

    2007-11-01

    The effect of substrate (body) bias on fixed-pattern-noise (FPN) in active pixel sensor (APS) cells is studied. Through measuring test devices consisting of two metal-oxide-semiconductor field-effect transistors (MOSFETs) connected in series with each of the transistors located in the same well region, it has been revealed that substrate bias, which is inevitably applied in a normal circuit configuration in conventional APS cells, worsens the characteristics fluctuation in source-follower amplifiers in APS cells, leading to FPN that cannot be mitigated by conventional correction methods such as correlated double sampling. In addition it has been confirmed that the current-voltage characteristics of logarithmic converters, each of which is realized using a MOSFET with gate and drain terminals connected together, are also affected by substrate bias, resulting in increased characteristics fluctuation as compared with the case with no substrate bias.

  2. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System

    PubMed Central

    Zheng, Qi; Xiong, Lei; Mo, Bing; Lu, Weihong; Kim, Suki; Wang, Zhenyu

    2015-01-01

    Microbial fuel cells (MFCs) are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS) is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology. PMID:26378546

  3. Silicon Quantum Dot-Based Fluorescence Turn-On Metal Ion Sensors in Live Cells.

    PubMed

    Dhenadhayalan, Namasivayam; Lee, Hsin-Lung; Yadav, Kanchan; Lin, King-Chuen; Lin, Yih-Tyng; Chang, A H H

    2016-09-14

    Multiple sensor systems are designed by varying aza-crown ether moiety in silicon quantum dots (SiQDs) for detecting individual Mg(2+), Ca(2+), and Mn(2+) metal ions with significant selectivity and sensitivity. The detection limit of Mg(2+), Ca(2+), and Mn(2+) can reach 1.81, 3.15, and 0.47 μM, respectively. Upon excitation of the SiQDs which are coordinated with aza-crown ethers, the photoinduced electron transfer (PET) takes place from aza-crown ether moiety to the valence band of SiQDs core such that the reduced probability of electron-hole recombination may diminish the subsequent fluorescence. The fluorescence suppression caused by such PET effect will be relieved after selective metal ion is added. The charge-electron binding force between the metal ion and aza-crown ether hinders the PET and thereby restores the fluorescence of SiQDs. The design of sensor system is based on the fluorescence "turn-on" of SiQDs while in search of the appropriate metal ion. For practical application, the sensing capabilities of metal ions in the live cells are performed and the confocal image results reveal their promising applicability as an effective and nontoxic metal ion sensor.

  4. Stretchable Biofuel Cells as Wearable Textile-based Self-Powered Sensors.

    PubMed

    Jeerapan, Itthipon; Sempionatto, Juliane R; Pavinatto, Adriana; You, Jung-Min; Wang, Joseph

    2016-12-21

    Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g., stretching, indentation, or torsional twisting. Glucose and lactate BFCs with the single enzyme and membrane-free configurations generated the maximum power density of 160 and 250 µW cm(-2) with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Applicability to sock-based BFC and self-powered biosensor and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn "scavenge-sense-display" devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment.

  5. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System.

    PubMed

    Zheng, Qi; Xiong, Lei; Mo, Bing; Lu, Weihong; Kim, Suki; Wang, Zhenyu

    2015-09-11

    Microbial fuel cells (MFCs) are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS) is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology.

  6. Infrared evanescent field sensing with quantum cascade lasers and planar silver halide waveguides.

    PubMed

    Charlton, Christy; Katzir, Abraham; Mizaikoff, Boris

    2005-07-15

    We demonstrate the first midinfrared evanescent field absorption measurements with an InGaAs/AlInAs/InP distributed feedback (DFB) quantum cascade laser (QCL) light source operated at room temperature coupled to a free-standing, thin-film, planar, silver halide waveguide. Two different analytes, each matched to the emission frequency of a QCL, were investigated to verify the potential of this technique. The emission of a 1650 cm(-1) QCL overlaps with the amide absorption band of urea, which was deposited from methanol solution, forming urea crystals at the waveguide surface after solvent evaporation. Solid urea was detected down to 80.7 microg of precipitate at the waveguide surface. The emission frequency of a 974 cm(-1) QCL overlaps with the CH3-C absorption feature of acetic anhydride. Solutions of acetic anhydride in acetonitrile have been detected down to a volume of 0.01 microL (10.8 microg) of acetic anhydride solution after deposition at the planar waveguide (PWG) surface. Free-standing, thin-film, planar, silver halide waveguides were produced by press-tapering heated, cylindrical, silver halide fiber segments to create waveguides with a thickness of 300-190 microm, a width of 3 mm, and a length of 35 mm. In addition, Fourier transform infrared (FT-IR) evanescent field absorption measurements with planar silver halide waveguides and transmission absorption QCL measurements verify the obtained results.

  7. A reusable evanescent wave immunosensor for highly sensitive detection of bisphenol A in water samples

    NASA Astrophysics Data System (ADS)

    Xiao-Hong, Zhou; Lan-Hua, Liu; Wei-Qi, Xu; Bao-Dong, Song; Jian-Wu, Sheng; Miao, He; Han-Chang, Shi

    2014-04-01

    This paper proposed a compact and portable planar waveguide evanescent wave immunosensor (EWI) for highly sensitive detection of BPA. The incident light is coupled into the planar waveguide chip via a beveled angle through undergoing total internal reflection, where the evanescent wave field forms and excites the binding fluorophore-tagged antibodies on the chip surface. Typical calibration curves obtained for BPA has detection limits of 0.03 μg/L. Linear response for BPA ranged from 0.124 μg/L-9.60 μg/L with 50% inhibition concentration for BPA of 1.09 +/- 0.25 μg/L. The regeneration of the planar optical waveguide chip allows the performance of more than 300 assay cycles within an analysis time of about 20 min for each assay cycle. By application of effective pretreatment procedure, the recoveries of BPA in real water samples gave values from 88.3% +/- 8.5% to 103.7% +/- 3.5%, confirming its application potential in the measurement of BPA in reality.

  8. On the use of evanescent plane waves for low-frequency energy transmission across material interfaces.

    PubMed

    Woods, Daniel C; Bolton, J Stuart; Rhoads, Jeffrey F

    2015-10-01

    The transmission of airborne sound into high-impedance media is of interest in several applications. For example, sonic booms in the atmosphere may impact marine life when incident on the ocean surface, or affect the integrity of existing structures when incident on the ground. Transmission across high impedance-difference interfaces is generally limited by reflection and refraction at the surface, and by the critical angle criterion. However, spatially decaying incident waves, i.e., inhomogeneous or evanescent plane waves, may transmit energy above the critical angle, unlike homogeneous plane waves. The introduction of a decaying component to the incident trace wavenumber creates a nonzero propagating component of the transmitted normal wavenumber, so energy can be transmitted across the interface. A model of evanescent plane waves and their transmission across fluid-fluid and fluid-solid interfaces is developed here. Results are presented for both air-water and air-solid interfaces. The effects of the incident wave parameters (including the frequency, decay rate, and incidence angle) and the interfacial properties are investigated. Conditions for which there is no reflection at the air-solid interface, due to impedance matching between the incident and transmitted waves, are also considered and are found to yield substantial transmission increases over homogeneous incident waves.

  9. A reusable evanescent wave immunosensor for highly sensitive detection of bisphenol A in water samples

    PubMed Central

    Xiao-hong, Zhou; Lan-hua, Liu; Wei-qi, Xu; Bao-dong, Song; Jian-wu, Sheng; Miao, He; Han-chang, Shi

    2014-01-01

    This paper proposed a compact and portable planar waveguide evanescent wave immunosensor (EWI) for highly sensitive detection of BPA. The incident light is coupled into the planar waveguide chip via a beveled angle through undergoing total internal reflection, where the evanescent wave field forms and excites the binding fluorophore-tagged antibodies on the chip surface. Typical calibration curves obtained for BPA has detection limits of 0.03 μg/L. Linear response for BPA ranged from 0.124 μg/L–9.60 μg/L with 50% inhibition concentration for BPA of 1.09 ± 0.25 μg/L. The regeneration of the planar optical waveguide chip allows the performance of more than 300 assay cycles within an analysis time of about 20 min for each assay cycle. By application of effective pretreatment procedure, the recoveries of BPA in real water samples gave values from 88.3% ± 8.5% to 103.7% ± 3.5%, confirming its application potential in the measurement of BPA in reality. PMID:24699239

  10. Experimental investigation of evanescence-based infrared biodetection technique for micro-total-analysis systems

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Arvind; Packirisamy, Muthukumaran

    2009-09-01

    The advent of microoptoelectromechanical systems (MOEMS) and its integration with other technologies such as microfluidics, microthermal, immunoproteomics, etc. has led to the concept of an integrated micro-total-analysis systems (μTAS) or Lab-on-a-Chip for chemical and biological applications. Recently, research and development of μTAS have attained a significant growth rate over several biodetection sciences, in situ medical diagnoses, and point-of-care testing applications. However, it is essential to develop suitable biophysical label-free detection methods for the success, reliability, and ease of use of the μTAS. We proposed an infrared (IR)-based evanescence wave detection system on the silicon-on-insulator platform for biodetection with μTAS. The system operates on the principle of bio-optical interaction that occurs due to the evanescence of light from the waveguide device. The feasibility of biodetection has been experimentally investigated by the detection of horse radish peroxidase upon its reaction with hydrogen peroxide.

  11. Sensitive amperometric detection of riboflavin with a whole-cell electrochemical sensor.

    PubMed

    Yu, Yang-Yang; Wang, Jing-Xian; Si, Rong-Wei; Yang, Yuan; Zhang, Chun-Lian; Yong, Yang-Chun

    2017-09-08

    A novel whole-cell electrochemical sensor was developed and applied for sensitive amperometric detection of riboflavin. In this work, a whole-cell based riboflavin redox cycling system was characterized, in which electroactive bacteria Shewanella oneidensis MR-1 was employed as the biocatalyst to regenerate the reduced riboflavin after the electrode oxidation. This redox cycling system efficiently enhanced the electrochemical response of riboflavin and enabled a stable current output at poised electrode potential. Thus, a sensitive amperometric biosensing system for riboflavin detection was developed by integrating this whole-cell redox cycling system with the conventional riboflavin electrochemical sensor. Remarkably, this riboflavin biosensor exhibited high sensitivity (LOD = 0.85 ± 0.09 nM, S/N = 3), excellent selectivity and stability. Additionally, reliable analysis of real samples (food and pharmaceutical samples) by this biosensor was achieved. This work provided sensitive and practical tool for riboflavin detection, and demonstrated that the integration of electroactive bacteria and using its outwards electron transfer for redox cycling would be a powerful and promising strategy to improve the performance of electrochemical sensing system. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Semi-Automated, Occupationally Safe Immunofluorescence Microtip Sensor for Rapid Detection of Mycobacterium Cells in Sputum

    PubMed Central

    Soelberg, Scott D.; Weigel, Kris M.; Hiraiwa, Morgan; Cairns, Andrew; Lee, Hyun-Boo; Furlong, Clement E.; Oh, Kieseok; Lee, Kyong-Hoon; Gao, Dayong; Chung, Jae-Hyun; Cangelosi, Gerard A.

    2014-01-01

    An occupationally safe (biosafe) sputum liquefaction protocol was developed for use with a semi-automated antibody-based microtip immunofluorescence sensor. The protocol effectively liquefied sputum and inactivated microorganisms including Mycobacterium tuberculosis, while preserving the antibody-binding activity of Mycobacterium cell surface antigens. Sputum was treated with a synergistic chemical-thermal protocol that included moderate concentrations of NaOH and detergent at 60°C for 5 to 10 min. Samples spiked with M. tuberculosis complex cells showed approximately 106-fold inactivation of the pathogen after treatment. Antibody binding was retained post-treatment, as determined by analysis with a microtip immunosensor. The sensor correctly distinguished between Mycobacterium species and other cell types naturally present in biosafe-treated sputum, with a detection limit of 100 CFU/mL for M. tuberculosis, in a 30-minute sample-to-result process. The microtip device was also semi-automated and shown to be compatible with low-cost, LED-powered fluorescence microscopy. The device and biosafe sputum liquefaction method opens the door to rapid detection of tuberculosis in settings with limited laboratory infrastructure. PMID:24465845

  13. Luteolin-induced apoptosis through activation of endoplasmic reticulum stress sensors in pheochromocytoma cells.

    PubMed

    Kwon, Kisang; Kwon, Young-Sook; Kim, Seung-Whan; Yu, Kweon; Lee, Kyung-Ho; Kwon, O-Yu

    2017-07-01

    Luteolin [2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-chromenone] is an active flavonoid compound from Lonicera japonica (Caprifoliaceae). Luteolin inhibits tumor cell proliferation, inflammatory and oxidative stress better, when compared with other flavonoids. In the present study, it was demonstrated that luteolin induces typical apoptosis in PC12 cells (derived from a pheochromocytoma of the rat adrenal medulla) accompanied by DNA fragmentation and formation of apoptotic bodies. In addition, luteolin regulates expression of the endoplasmic reticulum (ER) chaperone binding immunoglobulin protein, activating ER stress sensors (eukaryotic initiation factor 2α phosphorylation and X‑box binding protein 1 mRNA splicing) and induced autophagy. The results indicated that luteolin induces the upregulation of the unfolded protein response pathway through the ER stress sensors, which helps as an influential regulator for the apoptosis pathway in PC12 cells. The results suggested that the understanding of the molecular mechanisms underlying luteolin‑induced apoptosis may be useful in cancer therapeutics, chemoprevention and neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease.

  14. Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection.

    PubMed

    Liehl, Peter; Zuzarte-Luís, Vanessa; Chan, Jennie; Zillinger, Thomas; Baptista, Fernanda; Carapau, Daniel; Konert, Madlen; Hanson, Kirsten K; Carret, Céline; Lassnig, Caroline; Müller, Mathias; Kalinke, Ulrich; Saeed, Mohsan; Chora, Angelo Ferreira; Golenbock, Douglas T; Strobl, Birgit; Prudêncio, Miguel; Coelho, Luis P; Kappe, Stefan H; Superti-Furga, Giulio; Pichlmair, Andreas; Vigário, Ana M; Rice, Charles M; Fitzgerald, Katherine A; Barchet, Winfried; Mota, Maria M

    2014-01-01

    Before they infect red blood cells and cause malaria, Plasmodium parasites undergo an obligate and clinically silent expansion phase in the liver that is supposedly undetected by the host. Here, we demonstrate the engagement of a type I interferon (IFN) response during Plasmodium replication in the liver. We identified Plasmodium RNA as a previously unrecognized pathogen-associated molecular pattern (PAMP) capable of activating a type I IFN response via the cytosolic pattern recognition receptor Mda5. This response, initiated by liver-resident cells through the adaptor molecule for cytosolic RNA sensors, Mavs, and the transcription factors Irf3 and Irf7, is propagated by hepatocytes in an interferon-α/β receptor-dependent manner. This signaling pathway is critical for immune cell-mediated host resistance to liver-stage Plasmodium infection, which we find can be primed with other PAMPs, including hepatitis C virus RNA. Together, our results show that the liver has sensor mechanisms for Plasmodium that mediate a functional antiparasite response driven by type I IFN.

  15. Developing a cell-based sensor for the detection of Autoinducer-2

    NASA Astrophysics Data System (ADS)

    Servinsky, Matthew D.; Germane, Katherine; Gerlach, Elliot S.; Tsao, Chen-Yu; Byrd, Christopher M.; Sund, Christian J.; Bentley, William E.

    2013-05-01

    Bacteria use an intricate set of communication systems for sensing and interpreting environmental cues that coordinate population-based behavior. Quorum sensing is one of these systems, and it involves the production, release, and detection of small chemical signaling molecules. Recent research has revealed the role of quorum sensing molecules in the control of microbial activities such as biofilm formation. In this presentation we outline the development of a recombinant E. coli cell-based sensor for detection of the quorum sensing molecule Autoinducer-2 (AI-2), as well as engineering strategies to remove sugar and anoxic inhibition of the strain.

  16. Construction of a cell-based sensor for the detection of autoinducer-2

    NASA Astrophysics Data System (ADS)

    Servinsky, Matthew D.; Allen, Patrick C.; Tsao, Chen-Yu; Byrd, Christopher M.; Sund, Christian J.; Bentley, William E.

    2012-05-01

    Microbially Induced Corrosion (MIC) occurs at metal surfaces and is associated with microorganisms and their metabolic activities. These microbes can coexist as biofilms, growing as synergistic communities (consortia) that are able to affect electrochemical processes, both cathodic and anodic, often through co-operative metabolism. Recent research has revealed the role of "quorum sensing" molecules in control of microbial activities such as biofilm formation. In this paper, we propose the detection of quorum sensing molecules as a means of detecting bacterial contamination prior to the onset on biofilm formation. Further we outline the development of an E. coli cell based sensor for detection of the quorum sensing molecule Autoinducer-2 (AI-2).

  17. A new simple Schiff base fluorescence "on" sensor for Al3+ and its living cell imaging.

    PubMed

    Kumar, Jutika; Sarma, Manas Jyoti; Phukan, Prodeep; Das, Diganta Kumar

    2015-03-14

    The simple Schiff base (Z)-N-benzylidenenaphthalen-1-amine (L) acts as an effective fluorescence sensor for Al(3+) by "off-on" mode, and ca. 42 times enhancement in fluorescence intensity is observed. The detection limit of L towards Al(3+) is observed to be 5 × 10(-5) M. UV/Visible and fluorescence data as well as DFT calculations confirm 1:3 coordination between Al(3+) and L through N atoms in a pyramidal shape. L is employed for imaging the Al(3+) ion in living biological cells and for the determination of the Al(3+) ion in bovine serum albumin.

  18. Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors.

    PubMed

    Clark, H A; Hoyer, M; Philbert, M A; Kopelman, R

    1999-11-01

    Spherical optical nanosensors, or PEBBLEs (probes encapsulated by biologically localized embedding), have been produced in sizes including 20 and 200 nm in diameter. These sensors are fabricated in a microemulsion and consist of fluorescent indicators entrapped in a polyacrylamide matrix. A generalized polymerization method has been developed that permits production of sensors containing any hydrophilic dye or combination of dyes in the matrix. The PEBBLE matrix protects the fluorescent dye from interference by proteins, allowing reliable in vivo calibrations of dyes. Sensor response times are less than 1 ms. Cell viability assays indicate that the PEBBLEs are biocompatible, with negligible biological effects compared to control conditions. Several sensor delivery methods have been studied, including liposomal delivery, gene gun bombardment, and picoinjection into single living cells.

  19. Fabrication of thermal microphotonic sensors and sensor arrays

    DOEpatents

    Shaw, Michael J.; Watts, Michael R.; Nielson, Gregory N.

    2010-10-26

    A thermal microphotonic sensor is fabricated on a silicon substrate by etching an opening and a trench into the substrate, and then filling in the opening and trench with silicon oxide which can be deposited or formed by thermally oxidizing a portion of the silicon substrate surrounding the opening and trench. The silicon oxide forms a support post for an optical resonator which is subsequently formed from a layer of silicon nitride, and also forms a base for an optical waveguide formed from the silicon nitride layer. Part of the silicon substrate can be selectively etched away to elevate the waveguide and resonator. The thermal microphotonic sensor, which is useful to detect infrared radiation via a change in the evanescent coupling of light between the waveguide and resonator, can be formed as a single device or as an array.

  20. Fluorescent protein-based FRET sensor for intracellular monitoring of redox status in bacteria at single cell level.

    PubMed

    Abraham, Bobin George; Santala, Ville; Tkachenko, Nikolai V; Karp, Matti

    2014-11-01

    Monitoring of intracellular redox status in a bacterial cell provides vital information about the physiological status of the cell, which can be exploited in several applications such as metabolic engineering and computational modeling. Fluorescent protein-based genetically encoded sensors can be used to monitor intracellular oxidation/reduction status. This study reports the development of a redox sensor for intracellular measurements using fluorescent protein pairs and the phenomenon of Förster resonance energy transfer (FRET). For the development of the sensor, fluorescent proteins Citrine and Cerulean were genetically modified to carry reactive cysteine residues on the protein surface close to the chromophore and a constructed FRET pair was fused using a biotinylation domain as a linker. In oxidized state, the FRET pairs are in close proximity by labile disulfide bond formation resulting in higher FRET efficiency. In reducing environment, the FRET is diminished due to the increased distance between FRET pairs providing large dynamic measurement range to the sensor. Intracellular studies in Escherichia coli mutants revealed the capability of the sensor in detecting real-time redox variations at single cell level. The results were validated by intensity based and time resolved measurements. The functional immobilization of the fluorescent protein-based FRET sensor at solid surfaces for in vitro applications was also demonstrated.

  1. YAP and TAZ in epithelial stem cells: A sensor for cell polarity, mechanical forces and tissue damage

    PubMed Central

    Elbediwy, Ahmed; Vincent‐Mistiaen, Zoé I.

    2016-01-01

    The YAP/TAZ family of transcriptional co‐activators drives cell proliferation in epithelial tissues and cancers. Yet, how YAP and TAZ are physiologically regulated remains unclear. Here we review recent reports that YAP and TAZ act primarily as sensors of epithelial cell polarity, being inhibited when cells differentiate an apical membrane domain, and being activated when cells contact the extracellular matrix via their basal membrane domain. Apical signalling occurs via the canonical Crumbs/CRB‐Hippo/MST‐Warts/LATS kinase cascade to phosphorylate and inhibit YAP/TAZ. Basal signalling occurs via Integrins and Src family kinases to phosphorylate and activate YAP/TAZ. Thus, YAP/TAZ is localised to the nucleus in basal stem/progenitor cells and cytoplasm in differentiated squamous cells or columnar cells. In addition, other signals such as mechanical forces, tissue damage and possibly receptor tyrosine kinases (RTKs) can influence MST‐LATS or Src family kinase activity to modulate YAP/TAZ activity. PMID:27173018

  2. Fiber-optic voltage sensor

    NASA Astrophysics Data System (ADS)

    Wood, C. B.

    1990-07-01

    A fiber-optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, and a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities.

  3. Development of an optimized synthetic Notch receptor as an in vivo cell-cell contact sensor.

    PubMed

    He, Li; Huang, Jiuhong; Perrimon, Norbert

    2017-05-23

    Detection and manipulation of direct cell-cell contact in complex tissues is a fundamental and challenging problem in many biological studies. Here, we report an optimized Notch-based synthetic receptor (synNQ) useful to study direct cell-cell interactions in Drosophila With the synNQ system, cells expressing a synthetic receptor, which contains Notch activation machinery and a downstream transcriptional activator, QF, are activated by a synthetic GFP ligand expressed by contacting neighbor cells. To avoid cis-inhibition, mutually exclusive expression of the synthetic ligand and receptor is achieved using the "flippase-out" system. Expression of the synthetic GFP ligand is controlled by the Gal4/UAS system for easy and broad applications. Using synNQ, we successfully visualized cell-cell interactions within and between most fly tissues, revealing previously undocumented cell-cell contacts. Importantly, in addition to detection of cells in contact with one another, synNQ allows for genetic manipulation in all cells in contact with a targeted cell population, which we demonstrate in the context of cell competition in developing wing disks. Altogether, the synNQ genetic system will enable a broad range of studies of cell contact in developmental biology.

  4. Fluorescent sensors reporting the activity of ammonium transceptors in live cells.

    PubMed

    De Michele, Roberto; Ast, Cindy; Loqué, Dominique; Ho, Cheng-Hsun; Andrade, Susana LA; Lanquar, Viviane; Grossmann, Guido; Gehne, Sören; Kumke, Michael U; Frommer, Wolf B

    2013-07-02

    Ammonium serves as key nitrogen source and metabolic intermediate, yet excess causes toxicity. Ammonium uptake is mediated by ammonium transporters, whose regulation is poorly understood. While transport can easily be characterized in heterologous systems, measuring transporter activity in vivo remains challenging. Here we developed a simple assay for monitoring activity in vivo by inserting circularly-permutated GFP into conformation-sensitive positions of two plant and one yeast ammonium transceptors ('AmTrac' and 'MepTrac'). Addition of ammonium to yeast cells expressing the sensors triggered concentration-dependent fluorescence intensity (FI) changes that strictly correlated with the activity of the transporter. Fluorescence-based activity sensors present a novel technology for monitoring the interaction of the transporters with their substrates, the activity of transporters and their regulation in vivo, which is particularly valuable in the context of analytes for which no radiotracers exist, as well as for cell-specific and subcellular transport processes that are otherwise difficult to track. DOI:http://dx.doi.org/10.7554/eLife.00800.001.

  5. Fluorescent sensors reporting the activity of ammonium transceptors in live cells

    DOE PAGES

    De Michele, Roberto; Ast, Cindy; Loqué, Dominique; ...

    2013-07-02

    Ammonium serves as key nitrogen source and metabolic intermediate, yet excess causes toxicity. Ammonium uptake is mediated by ammonium transporters, whose regulation is poorly understood. While transport can easily be characterized in heterologous systems, measuring transporter activity in vivo remains challenging. Here we developed a simple assay for monitoring activity in vivo by inserting circularly-permutated GFP into conformation-sensitive positions of two plant and one yeast ammonium transceptors (‘AmTrac’ and ‘MepTrac’). Addition of ammonium to yeast cells expressing the sensors triggered concentration-dependent fluorescence intensity (FI) changes that strictly correlated with the activity of the transporter. Fluorescence-based activity sensors present a novelmore » technology for monitoring the interaction of the transporters with their substrates, the activity of transporters and their regulation in vivo, which is particularly valuable in the context of analytes for which no radiotracers exist, as well as for cell-specific and subcellular transport processes that are otherwise difficult to track.« less

  6. Photochemical Deposition of Semiconductor Thin Films and Their Application for Solar Cells and Gas Sensors

    NASA Astrophysics Data System (ADS)

    Ichimura, M.; Gunasekaran, M.; Sueyoshi, T.

    2009-06-01

    The photochemical deposition (PCD) technique was applied for solar cells and gas sensors. CdS and Cd1-xZnxS were deposited by PCD. Thiosulfate ions S2O32- act as a reductant and a sulfur source. The SnS absorption layer was deposited by three-step pulse electrochemical deposition. For the CdS/SnS structure, the best cell showed an efficiency of about 0.2%, while for the Cd1-xZnxS/SnS structure, an efficiency of up to 0.7% was obtained. For the gas sensor application, SnO2 was deposited by PCD from a solution containing SnSO4 and HNO3. To enhance the sensitivity to hydrogen, Pd was doped by the photochemical doping method. The current increased by a factor of 104 upon exposure to 5000 ppm hydrogen within 1 min at room temperature. 103 times conductivity increase was observed even for 50 ppm hydrogen.

  7. Zinspy Sensors with Enhanced Dynamic Range for Imaging Neuronal Cell Zinc Uptake and Mobilization

    PubMed Central

    Nolan, Elizabeth M.; Ryu, Jubin W.; Jaworski, Jacek; Feazell, Rodney P.; Sheng, Morgan; Lippard, Stephen J.

    2006-01-01

    Thiophene moieties were incorporated into previously described Zinspy (ZS) fluorescent Zn(II) sensor motifs (Nolan, E. M.; Lippard, S. J. Inorg. Chem. 2004, 43, 8310–8317) to provide enhanced fluorescence properties, low-micromolar dissociation constants for Zn(II), and improved Zn(II) selectivity. Halogenation of the xanthenone and benzoate moieties of the fluorescein platform systematically modulates the excitation and emission profiles, pH-dependent fluorescence, Zn(II) affinity, and Zn(II) complexation rates, offering a general strategy for tuning multiple properties of xanthenone-based metal ion sensors. Extensive biological studies in cultured cells and primary neuronal cultures demonstrate 2-{6-hydroxy-3-oxo-4,5-bis[(pyridin-2-ylmethylthiophen-2-ylmethylamino)methyl]-3H-xanthen-9-yl}benzoic acid (ZS5) to be a versatile imaging tool for detecting Zn(II) in vivo. ZS5 localizes to the mitochondria of HeLa cells and allows visualization of glutamate-mediated Zn(II) uptake in dendrites and Zn(II) release resulting from nitrosative stress in neurons. PMID:17132019

  8. Photochemical Deposition of Semiconductor Thin Films and Their Application for Solar Cells and Gas Sensors

    SciTech Connect

    Ichimura, M.; Gunasekaran, M.; Sueyoshi, T.

    2009-06-01

    The photochemical deposition (PCD) technique was applied for solar cells and gas sensors. CdS and Cd{sub 1-x}Zn{sub x}S were deposited by PCD. Thiosulfate ions S{sub 2}O{sub 3}{sup 2-} act as a reductant and a sulfur source. The SnS absorption layer was deposited by three-step pulse electrochemical deposition. For the CdS/SnS structure, the best cell showed an efficiency of about 0.2%, while for the Cd{sub 1-x}Zn{sub x}S/SnS structure, an efficiency of up to 0.7% was obtained. For the gas sensor application, SnO{sub 2} was deposited by PCD from a solution containing SnSO{sub 4} and HNO{sub 3}. To enhance the sensitivity to hydrogen, Pd was doped by the photochemical doping method. The current increased by a factor of 10{sup 4} upon exposure to 5000 ppm hydrogen within 1 min at room temperature. 10{sup 3} times conductivity increase was observed even for 50 ppm hydrogen.

  9. Fast and accurate detection of cancer cell using a versatile three-channel plasmonic sensor

    NASA Astrophysics Data System (ADS)

    Hoseinian, M.; Ahmadi, A. R.; Bolorizadeh, M. A.

    2016-09-01

    Surface Plasmon Resonance (SPR) optical fiber sensors can be used as cost-effective small sized biosensors that are relatively simple to operate. Additionally, these instruments are label-free, hence rendering them highly sensitive to biological measurements. In this study, a three-channel microstructure optical fiber plasmonic-based portable biosensor is designed and analyzed using Finite Element Method. The proposed system is capable of determining changes in sample's refractive index with precision of order one thousandth. The biosensor measures three absorption resonance wavelengths of the analytes simultaneously. This property is one of the main advantages of the proposed biosensor since it reduces the error in the measured wavelength and enhances the accuracy of the results up to 10-5 m/RIU by reducing noise. In this paper, Jurkat cell, an indicator cell for leukemia cancer, is considered as the analyte; and its absorption resonance wavelengths as well as sensitivity in each channel are determined.

  10. A cell phone based health monitoring system with self analysis processor using wireless sensor network technology.

    PubMed

    Chung, Wan-Young; Yau, Chiew-Lian; Shin, Kwang-Sig; Myllyla, Risto

    2007-01-01

    This paper describes the integrated wireless CDMA-based ubiquitous healthcare monitoring system for disease and chronic management and better patient care in the hospital, home or travel environments with extended standalone simple electrocardiogram (ECG) diagnosis algorithm at cell phone. This system utilizes a wireless dongles prototype as the intermediary devices to remotely monitor the physiological signs of patient's from a tiny wireless sensor to transmit directly to medical center monitoring/PDA wirelessly within 802.15.4 wireless LAN or using cell phone to relay the medical data through CDMA network when outside the coverage LAN. The external standalone ECG diagnosis was implemented to enable continuous monitoring and evaluation of the ECG signal locally before any medical data could be sent to the medical center.

  11. Mushroom body miscellanea: transgenic Drosophila strains expressing anatomical and physiological sensor proteins in Kenyon cells

    PubMed Central

    Pech, Ulrike; Dipt, Shubham; Barth, Jonas; Singh, Priyanka; Jauch, Mandy; Thum, Andreas S.; Fiala, André; Riemensperger, Thomas

    2013-01-01

    The fruit fly Drosophila melanogaster represents a key model organism for analyzing how neuronal circuits regulate behavior. The mushroom body in the central brain is a particularly prominent brain region that has been intensely studied in several insect species and been implicated in a variety of behaviors, e.g., associative learning, locomotor activity, and sleep. Drosophila melanogaster offers the advantage that transgenes can be easily expressed in neuronal subpopulations, e.g., in intrinsic mushroom body neurons (Kenyon cells). A number of transgenes has been described and engineered to visualize the anatomy of neurons, to monitor physiological parameters of neuronal activity, and to manipulate neuronal function artificially. To target the expression of these transgenes selectively to specific neurons several sophisticated bi- or even multipartite transcription systems have been invented. However, the number of transgenes that can be combined in the genome of an individual fly is limited in practice. To facilitate the analysis of the mushroom body we provide a compilation of transgenic fruit flies that express transgenes under direct control of the Kenyon-cell specific promoter, mb247. The transgenes expressed are fluorescence reporters to analyze neuroanatomical aspects of the mushroom body, proteins to restrict ectopic gene expression to mushroom bodies, or fluorescent sensors to monitor physiological parameters of neuronal activity of Kenyon cells. Some of the transgenic animals compiled here have been published already, whereas others are novel and characterized here for the first time. Overall, the collection of transgenic flies expressing sensor and reporter genes in Kenyon cells facilitates combinations with binary transcription systems and might, ultimately, advance the physiological analysis of mushroom body function. PMID:24065891

  12. An Evanescent Microwave Probe for Super-Resolution Nondestructive Imaging of Metals, Semiconductors, Dielectrics, Composites and Biological Specimens

    NASA Technical Reports Server (NTRS)

    Pathak, P. S.; Tabib-Azar, M.; Ponchak, G.

    1998-01-01

    Using evanescent microwaves with decay lengths determined by a combination of microwave wavelength (lambda) and waveguide termination geometry, we have imaged and mapped material non-uniformities and defects with a resolving capability of lambda/3800=79 microns at 1 GHz. In our method a microstrip quarter wavelength resonator was used to generate evanescent microwaves. We imaged materials with a wide range of conductivities. Carbon composites, dielectrics (Duroid, polymers), semiconductors (3C-SiC, polysilicon, natural diamond), metals (tungsten alloys, copper, zinc, steel), high-temperature superconductors, and botanical samples were scanned for defects, residual stresses, integrity of brazed junctions, subsurface features, areas of different film thickness and moisture content. The evanescent microwave probe is a versatile tool and it can be used to perform very fast, large scale mapping of a wide range of materials. This method of characterization compares favorably with ultrasound testing, which has a resolution of about 0.1 mm and suffers from high absorption in composite materials and poor transmission across boundaries. Eddy current methods which can have a resolution on the order of 50 microns are restricted to evaluating conducting materials. Evanescent microwave imaging, with careful choice of operating frequency and probe geometry, can have a resolution of up to 1 micron. In this method we can scan hot and moving objects, sample preparation is not required, testing is non-destructive, non-invasive and non-contact, and can be done in air, in liquid or in vacuum.

  13. Mid-infrared fiber-optic evanescent field spectroscopy for in situ monitoring of tetrahydrofuran hydrate formation and dissociation.

    PubMed

    Schwenk, M; Katzir, A; Mizaikoff, B

    2017-02-27

    Tetrahydrofuran is a relevant auxiliary molecule when storing carbon dioxide or hydrocarbons as gas hydrates. The present study demonstrates the application of in situ mid-infrared fiber-optic evanescent field absorption spectroscopy for studying the formation and dissociation of THF hydrates. Thereby, the utility of this analytical technique for providing unique molecular-level insight even under harsh environmental conditions is evidenced.

  14. Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability.

    PubMed

    Bandodkar, Amay J; Jeerapan, Itthipon; You, Jung-Min; Nuñez-Flores, Rogelio; Wang, Joseph

    2016-01-13

    We present the first example of an all-printed, inexpensive, highly stretchable CNT-based electrochemical sensor and biofuel cell array. The synergistic effect of utilizing specially tailored screen printable stretchable inks that combine the attractive electrical and mechanical properties of CNTs with the elastomeric properties of polyurethane as a binder along with a judiciously designed free-standing serpentine pattern enables the printed device to possess two degrees of stretchability. Owing to these synergistic design and nanomaterial-based ink effects, the device withstands extremely large levels of strains (up to 500% strain) with negligible effect on its structural integrity and performance. This represents the highest stretchability offered by a printed device reported to date. Extensive electrochemical characterization of the printed device reveal that repeated stretching, torsional twisting, and indenting stress has negligible impact on its electrochemical properties. The wide-range applicability of this platform to realize highly stretchable CNT-based electrochemical sensors and biofuel cells has been demonstrated by fabricating and characterizing potentiometric ammonium sensor, amperometric enzyme-based glucose sensor, enzymatic glucose biofuel cell, and self-powered biosensor. Highly stretchable printable multianalyte sensor, multifuel biofuel cell, or any combination thereof can thus be realized using the printed CNT array. Such combination of intrinsically stretchable printed nanomaterial-based electrodes and strain-enduring design patterns holds considerable promise for creating an attractive class of inexpensive multifunctional, highly stretchable printed devices that satisfy the requirements of diverse healthcare and energy fields wherein resilience toward extreme mechanical deformations is mandatory.

  15. Part of evanescent modes in the normally incident gravity surface wave's energy layout around a submerged obstacle

    NASA Astrophysics Data System (ADS)

    Charland, J.; Rey, V.; Touboul, J.

    2012-04-01

    Part of evanescent modes in the normally incident gravity surface wave's energy layout around a submerged obstacle Jenna Charland *1, Vincent Rey *2, Julien Touboul *2 *1 Mediterraneen Institute of Oceanography. Institut des Sciences de l'Ingénieur Toulon-Var. Avenue Georges Pompidou, BP 56, 83162 La Valette du Var Cedex, France. Centre National de la Recherche Scientifique, Délégation Normandie. Projet soutenu financièrement par la Délégation Générale de l'Armement. *2 Mediterraneen Institute of Oceanography. Institut des Sciences de l'Ingénieur Toulon-Var. Avenue Georges Pompidou, BP 56, 83162 La Valette du Var Cedex, France. During the last decades various studies have been performed to understand the wave propagation over varying bathymetries. Few answers related to this non linear problem were given by the Patarapanich's studies which described the reflection coefficient of a submerged plate as a function of the wavelength. Later Le-Thi-Minh [2] demonstrated the necessity of taking into account the evanescent modes to better describe the propagation of waves over a varying bathymetry. However, all these studies stare at pseudo-stationary state that allows neither the comprehension of the transient behaviour of propagative modes nor the role of the evanescent modes in this unstationnary process. Our study deals with the wave establishment over a submerged plate or step and focuses on the evanescent modes establishment. Rey [3] described the propagation of a normally incident surface gravity wave over a varying topography on the behaviour of the fluid using a linearized potential theory solved by a numerical model using an integral method. This model has a large field of application and has been adapted to our case. This code still solves a stationary problem but allows us to calculate the contribution of the evanescent modes in the energy layout around a submerged plate or a submerged step. The results will show the importance of the trapped energy

  16. Chemo-spectroscopic sensor for carboxyl terminus overexpressed in carcinoma cell membrane.

    PubMed

    Stanca, Sarmiza E; Matthäus, Christian; Neugebauer, Ute; Nietzsche, Sandor; Fritzsche, Wolfgang; Dellith, Jan; Heintzmann, Rainer; Weber, Karina; Deckert, Volker; Krafft, Christoph; Popp, Jürgen

    2015-10-01

    Certain carboxyl groups of the plasma membrane are involved in tumorgenesis processes. A gold core-hydroxyapatite shell (AuHA) nanocomposite is introduced as chemo-spectroscopic sensor to monitor these carboxyl groups of the cell membrane. Hydroxyapatite (HA) plays the role both of a chemical detector and of a biocompatible Raman marker. The principle of detection is based on chemical interaction between the hydroxyl groups of the HA and the carboxyl terminus of the proteins. The AuHA exhibits a surface enhanced Raman scattering (SERS) signal at 954 cm(-1) which can be used for its localization. The bio-sensing capacity of AuHA towards human skin epidermoid carcinoma (A431) and Chinese hamster ovary (CHO) cell lines is investigated using Raman microspectroscopic imaging. The localization of AuHA on cells is correlated with scanning electron microscopy, transmission electron microscopy and structured illumination fluorescence microscopy. This qualitative approach is a step towards a quantitative study of the proteins terminus. This method would enable further studies on the molecular profiling of the plasma membrane, in an attempt to provide accurate cell identification. Using a gold core-hydroxyapatite shell (AuHA) nanocomposite, the authors in this paper showed the feasibility of detecting and differentiating cell surface molecules by surface enhanced Raman scattering. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Dynamic Monitoring of Mechano-Sensing of Cells by Gold Nanoslit Surface Plasmon Resonance Sensor

    PubMed Central

    Wu, Shu-Han; Lee, Kuang-Li; Weng, Ruei-Hung; Zheng, Zhao-Xian; Chiou, Arthur; Wei, Pei-Kuen

    2014-01-01

    We demonstrated a real-time monitoring of live cells upon laminar shear stress stimulation via surface plasmon resonance (SPR) in gold nanoslit array. A large-area gold nanostructure consisted of 500-nm-period nanoslits was fabricated on a plastic film using the thermal-annealed template-stripping method. The SPR in the gold nanoslit array provides high surface sensitivity to monitor cell adhesion changes near the sensor surface. The human non-small cell lung cancer (CL1-0), human lung fibroblast (MRC-5), and human dermal fibroblast (Hs68) were cultured on the gold nanoslits and their dynamic responses to laminar shear stress were measured under different stress magnitudes from 0 to 30 dyne/cm2. Cell adhesion was increased in CL1-0 under shear flow stimulation. No adhesion recovery was observed after stopping the flow. On the other hand, MRC-5 and Hs68 decreased adhesion and recovered from the shear stress. The degree of recovery was around 70% for MRC-5. This device provides dynamic study and early detection of cell adhesion changes under shear flow conditions. PMID:24586846

  18. Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance

    PubMed Central

    Oh-hora, Masatsugu; Yamashita, Megumi; Hogan, Patrick G; Sharma, Sonia; Lamperti, Ed; Chung, Woo; Prakriya, Murali; Feske, Stefan; Rao, Anjana

    2009-01-01

    Store-operated Ca2+ entry through calcium release–activated calcium channels is the chief mechanism for increasing intracellular Ca2+ in immune cells. Here we show that mouse T cells and fibroblasts lacking the calcium sensor STIM1 had severely impaired store-operated Ca2+ influx, whereas deficiency in the calcium sensor STIM2 had a smaller effect. However, T cells lacking either STIM1 or STIM2 had much less cytokine production and nuclear translocation of the transcription factor NFAT. T cell–specific ablation of both STIM1 and STIM2 resulted in a notable lymphoproliferative phenotype and a selective decrease in regulatory T cell numbers. We conclude that both STIM1 and STIM2 promote store-operated Ca2+ entry into T cells and fibroblasts and that STIM proteins are required for the development and function of regulatory T cells. PMID:18327260

  19. A miniature porous aluminum oxide-based flow-cell for online water quality monitoring using bacterial sensor cells.

    PubMed

    Yagur-Kroll, Sharon; Schreuder, Erik; Ingham, Colin J; Heideman, René; Rosen, Rachel; Belkin, Shimshon

    2015-02-15

    The use of live bacterial reporters as sensing entities in whole-cell biosensors allows the investigation of the biological effects of a tested sample, as well as the bioavailability of its components. Here we present a proof of concept for a new design for online continuous water monitoring flow-cell biosensor, incorporating recombinant reporter bacteria, engineered to generate an optical signal (fluorescent or bioluminescent) in the presence of the target compound(s). At the heart of the flow-cell is a disposable chip made of porous aluminum oxide (PAO), which retains the sensor microorganisms on its rigid planar surface, while its high porosity allows an undisturbed access both to the sample and to essential nutrients. The ability of the bacterial reporters to detect model toxic chemicals was first demonstrated using a "naked" PAO chip placed on solid agar, and later in a chip encased in a specially designed flow-through configuration which enables continuous on-line monitoring. The applicability of the PAO chip to simultaneous online detection of diverse groups of chemicals was demonstrated by the incorporation of a 6-member sensor array into the flow-through chip. The selective response of the array was also confirmed in spiked municipal wastewater effluents. Sensing activity was retained by the bacteria after 12-weeks storage of freeze-dried biochips, demonstrating the biochip potential as a simple minimal maintenance "plug-in" cartridge. This low-cost and easy to handle PAO-based flow-cell biosensor may serve as a basis for a future platform for water quality monitoring.

  20. Imaging of Dynamic Secretory Vesicles in Living Pollen Tubes of Picea meyeri Using Evanescent Wave Microscopy1[W

    PubMed Central

    Wang, Xiaohua; Teng, Yan; Wang, Qinli; Li, Xiaojuan; Sheng, Xianyong; Zheng, Maozhong; Šamaj, Jozef; Baluška, František; Lin, Jinxing

    2006-01-01

    Evanescent wave excitation was used to visualize individual, FM4-64-labeled secretory vesicles in an optical slice proximal to the plasma membrane of Picea meyeri pollen tubes. A standard upright microscope was modified to accommodate the optics used to direct a laser beam at a variable angle. Under evanescent wave microscopy or total internal reflection fluorescence microscopy, fluorophores localized near the surface were excited with evanescent waves, which decay exponentially with distance from the interface. Evanescent waves with penetration depths of 60 to 400 nm were generated by varying the angle of incidence of the laser beam. Kinetic analysis of vesicle trafficking was made through an approximately 300-nm optical section beneath the plasma membrane using time-lapse evanescent wave imaging of individual fluorescently labeled vesicles. Two-dimensional trajectories of individual vesicles were obtained from the resulting time-resolved image stacks and were used to characterize the vesicles in terms of their average fluorescence and mobility, expressed here as the two-dimensional diffusion coefficient D2. The velocity and direction of vesicle motions, frame-to-frame displacement, and vesicle trajectories were also calculated. Analysis of individual vesicles revealed for the first time, to our knowledge, that two types of motion are present, and that vesicles in living pollen tubes exhibit complicated behaviors and oscillations that differ from the simple Brownian motion reported in previous investigations. Furthermore, disruption of the actin cytoskeleton had a much more pronounced effect on vesicle mobility than did disruption of the microtubules, suggesting that actin cytoskeleton plays a primary role in vesicle mobility. PMID:16798949

  1. Location Dependency and Antenna/Body/Sensor-Lead Interaction Effects in a Cell-Phone Based GSM 1800 Telemedicine Link

    DTIC Science & Technology

    2001-10-25

    Abstract-The error-free requirement of today’s cell - phone based telemedicine systems demands investigations into the potential causes of service...a building, compared to that found in the U.K. Macro effects. Representative temporal variation measurements (made with a calibrated cell - phone ...reduction of 10 dB, outer-to-inner. Location Dependency and Antenna / Body / Sensor-lead Interaction Effects in a Cell - phone Based GSM 1800 Telemedicine

  2. Hollow-fiber evanescent light-wave atom-bottle trap

    NASA Astrophysics Data System (ADS)

    Dowling, Jonathan P.

    1997-05-01

    Recent theoretical and experimental demonstrations have shown that blue-detuned laser light, propagating in the annular core-cladding region of a hollow-glass fiber, produces a repulsive, evanescent light-wave potential in the hollow, that can be used to guide near-resonant atoms down the fiber. In this work, I show that slight modifications to the hollow-fiber geometry can be used to turn this atom guide into an atom-bottle trap. The trap can be open and shut by varying the aperture angle at which light couples into the fiber, allowing the atoms to be easily loaded. This trap has an advantage over other optical atom traps in that the atoms move coherently in a field-free region with only brief specular reflections at the step-like potential walls.

  3. Optofluidic distributed feedback lasers with evanescent pumping: Reduced threshold and angular dispersion analysis

    NASA Astrophysics Data System (ADS)

    Karl, Markus; Whitworth, Guy L.; Schubert, Marcel; Dietrich, Christof P.; Samuel, Ifor D. W.; Turnbull, Graham A.; Gather, Malte C.

    2016-06-01

    We demonstrate an evanescently pumped water-based optofluidic distributed feedback (DFB) laser with a record low pump threshold of ETH=520 n J . The low threshold results from an optimized mode shape, which is achieved by a low refractive index substrate, and from the use of a mixed-order DFB grating. Investigating the photonic band structure via angular dispersion analysis both above and below lasing threshold allows us to measure the refractive index of the liquid gain layer and to determine the device parameters such as the waveguide core layer thickness. We show that it is possible to tailor the divergence of the lasing emission by varying the number of second order grating periods used for outcoupling.

  4. QED-Modified Radiative Properties and Dynamics of Cold Atoms Moving through an Evanescent Wave

    SciTech Connect

    Spreeuw, R.J.C.; Ivanov, V.V.; Cornelussen, R.A.; Heuvell, H.B. van Linden van den

    2005-09-15

    Measurements of the radiative properties of cold {sup 87}Rb atoms close to a dielectric/vacuum interface are reported. This is the first observation of a quantum-electrodynamic (QED) modification of radiative properties in vacuum near a dielectric surface. Evanescent wave (EW) spectroscopy on cold atoms that were dropped on a glass surface was used. An increase of the natural linewidth by up to 25% compared to the free space value was found. This was attributed to QED broadening and level shifts, as well as local Stark shifts near the surface. By varying the characteristic EW length, a position dependence characteristic for QED was observed. The role of transient internal dynamics of the atoms as they move through the strongly inhomogeneous EW was investigated.

  5. Near-Field Nanofluid Concentration Measurement by Rayleigh Particle Scattering Bragg Grating Evanescent Wave

    NASA Astrophysics Data System (ADS)

    Huang, Xue-Feng; Li, Sheng-Ji

    2014-04-01

    We report an approach to detect near-field nanofluid concentration by scattering Bragg grating evanescent wave (EW). Since the suspended nanoparticles can enhance the scattering intensity of the EW from the thinned and tapered fiber with Bragg grating, the reflectance ratio of Bragg grating is dependent on the corresponding refractive index (RI) of the nanofluid at different nanoparticle volume fraction. A critical reflectance ratio measurement identifies the nanofluid concentration. Theory and simulation of scattering Bragg grating EW was analyzed. The scattering Bragg grating EW fiber sensing probe was designed and fabricated by the wet chemical etching method, and calibration was made by several chemical solutions without suspended nanoparticles. The example application of the nanofluid containing dispersed 40 nm SiO2 nanoparticles demonstrates the feasibility. The reflectance ratio decreases by over 3.2% with the nanofluid concentration increasing from 0.25 wt.% to 4 wt.%, while the temperature disturbance can be negligible.

  6. Ultrasensitive evanescent wave fluoro-immunosensors using polystyrene integrated lens optical fiber

    NASA Astrophysics Data System (ADS)

    Lin, Jinn-Nan; Mahoney, Walter C.; Luderer, Albert A.; Brier, Rick A.; Sharp, Tom W.; McGuire, Verna A.

    1994-07-01

    A sensitive evanescent wave immunoassay is described for assay of human chorionic gonadotropin (hCG) in plasma using molded polystyrene optical fibers. Data was processed using kinetic parameters which allowed a total assay time of two minutes. The characterization of two longer wavelength dyes (allophycocyanin and Cy5) in relation to FITC is described and their effect on assay signal was studied. APC had six times the fluorescence intensity of FITC and generated forty times the signal in the hCG assay format. Native, acid-treated and biotinylated antibody immobilization chemistries and their surface density effects were investigated to determine the effect on assay signal. Native antibody generated approximately 50% of the signal versus acid-treated or biotinylated and a 50% reduction in the surface antibody concentration showed little effect on assay signal. The assay agreed well with a commercially available assay (ES-300) and has a sensitivity of 0.8 mIU/ml.

  7. Optical refractive index biosensor using evanescently coupled lateral Bragg gratings on silicon-on-insulator

    NASA Astrophysics Data System (ADS)

    Mendez-Astudillo, Manuel; Takahisa, Hiroki; Okayama, Hideaki; Nakajima, Hirochika

    2016-08-01

    In this paper, we present a compact silicon-on-insulator optical biosensor based on lateral Bragg gratings evanescently coupled to a waveguide. The device is fabricated by electron-beam lithography and dry-etched in a single step with inductive coupled plasma reactive ion etching (ICP-RIE). Fully etched grating couplers are used to couple the light in and out of the chip, while lateral Bragg gratings are used as the sensing element of the device. A sensitivity of 22 nm/RIU is obtained by exposing the device to deionized water with different NaCl concentrations with a footprint area of 15 × 4 µm2 that allows for densely multiplexed solutions.

  8. Observation of the formation of anisotropic silver microstructures by evanescent wave and electron microscopy.

    PubMed

    Pal, Angshuman; Khajornrungruang, Panart; Netzband, Christopher; Alety, Sriveda; Babu, S V

    2016-02-19

    Using a well-known galvanic displacement reaction, ∼25-40 μm long silver ribbons grown after mixing ∼50 nm copper particles with AgNO3 solution were observed as a function of Ag(+) concentration and their growth was characterized in real-time and in situ by evanescent wave (EW) microscopy. At low Ag(+) concentration, chain-like structures consisting of both Ag and Cu were observed. When the sequence of mixing these two reactants was reversed, different Ag microstructures (platelets and dendrites) were formed and were also characterized by EW microscopy. Dependence of the morphology of all these microstructures on silver ion concentration was determined by EW microscopy in conjunction with scanning and transmission electron microscopy.

  9. Transmission of evanescent wave modes through a slab of negative-refractive-index material.

    PubMed

    de Wolf, David A

    2011-02-01

    There has been a long-standing argument about Pendry's suggestion that a plane harmonic evanescent (surface) wave along the interface between free space and a slab of ɛ=-1, μ=-1 double-negative (DNG) medium will emerge on the far side with recovery of phase and amplitude. While this is possible, it is subject to parameter restrictions. This work generalizes previous work and now gives analytical criteria for when to expect such a recovery in a Smith-Kroll DNG medium. Basically this requires, among other things, a relatively narrow bandwidth and relatively small transverse-mode component. There also is a very strong dependence on the ratio of slabwidth to plasma wavelength.

  10. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers.

    PubMed

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S; Set, Sze Y

    2007-01-15

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  11. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S.; Set, Sze Y.

    2007-01-01

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  12. Evanescent Microwave Probes on High-Resistivity Silicon and its Application in Characterization of Semiconductors

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, M.; Akinwande, D.; Ponchak, George E.; LeClair, S. R.

    1999-01-01

    In this article we report the design, fabrication, and characterization of very high quality factor 10 GHz microstrip resonators on high-resistivity (high-rho) silicon substrates. Our experiments show that an external quality factor of over 13 000 can be achieved on microstripline resonators on high-rho silicon substrates. Such a high Q factor enables integration of arrays of previously reported evanescent microwave probe (EMP) on silicon cantilever beams. We also demonstrate that electron-hole pair recombination and generation lifetimes of silicon can be conveniently measured by illuminating the resonator using a pulsed light. Alternatively, the EMP was also used to nondestructively monitor excess carrier generation and recombination process in a semiconductor placed near the two-dimensional resonator.

  13. Evanescent Microwave Probes on High-Resistivity Silicon and its Application in Characterization of Semiconductors

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, M.; Akinwande, D.; Ponchak, George E.; LeClair, S. R.

    1999-01-01

    In this article we report the design, fabrication, and characterization of very high quality factor 10 GHz microstrip resonators on high-resistivity (high-rho) silicon substrates. Our experiments show that an external quality factor of over 13 000 can be achieved on microstripline resonators on high-rho silicon substrates. Such a high Q factor enables integration of arrays of previously reported evanescent microwave probe (EMP) on silicon cantilever beams. We also demonstrate that electron-hole pair recombination and generation lifetimes of silicon can be conveniently measured by illuminating the resonator using a pulsed light. Alternatively, the EMP was also used to nondestructively monitor excess carrier generation and recombination process in a semiconductor placed near the two-dimensional resonator.

  14. Evanescent pressure gradient response in the upper ocean to subinertial wind stress forcing of finite wavelength

    NASA Technical Reports Server (NTRS)

    White, Warren B.; Mcnally, Gerard

    1987-01-01

    A schematic model is used to interpret field observations related to the mixed layer response to wind stress at subinertial frequencies. It is shown that subinertial density and pressure fluctuations can arise locally from the finite wavelength character of the wind stress forcing as a fundamental part of the upper ocean transient, wind-driven response on time scales of 2-10 pendulum days. Evanescent vertical motions arise which alter the density field of the pycnocline, and hence the pressure field over the entire upper ocean. It is thus found that in the real ocean driven by wind stress, a transient geostrophic response exists which can be as large or larger than the transient Eckman response.

  15. Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides.

    PubMed

    Dhakal, Ashim; Subramanian, Ananth Z; Wuytens, Pieter; Peyskens, Frédéric; Le Thomas, Nicolas; Baets, Roel

    2014-07-01

    We experimentally demonstrate the use of high contrast, CMOS-compatible integrated photonic waveguides for Raman spectroscopy. We also derive the dependence of collected Raman power with the waveguide parameters and experimentally verify the derived relations. Isopropyl alcohol (IPA) is evanescently excited and detected using single-mode silicon-nitride strip waveguides. We analyze the measured signal strength of pure IPA corresponding to an 819  cm⁻¹ Raman peak due to in-phase C-C-O stretch vibration for several waveguide lengths and deduce a pump power to Raman signal conversion efficiency on the waveguide to be at least 10⁻¹¹  per cm.

  16. Detection of C-reactive protein in evanescent wave field using microparticle-tracking velocimetry.

    PubMed

    Fan, Yu-Jui; Sheen, Horn-Jiunn; Liu, Yi-Hsing; Tsai, Jing-Fa; Wu, Tzu-Heng; Wu, Kuang-Chong; Lin, Shiming

    2010-09-07

    A new technique is developed to measure the nanoparticles' brownian motions by employing microparticle-tracking velocimetry (micro-PTV) in evanescent wave field, which can provide high signal-to-noise ratio images for analyzing nanoparticles' movements. This method enables real-time detection of C-reactive proteins (CRPs) during the rapid interaction between CRPs and anti-CRP-coated nanobeads as CRP concentrations are related to the nanobeads' brownian velocity in the equilibrium state. The smallest observable nanobeads with 185 nm were utilized in this experiment to detect CRP concentrations as low as 0.1 microg/mL even in a high-viscosity solution. Further, the dissociation constant, K(D), can be evaluated based on the experimental results.

  17. Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy.

    PubMed

    Khaing Oo, Maung Kyaw; Han, Yun; Kanka, Jiri; Sukhishvili, Svetlana; Du, Henry

    2010-02-15

    We report numerical simulation and hyperspectral Raman imaging of three index-guiding solid-core photonic crystal fibers (PCFs) of different air-cladding microstructures to assess their respective potential for evanescent-field Raman spectroscopy, with an emphasis on achieving surface-enhanced Raman scattering (SERS) over the entire fiber length. Suspended-core PCF consisting of a silica core surrounded by three large air channels conjoined by a thin silica web is the most robust of the three SERS-active PCFs, with a demonstrated detection sensitivity of 1x10(-10) M R6G in an aqueous solution of only approximately 7.3 microL sampling volume.

  18. Large photon drag effect of intrinsic graphene induced by plasmonic evanescent field

    NASA Astrophysics Data System (ADS)

    Luo, Ma; Li, Zhibing

    2016-12-01

    A large photon drag effect of the massless Dirac fermions in intrinsic graphene is predicted for a graphene-on-plasmonic-layer system. The surface plasmons in the plasmonic layer enlarge the wave number of the photon hundreds times more than in vacuum. The evanescent field of the surface plasmons generates a directional motion of carriers in the intrinsic graphene because of the large momentum transfer from the surface plasmon to the excited carriers. A model Hamiltonian is developed on the assumption that the in-plane wavelength of the surface plasmons is much smaller than the mean free path of the carriers. The time evolution of the density matrix is solved by perturbation method as well as numerical integration. The nondiagonal density matrix elements with momentum transfer lead to a gauge current, which is an optically driven macroscopic direct current. The dependence of the macroscopic direct current on the incident direction and intensity of the laser field is studied.

  19. Development of a diagnostic sensor for measuring blood cell concentrations during haemoconcentration

    PubMed Central

    Robertson, Craig A.; Gourlay, Terence

    2016-01-01

    Background: HemoSep® is a commercial ultrafiltration and haemoconcentration device for the concentration of residual bypass blood following surgery. This technology is capable of reducing blood loss in cardiac and other types of “clean site” procedures, including paediatric surgery. Clinical feedback suggested that the device would be enhanced by including a sensor technology capable of discerning the concentration level of the processed blood product. We sought to develop a novel sensor that can, using light absorption, give an accurate estimate of packed cell volume (PCV). Materials and methods: A sensor-housing unit was 3D printed and the factors influencing the sensor’s effectiveness – supply voltage, sensitivity and emitter intensity - were optimised. We developed a smart system, using comparator circuitry capable of visually informing the user when adequate PCV levels (⩾35%) are attained by HemoSep® blood processing, which ultimately indicates that the blood is ready for autotransfusion. Results: Our data demonstrated that the device was capable of identifying blood concentration at and beyond the 35% PCV level. The device was found to be 100% accurate at identifying concentration levels of 35% from a starting level of 20%. Discussion: The sensory capability was integrated into HemoSep’s® current device and is designed to enhance the user’s clinical experience and to optimise the benefits of HemoSep® therapy. The present study focused on laboratory studies using bovine blood. Further studies are now planned in the clinical setting to confirm the efficacy of the device. PMID:27591743

  20. Cell-Based Sensor System Using L6 Cells for Broad Band Continuous Pollutant Monitoring in Aquatic Environments

    PubMed Central

    Kubisch, Rebekka; Bohrn, Ulrich; Fleischer, Maximilian; Stütz, Evamaria

    2012-01-01

    Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism), oxygen consumption (respiration) and impedance (morphology) of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts). The cytotoxicity or cellular effects induced by inorganic ions (Ni2+ and Cu2+) can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity. PMID:22737014

  1. Cell-based sensor system using L6 cells for broad band continuous pollutant monitoring in aquatic environments.

    PubMed

    Kubisch, Rebekka; Bohrn, Ulrich; Fleischer, Maximilian; Stütz, Evamaria

    2012-01-01

    Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism), oxygen consumption (respiration) and impedance (morphology) of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts). The cytotoxicity or cellular effects induced by inorganic ions (Ni(2+) and Cu(2+)) can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity.

  2. A nano-microstructured artificial-hair-cell-type sensor based on topologically graded 3D carbon nanotube bundles

    NASA Astrophysics Data System (ADS)

    Yilmazoglu, O.; Yadav, S.; Cicek, D.; Schneider, J. J.

    2016-09-01

    A design for a unique artificial-hair-cell-type sensor (AHCTS) based entirely on 3D-structured, vertically aligned carbon nanotube (CNT) bundles is introduced. Standard microfabrication techniques were used for the straightforward micro-nano integration of vertically aligned carbon nanotube arrays composed of low-layer multi-walled CNTs (two to six layers). The mechanical properties of the carbon nanotube bundles were intensively characterized with regard to various substrates and CNT morphology, e.g. bundle height. The CNT bundles display excellent flexibility and mechanical stability for lateral bending, showing high tear resistance. The integrated 3D CNT sensor can detect three-dimensional forces using the deflection or compression of a central CNT bundle which changes the contact resistance to the shorter neighboring bundles. The complete sensor system can be fabricated using a single chemical vapor deposition (CVD) process step. Moreover, sophisticated external contacts to the surroundings are not necessary for signal detection. No additional sensors or external bias for signal detection are required. This simplifies the miniaturization and the integration of these nanostructures for future microsystem set-ups. The new nanostructured sensor system exhibits an average sensitivity of 2100 ppm in the linear regime with the relative resistance change per micron (ppm μm-1) of the individual CNT bundle tip deflection. Furthermore, experiments have shown highly sensitive piezoresistive behavior with an electrical resistance decrease of up to ˜11% at 50 μm mechanical deflection. The detection sensitivity is as low as 1 μm of deflection, and thus highly comparable with the tactile hair sensors of insects, having typical thresholds on the order of 30-50 μm. The AHCTS can easily be adapted and applied as a flow, tactile or acceleration sensor as well as a vibration sensor. Potential applications of the latter might come up in artificial cochlear systems. In

  3. Quantitative High-Resolution Sensing of DNA Hybridization Using Magnetic Tweezers with Evanescent Illumination

    PubMed Central

    Oliver, Piercen M.; Park, Jin Seon; Vezenov, Dmitri

    2012-01-01

    We applied the combined approach of evanescent nanometry and force spectroscopy using magnetic tweezers to quantify the degree of hybridization of a single synthetic single-stranded DNA oligomer to a resolution approaching a single-base. In this setup, the 200 nucleotide long DNA was covalently attached to the surface of an optically transparent solid support at one end and to the surface of a superparamagnetic fluorescent microsphere (force probe) at the other end. The force was applied to the probes using an electromagnet. The end-to-end molecular distance (i.e. out-of-image-plane position of the force probe) was determined from the intensity of the probe fluorescent image observed with total-internal reflectance microscopy. An equation of state for single stranded DNA molecules under tension (extensible freely jointed chain) was used to derive the penetration depth of the evanescent field and to calibrate the magnetic properties of the force probes. The parameters of the magnetic response of the force probes obtained from the equation of state remained constant when changing the penetration depth, indicating a robust calibration procedure. The results of such a calibration were also confirmed using independently measured probe-surface distances for probes mounted onto cantilevers of an atomic force microscope. Upon hybridization of the complementary 50 nucleotide-long oligomer to the surface-bound 200-mer, the changes in the force-distance curves were consistent with the quantitative conversion of 25% of the original single-stranded DNA to its double-stranded form, which was modeled as an elastic rod. The method presented here for quantifying the hybridization state of the single DNA molecules has potential for determining the degree of hybridization of individual molecules in a single molecule array with high accuracy. PMID:21103547

  4. Quantitative high-resolution sensing of DNA hybridization using magnetic tweezers with evanescent illumination.

    PubMed

    Oliver, Piercen M; Park, Jin Seon; Vezenov, Dmitri

    2011-02-01

    We applied the combined approach of evanescent nanometry and force spectroscopy using magnetic tweezers to quantify the degree of hybridization of a single synthetic single-stranded DNA oligomer to a resolution approaching a single-base. In this setup, the 200 nucleotide long DNA was covalently attached to the surface of an optically transparent solid support at one end and to the surface of a superparamagnetic fluorescent microsphere (force probe) at the other end. The force was applied to the probes using an electromagnet. The end-to-end molecular distance (i.e. out-of-image-plane position of the force probe) was determined from the intensity of the probe fluorescence image observed with total-internal reflectance microscopy. An equation of state for single stranded DNA molecules under tension (extensible freely jointed chain) was used to derive the penetration depth of the evanescent field and to calibrate the magnetic properties of the force probes. The parameters of the magnetic response of the force probes obtained from the equation of state remained constant when changing the penetration depth, indicating a robust calibration procedure. The results of such a calibration were also confirmed using independently measured probe-surface distances for probes mounted onto cantilevers of an atomic force microscope. Upon hybridization of the complementary 50 nucleotide-long oligomer to the surface-bound 200-mer, the changes in the force-distance curves were consistent with the quantitative conversion of 25% of the original single-stranded DNA to its double-stranded form, which was modeled as an elastic rod. The method presented here for quantifying the hybridization state of the single DNA molecules has potential for determining the degree of hybridization of individual molecules in a single molecule array with high accuracy.

  5. 2D ratiometric fluorescent pH sensor for tracking of cells proliferation and metabolism.

    PubMed

    Ma, Jun; Ding, Changqin; Zhou, Jie; Tian, Yang

    2015-08-15

    Extracellular pH plays a vital role no matter in physiological or pathological studies. In this work, a hydrogel, CD@Nile-FITC@Gel (Gel sensor), entrapping the ratiometric fluorescent probe CD@Nile-FITC was developed. The Gel sensor was successfully used for real-time extracellular pH monitoring. In the case of CD@Nile-FITC, pH-sensitive fluorescent dye fluorescein isothiocyanate (FITC) was chosen as the response signal for H(+) and Nile blue chloride (Nile) as the reference signal. The developed fluorescent probe exhibited high selectivity for pH over other metal ions and amino acids. Meanwhile, the carbon-dots-based inorganic-organic probe demonstrated excellent photostability against long-term light illumination. In order to study the extracellular pH change in processes of cell proliferation and metabolism, CD@Nile-FITC probe was entrapped in sodium alginate gel and consequently formed CD@Nile-FITC@Gel. The MTT assay showed low cytotoxicity of the Gel and the pH titration indicated that it could monitor the pH fluctuations linearly and rapidly within the pH range of 6.0-9.0, which is valuable for physiological pH determination. As expected, the real-time bioimaging of the probe was successfully achieved.

  6. Degron protease blockade sensor to image epigenetic histone protein methylation in cells and living animals.

    PubMed

    Sekar, Thillai V; Foygel, Kira; Devulapally, Rammohan; Paulmurugan, Ramasamy

    2015-01-16

    Lysine methylation of histone H3 and H4 has been identified as a promising therapeutic target in treating various cellular diseases. The availability of an in vivo assay that enables rapid screening and preclinical evaluation of drugs that potentially target this cellular process will significantly expedite the pace of drug development. This study is the first to report the development of a real-time molecular imaging biosensor (a fusion protein, [FLuc2]-[Suv39h1]-[(G4S)3]-[H3-K9]-[cODC]) that can detect and monitor the methylation status of a specific histone lysine methylation mark (H3-K9) in live animals. The sensitivity of this sensor was assessed in various cell lines, in response to down-regulation of methyltransferase EHMT2 by specific siRNA, and in nude mice with lysine replacement mutants. In vivo imaging in response to a combination of methyltransferase inhibitors BIX01294 and Chaetocin in mice reveals the potential of this sensor for preclinical drug evaluation. This biosensor thus has demonstrated its utility in the detection of H3-K9 methylations in vivo and potential value in preclinical drug development.

  7. Thin-film dielectric elastomer sensors to measure the contraction force of smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Araromi, O.; Poulin, A.; Rosset, S.; Favre, M.; Giazzon, M.; Martin-Olmos, C.; Liley, M.; Shea, H.

    2015-04-01

    The development of thin-film dielectric elastomer strain sensors for the characterization of smooth muscle cell (SMC) contraction is presented here. Smooth muscle disorders are an integral part of diseases such as asthma and emphysema. Analytical tools enabling the characterization of SMC function i.e. contractile force and strain, in a low-cost and highly parallelized manner are necessary for toxicology screening and for the development of new and more effective drugs. The main challenge with the design of such tools is the accurate measurement of the extremely low contractile cell forces expected as a result of SMC monolayer contraction (as low as ~ 100 μN). Our approach utilizes ultrathin (~5 μm) and soft elastomer membranes patterned with elastomer-carbon composite electrodes, onto which the SMCs are cultured. The cell contraction induces an in-plane strain in the elastomer membrane, predicted to be in the order 1 %, which can be measured via the change in the membrane capacitance. The cell force can subsequently be deduced knowing the mechanical properties of the elastomer membrane. We discuss the materials and fabrication methods selected for our system and present preliminary results indicating their biocompatibility. We fabricate functional capacitive senor prototypes with good signal stability over the several hours (~ 0.5% variation). We succeed in measuring in-plane strains of 1 % with our fabricated devices with good repeatability and signal to noise ratio.

  8. Solar cells and light sensors based on nanoparticle-grafted carbon nanotube films.

    PubMed

    Li, Xianglong; Jia, Yi; Wei, Jinquan; Zhu, Hongwei; Wang, Kunlin; Wu, Dehai; Cao, Anyuan

    2010-04-27

    Carbon nanotubes show great potential in developing solar cells with enhanced power conversion efficiency, yet the device stability has not been thoroughly studied. Here, we show how the interaction between components in a nanotube-based hybrid solar cell could cause a significant change in output voltage and fill factor, resulting in photoinduced degradation in device performance. We functionalized carbon nanotubes with CdS nanoparticles to make hybrid films and deposited these films onto silicon substrates to construct solar cells with efficiencies up to 1.4%. The I-V characteristics show reversible change in response to light illumination, suggesting potential applications as visible-light sensors. The fill factor and open-circuit voltage gradually decrease under continuous illumination, inversely proportional to the incident light energy within a considerable range up to 60 J. The unique photoresponse is attributed to a charge-transfer process between nanotubes and nanoparticles under excitation and to change in series resistance in the solar cells.

  9. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip.

    PubMed

    Bonk, Sebastian M; Stubbe, Marco; Buehler, Sebastian M; Tautorat, Carsten; Baumann, Werner; Klinkenberg, Ernst-Dieter; Gimsa, Jan

    2015-07-30

    We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1) were used as a model system. Thin-film platinum (Pt) sensors for respiration (amperometric oxygen electrode), acidification (potentiometric pH electrodes) and cell adhesion (interdigitated-electrodes structures, IDES) allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs) permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4). Thin Si3N4 layers (20 nm or 60 nm) were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm(2). Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated). Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions.

  10. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip

    PubMed Central

    Bonk, Sebastian M.; Stubbe, Marco; Buehler, Sebastian M.; Tautorat, Carsten; Baumann, Werner; Klinkenberg, Ernst-Dieter; Gimsa, Jan

    2015-01-01

    We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1) were used as a model system. Thin-film platinum (Pt) sensors for respiration (amperometric oxygen electrode), acidification (potentiometric pH electrodes) and cell adhesion (interdigitated-electrodes structures, IDES) allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs) permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4). Thin Si3N4 layers (20 nm or 60 nm) were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm2. Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated). Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions. PMID:26263849

  11. A dual transcriptional reporter and CDK-activity sensor marks cell cycle entry and progression in C. elegans

    PubMed Central

    van Rijnberk, Lotte M.; van der Horst, Suzanne E. M.; van den Heuvel, Sander; Ruijtenberg, Suzan

    2017-01-01

    Development, tissue homeostasis and tumor suppression depend critically on the correct regulation of cell division. Central in the cell division process is the decision whether to enter the next cell cycle and commit to going through the S and M phases, or to remain temporarily or permanently arrested. Cell cycle studies in genetic model systems could greatly benefit from visualizing cell cycle commitment in individual cells without the need of fixation. Here, we report the development and characterization of a reporter to monitor cell cycle entry in the nematode C. elegans. This reporter combines the mcm-4 promoter, to reveal Rb/E2F-mediated transcriptional control, and a live-cell sensor for CDK-activity. The CDK sensor was recently developed for use in human cells and consists of a DNA Helicase fragment fused to eGFP. Upon phosphorylation by CDKs, this fusion protein changes in localization from the nucleus to the cytoplasm. The combined regulation of transcription and subcellular localization enabled us to visualize the moment of cell cycle entry in dividing seam cells during C. elegans larval development. This reporter is the first to reflect cell cycle commitment in C. elegans and will help further genetic studies of the mechanisms that underlie cell cycle entry and exit. PMID:28158315

  12. Bioimpedance microelectronics in a 24-microwell plate with metabolic-sensors for testing chemosensitivity of tumor cells and tissues

    NASA Astrophysics Data System (ADS)

    Schwarzenberger, T.; Demmel, F.; Becker, B.; Zottmann, M.; Wolf, P.; Kleinhans, R.; Brischwein, M.; Otto, A.; Wolf, B.

    2010-04-01

    Living cells react to external influences such as pharmacological agents in an intricate manner due to their complex internal signal processing. Cell reactions are an impact on vitality, cell-cell or cell-matrix interaction and morphological changes. A number of published techniques on impedance spectroscopy (IS) of adherent cells with planar electrodes address these changes. However, IS can merely serve as an indicator of cellular events rather than provide detailed information on a specific cell process. Thus our approach is a 24-microwell sensor-plate with impedance-electrodes in parallel to pH- and O2-sensors, capable of being integrated into a fully automated screening system. For the purpose of IS, high precision impedance-electronics have been developed based on integrated circuits and validated against a Solartron 1260 impedance analyzer. IS data is correlated to the metabolic-sensors and additionally compared with cell images shot by an inverse optical microscope which is also part of the screening system. Proof of principle is demonstrated by experimental growth monitoring of a MCF-7 culture and cellular response to chemotherapeutics. Furthermore, the potential to monitor living tissue probes is presented for the first time.

  13. A thermo-stabilized flow cell for surface plasmon resonance sensors in D-shaped plastic optical fibers

    NASA Astrophysics Data System (ADS)

    Cennamo, N.; Chiavaioli, F.; Trono, C.; Tombelli, S.; Giannetti, A.; Baldini, F.; Zeni, L.

    2016-05-01

    The first example of an optical sensor platform based on surface plasmon resonance (SPR) in a plastic optical fiber (POF) integrated into a thermo-stabilized flow cell for biochemical sensing applications is proposed. In this work, an IgG/anti-IgG assay was implemented as model bioassay, with the IgG biolayer deposited on the sensor gold surface and the biological target, anti-IgG, transported through a new thermo-stabilized flow cell. The experimental results show that the proposed device can be successfully used for label-free biochemical sensing. This complete optical sensor system can be used for the future reduction of the device cost and dimension, with the possibility of integrating the POF-SPR sensing platform with microfluidic and optoelectronic devices.

  14. A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells.

    PubMed

    San Martín, Alejandro; Ceballo, Sebastián; Ruminot, Iván; Lerchundi, Rodrigo; Frommer, Wolf B; Barros, Luis Felipe

    2013-01-01

    Lactate is shuttled between and inside cells, playing metabolic and signaling roles in healthy tissues. Lactate is also a harbinger of altered metabolism and participates in the pathogenesis of inflammation, hypoxia/ischemia, neurodegeneration and cancer. Many tumor cells show high rates of lactate production in the presence of oxygen, a phenomenon known as the Warburg effect, which has diagnostic and possibly therapeutic implications. In this article we introduce Laconic, a genetically-encoded Forster Resonance Energy Transfer (FRET)-based lactate sensor designed on the bacterial transcription factor LldR. Laconic quantified lactate from 1 µM to 10 mM and was not affected by glucose, pyruvate, acetate, betahydroxybutyrate, glutamate, citrate, α-ketoglutarate, succinate, malate or oxalacetate at concentrations found in mammalian cytosol. Expressed in astrocytes, HEK cells and T98G glioma cells, the sensor allowed dynamic estimation of lactate levels in single cells. Used in combination with a blocker of the monocarboxylate transporter MCT, the sensor was capable of discriminating whether a cell is a net lactate producer or a net lactate consumer. Application of the MCT-block protocol showed that the basal rate of lactate production is 3-5 fold higher in T98G glioma cells than in normal astrocytes. In contrast, the rate of lactate accumulation in response to mitochondrial inhibition with sodium azide was 10 times lower in glioma than in astrocytes, consistent with defective tumor metabolism. A ratio between the rate of lactate production and the rate of azide-induced lactate accumulation, which can be estimated reversibly and in single cells, was identified as a highly sensitive parameter of the Warburg effect, with values of 4.1 ± 0.5 for T98G glioma cells and 0.07 ± 0.007 for astrocytes. In summary, this article describes a genetically-encoded sensor for lactate and its use to measure lactate concentration, lactate flux, and the Warburg effect in single

  15. The Modification of Fuel Cell-Based Breath Alcohol Sensor Materials to Improve Water Retention of Sensing Performance

    NASA Astrophysics Data System (ADS)

    Allan, Jesse

    Fuel cell based breath alcohol sensors (BrASs) are one of the most important tools used by law enforcement today. The ability to screen potentially intoxicated subjects with the ease, speed, and flexibility the BrAS can provide is unmatched by any other device of its kind. While these devices are used globally, they all suffer from a common deficiency: reliance on water. The ability of the fuel cell sensor to manage water content is one of the greatest fundamental challenges facing this technology today. In order to evaluate the fuel cell sensor device, a methodology was required that would allow in-house sensor testing to be coupled with a diagnostic testing method to not only test materials sensing performance, but also determine why a sensor behaved how it did. To do this, a next-generation fuel cell was designed specifically for sensor testing along with a test station that allowed for rapid response and sensor characteristics of a given material. The fuel cell was designed to allow in-situ testing of a membrane electrode assembly (MEA) of interest using cyclic voltammetry and electrochemical impedance spectroscopy. The in-house design was validated against a commercial cell to provide feedback on how materials in the in-house cell would behave in a commercial designed unit. The results showed that our cell with a commercial MEA behaved identically to a commercial cell with the same MEA. Following validation of our cell, common membrane materials were investigated to identify their suitability in a senor role. The materials chosen were designed for power generating devices, so they provided a benchmark to identify which properties would be important for sensor operation. It was found that while the Nafion membrane and sulfonated poly (ether ether ketone) did show performance increases over the commercial MEA, the thin characteristics of these membranes limited performance in drier conditions. From these results, it was determined that thicker membrane materials

  16. Pulmonary neuroendocrine cells function as airway sensors to control lung immune response

    PubMed Central

    Branchfield, Kelsey; Nantie, Leah; Verheyden, Jamie M.; Sui, Pengfei; Wienhold, Mark D.; Sun, Xin

    2016-01-01

    The lung is constantly exposed to environmental atmospheric cues. How it senses and responds to these cues is poorly defined. Here, we show that Roundabout receptor (Robo) genes are expressed in pulmonary neuroendocrine cells (PNECs), a rare, innervated epithelial population. Robo inactivation in mouse lung results in an inability of PNECs to cluster into sensory organoids and triggers increased neuropeptide production upon exposure to air. Excess neuropeptides lead to an increase in immune infiltrates, which in turn remodel the matrix and irreversibly simplify the alveoli. We demonstrate in vivo that PNECs act as precise airway sensors that elicit immune responses via neuropeptides. These findings suggest that the PNEC and neuropeptide abnormalities documented in a wide array of pulmonary diseases may profoundly affect symptoms and progression. PMID:26743624

  17. Spectrally-resolved optical efficiency using a multi-junction cell as light sensor: Application cases

    NASA Astrophysics Data System (ADS)

    Victoria, Marta; Domínguez, César; Jost, Norman; Vallerotto, Guido; Antón, Ignacio; Sala, Gabriel

    2017-09-01

    The experimental method to determine the spectrally-resolved optical efficiency of concentrating optics is described in this paper. The measurement uses a multi-junction solar cell as light sensor and a series of band-pass filters to isolate the optical performance of different narrow spectral bands throughout the spectrum of interest. Additional bias light is provided to saturate the subcells whose spectral response is out of the transmittance of every band-pass filter. The method allows the characterization of the combined transmittance, reflectance and absorbance of every material composing the optics including optical couplers and thin layers such as antireflective coatings. The two application cases included illustrate the potential of this novel characterization technique. Firstly, a novel refractive concentrator, the Achromatic Doublet on Glass (ADG) Fresnel lens is measured. Secondly, the method is applied to analyze the degradation of outdoor exposed glass molded Secondary Optical Elements (SOE).

  18. Real time Measurement of Metabolic States in Living Cells using Genetically-encoded NADH Sensors

    PubMed Central

    Zhao, Yuzheng; Yang, Yi; Loscalzo, Joseph

    2014-01-01

    Redox metabolism plays critical roles in multiple biological processes and diseases. Until recently, knowledge of specific, key redox processes in living systems was limited by the lack of adequate methodology. Reduced nicotinamide adenine dinucleotide (NADH) and its oxidized form (NAD+) is the most important small molecule in the redox metabolism of mammalian cells. We previously reported a series of genetically encoded fluorescent sensors for intracellular NADH detection. Here, we present an accounting of experimental components and considerations, such as protein expression and purification, fluorescence titration, transfections, and confocal imaging, necessary to perform a standardized NADH assay experiment with these probes. In addition, we outline initial experiments used to derive basic principles of NADH/NAD+ redox biology in vitro. Finally, we describe a protocol for a steady-state kinetics experiment, and the processing of experimental data to measure intracellular NADH levels. PMID:24862275

  19. Genetically-encoded FRET-based sensors for monitoring Zn(2+) in living cells.

    PubMed

    Hessels, Anne M; Merkx, Maarten

    2015-02-01

    Genetically-encoded fluorescent sensor proteins are attractive tools for studying intracellular Zn(2+) homeostasis and signaling. Here we provide an overview of recently developed sensors based on Förster Resonance Energy Transfer (FRET). The pros and cons of the various sensors are discussed with respect to Zn(2+) affinity, dynamic range, intracellular targeting and multicolor imaging. Recent applications of these sensors are described, as well as some of the challenges that remain to be addressed in future research.

  20. Measurement of in-plane elasticity of live cell layers using a pressure sensor embedded microfluidic device

    PubMed Central

    Lin, Chien-Han; Wang, Chien-Kai; Chen, Yu-An; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung

    2016-01-01

    In various physiological activities, cells experience stresses along their in-plane direction when facing substrate deformation. Capability of continuous monitoring elasticity of live cell layers during a period is highly desired to investigate cell property variation during various transformations under normal or disease states. This paper reports time-lapsed measurement of live cell layer in-plane elasticity using a pressure sensor embedded microfluidic device. The sensor converts pressure-induced deformation of a flexible membrane to electrical signals. When cells are cultured on top of the membrane, flexural rigidity of the composite membrane increases and further changes the output electrical signals. In the experiments, human embryonic lung fibroblast (MRC-5) cells are cultured and analyzed to estimate the in-plane elasticity. In addition, the cells are treated with a growth factor to simulate lung fibrosis to study the effects of cell transformation on the elasticity variation. For comparison, elasticity measurement on the cells by atomic force microscopy (AFM) is also performed. The experimental results confirm highly anisotropic configuration and material properties of cells. Furthermore, the in-plane elasticity can be monitored during the cell transformation after the growth factor stimulation. Consequently, the developed microfluidic device provides a powerful tool to study physical properties of cells for fundamental biophysics and biomedical researches. PMID:27812019