Science.gov

Sample records for evaporating primordial black

  1. Evaporation of Primordial Black Holes

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.

    The usual explanation of the isotropy of the universe is that inflation would have smoothed out any inhomogeneities. However, if the universe was initially fractal or in a foam like state, an overall inflation would have l it in the same state. I suggest that the universe did indeed begin with a tangled web of wormholes connecting pairs of black holes but that the inflationary expansion was unstable: wormholes that are slightly smaller correspond to black holes that are hotter than the cosmological background and evaporate away. This picture is supported by calculations with Raphael Bousso of the evaporation of primordial black holes in the s-wave and large N approximations.

  2. Fermi LAT Limits on Primordial Black Hole Evaporation

    NASA Astrophysics Data System (ADS)

    Johnson, Chistian; Malyshev, Dmitry; Funk, Stefan; Ritz, Steven; Fermi LAT Collaboration

    2017-01-01

    Primordial black holes (PBHs) of sufficiently small mass emit gamma rays in the Fermi Large Area Telescope (LAT) energy range. PBHs with lifetimes shorter than the Fermi observation time will appear as moving point sources with gamma-ray emission that becomes harder and brighter with time until the PBH completely evaporates. Previous searches for gamma rays from PBHs have focused on either short time scale bursts or the contribution of PBH bursts to the isotropic diffuse emission. Here we use Fermi LAT point source catalogs to search for PBH candidates that evaporate on a time scale of several years. In addition to looking for the spectral signatures of a PBH, we also develop an algorithm to detect proper motion. There are a few unassociated point sources with spectra consistent with PBH evaporation; however, none of these sources show significant proper motion. We derive a conservative limit on PBH evaporation rate in the vicinity of the Earth by using a threshold on the gamma-ray flux above 10 GeV such that there are no sources above this threshold with spectra consistent with Hawking radiation from PBHs. The derived limit is more stringent than the limits obtained with ground-based gamma-ray observatories.

  3. Positrons from quantum evaporation of primordial black-holes

    NASA Technical Reports Server (NTRS)

    Durouchoux, P.; Wallyn, P.; Dubus, G.

    1997-01-01

    The unconfirmed prediction of quantum evaporation of primordial black holes (PBHs) is considered together with the related unanswered questions of whether PBHs ever existed and whether any could still exist. The behavior of the positrons from PHBs is modeled in relation to three facts. Firstly, the integrated emitted number spectrum of positrons is six to eight times larger than that of photons. Secondly, positrons emitted from PBHs lose energy and annihilate, producing a prominent line at 511 keV which is redshifted by the expansion of the universe. Thirdly, these photons may be detectable in the X-ray and low gamma ray energy ranges. The model predicts a flux which is significantly inferior to the instrument sensitivities of the foreseeable future.

  4. Primordial Black Holes: Observational characteristics of the final evaporation

    DOE PAGES

    Ukwatta, T. N.; Stump, D. R.; Linnemann, J. T.; ...

    2016-07-01

    For many early universe theories predict the creation of Primordial Black Holes (PBHs). PBHs could have masses ranging from the Planck mass to 105 solar masses or higher depending on the size of the universe at formation. A Black Hole (BH) has a Hawking temperature which is inversely proportional to its mass. Hence a sufficiently small BH will quasi-thermally radiate particles at an ever-increasing rate as emission lowers its mass and raises its temperature. Moreover, the final moments of this evaporation phase should be explosive and its description is dependent on the particle physics model. In this work we investigatemore » the final few seconds of BH evaporation, using the Standard Model and incorporating the most recent Large Hadron Collider (LHC) results, and provide a new parameterization for the instantaneous emission spectrum. We calculate for the first time energy-dependent PBH burst light curves in the GeV/TeV energy range. Moreover, we explore PBH burst search methods and potential observational PBH burst signatures. We have found a unique signature in the PBH burst light curves that may be detectable by GeV/TeV gamma-ray observatories such as the High Altitude Water Cerenkov (HAWC) observatory. Finally, the implications of beyond the Standard Model theories on the PBH burst observational characteristics are also discussed, including potential sensitivity of the instantaneous photon detection rate to a squark threshold in the 5–10 TeV range.« less

  5. Primordial Black Holes: Observational characteristics of the final evaporation

    SciTech Connect

    Ukwatta, T. N.; Stump, D. R.; Linnemann, J. T.; MacGibbon, J. H.; Marinelli, S. S.; Yapici, T.; Tollefson, K.

    2016-07-01

    For many early universe theories predict the creation of Primordial Black Holes (PBHs). PBHs could have masses ranging from the Planck mass to 105 solar masses or higher depending on the size of the universe at formation. A Black Hole (BH) has a Hawking temperature which is inversely proportional to its mass. Hence a sufficiently small BH will quasi-thermally radiate particles at an ever-increasing rate as emission lowers its mass and raises its temperature. Moreover, the final moments of this evaporation phase should be explosive and its description is dependent on the particle physics model. In this work we investigate the final few seconds of BH evaporation, using the Standard Model and incorporating the most recent Large Hadron Collider (LHC) results, and provide a new parameterization for the instantaneous emission spectrum. We calculate for the first time energy-dependent PBH burst light curves in the GeV/TeV energy range. Moreover, we explore PBH burst search methods and potential observational PBH burst signatures. We have found a unique signature in the PBH burst light curves that may be detectable by GeV/TeV gamma-ray observatories such as the High Altitude Water Cerenkov (HAWC) observatory. Finally, the implications of beyond the Standard Model theories on the PBH burst observational characteristics are also discussed, including potential sensitivity of the instantaneous photon detection rate to a squark threshold in the 5–10 TeV range.

  6. Primordial Black Holes: Observational characteristics of the final evaporation

    SciTech Connect

    Ukwatta, T. N.; Stump, D. R.; Linnemann, J. T.; MacGibbon, J. H.; Marinelli, S. S.; Yapici, T.; Tollefson, K.

    2016-07-01

    For many early universe theories predict the creation of Primordial Black Holes (PBHs). PBHs could have masses ranging from the Planck mass to 105 solar masses or higher depending on the size of the universe at formation. A Black Hole (BH) has a Hawking temperature which is inversely proportional to its mass. Hence a sufficiently small BH will quasi-thermally radiate particles at an ever-increasing rate as emission lowers its mass and raises its temperature. Moreover, the final moments of this evaporation phase should be explosive and its description is dependent on the particle physics model. In this work we investigate the final few seconds of BH evaporation, using the Standard Model and incorporating the most recent Large Hadron Collider (LHC) results, and provide a new parameterization for the instantaneous emission spectrum. We calculate for the first time energy-dependent PBH burst light curves in the GeV/TeV energy range. Moreover, we explore PBH burst search methods and potential observational PBH burst signatures. We have found a unique signature in the PBH burst light curves that may be detectable by GeV/TeV gamma-ray observatories such as the High Altitude Water Cerenkov (HAWC) observatory. Finally, the implications of beyond the Standard Model theories on the PBH burst observational characteristics are also discussed, including potential sensitivity of the instantaneous photon detection rate to a squark threshold in the 5–10 TeV range.

  7. A new search for primordial black hole evaporations using the Whipple gamma-ray telescope

    NASA Astrophysics Data System (ADS)

    Linton, E. T.; Atkins, R. W.; Badran, H. M.; Blaylock, G.; Boyle, P. J.; Buckley, J. H.; Byrum, K. L.; Carter-Lewis, D. A.; Celik, O.; Chow, Y. C. K.; Cogan, P.; Daniel, M. K.; Dowdall, C.; Falcone, A. D.; Fegan, D. J.; Fegan, S. J.; Finley, J. P.; Fortin, P.; Guiterrez, K. J.; Hall, J.; Hanna, D.; Holder, J.; Horan, D.; Hughes, S. B.; Humensky, T. B.; Jung, I.; Kenny, G. E.; Kertzman, M.; Kieda, D. B.; Kildea, J.; Knapp, J.; Krawczynski, H.; Lang, M. J.; LeBohec, S.; Maier, G.; Moriarty, P.; Ong, R. A.; Perkins, J. S.; Pizlo, F.; Pohl, M.; Quinn, J.; Ragan, K.; Rebillot, P. F.; Reynolds, P. T.; Sembroski, G. H.; Steele, D.; Swordy, S. P.; Valcarcel, L.; Wakely, S. P.; Weekes, T. C.; White, R. J.

    2006-01-01

    Stephen Hawking's prediction that black holes should radiate like black bodies has several important consequences, including the possibility of the detection of small (~1015 g) black holes created in the very early universe. The detection of such primordial black holes (PBHs) would be an important discovery, not only confirming Hawking's theory, but also providing valuable insights into the history of the early universe. A search through 5.5 years of archival data from the Whipple Atmospheric Cerenkov Telescope is made for TeV gamma-ray bursts on 1, 3, and 5 s timescales. On the basis of a null result from this direct search for PBH evaporations, an upper limit of 1.08 × 106 pc-3 yr-1 (99% CL) is set on the PBH evaporation rate in the local region of the galaxy, assuming the Standard Model of particle physics. This is more than a factor of two better than the previous limit at this energy range and includes longer timescales than have previously been explored. Comparison of this result with previous limits on the fraction of the critical density comprised by PBHs, Ωpbh, depends strongly on assumptions made about PBH clustering; in models predicting strong PBH clustering, the limit in this work could be as many as ten orders of magnitude more stringently than those set by diffuse MeV gamma-ray observations.

  8. Milagro Limits and HAWC Sensitivity for the Rate-Density of Evaporating Primordial Black Holes

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Abeysekara, A. U.; Alfaro, R.; Allen, B. T.; Alvarez, C.; Alvarez, J. D.; Arceo, R.; Arteaga-Velazquez, J. C.; Aune, T.; Ayala Solares, H. A.; Barber, A. S.; Baughman, B. M.; Bautista-Elivar, N.; Becerra Gonzalez, J.; Belmont, E.; BenZvi, S. Y.; Berley, D.; Rosales, M. Bonilla; Braun, J.; Hays, E.

    2014-01-01

    Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of approx.5.0 x 10(exp 14) g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV-TeV energy range. The Milagro high energy observatory, which operated from 2000 to 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.

  9. Milagro Limits and HAWC Sensitivity for the Rate-Density of Evaporating Primordial Black Holes

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Abeysekara, A. U.; Alfaro, R.; Allen, B.T.; Alvarez, C.; Alvarez, J. D.; Arceo, R.; Arteaga-Velazquez, J. C.; Aune, T.; Ayala Solares, H. A.; Hays, E.

    2014-01-01

    Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of approximately 5.0 x 10 (sup 14) grams should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the gigaelectronvolt - teraelectronvolt energy range. The Milagro high energy observatory, which operated from 2000 to 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90 percent duty cycle and sensitivity up to 100 teraelectronvolt gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.

  10. Milagro limits and HAWC sensitivity for the rate-density of evaporating primordial black holes

    DOE PAGES

    Abdo, A. A.; Abeysekara, A. U.; Alfaro, R.; ...

    2015-04-01

    Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of ~ 5.0 × 10¹⁴ g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV – TeV energy range. The Milagro high energy observatory, which operated from 2000 tomore » 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.« less

  11. Milagro Limits and HAWC Sensitivity for the Rate-Density of Evaporating Primordial Black Holes

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Abeysekara, A. U.; Alfaro, R.; Allen, B. T.; Alvarez, C.; Alvarez, J. D.; Arceo, R.; Arteaga-Velazquez, J. C.; Aune, T.; Ayala Solares, H. A.; hide

    2014-01-01

    Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of approx.5.0 x 10(exp 14) g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV-TeV energy range. The Milagro high energy observatory, which operated from 2000 to 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.

  12. Milagro limits and HAWC sensitivity for the rate-density of evaporating Primordial Black Holes

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Abeysekara, A. U.; Alfaro, R.; Allen, B. T.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Aune, T.; Ayala Solares, H. A.; Barber, A. S.; Baughman, B. M.; Bautista-Elivar, N.; Becerra Gonzalez, J.; Belmont, E.; BenZvi, S. Y.; Berley, D.; Bonilla Rosales, M.; Braun, J.; Caballero-Lopez, R. A.; Caballero-Mora, K. S.; Carramiñana, A.; Castillo, M.; Christopher, G. E.; Cotti, U.; Cotzomi, J.; de la Fuente, E.; De León, C.; DeYoung, T.; Diaz Hernandez, R.; Diaz-Cruz, L.; Díaz-Vélez, J. C.; Dingus, B. L.; DuVernois, M. A.; Ellsworth, R. W.; Fiorino, D. W.; Fraija, N.; Galindo, A.; Garfias, F.; González, M. M.; Goodman, J. A.; Grabski, V.; Gussert, M.; Hampel-Arias, Z.; Harding, J. P.; Hays, E.; Hoffman, C. M.; Hui, C. M.; Hüntemeyer, P.; Imran, A.; Iriarte, A.; Karn, P.; Kieda, D.; Kolterman, B. E.; Kunde, G. J.; Lara, A.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linares, E. C.; Linnemann, J. T.; Longo, M.; Luna-GarcIa, R.; MacGibbon, J. H.; Marinelli, A.; Marinelli, S. S.; Martinez, H.; Martinez, O.; Martínez-Castro, J.; Matthews, J. A. J.; McEnery, J.; Mendoza Torres, E.; Mincer, A. I.; Miranda-Romagnoli, P.; Moreno, E.; Morgan, T.; Mostafá, M.; Nellen, L.; Nemethy, P.; Newbold, M.; Noriega-Papaqui, R.; Oceguera-Becerra, T.; Patricelli, B.; Pelayo, R.; Pérez-Pérez, E. G.; Pretz, J.; Rivière, C.; Rosa-González, D.; Ruiz-Velasco, E.; Ryan, J.; Salazar, H.; Salesa, F.; Sandoval, A.; Saz Parkinson, P. M.; Schneider, M.; Silich, S.; Sinnis, G.; Smith, A. J.; Stump, D.; Sparks Woodle, K.; Springer, R. W.; Taboada, I.; Toale, P. A.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Vasileiou, V.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Williams, D. A.; Wisher, I. G.; Wood, J.; Yodh, G. B.; Younk, P. W.; Zaborov, D.; Zepeda, A.; Zhou, H.

    2015-04-01

    Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of ∼5.0 × 1014 g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV-TeV energy range. The Milagro high energy observatory, which operated from 2000 to 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.

  13. Milagro Limits and HAWC Sensitivity for the Rate Density of Evaporating Primordial Black Holes

    NASA Astrophysics Data System (ADS)

    Marinelli, Samuel; HAWC Collaboration; Milagro Collaboration

    2015-04-01

    Primordial black holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all energetically allowed species of fundamental particles thermally. PBHs with initial masses of order 5 . 0 ×1010 g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV - TeV energy range. The Milagro high-energy observatory, which operated from 2000 to 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field of view, more than 90% duty cycle, and sensitivity up to 100-TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. A search of five years of Milagro data yielded no detections at 5 σ and set a local (parsec-scale) upper limit of 3 . 6 ×104 PBH bursts/year/pc3. In addition, we will report the sensitivity of the Milagro successor, the High-Altitude Water-Cherenkov (HAWC) observatory, to PBH evaporation events. This work was supported by the National Science Foundation.

  14. Milagro limits and HAWC sensitivity for the rate-density of evaporating primordial black holes

    SciTech Connect

    Abdo, A. A.; Abeysekara, A. U.; Alfaro, R.; Allen, B. T.; Alvarez, C.; Alvarez, J. D.; Arceo, R.; Arteaga-Velazquez, J. C.; Aune, T.; H. A. Ayala Solares; Barber, A. S.; Baughman, B. M.; Bautista-Elivar, N.; Gonzalez, J. Becerra; Belmont, E.; BenZvi, S. Y.; Berley, D.; Bonilla Rosales, M.; Braun, J.; Caballero-Lopez, R. A.; Caballero-Mora, K. S.; Carraminana, A.; Castillo, M.; Christopher, G. E.; Cotti, U.; Cotzomi, J.; de la Fuente, E.; De León, C.; DeYoung, T.; Diaz Hernandez, R.; Diaz-Cruz, L.; Díaz-Vélez, J. C.; Dingus, B. L.; DuVernois, M. A.; Ellsworth, R. W.; Fiorino, D. W.; Fraija, N.; Galindo, A.; Garfias, F.; González, M. M.; Goodman, J. A.; Grabski, V.; Gussert, M.; Hampel-Arias, Z.; Harding, J. P.; Hays, E.; Hoffman, C. M.; Hui, C. M.; Hüntemeyer, P.; Imran, A.; Iriarte, A.; Karn, P.; Kieda, D.; Kolterman, B. E.; Kunde, G. J.; Lara, A.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; Vargas, H. Leon; Linares, E. C.; Linnemann, J. T.; Longo, M.; Luna-GarcIa, R.; MacGibbon, J. H.; Marinelli, A.; Marinelli, S. S.; Martinez, H.; Martinez, O.; Martínez-Castro, J.; J. A.J. Matthews; McEnery, J.; Mendoza Torres, E.; Mincer, A. I.; Miranda-Romagnoli, P.; Moreno, E.; Morgan, T.; Mostafa, M.; Nellen, L.; Nemethy, P.; Newbold, M.; Noriega-Papaqui, R.; Oceguera-Becerra, T.; Patricelli, B.; Pelayo, R.; Perez-Perez, E. G.; Pretz, J.; Riviere, C.; Rosa-Gonzalez, D.; Ruiz-Velasco, E.; Ryan, J.; Salazar, H.; Salesa, F.; Sandoval, A.; Saz Parkinson, P. M.; Schneider, M.; Silich, S.; Sinnis, G.; Smith, A. J.; Stump, D.; Sparks Woodle, K.; Springer, R. W.; Taboada, I.; Toale, P. A.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Vasileiou, V.; Villasenor, L.; Weisgarber, T.; Westerhoff, S.; Williams, D. A.; Wisher, I. G.; Wood, J.; Yodh, G. B.; Younk, P. W.; Zaborov, D.; Zepeda, A.; Zhou, H.

    2015-04-01

    Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of ~ 5.0 × 10¹⁴ g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV – TeV energy range. The Milagro high energy observatory, which operated from 2000 to 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.

  15. Growth of Primordial Black Holes

    NASA Astrophysics Data System (ADS)

    Harada, Tomohiro

    Primordial black holes have important observational implications through Hawking evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those black holes are assumed to have formed in the early universe typically with the mass scale contained within the Hubble horizon at the formation epoch and subsequently accreted mass surrounding them. Numerical relativity simulation shows that primordial black holes of different masses do not accrete much, which contrasts with a simplistic Newtonian argument. We see that primordial black holes larger than the 'super-horizon' primordial black holes have decreasing energy and worm-hole like struture, suggesting the formation through quamtum processes.

  16. White holes as the asymptotic limit of evaporating primordial black holes

    NASA Astrophysics Data System (ADS)

    Lee, Jeffrey S.; Cleaver, Gerald B.

    2016-10-01

    This paper examines the interaction of an intense fermion field with all of the particle species of an attometer primordial black hole’s (PBH) high energy Hawking radiation spectrum. By extrapolating to Planck-sized PBHs, it is shown that although Planck-sized PBHs closely simulate the zero absorption requirement of white holes, the absorption probability is not truly zero, and therefore, thermodynamically, Planck-sized primordial black holes are not true white holes.

  17. Clusters of primordial black holes and reionization problem

    SciTech Connect

    Belotsky, K. M. Kirillov, A. A. Rubin, S. G.

    2015-05-15

    Clusters of primordial black holes may cause the formation of quasars in the early Universe. In turn, radiation from these quasars may lead to the reionization of the Universe. However, the evaporation of primordial black holes via Hawking’s mechanism may also contribute to the ionization of matter. The possibility of matter ionization via the evaporation of primordial black holes with allowance for existing constraints on their density is discussed. The contribution to ionization from the evaporation of primordial black holes characterized by their preset mass spectrum can roughly be estimated at about 10{sup −3}.

  18. Nonthermal WIMPs and primordial black holes

    NASA Astrophysics Data System (ADS)

    Georg, Julian; Şengör, Gizem; Watson, Scott

    2016-06-01

    Nonthermal histories for the early universe have received notable attention as they are a rich source of phenomenology, while also being well motivated by top-down approaches to beyond the Standard Model physics. The early (pre-big bang nucleosynthesis) matter phase in these models leads to enhanced growth of density perturbations on sub-Hubble scales. Here, we consider whether primordial black hole formation associated with the enhanced growth is in conflict with existing observations. Such constraints depend on the tilt of the primordial power spectrum, and we find that nonthermal histories are tightly constrained in the case of a significantly blue spectrum. Alternatively, if dark matter is taken to be of nonthermal origin, we can restrict the primordial power spectrum on scales inaccessible to cosmic microwave background and large scale structure observations. We establish constraints for a wide range of scalar masses (reheat temperatures) with the most stringent bounds resulting from the formation of 1015 g black holes. These black holes would be evaporating today and are constrained by FERMI observations. We also consider whether the breakdown of the coherence of the scalar oscillations on subhorizon scales can lead to a Jean's pressure preventing black hole formation and relaxing our constraints. Our main conclusion is that primordial black hole constraints, combined with existing constraints on nonthermal weakly interacting massive particles, favor a primordial spectrum closer to scale invariance or a red tilted spectrum.

  19. Grand unification scale primordial black holes: consequences and constraints.

    PubMed

    Anantua, Richard; Easther, Richard; Giblin, John T

    2009-09-11

    A population of very light primordial black holes which evaporate before nucleosynthesis begins is unconstrained unless the decaying black holes leave stable relics. We show that gravitons Hawking radiated from these black holes would source a substantial stochastic background of high frequency gravititational waves (10(12) Hz or more) in the present Universe. These black holes may lead to a transient period of matter-dominated expansion. In this case the primordial Universe could be temporarily dominated by large clusters of "Hawking stars" and the resulting gravitational wave spectrum is independent of the initial number density of primordial black holes.

  20. Spin distribution of primordial black holes

    NASA Astrophysics Data System (ADS)

    Chiba, Takeshi; Yokoyama, Shuichiro

    2017-08-01

    We estimate the spin distribution of primordial black holes based on the recent study of the critical phenomena in the gravitational collapse of a rotating radiation fluid. We find that primordial black holes are mostly slowly rotating.

  1. Gamma rays and energetic particles from primordial black holes

    NASA Technical Reports Server (NTRS)

    Halzen, F.; Zas, E.; Macgibbon, J. H.; Weekes, T. C.

    1991-01-01

    The standard model of quarks and leptons is used to discuss the signatures of black-hole evaporations. A firm bound on the primordial black hole abundance is obtained from MeV data. It is argued that the MeV bound can be improved by exploiting the new generation of TeV and PeV telescopes.

  2. Gamma -bursts by primordial Black Holes

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    Gamma-burts may arise as a result of quantum generation of photons (as well as neutrinos, gravitons, electrons) by Primordial Black Holes (PBH's) of mass 5-7 x 10^14 g (Hawking: Nature, Volume 248, Issue 5443, pp. 30-31, 1974,Communications in Mathematical Physics, Volume 43, Issue 3, pp.199-220; Page:Particle emission rates from a black hole: Massless particles from an uncharged, nonrotating hole, Phys. Rev. D 13, 198, 1976,Physical Review D - Particles and Fields, 3rd Series, vol. 14, Dec. 15, 1976, p. 3260-327, Particle emission rates from a black hole. III. Charged leptons from a nonrotating hole Phys. Rev. D 16, 2402 Published 15 October 1977; Jane Mac Gibbon, Quark- and gluon-jet emission from primordial black holes. II. The emission over the black-hole lifetime Phys. Rev. D 44, 376 - Published 15 July 1991, J.H. MacGibbon & B.J. Carr,Astrophysical Journal, Part 1, vol. 371, April 20, 1991, p. 447-469 ). Another way of the Gamma-rays production by highly rotating PBH's results from the bomb-like accumulation of mass bosons on superradiative bound levels, which I have called Bose instability in Black Holes (Ternov et al.Soviet Physics Journal, Volume 21, Issue 9, pp.1200-1204 1978; Detweiler: Physical Review D (Particles and Fields), Volume 22, Issue 10, 15 November 1980, pp.2323-2326 1980; Gaina and Ternov: Soviet Astronomy Letters, vol. 12, Nov.-Dec. 1986, p. 394-396; Gaina: Soviet Astronomy Letters, Vol.15, NO.3/MAY,JUN, P. 243, 1989,Astronomical and Astrophysical Transactions, vol. 10, Issue 2, pp.111-112, 1996,Bulletin Astronomique de Belgrade, No. 153, p. 29 - 34 ). The only type of black Holes which is still undiscovered is just the primordial Black Holes type. Is this a technical problem related wuith the sensitivity of Gamma-detectors or this is rather a problem of unfinalized of the quantum mechanical treatment of the Black Holes evaporation? Is this a problem related with inexactitudes of measurements of the Hubble constant or the primordial black

  3. The primordial black hole mass range

    NASA Astrophysics Data System (ADS)

    Frampton, Paul H.

    2016-04-01

    We investigate Primordial Black Hole (PBH) formation by which we mean black holes produced in the early Universe during radiation domination. After discussing the range of PBH mass permitted in the original mechanism of Carr and Hawking, hybrid inflation with parametric resonance is presented as an existence theorem for PBHs of arbitrary mass. As proposed in arXiv:1510.00400, PBHs with many solar masses can provide a solution to the dark matter problem in galaxies. PBHs can also explain dark matter observed in clusters and suggest a primordial origin for Supermassive Black Holes (SMBHs) in galactic cores.

  4. Primordial Black Holes from First Principles (Overview)

    NASA Astrophysics Data System (ADS)

    Lam, Casey; Bloomfield, Jolyon; Moss, Zander; Russell, Megan; Face, Stephen; Guth, Alan

    2017-01-01

    Given a power spectrum from inflation, our goal is to calculate, from first principles, the number density and mass spectrum of primordial black holes that form in the early universe. Previously, these have been calculated using the Press- Schechter formalism and some demonstrably dubious rules of thumb regarding predictions of black hole collapse. Instead, we use Monte Carlo integration methods to sample field configurations from a power spectrum combined with numerical relativity simulations to obtain a more accurate picture of primordial black hole formation. We demonstrate how this can be applied for both Gaussian perturbations and the more interesting (for primordial black holes) theory of hybrid inflation. One of the tools that we employ is a variant of the BBKS formalism for computing the statistics of density peaks in the early universe. We discuss the issue of overcounting due to subpeaks that can arise from this approach (the ``cloud-in-cloud'' problem). MIT UROP Office- Paul E. Gray (1954) Endowed Fund.

  5. Primordial black holes as dark matter

    NASA Astrophysics Data System (ADS)

    Carr, Bernard; Kühnel, Florian; Sandstad, Marit

    2016-10-01

    The possibility that the dark matter comprises primordial black holes (PBHs) is considered, with particular emphasis on the currently allowed mass windows at 1 016- 1 017 g , 1 020- 1 024 g and 1 - 1 03M⊙ . The Planck mass relics of smaller evaporating PBHs are also considered. All relevant constraints (lensing, dynamical, large-scale structure and accretion) are reviewed and various effects necessary for a precise calculation of the PBH abundance (non-Gaussianity, nonsphericity, critical collapse and merging) are accounted for. It is difficult to put all the dark matter in PBHs if their mass function is monochromatic but this is still possible if the mass function is extended, as expected in many scenarios. A novel procedure for confronting observational constraints with an extended PBH mass spectrum is therefore introduced. This applies for arbitrary constraints and a wide range of PBH formation models and allows us to identify which model-independent conclusions can be drawn from constraints over all mass ranges. We focus particularly on PBHs generated by inflation, pointing out which effects in the formation process influence the mapping from the inflationary power spectrum to the PBH mass function. We then apply our scheme to two specific inflationary models in which PBHs provide the dark matter. The possibility that the dark matter is in intermediate-mass PBHs of 1 - 1 03M⊙ is of special interest in view of the recent detection of black-hole mergers by LIGO. The possibility of Planck relics is also intriguing but virtually untestable.

  6. Accretion of radiation and rotating primordial black holes

    SciTech Connect

    Mahapatra, S. Nayak, B.

    2016-02-15

    We consider rotating primordial black holes (PBHs) and study the effect of accretion of radiation in the radiation-dominated era. The central part of our analysis deals with the role of the angular momentum parameter on the evolution of PBHs. We find that both the accretion and evaporation rates decrease with an increase in the angular momentum parameter, but the rate of evaporation decreases more rapidly than the rate of accretion. This shows that the evaporation time of PBHs is prolonged with an increase in the angular momentum parameter. We also note that the lifetime of rotating PBHs increases with an increase in the accretion efficiency of radiation as in the case of nonrotating PBHs.

  7. Microscopic Primordial Black Holes and Extra Dimensions

    SciTech Connect

    Conley, John A.; Wizansky, Tommer

    2006-11-15

    We examine the production and evolution of microscopic black holes in the early universe in the large extra dimensions scenario. We demonstrate that, unlike in the standard four-dimensional cosmology, in large extra dimensions absorption of matter from the primordial plasma by the black holes is significant and can lead to rapid growth of the black hole mass density. This effect can be used to constrain the conditions present in the very early universe. We demonstrate that this constraint is applicable in regions of parameter space not excluded by existing bounds.

  8. Microscopic primordial black holes and extra dimensions

    SciTech Connect

    Conley, John; Wizansky, Tommer

    2007-02-15

    We examine the production and evolution of microscopic black holes in the early universe in the large extra dimensions scenario. We demonstrate that, unlike in the standard four-dimensional cosmology, in large extra dimensions absorption of matter from the primordial plasma by the black holes is significant and can lead to rapid growth of the black hole mass density. This effect can be used to constrain the conditions present in the very early universe. We demonstrate that this constraint is applicable in regions of parameter space not excluded by existing bounds.

  9. Primordial Black Holes from First Principles (numerics)

    NASA Astrophysics Data System (ADS)

    Bloomfield, Jolyon; Moss, Zander; Lam, Casey; Russell, Megan; Face, Stephen; Guth, Alan

    2017-01-01

    In order to compute accurate number densities and mass spectra for primordial black holes from an inflationary power spectrum, one needs to perform Monte Carlo integration over field configurations. This requires a method of determining whether a black hole will form, and if so, what its mass will be, for each sampled configuration. In order for such an integral to converge within any reasonable time, this requires a highly efficient process for making these determinations. We present a numerical pipeline that is capable of making reasonably accurate predictions for black holes and masses at the rate of a few seconds per sample (including the sampling process), utilizing a fully-nonlinear numerical relativity code in 1+1 dimensions.

  10. Primordial black holes in globular clusters

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Steinn; Hernquist, Lars

    1993-01-01

    It has recently been recognized that significant numbers of medium-mass back holes (of order 10 solar masses) should form in globular clusters during the early stages of their evolution. Here we explore the dynamical and observational consequences of the presence of such a primordial black-hole population in a globular cluster. The holes initially segregate to the cluster cores, where they form binary and multiple black-hole systems. The subsequent dynamical evolution of the black-hole population ejects most of the holes on a relatively short timescale: a typical cluster will retain between zero and four black holes in its core, and possibly a few black holes in its halo. The presence of binary, triple, and quadruple black-hole systems in cluster cores will disrupt main-sequence and giant stellar binaries; this may account for the observed anomalies in the distribution of binaries in globular clusters. Furthermore, tidal interactions between a multiple black-hole system and a red giant star can remove much of the red giant's stellar envelope, which may explain the puzzling absence of larger red giants in the cores of some very dense clusters.

  11. Primordial black holes in globular clusters

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Steinn; Hernquist, Lars

    1993-01-01

    It has recently been recognized that significant numbers of medium-mass back holes (of order 10 solar masses) should form in globular clusters during the early stages of their evolution. Here we explore the dynamical and observational consequences of the presence of such a primordial black-hole population in a globular cluster. The holes initially segregate to the cluster cores, where they form binary and multiple black-hole systems. The subsequent dynamical evolution of the black-hole population ejects most of the holes on a relatively short timescale: a typical cluster will retain between zero and four black holes in its core, and possibly a few black holes in its halo. The presence of binary, triple, and quadruple black-hole systems in cluster cores will disrupt main-sequence and giant stellar binaries; this may account for the observed anomalies in the distribution of binaries in globular clusters. Furthermore, tidal interactions between a multiple black-hole system and a red giant star can remove much of the red giant's stellar envelope, which may explain the puzzling absence of larger red giants in the cores of some very dense clusters.

  12. Gravitational wave production by Hawking radiation from rotating primordial black holes

    NASA Astrophysics Data System (ADS)

    Dong, Ruifeng; Kinney, William H.; Stojkovic, Dejan

    2016-10-01

    In this paper we analyze in detail a rarely discussed question of gravity wave production from evaporating primordial black holes. These black holes emit gravitons which are, at classical level, registered as gravity waves. We use the latest constraints on their abundance, and calculate the power emitted in gravitons at the time of their evaporation. We then solve the coupled system of equations that gives us the evolution of the frequency and amplitude of gravity waves during the expansion of the universe. The spectrum of gravitational waves that can be detected today depends on multiple factors: fraction of the total energy density which was occupied by primordial black holes, the epoch in which they were formed, and quantities like their mass and angular momentum. We conclude that very small primordial black holes which evaporate before the big-bang nucleosynthesis emit gravitons whose spectral energy fraction today can be as large as 10-7.5. On the other hand, those which are massive enough so that they still exist now can yield a signal as high as 10-6.5. However, typical frequencies of the gravity waves from primordial black holes are still too high to be observed with the current and near future gravity wave observations.

  13. The Primordial Black Hole Criticality of the Universe

    NASA Astrophysics Data System (ADS)

    Long, K. F.

    We consider the speculative suggestion that copious primordial black holes may have formed in over dense regions at early epochs with the final singularities tunnelling to big bang initial singularities. A critical parameter is introduced as a boundary between those primordial black holes that result in a baby universe contributing towards the nth generation and those that fail to produce such a progeny.

  14. Gravitational waves from primordial black hole mergers

    NASA Astrophysics Data System (ADS)

    Raidal, Martti; Vaskonen, Ville; Veermäe, Hardi

    2017-09-01

    We study the production of primordial black hole (PBH) binaries and the resulting merger rate, accounting for an extended PBH mass function and the possibility of a clustered spatial distribution. Under the hypothesis that the gravitational wave events observed by LIGO were caused by PBH mergers, we show that it is possible to satisfy all present constraints on the PBH abundance, and find the viable parameter range for the lognormal PBH mass function. The non-observation of a gravitational wave background allows us to derive constraints on the fraction of dark matter in PBHs, which are stronger than any other current constraint in the PBH mass range 0.5‑30Msolar. We show that the predicted gravitational wave background can be observed by the coming runs of LIGO, and its non-observation would indicate that the observed events are not of primordial origin. As the PBH mergers convert matter into radiation, they may have interesting cosmological implications, for example in the context of relieving the tension between high and low redshift measurements of the Hubble constant. However, we find that these effects are suppressed as, after recombination, no more that 1% of dark matter can be converted into gravitational waves.

  15. Planck constraint on relic primordial black holes

    NASA Astrophysics Data System (ADS)

    Clark, Steven J.; Dutta, Bhaskar; Gao, Yu; Strigari, Louis E.; Watson, Scott

    2017-04-01

    We investigate constraints on the abundance of primordial black holes (PBHs) in the mass range 1015- 1017 g using data from the cosmic microwave background (CMB) and MeV extragalactic gamma-ray background (EGB). Hawking radiation from PBHs with lifetime greater than the age of the Universe leaves an imprint on the CMB through modification of the ionization history and the damping of CMB anisotropies. Using a model for redshift-dependent energy injection efficiencies, we show that a combination of temperature and polarization data from Planck provides the strongest constraint on the abundance of PBHs for masses ˜1015- 1016 g , while the EGB dominates for masses ≳1016 g . Both the CMB and EGB now rule out PBHs as the dominant component of dark matter for masses ˜1016- 1017 g . Planned MeV gamma-ray observatories are ideal for further improving constraints on PBHs in this mass range.

  16. Cosmic rays from primordial black holes

    NASA Technical Reports Server (NTRS)

    Macgibbon, Jane H.; Carr, B. J.

    1991-01-01

    The quark and gluon emission from primordial black holes (PBHs) which may have formed from initial density perturbations or phase transitions in the early universe are investigated. If the PBHs formed from scale-invariant initial density perturbations in the radiation dominated era, it is found that the emission can explain or contribute significantly to the extragalactic photon and interstellar cosmic-ray electron, positron, and antiproton spectra around 0.1-1 GeV. In particular, the PBH emission strongly resembles the cosmic-ray gamma-ray spectrum between 50 and 170 MeV. The upper limits on the PBH density today from the gamma-ray, e(+), e(-), and antiproton data are comparable, provided that the PBHs cluster to the same degree as the other matter in the Galactic halo.

  17. Hydrodynamics of primordial black hole formation

    NASA Technical Reports Server (NTRS)

    Nadezhin, D. K.; Novikov, I. D.; Polnarev, A. G.

    1979-01-01

    The hydrodynamic picture of the formation of primordial black holes (PBH) at the early stages of expansion of the Universe is considered. It is assumed that close to singularity, expansion occurs in a quasi-isotropic way. Using an EVM, a spherically symmetrical nonlinear problem of the evolution of primary strong deviation from the Fridman solution was solved. What these deviations must be, so that the formation of PBH occurred was clarified. Attention was devoted to the role of pressure gradients. It is pointed out that at the moment of formation of PBH, only a small part of matter enters into it, primarily the component of perturbation. It is also pointed out that at this moment, the mass of PBH essentially is smaller than the mass considered within the cosmic horizon. The possibility of changing the mass of the PBH as a result of accretion is analyzed.

  18. Orbital eccentricities in primordial black hole binaries

    NASA Astrophysics Data System (ADS)

    Cholis, Ilias; Kovetz, Ely D.; Ali-Haïmoud, Yacine; Bird, Simeon; Kamionkowski, Marc; Muñoz, Julian B.; Raccanelli, Alvise

    2016-10-01

    It was recently suggested that the merger of ˜30 M⊙ primordial black holes (PBHs) may provide a significant number of events in gravitational-wave observatories over the next decade, if they make up an appreciable fraction of the dark matter. Here we show that measurement of the eccentricities of the inspiralling binary black holes can be used to distinguish these binaries from those produced by more traditional astrophysical mechanisms. These PBH binaries are formed on highly eccentric orbits and can then merge on time scales that in some cases are years or less, retaining some eccentricity in the last seconds before the merger. This is to be contrasted with massive-stellar-binary, globular-cluster, or other astrophysical origins for binary black holes (BBHs) in which the orbits have very effectively circularized by the time the BBH enters the observable LIGO window. Here we discuss the features of the gravitational-wave signals that indicate this eccentricity and forecast the sensitivity of LIGO and the Einstein Telescope to such effects. We show that if PBHs make up the dark matter, then roughly one event should have a detectable eccentricity given LIGO's expected sensitivity and observing time of six years. The Einstein Telescope should see O (10 ) such events after ten years.

  19. Transient pulses from exploding primordial black holes as a signature of an extra dimension

    SciTech Connect

    Kavic, Michael; Simonetti, John H; Cutchin, Sean E; Ellingson, Steven W; Patterson, Cameron D E-mail: jhs@vt.edu E-mail: ellingson@vt.edu

    2008-11-15

    An evaporating black hole in the presence of an extra spatial dimension would undergo an explosive phase of evaporation. We show that such an event, involving a primordial black hole, can produce a detectable, distinguishable electromagnetic pulse, signaling the existence of an extra dimension of size L{approx}10{sup -18}-10{sup -20} m. We derive a generic relationship between the Lorentz factor of a pulse-producing 'fireball' and the TeV energy scale. For an ordinary toroidally compactified extra dimension, transient radio-pulse searches probe the electroweak energy scale ({approx}0.1 TeV), enabling comparison with the Large Hadron Collider.

  20. Primordial black holes as dark matter in alternate gravity theories

    NASA Astrophysics Data System (ADS)

    Majumdar, A. S.

    We discuss the possibility of the survival of primordial black holes as dark matter candidates in various alternate gravity theories motivated from extra-dimensional scenarios. We show that in particular, braneworld black holes, as well as black holes in scalar-tensor models can survive up to late times by efficient accretion of radiation in the early universe.

  1. Primordial Black Holes and r -Process Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Fuller, George M.; Kusenko, Alexander; Takhistov, Volodymyr

    2017-08-01

    We show that some or all of the inventory of r -process nucleosynthesis can be produced in interactions of primordial black holes (PBHs) with neutron stars (NSs) if PBHs with masses 10-14 M⊙

  2. Testing Gravity with GLAST: GRBs Lensed by Primordial Black Holes

    NASA Astrophysics Data System (ADS)

    Klimek, Matthew; Keeton, C. R.

    2007-05-01

    In the Randall-Sundrum model of branework gravity, very low mass (<10-18 Msun) primordial black holes could persist to the present day. Keeton & Petters have calculated the gravitational lensing effects of such primordial braneworld black holes. Although the direct lensing effects are too small to be observed, the time delay between images produces interference fringes in the energy spectrum at wavelengths which will be accessible to GLAST in gamma ray bursts. This phenomenon is dubbed "attolensing." Assuming such primordial black holes comprise some fraction of the dark matter, we calculate the probability of observing attolensing of a GRB. The most significant contributions to the probability come from black holes outside of the solar system but within the Galaxy; the attolensing probability is on the same order as that of microlensing. We also simulate GLAST observations of attolensed GRBs to demonstrate with what confidence GLAST would be able to detect such an event.

  3. Do black holes really evaporate thermally

    NASA Astrophysics Data System (ADS)

    Tipler, F. J.

    1980-09-01

    The Raychaudhuri equation is used to analyze the effect of the Hawking radiation back reaction upon a black-hole event horizon. It is found that if the effective stress-energy tensor of the Hawking radiation has negative energy density as expected, then an evaporating black hole initially a solar mass in size must disappear in less than a second. This implies that either the evaporation process, if it occurs at all, must be quite different from what is commonly supposed, or else black-hole event horizons - and hence black holes - do not exist.

  4. Black hole evaporation in conformal gravity

    NASA Astrophysics Data System (ADS)

    Bambi, Cosimo; Modesto, Leonardo; Porey, Shiladitya; Rachwał, Lesław

    2017-09-01

    We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.

  5. Selections from 2016: Primordial Black Holes as Dark Matter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    Editors note:In these last two weeks of 2016, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.LIGO Gravitational Wave Detection, Primordial Black Holes, and the Near-IR Cosmic Infrared Background AnisotropiesPublished May2016Main takeaway:A study by Alexander Kashlinsky (NASA Goddard SFC) proposes that the cold dark matter that makes up the majority of the universes matter may be made of black holes. These black holes, Kashlinsky suggests, are primordial: they collapsed directly from dense regions of the universe soon after the Big Bang.Why its interesting:This model would simultaneously explain several observations. In particular, we see similarities in patterns between the cosmic infrared and X-ray backgrounds. This would make sense if accretion onto primordial black holes in halos produced the X-ray background in the same regions where the first stars also formed, producing the infrared background.What this means for current events:In Kashlinskys model, primordial black holes would occasionally form binary pairs and eventually spiral in and merge. The release of energy from such an event would then be observable by gravitational-wave detectors. Could the gravitational-wave signal that LIGO detected last year have been two primordial black holes merging? More observations will be needed to find out.CitationA. Kashlinsky 2016 ApJL 823 L25. doi:10.3847/2041-8205/823/2/L25

  6. Formation and Evolution of Primordial Black Holes After Hybrid Inflation

    SciTech Connect

    Thompson, K

    2005-03-16

    We examine the formation and evolution of primordial black holes (PBH's) after hybrid inflation. Our goal is to assess the effects of various theoretical uncertainties on the extrapolation from a given inflation model to a spectrum of primordial black hole masses. The context of our work is an examination of the possibility that the dark matter is comprised of Planck-mass black hole remnants (BHR's). As an example we focus on a particular scenario in which the black holes form from quantum perturbations that were generated during hybrid inflation. We find the correspondence between hybrid inflation parameters and the range of initial PBH masses that would allow BHR's to comprise the dark matter, taking account of the possible early presence of radiation and its accretion onto the PBH's.

  7. Signatures of non-gaussianity in the isocurvature modes of primordial black hole dark matter

    SciTech Connect

    Young, Sam; Byrnes, Christian T. E-mail: C.Byrnes@sussex.ac.uk

    2015-04-01

    Primordial black holes (PBHs) are black holes which may have formed very early on during the radiation dominated era in the early universe. We present here a method by which the large scale perturbations in the density of primordial black holes may be used to place tight constraints on non-gaussianity if PBHs account for dark matter (DM) . The presence of local-type non-gaussianity is known to have a significant effect on the abundance of primordial black holes, and modal coupling from the observed CMB scale modes can significantly alter the number density of PBHs that form within different regions of the universe, which appear as DM isocurvature modes. Using the recent Planck constraints on isocurvature perturbations, we show that PBHs are excluded as DM candidates for even very small local-type non-gaussianity, |f{sub NL}|≈0.001 and remarkably the constraint on g{sub NL} is almost as strong. Even small non-gaussianity is excluded if DM is composed of PBHs. If local non-Gaussianity is ever detected on CMB scales, the constraints on the fraction of the universe collapsing into PBHs (which are massive enough to have not yet evaporated) will become much tighter.

  8. And All the Rest (Primordial, Intermediate, and Orphan Black Holes)

    NASA Astrophysics Data System (ADS)

    Miller, Cole

    2004-05-01

    Black holes, though exotic and mathematically beautiful, are notoriously difficult to detect because they emit no light of their own and hence can be seen only by their influence on nearby stars and gas. It is therefore probable that the observed stellar-mass and supermassive black holes are only the tip of the iceberg. In addition to the expected undetectable population of solitary black holes, there may be new classes of black holes yet to be discovered. For example, there is growing evidence for an intermediate-mass category of black holes that are too massive to form from solitary stars in the current universe, yet are less massive than the black holes in the centers of galaxies and are not located in environments where growth from gas accretion is significant. An even more intriguing prospect is that in the very early universe a population of primordial black holes could have formed. Although there are currently only limits to such a population, if they formed prior to big bang nucleosynthesis then there is a slim but nonzero chance that primordial black holes are the primary components of dark matter, which would imply that black holes are the dominant form of matter in the universe. We will discuss these scenarios in the context of structure formation and stellar dynamics, and consider future electromagnetic and gravitational wave observations that could yield further insight.

  9. Black hole evaporation rates without spacetime.

    PubMed

    Braunstein, Samuel L; Patra, Manas K

    2011-08-12

    Verlinde recently suggested that gravity, inertia, and even spacetime may be emergent properties of an underlying thermodynamic theory. This vision was motivated in part by Jacobson's 1995 surprise result that the Einstein equations of gravity follow from the thermodynamic properties of event horizons. Taking a first tentative step in such a program, we derive the evaporation rate (or radiation spectrum) from black hole event horizons in a spacetime-free manner. Our result relies on a Hilbert space description of black hole evaporation, symmetries therein which follow from the inherent high dimensionality of black holes, global conservation of the no-hair quantities, and the existence of Penrose processes. Our analysis is not wedded to standard general relativity and so should apply to extended gravity theories where we find that the black hole area must be replaced by some other property in any generalized area theorem.

  10. Tracing primordial black holes in nonsingular bouncing cosmology

    NASA Astrophysics Data System (ADS)

    Chen, Jie-Wen; Liu, Junyu; Xu, Hao-Lan; Cai, Yi-Fu

    2017-06-01

    We in this paper investigate the formation and evolution of primordial black holes (PBHs) in nonsingular bouncing cosmologies. We discuss the formation of PBH in the contracting phase and calculate the PBH abundance as a function of the sound speed and Hubble parameter. Afterwards, by taking into account the subsequent PBH evolution during the bouncing phase, we derive the density of PBHs and their Hawking radiation. Our analysis shows that nonsingular bounce models can be constrained from the backreaction of PBHs.

  11. Baryogenesis in extended inflation. 2: Baryogenesis via primordial black holes

    NASA Technical Reports Server (NTRS)

    Barrow, John D.; Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.

    1990-01-01

    Baryogenesis at the end of extended inflation is studied. Extended inflation is brought to an end by the collisions of bubble walls surrounding regions of true vacuum, a process which produces particles well out of thermal equilibrium. The possibility that the wall collisions may provide a significant density of primordial black holes is considered and their possible role in generating a baryon asymmetry is examined.

  12. The LIGO Discovery and Primordial Black Hole Dark Matter

    NASA Astrophysics Data System (ADS)

    Kovetz, Ely

    2017-01-01

    The LIGO observatory has recently reported several detections of gravitational waves from the coalescence of binary black holes. We consider the extraordinary possibility that the detected events involving heavier masses are mergers of primordial black holes making up the dark matter in the Universe. We will describe various ways of testing this proposition once more gravitational wave data is gathered, survey some of the existing constraints and present a novel probe of massive compact dark matter in the relevant mass range based on strong gravitational lensing of fast radio bursts. We will conclude with a summary of observational prospects to constrain the proposed scenario in the next decade.

  13. Solving puzzles of GW150914 by primordial black holes

    NASA Astrophysics Data System (ADS)

    Blinnikov, S.; Dolgov, A.; Porayko, N. K.; Postnov, K.

    2016-11-01

    The black hole binary properties inferred from the LIGO gravitational wave signal GW150914 posed several serious problems. The high masses and low effective spin of black hole binary can be explained if they are primordial (PBH) rather than the products of the stellar binary evolution. Such PBH properties are postulated ad hoc but not derived from fundamental theory. We show that the necessary features of PBHs naturally follow from the slightly modified Affleck-Dine (AD) mechanism of baryogenesis. The log-normal distribution of PBHs, predicted within the AD paradigm, is adjusted to provide an abundant population of low-spin stellar mass black holes. The same distribution gives a sufficient number of quickly growing seeds of supermassive black holes observed at high redshifts and may comprise an appreciable fraction of Dark Matter which does not contradict any existing observational limits. Testable predictions of this scenario are discussed.

  14. Calculating the mass fraction of primordial black holes

    SciTech Connect

    Young, Sam; Byrnes, Christian T.; Sasaki, Misao E-mail: ctb22@sussex.ac.uk

    2014-07-01

    We reinspect the calculation for the mass fraction of primordial black holes (PBHs) which are formed from primordial perturbations, finding that performing the calculation using the comoving curvature perturbation R{sub c} in the standard way vastly overestimates the number of PBHs, by many orders of magnitude. This is because PBHs form shortly after horizon entry, meaning modes significantly larger than the PBH are unobservable and should not affect whether a PBH forms or not—this important effect is not taken into account by smoothing the distribution in the standard fashion. We discuss alternative methods and argue that the density contrast, Δ, should be used instead as super-horizon modes are damped by a factor k{sup 2}. We make a comparison between using a Press-Schechter approach and peaks theory, finding that the two are in close agreement in the region of interest. We also investigate the effect of varying the spectral index, and the running of the spectral index, on the abundance of primordial black holes.

  15. Primordial Black Holes from First Principles (Statistics)

    NASA Astrophysics Data System (ADS)

    Moss, Zander; Bloomfield, Jolyon; Lam, Casey; Russell, Megan; Face, Stephen; Guth, Alan

    2017-01-01

    To compute estimates for the number density of candidates for black hole formation, we will examine the statistics governing peaks in the density perturbation field arising from inflation. The number density of peaks was calculated for gaussian random density perturbations by BBKS (1984). However, we are interested in hybrid inflation, where the perturbation spectrum is governed by ``chi-squared'' random fields. We will review the formalism of BBKS and extend it to the chi-squared case. The chi-squared field statistics present mathematical challenges due to the participation of multiple inflaton fields in the generation of density perturbations. We exploit a symmetry of these fields to reduce the density calculation to a numerically tractable integration. Surprisingly, the result for an arbitrarily large number of inflaton fields is simpler than the two and three field cases. We will relate these exceptional cases to the dimensionality of space and resulting topological defects. The final number density estimate depends on a single parameter derived from the power spectrum of the gaussian fields that comprise the chi-squared perturbation field. MIT UROP Office.

  16. Formation and evaporation of nonsingular black holes.

    PubMed

    Hayward, Sean A

    2006-01-27

    Regular (nonsingular) space-times are given that describe the formation of a (locally defined) black hole from an initial vacuum region, its quiescence as a static region, and its subsequent evaporation to a vacuum region. The static region is Bardeen-like, supported by finite density and pressures, vanishing rapidly at large radius and behaving as a cosmological constant at small radius. The dynamic regions are Vaidya-like, with ingoing radiation of positive-energy flux during collapse and negative-energy flux during evaporation, the latter balanced by outgoing radiation of positive-energy flux and a surface pressure at a pair creation surface. The black hole consists of a compact space-time region of trapped surfaces, with inner and outer boundaries that join circularly as a single smooth trapping horizon.

  17. Inflationary primordial black holes as all dark matter

    NASA Astrophysics Data System (ADS)

    Inomata, Keisuke; Kawasaki, Masahiro; Mukaida, Kyohei; Tada, Yuichiro; Yanagida, Tsutomu T.

    2017-08-01

    Following a new microlensing constraint on primordial black holes (PBHs) with ˜1 020- 1 028 g [H. Niikura et al., arXiv:1701.02151.], we revisit the idea of PBH as all dark matter (DM). We have shown that the updated observational constraints suggest the viable mass function for PBHs as all DM to have a peak at ≃1 020 g with a small width σ ≲0.1 , by imposing observational constraints on an extended mass function in a proper way. We have also provided an inflation model that successfully generates PBHs as all DM fulfilling this requirement.

  18. A microscopic description of black hole evaporation via holography

    NASA Astrophysics Data System (ADS)

    Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan

    2016-07-01

    We propose a description of how a large, cold black hole (black zero-brane) in type IIA superstring theory evaporates into freely propagating D0-branes, by solving the dual gauge theory quantitatively. The energy spectrum of emitted D0-branes is parametrically close to thermal when the black hole is large. The black hole, while initially cold, gradually becomes an extremely hot and stringy object as it evaporates. As it emits D0-branes, its emission rate speeds up and it evaporates completely without leaving any remnant. Hence this system provides us with a concrete holographic description of black hole evaporation without information loss.

  19. Primordial Black Holes from Supersymmetry in the Early Universe

    NASA Astrophysics Data System (ADS)

    Cotner, Eric; Kusenko, Alexander

    2017-07-01

    Supersymmetric extensions of the standard model generically predict that in the early Universe a scalar condensate can form and fragment into Q balls before decaying. If the Q balls dominate the energy density for some period of time, the relatively large fluctuations in their number density can lead to formation of primordial black holes (PBH). Other scalar fields, unrelated to supersymmetry, can play a similar role. For a general charged scalar field, this robust mechanism can generate black holes over the entire mass range allowed by observational constraints, with a sufficient abundance to account for all dark matter in some parameter ranges. In the case of supersymmetry the mass range is limited from above by 1 023 g . We also comment on the role that topological defects can play for PBH formation in a similar fashion.

  20. Globular cluster seeding by primordial black hole population

    NASA Astrophysics Data System (ADS)

    Dolgov, A.; Postnov, K.

    2017-04-01

    Primordial black holes (PBHs) that form in the early Universe in the modified Affleck-Dine (AD) mechanism of baryogenesis should have intrinsic log-normal mass distribution of PBHs. We show that the parameters of this distribution adjusted to provide the required spatial density of massive seeds (>= 104 Msolar) for early galaxy formation and not violating the dark matter density constraints, predict the existence of the population of intermediate-mass PBHs with a number density of 0~ 100 Mpc-3. We argue that the population of intermediate-mass AD PBHs can also seed the formation of globular clusters in galaxies. In this scenario, each globular cluster should host an intermediate-mass black hole with a mass of a few thousand solar masses, and should not obligatorily be immersed in a massive dark matter halo.

  1. Primordial Black Holes from Supersymmetry in the Early Universe.

    PubMed

    Cotner, Eric; Kusenko, Alexander

    2017-07-21

    Supersymmetric extensions of the standard model generically predict that in the early Universe a scalar condensate can form and fragment into Q balls before decaying. If the Q balls dominate the energy density for some period of time, the relatively large fluctuations in their number density can lead to formation of primordial black holes (PBH). Other scalar fields, unrelated to supersymmetry, can play a similar role. For a general charged scalar field, this robust mechanism can generate black holes over the entire mass range allowed by observational constraints, with a sufficient abundance to account for all dark matter in some parameter ranges. In the case of supersymmetry the mass range is limited from above by 10^{23}  g. We also comment on the role that topological defects can play for PBH formation in a similar fashion.

  2. Constraints on the density perturbation spectrum from primordial black holes

    NASA Astrophysics Data System (ADS)

    Green, Anne M.; Liddle, Andrew R.

    1997-11-01

    We reexamine the constraints on the density perturbation spectrum, including its spectral index n, from the production of primordial black holes. The standard cosmology, where the Universe is radiation dominated from the end of inflation up until the recent past, was studied by Carr, Gilbert, and Lidsey; we correct two errors in their derivation and find a significantly stronger constraint than they did: n<~1.25 rather than their 1.5. We then consider an alternative cosmology in which a second period of inflation, known as thermal inflation and designed to solve additional relic overdensity problems, occurs at a lower-energy scale than the main inflationary period. In that case, the constraint weakens to n<~1.3, and thermal inflation also leads to a ``missing mass'' range 1018 g<~M<~1026 g in which primordial black holes cannot form. Finally, we discuss the effect of allowing for the expected non-Gaussianity in the density perturbations predicted by Bullock and Primack, which can weaken the constraints further by up to 0.05.

  3. Separate universes do not constrain primordial black hole formation

    NASA Astrophysics Data System (ADS)

    Kopp, Michael; Hofmann, Stefan; Weller, Jochen

    2011-06-01

    Carr and Hawking showed that the proper size of a spherical overdense region surrounded by a flat Friedmann Robertson Walker (FRW) universe cannot be arbitrarily large as otherwise the region would close up on itself and become a separate universe. From this result, they derived a condition connecting size and density of the overdense region ensuring that it is part of our universe. Carr used this condition to obtain an upper bound for the density fluctuation amplitude with the property that for smaller amplitudes the formation of a primordial black hole is possible, while larger ones indicate a separate universe. In contrast, we find that the appearance of a maximum is not a consequence of avoiding separate universes but arises naturally from the geometry of the chosen slicing. Using instead of density a volume fluctuation variable reveals that a fluctuation is a separate universe if this variable diverges on superhorizon scales. Hence, Carr’s and Hawking’s condition does not pose a physical constraint on density fluctuations. The dynamics of primordial black hole formation with an initial curvature fluctuation amplitude larger than the one corresponding to the maximum density fluctuation amplitude was previously not considered in detail and so we compare it to the well-known case where the amplitude is smaller by presenting embedding and conformal diagrams of both types in dust spacetimes.

  4. Single field double inflation and primordial black holes

    NASA Astrophysics Data System (ADS)

    Kannike, K.; Marzola, L.; Raidal, M.; Veermäe, H.

    2017-09-01

    Within the framework of scalar-tensor theories, we study the conditions that allow single field inflation dynamics on small cosmological scales to significantly differ from that of the large scales probed by the observations of cosmic microwave background. The resulting single field double inflation scenario is characterised by two consequent inflation eras, usually separated by a period where the slow-roll approximation fails. At large field values the dynamics of the inflaton is dominated by the interplay between its non-minimal coupling to gravity and the radiative corrections to the inflaton self-coupling. For small field values the potential is, instead, dominated by a polynomial that results in a hilltop inflation. Without relying on the slow-roll approximation, which is invalidated by the appearance of the intermediate stage, we propose a concrete model that matches the current measurements of inflationary observables and employs the freedom granted by the framework on small cosmological scales to give rise to a sizeable population of primordial black holes generated by large curvature fluctuations. We find that these features generally require a potential with a local minimum. We show that the associated primordial black hole mass function is only approximately lognormal.

  5. Radion clouds around evaporating black holes

    SciTech Connect

    Morris, J. R.

    2009-08-15

    A Kaluza-Klein model, with a matter source associated with Hawking radiation from an evaporating black hole, is used to obtain a simple form for the radion effective potential. The environmental effect generally causes a matter-induced shift of the radion vacuum, resulting in the formation of a radion cloud around the hole. There is an albedo due to the radion cloud, with an energy-dependent reflection coefficient that depends upon the size of the extra dimensions and the temperature of the hole.

  6. Primordial Black Holes in non-linear perturbation theory

    NASA Astrophysics Data System (ADS)

    Hidalgo, Juan Carlos

    2009-10-01

    This thesis begins with a study of the origin of cosmological fluctuations with special attention to those cases in which the non-Gaussian correlation functions are large. The analysis shows that perturbations from an almost massless auxiliary field generically produce large values of the non-linear parameter f_NL. The effects of including non-Gaussian correlation functions in the statistics of cosmological structure are explored by constructing a non-Gaussian probability distribution function (PDF). Such PDF is derived for the comoving curvature perturbation from first principles in the context of quantum field theory, with n-point correlation functions as the only input. The non-Gaussian PDF is then used to explore two important problems in the physics of primordial black holes (PBHs): First, to compute non-Gaussian corrections to the number of PBHs generated from the primordial curvature fluctuations. The second application concerns new cosmological observables. The formation of PBHs is known to depend on two main physical characteristics: the strength of the gravitational field produced by the initial curvature inhomogeneity and the pressure gradient at the edge of the curvature configuration. We account for the probability of finding these configurations by using two parameters: The amplitude of the inhomogeneity and its second radial derivative, evaluated at the centre of the configuration. The implications of the derived probability for the fraction of mass in the universe in the form of PBHs are discussed.

  7. Searching for Primordial Black Holes & an Extra Spatial Dimension

    NASA Astrophysics Data System (ADS)

    Larracuente, Amanda; Kavic, M.; Cutchin, S.; Simonetti, J. H.; Ellingson, S.

    2013-01-01

    Exploding primordial black holes (PBHs) are expected to produce a single pulse of electromagnetic radiation detectable at the low-frequency end of the radio spectrum. A detection of a radio transient from an exploding PBH could be a signature of an extra spatial dimension, which would drastically alter our perception of spacetime. We present here the results of a search for single-dispersed low-frequency radio pulses utilizing the Eight-meter-wavelength Transient Array (ETA). No compelling astrophysical signal was detected, and from ≈5 hours of interference-free data the implied observational upper limit on the rate of exploding PBHs is r≈ 4.8×107 pc-3 y-1 for a PBH with a fireball Lorentz-factor γ = 104.3. This limit is applicable to PBHs in the halo of the Galaxy to distances ≤ 2 kpc, and dispersion measures ≤80 pc cm-3.

  8. Running-mass inflation model and primordial black holes

    SciTech Connect

    Drees, Manuel; Erfani, Encieh E-mail: erfani@th.physik.uni-bonn.de

    2011-04-01

    We revisit the question whether the running-mass inflation model allows the formation of Primordial Black Holes (PBHs) that are sufficiently long-lived to serve as candidates for Dark Matter. We incorporate recent cosmological data, including the WMAP 7-year results. Moreover, we include ''the running of the running'' of the spectral index of the power spectrum, as well as the renormalization group ''running of the running'' of the inflaton mass term. Our analysis indicates that formation of sufficiently heavy, and hence long-lived, PBHs still remains possible in this scenario. As a by-product, we show that the additional term in the inflaton potential still does not allow significant negative running of the spectral index.

  9. Primordial black holes and slow-roll violation

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Hu, Wayne

    2017-09-01

    For primordial black holes (PBH) to be the dark matter in single-field inflation, the slow-roll approximation must be violated by at least O (1 ) in order to enhance the curvature power spectrum within the required number of e -folds between cosmic microwave background scales and PBH mass scales. Power spectrum predictions which rely on the inflaton remaining on the slow-roll attractor can fail dramatically leading to qualitatively incorrect conclusions in models like an inflection potential and misestimate the mass scale in a running mass model. We show that an optimized temporal evaluation of the Hubble slow-roll parameters to second order remains a good description for a wide range of PBH formation models where up to a 1 07 amplification of power occurs in 10 e -folds or more.

  10. Primordial black hole constraints for extended mass functions

    NASA Astrophysics Data System (ADS)

    Carr, Bernard; Raidal, Martti; Tenkanen, Tommi; Vaskonen, Ville; Veermäe, Hardi

    2017-07-01

    We revisit the cosmological and astrophysical constraints on the fraction of the dark matter in primordial black holes (PBHs) with an extended mass function. We consider a variety of mass functions, all of which are described by three parameters: a characteristic mass and width and a dark matter fraction. Various observations then impose constraints on the dark matter fraction as a function of the first two parameters. We show how these constraints relate to those for a monochromatic mass function, demonstrating that they usually become more stringent in the extended case than the monochromatic one. Considering only the well-established bounds, and neglecting the ones that depend on additional astrophysical assumptions, we find that there are three mass windows, around 5 ×10-16M⊙ , 2 ×10-14M⊙ and 25 - 100 M⊙ , where PBHs can constitute all the dark matter. However, if one includes all the bounds, PBHs can only constitute of order 10% of the dark matter.

  11. Searching for Signals of Merging Primordial Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Cholis, Ilias; Ali-Haimoud, Yacine; Bird, Simeon; Kamionkowski, Marc; Kovetz, Ely; Mandic, Vuk; Munoz, Julian; Raccanelli, Alvise

    2017-01-01

    It was recently advocated that the interactions of 30 solar masses primordial black holes composing the dark matter could explain the first ever observed coalescence event of BHs by the LIGO interferometers. We will discuss potential probes for such a scenario. One probe is the measurement of the eccentricities of the inspiralling binary black holes. We will show that PBH binaries are formed on highly eccentric orbits and can then merge on timescales that in some cases are years or less, retaining some eccentricity in the last seconds before the merger, which can be detected by LIGO or future Einstein Telescope by the observation of high frequency gravitational wave modes. In contrast, in massive-stellar-binaries, globular-clusters, or other astrophysical environment of binary black holes, the orbits have very effectively circularized by the time the binary enters the observable LIGO window.Finally we will discuss the possibility of detecting a signal of PBH binaries in the stochastic gravitational wave background with future gravitational wave detectors.

  12. Search for Primordial Black Holes with the Whipple Atmospheric Cerenkov Telescope

    NASA Astrophysics Data System (ADS)

    Linton, Eric

    2005-04-01

    Stephen Hawking's prediction that black holes should radiate like black bodies has several important consequences, including the possibility for the detection of small (˜10^15 g) black holes created in the very early universe. The detection of such primordial black holes (PBHs) would not only validate Hawking's theory, but would provide useful insights into the history of the early universe. A search through 5.5 years of archival data from the Whipple Atmospheric Cerenkov Telescope was made for TeV gamma-ray bursts on 1 s, 3 s, and 5 s timescales. Based on a null result, an upper-limit on the evaporation rate of PBHs of 2.69 x10^6 pc-3 yr^- 1 (99% CL) was made, assuming the Standard Model of particle physics. When combined with the results of an earlier search through Whipple data, this limit was lowered to 1.33 x10^6 pc-3 yr-1, which is nearly a factor of 2 better than the previous limit at this energy range.

  13. Investigation of primordial black hole bursts using interplanetary network gamma-ray bursts

    SciTech Connect

    Ukwatta, Tilan Niranjan; Hurley, Kevin; MacGibbon, Jane H.; Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Pal'Shin, V. D.; Goldsten, J.; Boynton, W.; Kozyrev, A. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Connaughton, V.; Yamaoka, K.; Ohno, M.; Ohmori, N.; Feroci, M.; Cline, T.; Gehrels, N.; Krimm, H. A.; McTiernan, J.

    2016-07-25

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected by the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 1013–1018 cm (7–105 au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Furthermore, assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.

  14. Investigation of primordial black hole bursts using interplanetary network gamma-ray bursts

    DOE PAGES

    Ukwatta, Tilan Niranjan; Hurley, Kevin; MacGibbon, Jane H.; ...

    2016-07-25

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected bymore » the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 1013–1018 cm (7–105 au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Furthermore, assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.« less

  15. Investigation of primordial black hole bursts using interplanetary network gamma-ray bursts

    SciTech Connect

    Ukwatta, Tilan Niranjan; Hurley, Kevin; MacGibbon, Jane H.; Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Pal'Shin, V. D.; Goldsten, J.; Boynton, W.; Kozyrev, A. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Connaughton, V.; Yamaoka, K.; Ohno, M.; Ohmori, N.; Feroci, M.; Cline, T.; Gehrels, N.; Krimm, H. A.; McTiernan, J.

    2016-07-25

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected by the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 1013–1018 cm (7–105 au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Furthermore, assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.

  16. Probing loop quantum gravity with evaporating black holes.

    PubMed

    Barrau, A; Cailleteau, T; Cao, X; Diaz-Polo, J; Grain, J

    2011-12-16

    This Letter aims at showing that the observation of evaporating black holes should allow the usual Hawking behavior to be distinguished from loop quantum gravity (LQG) expectations. We present a full Monte Carlo simulation of the evaporation in LQG and statistical tests that discriminate between competing models. We conclude that contrarily to what was commonly thought, the discreteness of the area in LQG leads to characteristic features that qualify evaporating black holes as objects that could reveal quantum gravity footprints.

  17. Production of high stellar-mass primordial black holes in trapped inflation

    NASA Astrophysics Data System (ADS)

    Cheng, Shu-Lin; Lee, Wolung; Ng, Kin-Wang

    2017-02-01

    Trapped inflation has been proposed to provide a successful inflation with a steep potential. We discuss the formation of primordial black holes in the trapped inflationary scenario. We show that primordial black holes are naturally produced during inflation with a steep trapping potential. In particular, we have given a recipe for an inflaton potential with which particle production can induce large non-Gaussian curvature perturbation that leads to the formation of high stellar-mass primordial black holes. These primordial black holes could be dark matter observed by the LIGO detectors through a binary black-hole merger. At the end, we have given an attempt to realize the required inflaton potential in the axion monodromy inflation, and discussed the gravitational waves sourced by the particle production.

  18. Cosmic microwave background limits on accreting primordial black holes

    NASA Astrophysics Data System (ADS)

    Ali-Haïmoud, Yacine; Kamionkowski, Marc

    2017-02-01

    Interest in the idea that primordial black holes (PBHs) might comprise some or all of the dark matter has recently been rekindled following LIGO's first direct detection of a binary-black-hole merger. Here we revisit the effect of accreting PBHs on the cosmic microwave background (CMB) frequency spectrum and the angular temperature and polarization power spectra. We compute the accretion rate and luminosity of PBHs, accounting for their suppression by Compton drag and Compton cooling by CMB photons. We estimate the gas temperature near the Schwarzschild radius and, hence, the free-free luminosity, accounting for the cooling resulting from collisional ionization when the background gas is mostly neutral. We account approximately for the velocities of PBHs with respect to the background gas. We provide a simple analytic estimate of the efficiency of energy deposition in the plasma. We find that the spectral distortions generated by accreting PBHs are too small to be detected by FIRAS, as well as by future experiments now being considered. We analyze Planck CMB temperature and polarization data and find, under our most conservative hypotheses, and at the order-of-magnitude level, that they rule out PBHs with masses ≳1 02 M⊙ as the dominant component of dark matter.

  19. Hybrid inflation without flat directions and without primordial black holes

    NASA Astrophysics Data System (ADS)

    Dimopoulos, Konstantinos; Axenides, Minos

    2005-06-01

    We investigate the possibility that the Universe may inflate due to moduli fields, corresponding to flat directions of supersymmetry, lifted by supergravity corrections. Using a hybrid-type potential we obtain a two-stage inflationary model. Depending on the curvature of the potential, the first stage corresponds to a period of fast-roll inflation or a period of 'locked' inflation, induced by an oscillating inflaton. This is followed by a second stage of fast-roll inflation. We demonstrate that these two consecutive inflationary phases result in enough total e-foldings to encompass the cosmological scales. Using natural values for the parameters (masses of order TeV and vacuum energy of the intermediate scale corresponding to gravity mediated supersymmetry breaking) we conclude that the η-problem of inflation is easily overcome. The greatest obstacle to our scenario is the possibility of copious production of cosmologically disastrous primordial black holes due to the phase transition switching from the first into the second stage of inflation. We study this problem in detail and show analytically that there is ample parameter space where these black holes do not form at all. To generate structure in the Universe we assume the presence of a curvaton field. Finally we also discuss the moduli problem and how it affects our considerations.

  20. Gamma ray bursts from collisions of primordial small mass black holes with comets

    NASA Technical Reports Server (NTRS)

    Bickert, K. F.; Greiner, J.

    1992-01-01

    Recent results of BATSE (a collaborative project on independent sky surveys of gamm ray bursts and optical sky patrols) reinforce the isotropic distribution of gamm-ray bursts. Alternatively to cosmological models, collisions between small mas primordial black holes and comets in the Oort cloud are proposed. Assuming typical Oort cloud densities and velocities for comets and primordial black holes, many of the observed properties of gamma-ray bursts can be explained.

  1. Inflationary theory and pulsar timing investigations of primordial black holes and gravitational waves

    NASA Astrophysics Data System (ADS)

    Orlofsky, Nicholas; Pierce, Aaron; Wells, James D.

    2017-03-01

    The gravitational waves measured at LIGO are presumed here to come from merging primordial black holes. We ask how these primordial black holes could arise through inflationary models while not conflicting with current experiments. Among the approaches that work, we investigate the opportunity for corroboration through experimental probes of gravitational waves at pulsar timing arrays. We provide examples of theories that are already ruled out, theories that will soon be probed, and theories that will not be tested in the foreseeable future. The models that are most strongly constrained are those with a relatively broad primordial power spectrum.

  2. Primordial Black Holes and r-Process Nucleosynthesis.

    PubMed

    Fuller, George M; Kusenko, Alexander; Takhistov, Volodymyr

    2017-08-11

    We show that some or all of the inventory of r-process nucleosynthesis can be produced in interactions of primordial black holes (PBHs) with neutron stars (NSs) if PBHs with masses 10^{-14}  M_{⊙}

  3. Adiabatic contraction revisited: Implications for primordial black holes

    NASA Astrophysics Data System (ADS)

    Capela, Fabio; Pshirkov, Maxim; Tinyakov, Peter

    2014-10-01

    We simulate the adiabatic contraction of a dark matter (DM) distribution during the process of the star formation, paying particular attention to the phase space distribution of the DM particles after the contraction. Assuming the initial uniform density and Maxwellian distribution of DM velocities, we find that the number n(r) of DM particles within the radius r scales like n(r)∝r1.5, leading to the DM density profile ρ∝r-1.5, in agreement with the Liouville theorem and previous numerical studies. At the same time, the number of DM particles ν(r) with periastra smaller than r is parametrically larger, ν(r)∝r, implying that many particles contributing at any given moment into the density ρ(r) at small r have very elongated orbits and spend most of their time at distances larger than r. This has implications for the capture of DM by stars in the process of their formation. As a concrete example we consider the case of primordial black holes (PBHs). We show that accounting for very eccentric orbits boosts the amount of captured PBH by a factor of up to 2×103 depending on the PBH mass, improving correspondingly the previously derived constraints on the PBH abundance.

  4. Primordial black holes in non-Gaussian regimes

    SciTech Connect

    Young, Sam; Byrnes, Christian T. E-mail: ctb22@sussex.ac.uk

    2013-08-01

    Primordial black holes (PBHs) can form in the early Universe from the collapse of rare, large density fluctuations. They have never been observed, but this fact is enough to constrain the amplitude of fluctuations on very small scales which cannot be otherwise probed. Because PBHs form only in very rare large fluctuations, the number of PBHs formed is extremely sensitive to changes in the shape of the tail of the fluctuation distribution — which depends on the amount of non-Gaussianity present. We first study how local non-Gaussianity of arbitrary size up to fifth order affects the abundance and constraints from PBHs, finding that they depend strongly on even small amounts of non-Gaussianity and the upper bound on the allowed amplitude of the power spectrum can vary by several orders of magnitude. The sign of the non-linearity parameters (f{sub NL}, g{sub NL}, etc.) are particularly important. We also study the abundance and constraints from PBHs in the curvaton scenario, in which case the complete non-linear probability distribution is known, and find that truncating to any given order (i.e. to order f{sub NL} or g{sub NL}, etc.) does not give accurate results.

  5. Primordial black holes formation from particle production during inflation

    SciTech Connect

    Erfani, Encieh

    2016-04-01

    We study the possibility that particle production during inflation can source the required power spectrum for dark matter (DM) primordial black holes (PBH) formation. We consider the scalar and the gauge quanta production in inflation models, where in the latter case, we focus in two sectors: inflaton coupled i) directly and ii) gravitationally to a U(1) gauge field. We do not assume any specific potential for the inflaton field. Hence, in the gauge production case, in a model independent way we show that the non-production of DM PBHs puts stronger upper bound on the particle production parameter. Our analysis show that this bound is more stringent than the bounds from the bispectrum and the tensor-to-scalar ratio derived by gauge production in these models. In the scenario where the inflaton field coupled to a scalar field, we put an upper bound on the amplitude of the generated scalar power spectrum by non-production of PBHs. As a by-product we also show that the required scalar power spectrum for PBHs formation is lower when the density perturbations are non-Gaussian in comparison to the Gaussian density perturbations.

  6. Primordial black holes in linear and non-linear regimes

    NASA Astrophysics Data System (ADS)

    Allahyari, Alireza; Firouzjaee, Javad T.; Abolhasani, Ali Akbar

    2017-06-01

    We revisit the formation of primordial black holes (PBHs) in the radiation-dominated era for both linear and non-linear regimes, elaborating on the concept of an apparent horizon. Contrary to the expectation from vacuum models, we argue that in a cosmological setting a density fluctuation with a high density does not always collapse to a black hole. To this end, we first elaborate on the perturbation theory for spherically symmetric space times in the linear regime. Thereby, we introduce two gauges. This allows to introduce a well defined gauge-invariant quantity for the expansion of null geodesics. Using this quantity, we argue that PBHs do not form in the linear regime irrespective of the density of the background. Finally, we consider the formation of PBHs in non-linear regimes, adopting the spherical collapse picture. In this picture, over-densities are modeled by closed FRW models in the radiation-dominated era. The difference of our approach is that we start by finding an exact solution for a closed radiation-dominated universe. This yields exact results for turn-around time and radius. It is important that we take the initial conditions from the linear perturbation theory. Additionally, instead of using uniform Hubble gauge condition, both density and velocity perturbations are admitted in this approach. Thereby, the matching condition will impose an important constraint on the initial velocity perturbations δh0 = -δ0/2. This can be extended to higher orders. Using this constraint, we find that the apparent horizon of a PBH forms when δ > 3 at turn-around time. The corrections also appear from the third order. Moreover, a PBH forms when its apparent horizon is outside the sound horizon at the re-entry time. Applying this condition, we infer that the threshold value of the density perturbations at horizon re-entry should be larger than δth > 0.7.

  7. Massive antigravity field and incomplete black hole evaporation

    NASA Astrophysics Data System (ADS)

    Massa, Corrado

    2008-04-01

    If gravity is a mixture of the ordinary attractive force carried by the massless graviton, and of a repulsive force carried by a particle with nonzero mass, an evaporating black hole might leave a stable remnant.

  8. Pulsar timing can constrain primordial black holes in the LIGO mass window

    NASA Astrophysics Data System (ADS)

    Schutz, Katelin; Liu, Adrian

    2017-01-01

    The recent discovery of gravitational waves from merging black holes has generated interest in primordial black holes as a possible component of dark matter. In this paper, we show that pulsar timing may soon have sufficient data to constrain 1 - 1000 M⊙ primordial black holes (PBHs) via the nondetection of a third-order Shapiro time delay as the black holes move around the Galactic halo. We present the results of a Monte Carlo simulation which suggests that future data from known pulsars may be capable of constraining the PBH density more stringently than other existing methods in the mass range ˜1 - 30 M⊙ . We find that timing new pulsars discovered using the proposed Square Kilometre Array may constrain primordial black holes in this mass range to comprise less than ˜1 %- 10 % of the dark matter.

  9. Teleporting entanglement during black hole evaporation

    NASA Astrophysics Data System (ADS)

    Brustein, Ram; Medved, A. J. M.

    2016-10-01

    The unitary evaporation of a black hole (BH) in an initially pure state must lead to the eventual purification of the emitted radiation. It follows that the late radiation has to be entangled with the early radiation and, as a consequence, the entanglement among the Hawking pair partners has to decrease continuously from maximal to vanishing during the BH's life span. Starting from the basic premise that both the horizon radius and the center of mass of a finite-mass BH are fluctuating quantum mechanically, we show how this process is realized. First, it is shown that the horizon fluctuations induce a small amount of variance in the total linear momentum of each created pair. This is in contrast to the case of an infinitely massive BH, for which the total momentum of the produced pair vanishes exactly on account of momentum conservation. This variance leads to a random recoil of the BH during each emission and, as a result, the center of mass of the BH undergoes a quantum random walk. Consequently, the uncertainty in its momentum grows as the square root of the number of emissions. We then show that this uncertainty controls the amount of deviation from maximal entanglement of the produced pairs and that this deviation is determined by the ratio of the cumulative number of emitted particles to the initial BH entropy. Thus, the interplay between the horizon and center-of-mass fluctuations provides a mechanism for teleporting entanglement from the pair partners to the BH and the emitted radiation.

  10. Primordial black holes with mass 10{sup 16}−10{sup 17} g and reionization of the Universe

    SciTech Connect

    Belotsky, K.M.; Kirillov, A.A. E-mail: kirillov-aa@yandex.ru

    2015-01-01

    Primordial black holes (PBHs) with mass 10{sup 16}−10{sup 17} g almost escape constraints from observations so could essentially contribute to dark matter density. Hawking evaporation of such PBHs produces with a steady rate γ- and e{sup ±}-radiations in MeV energy range, which can be absorbed by ordinary matter. Simplified estimates show that a small fraction of evaporated energy had to be absorbed by baryonic matter what can turn out to be enough to heat the matter so it is fully ionized at the redshift z∼ 5... 10. The result is found to be close to a borderline case where the effect appears, what makes it sensitive to the approximation used. In our approximation, degree of gas ionization reaches 50-100% by z∼ 5 for PBH mass (3...7)× 10{sup 16} g with their abundance corresponding to the upper limit.

  11. Chaos in matrix models and black hole evaporation

    NASA Astrophysics Data System (ADS)

    Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan

    2016-12-01

    Is the evaporation of a black hole described by a unitary theory? In order to shed light on this question—especially aspects of this question such as a black hole's negative specific heat—we consider the real-time dynamics of a solitonic object in matrix quantum mechanics, which can be interpreted as a black hole (black zero-brane) via holography. We point out that the chaotic nature of the system combined with the flat directions of its potential naturally leads to the emission of D0-branes from the black brane, which is suppressed in the large N limit. Simple arguments show that the black zero-brane, like the Schwarzschild black hole, has negative specific heat, in the sense that the temperature goes up when it evaporates by emitting D0-branes. While the largest Lyapunov exponent grows during the evaporation, the Kolmogorov-Sinai entropy decreases. These are consequences of the generic properties of matrix models and gauge theory. Based on these results, we give a possible geometric interpretation of the eigenvalue distribution of matrices in terms of gravity. Applying the same argument in the M-theory parameter region, we provide a scenario to derive the Hawking radiation of massless particles from the Schwarzschild black hole. Finally, we suggest that by adding a fraction of the quantum effects to the classical theory, we can obtain a matrix model whose classical time evolution mimics the entire life of the black brane, from its formation to the evaporation.

  12. Black hole evaporation in a noncommutative charged Vaidya model

    SciTech Connect

    Sharif, M. Javed, W.

    2012-06-15

    We study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine a spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordstroem-like solution of this model, which leads to an exact (t - r)-dependent metric. The behavior of the temporal component of this metric and the corresponding Hawking temperature are investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of charged massive particles through the quantum horizon. We find that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that the black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from a maximum value to zero. We note that the final stage of black hole evaporation is a naked singularity.

  13. Anti-evaporation of Bardeen de-Sitter black holes

    NASA Astrophysics Data System (ADS)

    Singh, Dharm Veer; Singh, Naveen K.

    2017-08-01

    In this paper, we discuss the possibility of the anti-evaporation of degenerate Bardeen de-Sitter black hole. We solve the perturbation equations around the Nariai space-time. The solution of one of the perturbations related to the horizon size demonstrates that horizon of such black hole is constant. The other perturbation is also found to be stable. We further study thermodynamical properties of such black holes. We observe double phase transition at the Nariai limit.

  14. Illuminating dark matter and primordial black holes with an interstellar antiproton spectrometer

    SciTech Connect

    Wells, James D

    1998-11-20

    Interstellar antiproton fluxes can arise from dark matter annihilating or decaying into quarks or gluons that subsequently fragment into antiprotons. Evaporation of primordial black holes also can produce a significant antiproton cosmic-ray flux. Since the background of secondary antiprotons from spallation has an interstellar energy spectrum that peaks at ~2 GeV and falls rapidly for energies below this, low-energy measurements of cosmic antiprotons are useful in the search for exotic antiproton sources. However, measurement of the flux near the earth is challenged by significant uncertainties from the effects of the solar wind. We suggest evading this problem and more effectively probing dark-matter signals by placing an antiproton spectrometer aboard an interstellar probe currently under discussion. We address the experimental challenges of a light, low-power-consuming detector, and present an initial design of such an instrument. This experimental effort could significantly increase our ability to detect, and have confidence in, a signal of exotic, nonstandard antiproton sources. Furthermore, solar modulation effects in the heliosphere would be better quantified and understood by comparing results to inverse modulated data derived from existing balloon and space-based detectors near the earth.

  15. NO OBSERVATIONAL CONSTRAINTS FROM HYPOTHETICAL COLLISIONS OF HYPOTHETICAL DARK HALO PRIMORDIAL BLACK HOLES WITH GALACTIC OBJECTS

    SciTech Connect

    Abramowicz, Marek A.; Becker, Julia K.; Garzilli, Antonella; Johansson, Fredrik; Biermann, Peter L.; Qian Lei

    2009-11-01

    It was suggested by several authors that hypothetical primordial black holes (PBHs) may contribute to the dark matter (DM) in our Galaxy. There are strong constraints based on the Hawking evaporation that practically exclude PBHs with masses m{sub pbh} approx 10{sup 15}to10{sup 16} g and smaller as significant contributors to the Galactic DM. Similarly, PBHs with masses greater than about 10{sup 26} g are practically excluded by the gravitational lensing observation. The mass range between 10{sup 16} g

  16. Searching for Primordial Black Holes in the Radio and X-Ray Sky.

    PubMed

    Gaggero, Daniele; Bertone, Gianfranco; Calore, Francesca; Connors, Riley M T; Lovell, Mark; Markoff, Sera; Storm, Emma

    2017-06-16

    We model the accretion of gas onto a population of massive primordial black holes in the Milky Way and compare the predicted radio and x-ray emission with observational data. We show that, under conservative assumptions on the accretion process, the possibility that O(10)M_{⊙} primordial black holes can account for all of the dark matter in the Milky Way is excluded at 5σ by a comparison with a Very Large Array radio catalog at 1.4 GHz and at ≃40σ by a comparison with a Chandra x-ray catalog (0.5-8 keV). We argue that this method can be used to identify such a population of primordial black holes with more sensitive future radio and x-ray surveys.

  17. Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-Produced Stochastic Background.

    PubMed

    Regimbau, T; Evans, M; Christensen, N; Katsavounidis, E; Sathyaprakash, B; Vitale, S

    2017-04-14

    The merger rate of black hole binaries inferred from the detections in the first Advanced LIGO science run implies that a stochastic background produced by a cosmological population of mergers will likely mask the primordial gravitational wave background. Here we demonstrate that the next generation of ground-based detectors, such as the Einstein Telescope and Cosmic Explorer, will be able to observe binary black hole mergers throughout the Universe with sufficient efficiency that the confusion background can potentially be subtracted to observe the primordial background at the level of Ω_{GW}≃10^{-13} after 5 years of observation.

  18. Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-Produced Stochastic Background

    NASA Astrophysics Data System (ADS)

    Regimbau, T.; Evans, M.; Christensen, N.; Katsavounidis, E.; Sathyaprakash, B.; Vitale, S.

    2017-04-01

    The merger rate of black hole binaries inferred from the detections in the first Advanced LIGO science run implies that a stochastic background produced by a cosmological population of mergers will likely mask the primordial gravitational wave background. Here we demonstrate that the next generation of ground-based detectors, such as the Einstein Telescope and Cosmic Explorer, will be able to observe binary black hole mergers throughout the Universe with sufficient efficiency that the confusion background can potentially be subtracted to observe the primordial background at the level of ΩGW≃10-13 after 5 years of observation.

  19. Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers.

    PubMed

    Mandic, Vuk; Bird, Simeon; Cholis, Ilias

    2016-11-11

    Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the Universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational-wave detectors, and conclude that constraining the dark matter component in the form of black holes using stochastic gravitational-wave background measurements will be very challenging.

  20. Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers

    NASA Astrophysics Data System (ADS)

    Mandic, Vuk; Bird, Simeon; Cholis, Ilias

    2016-11-01

    Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the Universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational-wave detectors, and conclude that constraining the dark matter component in the form of black holes using stochastic gravitational-wave background measurements will be very challenging.

  1. Black Hole Evaporation in Horava and New Massive Gravity

    SciTech Connect

    Perez-Payan, S.; Sabido, M.

    2010-07-12

    Recently it has been a lot of interest in the theory proposed by Horava due to the renormalizability properties of the theory and as a candidate for the UV completion of Einstein gravity. On the other hand, we also investigate three dimensional black holes at a Lifshitz point. In the present work we study thermodynamical properties in this setups. In particular we are able to obtain time of evaporation for black hole solutions for the two formalisim.

  2. Pulsar timing can constrain primordial black hole dark matter in the LIGO mass window

    NASA Astrophysics Data System (ADS)

    Schutz, Katelin

    2017-01-01

    The recent discovery of gravitational waves from co-orbiting black holes has rekindled an interest in primordial black holes (PBHs) as a possible component of the dark matter (DM). In this paper, we show that existing proposals for probing DM substructure can also constrain the abundance of primordial black holes in the local Galactic halo. Specifically, pulsar timing arrays may already have sufficient data to constrain 1- 1000M⊙ PBHs via the non-detection of their Shapiro time delay as the black holes move around the Galactic halo. We present the results of a simulation which suggests that existing data may already be capable of constraining the PBH density more stringently than other recently proposed methods for doing so.

  3. Probability for primordial black holes in a multidimensional universe with nonlinear scalar curvature terms

    SciTech Connect

    Paul, B. C.; Ghose, S.; Saha, A.

    2008-10-15

    We investigate multidimensional universe with nonlinear scalar curvature terms to evaluate the probability of creation of primordial black holes. For this we obtain Euclidean instanton solution in two different topologies: (a) S{sup D-1}--topology which does not accommodate primordial black holes and (b) S{sup 1}xS{sup D-2}--topology which accommodates a pair of black holes. The probability for quantum creation of an inflationary universe with a pair of black holes has been evaluated assuming a gravitational action which is described by a polynomial function of scalar curvature with or without a cosmological constant ({lambda}) using the framework of semiclassical approximation of Hartle-Hawking boundary conditions. We discuss here a class of new gravitational instantons solution in the R{sup 4} theory which are relevant for cosmological model building.

  4. Probability for primordial black holes in a multidimensional universe with nonlinear scalar curvature terms

    NASA Astrophysics Data System (ADS)

    Paul, B. C.; Saha, A.; Ghose, S.

    2008-10-01

    We investigate multidimensional universe with nonlinear scalar curvature terms to evaluate the probability of creation of primordial black holes. For this we obtain Euclidean instanton solution in two different topologies: (a) SD-1—topology which does not accommodate primordial black holes and (b) S1×SD-2—topology which accommodates a pair of black holes. The probability for quantum creation of an inflationary universe with a pair of black holes has been evaluated assuming a gravitational action which is described by a polynomial function of scalar curvature with or without a cosmological constant (Λ) using the framework of semiclassical approximation of Hartle-Hawking boundary conditions. We discuss here a class of new gravitational instantons solution in the R4 theory which are relevant for cosmological model building.

  5. Cosmological constraints on primordial black holes produced in the near-critical gravitational collapse

    NASA Astrophysics Data System (ADS)

    Yokoyama, Jun'ichi

    1998-11-01

    The mass function of primordial black holes created through the near-critical gravitational collapse is calculated in a manner fairly independent of the statistical distribution of underlying density fluctuation, assuming that it has a sharp peak on a specific scale. Comparing it with various cosmological constraints on their mass spectrum, some newly excluded range is found in the volume fraction of the region collapsing into black holes as a function of the horizon mass.

  6. To Collapse or not to Collapse: The Life of a Primordial Black Hole

    NASA Astrophysics Data System (ADS)

    Craig, Robert; Bloomfield, Jolyon; Face, Stephen

    2016-03-01

    Primordial black holes offer insights into topics ranging from cosmological questions about inflationary models to astrophysical questions regarding supermassive black holes. Such insights depend on being able to predict the number density of black holes that form from primordial fluctuations. Traditionally this has been done by means of a ``rule-of-thumb'' developed by Carr in the 1980s, but recent numerical studies have shown that this predictor is a coarse tool at best. We present a two-parameter predictor with much more discrimination power that can be straightforwardly used to compute number densities. We also discuss challenges that face this type of prediction strategy, both analytically and numerically, and possible ways to circumvent them.

  7. Constraints on primordial black holes from the Galactic gamma-ray background

    NASA Astrophysics Data System (ADS)

    Carr, B. J.; Kohri, Kazunori; Sendouda, Yuuiti; Yokoyama, Jun'ichi

    2016-08-01

    The fraction of the Universe going into primordial black holes (PBHs) with initial mass M*≈5 ×1 014 g , such that they are evaporating at the present epoch, is strongly constrained by observations of both the extragalactic and Galactic γ -ray backgrounds. However, while the dominant contribution to the extragalactic background comes from the time-integrated emission of PBHs with initial mass M* , the Galactic background is dominated by the instantaneous emission of those with initial mass slightly larger than M* and current mass below M* . Also, the instantaneous emission of PBHs smaller than 0.4 M* mostly comprises secondary particles produced by the decay of directly emitted quark and gluon jets. These points were missed in the earlier analysis by Lehoucq et al. using EGRET data. For a monochromatic PBH mass function, with initial mass (1 +μ )M* and μ ≪1 , the current mass is (3 μ )1 /3M* , and the Galactic background constrains the fraction of the Universe going into PBHs as a function of μ . However, the initial mass function cannot be precisely monochromatic, and even a tiny spread of mass around M* would generate a current low-mass tail of PBHs below M* . This tail would be the main contributor to the Galactic background, so we consider its form and the associated constraints for a variety of scenarios with both extended and nearly monochromatic initial mass functions. In particular, we consider a scenario in which the PBHs form from critical collapse and have a mass function which peaks well above M* . In this case, the largest PBHs could provide the dark matter without the M* ones exceeding the γ -ray background limits.

  8. Black hole — never forms, or never evaporates

    SciTech Connect

    Sun, Yi

    2011-01-01

    Many discussion about the black hole conundrums, such like singularity and information loss, suggested that there must be some essential irreconcilable conflict between quantum theory and classical gravity theory, which cannot be solved with any semiclassical quantized model of gravity, the only feasible way must be some complete unified quantum theory of gravity. In Vachaspati, the arguments indicate the possibility of an alternate outcome of gravitational collapse which avoids the information loss problem. In this paper, also with semiclassical analysis, it shows that so long as the mechanism of black hole evaporation satisfies a quite loose condition that the evaporation lifespan is finite for external observers, regardless of the detailed mechanism and process of evaporation, the conundrums above can be naturally avoided. This condition can be satisfied with Hawking-Unruh mechanism. Thus, the conflict between quantum theory and classical gravity theory may be not as serious as it seemed to be, the effectiveness of semiclassical methods might be underestimated. An exact universal solution with spherical symmetry of Einstein field equation has been derived in this paper. All possible solutions with spherical symmetry of Einstein field equation are its special cases. In addition, some problems of the Penrose diagram of an evaporating black hole first introduced by Hawking in 1975 are clarified.

  9. Generating primordial black holes via hilltop-type inflation models

    SciTech Connect

    Alabidi, Laila; Kohri, Kazunori

    2009-09-15

    It has been shown that black holes would have formed in the early Universe if, on any given scale, the spectral amplitude of the cosmic microwave background exceeds P{sub {zeta}}{approx}10{sup -4}. This value is within the bounds allowed by astrophysical phenomena for the small scale spectrum of the cosmic microwave background, corresponding to scales which exit the horizon at the end of slow-roll inflation. Previous work by Kohri et al. (2007) showed that for black holes to form from a single field model of inflation, the slope of the potential at the end of inflation must be flatter than it was at horizon exit. In this work we show that a phenomenological hilltop model of inflation, satisfying the Kohri et al. criteria, could lead to the production of black holes, if the power of the inflaton self-interaction is less than or equal to 3, with a reasonable number or e-folds. We extend our analysis to the running mass model, and confirm that this model results in the production of black holes, and by using the latest WMAP year 5 bounds on the running of the spectral index, and the black hole constraint we update the results of Leach et al. (2000) excluding more of parameter space.

  10. Generating primordial black holes via hilltop-type inflation models

    NASA Astrophysics Data System (ADS)

    Alabidi, Laila; Kohri, Kazunori

    2009-09-01

    It has been shown that black holes would have formed in the early Universe if, on any given scale, the spectral amplitude of the cosmic microwave background exceeds Pζ˜10-4. This value is within the bounds allowed by astrophysical phenomena for the small scale spectrum of the cosmic microwave background, corresponding to scales which exit the horizon at the end of slow-roll inflation. Previous work by Kohri et al. (2007) showed that for black holes to form from a single field model of inflation, the slope of the potential at the end of inflation must be flatter than it was at horizon exit. In this work we show that a phenomenological hilltop model of inflation, satisfying the Kohri et al. criteria, could lead to the production of black holes, if the power of the inflaton self-interaction is less than or equal to 3, with a reasonable number or e-folds. We extend our analysis to the running mass model, and confirm that this model results in the production of black holes, and by using the latest WMAP year 5 bounds on the running of the spectral index, and the black hole constraint we update the results of Leach et al. (2000) excluding more of parameter space.

  11. Primordial black hole and wormhole formation by domain walls

    NASA Astrophysics Data System (ADS)

    Deng, Heling; Garriga, Jaume; Vilenkin, Alexander

    2017-04-01

    In theories with a broken discrete symmetry, Hubble sized spherical domain walls may spontaneously nucleate during inflation. These objects are subsequently stretched by the inflationary expansion, resulting in a broad distribution of sizes. The fate of the walls after inflation depends on their radius. Walls smaller than a critical radius fall within the cosmological horizon early on and collapse due to their own tension, forming ordinary black holes. But if a wall is large enough, its repulsive gravitational field becomes dominant much before the wall can fall within the cosmological horizon. In this ``supercritical'' case, a wormhole throat develops, connecting the ambient exterior FRW universe with an interior baby universe, where the exponential growth of the wall radius takes place. The wormhole pinches off in a time-scale comparable to its light-crossing time, and black holes are formed at its two mouths. As discussed in previous work, the resulting black hole population has a wide distribution of masses and can have significant astrophysical effects. The mechanism of black hole formation has been previously studied for a dust-dominated universe. Here we investigate the case of a radiation-dominated universe, which is more relevant cosmologically, by using numerical simulations in order to find the initial mass of a black hole as a function of the wall size at the end of inflation. For large supercritical domain walls, this mass nearly saturates the upper bound according to which the black hole cannot be larger than the cosmological horizon. We also find that the subsequent accretion of radiation satisfies a scaling relation, resulting in a mass increase by about a factor of 2.

  12. Quantum radiation from an evaporating nonsingular black hole

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.; Zelnikov, Andrei

    2017-06-01

    In this paper we study quantum radiation from an evaporating spherically symmetric nonsingular black hole. We used a modified Hayward metric for a description of a nonsingular black hole interior. We assume that the mass parameter of this metric depends on the advanced time, and choose this dependence so that it properly reproduces both black hole formation and its subsequent evaporation. We consider a quantum massless scalar field propagating in this geometry and use two-dimensional approximation for the calculation of the quantum average of the stress-energy tensor in the initial vacuum state. For the calculation of this quantity it is sufficient to find a map between the Killing times u+ and u- at the future and past null infinities, established by the propagation of the radial null rays. In this formalism the quantum energy flux at the future null infinity can be expressed in terms of the function u+(u-) and its derivatives up to the third order. We developed a special formalism, which allows one to reduce the problem of the calculation of the quantum energy flux and other observables to a solution of a simple set of ordinary differential equations. We used this approach to study quantum effects in two cases: (i) with the trivial, α =1 , and (ii) the nontrivial, α ≠1 , redshift function. We demonstrated that in both cases there exists an outburst of the quantum energy radiation from the inner domain of the black hole, close to the inner part of its apparent horizon. For α =1 this outburst is exponentially large. Its appearance is a direct consequence of the so-called mass inflation effect. We also demonstrated that this severe problem can be solved by a proper choice of the redshift function. However, even in this case the emitted energy can be much larger than the initial mass of the evaporating black hole. This means that for a construction of a self-consistent model of a nonsingular evaporating black hole the backreaction effects are highly important.

  13. Stochastic gravitational waves associated with the formation of primordial black holes

    NASA Astrophysics Data System (ADS)

    Nakama, Tomohiro; Silk, Joseph; Kamionkowski, Marc

    2017-02-01

    Primordial black hole (PBH) mergers have been proposed as an explanation for the gravitational wave events detected by the LIGO collaboration. Such PBHs may be formed in the early Universe as a result of the collapse of extremely rare high-sigma peaks of primordial fluctuations on small scales, as long as the amplitude of primordial perturbations on small scales is enhanced significantly relative to the amplitude of perturbations observed on large scales. One consequence of these small-scale perturbations is generation of stochastic gravitational waves that arise at second order in scalar perturbations, mostly before the formation of the PBHs. These induced gravitational waves have been shown, assuming Gaussian initial conditions, to be comparable to the current limits from the European Pulsar Timing Array, severely restricting this scenario. We show, however, that models with enhanced fluctuation amplitudes typically involve non-Gaussian initial conditions. With such initial conditions, the current limits from pulsar timing can be evaded. The amplitude of the induced gravitational-wave background can be larger or smaller than the stochastic gravitational-wave background from supermassive black hole binaries.

  14. Influence of large local and non-local bispectra on primordial black hole abundance

    SciTech Connect

    Young, Sam; Regan, Donough; Byrnes, Christian T. E-mail: D.Regan@sussex.ac.uk

    2016-02-01

    Primordial black holes represent a unique probe to constrain the early universe on small scales—providing the only constraints on the primordial power spectrum on the majority of scales. However, these constraints are strongly dependent on even small amounts of non-Gaussianity, which is unconstrained on scales significantly smaller than those visible in the CMB. This paper goes beyond previous considerations to consider the effects of a bispectrum of the equilateral, orthogonal and local shapes with arbitrary magnitude upon the abundance of primordial black holes. Non-Gaussian density maps of the early universe are generated from a given bispectrum and used to place constraints on the small scale power spectrum. When small, we show that the skewness provides an accurate estimate for how the constraint depends on non-Gaussianity, independently of the shape of the bispectrum. We show that the orthogonal template of non-Gaussianity has an order of magnitude weaker effect on the constraints than the local and equilateral templates.

  15. Limits on the Mass and Abundance of Primordial Black Holes from Quasar Gravitational Microlensing

    NASA Astrophysics Data System (ADS)

    Mediavilla, E.; Jiménez-Vicente, J.; Muñoz, J. A.; Vives-Arias, H.; Calderón-Infante, J.

    2017-02-01

    The idea that dark matter can be made of intermediate-mass primordial black holes (PBHs) in the 10 M ⊙ ≲ M ≲ 200 M ⊙ range has recently been reconsidered, particularly in the light of the detection of gravitational waves by the LIGO experiment. The existence of even a small fraction of dark matter in black holes should nevertheless result in noticeable quasar gravitational microlensing. Quasar microlensing is sensitive to any type of compact objects in the lens galaxy, to their abundance, and to their mass. We have analyzed optical and X-ray microlensing data from 24 gravitationally lensed quasars to estimate the abundance of compact objects in a very wide range of masses. We conclude that the fraction of mass in black holes or any type of compact objects is negligible outside of the 0.05 M ⊙ ≲ M ≲ 0.45 M ⊙ mass range and that it amounts to 20% ± 5% of the total matter, in agreement with the expected masses and abundances of the stellar component. Consequently, the existence of a significant population of intermediate-mass PBHs appears to be inconsistent with current microlensing observations. Therefore, primordial massive black holes are a very unlikely source of the gravitational radiation detected by LIGO.

  16. Gravitational waves from primordial black holes and new weak scale phenomena

    NASA Astrophysics Data System (ADS)

    Davoudiasl, Hooman; Giardino, Pier Paolo

    2017-05-01

    We entertain the possibility that primordial black holes of mass ∼ (1026-1029) g, with Schwarzschild radii of O (cm), constitute ∼ 10% or more of cosmic dark matter, as allowed by various constraints. These black holes would typically originate from cosmological eras corresponding to temperatures O (10- 100) GeV, and may be associated with first order phase transitions in the visible or hidden sectors. In case these small primordial black holes get captured in orbits around neutron stars or astrophysical black holes in our galactic neighborhood, gravitational waves from the resulting ;David and Goliath (D&G); binaries could be detectable at Advanced LIGO or Advanced Virgo for hours or more, possibly over distances of O (10) Mpc encompassing the Local Supercluster of galaxies. The proposed Einstein Telescope would further expand the reach for these signals. A positive signal could be further corroborated by the discovery of new particles in the O (10- 100) GeV mass range, and potentially also the detection of long wavelength gravitational waves originating from the first order phase transition era.

  17. Gravitational waves from primordial black holes and new weak scale phenomena

    DOE PAGES

    Davoudiasl, Hooman; Giardino, Pier Paolo

    2017-02-24

    Here, we entertain the possibility that primordial black holes of mass ~ (1026–1029)g, with Schwarzschild radii of O(cm), constitute ~ 10% or more of cosmic dark matter, as allowed by various constraints. These black holes would typically originate from cosmological eras corresponding to temperatures O(10-100)GeV, and may be associated with first order phase transitions in the visible or hidden sectors. In case these small primordial black holes get captured in orbits around neutron stars or astrophysical black holes in our galactic neighborhood, gravitational waves from the resulting “David and Goliath (D&G)” binaries could be detectable at Advanced LIGO or Advancedmore » Virgo for hours or more, possibly over distances of O(10)Mpc encompassing the Local Supercluster of galaxies. The proposed Einstein Telescope would further expand the reach for these signals. A positive signal could be further corroborated by the discovery of new particles in the O(10-100)GeV mass range, and potentially also the detection of long wavelength gravitational waves originating from the first order phase transition era.« less

  18. Physical Interpretation of Black Hole Evaporation as a Vacuum Instability

    NASA Astrophysics Data System (ADS)

    Parentani, R.; Brout, R.

    Using tunneling concepts which account for particle production in the cases of an accelerated detector and a static electric Field in Minkowski space, the more elusive case of black hole evaporation is analyzed in terms of a detailed tunneling mechanism. For the case of the incipient black hole (collapsing star) Hawking’s “heuristic” picture in terms of pair creation, wherein one member crosses the horizon to fall into the singularity as the other is emitted to infinity, is established. The inception of tunneling is due to the motion of the star’s surface, but its completion concerns traversal of the horizon, thereby reconciling varying schools of thought concerning this problem.

  19. Partner particles for moving mirror radiation and black hole evaporation

    NASA Astrophysics Data System (ADS)

    Hotta, M.; Schützhold, R.; Unruh, W. G.

    2015-06-01

    The partner mode with respect to a vacuum state for a given mode (like that corresponding to one of the thermal particles emitted by a black hole) is defined and calculated. The partner modes are explicitly calculated for a number of cases, in particular for the modes corresponding to a particle detector being excited by turn-on/turn-off transients, or with the thermal particles emitted by the accelerated mirror model for black hole evaporation. One of the key results is that the partner mode in general is just a vacuum fluctuation, and one can have the partner mode be located in a region where the state cannot be distinguished from the vacuum state by any series of local measurements, including the energy density. For example, "information" (the correlations with the thermal emissions) need not be associated with any energy transport. The idea that black holes emit huge amounts of energy in their last stages because of all the information which must be emitted under the assumption of black hole unitarity is found to not necessarily be the case.

  20. A unitary model of the black hole evaporation

    NASA Astrophysics Data System (ADS)

    Feng, Yu-Lei; Chen, Yi-Xin

    2014-12-01

    A unitary effective field model of the black hole evaporation is proposed to satisfy almost the four postulates of the black hole complementarity (BHC). In this model, we enlarge a black hole-scalar field system by adding an extra radiation detector that couples with the scalar field. After performing a partial trace over the scalar field space, we obtain an effective entanglement between the black hole and the detector (or radiation in it). As the whole system evolves, the S-matrix formula can be constructed formally step by step. Without local quantum measurements, the paradoxes of the information loss and AMPS's firewall can be resolved. However, the information can be lost due to quantum decoherence, as long as some local measurement has been performed on the detector to acquire the information of the radiation in it. But unlike Hawking's completely thermal spectrum, some residual correlations can be found in the radiations. All these considerations can be simplified in a qubit model that provides a modified quantum teleportation to transfer the information via an EPR pairs.

  1. Black hole evaporation: information loss but no paradox

    NASA Astrophysics Data System (ADS)

    Modak, Sujoy K.; Ortíz, Leonardo; Peña, Igor; Sudarsky, Daniel

    2015-10-01

    The process of black hole evaporation resulting from the Hawking effect has generated an intense controversy regarding its potential conflict with quantum mechanics' unitary evolution. A recent set of works by a collaboration involving one of us, have revised the controversy with the aims of, on one hand, clarifying some conceptual issues surrounding it, and, at the same time, arguing that collapse theories have the potential to offer a satisfactory resolution of the so-called paradox. Here we show an explicit calculation supporting this claim using a simplified model of black hole creation and evaporation, known as the CGHS model, together with a dynamical reduction theory, known as CSL, and some speculative, but seemingly natural ideas about the role of quantum gravity in connection with the would-be singularity. This work represents a specific realization of general ideas first discussed in Okon and Sudarsky (Found Phys 44:114-143, 2014 and a complete and detailed analysis of a model first considered in Modak et al. (Phys Rev D 91(12):124009, 2015.

  2. Gravitational waves at interferometer scales and primordial black holes in axion inflation

    NASA Astrophysics Data System (ADS)

    García-Bellido, Juan; Peloso, Marco; Unal, Caner

    2016-12-01

    We study the prospects of detection at terrestrial and space interferometers, as well as at pulsar timing array experiments, of a stochastic gravitational wave background which can be produced in models of axion inflation. This potential signal, and the development of these experiments, open a new window on inflation on scales much smaller than those currently probed with Cosmic Microwave Background and Large Scale Structure measurements. The sourced signal generated in axion inflation is an ideal candidate for such searches, since it naturally grows at small scales, and it has specific properties (chirality and non-gaussianity) that can distinguish it from an astrophysical background. We study under which conditions such a signal can be produced at an observable level, without the simultaneous overproduction of scalar perturbations in excess of what is allowed by the primordial black hole limits. We also explore the possibility that scalar perturbations generated in a modified version of this model may provide a distribution of primordial black holes compatible with the current bounds, that can act as a seeds of the present black holes in the universe.

  3. Gravitational wave signatures of inflationary models from Primordial Black Hole dark matter

    NASA Astrophysics Data System (ADS)

    García-Bellido, Juan; Peloso, Marco; Unal, Caner

    2017-09-01

    Primordial Black Holes (PBH) could be the cold dark matter of the universe. They could have arisen from large (order one) curvature fluctuations produced during inflation that reentered the horizon in the radiation era. At reentry, these fluctuations source gravitational waves (GW) via second order anisotropic stresses. These GW, together with those (possibly) sourced during inflation by the same mechanism responsible for the large curvature fluctuations, constitute a primordial stochastic GW background (SGWB) that unavoidably accompanies the PBH formation. We study how the amplitude and the range of frequencies of this signal depend on the statistics (Gaussian versus χ2) of the primordial curvature fluctuations, and on the evolution of the PBH mass function due to accretion and merging. We then compare this signal with the sensitivity of present and future detectors, at PTA and LISA scales. We find that this SGWB will help to probe, or strongly constrain, the early universe mechanism of PBH production. The comparison between the peak mass of the PBH distribution and the peak frequency of this SGWB will provide important information on the merging and accretion evolution of the PBH mass distribution from their formation to the present era. Different assumptions on the statistics and on the PBH evolution also result in different amounts of CMB μ-distortions. Therefore the above results can be complemented by the detection (or the absence) of μ-distortions with an experiment such as PIXIE.

  4. Testing scenarios of primordial black holes being the seeds of supermassive black holes by ultracompact minihalos and CMB μ distortions

    NASA Astrophysics Data System (ADS)

    Kohri, Kazunori; Nakama, Tomohiro; Suyama, Teruaki

    2014-10-01

    Supermassive black holes and intermediate mass black holes are believed to exist in the Universe. There is no established astrophysical explanation for their origin, and considerations have been made in the literature that those massive black holes (MBHs) may be primordial black holes (PBHs), black holes which are formed in the early universe (well before the matter-radiation equality) due to the direct collapse of primordial overdensities. This paper aims at discussing the possibility of excluding the PBH scenario as the origin of the MBHs. We first revisit the constraints on PBHs obtained from the cosmic microwave background (CMB) distortion that the seed density perturbation causes. By adopting a recent computation of the CMB distortion sourced by the seed density perturbation and the stronger constraint on the CMB distortion set by the COBE/FIRAS experiment used in the literature, we find that PBHs in the mass range 6×104 M⊙-5×1013 M⊙ are excluded. Since PBHs lighter than 6×104 M⊙ are not excluded from the nonobservation of the CMB distortion, we propose a new method which can potentially exclude smaller PBHs as well. Based on the observation that large density perturbations required to create PBHs also result in the copious production of ultracompact minihalos (UCMHs), compact dark matter halos formed at around the recombination, we show that weakly interacting massive particles (WIMPs) as dark matter annihilate efficiently inside UCMHs to yield cosmic rays far exceeding the observed flux. Our bound gives severe restriction on the compatibility between the particle physics models for WIMPs and the PBH scenario as the explanation of MBHs.

  5. Black hole formation and growth with non-Gaussian primordial density perturbations

    NASA Astrophysics Data System (ADS)

    Habouzit, Mélanie; Volonteri, Marta; Latif, Muhammad; Nishimichi, Takahiro; Peirani, Sébastien; Dubois, Yohan; Mamon, Gary A.; Silk, Joseph; Chevallard, Jacopo

    2016-02-01

    Quasars powered by massive black holes (BHs) with mass estimates above a billion solar masses have been identified at redshift 6 and beyond. The existence of such BHs requires almost continuous growth at the Eddington limit for their whole lifetime, of the order of one billion years. In this paper, we explore the possibility that positively skewed scale-dependent non-Gaussian primordial fluctuations may ease the assembly of massive BHs. In particular, they produce more low-mass haloes at high redshift, thus altering the production of metals and ultraviolet flux, believed to be important factors in BH formation. Additionally, a higher number of progenitors and of nearly equal-mass halo mergers would boost the mass increase provided by BH-BH mergers and merger-driven accretion. We use a set of two cosmological simulations, with either Gaussian or scale-dependent non-Gaussian primordial fluctuations to perform a proof-of-concept experiment to estimate how BH formation and growth are altered. We estimate the BH number density and the fraction of haloes where BHs form, for both simulations and for two popular scenarios of BH formation (remnants of the first generation of stars and direct collapse in the absence of metals and molecular hydrogen). We find that the fractions of haloes where BHs form are almost identical, but that non-Gaussian primordial perturbations increase the total number density of BHs for both BH formation scenarios by a factor of 2. We also evolve BHs using merger trees extracted from the simulations and find that both the mean BH mass and the number of the most massive BHs at z = 6.5 are up to twice the values expected for Gaussian primordial density fluctuations.

  6. Can massive primordial black holes be produced in mild waterfall hybrid inflation?

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Tada, Yuichiro

    2016-08-01

    We studied the possibility whether the massive primordial black holes (PBHs) surviving today can be produced in hybrid inflation. Though it is of great interest since such PBHs can be the candidate for dark matter or seeds of the supermassive black holes in galaxies, there have not been quantitatively complete works yet because of the non-perturbative behavior around the critical point of hybrid inflation. Therefore, combining the stochastic and δN formalism, we numerically calculated the curvature perturbations in a non-perturbative way and found, without any specific assumption of the types of hybrid inflation, PBHs are rather overproduced when the waterfall phase of hybrid inflation continues so long that the PBH scale is well enlarged and the corresponding PBH mass becomes sizable enough.

  7. Gravitational-wave background as a probe of the primordial black-hole abundance.

    PubMed

    Saito, Ryo; Yokoyama, Jun'ichi

    2009-04-24

    The formation of a significant number of black holes (PBHs) is realized if and only if primordial density fluctuations have a large amplitude, which means that tensor perturbations generated from these scalar perturbations as a second-order effect are also large and comparable to the observational data. We show that pulsar timing data essentially rule out PBHs with 10;{2}-10;{4}M_{middle dot in circle}, which were previously considered as a candidate of intermediate-mass black holes, and that PBHs with a mass range of 10;{20} to 10;{26} g, which serves as a candidate of dark matter, may be probed by future space-based laser interferometers and atomic interferometers.

  8. Entropy localization and extensivity in the semiclassical black hole evaporation

    SciTech Connect

    Casini, H.

    2009-01-15

    I aim to quantify the distribution of information in the Hawking radiation and inside the black hole in the semiclassical evaporation process. The structure of relativistic quantum field theory does not allow one to define a localized entropy unambiguously, but rather forces one to consider the shared information (mutual information) between two different regions of space-time. Using this tool, I first show that the entropy of a thermal gas at the Unruh temperature underestimates the actual amount of (shared) information present in a region of the Rindler space. Then, I analyze the mutual information between the black hole and the late time radiation region. A well-known property of the entropy implies that this is monotonically increasing with time. This means that in the semiclassical picture it is not possible to recover the eventual purity of the initial state in the final Hawking radiation through subtle correlations established during the whole evaporation period, no matter the interactions present in the theory. I find extensivity of the entropy as a consequence of a reduction to a two dimensional conformal problem in a simple approximation. However, the extensivity of information in the radiation region in a full four dimensional calculation seems not to be guaranteed on general grounds. I also analyze the localization of shared information inside the black hole finding that a large amount of it is contained in a small, approximately flat region of space-time near the point where the horizon begins. This gives place to large violations of the entropy bounds. I show that this problem is not eased by backscattering effects and argue that a breaking of conformal invariance is necessary to delocalize the entropy. Finally, I indicate that the mutual information could lead to a way to understand the Bekenstein-Hawking black hole entropy which does not require a drastic reduction in degrees of freedom in order to regulate the entanglement entropy. On the contrary

  9. Low-mass black holes as the remnants of primordial black hole formation.

    PubMed

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  10. BRIEF REVIEW: Can a primordial black hole or wormhole grow as fast as the universe?

    NASA Astrophysics Data System (ADS)

    Carr, B. J.; Harada, Tomohiro; Maeda, Hideki

    2010-09-01

    This review addresses the issue of whether there are physically realistic self-similar solutions in which a primordial black hole is attached to an exact or asymptotically Friedmann model for an equation of state of the form p = (γ - 1)ρc2. In the positive-pressure case (1 < γ < 2), there is no solution in which the black hole is attached to an exact Friedmann background via a sonic point. However, there is a one-parameter family of black hole solutions which are everywhere supersonic and asymptotically quasi-Friedmann, in the sense that they contain a solid angle deficit at large distances. Such solutions exist providing the ratio of the black hole size to the cosmological horizon size is above some critical value and they include 'universal' black holes with an apparent horizon but no event horizon. In the stiff case (γ = 2), there is no self-similar solution in an exact background unless the matter turns into null dust before entering the event horizon; otherwise the only black hole solutions are probably asymptotically quasi-Friedmann universal ones. For a dark-energy-dominated universe (0 < γ < 2/3), there is a one-parameter family of black hole solutions which are properly asymptotically Friedmann (i.e. with no angle deficit) and the ratio of the black hole size to the cosmological horizon size is below some critical value. Above this value, one finds a self-similar cosmological wormhole solution which connects two asymptotic regions: one exactly Friedmann and the other asymptotically quasi-Friedmann. We also consider the possibility of self-similar black hole solutions in a universe dominated by a scalar field. This is like the stiff fluid case if the field is massless, but the situation is less clear if the scalar field is rolling down a potential and therefore massive, as in the quintessence scenario. Although no explicit asymptotically Friedmann black hole solutions of this kind are known, they may exist if the black hole is not too large.

  11. Running spectral index and formation of primordial black hole in single field inflation models

    SciTech Connect

    Drees, Manuel; Erfani, Encieh E-mail: erfani@th.physik.uni-bonn.de

    2012-01-01

    A broad range of single field models of inflation are analyzed in light of all relevant recent cosmological data, checking whether they can lead to the formation of long-lived Primordial Black Holes (PBHs). To that end we calculate the spectral index of the power spectrum of primordial perturbations as well as its first and second derivatives. PBH formation is possible only if the spectral index increases significantly at small scales, i.e. large wave number k. Since current data indicate that the first derivative α{sub S} of the spectral index n{sub S}(k{sub 0}) is negative at the pivot scale k{sub 0}, PBH formation is only possible in the presence of a sizable and positive second derivative (''running of the running'') β{sub S}. Among the three small-field and five large-field models we analyze, only one small-field model, the ''running mass'' model, allows PBH formation, for a narrow range of parameters. We also note that none of the models we analyze can accord for a large and negative value of α{sub S}, which is weakly preferred by current data.

  12. New limits on primordial black hole dark matter from an analysis of Kepler source microlensing data.

    PubMed

    Griest, Kim; Cieplak, Agnieszka M; Lehner, Matthew J

    2013-11-01

    We present new limits on the allowed masses of a dark matter (DM) halo consisting of primordial black holes (PBH) (or any other massive compact halo object). We analyze two years of data from the Kepler satellite, searching for short-duration bumps caused by gravitational microlensing. After removing background events consisting of variable stars, flare events, and comets or asteroids moving through the Kepler field, we find no microlensing candidates. We measure the efficiency of our selection criteria by adding millions of simulated microlensing lensing events into the Kepler light curves. We find that PBH DM with masses in the range 2 × 10(-9) M[Symbol: see text] to 10(-7)M[Symbol: see text] cannot make up the entirety of the DM in the Milky Way. At the low-mass end, this decreases the allowed mass range by more than an order of magnititude.

  13. A Search for Microsecond Gamma Ray Bursts From Primordial Black Holes

    SciTech Connect

    Frank Krennrich

    2004-08-12

    The project is called SGARFACE (Short Gamma Ray Front Air Cherenkov Experiment) and is an atmospheric Cherenkov detector to provide sensitivity to short bursts of gamma rays of extraterrestrial origin. The detector is an addition to the Whipple 10m gamma ray telescope on Mt. Hopkins in southern Arizona and uses a digital trigger module for recognizing Cherenkov light flashes from gamma ray bursts. The digital trigger modules have been designed, tested and constructed at Iowa State University and have been installed at the Whipple 10m telescope. Operation of the experiment started in March 2003 and data collecting will likely continue until spring of 2005. A final results paper addressing a search for primordial black holes is likely to be finished by summer of 2005.

  14. Primordial black holes from inflaton and spectator field perturbations in a matter-dominated era

    NASA Astrophysics Data System (ADS)

    Carr, Bernard; Tenkanen, Tommi; Vaskonen, Ville

    2017-09-01

    We study production of primordial black holes (PBHs) during an early matter-dominated phase. As a source of perturbations, we consider either an inflaton field with a running spectral index or a spectator field that has a blue spectrum and thus provides a significant contribution to PBH production at small scales. First, we identify the region of the parameter space where a significant fraction of the observed dark matter can be produced, taking into account all current PBH constraints. Then, we present constraints on the amplitude and spectral index of the spectator field as a function of the reheating temperature. We also derive constraints on the running of the inflaton spectral index, d n /d ln k ≲0.001 , which are comparable to those from the Planck satellite for a scenario where the spectator field is absent.

  15. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914.

    PubMed

    Sasaki, Misao; Suyama, Teruaki; Tanaka, Takahiro; Yokoyama, Shuichiro

    2016-08-05

    We point out that the gravitational-wave event GW150914 observed by the LIGO detectors can be explained by the coalescence of primordial black holes (PBHs). It is found that the expected PBH merger rate would exceed the rate estimated by the LIGO Scientific Collaboration and the Virgo Collaboration if PBHs were the dominant component of dark matter, while it can be made compatible if PBHs constitute a fraction of dark matter. Intriguingly, the abundance of PBHs required to explain the suggested lower bound on the event rate, >2  events  Gpc^{-3} yr^{-1}, roughly coincides with the existing upper limit set by the nondetection of the cosmic microwave background spectral distortion. This implies that the proposed PBH scenario may be tested in the not-too-distant future.

  16. Small-scale structure and 21cm fluctuations by primordial black holes

    NASA Astrophysics Data System (ADS)

    Gong, Jinn-Ouk; Kitajima, Naoya

    2017-08-01

    We discuss early structure formation of small scales sourced by primordial black holes (PBHs) which constitute a small part of present cold dark matter component. We calculate the mass function and power spectrum of haloes originated from the Poisson fluctuations of PBH number and show that the number of small haloes is significantly modified in the presence of PBHs even if their fraction accounts for only 10-4-10-3 of total dark matter abundance. We then compute the subsequent 21cm signature from those haloes. We find that PBHs can provide major contributions at high redshifts within the detectability of future experiments such as Square Kilometer Array, and provide a forecast constraint on the PBH fraction.

  17. Microlensing of Kepler stars as a method of detecting primordial black hole dark matter.

    PubMed

    Griest, Kim; Lehner, Matthew J; Cieplak, Agnieszka M; Jain, Bhuvnesh

    2011-12-02

    If the dark matter consists of primordial black holes (PBHs), we show that gravitational lensing of stars being monitored by NASA's Kepler search for extrasolar planets can cause significant numbers of detectable microlensing events. A search through the roughly 150,000 light curves would result in large numbers of detectable events for PBHs in the mass range 5×10(-10) M(⊙) to 10(-4) M(⊙). Nondetection of these events would close almost 2 orders of magnitude of the mass window for PBH dark matter. The microlensing rate is higher than previously noticed due to a combination of the exceptional photometric precision of the Kepler mission and the increase in cross section due to the large angular sizes of the relatively nearby Kepler field stars. We also present a new formalism for calculating optical depth and microlensing rates in the presence of large finite-source effects.

  18. Cosmic rays from primordial black holes in the Randall-Sundrum braneworld

    SciTech Connect

    Sendouda, Yuuiti

    2006-11-03

    We present a method to probe the Randall-Sundrum type-2 (RS2) braneworld with the Hawking radiation of small, five-dimensional primordial black holes (PBHs). There are three important effects originating from the nature of braneworld; (i) Slow expansion rate in the earliest radiation dominated era makes the mass spectrum of PBHs soft, (ii) but, at the same time, accretion of surrounding radiation fluid may occur and lead to relative enhancement of the PBH abundance, (iii) Moreover, the large extra dimension lowers the Hawking temperature of each hole and the spectra of emitted particles via Hawking radiation are drastically changed. Applying the above effects to two distinctive astrophysical observations, the diffuse X-ray/{gamma}-ray background and the cosmic-ray antiproton in sub-GeV region, we constrain the PBH abundance and/or braneworld parameters such as the size of the extra dimension and the efficiency of accretion.

  19. Primordial black holes, eternal inflation, and the inflationary parameter space after WMAP5

    SciTech Connect

    Peiris, Hiranya V; Easther, Richard E-mail: richard.easther@yale.edu

    2008-07-15

    We consider constraints on inflation driven by a single, minimally coupled scalar field in the light of the WMAP5 (WMAP: Wilkinson Microwave Anisotropy Probe) data set, as well as ACBAR (Arcminute Cosmology Bolometer Array Receiver) and the SuperNova Legacy Survey. We use the slow roll reconstruction algorithm to derive optimal constraints on the inflationary parameter space. The scale dependence in the slope of the scalar spectrum permitted by WMAP5 is large enough to lead to viable models where the small scale perturbations have a substantial amplitude when extrapolated to the end of inflation. We find that excluding parameter values which would cause the overproduction of primordial black holes or even the onset of eternal inflation leads to potentially significant constraints on the slow roll parameters. Finally, we present a more sophisticated approach to including priors based on the total duration of inflation, and discuss the resulting restrictions on the inflationary parameter space.

  20. Massive Primordial Black Holes as Dark Matter and their detection with Gravitational Waves

    NASA Astrophysics Data System (ADS)

    García-Bellido, Juan

    2017-05-01

    Massive Primordial Black Holes (MPBH) can be formed after inflation due to broad peaks in the primordial curvature power spectrum that collapse gravitationally during the radiation era, to form clusters of black holes that merge and increase in mass after recombination, generating today a broad mass-spectrum of black holes with masses ranging from 0.01 to 105 M⊙ . These MPBH could act as seeds for galaxies and quick-start structure formation, initiating reionization, forming galaxies at redshift z > 10 and clusters at z > 1. They may also be the seeds on which SMBH and IMBH form, by accreting gas onto them and forming the centers of galaxies and quasars at high redshift. They form at rest with zero spin and have negligible cross-section with ordinary matter. If there are enough of these MPBH, they could constitute the bulk of the Dark Matter today. Such PBH could be responsible for the observed fluctuations in the CIB and X-ray backgrounds. MPBH could be directly detected by the gravitational waves emitted when they merge to form more massive black holes, as recently reported by LIGO. Their continuous merging since recombination could have generated a stochastic background of gravitational waves that could eventually be detected by LISA and PTA. MPBH may actually be responsible for the unidentified point sources seen by Fermi, Magic and Chandra. Furthermore, the ejection of stars from shallow potential wells like those of Dwarf Spheroidals (DSph), via the gravitational slingshot effect, could be due to MPBH, thus alleviating the substructure and too-big-to-fail problems of standard collisionless CDM. Their mass distribution peaks at a few tens of M⊙ today, and could therefore be detected also with long-duration microlensing events, as well as by the anomalous motion of stars in the field of GAIA. Their presence as CDM in the Universe could be seen in the time-dilation of strong-lensing images of quasars. The hierarchical large scale structure behaviour of MPBH

  1. Massive primordial black holes from hybrid inflation as dark matter and the seeds of galaxies

    NASA Astrophysics Data System (ADS)

    Clesse, Sébastien; García-Bellido, Juan

    2015-07-01

    In this paper we present a new scenario where massive primordial black holes (PBHs) are produced from the collapse of large curvature perturbations generated during a mild-waterfall phase of hybrid inflation. We determine the values of the inflaton potential parameters leading to a PBH mass spectrum peaking on planetarylike masses at matter-radiation equality and producing abundances comparable to those of dark matter today, while the matter power spectrum on scales probed by cosmic microwave background (CMB) anisotropies agrees with Planck data. These PBHs could have acquired large stellar masses today, via merging, and the model passes both the constraints from CMB distortions and microlensing. This scenario is supported by Chandra observations of numerous BH candidates in the central region of Andromeda. Moreover, the tail of the PBH mass distribution could be responsible for the seeds of supermassive black holes at the center of galaxies, as well as for ultraluminous x-ray sources. We find that our effective hybrid potential can originate e.g. from D-term inflation with a Fayet-Iliopoulos term of the order of the Planck scale but sub-Planckian values of the inflaton field. Finally, we discuss the implications of quantum diffusion at the instability point of the potential, able to generate a Swiss-cheese-like structure of the Universe, eventually leading to apparent accelerated cosmic expansion.

  2. Tidal capture of a primordial black hole by a neutron star: implications for constraints on dark matter

    SciTech Connect

    Pani, Paolo; Loeb, Abraham E-mail: aloeb@cfa.harvard.edu

    2014-06-01

    In a close encounter with a neutron star, a primordial black hole can get gravitationally captured by depositing a considerable amount of energy into nonradial stellar modes of very high angular number l. If the neutron-star equation of state is sufficiently stiff, we show that the total energy loss in the point-particle approximation is formally divergent. Various mechanisms — including viscosity, finite-size effects and the elasticity of the crust — can damp high-l modes and regularize the total energy loss. Within a short time, the black hole is trapped inside the star and disrupts it by rapid accretion. Estimating these effects, we predict that the existence of old neutron stars in regions where the dark-matter density ρ{sub DM}∼>10{sup 2}(σ/km s{sup −1}) GeV cm{sup −3} (where σ is the dark-matter velocity dispersion) limits the abundance of primordial black holes in the mass range 10{sup 17} g∼primordial black holes cannot be the dominant dark matter constituent.

  3. Last gasp of a black hole: unitary evaporation implies non-monotonic mass loss

    NASA Astrophysics Data System (ADS)

    Bianchi, Eugenio; Smerlak, Matteo

    2014-10-01

    We show within the usual two-dimensional approximation that unitarity and the restoration of Minkowski vacuum correlations at the end of black hole evaporation impose unexpected constraints on its mass loss rate: before disappearing the black hole emits one or more negative energy burst, leading to a temporary increase of its mass.

  4. Low-energy electromagnetic radiation as an indirect probe of black-hole evaporation

    NASA Astrophysics Data System (ADS)

    Emelyanov, Slava

    2016-12-01

    We study the influence of black-hole evaporation on light propagation. The framework employed is based on the non-linear QED effective action at one-loop level. We show that the light-cone condition is modified for low-energy radiation due to black-hole evaporation. We discuss conditions under which the phase velocity of this low-energy radiation is greater than c. We also compute the modified light-deflection angle, which turns out to be significantly different from the standard GR value for black-hole masses in the range MPl ≪ M ≲1019MPl.

  5. IMPROVED THEORETICAL PREDICTIONS OF MICROLENSING RATES FOR THE DETECTION OF PRIMORDIAL BLACK HOLE DARK MATTER

    SciTech Connect

    Cieplak, Agnieszka M.; Griest, Kim

    2013-04-20

    Primordial black holes (PBHs) remain a dark matter (DM) candidate of the Standard Model of Particle Physics. Previously, we proposed a new method of constraining the remaining PBH DM mass range using microlensing of stars monitored by NASA's Kepler mission. We improve this analysis using a more accurate treatment of the population of the Kepler source stars, their variability, and limb darkening. We extend the theoretically detectable PBH DM mass range down to 2 Multiplication-Sign 10{sup -10} M{sub Sun }, two orders of magnitude below current limits and one-third order of magnitude below our previous estimate. We address how to extract the DM properties, such as mass and spatial distribution, if PBH microlensing events were detected. We correct an error in a well-known finite-source limb-darkening microlensing formula and also examine the effects of varying the light curve cadence on PBH DM detectability. We also introduce an approximation for estimating the predicted rate of detection per star as a function of the star's properties, thus allowing for selection of source stars in future missions, and extend our analysis to planned surveys, such as the Wide-Field Infrared Survey Telescope.

  6. Effect of Primordial Black Holes on the Cosmic Microwave Background and Cosmological Parameter Estimates

    NASA Astrophysics Data System (ADS)

    Ricotti, Massimo; Ostriker, Jeremiah; Mack, Katherine

    2017-01-01

    We investigate the effect of nonevaporating primordial black holes (PBHs) on the ionization and thermal history of the universe. X-rays emitted by gas accretion onto PBHs modify the cosmic recombination history, producing measurable effects on the spectrum and anisotropies of the cosmic microwave background (CMB). Using the third-year WMAP data and COBE FIRAS data we improve existing upper limits on the abundance of PBHs with masses > 0 . 1 M⊙ by several orders of magnitude, thus ruling out PBHs in this mass range as a significant component of the dark matter. Fitting WMAP/Planck data with cosmological models that do not allow for nonstandard recombination histories, as produced by PBHs or other early energy sources, leads to underestimating the best-fit values of the amplitude of linear density fluctuations (σ8) and the scalar spectral index (ns). We find that a fraction > 0 . 1 % - 1 % of the dark matter in 30 M⊙ PBHs produces CMB spectral distortions at a level detectable by FIRAS. Therefore, even allowing for possible modeling uncertainties, future missions measuring CMB spectral distortions will detect the imprint of dark matter if it's composed of 30 M⊙ PBHs, as suggested to interpret recent LIGO results.

  7. Experimental limits on primordial black hole dark matter from the first 2 yr of Kepler data

    SciTech Connect

    Griest, Kim; Cieplak, Agnieszka M.; Lehner, Matthew J.

    2014-05-10

    We present our analysis on new limits of the dark matter (DM) halo consisting of primordial black holes (PBHs) or massive compact halo objects. We present a search of the first two yr of publicly available Kepler mission data for potential signatures of gravitational microlensing caused by these objects as well as an extensive analysis of the astrophysical sources of background error. These include variable stars, flare events, and comets or asteroids that are moving through the Kepler field. We discuss the potential of detecting comets using the Kepler light curves, presenting measurements of two known comets and one unidentified object, most likely an asteroid or comet. After removing the background events with statistical cuts, we find no microlensing candidates. We therefore present our Monte Carlo efficiency calculation in order to constrain the PBH DM with masses in the range of 2 × 10{sup –9} M {sub ☉} to 10{sup –7} M {sub ☉}. We find that PBHs in this mass range cannot make up the entirety of the DM, thus closing a full order of magnitude in the allowed mass range for PBH DM.

  8. DETECTABLE SEISMIC CONSEQUENCES OF THE INTERACTION OF A PRIMORDIAL BLACK HOLE WITH EARTH

    SciTech Connect

    Luo Yang; Hanasoge, Shravan; Tromp, Jeroen; Pretorius, Frans

    2012-05-20

    Galaxies observed today are likely to have evolved from density perturbations in the early universe. Perturbations that exceeded some critical threshold are conjectured to have undergone gravitational collapse to form primordial black holes (PBHs) at a range of masses. Such PBHs serve as candidates for cold dark matter, and their detection would shed light on conditions in the early universe. Here, we propose a mechanism to search for transits of PBHs through/nearby Earth by studying the associated seismic waves. Using a spectral-element method, we simulate and visualize this seismic wave field in Earth's interior. We predict the emergence of two unique signatures, namely, a wave that would arrive almost simultaneously everywhere on Earth's free surface and the excitation of unusual spheroidal modes with a characteristic frequency spacing in free oscillation spectra. These qualitative characteristics are unaffected by the speed or proximity of the PBH trajectory. The seismic energy deposited by a proximal M{sup PBH} = 10{sup 15} g PBH is comparable to a magnitude M{sub w} = 4 earthquake. The non-seismic collateral damage due to the actual impact of such small PBHs with Earth would be negligible. Unfortunately, the expected collision rate is very low even if PBHs constituted all of dark matter, at {approx}10{sup -7} yr{sup -1}, and since the rate scales as 1/M{sup PBH}, fortunately encounters with larger, Earth-threatening PBHs are exceedingly unlikely. However, the rate at which non-colliding close encounters of PBHs could be detected by seismic activity alone is roughly two orders of magnitude larger-that is once every hundred thousand years-than the direct collision rate.

  9. Tensor network models of unitary black hole evaporation

    NASA Astrophysics Data System (ADS)

    Leutheusser, Samuel; Van Raamsdonk, Mark

    2017-08-01

    We introduce a general class of toy models to study the quantum information-theoretic properties of black hole radiation. The models are governed by a set of isometries that specify how microstates of the black hole at a given energy evolve to entangled states of a tensor product black-hole/radiation Hilbert space. The final state of the black hole radiation is conveniently summarized by a tensor network built from these isometries. We introduce a set of quantities generalizing the Renyi entropies that provide a complete set of bipartite/multipartite entanglement measures, and give a general formula for the average of these over initial black hole states in terms of the isometries defining the model. For models where the dimension of the final tensor product radiation Hilbert space is the same as that of the space of initial black hole microstates, the entanglement structure is universal, independent of the choice of isometries. In the more general case, we find that models which best capture the "information-free" property of black hole horizons are those whose isometries are tensors corresponding to states of tripartite systems with maximally mixed subsystems.

  10. FORMATION OF MASSIVE BLACK HOLES IN DENSE STAR CLUSTERS. II. INITIAL MASS FUNCTION AND PRIMORDIAL MASS SEGREGATION

    SciTech Connect

    Goswami, Sanghamitra; Umbreit, Stefan; Rasio, Frederic A.; Bierbaum, Matt

    2012-06-10

    A promising mechanism to form intermediate-mass black holes is the runaway merger in dense star clusters, where main-sequence stars collide and form a very massive star (VMS), which then collapses to a black hole (BH). In this paper, we study the effects of primordial mass segregation and the importance of the stellar initial mass function (IMF) on the runaway growth of VMSs using a dynamical Monte Carlo code for N-body systems with N as high as 10{sup 6} stars. Our code now includes an explicit treatment of all stellar collisions. We place special emphasis on the possibility of top-heavy IMFs, as observed in some very young massive clusters. We find that both primordial mass segregation and the shape of the IMF affect the rate of core collapse of star clusters and thus the time of the runaway. When we include primordial mass segregation, we generally see a decrease in core-collapse time (t{sub cc}). Although for smaller degrees of primordial mass segregation this decrease in t{sub cc} is mostly due to the change in the density profile of the cluster, for highly mass-segregated (primordial) clusters, it is the increase in the average mass in the core which reduces the central relaxation time decreasing t{sub cc}. The final mass of the VMS formed is always close to {approx}10{sup -3} of the total cluster mass, in agreement with previous studies and is reminiscent of the observed correlation between the central BH mass and the bulge mass of the galaxies. As the degree of primordial mass segregation is increased, the mass of the VMS increases at most by a factor of three. Flatter IMFs generally increase the average mass in the whole cluster, which increases t{sub cc}. For the range of IMFs investigated in this paper, this increase in t{sub cc} is to some degree balanced by stellar collisions, which accelerate core collapse. Thus, there is no significant change in t{sub cc} for the somewhat flatter global IMFs observed in very young massive clusters.

  11. Unitarity of black hole evaporation in final-state projection models

    NASA Astrophysics Data System (ADS)

    Lloyd, Seth; Preskill, John

    2014-08-01

    Almheiri et al. have emphasized that otherwise reasonable beliefs about black hole evaporation are incompatible with the monogamy of quantum entanglement, a general property of quantum mechanics. We investigate the final-state projection model of black hole evaporation proposed by Horowitz and Maldacena, pointing out that this model admits cloning of quantum states and polygamous entanglement, allowing unitarity of the evaporation process to be reconciled with smoothness of the black hole event horizon. Though the model seems to require carefully tuned dynamics to ensure exact unitarity of the black hole S-matrix, for a generic final-state boundary condition the deviations from unitarity are exponentially small in the black hole entropy; furthermore observers inside black holes need not detect any deviations from standard quantum mechanics. Though measurements performed inside old black holes could potentially produce causality-violating phenomena, the computational complexity of decoding the Hawking radiation may render the causality violation unobservable. Final-state projection models illustrate how inviolable principles of standard quantum mechanics might be circumvented in a theory of quantum gravity.

  12. Single-field inflation, anomalous enhancement of superhorizon fluctuations and non-Gaussianity in primordial black hole formation

    SciTech Connect

    Saito, Ryo; Yokoyama, Jun'ichi; Nagata, Ryo E-mail: yokoyama@resceu.s.u-tokyo.ac.jp

    2008-06-15

    We show a textbook potential for single-field inflation, namely the Coleman-Weinberg model can induce double inflation and formation of primordial black holes (PBHs), because fluctuations that leave the horizon near the end of first inflation are anomalously enhanced at the onset of second inflation when the time-dependent mode turns into a growing mode rather than a decaying mode. The mass of PBHs produced in this mechanism with an appreciable density are distributed at certain intervals depending on the model parameters. We also calculate the effects of non-Gaussian statistics due to higher-order interactions on the abundance of PBHs, which turns out to be small.

  13. A new method dealing with hawking effects of evaporating black holes

    SciTech Connect

    Zhao, Z.; Dai, X. )

    1992-06-28

    This paper reports that, both the location and the temperature of event horizons of evaporating black holes can be easily given if one proposes the Klein-Gordon equation approaches the standard form of wave equation near event horizons by using tortoise-type coordinates.

  14. Evaporation of near-extremal Reissner-Nordström black holes.

    PubMed

    Fabbri, A; Navarro, D J; Navarro-Salas, J

    2000-09-18

    The formation of near-extremal Reissner-Nordström black holes in the S-wave approximation can be described, near the event horizon, by an effective solvable model. The corresponding one-loop quantum theory remains solvable and allows one to follow analytically the evaporation process, which is shown to require an infinite amount of time.

  15. Comment on self-consistent model of black hole formation and evaporation

    NASA Astrophysics Data System (ADS)

    Ho, Pei-Ming

    2015-08-01

    In an earlier work, Kawai et al. proposed a model of black-hole formation and evaporation, in which the geometry of a collapsing shell of null dust is studied, including consistently the back reaction of its Hawking radiation. In this note, we illuminate the implications of their work, focusing on the resolution of the information loss paradox and the problem of the firewall.

  16. Renormalized Stress-Energy Tensor of an Evaporating Spinning Black Hole.

    PubMed

    Levi, Adam; Eilon, Ehud; Ori, Amos; van de Meent, Maarten

    2017-04-07

    We provide the first calculation of the renormalized stress-energy tensor (RSET) of a quantum field in Kerr spacetime (describing a stationary spinning black hole). More specifically, we employ a recently developed mode-sum regularization method to compute the RSET of a minimally coupled massless scalar field in the Unruh vacuum state, the quantum state corresponding to an evaporating black hole. The computation is done here for the case a=0.7M, using two different variants of the method: t splitting and φ splitting, yielding good agreement between the two (in the domain where both are applicable). We briefly discuss possible implications of the results for computing semiclassical corrections to certain quantities, and also for simulating dynamical evaporation of a spinning black hole.

  17. A statistical model of information evaporation of perfectly reflecting black holes

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo

    2014-02-01

    We provide a statistical communication model for the phenomenon of quantum information evaporation from black holes (BHs). A BH behaves as a reflecting quantum channel in a very special regime, which allows for a receiver to perfectly recover the absorbed quantum information. The quantum channel of a perfectly reflecting (PR) BH is the probabilistically weighted sum of infinitely many qubit cloning channels. In this work, we reveal the statistical communication background of the information evaporation process of PR BHs. We show that the density of the cloned quantum particles in function of the PR BH's mass approximates a Chi-square distribution, while the stimulated emission process is characterized by zero-mean, circular symmetric complex Gaussian random variables. The results lead to the existence of Rayleigh random distributed coefficients in the probability density evolution, which confirms the presence of Rayleigh fading (a special type of random fluctuation) in the statistical communication model of BH information evaporation.

  18. (Anti)evaporation of dyonic black holes in string-inspired dilaton f(R)-gravity

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea

    2017-06-01

    We discuss dyonic black hole solutions in the case of f(R)-gravity coupled with a dilaton and two gauge bosons. The study of such a model is highly motivated from string theory. Our black hole solutions are extensions of the one firstly studied by Kallosh, Linde, Ortín, Peet and Van Proeyen (KLOPV) in arXiv:hep-th/9205027. We will show that extreme solutions are unstable. In particular, these solutions have Bousso-Hawking-Nojiri-Odintsov (anti)evaporation instabilities.

  19. Construction of a Penrose Diagram for a Spatially Coherent Evaporating Black Hole

    NASA Technical Reports Server (NTRS)

    Brown, Beth A.; Lindesay, James

    2007-01-01

    A Penrose diagram is constructed for an example black hole that evaporates at a steady rate as measured by a distant observer, until the mass vanishes, yielding a final state Minkowski space-time. Coordinate dependencies of significant features, such as the horizon and coordinate anomalies, are clearly demonstrated on the diagram. The large-scale causal structure of the space-time is briefly discussed.

  20. Aether Drift and the isotropy of the universe: A measurement of anisotropes in the primordial black-body radiation

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.

    1981-01-01

    Large-angular-scale anisotropies in the 3 K primordial black-body radiation were detected and mapped with a sensitivity of 2 x to the minus 4 power K and an angular resolution of about 10 deg. The motion of the Earth with respect to the distant matter of the Universe ("Aether Drift") was measured and the homogeneity and isotropy of the Universe (the "Cosmological Principle") was probed. The experiment uses two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. The system was installed in the NASA-Ames Earth survey aircraft (U-2), and operated successfully in a series of flights in both the Northern and Southern Hemispheres. Data taking and analysis to measure the anisotropy were successful.

  1. Aether drift and the isotropy of the universe: a measurement of anisotropies in the primordial black-body radiation

    NASA Technical Reports Server (NTRS)

    Muller, R. A.

    1979-01-01

    This experiment detected and mapped large-angular-scale anisotropies in the 3 K primordial black-body radiation with a sensitivity of 2x.0001k and an angular resolution of about 10 degs. It measured the motion of the Earth with respect to the distant matter of the Universe (Aether Drift), and probed the homogeneity and isotropy of the Universe (the Cosmological Principle). The experiment used two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. The system was installed in the NASA-Ames Earth Survey Aircraft (U-2), and operated successfully in a series of flights.

  2. Spontaneous parametric down conversion with a depleted pump as an analogue for black hole evaporation/particle production

    NASA Astrophysics Data System (ADS)

    Alsing, P. M.; Fanto, M. L.

    2016-05-01

    In this work we argue that black hole evaporation/particle production has a very close analogy to the laboratory process of spontaneous parametric down conversion, when the pump is allowed to deplete. We present an analytical formulation of the recent one-shot decoupling model that was numerically analyzed in Bradler and Adami Phys. Rev. Lett. 116, 101301 (2016) [arXiv:1505.0284]. We compute the resulting "Page Information" curves, which describe the rate at which information escapes form the black hole as it evaporates, for the reduced density matrices for the evaporating black hole internal degrees of freedom, and emitted Hawking radiation pairs entangled across the horizon. The present work reviews and attempts to elucidate the trilinear Hamiltonian models for black hole evaporation/particle production recently investigated by the authors in Class. Quant. Grav 32, 075010 (2015) [arXiv:1408.4491] and Class. Quant. Grav 33, 015005 (2016) [arXiv:1507.00429].

  3. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO

    NASA Astrophysics Data System (ADS)

    Clesse, Sébastien; García-Bellido, Juan

    2017-03-01

    The recent detection by Advanced LIGO of gravitational waves (GW) from the merging of a binary black hole system sets new limits on the merging rates of massive primordial black holes (PBH) that could be a significant fraction or even the totality of the dark matter in the Universe. aLIGO opens the way to the determination of the distribution and clustering of such massive PBH. If PBH clusters have a similar density to the one observed in ultra-faint dwarf galaxies, we find merging rates comparable to aLIGO expectations. Massive PBH dark matter predicts the existence of thousands of those dwarf galaxies where star formation is unlikely because of gas accretion onto PBH, which would possibly provide a solution to the missing satellite and too-big-to-fail problems. Finally, we study the possibility of using aLIGO and future GW antennas to measure the abundance and mass distribution of PBH in the range [5-200] M⊙ to 10% accuracy.

  4. Evaporation Spectrum of Black Holes from a Local Quantum Gravity Perspective

    NASA Astrophysics Data System (ADS)

    Barrau, Aurélien

    2016-12-01

    We revisit the hypothesis of a possible line structure in the Hawking evaporation spectrum of black holes. Because of nonperturbative quantum gravity effects, this would take place arbitrarily far away from the Planck mass. We show, based on a speculative but consistent hypothesis, that this naive prediction might in fact hold in the specific context of loop quantum gravity. A small departure from the ideal case is expected for some low-spin transitions and could allow us to distinguish several quantum gravity models. We also show that the effect is not washed out by the dynamics of the process, by the existence of a mass spectrum up to a given width, or by the secondary component induced by the decay of neutral pions emitted during the time-integrated evaporation.

  5. Evaporation Spectrum of Black Holes from a Local Quantum Gravity Perspective.

    PubMed

    Barrau, Aurélien

    2016-12-30

    We revisit the hypothesis of a possible line structure in the Hawking evaporation spectrum of black holes. Because of nonperturbative quantum gravity effects, this would take place arbitrarily far away from the Planck mass. We show, based on a speculative but consistent hypothesis, that this naive prediction might in fact hold in the specific context of loop quantum gravity. A small departure from the ideal case is expected for some low-spin transitions and could allow us to distinguish several quantum gravity models. We also show that the effect is not washed out by the dynamics of the process, by the existence of a mass spectrum up to a given width, or by the secondary component induced by the decay of neutral pions emitted during the time-integrated evaporation.

  6. Glimpses of black hole formation/evaporation in highly inelastic, ultra-planckian string collisions

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea; Bianchi, Massimo; Veneziano, Gabriele

    2017-02-01

    We revisit possible glimpses of black-hole formation by looking at ultra-planckian string-string collisions at very high final-state multiplicity. We compare, in particular, previous results using the optical theorem, the resummation of ladder diagrams at arbitrary loop order, and the AGK cutting rules, with the more recent study of 2 → N scattering at N ˜ sM P - 2 ≫ 1. We argue that some apparent tension between the two approaches disappears once a reinterpretation of the latter's results in terms of suitably defined infrared-safe cross sections is adopted. Under that assumption, the typical final state produced in an ultra-planckian collision does indeed appear to share some properties with those expected from the evaporation of a black hole of mass √{s} , although no sign of thermalization is seen to emerge at this level of approximation.

  7. Backreaction due to quantum tunneling and modification to the black hole evaporation process

    NASA Astrophysics Data System (ADS)

    Modak, Sujoy K.

    2014-08-01

    We study the effect of backreaction on the evaporation of quantum black holes. The method used is based on quantum tunneling formalism as proposed by Banerjee and Majhi [Phys. Lett. B 675, 243 (2009)]. We give a more realistic picture by considering the fact that a black hole looses its energy while modes are tunneled outside the event horizon. It is shown how the tunneling quantum field modes affect the geometry and how this change in geometry is arrested in the quantum field. Exploiting this, we calculate the modified (nonthermal) radiation spectrum and associating energy fluxes and discuss various issues related with these. The results obtained here are often expected on physical grounds, but, importantly, we find them in a quantitative manner.

  8. Spherical and nonspherical models of primordial black hole formation: exact solutions

    NASA Astrophysics Data System (ADS)

    Harada, Tomohiro; Jhingan, Sanjay

    2016-09-01

    We construct spacetimes which provide spherical and nonspherical models of black hole formation in the flat Friedmann-Lemaitre-Robertson-Walker (FLRW) universe with the Lemaitre-Tolman-Bondi solution and the Szekeres quasispherical solution, respectively. These dust solutions may contain both shell-crossing and shell-focusing naked singularities. These singularities can be physically regarded as the breakdown of dust description, where strong pressure gradient force plays a role. We adopt the simultaneous big bang condition to extract a growing mode of adiabatic perturbation in the flat FLRW universe. If the density perturbation has a sufficiently homogeneous central region and a sufficiently sharp transition to the background FLRW universe, its central shell-focusing singularity is globally covered. If the density concentration is sufficiently large, no shell-crossing singularity appears and a black hole is formed. If the density concentration is not sufficiently large, a shell-crossing singularity appears. In this case, a large dipole moment significantly advances shell-crossing singularities and they tend to appear before the black hole formation. In contrast, a shell-crossing singularity unavoidably appears in the spherical and nonspherical evolution of cosmological voids. The present analysis is general and applicable to cosmological nonlinear structure formation described by these dust solutions.

  9. Collapse of primordial gas clouds and the formation of quasar black holes

    NASA Technical Reports Server (NTRS)

    Loeb, Abraham; Rasio, Frederic A.

    1994-01-01

    The formation of quasar black holes during the hydrodynamic collapse of protogalactic gas clouds is discussed. The dissipational collapse and long-term dynamical evolution of these systems is analyzed using three-dimensional numerical simulations. The calculations focus on the final collapse stages of the inner baryonic component and therefore ignore the presence of dark matter. Two types of initial conditions are considered: uniformly rotating spherical clouds, and iirotational ellipsoidal clouds. In both cases the clouds are initially cold, homogeneous, and not far from rotational support (T/(absolute value of W) approximately equals 0.1). Although the details of the dynamical evolution depend sensitively on the initial conditions, the qualitative features of the final configurations do not. Most of the gas is found to fragment into small dense clumps, that eventually make up a spheroidal component resembling a galactic bulge. About 5% of the initial mass remains in the form of a smooth disk of gas supported by rotation in the gravitational potential potential well of the outer spheroid. If a central seed black hole of mass approximately greater than 10(exp 6) solar mass forms, it can grow by steady accretion from the disk and reach a typical quasar black hole mass approximately 10(exp 8) solar mass in less than 5 x 10(exp 8) yr. In the absence of a sufficiently massive seed, dynamical instabilities in a strongly self-gravitating inner region of the disk will inhibit steady accretion of gas and may prevent the immediate formation of quasar.

  10. Collapse of primordial gas clouds and the formation of quasar black holes

    NASA Technical Reports Server (NTRS)

    Loeb, Abraham; Rasio, Frederic A.

    1994-01-01

    The formation of quasar black holes during the hydrodynamic collapse of protogalactic gas clouds is discussed. The dissipational collapse and long-term dynamical evolution of these systems is analyzed using three-dimensional numerical simulations. The calculations focus on the final collapse stages of the inner baryonic component and therefore ignore the presence of dark matter. Two types of initial conditions are considered: uniformly rotating spherical clouds, and iirotational ellipsoidal clouds. In both cases the clouds are initially cold, homogeneous, and not far from rotational support (T/(absolute value of W) approximately equals 0.1). Although the details of the dynamical evolution depend sensitively on the initial conditions, the qualitative features of the final configurations do not. Most of the gas is found to fragment into small dense clumps, that eventually make up a spheroidal component resembling a galactic bulge. About 5% of the initial mass remains in the form of a smooth disk of gas supported by rotation in the gravitational potential potential well of the outer spheroid. If a central seed black hole of mass approximately greater than 10(exp 6) solar mass forms, it can grow by steady accretion from the disk and reach a typical quasar black hole mass approximately 10(exp 8) solar mass in less than 5 x 10(exp 8) yr. In the absence of a sufficiently massive seed, dynamical instabilities in a strongly self-gravitating inner region of the disk will inhibit steady accretion of gas and may prevent the immediate formation of quasar.

  11. Nonparadoxical loss of information in black hole evaporation in a quantum collapse model

    NASA Astrophysics Data System (ADS)

    Modak, Sujoy K.; Ortíz, Leonardo; Peña, Igor; Sudarsky, Daniel

    2015-06-01

    We consider a novel approach to address the black hole information paradox. The idea is based on adapting, to the situation at hand, the modified versions of quantum theory involving spontaneous stochastic dynamical collapse of quantum states, which have been considered in attempts to deal with shortcomings of the standard Copenhagen interpretation of quantum mechanics, in particular, the issue known as "the measurement problem." The new basic hypothesis is that the modified quantum behavior is enhanced in the region of high curvature so that the information encoded in the initial quantum state of the matter fields is rapidly erased as the black hole singularity is approached. We show that in this manner the complete evaporation of the black hole via Hawking radiation can be understood as involving no paradox. Calculations are performed using a modified version of quantum theory known as "continuous spontaneous localization" (CSL), which was originally developed in the context of many-particle nonrelativistic quantum mechanics. We use a version of CSL tailored to quantum field theory and applied in the context of the two -dimensional Callan-Giddings-Harvey-Strominger model. Although the role of quantum gravity in this picture is restricted to the resolution of the singularity, related studies suggest that there might be further connections.

  12. A discrete analogue for black hole evaporation using approximate analytical solutions of a one-shot decoupling trilinear Hamiltonian

    NASA Astrophysics Data System (ADS)

    Alsing, P. M.; Fanto, M. L.

    2016-01-01

    We present an analytical formulation of the recent one-shot decoupling model of Bràdler and Adami (2015 arXiv:1505.0284) and compute the resulting 'Page information' curves, for the reduced density matrices for the evaporating black hole (BH) internal degrees of freedom, and emitted Hawking radiation pairs entangled across the horizon. We argue that BH evaporation/particle production has a very close analogy to the laboratory process of spontaneous parametric down conversion, when the pump is allowed to deplete.

  13. Icezones instead of firewalls: extended entanglement beyond the event horizon and unitary evaporation of a black hole

    NASA Astrophysics Data System (ADS)

    Hutchinson, John; Stojkovic, Dejan

    2016-07-01

    We examine the basic assumptions in the original setup of the firewall paradox. The main claim is that a single mode of the lathe radiation is maximally entangled with the mode inside the horizon and simultaneously with the modes of early Hawking radiation. We argue that this situation never happens during the evolution of a black hole. Quantum mechanics tells us that while the black hole exists, unitary evolution maximally entangles a late mode located just outside the horizon with a combination of early radiation and black hole states, instead of either of them separately. One of the reasons for this is that the black hole radiation is not random and strongly depends on the geometry and charge of the black hole, as detailed numerical calculations of Hawking evaporation clearly show. As a consequence, one can not factor out the state of the black hole. However, this extended entanglement between the black hole and modes of early and late radiation indicates that, as the black hole ages, the local Rindler horizon is modified out to macroscopic distances from the black hole. Fundamentally non-local physics nor firewalls are not necessary to explain this result. We propose an infrared mechanism called icezone that is mediated by low energy interacting modes and acts near any event horizon to entangle states separated by long distances. These interactions at first provide small corrections to the thermal Hawking radiation. At the end of evaporation however the effect of interactions is as large as the Hawking radiation and information is recovered for an outside observer. We verify this in an explicit construction and calculation of the density matrix of a spin model.

  14. Time dependent Schrödinger equation for black hole evaporation: No information loss

    SciTech Connect

    Corda, Christian

    2015-02-15

    In 1976 S. Hawking claimed that “Because part of the information about the state of the system is lost down the hole, the final situation is represented by a density matrix rather than a pure quantum state”. This was the starting point of the popular “black hole (BH) information paradox”. In a series of papers, together with collaborators, we naturally interpreted BH quasi-normal modes (QNMs) in terms of quantum levels discussing a model of excited BH somewhat similar to the historical semi-classical Bohr model of the structure of a hydrogen atom. Here we explicitly write down, for the same model, a time dependent Schrödinger equation for the system composed by Hawking radiation and BH QNMs. The physical state and the correspondent wave function are written in terms of a unitary evolution matrix instead of a density matrix. Thus, the final state results to be a pure quantum state instead of a mixed one. Hence, Hawking’s claim is falsified because BHs result to be well defined quantum mechanical systems, having ordered, discrete quantum spectra, which respect ’t Hooft’s assumption that Schrödinger equations can be used universally for all dynamics in the universe. As a consequence, information comes out in BH evaporation in terms of pure states in a unitary time dependent evolution. In Section 4 of this paper we show that the present approach permits also to solve the entanglement problem connected with the information paradox.

  15. Sources and detection of dark matter in the universe. Proceedings. Workshop on Primordial Black Holes and Hawking Radiation and 3rd International Symposium on Sources and Detection of Dark Matter in the Universe, Marina del Rey, CA (USA), 17 - 20 Feb 1998.

    NASA Astrophysics Data System (ADS)

    1998-12-01

    The following topics were dealt with: early universe and cosmological constants of the universe, large scale nature of the universe, gravitational lensing and microlensing, formation of primordial black holes, Hawking radiation, current search for primordial black holes, theoretical studies of particle dark matter, and experimental progress on the search for dark matter elementary particles.

  16. Floatable, Self-Cleaning, and Carbon-Black-Based Superhydrophobic Gauze for the Solar Evaporation Enhancement at the Air-Water Interface.

    PubMed

    Liu, Yiming; Chen, Jingwei; Guo, Dawei; Cao, Moyuan; Jiang, Lei

    2015-06-24

    Efficient solar evaporation plays an indispensable role in nature as well as the industry process. However, the traditional evaporation process depends on the total temperature increase of bulk water. Recently, localized heating at the air-water interface has been demonstrated as a potential strategy for the improvement of solar evaporation. Here, we show that the carbon-black-based superhydrophobic gauze was able to float on the surface of water and selectively heat the surface water under irradiation, resulting in an enhanced evaporation rate. The fabrication process of the superhydrophobic black gauze was low-cost, scalable, and easy-to-prepare. Control experiments were conducted under different light intensities, and the results proved that the floating black gauze achieved an evaporation rate 2-3 times higher than that of the traditional process. A higher temperature of the surface water was observed in the floating gauze group, revealing a main reason for the evaporation enhancement. Furthermore, the self-cleaning ability of the superhydrophobic black gauze enabled a convenient recycling and reusing process toward practical application. The present material may open a new avenue for application of the superhydrophobic substrate and meet extensive requirements in the fields related to solar evaporation.

  17. Vacuum metastability with black holes

    NASA Astrophysics Data System (ADS)

    Burda, Philipp; Gregory, Ruth; Moss, Ian G.

    2015-08-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  18. Evaporating firewalls

    NASA Astrophysics Data System (ADS)

    Van Raamsdonk, Mark

    2014-11-01

    In this note, we begin by presenting an argument suggesting that large AdS black holes dual to typical high-energy pure states of a single holographic CFT must have some structure at the horizon, i.e. a fuzzball/firewall, unless the procedure to probe physics behind the horizon is state-dependent. By weakly coupling the CFT to an auxiliary system, such a black hole can be made to evaporate. In a case where the auxiliary system is a second identical CFT, it is possible (for specific initial states) that the system evolves to precisely the thermofield double state as the original black hole evaporates. In this case, the dual geometry should include the "late-time" part of the eternal AdS black hole spacetime which includes smooth spacetime behind the horizon of the original black hole. Thus, if a firewall is present initially, it evaporates. This provides a specific realization of the recent ideas of Maldacena and Susskind that the existence of smooth spacetime behind the horizon of an evaporating black hole can be enabled by maximal entanglement with a Hawking radiation system (in our case the second CFT) rather than prevented by it. For initial states which are not finely-tuned to produce the thermofield double state, the question of whether a late-time infalling observer experiences a firewall translates to a question about the gravity dual of a typical high-energy state of a two-CFT system.

  19. Discussion on event horizon and quantum ergosphere of evaporating black holes in a tunnelling framework

    SciTech Connect

    Zhang Jingyi; Zhao Zheng

    2011-03-15

    In this paper, with the Parikh-Wilczek tunnelling framework the positions of the event horizon of the Vaidya black hole and the Vaidya-Bonner black hole are calculated, respectively. We find that the event horizon and the apparent horizon of these two black holes correspond, respectively, to the two turning points of the Hawking radiation tunnelling barrier. That is, the quantum ergosphere coincides with the tunnelling barrier. Our calculation also implies that the Hawking radiation comes from the apparent horizon.

  20. A new mass scale, implications on black hole evaporation and holography

    NASA Astrophysics Data System (ADS)

    Burikham, Piyabut; Dhanawittayapol, Rujikorn; Wuthicharn, Taum

    2016-06-01

    We consider a new mass scale MT = (ℏ2Λ/G)1/3 constructed from dimensional analysis by using G, ℏ and Λ and discuss its physical interpretation. Based on the Generalized Uncertainty Relation, a black hole with age comparable to the universe would stop radiating when the mass reaches a new mass scale MT‧ = c(ℏ/G2Λ)1/3 at which its temperature corresponds to the mass MT. Black hole remnants could have masses ranging from a Planck mass to a trillion kilograms. Holography persists even when the uncertainty relation is modified to the Minimum Length Uncertainty Relation (MLUR). The remnant black hole entropy is proportional to the surface area of the black hole in unit of the Planck area in arbitrary noncompact dimensions.

  1. Primordial Inflation

    NASA Astrophysics Data System (ADS)

    Englert, F.

    2001-04-01

    A macroscopic universe may emerge naturally from a Planck cell fluctuation by unfolding through a stage of exponential expansion towards a homogeneous cosmological background. Such primordial inflation requires a large and presumably infinite degeneracy at the Planck scale, rooted in the unbounded negative gravitational energy stored in conformal classes. This complex Planck structure is consistent with a quantum tunneling description of the transition from the Planck scale to the inflationary era and implies, in the limit of vanishing Planck size, the Hartle-Hawking no-time boundary condition. On the other hand, string theory give credence to the holographic principle and the concomitant depletion of states at the Planck scale. The apparent incompatibility of primordial inflation with holography either invalidates one of these two notions or relegates the nature of the Planck size outside the realm of quantum physics, as we know it.

  2. Primordial nucleosynthesis

    PubMed Central

    Schramm, David N.

    1998-01-01

    With the advent of the new extragalactic deuterium observations, Big Bang nucleosynthesis (BBN) is on the verge of undergoing a transformation. In the past, the emphasis has been on demonstrating the concordance of the BBN model with the abundances of the light isotopes extrapolated back to their primordial values by using stellar and galactic evolution theories. As a direct measure of primordial deuterium is converged upon, the nature of the field will shift to using the much more precise primordial D/H to constrain the more flexible stellar and galactic evolution models (although the question of potential systematic error in 4He abundance determinations remains open). The remarkable success of the theory to date in establishing the concordance has led to the very robust conclusion of BBN regarding the baryon density. This robustness remains even through major model variations such as an assumed first-order quark-hadron phase transition. The BBN constraints on the cosmological baryon density are reviewed and demonstrate that the bulk of the baryons are dark and also that the bulk of the matter in the universe is nonbaryonic. Comparison of baryonic density arguments from Lyman-α clouds, x-ray gas in clusters, and the microwave anisotropy are made. PMID:9419322

  3. Primordial nucleosynthesis.

    PubMed

    Schramm, D N

    1998-01-06

    With the advent of the new extragalactic deuterium observations, Big Bang nucleosynthesis (BBN) is on the verge of undergoing a transformation. In the past, the emphasis has been on demonstrating the concordance of the BBN model with the abundances of the light isotopes extrapolated back to their primordial values by using stellar and galactic evolution theories. As a direct measure of primordial deuterium is converged upon, the nature of the field will shift to using the much more precise primordial D/H to constrain the more flexible stellar and galactic evolution models (although the question of potential systematic error in 4He abundance determinations remains open). The remarkable success of the theory to date in establishing the concordance has led to the very robust conclusion of BBN regarding the baryon density. This robustness remains even through major model variations such as an assumed first-order quark-hadron phase transition. The BBN constraints on the cosmological baryon density are reviewed and demonstrate that the bulk of the baryons are dark and also that the bulk of the matter in the universe is nonbaryonic. Comparison of baryonic density arguments from Lyman-alpha clouds, x-ray gas in clusters, and the microwave anisotropy are made.

  4. Primordial magnetogenesis

    NASA Astrophysics Data System (ADS)

    Kandus, Alejandra; Kunze, Kerstin E.; Tsagas, Christos G.

    2011-08-01

    Magnetic fields appear everywhere in the universe. From stars and galaxies, all the way to galaxy clusters and remote protogalactic clouds, magnetic fields of considerable strength and size have been repeatedly observed. Despite their widespread presence, however, the origin of cosmic magnetic fields is still a mystery. The galactic dynamo is believed capable of amplifying weak magnetic seeds to strengths like those measured in ours and other galaxies. But the question is where do these seed fields come from? Are they a product of late, post-recombination, physics or are they truly cosmological in origin? The idea of primordial magnetism is attractive because it makes the large-scale magnetic fields, especially those found in early protogalactic systems, easier to explain. As a result, a host of different scenarios have appeared in the literature. Nevertheless, early magnetogenesis is not problem-free, with a number of issues remaining open and a matter of debate. We review the question of the origin of primordial magnetic fields and consider the limits set on their strength by the current observational data. The various mechanisms of pre-recombination magnetogenesis are presented and their advantages and shortcomings are debated. We consider both classical and quantum scenarios, that operate within as well as outside the standard model, and also discuss how future observations could be used to decide whether the large-scale magnetic fields we see in the universe today are truly primordial or not.

  5. One-Shot Decoupling and Page Curves from a Dynamical Model for Black Hole Evaporation.

    PubMed

    Brádler, Kamil; Adami, Christoph

    2016-03-11

    One-shot decoupling is a powerful primitive in quantum information theory and was hypothesized to play a role in the black hole information paradox. We study black hole dynamics modeled by a trilinear Hamiltonian whose semiclassical limit gives rise to Hawking radiation. An explicit numerical calculation of the discretized path integral of the S matrix shows that decoupling is exact in the continuous limit, implying that quantum information is perfectly transferred from the black hole to radiation. A striking consequence of decoupling is the emergence of an output radiation entropy profile that follows Page's prediction. We argue that information transfer and the emergence of Page curves is a robust feature of any multilinear interaction Hamiltonian with a bounded spectrum.

  6. Gauss-bonnet black holes and possibilities for their experimental search

    SciTech Connect

    Alexeyev, S. O. Rannu, K. A.

    2012-03-15

    Corollaries of gravity models with second-order curvature corrections in the form of a Gauss-Bonnet term and possibilities (or impossibilities) for their experimental search or observations are discussed. The full version of the four-dimensional Schwarzschild-Gauss-Bonnet black hole solution and the constraint on the possible minimal black hole mass following from this model are considered. Using our solution as a model for the final stages of Hawking evaporation of black holes with a low initial mass (up to 10{sup 15} g) whose lifetime is comparable to that of our Universe, we have revealed differences in the patterns of evaporation: we have obtained high values of the emitted energy and showed the impossibility of an experimental search for primordial black holes by their evaporation products. Scenarios for the evaporation of Gauss-Bonnet black holes in multidimensional gravity models and possibilities for their experimental search are also discussed.

  7. Gauss-bonnet black holes and possibilities for their experimental search

    NASA Astrophysics Data System (ADS)

    Alexeyev, S. O.; Rannu, K. A.

    2012-03-01

    Corollaries of gravity models with second-order curvature corrections in the form of a Gauss-Bonnet term and possibilities (or impossibilities) for their experimental search or observations are discussed. The full version of the four-dimensional Schwarzschild-Gauss-Bonnet black hole solution and the constraint on the possible minimal black hole mass following from this model are considered. Using our solution as a model for the final stages of Hawking evaporation of black holes with a low initial mass (up to 1015 g) whose lifetime is comparable to that of our Universe, we have revealed differences in the patterns of evaporation: we have obtained high values of the emitted energy and showed the impossibility of an experimental search for primordial black holes by their evaporation products. Scenarios for the evaporation of Gauss-Bonnet black holes in multidimensional gravity models and possibilities for their experimental search are also discussed.

  8. Primordial Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Coc, Alain

    Primordial or big bang nucleosynthesis (BBN) is now a parameter free theory whose predictions are in good overall agreement with observations. However, the 7Li calculated abundance is significantly higher than the one deduced from spectroscopic observations. Most solutions to this lithium problem involve a source of extra neutrons that inevitably leads to an increase of the deuterium abundance. This seems now to be excluded by recent deuterium observations that have drastically reduced the uncertainty on D/H and also calls for improved precision on thermonuclear reaction rates.

  9. Time dependent Schrödinger equation for black hole evaporation: No information loss

    NASA Astrophysics Data System (ADS)

    Corda, Christian

    2015-02-01

    In 1976 S. Hawking claimed that "Because part of the information about the state of the system is lost down the hole, the final situation is represented by a density matrix rather than a pure quantum state".1 In a series of papers, together with collaborators, we naturally interpreted BH quasi-normal modes (QNMs) in terms of quantum levels discussing a model of excited BH somewhat similar to the historical semi-classical Bohr model of the structure of a hydrogen atom. Here we explicitly write down, for the same model, a time dependent Schrödinger equation for the system composed by Hawking radiation and BH QNMs. The physical state and the correspondent wave function are written in terms of a unitary evolution matrix instead of a density matrix. Thus, the final state results to be a pure quantum state instead of a mixed one. Hence, Hawking's claim is falsified because BHs result to be well defined quantum mechanical systems, having ordered, discrete quantum spectra, which respect 't Hooft's assumption that Schrödinger equations can be used universally for all dynamics in the universe. As a consequence, information comes out in BH evaporation in terms of pure states in a unitary time dependent evolution. In Section 4 of this paper we show that the present approach permits also to solve the entanglement problem connected with the information paradox.

  10. Quantum amplitudes in black-hole evaporation: Spins 1 and 2

    NASA Astrophysics Data System (ADS)

    Farley, A. N. St. J.; D'Eath, P. D.

    2006-06-01

    Quantum amplitudes for s = 1 Maxwell fields and for s = 2 linearised gravitational-wave perturbations of a spherically symmetric Einstein/massless scalar background, describing gravitational collapse to a black hole, are treated by analogy with the previous treatment of s = 0 scalar-field perturbations of gravitational collapse at late times. Both the spin-1 and the spin-2 perturbations split into parts with odd and even parity. Their detailed angular behaviour is analysed, as well as their behaviour under infinitesimal coordinate transformations and their linearised field equations. In general, we work in the Regge-Wheeler gauge, except that, at a certain point, it becomes necessary to make a gauge transformation to an asymptotically flat gauge, such that the metric perturbations have the expected fall-off behaviour at large radii. In both the s = 1 and s = 2 cases, we isolate suitable 'coordinate' variables which can be taken as boundary data on a final space-like hypersurface ΣF. (For simplicity of exposition, we take the data on the initial surface ΣI to be exactly spherically symmetric.) The (large) Lorentzian proper-time interval between ΣI and ΣF, measured at spatial infinity, is denoted by T. We then consider the classical boundary-value problem and calculate the second-variation classical Lorentzian action Sclass(2), on the assumption that the time interval T has been rotated into the complex: T → | T| exp (-i θ), for 0 < θ ⩽ π/2. This complexified classical boundary-value problem is expected to be well-posed, in contrast to the boundary-value problem in the Lorentzian-signature case ( θ = 0), which is badly posed, since it refers to hyperbolic or wave-like field equations. Following Feynman, we recover the Lorentzian quantum amplitude by taking the limit as θ → 0 + of the semi-classical amplitude exp(iSclass(2)). The boundary data for s = 1 involve the (Maxwell) magnetic field, while the data for s = 2 involve the magnetic part of the Weyl

  11. Primordial environment of supermassive black holes. II. Deep Y- and J-band images around the z 6.3 quasar SDSS J1030+0524

    NASA Astrophysics Data System (ADS)

    Balmaverde, B.; Gilli, R.; Mignoli, M.; Bolzonella, M.; Brusa, M.; Cappelluti, N.; Comastri, A.; Sani, E.; Vanzella, E.; Vignali, C.; Vito, F.; Zamorani, G.

    2017-10-01

    Many cosmological studies predict that early supermassive black holes (SMBHs) can only form in the most massive dark matter halos embedded within large-scale structures marked by galaxy overdensities that may extend up to 10 physical Mpc. This scenario, however, has not been confirmed observationally, as the search for galaxy overdensities around high-z quasars has returned conflicting results. The field around the z = 6.31 quasar SDSSJ1030+0524 (J1030) is unique for multi-band coverage and represents an excellent data legacy for studying the environment around a primordial SMBH. In this paper we present wide-area ( 25' × 25') Y- and J-band imaging of the J1030 field obtained with the near infrared camera WIRCam at the Canada-France-Hawaii Telescope (CFHT). We built source catalogs in the Y- and J-band, and matched those with our photometric catalog in the r, z, and i bands presented in our previous paper and based on sources with zAB< 25.2 detected using z-band images from the the Large Binocular Cameras (LBC) at the Large Binocular Telescope (LBT) over the same field of view. We used these new infrared data together with H and K photometric measurements from the MUlti-wavelength Survey by Yale-Chile (MUSYC) and with the Spitzer Infrared Array Camera (IRAC) data to refine our selection of Lyman break galaxies (LBGs), extending our selection criteria to galaxies in the range 25.2 4σ. The overdensity value and its significance are higher than those found in our previous paper and we interpret this as evidence of an improved LBG selection.

  12. Primordial nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Gustavino, C.; Anders, M.; Bemmerer, D.; Elekes, Z.; Trezzi, D.

    2016-04-01

    Big Bang nucleosynthesis (BBN) describes the production of light nuclei in the early phases of the Universe. For this, precise knowledge of the cosmological parameters, such as the baryon density, as well as the cross section of the fusion reactions involved are needed. In general, the energies of interest for BBN are so low ( E < 1MeV) that nuclear cross section measurements are practically unfeasible at the Earth's surface. As of today, LUNA (Laboratory for Underground Nuclear Astrophysics) has been the only facility in the world available to perform direct measurements of small cross section in a very low background radiation. Owing to the background suppression provided by about 1400 meters of rock at the Laboratori Nazionali del Gran Sasso (LNGS), Italy, and to the high current offered by the LUNA accelerator, it has been possible to investigate cross sections at energies of interest for Big Bang nucleosynthesis using protons, 3He and alpha particles as projectiles. The main reaction studied in the past at LUNA is the 2H(4He, γ)6Li . Its cross section was measured directly, for the first time, in the BBN energy range. Other processes like 2H(p, γ)3He , 3He(2H, p)4He and 3He(4He, γ)7Be were also studied at LUNA, thus enabling to reduce the uncertainty on the overall reaction rate and consequently on the determination of primordial abundances. The improvements on BBN due to the LUNA experimental data will be discussed and a perspective of future measurements will be outlined.

  13. Primordial Bubbles within Primordial Bubbles

    NASA Astrophysics Data System (ADS)

    Occhionero, Franco; Amendola, Luca; Corasaniti, Pier Stefano

    The nucleation of primordial bubbles during an inflationary phase transition has been suggested to promote the formation of structure either above or below the horizon, depending on whether the nucleation occurs more or less than 60 e-folds before the end of inflation. Here we propose a mechanism which has both features and produces subhorizon cavities up to hundreds of h-1 Mpc -- where excess power is observed -- inside superhorizon bubbles, i.e. in open universes. For this purpose we build a new inflationary two-field model with two vacuum channels in the potential surface: by modulating the energy difference between these channels, episodes of back and forth transition occur in sequence during inflation. Thus, one physical process may i) reconcile inflation with openness and ii) seed a distribution of observable voids. Bubble spectra are given in terms of phenomenological parameters which in turn are functions of microscopic physical parameters. In principle large scale structure constrains fundamental physics: for example, to account for power at scales of hundreds of h-1 Mpc the singularity in the Euclidean action -- which separates the first from the second phase transition -- must be mild enough. The smoking gun of the process might be the imprint of non-Gaussian, ring-like signals on the microwave background at l > 1000 by the subhorizon bubbles. On the other end of the spectrum, the contribution to l =1,2 from the off-centerness of the observer in the open bubble, is being evaluated.

  14. Constraining primordial magnetic fields with distortions of the black-body spectrum of the cosmic microwave background: pre- and post-decoupling contributions

    SciTech Connect

    Kunze, Kerstin E.

    2014-01-01

    Primordial magnetic fields that exist before the photon-baryon decoupling epoch are damped on length scales below the photon diffusion and free-streaming scales. The energy injected into the plasma by dissipation of magnetosonic and Alfv and apos;en waves heats photons, creating a y-type distortion of the black-body spectrum of the cosmic microwave background. This y-type distortion is converted into a μ-type distortion when elastic Compton scattering is efficient. Therefore, we can use observational limits on y- and μ-type distortions to constrain properties of magnetic fields in the early universe. Assuming a Gaussian, random, and non-helical field, we calculate μ and y as a function of the present-day strength of the field, B{sub 0}, smoothed over a certain Gaussian width, k{sub c}{sup −1}, as well as of the spectral index of the power spectrum of fields, n{sub B}, defined by P{sub B}(k)∝k{sup n{sub B}}. For a nearly scale-invariant spectrum with n{sub B} = −2.9 and a Gaussian smoothing width of k{sub c}{sup −1} = 1Mpc, the existing COBE/FIRAS limit on μ yields B{sub 0} < 40 nG, whereas the projected PIXIE limit on μ would yield B{sub 0} < 0.8 nG. For non-scale-invariant spectra, constraints can be stronger. For example, for B{sub 0} = 1 nG with k{sub c}{sup −1} = 1Mpc, the COBE/FIRAS limit on μ excludes a wide range of spectral indices given by n{sub B} > −2.6. After decoupling, energy dissipation is due to ambipolar diffusion and decaying MHD turbulence, creating a y-type distortion. The distortion is completely dominated by decaying MHD turbulence, and is of order y ≈ 10{sup −7} for a few nG field smoothed over the damping scale at the decoupling epoch, k{sub d,} {sub dec} ≈ 290(B{sub 0}/1nG){sup −1}Mpc{sup −1}. The projected PIXIE limit on y would exclude B{sub 0} > 1.0 and 0.6 nG for n{sub B} = −2.9 and -2.3, respectively, and B{sub 0} > 0.6 nG for n{sub B} ≥ 2. Finally, we find that the current limits on the optical depth to

  15. A Thermote, a Novel Thermal Element Simplifying the Finding of a Medium's Entropy Emerges as a Sensible Dark Matter Candidate from Primordial Black Holes with a Mass in Range of Axion's, a Leading Candidate

    NASA Astrophysics Data System (ADS)

    Feria, Erlan H.

    2017-06-01

    Black holes acting as dark matter have been predicted, e.g., via a duality theory in (Feria 2011, Proc. IEEE Int’l Conf. on SMC, Alaska, USA) and via observations in (Kashlinsky 2016, AJL). Here a thermote, a novel thermal element simplifying the finding of a medium’s entropy, emerges as a dark matter candidate from primordial black holes with a mass in range of axion's, a leading candidate. The thermote energy, eT, is defined as the average thermal energy contributed to a particle’s motion by the medium’s degrees of freedom (DoF) and is thus given by eT=NDoFkBT/2 where NDoF is the DoF number (e.g., NDoF=2 for a black-hole since only in its event-horizon particle motions can occur) and kBT/2 is the thermal energy contributed by each degree of freedom (kB is the Boltzmann constant and T is temperature). The entropy S of a spherical homogeneous medium is then simply stated as S=(kB/2)E/eT where E=Mc2 is the medium's rest-energy, with M its point-mass and c the speed of light, and eT=NDoFkBT/2 is the thermote's kinetic-energy. This simple equation naturally surfaced from a rest/kinetic or retention/motion mass-energy duality theory where, e.g., black-holes and vacuums form together such a duality with black holes offering the least resistance to mass-energy rest, or retention, and vacuums offering the least resistance to mass-energy kinetics, or motions. In turn, this duality theory has roots in the universal cybernetics duality principle (UCDP) stating “synergistic physical and mathematical dualities arise in efficient system designs” (Feria 2014, http://dx.doi.org/10.1117/2.1201407.005429, SPIE Newsroom). Our thermote based entropy finding method is applicable to spherical homogeneous mediums such as black-holes, photon-gases, and flexible-phase (Feria 2016, Proc. IEEE Int’l Conf. on Smart Cloud, Columbia University, NY, USA), where the thermote of a primordial black hole, with NDoF=2 and a CMB radiation temperature of T=2.725 kelvin, emerges as a

  16. Primordial dwarfism: an update.

    PubMed

    Alkuraya, Fowzan S

    2015-02-01

    To review the recent advances in the clinical and molecular characterization of primordial dwarfism, an extreme growth deficiency disorder that has its onset during embryonic development and persists throughout life. The last decade has witnessed an unprecedented acceleration in the discovery of genes mutated in primordial dwarfism, from one gene to more than a dozen genes. These genetic discoveries have confirmed the notion that primordial dwarfism is caused by defects in basic cellular processes, most notably centriolar biology and DNA damage response. Fortunately, the increasing number of reported clinical primordial dwarfism subtypes has been accompanied by more accurate molecular classification. Qualitative defects of centrioles with resulting abnormal mitosis dynamics, reduced proliferation, and increased apoptosis represent the predominant molecular pathogenic mechanism in primordial dwarfism. Impaired DNA damage response is another important mechanism, which we now know is not mutually exclusive to abnormal centrioles. Molecular characterization of primordial dwarfism is helping families by enabling more reproductive choices and may pave the way for the future development of therapeutics.

  17. Black Holes

    NASA Astrophysics Data System (ADS)

    Luminet, Jean-Pierre

    1992-09-01

    Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.

  18. Primordial nucleosynthesis redux

    NASA Technical Reports Server (NTRS)

    Walker, Terry P.; Steigman, Gary; Kang, Ho-Shik; Schramm, David M.; Olive, Keith A.

    1991-01-01

    The abundances of D, He-3, He-4, and Li-7, are presently recalculated within the framework of primordial nucleosynthesis in the standard hot big band model, in order to estimate the primordial abundances of the light elements. A comparison between theory and experiment demonstrates the consistency of standard model predictions; the baryon density parameter is constrained on the basis of a nucleon-to-photon ratio of 2.8-4.0. These bounds imply that the bulk of the baryons in the universe are dark, requiring that the universe be dominated by nonbaryonic matter.

  19. Searching for Primordial Antimatter

    NASA Astrophysics Data System (ADS)

    2008-10-01

    Scientists are on the hunt for evidence of antimatter - matter's arch nemesis - leftover from the very early Universe. New results using data from NASA's Chandra X-ray Observatory and Compton Gamma Ray Observatory suggest the search may have just become even more difficult. Antimatter is made up of elementary particles, each of which has the same mass as their corresponding matter counterparts --protons, neutrons and electrons -- but the opposite charges and magnetic properties. When matter and antimatter particles collide, they annihilate each other and produce energy according to Einstein's famous equation, E=mc2. According to the Big Bang model, the Universe was awash in particles of both matter and antimatter shortly after the Big Bang. Most of this material annihilated, but because there was slightly more matter than antimatter - less than one part per billion - only matter was left behind, at least in the local Universe. Trace amounts of antimatter are believed to be produced by powerful phenomena such as relativistic jets powered by black holes and pulsars, but no evidence has yet been found for antimatter remaining from the infant Universe. How could any primordial antimatter have survived? Just after the Big Bang there was believed to be an extraordinary period, called inflation, when the Universe expanded exponentially in just a fraction of a second. "If clumps of matter and antimatter existed next to each other before inflation, they may now be separated by more than the scale of the observable Universe, so we would never see them meet," said Gary Steigman of The Ohio State University, who conducted the study. "But, they might be separated on smaller scales, such as those of superclusters or clusters, which is a much more interesting possibility." X-rayChandra X-ray Image In that case, collisions between two galaxy clusters, the largest gravitationally-bound structures in the Universe, might show evidence for antimatter. X-ray emission shows how much hot

  20. Quantum primordial standard clocks

    SciTech Connect

    Chen, Xingang; Namjoo, Mohammad Hossein; Wang, Yi E-mail: mohammad.namjoo@cfa.harvard.edu

    2016-02-01

    In this paper, we point out and study a generic type of signals existing in the primordial universe models, which can be used to model-independently distinguish the inflation scenario from alternatives. These signals are generated by massive fields that function as standard clocks. The role of massive fields as standard clocks has been realized in previous works. Although the existence of such massive fields is generic, the previous realizations require sharp features to classically excite the oscillations of the massive clock fields. Here, we point out that the quantum fluctuations of massive fields can actually serve the same purpose as the standard clocks. We show that they are also able to directly record the defining property of the scenario type, namely, the scale factor of the primordial universe as a function of time a(t), but through shape-dependent oscillatory features in non-Gaussianities. Since quantum fluctuating massive fields exist in any realistic primordial universe models, these quantum primordial standard clock signals are present in any inflation models, and should exist quite generally in alternative-to-inflation scenarios as well. However, the amplitude of such signals is very model-dependent.

  1. Semiclassical geons as solitonic black hole remnants

    SciTech Connect

    Lobo, Francisco S.N.; Olmo, Gonzalo J.; Rubiera-Garcia, D. E-mail: gonzalo.olmo@csic.es

    2013-07-01

    We find that the end state of black hole evaporation could be represented by non-singular and without event horizon stable solitonic remnants with masses of the order the Planck scale and up to ∼ 16 units of charge. Though these objects are locally indistinguishable from spherically symmetric, massive electric (or magnetic) charges, they turn out to be sourceless geons containing a wormhole generated by the electromagnetic field. Our results are obtained by interpreting semiclassical corrections to Einstein's theory in the first-order (Palatini) formalism, which yields second-order equations and avoids the instabilities of the usual (metric) formulation of quadratic gravity. We also discuss the potential relevance of these solutions for primordial black holes and the dark matter problem.

  2. The Primordial Inflation Explorer

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2012-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10(exp -3) at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy. I describe the PIXIE instrument and mission architecture needed to detect the inflationary signature using only 4 semiconductor bolometers.

  3. Primordial material in meteorites

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.

    1986-01-01

    Primordial is a term which applied to material that entered the solar system early and became incorporated into a meteorite without totally losing its identity. Identification of such material surviving in meteorites is so far solely through recognition of anomalous isotopic compositions of generally macroscopic entities contained within those meteorites. Isotopic anomalies are, by definition, isotopic compositions which differ from the canonical solar system abundances in ways which cannot be explained in terms of local processes such as mass dependent fractionation, cosmic ray induced spallation or decay of radionuclides. A comprehensive account of isotopic anomalies is impractical here, so it is necessary to be selective. Issues which are potentially addressable through the study of such primordial material are examined. Those issues will be illustrated with specific, but not exhaustive, examples.

  4. Primordial Planet Formation

    NASA Astrophysics Data System (ADS)

    Schild, Rudolph E.; Gibson, Carl H.

    Recent spacecraft observations exploring solar system properties impact standard paradigms of the formation of stars, planets and comets. We stress the unexpected cloud of microscopic dust resulting from the DEEP IMPACT mission, and the existence of molten nodules in STARDUST samples. And the theory of star formation does not explain the common occurrence of binary and multiple star systems in the standard gas fragmentation scenario. No current theory of planet formation can explain the iron core of the earth, under oceans of water. These difficulties are avoided in a scenario where the planet mass objects form primordially and are today the baryonic dark matter. They have been detected in quasar microlensing and anomalous quasar radio brightening bursts. The primordial planets often concentrate together to form a star, with residual matter seen in pre-stellar accretion discs around the youngest stars. These primordial planet mass bodies were formed of hydrogen-helium, aggregated in dense clumps of a trillion at the time of plasma neutralization 380,000 years after the big bang. Most have been frozen and invisible, but are now manifesting themselves in numerous ways as sensitive modern space telescopes become operational. Their key detection signature is their thermal emission spectrum, pegged at the 13.8 degrees Kelvin triple point of hydrogen, the baryonic dark matter (Staplefeldt et al. 1999).

  5. The Primordial Inflation Explorer (PIXIE)

    NASA Astrophysics Data System (ADS)

    Kogut, Alan; Chluba, Jens; Fixsen, Dale J.; Meyer, Stephan; Spergel, David

    2016-07-01

    The Primordial Inflation Explorer is an Explorer-class mission to open new windows on the early universe through measurements of the polarization and absolute frequency spectrum of the cosmic microwave background. PIXIE will measure the gravitational-wave signature of primordial inflation through its distinctive imprint in linear polarization, and characterize the thermal history of the universe through precision measurements of distortions in the blackbody spectrum. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning over 7 octaves in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded non-imaging optics feed a polarizing Fourier Transform Spectrometer to produce a set of interference fringes, proportional to the difference spectrum between orthogonal linear polarizations from the two input beams. Multiple levels of symmetry and signal modulation combine to reduce systematic errors to negligible levels. PIXIE will map the full sky in Stokes I, Q, and U parameters with angular resolution 2.6° and sensitivity 70 nK per 1° square pixel. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10-3 at 5 standard deviations. The PIXIE mission complements anticipated ground-based polarization measurements such as CMB- S4, providing a cosmic-variance-limited determination of the large-scale E-mode signal to measure the optical depth, constrain models of reionization, and provide a firm detection of the neutrino mass (the last unknown parameter in the Standard Model of particle physics). In addition, PIXIE will measure the absolute frequency spectrum to characterize deviations from a blackbody with sensitivity 3 orders of magnitude beyond the seminal COBE/FIRAS limits. The sky cannot be black at this level; the expected results will constrain physical processes ranging from

  6. Physics of primordial star formation

    NASA Astrophysics Data System (ADS)

    Yoshida, Naoki

    2012-09-01

    The study of primordial star formation has a history of nearly sixty years. It is generally thought that primordial stars are one of the key elements in a broad range of topics in astronomy and cosmology, from Galactic chemical evolution to the formation of super-massive blackholes. We review recent progress in the theory of primordial star formation. The standard theory of cosmic structure formation posits that the present-day rich structure of the Universe developed through gravitational amplification of tiny matter density fluctuations left over from the Big Bang. It has become possible to study primordial star formation rigorously within the framework of the standard cosmological model. We first lay out the key physical processes in a primordial gas. Then, we introduce recent developments in computer simulations. Finally, we discuss prospects for future observations of the first generation of stars.

  7. Droplet evaporation with complexity of evaporation modes

    NASA Astrophysics Data System (ADS)

    Hwang, In Gyu; Kim, Jin Young; Weon, Byung Mook

    2017-01-01

    Evaporation of a sessile droplet often exhibits a mixed evaporation mode, where the contact radius and the contact angle simultaneously vary with time. For sessile water droplets containing polymers with different initial polymer concentrations, we experimentally study their evaporation dynamics by measuring mass and volume changes. We show how diffusion-limited evaporation governs droplet evaporation, regardless of the complexity of evaporation behavior, and how the evaporation rate depends on the polymer concentration. Finally, we suggest a unified expression for a diffusion-limited evaporation rate for a sessile droplet with complexity in evaporation dynamics.

  8. Streamer Evaporation

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Wang, A.-H.; Wu, S. T.; Nerney, S. F.

    1998-01-01

    Evaporation is the consequence of heating near the top of streamers in ideal Magnetohydrodynamics (MHD) models, where the plasma is weakly contained by the magnetic field. Heating causes slow opening of field lines and release of new solar wind. It was discovered in simulations and, due to the absence of loss mechanisms, the ultimate end point is the complete evaporation of the streamer. Of course streamers do not behave in this way because there are losses by thermal conduction and radiation. Physically, heating is also expected to depend on ambient conditions. We use our global MHD model with thermal conduction to examine the effect of changing the heating scale height. We also apply and extend an analytic model of streamers developed by Pneuman (1968) to show that steady streamers are unable to contain plasma for temperatures near the cusp greater than approximately 2 x 10(exp 6) K.

  9. Group evaporation

    NASA Technical Reports Server (NTRS)

    Shen, Hayley H.

    1991-01-01

    Liquid fuel combustion process is greatly affected by the rate of droplet evaporation. The heat and mass exchanges between gas and liquid couple the dynamics of both phases in all aspects: mass, momentum, and energy. Correct prediction of the evaporation rate is therefore a key issue in engineering design of liquid combustion devices. Current analytical tools for characterizing the behavior of these devices are based on results from a single isolated droplet. Numerous experimental studies have challenged the applicability of these results in a dense spray. To account for the droplets' interaction in a dense spray, a number of theories have been developed in the past decade. Herein, two tasks are examined. One was to study how to implement the existing theoretical results, and the other was to explore the possibility of experimental verifications. The current theoretical results of group evaporation are given for a monodispersed cluster subject to adiabatic conditions. The time evolution of the fluid mechanic and thermodynamic behavior in this cluster is derived. The results given are not in the form of a subscale model for CFD codes.

  10. Primordial features and Planck polarization

    NASA Astrophysics Data System (ADS)

    Hazra, Dhiraj Kumar; Shafieloo, Arman; Smoot, George F.; Starobinsky, Alexei A.

    2016-09-01

    With the Planck 2015 Cosmic Microwave Background (CMB) temperature and polarization data, we search for possible features in the primordial power spectrum (PPS). We revisit the Wiggly Whipped Inflation (WWI) framework and demonstrate how generation of some particular primordial features can improve the fit to Planck data. WWI potential allows the scalar field to transit from a steeper potential to a nearly flat potential through a discontinuity either in potential or in its derivatives. WWI offers the inflaton potential parametrizations that generate a wide variety of features in the primordial power spectra incorporating most of the localized and non-local inflationary features that are obtained upon reconstruction from temperature and polarization angular power spectrum. At the same time, in a single framework it allows us to have a background parameter estimation with a nearly free-form primordial spectrum. Using Planck 2015 data, we constrain the primordial features in the context of Wiggly Whipped Inflation and present the features that are supported both by temperature and polarization. WWI model provides more than 13 improvement in χ2 fit to the data with respect to the best fit power law model considering combined temperature and polarization data from Planck and B-mode polarization data from BICEP and Planck dust map. We use 2-4 extra parameters in the WWI model compared to the featureless strict slow roll inflaton potential. We find that the differences between the temperature and polarization data in constraining background cosmological parameters such as baryon density, cold dark matter density are reduced to a good extent if we use primordial power spectra from WWI. We also discuss the extent of bispectra obtained from the best potentials in arbitrary triangular configurations using the BI-spectra and Non-Gaussianity Operator (BINGO).

  11. Cimicifuga species identification by high performance liquid chromatography-photodiode array/mass spectrometric/evaporative light scattering detection for quality control of black cohosh products

    PubMed Central

    He, Kan; Pauli, Guido F.; Zheng, Bolin; Wang, Huikang; Bai, Naisheng; Peng, Tangsheng; Roller, Marc; Zheng, Qunyi

    2006-01-01

    Black cohosh has become one of the most important herbal products in the U.S. dietary supplements market. It is manufactured from roots and rhizomes of Cimicifuga racemosa (Ranunculaceae). Botanical identification of the raw starting material is a key step in the quality control of black cohosh preparations. The present report summarizes a fingerprinting approach based on HPLC-PDA/MS/ELSD that has been developed and validated using a total of ten Cimicifuga species. These include three North American species, C. racemosa, C. americana, C. rubifolia, and seven Asian species, C. acerina, C. biternat, C. dahurica, C. heracleifolia, C. japonica, C. foetida, and C. simplex. The chemotaxonomic distinctiveness of the HPLC fingerprints allows identification of all ten Cimicifuga species. The triterpene glycosides cimigenol-3-O-arabinoside (3), cimifugin (12), and cimifugin-3-O-glucoside (18) were determined to be suitable species-specific markers for the distinction of C. racemosa from the other Cimicifuga species. In addition to identification, the fingerprint method provided insight into chemical interconversion processes occurring between the diverse triterpene glycosides contained in black cohosh. The reported method has proven its usefulness in the botanical standardization and quality control of black cohosh products. PMID:16515793

  12. Evaporation dehydrator

    SciTech Connect

    Bland, L.

    1985-08-06

    A method and apparatus for the treatment of oilfield heavy oil emulsions is provided. The method utilizes, in combination, the steps of evaporation, vapor/liquid separation, and solids settling to dehydrate, degassify and remove solids from the heavy oil emulsion and produce oil having less than 0.5% by volume basic solids and water. The apparatus comprises an insulated, horizontal, cylindrical vessel. Mounted in the upper end of the vessel chamber is an inclined, tubular member having a closed upper end and an open lower end. At its closed end, the member forms a receiving chamber. A mechanical foam breaker extends transversely across the interior of the tubular member, downstream of the chamber. A stack of angularly inclined, heated trays, arranged in zigzag fashion, are positioned beneath the tubular member, to provide an elongate flowpath. The lower end of the tubular member is positioned to feed onto the upper end of the first tray. The flowpath formed by the stack of trays terminates at a level above the bottom of the vessel, so that a quiescent settling sump is provided by the base of the vessel. The vessel includes a feed inlet opening into the receiving chamber, a vapor outlet leading from the top of said vessel, and liquid and solids outlets leading from the sump. A stream of pre-heated heavy oil emulsion is fed to the receiving chamber, wherein part of the contained water in the vapor form breaks out. The foaming stream is contained by the tubular member and is substantially disintegrated by the foam breaker. The stream then issues onto the upper end of the stack of trays and is heated as it passes as a shallow, broad layer over the trays, to gradually evaporate the remaining water from the emulsion and solids. The dehydrated solids are settled out in the sump, leaving oil containing less than 0.5% basic solids and water.

  13. Streamer Evaporation

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Wang, A. H.; Wu, Shi T.; Nerney, S.

    1998-01-01

    Evaporation is the consequence of slow plasma heating near the tops of streamers where the plasma is only weakly contained by the magnetic field. The form it takes is the slow opening of field lines at the top of the streamer and transient formation of new solar wind. It was discovered in polytropic model calculations, where due to the absence of other energy loss mechanisms in magnetostatic streamers, its ultimate endpoint is the complete evaporation of the streamer. This takes, for plausible heating rates, weeks to months in these models. Of course streamers do not behave this way, for more than one reason. One is that there are losses due to thermal conduction to the base of the streamer and radiation from the transition region. Another is that streamer heating must have a characteristic time constant and depend on the ambient physical conditions. We use our global Magnetohydrodynamics (MHD) model with thermal conduction to examine a few examples of the effect of changing the heating scale height and of making ad hoc choices for how the heating depends on ambient conditions. At the same time, we apply and extend the analytic model of streamers, which showed that streamers will be unable to contain plasma for temperatures near the cusp greater than about 2xl0(exp 6) K. Slow solar wind is observed to come from streamers through transient releases. A scenario for this that is consistent with the above physical process is that heating increases the near-cusp temperature until field lines there are forced open. The subsequent evacuation of the flux tubes by the newly forming slow wind decreases the temperature and heating until the flux tubes are able to reclose. Then, over a longer time scale, heating begins to again refill the flux tubes with plasma and increase the temperature until the cycle repeats itself. The calculations we report here are first steps towards quantitative evaluation of this scenario.

  14. Black holes and Higgs stability

    SciTech Connect

    Tetradis, Nikolaos

    2016-09-20

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.

  15. Black Holes (With 16 figures)

    NASA Astrophysics Data System (ADS)

    Novikov, Igor

    Astrophysics of Black Holes Introduction The Origin of Stellar Black Holes A Nonrotating Black Hole Introduction Schwarzschild Gravitational Field Motion of Photons Along the Radial Direction Radial Motion of Nonrelativistic Particles The Puzzle of the Gravitational Radius R and T Regions Two Types of T-Regions Gravitational Collapse and White Holes Eternal Black Hole? Black Hole Celestial Mechanics Circular Motion Around a Black Hole Gravitational Capture of Particles by a Black Hole Corrections for Gravitational Radiation A Rotating Black Hole Introduction Gravitational Field of a Rotating Black Hole Specific Reference Frames General Properties of the Spacetime of a Rotating Black Hole; - Spacetime Inside the Horizon Celestial Mechanics of a Rotating Black Hole Motion of Particle in the Equatorial Plane Motion of Particles off the Equatorial Plane Peculiarities of the Gravitational Capture of Bodies by a Rotating - Black Hole Electromagnetic Fields Near a Black Hole Introduction Maxwell's Equations in the Neighborhood of a Rotating Black Hole Stationary Electrodynamics Boundary Conditions at the Event Horizon Electromagnetic Fields in Vacuum Magnetosphere of a Black Hole Some Aspects of Physics of Black Holes, Wormholes, and Time Machines Observational Appearence of the Black Holes in the Universe Black Holes in the Interstellar Medium Disk Accretion Black Holes in Stellar Binary Systems Black Holes in Galactic Centers Dynamical Evidence for Black Holes in Galaxy Nuclei Primordial Black Holes Acknowledgements References

  16. Lunar magnetism. [primordial core model

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.

    1975-01-01

    It is shown, for a very simple model of the moon, that the existence of a primordial core magnetic field would give rise to a present day nonzero dipole external field. In the investigation a uniformly magnetized core embedded in a permeable mantle is considered. The significance of the obtained results for the conclusions reported by Runcorn (1975) is discussed. Comments provided by Runcorn to the discussion are also presented.

  17. Lunar magnetism. [primordial core model

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.

    1975-01-01

    It is shown, for a very simple model of the moon, that the existence of a primordial core magnetic field would give rise to a present day nonzero dipole external field. In the investigation a uniformly magnetized core embedded in a permeable mantle is considered. The significance of the obtained results for the conclusions reported by Runcorn (1975) is discussed. Comments provided by Runcorn to the discussion are also presented.

  18. Primordial power spectrum from Planck

    SciTech Connect

    Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun E-mail: arman@apctp.org

    2014-11-01

    Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near ℓ ∼ 750–850 represents the most prominent feature in the data. Feature near ℓ ∼ 1800–2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters and the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2σ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of ∼ 2.5%. In this context low-ℓ and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.

  19. Primordial power spectrum from Planck

    NASA Astrophysics Data System (ADS)

    Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun

    2014-11-01

    Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near l ~ 750-850 represents the most prominent feature in the data. Feature near l ~ 1800-2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters and the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2σ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of ~ 2.5%. In this context low-l and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.

  20. Cosmic superstrings and primordial magnetogenesis

    SciTech Connect

    Davis, Anne-Christine; Dimopoulos, Konstantinos

    2005-08-15

    Cosmic superstrings are produced at the end of brane inflation. Their properties are similar to cosmic strings arising in grand unified theories. Like cosmic strings they can give rise to a primordial magnetic field, as a result of vortical motions stirred in the ionized plasma by the gravitational pull of moving string segments. The resulting magnetic field is both strong enough and coherent enough to seed the galactic dynamo and explain the observed magnetic fields of the galaxies.

  1. Age-standardized incidence rates of primordial cyst (keratocyst) on the Witwatersrand.

    PubMed

    Rachanis, C C; Shear, M

    1978-11-01

    Cases of primordial cysts derived from the records of all the hospital pathology departments and private pathology practices on the Witwatersrand, were recorded for the 10-year period 1965-74. The population at risk (1970 census) was 974,390 Whites and 1,567,280 Blacks. Age-specific morbidity rates for each sex and race were calculated, as well as age-standardized incidence rates standardized against African, World and European standard populations. The age-standardized incidence rates for primordial cysts, standardized against a World standard population, per million per year are 0.61, 0, 4.86 and 3.50 for Black males and females and White males and females, respectively. In the population at risk, primordial cysts are much more common in Whites than in Blacks, the incidence being eight times higher in White males than in Black males. The present study confirms that there is a bimodal age distribution but with a higher incidence of the cyst in the age group 50-64 years than previously suspected. This may be either because a substantial number of cases remain undiagnosed for many years or because there are two groups of primordial cyst: one which is triggered in young patients and the other in older patients.

  2. Black Hole Thermodynamics

    NASA Astrophysics Data System (ADS)

    Israel, Werner

    This chapter reviews the conceptual developments on black hole thermodynamics and the attempts to determine the origin of black hole entropy in terms of their horizon area. The brick wall model and an operational approach are discussed. An attempt to understand at the microlevel how the quantum black hole acquires its thermal properties is included. The chapter concludes with some remarks on the extension of these techniques to describing the dynamical process of black hole evaporation.

  3. Asymptotic black holes

    NASA Astrophysics Data System (ADS)

    Ho, Pei-Ming

    2017-04-01

    Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.

  4. Black holes, pregalactic stars, and the dark matter problem

    SciTech Connect

    Carr, B.J.

    1985-06-01

    We review the different ways in which black holes might form and discuss their various astrophysical and cosmological consequences. We then consider the various constraints on the form of the dark matter and conclude that black holes could have a significant cosmological density only if they are of primordial origin or remnants of a population of pregalactic stars. This leads us to discuss the other cosmological effects of primordial black holes and pregalactic stars. 239 refs., 7 figs., 5 tabs.

  5. Dynamical evolution of primordial dark matter haloes through mergers

    NASA Astrophysics Data System (ADS)

    Ogiya, Go; Nagai, Daisuke; Ishiyama, Tomoaki

    2016-09-01

    Primordial dark matter (DM) haloes are the smallest gravitationally bound DM structures from which the first stars, black holes and galaxies form and grow in the early universe. However, their structures are sensitive to the free streaming scale of DM, which in turn depends on the nature of DM particles. In this work, we test the hypothesis that the slope of the central cusps in primordial DM haloes near the free streaming scale depends on the nature of merging process. By combining and analysing data from a cosmological simulation with the cutoff in the small-scale matter power spectrum as well as a suite of controlled, high-resolution simulations of binary mergers, we find that (1) the primordial DM haloes form preferentially through major mergers in radial orbits; (2) their central DM density profile is more susceptible to a merging process compared to that of galaxy- and cluster-sized DM haloes; (3) consecutive major mergers drive the central density slope to approach the universal form characterized by the Navarro-Frenk-White profile, which is shown to be robust to the impacts of mergers and serves an attractor solution for the density structure of DM haloes. Our work highlights the importance of dynamical processes on the structure formation during the Dark Ages.

  6. Primordial gravitational waves and cosmology.

    PubMed

    Krauss, Lawrence M; Dodelson, Scott; Meyer, Stephan

    2010-05-21

    The observation of primordial gravitational waves could provide a new and unique window on the earliest moments in the history of the universe and on possible new physics at energies many orders of magnitude beyond those accessible at particle accelerators. Such waves might be detectable soon, in current or planned satellite experiments that will probe for characteristic imprints in the polarization of the cosmic microwave background, or later with direct space-based interferometers. A positive detection could provide definitive evidence for inflation in the early universe and would constrain new physics from the grand unification scale to the Planck scale.

  7. Primordial Compositions of Refractory Inclusions

    SciTech Connect

    Grossman, L; Simon, S B; Rai, V K; Thiemens, M H; Hutcheon, I D; Williams, R W; Galy, A; Ding, T; Fedkin, A V; Clayton, R N; Mayeda, T K

    2008-02-20

    Bulk chemical and oxygen, magnesium and silicon isotopic compositions were measured for each of 17 Types A and B refractory inclusions from CV3 chondrites. After bulk chemical compositions were corrected for non-representative sampling in the laboratory, the Mg and Si isotopic compositions of each inclusion were used to calculate its original chemical composition assuming that the heavy-isotope enrichments of these elements are due to Rayleigh fractionation that accompanied their evaporation from CMAS liquids. The resulting pre-evaporation chemical compositions are consistent with those predicted by equilibrium thermodynamic calculations for high-temperature nebular condensates but only if different inclusions condensed from nebular regions that ranged in total pressure from 10{sup -6} to 10{sup -1} bar, regardless of whether they formed in a system of solar composition or in one enriched in OC dust relative to gas by a factor of ten relative to solar composition. This is similar to the range of total pressures predicted by dynamic models of the solar nebula for regions whose temperatures are in the range of silicate condensation temperatures. Alternatively, if departure from equilibrium condensation and/or non-representative sampling of condensates in the nebula occurred, the inferred range of total pressure could be smaller. Simple kinetic modeling of evaporation successfully reproduces observed chemical compositions of most inclusions from their inferred pre-evaporation compositions, suggesting that closed-system isotopic exchange processes did not have a significant effect on their isotopic compositions. Comparison of pre-evaporation compositions with observed ones indicates that 80% of the enrichment in refractory CaO + Al{sub 2}O{sub 3} relative to more volatile MgO + SiO{sub 2} is due to initial condensation and 20% due to subsequent evaporation for both Type A and Type B inclusions.

  8. The Primordial Inflation Explorer (PIXIE)

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2011-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded non-imaging optics feed a polarizing Fourier Transform Spectrometer to produce a set of interference fringes, proportional to the difference spectrum between orthogonal linear polarizations from the two input beams. The differential design and multiple signal modulations spanning 11 orders of magnitude in time combine to reduce the instrumental signature and confusion from unpolarized sources to negligible levels. PIXIE will map the full sky in Stokes I, Q, and U parameters with angular resolution 2.6 deg and sensitivity 0.2 uK per 1 deg square pixel. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r <10(exp -3) at 5 standard deviations. In addition, the rich PIXIE data will constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to the physical conditions within the interstellar medium of the Galaxy. We describe the PIXIE instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  9. The Primordial Inflation Explorer (PIXIE)

    NASA Technical Reports Server (NTRS)

    Kogut, Alan; Chuss, David T.; Dotson, Jessie; Dwek, Eli; Fixsen, Dale J.; Halpern, Mark; Hinshaw, Gary F.; Meyer, Stephan; Moseley, S. Harvey; Seiffert, Michael D.; hide

    2014-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded non-imaging optics feed a polarizing Fourier Transform Spectrometer to produce a set of interference fringes, proportional to the difference spectrum between orthogonal linear polarizations from the two input beams. Multiple levels of symmetry and signal modulation combine to reduce the instrumental signature and confusion from unpolarized sources to negligible levels. PIXIE will map the full sky in Stokes I, Q, and U parameters with angular resolution 2.6 deg and sensitivity 0.2 µK per 1 deg square pixel. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r less than 10(exp -3) at 5 standard deviations. In addition, PIXIE will measure the absolute frequency spectrum to constrain physical processes ranging from inflation to the nature of the first stars to the physical conditions within the interstellar medium of the Galaxy. We describe the PIXIE instrument and mission architecture with an emphasis on the expected level of systematic error suppression.

  10. Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation

    SciTech Connect

    Jin, Sheng; Ji, Jianghui; Mordasini, Christoph; Van Boekel, Roy; Henning, Thomas; Parmentier, Vivien E-mail: mordasini@mpia.de

    2014-11-01

    We apply hydrodynamic evaporation models to different synthetic planet populations that were obtained from a planet formation code based on the core-accretion paradigm. We investigated the evolution of the planet populations using several evaporation models, which are distinguished by the driving force of the escape flow (X-ray or EUV), the heating efficiency in energy-limited evaporation regimes, or both. Although the mass distribution of the planet populations is barely affected by evaporation, the radius distribution clearly shows a break at approximately 2 R {sub ⊕}. We find that evaporation can lead to a bimodal distribution of planetary sizes and to an 'evaporation valley' running diagonally downward in the orbital distance—planetary radius plane, separating bare cores from low-mass planets that have kept some primordial H/He. Furthermore, this bimodal distribution is related to the initial characteristics of the planetary populations because low-mass planetary cores can only accrete small primordial H/He envelopes and their envelope masses are proportional to their core masses. We also find that the population-wide effect of evaporation is not sensitive to the heating efficiency of energy-limited description. However, in two extreme cases, namely without evaporation or with a 100% heating efficiency in an evaporation model, the final size distributions show significant differences; these two scenarios can be ruled out from the size distribution of Kepler candidates.

  11. Entropy Budget for Hawking Evaporation

    NASA Astrophysics Data System (ADS)

    Alonso-Serrano, Ana; Visser, Matt

    2017-07-01

    Blackbody radiation, emitted from a furnace and described by a Planck spectrum, contains (on average) an entropy of $3.9\\pm 2.5$ bits per photon. Since normal physical burning is a unitary process, this amount of entropy is compensated by the same amount of "hidden information" in correlations between the photons. The importance of this result lies in the posterior extension of this argument to the Hawking radiation from black holes, demonstrating that the assumption of unitarity leads to a perfectly reasonable entropy/information budget for the evaporation process. In order to carry out this calculation we adopt a variant of the "average subsystem" approach, but consider a tripartite pure system that includes the influence of the rest of the universe, and which allows "young" black holes to still have a non-zero entropy; which we identify with the standard Bekenstein entropy.

  12. Evaporation in space manufacturing

    NASA Technical Reports Server (NTRS)

    Li, C. H.

    1974-01-01

    'Normal evaporation' equations for predicting the compositional changes with time and temperature have been developed and correlated with actual experimental data. An evaporative congruent temperature is defined and used to explain, predict, or plan space experiments on anomalous constitutional melting (on cooling) or solidification (on heating). Uneven evaporation causes reactive jetting forces capable of initiating new convection currents, nongravitational accelerations, surface vibrations, or other disturbances. Applications of evaporation to space manufacturing are described concerning evaporative purification, surface cooling, specimen selection, particles splitting, freezing data interpretation, material loss and dimensional control, and surface contamination or compositional changes.

  13. Bell Violation in Primordial Cosmology

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan; Panda, Sudhakar; Singh, Rajeev

    2017-02-01

    In this paper, we have worked on the possibility of setting up an Bell's inequality violating experiment in the context of primordial cosmology following the fundamental principles of quantum mechanics. To set up this proposal we have introduced a model independent theoretical framework using which we have studied the creation of new massive particles for the scalar fluctuations in the presence of additional time dependent mass parameter. Next we explicitly computed the one point and two point correlation functions from this setup. Then we comment on the measurement techniques of isospin breaking interactions of newly introduced massive particles and its further prospects. After that, we give an example of string theory originated axion monodromy model in this context. Finally, we provide a bound on the heavy particle mass parameter for any arbitrary spin field.

  14. Primordial nucleosynthesis and neutrino physics

    NASA Astrophysics Data System (ADS)

    Smith, Christel Johanna

    We study primordial nucleosynthesis abundance yields for assumed ranges of cosmological lepton numbers, sterile neutrino mass-squared differences and active-sterile vacuum mixing angles. We fix the baryon-to-photon ratio at the value derived from the cosmic microwave background (CMB) data and then calculate the deviation of the 2 H, 4 He, and 7 Li abundance yields from those expected in the zero lepton number(s), no-new-neutrino-physics case. We conclude that high precision (< 5% error) measurements of the primordial 2 H abundance from, e.g., QSO absorption line observations coupled with high precision (< 1% error) baryon density measurements from the CMB could have the power to either: (1) reveal or rule out the existence of a light sterile neutrino if the sign of the cosmological lepton number is known; or (2) place strong constraints on lepton numbers, sterile neutrino mixing properties and resonance sweep physics. Similar conclusions would hold if the primordial 4 He abundance could be determined to better than 10%. We have performed new Big Bang Nucleosynthesis calculations which employ arbitrarily-specified, time-dependent neutrino and antineutrino distribution functions for each of up to four neutrino flavors. We self-consistently couple these distributions to the thermodynamics, the expansion rate and scale factor-time/temperature relationship, as well as to all relevant weak, electromagnetic, and strong nuclear reaction processes in the early universe. With this approach, we can treat any scenario in which neutrino or antineutrino spectral distortion might arise. These scenarios might include, for example, decaying particles, active-sterile neutrino oscillations, and active-active neutrino oscillations in the presence of significant lepton numbers. Our calculations allow lepton numbers and sterile neutrinos to be constrained with observationally-determined primordial helium and deuterium abundances. We have modified a standard BBN code to perform these

  15. Primordial non-Gaussianity and reionization

    NASA Astrophysics Data System (ADS)

    Lidz, Adam; Baxter, Eric J.; Adshead, Peter; Dodelson, Scott

    2013-07-01

    The statistical properties of the primordial perturbations contain clues about their origins. Although the Planck collaboration has recently obtained tight constraints on primordial non-Gaussianity from cosmic microwave background measurements, it is still worthwhile to mine upcoming data sets in an effort to place independent or competitive limits. The ionized bubbles that formed at redshift z˜6-20 during the epoch of reionization were seeded by primordial overdensities, and so the statistics of the ionization field at high redshift are related to the statistics of the primordial field. Here we model the effect of primordial non-Gaussianity on the reionization field. The epoch and duration of reionization are affected, as are the sizes of the ionized bubbles, but these changes are degenerate with variations in the properties of the ionizing sources and the surrounding intergalactic medium. A more promising signature is the power spectrum of the spatial fluctuations in the ionization field, which may be probed by upcoming 21 cm surveys. This has the expected 1/k2 dependence on large scales, characteristic of a biased tracer of the matter field. We project how well upcoming 21 cm observations will be able to disentangle this signal from foreground contamination. Although foreground cleaning inevitably removes the large-scale modes most impacted by primordial non-Gaussianity, we find that primordial non-Gaussianity can be separated from foreground contamination for a narrow range of length scales. In principle, futuristic redshifted 21 cm surveys may allow constraints competitive with Planck.

  16. Primordial Germ Cell Specification and Migration.

    PubMed

    Marlow, Florence

    2015-01-01

    Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration.

  17. Evaporation From Lake Superior

    NASA Astrophysics Data System (ADS)

    Spence, C.; Blanken, P.; Hedstrom, N.; Leshkevich, G.; Fortin, V.; Charpentier, D.; Haywood, H.

    2009-05-01

    Evaporation is a critical component of the water balance of each of the Laurentian Great Lakes, and understanding the magnitude and physical controls of evaporative water losses are important for several reasons. Recently, low water levels in Lakes Superior and Michigan/Huron have had socioeconomic, ecological, and even meteorological impacts (e.g. water quality and quantity, transportation, invasive species, recreation, etc.). The recent low water levels may be due to increased evaporation, but this is not known as operational evaporation estimates are currently calculated as the residual of water or heat budgets. Perhaps surprisingly, almost nothing is known about evaporation dynamics from Lake Superior and few direct measurements of evaporation have been made from any of the Laurentian Great Lakes. This research is the first to attempt to directly measure evaporation from Lake Superior by deploying eddy covariance instrumentation. Results of evaporation rates, their patterns and controlling mechanisms will be presented. The direct measurements of evaporation are used with concurrent satellite and climate model data to extrapolate evaporation measurements across the entire lake. This knowledge could improve predictions of how climate change may impact the lake's water budget and subsequently how the water in the lake is managed.

  18. The Solar System primordial lead

    NASA Astrophysics Data System (ADS)

    Blichert-Toft, Janne; Zanda, Brigitte; Ebel, Denton S.; Albarède, Francis

    2010-11-01

    Knowledge of the primordial isotope composition of Pb in the Solar System is critical to the understanding of the early evolution of Earth and other planetary bodies. Here we present new Pb isotopic data on troilite (FeS) nodules from a number of different iron meteorites: Canyon Diablo, Mundrabilla, Nantan, Seeläsgen, Toluca (IAB-IIICD), Cape York (IIIA), Mt Edith (IIIB), and Seymchan (pallasite). Lead abundances and isotopic compositions typically vary from one troilite inclusion to another, even within the same meteorite. The most primitive Pb was found in three leach fractions of two exceptionally Pb-rich Nantan troilite nodules. Its 204Pb/ 206Pb is identical to that of Canyon Diablo troilite as measured by Tatsumoto et al. [M. Tatsumoto, R.J. Knight, C.J. Allègre, Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206, Science 180(1973) 1279-1283]. However, our measurements of 207Pb/ 206Pb and 208Pb/ 206Pb are significantly higher than theirs, as well as other older literature data obtained by TIMS, while consistent with the recent data of Connelly et al. [J.N. Connelly, M. Bizzarro, K. Thrane, J.A. Baker, The Pb-Pb age of Angrite SAH99555 revisited, Geochim. Cosmochim. Acta 72(2008) 4813-4824], a result we ascribe to instrumental mass fractionation having biased the older data. Our current best estimate of the Solar System primordial Pb is that of Nantan troilite, which has the following isotopic composition: 204Pb/ 206Pb = 0.107459(16), 207Pb/ 206Pb = 1.10759(10), and 208Pb/ 206Pb = 3.17347(28). This is slightly less radiogenic than the intercept of the bundle of isotopic arrays formed in 207Pb/ 206Pb- 204Pb/ 206Pb space by our measurements of Canyon Diablo, Nantan, Seeläsgen, Cape York, and Mundrabilla, as well as literature data, which, in spite of rather large uncertainties, suggests a common primordial Pb component for all of these meteorites. The radiogenic Pb present in most of these irons is dominantly

  19. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  20. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A; Dakin, B.; Hoeschele, M.

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  1. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  2. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  3. Revisiting Black Holes as Dark Matter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    Could dark matter be made of intermediate-mass black holes formed in the beginning of the universe? A recent study takes a renewed look at this question.Galactic LurkersThe nature of dark matter has long been questioned, but the recent discovery of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) has renewed interest in the possibility that dark matter could consist of primordial black holes in the mass range of 101000 solar masses.The relative amounts of the different constituents of the universe. Dark matter makes up roughly 27%. [ESA/Planck]According to this model, the extreme density of matter present during the universes early expansion led to the formation of a large number of intermediate-mass black holes. These black holes now hide in the halos of galaxies, constituting the mass that weve measured dynamically but remains unseen.LIGOs first gravitational-wave detection revealed the merger of two black holes that were both tens of solar masses in size. If primordial black holes are indeed a major constituent of dark matter, then LIGOs detection is consistent with what we would expect to find: occasional mergers of the intermediate-mass black holes that formed in the early universe and now lurk in galactic halos.Quasar MicrolensingTheres a catch, however. If there truly were a large number of intermediate-mass primordial black holes hiding in galactic halos, they wouldnt go completely unnoticed: we would see signs of their presence in the gravitational microlensing of background quasars. Unseen primordial black holes in a foreground galaxy could cause an image of a background quasar to briefly brighten which would provide us with clear evidence of such black holes despite our not being able to detect them directly.A depiction of quasar microlensing (click for a closer look!). The microlensing object in the foreground galaxy could be a star (as depicted), a primordial black hole, or any other compact object. [NASA

  4. OPTIMAL BINNING OF THE PRIMORDIAL POWER SPECTRUM

    SciTech Connect

    Paykari, Paniez; Jaffe, Andrew H. E-mail: a.jaffe@ic.ac.u

    2010-03-01

    The primordial power spectrum describes the initial perturbations in the universe, which eventually grew into the large-scale structure we observe today, and thereby provides an indirect probe of inflation or other structure-formation mechanisms. In this paper, we will investigate the best scales the primordial power spectrum can be probed with in accordance with the knowledge about other cosmological parameters such as OMEGA{sub b}, OMEGA{sub c}, OMEGA{sub L}AMBDA, h, and tau. The aim is to find the most informative way of measuring the primordial power spectrum at different length scales, using different types of surveys and the information they provide for the desired cosmological parameters. We will find the optimal binning of the primordial power spectrum for this purpose by making use of the Fisher matrix formalism. To investigate the correlations between the cosmological parameters, mentioned above, and a set of primordial power spectrum bins, we make use of principal component analysis and the Hermitian square root of the Fisher matrix. The surveys used in this project are Planck and the Sloan Digital Sky Survey (Bright Red Galaxy), but the formalism can easily be extended to any windowed measurements of the perturbation spectrum.

  5. Control of ovarian primordial follicle activation

    PubMed Central

    2012-01-01

    The ovarian follicles develop initially from primordial follicles. The majority of ovarian primordial follicles are maintained quiescently as a reserve for the reproductive life span. Only a few of them are activated and develop to an advanced follicular stage. The maintenance of dormancy and activation of primordial follicles are controlled by coordinated actions of a suppressor/activator with close communications with somatic cells and intra-oocyte signaling pathways. Many growth factors and signaling pathways have been identified and the transforming growth factor-beta superfamily plays important roles in early folliculogenesis. However, the mechanism of maintaining the dormancy and survival of primordial follicles has remained unknown for decades. Recently, since the first finding that all primordial follicles are activated prematurely in mice deficient forkhead box O3a, phosphatidylinositol 3 kinase/phosphatase and tensin homolog (PTEN) signaling pathway was reported to be important in the regulation of dormancy and initial follicular activation. With these informations on early folliculogenesis, clinical application can be expected such as in vitro maturation of immature oocytes or in vitro activation of follicles by PTEN inhibitor in cryopreserved ovarian cortical tissues for fertility preservation. PMID:22563545

  6. The dynamics of the primordial follicle reserve.

    PubMed

    Kerr, Jeffrey B; Myers, Michelle; Anderson, Richard A

    2013-12-01

    The female germline comprises a reserve population of primordial (non-growing) follicles containing diplotene oocytes arrested in the first meiotic prophase. By convention, the reserve is established when all individual oocytes are enclosed by granulosa cells. This commonly occurs prior to or around birth, according to species. Histologically, the 'reserve' is the number of primordial follicles in the ovary at any given age and is ultimately depleted by degeneration and progression through folliculogenesis until exhausted. How and when the reserve reaches its peak number of follicles is determined by ovarian morphogenesis and germ cell dynamics involving i) oogonial proliferation and entry into meiosis producing an oversupply of oocytes and ii) large-scale germ cell death resulting in markedly reduced numbers surviving as the primordial follicle reserve. Our understanding of the processes maintaining the reserve comes primarily from genetically engineered mouse models, experimental activation or destruction of oocytes, and quantitative histological analysis. As the source of ovulated oocytes in postnatal life, the primordial follicle reserve requires regulation of i) its survival or maintenance, ii) suppression of development (dormancy), and iii) activation for growth and entry into folliculogenesis. The mechanisms influencing these alternate and complex inter-related phenomena remain to be fully elucidated. Drawing upon direct and indirect evidence, we discuss the controversial concept of postnatal oogenesis. This posits a rare population of oogonial stem cells that contribute new oocytes to partially compensate for the age-related decline in the primordial follicle reserve.

  7. PIPER: Primordial Inflation Polarization Explorer

    NASA Astrophysics Data System (ADS)

    Lazear, Justin; Ade, P.; Benford, D. J.; Bennett, C. L.; Chuss, D. T.; Dotson, J. L.; Eimer, J.; Fixsen, D. J.; Halpern, M.; Hinderks, J.; Hinshaw, G. F.; Irwin, K.; Jhabvala, C.; Johnson, B.; Kogut, A. J.; Mirel, P.; Moseley, S. H.; Staguhn, J.; Switzer, E.; Tucker, C. E.; Weston, A.; Wollack, E.

    2014-01-01

    The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne cosmic microwave background (CMB) polarization experiment searching for large-angular scale B-mode polarization to constrain Inflation in the early universe. The Inflationary Big Bang theory predicts that the epoch of inflation will result in a background of gravitational waves. These gravitational waves imprinted their unique B-mode signature on the CMB polarization, two features of which are a peak at ell ~ 80 and a "bump" below ell ~ 10 in the B-mode angular power spectrum. The ell ~ 80 "recombination" peak is the first peak caused by gravitational waves imprinting tensor (B-mode) perturbations onto the CMB spectrum during recombination. Gravitational waves at larger scales have not yet entered the horizon and may not contribute, and at smaller scales have decayed away by other interactions, giving rise to a peak at horizon scale. The ell ~ 10 "reionization" bump is caused by a similar mechanism as the recombination peak, where gravitational waves imprint B-mode perturbations into the spectrum, now at larger horizon scales. PIPER will target the reionization bump while keeping enough angular resolution to measure the recombination peak, with sensitivity down to tensor-to-scalar ratio r = 0.007. A series of flights alternating between north and south will produce nearly full-sky temperature and polarization maps and measure the low-ell spectra. 5120 transition edge sensor (TES) bolometers each with 20 arcmin beamwidth, distributed into 4 rectangular close-packed arrays maintained at 150 mK will provide small-scale resolution and sensitivity. PIPER consists of two co-aligned telescopes, each with a front-end variable-delay polarization modulator rapidly modulating either the Q or U Stokes parameters to provide polarization sensitivity and mitigate systematic errors. To achieve background-limited sensitivity, the entire instrument is enclosed in an open bucket dewar maintained at 1.5 K. PIPER

  8. Primordial abundance of 40Ar

    NASA Astrophysics Data System (ADS)

    Sripada, V. S. Murty

    Primordial abundance of the isotope (40) Ar is still not known accurately. Recent results from Genesis could also not provide (40) Ar/ (36) Ar value of solar wind, due mainly to the overwhelming (40) Ar blank. A major part of (40) Ar is contributed by the radioactive decay of (40) K (half life = 1.25 Ga), even in the nebula, as the nebula grew old. Any attempt to determine this quantity needs a sample that satisfies the following criteria: A primitive mineral/phase that formed very early in the nebula, that can trap a large amount of noble gas (Ar); and a phase that acquires minimum amount (or total absence) of in situ produced components (cosmogenic and radiogenic) of Ar. Carbon phases in the ureilite meteorites and Phase Q from chondrites best fit this criteria. The minimum (40) Ar/ (36) Ar value so far observed in Phase Q is 0.2. Also, the relatively lower value of 1.035±±0.002 for trapped (129) Xe/ (132) Xe in ureilites, as compared to 1.042±±0.002 in Phase Q suggests that trapping of gases in ureilites might have predated that of Phase Q. If this interpretation is valid, ureilites are a better host of most primitive nebular Ar. Earlier attempts on ureilite studies in 1970s have yielded the lowest (40) Ar/ (36) Ar ratio in the meteorite Dayalpur, the major uncertainty for this value mostly coming from blank correction for (40) Ar/ (36) Ar. Recent developments in low blank extraction systems and more sensitive multi-collector noble gas mass spectrometers, as compared to 1970s have prompted us to make a fresh attempt in measuring this important quantity. We have analysed a number of ureilite acid residues by stepwise temperature extraction, using both pyrolysis and combustion techniques, for Ar to ascertain the trapped (40) Ar/ (36) Ar ratio in the solar nebula. These acid residues are mostly made of C rich phases, with only trace amounts of K (radiogenic parent of (40) Ar) and target elements for the production of cosmogenic Ar component. They mostly contain

  9. Flash evaporator systems test

    NASA Technical Reports Server (NTRS)

    Dietz, J. B.

    1976-01-01

    A flash evaporator heat rejection system representative of that proposed for the space shuttle orbiter underwent extensive system testing at the NASA Johnson Space Center (JSC) to determine its operational suitability and to establish system performance/operational characteristics for use in the shuttle system. During the tests the evaporator system demonstrated its suitability to meet the shuttle requirements by: (1) efficient operation with 90 to 95% water evaporation efficiency, (2) control of outlet temperature to 40 + or - 2 F for partial heat load operation, (3) stability of control system for rapid changes in Freon inlet temperature, and (4) repeated dormant-to-active device operation without any startup procedures.

  10. Primordial nucleosynthesis: A cosmological point of view

    SciTech Connect

    Mathews, G. J.; Kusakabe, M.; Cheoun, M.-K.

    2014-05-09

    Primordial nucleosynthesis remains as one of the pillars of modern cosmology. It is the test-ing ground upon which all cosmological models must ultimately rest. It is our only probe of the universe during the first few minutes of cosmic expansion and in particular during the important radiation-dominated epoch. These lectures review the basic equations of space-time, cosmology, and big bang nucleosynthesis. We will then review the current state of observational constraints on primordial abundances along with the key nuclear reactions and their uncertainties. We summarize which nuclear measure-ments are most crucial during the big bang. We also review various cosmological models and their constraints. In particular, we summarize the constraints that big bang nucleosynthesis places upon the possible time variation of fundamental constants, along with constraints on the nature and origin of dark matter and dark energy, long-lived supersymmetric particles, gravity waves, and the primordial magnetic field.

  11. Dark energy from primordial inflationary quantum fluctuations.

    PubMed

    Ringeval, Christophe; Suyama, Teruaki; Takahashi, Tomo; Yamaguchi, Masahide; Yokoyama, Shuichiro

    2010-09-17

    We show that current cosmic acceleration can be explained by an almost massless scalar field experiencing quantum fluctuations during primordial inflation. Provided its mass does not exceed the Hubble parameter today, this field has been frozen during the cosmological ages to start dominating the Universe only recently. By using supernovae data, completed with baryonic acoustic oscillations from galaxy surveys and cosmic microwave background anisotropies, we infer the energy scale of primordial inflation to be around a few TeV, which implies a negligible tensor-to-scalar ratio of the primordial fluctuations. Moreover, our model suggests that inflation lasted for an extremely long period. Dark energy could therefore be a natural consequence of cosmic inflation close to the electroweak energy scale.

  12. Galaxy bias and primordial non-Gaussianity

    SciTech Connect

    Assassi, Valentin; Baumann, Daniel; Schmidt, Fabian E-mail: D.D.Baumann@uva.nl

    2015-12-01

    We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin of any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation.

  13. Primordial Germ Cell Specification and Migration

    PubMed Central

    Marlow, Florence

    2015-01-01

    Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration. PMID:26918157

  14. CMB μ distortion from primordial gravitational waves

    SciTech Connect

    Ota, Atsuhisa; Yamaguchi, Masahide; Takahashi, Tomo; Tashiro, Hiroyuki E-mail: tomot@cc.saga-u.ac.jp E-mail: gucci@phys.titech.ac.jp

    2014-10-01

    We propose a new mechanism of generating the μ distortion in cosmic microwave background (CMB) originated from primordial gravitational waves. Such μ distortion is generated by the damping of the temperature anisotropies through the Thomson scattering, even on scales larger than that of Silk damping. This mechanism is in sharp contrast with that from the primordial curvature (scalar) perturbations, in which the temperature anisotropies mainly decay by Silk damping effects. We estimate the size of the μ distortion from the new mechanism, which can be used to constrain the amplitude of primordial gravitational waves on smaller scales independently from the CMB anisotropies, giving more wide-range constraint on their spectral index by combining the amplitude from the CMB anisotropies.

  15. Models of the Primordial Standard Clock

    NASA Astrophysics Data System (ADS)

    Chen, Xingang; Namjoo, Mohammad Hossein; Wang, Yi

    2015-02-01

    Oscillating massive fields in the primordial universe can be used as Standard Clocks. The ticks of these oscillations induce features in the density perturbations, which directly record the time evolution of the scale factor of the primordial universe, thus if detected, provide a direct evidence for the inflation scenario or the alternatives. In this paper, we construct a full inflationary model of primordial Standard Clock and study its predictions on the density perturbations. This model provides a full realization of several key features proposed previously. We compare the theoretical predictions from inflation and alternative scenarios with the Planck 2013 temperature data on Cosmic Microwave Background (CMB), and identify a statistically marginal but interesting candidate. We discuss how future CMB temperature and polarization data, non-Gaussianity analysis and Large Scale Structure data may be used to further test or constrain the Standard Clock signals.

  16. Axion production from primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Kamada, Kohei; Nakai, Yuichiro

    2017-07-01

    Production of axionlike particles (ALPs) by primordial magnetic fields may have significant impacts on cosmology. We discuss the production of ALPs in the presence of the primordial magnetic fields. We find a region of the ALP mass and photon coupling which realizes the observed properties of the dark matter with appropriate initial conditions for the magnetic fields. This region may be interesting in light of recent indications for the 3.5 keV lines from galaxy clusters. For a small axion mass, a region of previously allowed parameter spaces is excluded by overproduction of ALPs as a hot/warm dark matter component. Since the abundance of ALPs strongly depends on the initial conditions of primordial magnetic fields, our results provide implications for scenarios of magnetogenesis.

  17. Primordial features as evidence for inflation

    SciTech Connect

    Chen, Xingang

    2012-01-01

    In the primordial universe, fields with mass much larger than the mass-scale of the event-horizon (such as the Hubble parameter in inflation) exist ubiquitously, and can be excited from time to time and oscillate quickly around their minima. These excitations can induce specific patterns in density perturbations, which record the time dependence of the scale factor of the primordial universe, thus provide direct evidence for the inflation paradigm or its alternatives. Such effects are conventionally averaged out in theoretical and data analyses, but can be accessible for experiments targeting on density perturbations with high multipoles.

  18. CAPSULE REPORT: EVAPORATION PROCESS

    EPA Science Inventory

    Evaporation has been an established technology in the metal finishing industry for many years. In this process, wastewaters containing reusable materials, such as copper, nickel, or chromium compounds are heated, producing a water vapor that is continuously removed and condensed....

  19. CAPSULE REPORT: EVAPORATION PROCESS

    EPA Science Inventory

    Evaporation has been an established technology in the metal finishing industry for many years. In this process, wastewaters containing reusable materials, such as copper, nickel, or chromium compounds are heated, producing a water vapor that is continuously removed and condensed....

  20. Evaporation-driven instability of the precorneal tear film.

    PubMed

    Peng, Cheng-Chun; Cerretani, Colin; Braun, Richard J; Radke, C J

    2014-04-01

    Tear-film instability is widely believed to be a signature of eye health. When an interblink is prolonged, randomly distributed ruptures occur in the tear film. "Black spots" and/or "black streaks" appear in 15 to 40 s for normal individuals. For people who suffer from dry eye, tear-film breakup time (BUT) is typically less than a few seconds. To date, however, there is no satisfactory quantitative explanation for the origin of tear rupture. Recently, it was proposed that tear-film breakup is related to locally high evaporative thinning. A spatial variation in the thickness of the tear-film lipid layer (TFLL) may lead to locally elevated evaporation and subsequent tear-film breakup. We examine the local-evaporation-driven tear-film-rupture hypothesis in a one-dimensional (1-D) model for the evolution of a thin aqueous tear film overriding the cornea subject to locally elevated evaporation at its anterior surface and osmotic water influx at its posterior surface. Evaporation rate depends on mass transfer both through the coating lipid layer and through ambient air. We establish that evaporation-driven tear-film breakup can occur under normal conditions but only for higher aqueous evaporation rates. Predicted roles of environmental conditions, such as wind speed and relative humidity, on tear-film stability agree with clinical observations. More importantly, locally elevated evaporation leads to hyperosmolar spots in the tear film and, hence, vulnerability to epithelial irritation. In addition to evaporation rate, tear-film instability depends on the strength of healing flow from the neighboring region outside the breakup region, which is determined by the surface tension at the tear-film surface and by the repulsive thin-film disjoining pressure. This study provides a physically consistent and quantitative explanation for the formation of black streaks and spots in the human tear film during an interblink.

  1. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  2. Evaporation from microreservoirs.

    PubMed

    Lynn, N Scott; Henry, Charles S; Dandy, David S

    2009-06-21

    As a result of very large surface area to volume ratios, evaporation is of significant importance when dealing with lab-on-a-chip devices that possess open air/liquid interfaces. For devices utilizing a reservoir as a fluid delivery method to a microfluidic network, excessive evaporation can quickly lead to reservoir dry out and overall device failure. Predicting the rates of evaporation from these reservoirs is difficult because the position of the air/liquid interface changes with time as the volume of liquid in the reservoir decreases. Here we present a two-step method to accurately predict the rates of evaporation of such an interface over time. First, a simple method is proposed to determine the shape of an air/liquid meniscus in a reservoir given a specific liquid volume. Second, computational fluid dynamics simulations are used to calculate the instantaneous rate of evaporation for that meniscus shape. It is shown that the rate of evaporation is strongly dependent on the overall geometry of the system, enhanced in expanding reservoirs while suppressed in contracting reservoirs, where the geometry can be easily controlled with simple experimental methods. Using no adjustable parameters, the model accurately predicts the position of the inner moving contact line as a function of time following meniscus rupture in poly(dimethylsiloxane) reservoirs, and predicts the overall time for the persistence of liquid in those reservoirs to within 0.5 minutes. The methods in this study can be used to design holding reservoirs for lab-on-a-chip devices that involve no external control of evaporation, such that evaporation rates can be adjusted as necessary by modification of the reservoir geometry.

  3. Mixed feed evaporator

    DOEpatents

    Vakil, Himanshu B.; Kosky, Philip G.

    1982-01-01

    In the preparation of the gaseous reactant feed to undergo a chemical reaction requiring the presence of steam, the efficiency of overall power utilization is improved by premixing the gaseous reactant feed with water and then heating to evaporate the water in the presence of the gaseous reactant feed, the heating fluid utilized being at a temperature below the boiling point of water at the pressure in the volume where the evaporation occurs.

  4. Evaporation from microreservoirs†

    PubMed Central

    Lynn, N. Scott; Henry, Charles S.

    2010-01-01

    As a result of very large surface area to volume ratios, evaporation is of significant importance when dealing with lab-on-a-chip devices that possess open air/liquid interfaces. For devices utilizing a reservoir as a fluid delivery method to a microfluidic network, excessive evaporation can quickly lead to reservoir dry out and overall device failure. Predicting the rates of evaporation from these reservoirs is difficult because the position of the air/liquid interface changes with time as the volume of liquid in the reservoir decreases. Here we present a two-step method to accurately predict the rates of evaporation of such an interface over time. First, a simple method is proposed to determine the shape of an air/liquid meniscus in a reservoir given a specific liquid volume. Second, computational fluid dynamics simulations are used to calculate the instantaneous rate of evaporation for that meniscus shape. It is shown that the rate of evaporation is strongly dependent on the overall geometry of the system, enhanced in expanding reservoirs while suppressed in contracting reservoirs, where the geometry can be easily controlled with simple experimental methods. Using no adjustable parameters, the model accurately predicts the position of the inner moving contact line as a function of time following meniscus rupture in poly(dimethylsiloxane) reservoirs, and predicts the overall time for the persistence of liquid in those reservoirs to within 0.5 minutes. The methods in this study can be used to design holding reservoirs for lab-on-a-chip devices that involve no external control of evaporation, such that evaporation rates can be adjusted as necessary by modification of the reservoir geometry. PMID:19495463

  5. Growth of primordial oocytes in neonatal and adult mammals.

    PubMed

    Moniruzzaman, Mohammad; Miyano, Takashi

    2010-12-01

    Mammalian ovaries are endowed with a huge number of small oocytes (primordial oocytes) in primordial follicles. A small number of primordial oocytes start to grow, while others remain quiescent. Little is known about the mechanism regulating the activation of primordial oocytes. Recently, we found that primordial follicles in mature cows and prepubertal pigs took longer to initiate growth in xenografts compared with those in neonatal animals. We think that primordial oocytes in adult mammals are different from those in neonatal mammals. In this review, we summarize the results regarding the activation of primordial oocytes in neonatal and adult ovaries of different species and propose a model in which ovaries of neonatal mammals contain a mixed population of both quiescent and activated primordial oocytes, while almost all primordial oocytes are quiescent in adult females. The dormancy of primordial oocytes may be required to reserve the non-growing oocyte pool for the long reproductive life in mammals. FOXO3 is considered one of the molecules responsible for the dormancy of primordial oocytes in adult ovaries. These quiescent primordial oocytes are activated, perhaps by certain mechanisms involving the interaction between stimulatory and inhibitory factors, to enter the growth phase.

  6. Dynamical dispersal of primordial asteroid families

    NASA Astrophysics Data System (ADS)

    Brasil, P. I. O.; Roig, F.; Nesvorný, D.; Carruba, V.; Aljbaae, S.; Huaman, M. E.

    2016-03-01

    Many asteroid families are identified and well characterized all over the main asteroid belt. Interestingly, however, none of them are older than 4 Gyr. Many mechanisms have been proposed to disperse such old primordial asteroid families that presumably have existed, but only very few have really worked. Here we present a plausible mechanism for dispersing primordial asteroid families that is based on the 5-planet instability model known as jumping Jupiter. Using two different evolutions for the jumping-Jupiter model, we have numerically integrated orbits of eight putative primordial families. Our results show that the most important effect on the asteroid families' eccentricity and inclination dispersal is that of the secular resonances, in some cases associated with the mean motion resonances. As for the semimajor axes spreading we find that the principal effect is that of close encounters with the fifth giant planet whose orbit briefly overlaps with (part of) the main belt. Therefore, the existence of a fifth giant planet with the mass comparable with that of Uranus' or Neptune's could contribute in important ways to dispersal of the primordial asteroid families. To have that effect, the interloper planet should go into and considerably interact with the asteroids during the instability phase.

  7. Isolation and culture of chicken primordial follicles.

    PubMed

    Leghari, Imdad Hussain; Zhao, Dan; Mi, Yuling; Zhang, Caiqiao

    2015-10-01

    The establishment of a primordial follicle culture system is important for the study of follicular development. Hence, the objective of this study was to isolate chicken primordial follicles and establish culture methods. Ovaries from 2-wk-old chickens were treated with trypsin-EDTA, collagenase II, or collagenase type IA, along with a mechanical isolation technique. Isolated follicles were cultured under different conditions. Results showed a significant difference in the follicular recovery and survival rates among different enzymes and methods used. The maximal follicular yield was obtained by trypsin+EDTA and collagenase II digestion, followed by collagenase type IA digestion. However, the highest follicular viability rate was observed in groups of collagenase type IA digestion and the mechanical isolation method. Enzymatic treatment resulted in higher misshapen oocytes or follicles, though the diameters of the follicles were not significantly changed. In addition, our follicle culture results for different conditions showed maximal survival rates of primordial follicles in alginate hydrogel beads after 12 d of culture. Thus, we successfully established methods for isolating and culturing chicken primordial follicles. The present method will greatly facilitate investigation of the regulation of follicular development. © 2015 Poultry Science Association Inc.

  8. Primordial Prevention of Cardiometabolic Risk in Childhood.

    PubMed

    Tanrikulu, Meryem A; Agirbasli, Mehmet; Berenson, Gerald

    2017-01-01

    Fetal life and childhood are important in the development of cardiometabolic risk and later clinical disease of atherosclerosis, hypertension and diabetes mellitus. Molecular and environmental conditions leading to cardiometabolic risk in early life bring us a challenge to develop effective prevention and intervention strategies to reduce cardiovascular (CV) risk in children and later disease. It is important that prevention strategies begin at an early age to reduce future CV morbidity and mortality. Pioneering work from longitudinal studies such as Bogalusa Heart Study (BHS), the Finnish Youth Study and other programs provide an awareness of the need for public and health services to begin primordial prevention. The impending CV risk beginning in childhood has a significant socioeconomic burden. Directions to achieve primordial prevention of cardiometabolic risk in children have been developed by prior longitudinal studies. Based on those studies that show risk factors in childhood as precursors of adult CV risk, implementation of primordial prevention will have effects at broad levels. Considering the epidemic of obesity, the high prevalence of hypertension and cardiometabolic risk, prevention early in life is valuable. Comprehensive health education, such as 'Health Ahead/Heart Smart', for all elementary school age children is one approach to begin primordial prevention and can be included in public education beginning in kindergarten along with the traditional education subject matter.

  9. Signatures of black holes at the LHC

    NASA Astrophysics Data System (ADS)

    Cavaglià, Marco; Godang, Romulus; Cremaldi, Lucien M.; Summers, Donald J.

    2007-06-01

    Signatures of black hole events at CERN's Large Hadron Collider are discussed. Event simulations are carried out with the Fortran Monte Carlo generator CATFISH. Inelasticity effects, exact field emissivities, color and charge conservation, corrections to semiclassical black hole evaporation, gravitational energy loss at formation and possibility of a black hole remnant are included in the analysis.

  10. Evolution of Low-mass X-Ray Binaries: The Effect of Donor Evaporation

    NASA Astrophysics Data System (ADS)

    Jia, Kun; Li, Xiang-Dong

    2016-10-01

    Millisecond pulsars (MSPs) are thought to originate from low-mass X-ray binaries (LMXBs). The discovery of eclipsing radio MSPs, including redbacks and black widows, indicates that evaporation of the donor star by the MSP’s irradiation takes place during the LMXB evolution. In this work, we investigate the effect of donor evaporation on the secular evolution of LMXBs, considering different evaporation efficiencies and related angular momentum loss. We find that for widening LMXBs, the donor star leaves a less massive white dwarf than without evaporation; for contracting systems, evaporation can speed up the evolution, resulting in dynamically unstable mass transfer and possibly the formation of isolated MSPs.

  11. Better late than never: information retrieval from black holes.

    PubMed

    Braunstein, Samuel L; Pirandola, Stefano; Życzkowski, Karol

    2013-03-08

    We show that, in order to preserve the equivalence principle until late times in unitarily evaporating black holes, the thermodynamic entropy of a black hole must be primarily entropy of entanglement across the event horizon. For such black holes, we show that the information entering a black hole becomes encoded in correlations within a tripartite quantum state, the quantum analogue of a one-time pad, and is only decoded into the outgoing radiation very late in the evaporation. This behavior generically describes the unitary evaporation of highly entangled black holes and requires no specially designed evolution. Our work suggests the existence of a matter-field sum rule for any fundamental theory.

  12. Better Late than Never: Information Retrieval from Black Holes

    NASA Astrophysics Data System (ADS)

    Braunstein, Samuel L.; Pirandola, Stefano; Życzkowski, Karol

    2013-03-01

    We show that, in order to preserve the equivalence principle until late times in unitarily evaporating black holes, the thermodynamic entropy of a black hole must be primarily entropy of entanglement across the event horizon. For such black holes, we show that the information entering a black hole becomes encoded in correlations within a tripartite quantum state, the quantum analogue of a one-time pad, and is only decoded into the outgoing radiation very late in the evaporation. This behavior generically describes the unitary evaporation of highly entangled black holes and requires no specially designed evolution. Our work suggests the existence of a matter-field sum rule for any fundamental theory.

  13. Evaporatively driven morphological instability

    NASA Astrophysics Data System (ADS)

    Style, Robert W.; Wettlaufer, J. S.

    2007-07-01

    Simple observations of evaporating solutions reveal a complex hierarchy of spatiotemporal instabilities. We analyze one such instability suggested by the qualitative observations of Du and Stone and find that it is driven by a variant of the classical morphological instability in alloy solidification. In the latter case a moving solid-liquid interface is accompanied by a solutally enriched boundary layer that is thermodynamically metastable due to constitutional supercooling. Here, we consider the evaporation of an impure film adjacent to a solid composed of the nonvolatile species. In this case, constitutional supercooling within the film is created by evaporation at the solution-vapor interface and this drives the corrugation of the solid-solution interface across the thickness of the film. The principal points of this simple theoretical study are to suggest an instability mechanism that is likely operative across a broad range of technological and natural systems and to focus future quantitative experimental searches.

  14. Hot air drum evaporator

    DOEpatents

    Black, Roger L.

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  15. Schwarzschild black holes can wear scalar wigs.

    PubMed

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-08-24

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.

  16. Ten shades of black

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2015-09-01

    The holographic principle has taught us that, as far as their entropy content is concerned, black holes in (3 + 1)-dimensional curved spacetimes behave as ordinary thermodynamic systems in flat (2 + 1)-dimensional spacetimes. In this paper, we point out that the opposite behavior can also be observed in black-hole physics. To show this we study the quantum Hawking evaporation of near-extremal Reissner-Nordström (RN) black holes. We first point out that the black-hole radiation spectrum departs from the familiar radiation spectrum of genuine (3 + 1)-dimensional perfect black-body emitters. In particular, the would be black-body thermal spectrum is distorted by the curvature potential which surrounds the black-hole and effectively blocks the emission of low-energy quanta. Taking into account the energy-dependent gray-body factors which quantify the imprint of passage of the emitted radiation quanta through the black-hole curvature potential, we reveal that the (3 + 1)-dimensional black holes effectively behave as perfect black-body emitters in a flat (9 + 1)-dimensional spacetime.

  17. Isotope mass fractionation during evaporation of Mg2SiO4

    NASA Technical Reports Server (NTRS)

    Davis, Andrew M.; Clayton, Robert N.; Mayeda, Toshiko K.; Hashimoto, Akihiko

    1990-01-01

    Synthetic forsterite (Mg2SiO4) was partially evaporated in vacuum for various durations and at different temperatures. The residual charges obtained when molten Mg2SiO4 was evaporated to 12 percent of its initial mass were enriched in heavy isotopes by about 20, 30, and 15 per mil/amu for O, Mg, and Si, respectively, whereas solid forsterite evaporated to a similar residual mass fraction showed negligible fractionations. These results imply that calcium and aluminum-rich refractory inclusions in carbonaceous chondrites must have been at least partially molten in the primordial solar nebula if the observed large mass fractionation effects were caused by evaporation processes in the nebula.

  18. Geochemistry: Evaporating planetesimals

    NASA Astrophysics Data System (ADS)

    Young, Edward D.

    2017-09-01

    Two studies show that evaporation of molten rock was intrinsic to the formation of Earth and other rocky bodies in the Solar System, suggesting that violent collisions played a key part in the formation process. See Letters p.507 & p.511

  19. Evaporation into Couette Flow

    DTIC Science & Technology

    2008-01-01

    v Yi Statistical analysis dependent variable Greek Symbols 13 Contact angle of sessile drop a Concentration thickness A Evaporated vapor penetration...31 5 FIGURES 1. Configuration of Three Sessile Drops ............................................. 10 2. Sketch of...Droplet Geometry ............................................................. 11 3. Shape Factor as a Function of Contact Angle

  20. Laser Evaporation Studies.

    DTIC Science & Technology

    1987-10-01

    concentrated aqua regia and hydrochloric energy ions. The minimum pulsed evaporation rate which acid, respectively. The metallic films capped by cw laser...Force Office of Scientific Research or the U.S. Government. 17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessarl and identif by block

  1. Primordial anisotropies from cosmic strings during inflation

    NASA Astrophysics Data System (ADS)

    Jazayeri, Sadra; Sadr, Alireza Vafaei; Firouzjahi, Hassan

    2017-07-01

    In this work, we study the imprint of an individual primordial cosmic string within a Hubble patch on the inflationary power spectrum. A straight cosmic string induces two distinct contributions to the curvature perturbations power spectrum. The first type of correction respects the translation invariance while violating isotropy. This generates quadrupolar statistical anisotropy in cosmic microwave background maps, which is constrained by the Planck data. The second contribution breaks both homogeneity and isotropy, generating a dipolar power asymmetry in the variance of temperature fluctuations with its amplitude falling on small scales. We show that the strongest constraint on the tension of primordial cosmic strings is obtained from the quadrupolar anisotropy and argue that the mass scale of the underlying theory responsible for the formation of the string cannot be much higher than the grand unified theory scale. The predictions for the diagonal and off-diagonal components of the cosmic microwave background angular power spectrum induced by the string are presented.

  2. Primordial nucleosynthesis and Dirac's large numbers hypothesis

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Hsieh, S.-H.

    1980-01-01

    Consideration is given to the analysis of Falik (1979) which attempted to show that the cosmological model proposed by Canuto and Hsieh (1978) in which the gravitational constant varies with time contradicts observations of primordial helium. It is shown that the analysis was based on the assumptions that (1) the energy density of radiation in local thermodynamic equilibrium is approximately equal to the fourth power of the equilibrium temperature, where the product of the equilibrium temperature with the scale factor of the Robertson-Walker metric is constant, and (2) the gravitational constant is approximately equal to the inverse of the time even at early cosmological epochs. These assumptions are demonstrated to be invalid in the scale covariant theory of gravitation used to develop the model, thus negating the conclusion that the Canuto and Hsieh model excludes the primordial synthesis of helium.

  3. Primordial gravitational waves in supersolid inflation

    NASA Astrophysics Data System (ADS)

    Ricciardone, Angelo; Tasinato, Gianmassimo

    2017-07-01

    Supersolid inflation is a class of inflationary theories that simultaneously breaks time and space reparametrization invariance during inflation, with distinctive features for the dynamics of cosmological fluctuations. We investigate concrete realizations of such a scenario, including non-minimal couplings between gravity and the fields driving inflation. We focus in particular on the dynamics of primordial gravitational waves and discuss how their properties depend on the pattern of symmetry breaking that we consider. Tensor modes can have a blue spectrum, and for the first time we build models in which the squeezed limit of primordial tensor bispectra can be parametrically enhanced with respect to standard single-field scenarios. At leading order in a perturbative expansion, the tensor-to-scalar ratio depends only on the parameter controlling the breaking of space reparametrization. It is independent from the quantities controlling the breaking of time reparametrization, and this represents a difference with respect to standard single-field inflationary models.

  4. Primordial nucleosynthesis and Dirac's large numbers hypothesis

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Hsieh, S.-H.

    1980-01-01

    Consideration is given to the analysis of Falik (1979) which attempted to show that the cosmological model proposed by Canuto and Hsieh (1978) in which the gravitational constant varies with time contradicts observations of primordial helium. It is shown that the analysis was based on the assumptions that (1) the energy density of radiation in local thermodynamic equilibrium is approximately equal to the fourth power of the equilibrium temperature, where the product of the equilibrium temperature with the scale factor of the Robertson-Walker metric is constant, and (2) the gravitational constant is approximately equal to the inverse of the time even at early cosmological epochs. These assumptions are demonstrated to be invalid in the scale covariant theory of gravitation used to develop the model, thus negating the conclusion that the Canuto and Hsieh model excludes the primordial synthesis of helium.

  5. Primordial nucleosynthesis and primoridal isocurvature baryon fluctuations

    SciTech Connect

    Mathews, G.T.; Kurki-Suonio, Hannu; Jedamzik, K.

    1995-10-01

    Recently, there has been interest in inflation-generated cosmological primordial isocurvature baryon fluctuation (PIB) models as a means to account for the large scale clustering of galaxies. However, the extension of the isocurvature fluctuations contained in such models to the mass scales of nucleosynthesis would imply large stochastic fluctuations in baryon-to-photon ratio during the epoch of primordial nucleosynthesis. We discuss constraints on the spectral index and rms amplitude of such fluctuations based upon the computed light element abundances. Our calculations include nuclear reaction networks in up to 40,000 zones in which stockastic fluctuations are spatially resolved. The effects of baryon diffusion among the fluctuations are also explicitly coupled and followed during nucleosynthesis. We confirm that the fluctuations must be significantly damped compared to a straight-forward extension of the cosmological PIB models.

  6. Shapes and features of the primordial bispectrum

    NASA Astrophysics Data System (ADS)

    Gong, Jinn-Ouk; Palma, Gonzalo A.; Sypsas, Spyros

    2017-05-01

    If time-dependent disruptions from slow-roll occur during inflation, the correlation functions of the primordial curvature perturbation should have scale-dependent features, a case which is marginally supported from the cosmic microwave background (CMB) data. We offer a new approach to analyze the appearance of such features in the primordial bispectrum that yields new consistency relations and justifies the search of oscillating patterns modulated by orthogonal and local templates. Under the assumption of sharp features, we find that the cubic couplings of the curvature perturbation can be expressed in terms of the bispectrum in two specific momentum configurations, for example local and equilateral. This allows us to derive consistency relations among different bispectrum shapes, which in principle could be tested in future CMB surveys. Furthermore, based on the form of the consistency relations, we construct new two-parameter templates for features that include all the known shapes.

  7. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2012-01-01

    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne instrument to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the polarization of the cosmic microwave background. PIPER combines cold (1.5 K) optics, 5120 bolometric detectors, and rapid polarization modulation using VPM grids to achieve both high sensitivity and excellent control of systematic errors. A series of flights alternating between northern and southern hemisphere launch sites will produce maps in Stokes I, Q, U, and V parameters at frequencies 200, 270, 350, and 600 GHz (wavelengths 1500, 1100, 850, and 500 microns) covering 85% of the sky. We describe the PIPER instrument and discuss the current status and expected science returns from the mission.

  8. G/N/ variability and primordial nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Meisels, A.

    1982-01-01

    It is shown that, given the Schramm and Wagoner (1977) formation of the elements in the early universe, nonsingular Variable Mass Theory (VMT) cosmologies can be constructed which give the usual results for primordial nucleosynthesis calculations. The derivation of possible G(N) variability constraints over cosmic time, using Bekenstein's (1977) VMT, yields a variation of G(N) by no more than two or three orders of magnitude and shows the viability of nonsingular VMT models.

  9. Primordial Inflation Polarization Explorer: Status and Plans

    NASA Technical Reports Server (NTRS)

    Kogut, Alan

    2009-01-01

    The Primordial Inflation Polarization Explorer is a balloon-borne instrument to measure the polarization of the cosmic microwave background in order to detect the characteristic signature of gravity waves created during an inflationary epoch in the early universe. PIPER combines cold /I.G K\\ optics, 5120 bolometric detectors, and rapid polarization modulation using VPM grids to achieve both high sensitivity and excellent control of systematic errors. I will discuss the current status and plans for the PIPER instrument.

  10. Primordial helium and the cosmic background radiation

    SciTech Connect

    Steigman, Gary

    2010-04-01

    The products of primordial nucleosynthesis, along with the cosmic microwave background (CMB) photons, are relics from the early evolution of the Universe whose observations probe the standard model of cosmology and provide windows on new physics beyond the standard models of cosmology and of particle physics. According to the standard, hot big bang cosmology, long before any stars have formed a significant fraction ( ∼ 25%) of the baryonic mass in the Universe should be in the form of helium-4 nuclei. Since current observations of {sup 4}He are restricted to low redshift regions where stellar nucleosynthesis has occurred, an observation of high redshift, prestellar, truly primordial {sup 4}He would constitute a fundamental test of the hot, big bang cosmology. At recombination, long after big bang nucleosynthesis (BBN) has ended, the temperature anisotropy spectrum imprinted on the CMB depends on the {sup 4}He abundance through its connection to the electron density and the effect of the electron density on Silk damping. Since the relic abundance of {sup 4}He is relatively insensitive to the universal density of baryons, but is sensitive to a non-standard, early Universe expansion rate, the primordial mass fraction of {sup 4}He, Yp, offers a test of the consistency of the standard models of BBN and the CMB and, provides constraints on non-standard physics. Here, the WMAP seven year data (supplemented by other CMB experiments), which lead to an indirect determination of Yp at high redshift, are compared to the BBN predictions and to the independent, direct observations of {sup 4}He in low redshift, extragalactic HII regions. At present, given the very large uncertainties in the CMB-determined primordial {sup 4}He abundance (as well as for the helium abundances inferred from HII region observations), any differences between the BBN predictions and the CMB observations are small, at a level ∼<1.5σ.

  11. Primordial Inflation Polarization Explorer: Status and Plans

    NASA Technical Reports Server (NTRS)

    Kogut, Alan

    2009-01-01

    The Primordial Inflation Polarization Explorer is a balloon-borne instrument to measure the polarization of the cosmic microwave background in order to detect the characteristic signature of gravity waves created during an inflationary epoch in the early universe. PIPER combines cold /I.G K\\ optics, 5120 bolometric detectors, and rapid polarization modulation using VPM grids to achieve both high sensitivity and excellent control of systematic errors. I will discuss the current status and plans for the PIPER instrument.

  12. A watered-down primordial lower mantle

    NASA Astrophysics Data System (ADS)

    Albarede, F.; Boyet, M.

    2003-12-01

    For more than a decade, conflicting evidence between seismic tomography and isotope geochemistry of rare gases has thwarted the construction of a unifying convection model and blurred our vision of lower mantle chemistry and mineralogy. All body wave models vividly depict lithospheric plates penetrating the 660~km discontinuity such as the Farallon and the Tethyan plates. In contrast, the presence of helium with a high 3He/4He ratio and, even more, of solar neon in OIB attests to the presence of undegassed material at depth. Current models of tracer redistribution by convection do not resolve this conflict and are limited to the description a whole range of regimes with variable extent of layering. We addressed this problem through the residence time distribution theory, which shows that the time different parcels of mantle survive extraction and degassing from a well-stirred mantle is exponentially distributed. Whole mantle mixing only destroys the primitive signature of the average lower mantle (at the scale of the global reservoir) but leaves some small parcels untouched since terrestrial accretion. From available isotopic data, we assess that the lower part of a unhindered convective mantle may contain several percent primordial material. If the 660~km discontinuity is a partial hindrance to vertical mixing, this proportion is significantly higher. The most likely texture of the lower mantle is an intricate layering of material recycled from the surface and primordial material while its chemical composition is geochemically enriched with respect to the upper mantle. This simple concept accounts for the coexistence of the primordial character of rare gases, the recycled character of lithophile-element isotope compositions in OIB, the apparent lack of 142Nd anomalies, and the missing component inferred from a number of geochemical systems. The marble cake incorporates different ingredients at different depths: mostly residual mantle and recycled oceanic crust at

  13. THM and primordial nucleosynthesis: Results and perspectives

    NASA Astrophysics Data System (ADS)

    Pizzone, R. G.; Spartá, R.; Bertulani, C.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Tumino, A.

    2017-09-01

    Big Bang Nucleosynthesis (BBN) requires several nuclear physics inputs and nuclear reaction rates. An up-to-date compilation of direct cross sections of d(d,p)t, d(d,n) 3 He and 3 He(d,p) 4 He reactions is given, being these ones among the most uncertain bare-nucleus cross sections. An intense experimental effort has been carried on in the last decade to apply the Trojan Horse Method (THM) to study reactions of relevance for the BBN and measure their astrophysical S( E) -factor. The reaction rates and the relative error for the four reactions of interest are then numerically calculated in the temperature ranges of relevance for BBN ( 0.01primordial nucleosynthesis calculations in order to evaluate their impact on the calculated primordial abundances of D, ^{3,4} He and ^7 Li. These were compared with the observational primordial abundance estimates in different astrophysical sites. Reactions to be studied in perspective will also be discussed.

  14. Primordial nucleosynthesis revisited via Trojan Horse Results

    NASA Astrophysics Data System (ADS)

    Pizzone, R. G.; Spartá, R.; Bertulani, C.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Tumino, A.

    2016-05-01

    Big Bang Nucleosynthesis (BBN) requires several nuclear physics inputs and nuclear reaction rates. An up-to-date compilation of direct cross sections of d(d,p)t, d(d,n)3He and 3He(d,p)4He reactions is given, being these ones among the most uncertain bare-nucleus cross sections. An intense experimental effort has been carried on in the last decade to apply the Trojan Horse Method (THM) to study reactions of relevance for the BBN and measure their astrophysical S(E)-factor. The reaction rates and the relative error for the four reactions of interest are then numerically calculated in the temperature ranges of relevance for BBN (0.01primordial nucleosynthesis calculations in order to evaluate their impact on the calculated primordial abundances of D, 3,4He and 7Li. These were compared with the observational primordial abundance estimates in different astrophysical sites. A comparison was also performed with calculations using other reaction rates compilations available in literature.

  15. Quantum inflaton, primordial perturbations, and CMB fluctuations

    SciTech Connect

    Cao, F.J.; Vega, H.J. de; Sanchez, N.G.

    2004-10-15

    We compute the primordial scalar, vector and tensor metric perturbations arising from quantum field inflation. Quantum field inflation takes into account the nonperturbative quantum dynamics of the inflaton consistently coupled to the dynamics of the (classical) cosmological metric. For chaotic inflation, the quantum treatment avoids the unnatural requirements of an initial state with all the energy in the zero mode. For new inflation it allows a consistent treatment of the explosive particle production due to spinodal instabilities. Quantum field inflation (under conditions that are the quantum analog of slow-roll) leads, upon evolution, to the formation of a condensate starting a regime of effective classical inflation. We compute the primordial perturbations taking the dominant quantum effects into account. The results for the scalar, vector and tensor primordial perturbations are expressed in terms of the classical inflation results. For a N-component field in a O(N) symmetric model, adiabatic fluctuations dominate while isocurvature or entropy fluctuations are negligible. The results agree with the current Wilkinson Microwave Anisotropy Probe observations and predict corrections to the power spectrum in classical inflation. Such corrections are estimated to be of the order of (m{sup 2}/NH{sup 2}), where m is the inflaton mass and H the Hubble constant at the moment of horizon crossing. An upper estimate turns to be about 4% for the cosmologically relevant scales. This quantum field treatment of inflation provides the foundations to the classical inflation and permits to compute quantum corrections to it.

  16. The primordial helium abundance from updated emissivities

    SciTech Connect

    Aver, Erik; Olive, Keith A.; Skillman, Evan D.; Porter, R.L. E-mail: olive@umn.edu E-mail: skillman@astro.umn.edu

    2013-11-01

    Observations of metal-poor extragalactic H II regions allow the determination of the primordial helium abundance, Y{sub p}. The He I emissivities are the foundation of the model of the H II region's emission. Porter, Ferland, Storey, and Detisch (2012) have recently published updated He I emissivities based on improved photoionization cross-sections. We incorporate these new atomic data and update our recent Markov Chain Monte Carlo analysis of the dataset published by Izotov, Thuan, and Stasi'nska (2007). As before, cuts are made to promote quality and reliability, and only solutions which fit the data within 95% confidence level are used to determine the primordial He abundance. The previously qualifying dataset is almost entirely retained and with strong concordance between the physical parameters. Overall, an upward bias from the new emissivities leads to a decrease in Y{sub p}. In addition, we find a general trend to larger uncertainties in individual objects (due to changes in the emissivities) and an increased variance (due to additional objects included). From a regression to zero metallicity, we determine Y{sub p} = 0.2465 ± 0.0097, in good agreement with the BBN result, Y{sub p} = 0.2485 ± 0.0002, based on the Planck determination of the baryon density. In the future, a better understanding of why a large fraction of spectra are not well fit by the model will be crucial to achieving an increase in the precision of the primordial helium abundance determination.

  17. Primordial anisotropies in gauged hybrid inflation

    NASA Astrophysics Data System (ADS)

    Akbar Abolhasani, Ali; Emami, Razieh; Firouzjahi, Hassan

    2014-05-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.

  18. New window on primordial non-gaussianity.

    PubMed

    Pajer, Enrico; Zaldarriaga, Matias

    2012-07-13

    We know very little about primordial curvature perturbations on scales smaller than about a Mpc. Measurements of the μ distortion of the cosmic microwave background spectrum provide the unique opportunity to probe these scales over the unexplored range from 50 to 10(4)  Mpc(-1). This is a very clean probe, in that it relies only on well understood linear evolution. Also, just the information about the low multipoles (l∼100) of μ is necessary. We point out that correlations between μ distortion and temperature anisotropies can be used to test gaussianity at these very small scales. In particular the μT two-point correlation is proportional to the very squeezed limit of the primordial bispectrum and hence measures f(NL)(loc), while μμ is proportional to the primordial trispectrum and measures τ(NL). We present a Fisher matrix forecast of the observational constraints on f(NL)(loc) and stress that a cosmic variance limited experiment could in principle reach Δf(NL)(loc)∼O(10(-3)).

  19. Primordial trispectra and CMB spectral distortions

    SciTech Connect

    Bartolo, Nicola; Liguori, Michele; Shiraishi, Maresuke E-mail: michele.liguori@pd.infn.it

    2016-03-01

    We study the TTμ bispectrum, generated by correlations between Cosmic Microwave Background temperature (T) anisotropies and chemical potential (μ) distortions, and we analyze its dependence on primordial local trispectrum parameters g{sub NL} and τ{sub NL}. We cross-check our results by comparing the full bispectrum calculation with the expectations from a general physical argument, based on predicting the shape of μ-T correlations from the couplings between short and long perturbation modes induced by primordial non-Gaussianity. We show that both g{sub NL} and τ{sub NL}-parts of the primordial trispectrum source a non-vanishing TTμ signal, contrary to the μμ auto-correlation function, which is sensitive only to the τ{sub NL}-component. A simple Fisher matrix-based forecast shows that a futuristic, cosmic-variance dominated experiment could in principle detect g{sub NL} ∼ 0.4 and τ{sub NL} ∼ 40 using TTμ.

  20. MOVES2014: Evaporative Emissions Report

    EPA Science Inventory

    Vehicle evaporative emissions are now modeled in EPA’s MOVES according to physical processes, permeation, tank vapor venting, liquid leaks, and refueling emissions. With this update, the following improvements are being incorporated into MOVES evaporative emissions methodology, a...

  1. MOVES2014: Evaporative Emissions Report

    EPA Science Inventory

    Vehicle evaporative emissions are now modeled in EPA’s MOVES according to physical processes, permeation, tank vapor venting, liquid leaks, and refueling emissions. With this update, the following improvements are being incorporated into MOVES evaporative emissions methodology, a...

  2. Gamma rays from ultracompact minihalos: Potential constraints on the primordial curvature perturbation

    SciTech Connect

    Josan, Amandeep S.; Green, Anne M.

    2010-10-15

    Ultracompact minihalos (UCMHs) are dense dark matter structures, which can form from large density perturbations shortly after matter-radiation equality. If dark matter is in the form of weakly interacting massive particles (WIMPs), then UCMHs may be detected via their gamma-ray emission. We investigate how the Fermi satellite could constrain the abundance of UCMHs and place limits on the power spectrum of the primordial curvature perturbation. Detection by Fermi would put a lower limit on the UCMH halo fraction. The smallest detectable halo fraction f{sub UCMH} > or approx. 10{sup -7} is for M{sub UCMH{approx}}10{sup 3}M{sub {center_dot}}. If gamma-ray emission from UCMHs is not detected, an upper limit can be placed on the halo fraction. The bound is tightest f{sub UCMH} < or approx. 10{sup -5} for M{sub UCMH{approx}}10{sup 5}M{sub {center_dot}}. The resulting upper limit on the power spectrum of the primordial curvature perturbation in the event of nondetection is in the range P{sub R} < or approx. 10{sup -6.5}-10{sup -6} on scales k{approx}10{sup 1}-10{sup 6} Mpc{sup -1}. This is substantially tighter than the existing constraints from primordial black hole formation on these scales; however, it assumes that dark matter is in the form of WIMPs, and UCMHs are not disrupted during the formation of the Milky Way halo.

  3. Falling film evaporator

    DOEpatents

    Bruns, Lester E.

    1976-01-01

    A falling film evaporator including a vertically oriented pipe heated exteriorly by a steam jacket and interiorly by a finned steam tube, all heating surfaces of the pipe and steam tube being formed of a material wet by water such as stainless steel, and packing within the pipe consisting of Raschig rings formed of a material that is not wet by water such as polyvinylidene fluoride.

  4. Vertical counterflow evaporative cooler

    DOEpatents

    Bourne, Richard C.; Lee, Brian Eric; Callaway, Duncan

    2005-01-25

    An evaporative heat exchanger having parallel plates that define alternating dry and wet passages. A water reservoir is located below the plates and is connected to a water distribution system. Water from the water distribution system flows through the wet passages and wets the surfaces of the plates that form the wet passages. Air flows through the dry passages, mixes with air below the plates, and flows into the wet passages before exiting through the top of the wet passages.

  5. Chiral primordial gravitational waves from a Lifshitz point.

    PubMed

    Takahashi, Tomohiro; Soda, Jiro

    2009-06-12

    We study primordial gravitational waves produced during inflation in quantum gravity at a Lifshitz point proposed by Horava. Assuming power-counting renormalizability, foliation-preserving diffeomorphism invariance, and the condition of detailed balance, we show that primordial gravitational waves are circularly polarized due to parity violation. The chirality of primordial gravitational waves is a quite robust prediction of quantum gravity at a Lifshitz point which can be tested through observations of cosmic microwave background radiation and stochastic gravitational waves.

  6. Constraints on primordial density perturbations from induced gravitational waves

    SciTech Connect

    Assadullahi, Hooshyar; Wands, David

    2010-01-15

    We consider the stochastic background of gravitational waves produced during the radiation-dominated hot big bang as a constraint on the primordial density perturbation on comoving length scales much smaller than those directly probed by the cosmic microwave background or large-scale structure. We place weak upper bounds on the primordial density perturbation from current data. Future detectors such as BBO and DECIGO will place much stronger constraints on the primordial density perturbation on small scales.

  7. Knockdown of FOXO3 induces primordial oocyte activation in pigs.

    PubMed

    Moniruzzaman, Mohammad; Lee, Jibak; Zengyo, Mai; Miyano, Takashi

    2010-02-01

    Mammalian ovaries are endowed with a large number of primordial follicles, each containing a nongrowing oocyte. Only a small population of primordial oocytes (oocytes in primordial follicles) is activated to enter the growth phase throughout a female's reproductive life. Little is known about the mechanism regulating the activation of primordial oocytes. Here, we found that the primordial oocytes from infant pigs (10- to 20-day-old) grew to full size at 2 months after xenografting to immunodeficient mice, whereas those from prepubertal pigs (6-month-old) survived without initiation of their growth even after 4 months; thereafter, they started to grow and reached full size after 6 months. These results suggest that the mechanism regulating the activation of primordial oocytes in prepubertal pigs is different from that in infant pigs. In this regard, the involvement of FOXO3, a forkhead transcription factor, was studied. In prepubertal pigs, FOXO3 was detected in almost all (94+/-2%) primordial oocyte nuclei, and in infant pigs, 42+/-7% primordial oocytes were FOXO3 positive. At 4 months after xenografting, the percentage of FOXO3-positive primordial oocytes from prepubertal pigs had decreased to the infant level. Further, siRNA was designed to knock down porcine FOXO3. FOXO3-knockdown primordial follicles from prepubertal pigs developed to the antral stage accompanied by oocyte growth at 2 months after xenografting. These results suggest that primordial oocytes are dormant in prepubertal pigs by a FOXO3-related mechanism to establish a nongrowing oocyte pool in the ovary, and that a transient knockdown of the FOXO3 activates the primordial oocytes to enter the growth phase.

  8. Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Almlie, Jay C.

    2010-01-01

    A water membrane evaporator (WME) has been conceived and tested as an alternative to the contamination-sensitive and corrosion-prone evaporators currently used for dissipating heat from space vehicles. The WME consists mainly of the following components: An outer stainless-steel screen that provides structural support for the components mentioned next; Inside and in contact with the stainless-steel screen, a hydrophobic membrane that is permeable to water vapor; Inside and in contact with the hydrophobic membrane, a hydrophilic membrane that transports the liquid feedwater to the inner surface of the hydrophobic membrane; Inside and in contact with the hydrophilic membrane, an annular array of tubes through which flows the spacecraft coolant carrying the heat to be dissipated; and An inner exclusion tube that limits the volume of feedwater in the WME. In operation, a pressurized feedwater reservoir is connected to the volume between the exclusion tube and the coolant tubes. Feedwater fills the volume, saturates the hydrophilic membrane, and is retained by the hydrophobic membrane. The outside of the WME is exposed to space vacuum. Heat from the spacecraft coolant is conducted through the tube walls and the water-saturated hydrophilic membrane to the liquid/vapor interface at the hydrophobic membrane, causing water to evaporate to space. Makeup water flows into the hydrophilic membrane through gaps between the coolant tubes.

  9. Evaporation of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Lecavelier, Alain

    2011-09-01

    Among the five hundreds extrasolar planets known, almost 30% orbit closer than 0.1 AU from their parent star. We will review the observations and the corresponding models of the evaporation of these "Hot-exoplanets". The observations started with the discovery made with HST that the planet orbiting HD209458 has an extended atmosphere of escaping hydrogen. Subsequent observations obtained with STIS and ACS and most recently with COS confirm the escape of the gas. And, even more, atomic oxygen, ionized carbon and silicon have been shown to be present at very high altitude in the upper atmosphere. Observations of other targets like HD189733b and Wasp-12 show that evaporation is a general phenomenon which could contribute to the evolution of planets orbiting close to their parent stars. To interpret these observations, we developed models to quantify the escape rate from the measured occultation depths. Numerous models have also been published to investigate mechanisms which can lead to the estimated escape rate. In general, the high temperature of the upper atmosphere heated by the far and extreme UV combined with the tidal forces allow a very efficient evaporation of the upper atmosphere. We will review the different models and their implications, in particular in the light of the new Kepler results. Finally we will also present the latest observations of the gas escaping HD189833b. These observations have been obtained with the repaired HST/STIS.

  10. The chemical evolution of self-gravitating primordial disks

    NASA Astrophysics Data System (ADS)

    Schleicher, Dominik R. G.; Bovino, Stefano; Latif, Muhammad A.; Ferrara, Andrea; Grassi, Tommaso

    2016-01-01

    Numerical simulations show the formation of self-gravitating primordial disks during the assembly of the first structures in the Universe, in particular, during the formation of Population III and supermassive stars. Their subsequent evolution is expected to be crucial in determining the mass scale of the first cosmological objects, which depends on the temperature of the gas and dominant cooling mechanism. Here, we derive a one-zone framework to explore the chemical evolution of these disks and show that viscous heating leads to the collisional dissociation of an initially molecular gas. The effect is relevant on scales of 10 AU (1000 AU) for a central mass of 10 M⊙ (104 M⊙) at an accretion rate of 10-1 M⊙ yr-1, and provides a substantial heat input to stabilize the disk. If the gas is initially atomic, it remains atomic during the further evolution and the effect of viscous heating is less significant. The additional thermal support is particularly relevant for the formation of very massive objects, such as the progenitors of the first supermassive black holes. The stabilizing impact of viscous heating thus alleviates the need for strong radiation background as a means of keeping the gas atomic.

  11. Evaporation Dynamics of Moss and Bare Soil in Boreal Forests

    NASA Astrophysics Data System (ADS)

    Dempster, S.; Young, J. M.; Barron, C. G.; Bolton, W. R.

    2013-12-01

    Evaporation dynamics of mosses is a critical process in boreal and arctic systems and represents a key uncertainty in hydrology and climate models. At this point, moss evaporation is not well quantified at the plot or landscape scale. Relative to bare soil or litter evaporation, moss evaporation can be challenging to predict because the water flux is not isolated to the moss surface. Evaporation can originate from nearly 10 cm below the surface. Some mosses can wick moisture from even deeper than 10 cm, which subsequently evaporates. The goal of this study was to use field measurements to quantify the moss evaporation dynamics in a coniferous forest relative to bare ground or litter evaporation dynamics in a deciduous forest in Interior Alaska. Measurements were made in two ecosystem types within the boreal forest of Interior Alaska: a deciduous forest devoid of moss and a coniferous forest with a thick moss layer. A small clear chamber was attached to a LiCor 840 infrared gas analyzer in a closed loop system with a low flow rate. Water fluxes were measured for ~ 90 seconds on each plot in dry and wet soil and moss conditions. Additional measurements included: soil temperature, soil moisture, air temperature, barometric pressure, dew point, relative humidity, and wind speed. Thermal infrared images were also captured in congruence with water flux measurements to determine skin temperature. We found that the moss evaporation rate was over 100% greater than the soil evaporation rate (0.057 g/min vs. 0.024 g/min), and evaporation rates in both systems were most strongly driven by relative humidity and surface temperature. Surface temperature was lower at the birch site than the black spruce site because trees shade the surface beneath the birch. High fluxes associated with high water content were sustained for a longer period of time over the mosses compared to the bare soil. The thermal IR data showed that skin temperature lagged the evaporation flux, such that the

  12. Formation of primordial supermassive stars by rapid mass accretion

    SciTech Connect

    Hosokawa, Takashi; Yoshida, Naoki; Yorke, Harold W.; Inayoshi, Kohei; Omukai, Kazuyuki E-mail: hosokwtk@gmail.com

    2013-12-01

    Supermassive stars (SMSs) forming via very rapid mass accretion ( M-dot {sub ∗}≳0.1 M{sub ⊙} yr{sup −1}) could be precursors of supermassive black holes observed beyond a redshift of about six. Extending our previous work, here we study the evolution of primordial stars growing under such rapid mass accretion until the stellar mass reaches 10{sup 4–5} M {sub ☉}. Our stellar evolution calculations show that a star becomes supermassive while passing through the 'supergiant protostar' stage, whereby the star has a very bloated envelope and a contracting inner core. The stellar radius increases monotonically with the stellar mass until ≅ 100 AU for M {sub *} ≳ 10{sup 4} M {sub ☉}, after which the star begins to slowly contract. Because of the large radius, the effective temperature is always less than 10{sup 4} K during rapid accretion. The accreting material is thus almost completely transparent to the stellar radiation. Only for M {sub *} ≳ 10{sup 5} M {sub ☉} can stellar UV feedback operate and disturb the mass accretion flow. We also examine the pulsation stability of accreting SMSs, showing that the pulsation-driven mass loss does not prevent stellar mass growth. Observational signatures of bloated SMSs should be detectable with future observational facilities such as the James Webb Space Telescope. Our results predict that an inner core of the accreting SMS should suffer from the general relativistic instability soon after the stellar mass exceeds 10{sup 5} M {sub ☉}. An extremely massive black hole should form after the collapse of the inner core.

  13. Primordial odontogenic tumor: An immunohistochemical profile

    PubMed Central

    Bologna-Molina, Ronell; Mikami, Toshinari; Pereira-Prado, Vanesa; Pires, Fabio-Ramoa; Carlos-Bregni, Roman

    2017-01-01

    Background Primordial Odontogenic Tumor (POT) is a recently described odontogenic tumor characterized by a variably cellular loose fibrous tissue with areas similar to the dental papilla, covered by cuboidal to columnar epithelium that resembles the internal epithelium of the enamel organ, surrounded at least partly by a delicate fibrous capsule. The purpose of this study was to investigate the possible histogenesis and biological behavior of this rare tumor by means of a wide immunohistochemical analysis of its epithelial and mesenchymal components. Material and Methods The immunoexpression of twenty-three different antibodies were evaluated in four cases of POT. Results The epithelial cells that cover the periphery of the tumor showed immunopositivity for Cytokeratins 14 and 19, while Amelogenin, Glut-1, MOC-31, Caveolin-1. Galectin-3, PITX2, p53, Bax, Bcl-2, Survivin and PTEN were variably expressed in focal areas. The mesenchymal component of the tumor was positive for Vimentin, Syndecan-1, PITX2, Endoglin (CD105), CD 34, Cyclin D1, Bax, Bcl-2, Survivin and p53. PTEN and CD 90 showed a moderate positivity. BRAF V600E and Calretinin were negative in all samples. Cell proliferation markers (Ki-67, MCM-7) were expressed in <5% of the tumor cells. Conclusions According to these immunohistochemical findings, we may conclude that POT is a benign odontogenic tumor in which there is both epithelial and mesenchymal activity during its histogenesis, as there is expression of certain components in particular zones in both tissues that suggests this tumor develops during the immature (primordial) stage of tooth development, leading to its inclusion within the group of benign mixed epithelial and mesenchymal odontogenic tumours in the current World Health Organization classification of these lesions. Key words:Immunohistochemistry, jaw tumors, odontogenic, primordial. PMID:28390134

  14. A general glance at theoretical black holes

    NASA Astrophysics Data System (ADS)

    Chia, Han-Yu

    This thesis is a general review based on the materials of black hole physics that ordinary graduate course such as the General Relativity and Cosmology do not cover. The thesis mainly covers the studies of four-dimensional black holes and black hole thermodynamics. Then, a brief discussion on higher dimensional black holes of Kerr-Schwarzschild class follows. Advanced topics in higher dimensional black holes are also discussed in the thesis. Those advanced topics include extra dimension, black hole production in particle accelerators and evaporation in both colliders and atmosphere.

  15. Tubeless evaporation process development: Final report

    SciTech Connect

    Not Available

    1987-12-01

    A tubeless evaporation process which has the potential to combine the advantage of both evaporation and freezing processes, without their disadvantages is being developed. The TEP is capable of concentrating process solutions of such things as sugar, caustic soda, salt, sodium sulfate, black liquor from the pulp and paper industry, cooling tower blowdown, ''spent'' pickling liquor (sulfuric acid) from the steel industry, and nitric acid with potential energy savings of half to three-quarters of the energy required by conventional evaporators, with about half of the capital and maintenance cost. It has similar potential for the production of fresh water from seawater. The process uses working fluids (WF's) at their freezing point to effect direct contact heat exchange. The purpose of this project was to find additional and lower cost WF's in the laboratory, to obtain sizing information for the major equipment for an economic evaluation and a pilot plant design in a bench scale plant, and to perform the economic evaluation, and the pilot plant design and cost estimate. 6 refs., 37 figs., 7 tabs.

  16. Identifying the inflaton with primordial gravitational waves.

    PubMed

    Easson, Damien A; Powell, Brian A

    2011-05-13

    We explore the ability of experimental physics to uncover the underlying structure of the gravitational Lagrangian describing inflation. While the observable degeneracy of the inflationary parameter space is large, future measurements of observables beyond the adiabatic and tensor two-point functions, such as non-gaussianity or isocurvature modes, might reduce this degeneracy. We show that, even in the absence of such observables, the range of possible inflaton potentials can be reduced with a precision measurement of the tensor spectral index, as might be possible with a direct detection of primordial gravitational waves.

  17. Relic density of neutrinos with primordial asymmetries.

    PubMed

    Pastor, Sergio; Pinto, Teguayco; Raffelt, Georg G

    2009-06-19

    We study flavor oscillations in the early Universe, assuming primordial neutrino-antineutrino asymmetries. Including collisions and pair processes in the kinetic equations, we not only estimate the degree of flavor equilibration, but for the first time also kinetic equilibration among neutrinos and with the ambient plasma. Typically, the restrictive big-bang nucleosynthesis bound on the nu_{e}nu[over]_{e} asymmetry indeed applies to all flavors as claimed in the previous literature, but fine-tuned initial asymmetries always allow for a large surviving neutrino excess radiation that may show up in precision cosmological data.

  18. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2010-01-01

    The Primordial Inflation Polarization Explorer (PIPER) is a ba1loon-borne instrument designed to search for the faint signature of inflation in the polarized component of the cosmic microwave background (CMB). PIPER will measure the CMB polarization at 4 frequencies (l per flight) using a pair of cryogenic telescopes, one for measuring each of Stokes Q and U in the instrument frame. Each telescope receives both linear orthogonal polarizations in two 32 by 40 element planar arrays that utilize Transition-Edge Sensors (TES). The first element in each telescope is a variable-delay polarization modulator (VPM) that fully modulates the Stokes parameter to which the telescope is sensitive.

  19. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Technical Reports Server (NTRS)

    Chuss, David

    2010-01-01

    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne polarimeter that will measure the polarization of the cosmic microwave background to search for evidence for inflation. PIPER will observe more than half of the sky in four frequency bands from 200 to 600 GHz with a beam size of 21 arcminutes at the lowest frequency. PIPER simultaneously measures all four Stokes parameters using four co-aligned 32 by 40 element planar bolometer arrays. We give an instrument overview and report on the current status of the instrument.

  20. Relic Density of Neutrinos with Primordial Asymmetries

    SciTech Connect

    Pastor, Sergio; Pinto, Teguayco; Raffelt, Georg G.

    2009-06-19

    We study flavor oscillations in the early Universe, assuming primordial neutrino-antineutrino asymmetries. Including collisions and pair processes in the kinetic equations, we not only estimate the degree of flavor equilibration, but for the first time also kinetic equilibration among neutrinos and with the ambient plasma. Typically, the restrictive big-bang nucleosynthesis bound on the nu{sub e}nu{sub e} asymmetry indeed applies to all flavors as claimed in the previous literature, but fine-tuned initial asymmetries always allow for a large surviving neutrino excess radiation that may show up in precision cosmological data.

  1. Blue running of the primordial tensor spectrum

    SciTech Connect

    Gong, Jinn-Ouk

    2014-07-01

    We examine the possibility of positive spectral index of the power spectrum of the primordial tensor perturbation produced during inflation in the light of the detection of the B-mode polarization by the BICEP2 collaboration. We find a blue tilt is in general possible when the slow-roll parameter decays rapidly. We present two known examples in which a positive spectral index for the tensor power spectrum can be obtained. We also briefly discuss other consistency tests for further studies on inflationary dynamics.

  2. Primordial fluctuations in extended Liouville theory

    NASA Astrophysics Data System (ADS)

    Moore, Wynton E.

    Liouville gravity can be used to precisely model features of 3+1 dimensional cosmology in a simplified 1+1d setting. We study primordial fluctuations in a generally covariant extension of Liouville theory, in the context of single field inflation. The scale invariant spectrum of scalar curvature perturbations is exhibited, and their three-point correlation function is computed in the slow roll approximation. We recover Maldacena's consistency relation for the three-point function, which in this context depends on a global shift symmetry of extended Liouville theory.

  3. Primordial fluctuations in extended Liouville theory

    NASA Astrophysics Data System (ADS)

    Moore, Wynton E.

    2015-03-01

    Liouville gravity can be used to precisely model features of 3+1 dimensional cosmology in a simplified 1+1d setting. We study primordial fluctuations in a generally covariant extension of Liouville theory, in the context of single field inflation. The scale invariant spectrum of scalar curvature perturbations is exhibited, and their three-point correlation function is computed in the slow roll approximation. We recover Maldacena's consistency relation for the three-point function, which in this context depends on a global shift symmetry of extended Liouville theory.

  4. Primordial magnetic fields and nonlinear electrodynamics

    SciTech Connect

    Kunze, Kerstin E.

    2008-01-15

    The creation of large scale magnetic fields is studied in an inflationary universe where electrodynamics is assumed to be nonlinear. After inflation ends electrodynamics becomes linear and thus the description of reheating and the subsequent radiation dominated stage are unaltered. The nonlinear regime of electrodynamics is described by Lagrangians having a power-law dependence on one of the invariants of the electromagnetic field. It is found that there is a range of parameters for which primordial magnetic fields of cosmologically interesting strengths can be created.

  5. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Technical Reports Server (NTRS)

    Chuss, David

    2010-01-01

    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne polarimeter that will measure the polarization of the cosmic microwave background to search for evidence for inflation. PIPER will observe more than half of the sky in four frequency bands from 200 to 600 GHz with a beam size of 21 arcminutes at the lowest frequency. PIPER simultaneously measures all four Stokes parameters using four co-aligned 32 by 40 element planar bolometer arrays. We give an instrument overview and report on the current status of the instrument.

  6. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2010-01-01

    The Primordial Inflation Polarization Explorer (PIPER) is a ba1loon-borne instrument designed to search for the faint signature of inflation in the polarized component of the cosmic microwave background (CMB). PIPER will measure the CMB polarization at 4 frequencies (l per flight) using a pair of cryogenic telescopes, one for measuring each of Stokes Q and U in the instrument frame. Each telescope receives both linear orthogonal polarizations in two 32 by 40 element planar arrays that utilize Transition-Edge Sensors (TES). The first element in each telescope is a variable-delay polarization modulator (VPM) that fully modulates the Stokes parameter to which the telescope is sensitive.

  7. Water-evaporation-induced electricity with nanostructured carbon materials.

    PubMed

    Xue, Guobin; Xu, Ying; Ding, Tianpeng; Li, Jia; Yin, Jun; Fei, Wenwen; Cao, Yuanzhi; Yu, Jin; Yuan, Longyan; Gong, Li; Chen, Jian; Deng, Shaozhi; Zhou, Jun; Guo, Wanlin

    2017-05-01

    Water evaporation is a ubiquitous natural process that harvests thermal energy from the ambient environment. It has previously been utilized in a number of applications including the synthesis of nanostructures and the creation of energy-harvesting devices. Here, we show that water evaporation from the surface of a variety of nanostructured carbon materials can be used to generate electricity. We find that evaporation from centimetre-sized carbon black sheets can reliably generate sustained voltages of up to 1 V under ambient conditions. The interaction between the water molecules and the carbon layers and moreover evaporation-induced water flow within the porous carbon sheets are thought to be key to the voltage generation. This approach to electricity generation is related to the traditional streaming potential, which relies on driving ionic solutions through narrow gaps, and the recently reported method of moving ionic solutions across graphene surfaces, but as it exploits the natural process of evaporation and uses cheap carbon black it could offer advantages in the development of practical devices.

  8. Water-evaporation-induced electricity with nanostructured carbon materials

    NASA Astrophysics Data System (ADS)

    Xue, Guobin; Xu, Ying; Ding, Tianpeng; Li, Jia; Yin, Jun; Fei, Wenwen; Cao, Yuanzhi; Yu, Jin; Yuan, Longyan; Gong, Li; Chen, Jian; Deng, Shaozhi; Zhou, Jun; Guo, Wanlin

    2017-05-01

    Water evaporation is a ubiquitous natural process that harvests thermal energy from the ambient environment. It has previously been utilized in a number of applications including the synthesis of nanostructures and the creation of energy-harvesting devices. Here, we show that water evaporation from the surface of a variety of nanostructured carbon materials can be used to generate electricity. We find that evaporation from centimetre-sized carbon black sheets can reliably generate sustained voltages of up to 1 V under ambient conditions. The interaction between the water molecules and the carbon layers and moreover evaporation-induced water flow within the porous carbon sheets are thought to be key to the voltage generation. This approach to electricity generation is related to the traditional streaming potential, which relies on driving ionic solutions through narrow gaps, and the recently reported method of moving ionic solutions across graphene surfaces, but as it exploits the natural process of evaporation and uses cheap carbon black it could offer advantages in the development of practical devices.

  9. Method of evaporation

    NASA Technical Reports Server (NTRS)

    Dufresne, Eugene R.

    1987-01-01

    Liquids, such as juices, milk, molten metal and the like are concentrated by forming uniformly-sized, small droplets in a precision droplet forming assembly and deploying the droplets in free fall downwardly as a central column within an evacuated column with cool walls. A portion of the solvent evaporates. The vapor flows to the wall, condenses, and usually flows down the wall as a film to condensate collector and drain. The vertical column of freely falling droplets enters the splash guard. The condensate can be collected, sent to other towers or recycled.

  10. Detecting primordial B-modes after Planck

    SciTech Connect

    Creminelli, Paolo; Nacir, Diana López; Simonović, Marko; Zaldarriaga, Matias; Trevisan, Gabriele E-mail: dlopez_n@ictp.it E-mail: gt989@nyu.edu

    2015-11-01

    We update the forecasts for the measurement of the tensor-to-scalar ratio r for various ground-based experiments (AdvACT, CLASS, Keck/BICEP3, Simons Array, SPT-3G), balloons (EBEX 10k and Spider) and satellites (CMBPol, COrE and LiteBIRD), taking into account the recent Planck data on polarized dust and using a component separation method. The forecasts do not change significantly with respect to previous estimates when at least three frequencies are available, provided foregrounds can be accurately described by few parameters. We argue that a theoretically motivated goal for future experiments is r∼2×10{sup −3}, and that this is achievable if the noise is reduced to ∼1 μK-arcmin and lensing is reduced to 10% in power. We study the constraints experiments will be able to put on the frequency and ℓ-dependence of the tensor signal as a check of its primordial origin. Futuristic ground-based and balloon experiments can have good constraints on these parameters, even for r∼2×10{sup −3}. For the same value of r, satellites will marginally be able to detect the presence of the recombination bump, the most distinctive feature of the primordial signal.

  11. Looking for the primordial genetic honeycomb.

    PubMed

    Gallori, Enzo; Biondi, Elisa; Branciamore, Sergio

    2006-12-01

    All life forms on Earth share the same biological program based on the DNA/RNA genomes and proteins. The genetic information, recorded in the nucleotide sequence of the DNA and RNA molecule, supplies the language of life which is transferred through the different generations, thus ensuring the perpetuation of genetic information on Earth. The presence of a genetic system is absolutely essential to life. Thus, the appearance in an ancestral era of a nucleic acid-like polymer able to undergo Darwinian evolution indicates the beginning of life on our planet. The building of primordial genetic molecules, whatever they were, required the presence of a protected environment, allowing the synthesis and concentration of precursors (nucleotides), their joining into larger molecules (polynucleotides), the protection of forming polymers against degradation (i.e. by cosmic and UV radiation), thus ensuring their persistence in a changing environment, and the expression of the "biological" potential of the molecule (its capacity to self-replicate and evolve). Determining how these steps occurred and how the primordial genetic molecules originated on Earth is a very difficult problem that still must be resolved. It has long been proposed that surface chemistry, i.e. on clay minerals, could have played a crucial role in the prebiotic formation of molecules basic to life. In the present work, we discuss results obtained in different fields that strengthen the hypothesis of a clay-surface-mediated origin of genetic material.

  12. Untangling features in the primordial spectra

    SciTech Connect

    Palma, Gonzalo A.

    2015-04-01

    We discuss the possible existence of features in both the primordial power spectrum and bispectrum generated during a stage of single field cosmic inflation. We argue that there are two main classes of features: those produced by a sudden time variation of the sound speed of curvature perturbations, and those produced by a sudden change in the expansion rate during inflation. The former are known to be produced by heavy fields, when the inflationary background trajectory in field space undergoes a bend, whereas the latter are known to be produced by features in the inflaton potential encountered as the inflaton field descends its slope. In general, features are expected to be the result of these two sources combined, however, it is possible that one source dominated over the other, resulting in a distinctive pattern that may be observationally tested. We deduce a relation that gives us the shape of features in the bispectrum provided that we know the shape of features in the power spectrum, and show that each one of these two classes of features leaves a particular footprint in the distribution of perturbations that could be uncovered by a joint analysis of the primordial power spectrum and bispectrum.

  13. Summary of Recent Developments in Primordial Nucleosynthesis.

    PubMed

    Schramm, D N

    1993-06-01

    This paper summarizes the recent observational and theoretical results on Big Bang Nucleosynthesis. In particular, it is shown that the new Pop II (6)Li results strongly support the argument that the Spite Plateau lithium is a good estimate of the primordial value. The (6)Li is consistent with the Be and Be found in Pop II stars, assuming those elements are cosmic ray produced. The HST (2)D value tightens the (2)D arguments and the observation of the (3)He in planetary nebula strengthens the (3)He +(2)D argument as a lower bound on Ωb. The new low metalicity (4)He determinations slightly raise the best primordial (4)He number and thus make a better fit and avoid a potential problem. The quark-hadron inspired inhomogeneous calculations now unanimously agree that only relatively small variations in Ωb are possible vis-à-vis the homogeneous model; hence, the robustness of Ωb∼ 0.05 is now apparent. A comparison with the ROSAT cluster data is also shown to be consistent with the standard BBN model. Ωb∼ 1 seems to be definitely excluded, so, if Ω= 1, as some recent observations may hint, then non-baryonic dark matter is required.

  14. Primordial Lithium and Big Bang Nucleosynthesis.

    PubMed

    Ryan; Beers; Olive; Fields; Norris

    2000-02-20

    Recent determinations of the abundance of the light-element Li in very metal-poor stars show that its intrinsic dispersion is essentially zero and that the random error in the estimated mean Li abundance is negligible. However, a decreasing trend in the Li abundance toward lower metallicity indicates that the primordial abundance of Li can be inferred only after allowing for nucleosynthesis processes that must have been in operation in the early history of the Galaxy. We show that the observed Li versus Fe trend provides a strong discriminant between alternative models for Galactic chemical evolution of the light elements at early epochs. We critically assess current systematic uncertainties and determine the primordial Li abundance within new, much tighter limits: &parl0;Li&solm0;H&parr0;p=1.23+0.68-0.32x10-10. We show that the Li constraint on OmegaB is now limited as much by uncertainties in the nuclear cross sections used in big bang nucleosynthesis (BBN) calculations as by the observed abundance itself. A clearer understanding of systematics allows us to sharpen the comparison with 4He and deuterium and the resulting test of BBN.

  15. Primordial Particles; Collisions of Inelastic Particles

    NASA Astrophysics Data System (ADS)

    Sagi, George

    2011-03-01

    Three-dimensional matter is not defined by Euclidian or Cartesian geometries. Newton's and Einstein's laws are related to the motions of elastic masses. The study of collisions of inelastic particles opens up new vistas in physics. The present article reveals how such particles create clusters composed of various numbers of particles. The Probability of each formation, duplets, triplets, etc. can be calculated. The particles are held together by a binding force, and depending upon the angles of collisions they may also rotate around their center of geometry. Because of these unique properties such inelastic particles are referred to as primordial particles, Pp. When a given density of Pp per cubic space is given, then random collisions create a field. The calculation of the properties of such primordial field is very complex and beyond the present study. However, the angles of collisions are infinite in principle, but the probabilities of various cluster sizes are quantum dependent. Consequently, field calculations will require new complex mathematical methods to be discovered yet.

  16. Sex Specification and Heterogeneity of Primordial Germ Cells in Mice.

    PubMed

    Sakashita, Akihiko; Kawabata, Yukiko; Jincho, Yuko; Tajima, Shiun; Kumamoto, Soichiro; Kobayashi, Hisato; Matsui, Yasuhisa; Kono, Tomohiro

    2015-01-01

    In mice, primordial germ cells migrate into the genital ridges by embryonic day 13.5 (E13.5), where they are then subjected to a sex-specific fate with female and male primordial germ cells undergoing mitotic arrest and meiosis, respectively. However, the sex-specific basis of primordial germ cell differentiation is poorly understood. The aim of this study was to investigate the sex-specific features of mouse primordial germ cells. We performed RNA-sequencing (seq) of E13.5 female and male mouse primordial germ cells using next-generation sequencing. We identified 651 and 428 differentially expressed transcripts (>2-fold, P < 0.05) in female and male primordial germ cells, respectively. Of these, many transcription factors were identified. Gene ontology and network analysis revealed differing functions of the identified female- and male-specific genes that were associated with primordial germ cell acquisition of sex-specific properties required for differentiation into germ cells. Furthermore, DNA methylation and ChIP-seq analysis of histone modifications showed that hypomethylated gene promoter regions were bound with H3K4me3 and H3K27me3. Our global transcriptome data showed that in mice, primordial germ cells are decisively assigned to a sex-specific differentiation program by E13.5, which is necessary for the development of vital germ cells.

  17. Evaporating metal nanocrystal arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Joy, James C.; Zhao, Chenwei; Kim, Jin Ho; Fernandes, Gustavo; Xu, J. M.; Valles, James M., Jr.

    2017-03-01

    Anodic aluminum oxide (AAO) substrates with a self-ordered triangular array of nanopores provide the means to fabricate multiple forms of nano materials, such as nanowires and nanoparticles. This study focuses on nanostructures that emerge in thin films of metals thermally evaporated onto the surface of AAO. Previous work showed that films of different evaporated metals assume dramatically different structures, e.g. an ordered triangular array of nearly monodisperse nanoparticles forms for lead (Pb) while a polycrystalline nanohoneycomb structure forms for silver (Ag). Here, we present investigations of the effects of substrate temperature and deposition angle that reveal the processes controlling the nano particle array formation. Our findings indicate that arrays form provided the grain nucleation density exceeds the pore density and the atomic mobility is high enough to promote grain coalescence. They introduce a method for producing films with anisotropic grain array structure. The results provide insight into the influence of substrate nano-morphology on thin film growth energetics and kinetics that can be harnessed for creating films with other novel nano-structures.

  18. Evaporating metal nanocrystal arrays.

    PubMed

    Zhang, Xue; Joy, James C; Zhao, Chenwei; Kim, Jin Ho; Fernandes, Gustavo; Xu, J M; Valles, James M

    2017-03-10

    Anodic aluminum oxide (AAO) substrates with a self-ordered triangular array of nanopores provide the means to fabricate multiple forms of nano materials, such as nanowires and nanoparticles. This study focuses on nanostructures that emerge in thin films of metals thermally evaporated onto the surface of AAO. Previous work showed that films of different evaporated metals assume dramatically different structures, e.g. an ordered triangular array of nearly monodisperse nanoparticles forms for lead (Pb) while a polycrystalline nanohoneycomb structure forms for silver (Ag). Here, we present investigations of the effects of substrate temperature and deposition angle that reveal the processes controlling the nano particle array formation. Our findings indicate that arrays form provided the grain nucleation density exceeds the pore density and the atomic mobility is high enough to promote grain coalescence. They introduce a method for producing films with anisotropic grain array structure. The results provide insight into the influence of substrate nano-morphology on thin film growth energetics and kinetics that can be harnessed for creating films with other novel nano-structures.

  19. Variable speed of light cosmology, primordial fluctuations and gravitational waves

    NASA Astrophysics Data System (ADS)

    Moffat, J. W.

    2016-03-01

    A variable speed of light (VSL) cosmology is described in which the causal mechanism of generating primordial perturbations is achieved by varying the speed of light in a primordial epoch. This yields an alternative to inflation for explaining the formation of the cosmic microwave background (CMB) and the large scale structure (LSS) of the universe. The initial value horizon and flatness problems in cosmology are solved. The model predicts primordial scalar and tensor fluctuation spectral indices n_s=0.96 and n_t=- 0.04, respectively. We make use of the δ {N} formalism to identify signatures of primordial nonlinear fluctuations, and this allows the VSL model to be distinguished from inflationary models. In particular, we find that the parameter f_NL=5 in the variable speed of light cosmology. The value of the parameter g_NL evolves during the primordial era and shows a running behavior.

  20. Evaporation of inclined water droplets

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-02-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets.

  1. Reservoir evaporation in Texas, USA

    NASA Astrophysics Data System (ADS)

    Wurbs, Ralph A.; Ayala, Rolando A.

    2014-03-01

    The role of reservoir surface evaporation in river/reservoir water budgets and water management is explored using a modeling system that combines historical natural hydrology with current conditions of water resources development and management. The long-term mean evaporation from the 3415 reservoirs in the Texas water rights permit system is estimated to be 7.53 billion m3/year, which is equivalent to 61% of total agricultural or 126% of total municipal water use in the state during the year 2010. Evaporation varies with the hydrologic conditions governing reservoir surface areas and evaporation rates. Annual statewide total evaporation volumes associated with exceedance probabilities of 75%, 50%, and 25% are 7.07, 7.47, and 7.95 billion m3/year, respectively. Impacts of evaporation are greatest during extended severe droughts that govern water supply capabilities.

  2. Evaporation of inclined water droplets.

    PubMed

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-02-16

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets.

  3. Evaporation of inclined water droplets

    PubMed Central

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  4. Representative shuttle evaporative heat sink

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1978-01-01

    The design, fabrication, and testing of a representative shuttle evaporative heat sink (RSEHS) system which vaporizes an expendable fluid to provide cooling for the shuttle heat transport fluid loop is reported. The optimized RSEHS minimum weight design meets or exceeds the shuttle flash evaporator system requirements. A cold trap which cryo-pumps flash evaporator exhaust water from the CSD vacuum chamber test facility to prevent water contamination of the chamber pumping equipment is also described.

  5. Black Hole Interior in Quantum Gravity.

    PubMed

    Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J

    2015-05-22

    We discuss the interior of a black hole in quantum gravity, in which black holes form and evaporate unitarily. The interior spacetime appears in the sense of complementarity because of special features revealed by the microscopic degrees of freedom when viewed from a semiclassical standpoint. The relation between quantum mechanics and the equivalence principle is subtle, but they are still consistent.

  6. Quantum corrections and extremal black holes

    NASA Astrophysics Data System (ADS)

    Alejandro, G.; Mazzitelli, F. D.; Núñez, C.

    1995-02-01

    We consider static solutions of two dimensional dilaton gravity models as toy laboratories to address the question of the final fate of black holes. A nonperturbative correction to the CGHS potential term is shown to lead classically to an extremal black hole geometry, thus providing a plausible solution to the Hawking evaporation paradox. However, the full quantum theory does not admit an extremal solution.

  7. Modeling nanofluid sessile drop evaporation

    NASA Astrophysics Data System (ADS)

    Gerken, William J.; Oehlschlaeger, Matthew A.

    2017-07-01

    Modeling predictions for the evaporation of nanofluid pinned sessile drops are reported. Drops of fluids containing suspended nanoparticles have reduced evaporation rates relative to their pure fluid counterparts due to the agglomeration of nanoparticles at the surface resulting in a reduction in available liquid at the drop surface for evaporation. The present model implements a mechanism for the reduction in the surface concentration of the evaporating liquid based on the fractal geometry of nanoparticle agglomerates. Nanoparticle packing near the drop pinned contact line results in regions where a maximum nanoparticle volume fraction is attained, leading to significant reductions in the evaporative mass flux. Model predictions for the evaporation rate of pure ethanol and ethanol containing suspended aluminum nanoparticles are compared to experiments from the literature with excellent agreement for the reduction in evaporation rate due to nanoparticle loading and in reasonable quantitative agreement for the evaporation rate. The maximum allowable nanoparticle volume fraction is shown to be an important parameter in governing the evaporation rate of nanofluid sessile drops.

  8. Supermassive black holes formed by direct collapse of inflationary perturbations

    NASA Astrophysics Data System (ADS)

    Nakama, Tomohiro; Suyama, Teruaki; Yokoyama, Jun'ichi

    2016-11-01

    We propose a mechanism of producing a new type of primordial perturbations that collapse to primordial black holes, whose mass can be as large as necessary for them to grow to the supermassive black holes observed at high redshifts, without contradicting Cosmic Background Explorer/Far Infrared Absolute Spectrophotometer (COBE/FIRAS) upper limits on cosmic microwave background (CMB) spectral distortions. In our model, the observable Universe consists of two kinds of many small patches which experienced different expansion histories during inflation. Primordial perturbations large enough to form primordial black holes are realized on patches that experienced more Hubble expansion than the others. By making these patches the minor component, the rarity of supermassive black holes can be explained. On the other hand, most regions of the Universe experienced the standard history and, hence, only have standard almost-scale-invariant adiabatic perturbations confirmed by observations of CMB or large-scale structures of the Universe. Thus, our mechanism can evade the constraint from the nondetection of the CMB distortion set by the COBE/FIRAS measurement. Our model predicts the existence of supermassive black holes even at redshifts much higher than those observed. Hence, our model can be tested by future observations peeking into the higher-redshift Universe.

  9. The First Black Holes

    NASA Astrophysics Data System (ADS)

    Abel, T.

    star. Within this wide range of possible initial masses the death of these star will lead very different remnants (Heger and Woosley 2001). In the case of stars with masses larger than 260 solar mass no metals may be released in black holes are the natural outcome. This may be an interesting possibility to form intermediate mass black holes which are attractive seeds to be nurtured to the super-massive black holes observed in the centers of nearby galaxies. However, no metals would be released and it would prove difficult to understand the transition to the formation of low mass metal enriched population II stars. Stars with masses below 140 solar masses would enrich the intergalactic medium as well as form massive black holes. The coincidence of the Kelvin Helmholtz time with our computed accretion times at about 120 solar masses may argue in favor of such smaller masses. These first black holes may well leave the halos in which they formed for even rather modest kick velocities >~ 10 km/s. Nevertheless, up to about one hundred thousand of these first black holes may remain in the Milky Way. The realization that structure formation began within one hundred million years after big bang makes it difficult to study observationally these first crucial steps. Future observatories have hence to focus on larger collecting areas and wavelengths for which the universe is transparent up to redshifts of 30. XEUS offers the chance to open a new window to these so far dark ages. The limiting masses quoted here rely on stellar models of primordial stars that do not include rotation, magnetic fields or mass loss and hence are somewhat uncertain.

  10. Particle creation rate for dynamical black holes

    NASA Astrophysics Data System (ADS)

    Firouzjaee, Javad T.; Ellis, George F. R.

    2016-11-01

    We present the particle creation probability rate around a general black hole as an outcome of quantum fluctuations. Using the uncertainty principle for these fluctuation, we derive a new ultraviolet frequency cutoff for the radiation spectrum of a dynamical black hole. Using this frequency cutoff, we define the probability creation rate function for such black holes. We consider a dynamical Vaidya model and calculate the probability creation rate for this case when its horizon is in a slowly evolving phase. Our results show that one can expect the usual Hawking radiation emission process in the case of a dynamical black hole when it has a slowly evolving horizon. Moreover, calculating the probability rate for a dynamical black hole gives a measure of when Hawking radiation can be killed off by an incoming flux of matter or radiation. Our result strictly suggests that we have to revise the Hawking radiation expectation for primordial black holes that have grown substantially since they were created in the early universe. We also infer that this frequency cut off can be a parameter that shows the primordial black hole growth at the emission moment.

  11. Turkish Undergraduates' Misconceptions of Evaporation, Evaporation Rate, and Vapour Pressure

    ERIC Educational Resources Information Center

    Canpolat, Nurtac

    2006-01-01

    This study focused on students' misconceptions related to evaporation, evaporation rate, and vapour pressure. Open-ended diagnostic questions were used with 107 undergraduates in the Primary Science Teacher Training Department in a state university in Turkey. In addition, 14 students from that sample were interviewed to clarify their written…

  12. Turkish Undergraduates' Misconceptions of Evaporation, Evaporation Rate, and Vapour Pressure

    ERIC Educational Resources Information Center

    Canpolat, Nurtac

    2006-01-01

    This study focused on students' misconceptions related to evaporation, evaporation rate, and vapour pressure. Open-ended diagnostic questions were used with 107 undergraduates in the Primary Science Teacher Training Department in a state university in Turkey. In addition, 14 students from that sample were interviewed to clarify their written…

  13. An Update of the Primordial Helium Abundance

    NASA Astrophysics Data System (ADS)

    Peimbert, Antonio; Peimbert, Manuel; Luridiana, Valentina

    2015-08-01

    Three of the best determinations of the primordial helium abundance (Yp) are those obtained from low metallicity HII regions by Aver, Olive, Porter, & Skillman (2013); Izotov, Thuan, & Guseva (2014); and Peimbert, Peimbert, & Luridiana (2007). In this poster we update the Yp determination by Peimbert et al. taking into account, among other aspects, recent advances in the determination of the He atomic physical parameters, the temperature structure, the collisional effects of high temperatures on the Balmer lines, as well as the effect of H and He bound-bound absorption.We compare our results with those of Aver et al. and Izotov et al. and point out possible explanations for the differences among the three determinations. We also compare our results with those obtained with the Plank satellite considering recent measurements of the neutron mean life; this comparison has implications on the determination of the number of light neutrino families.

  14. Primordial gravity waves and weak lensing.

    PubMed

    Dodelson, Scott; Rozo, Eduardo; Stebbins, Albert

    2003-07-11

    Inflation produces a primordial spectrum of gravity waves in addition to the density perturbations which seed structure formation. We compute the signature of these gravity waves in the large scale shear field. The shear can be divided into a gradient mode (G or E) and a curl mode (C or B). The latter is produced only by gravity waves, so the observations of a nonzero curl mode could be seen as evidence for inflation. We find that the expected signal from inflation is small, peaking on the largest scales at l(l+1)C(l)/2pi<10(-11) at l=2 and falling rapidly thereafter. Even for an all-sky deep survey, this signal would be below noise at all multipoles.

  15. Primordial beryllium as a big bang calorimeter.

    PubMed

    Pospelov, Maxim; Pradler, Josef

    2011-03-25

    Many models of new physics including variants of supersymmetry predict metastable long-lived particles that can decay during or after primordial nucleosynthesis, releasing significant amounts of nonthermal energy. The hadronic energy injection in these decays leads to the formation of ⁹Be via the chain of nonequilibrium transformations: Energy(h)→T, ³He→⁶He, ⁶Li→⁹Be. We calculate the efficiency of this transformation and show that if the injection happens at cosmic times of a few hours the release of O(10 MeV) per baryon can be sufficient for obtaining a sizable ⁹Be abundance. The absence of a plateau structure in the ⁹Be/H abundance down to a O(10⁻¹⁴) level allows one to use beryllium as a robust constraint on new physics models with decaying or annihilating particles.

  16. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2008-01-01

    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne experiment designed to search for the polarized imprint of gravitational waves from cosmic inflation. The discovery of such a signal would provide direct evidence for inflation, and its characterization would provide a means to explore energy scales orders of magnitude larger than any conceivable particle accelerator. PIPER will consist of two cryogenic telescopes-one for each of the Q and U Stokes parameters. Each will use a variable-delay polarization modulator (VPM) as its first element. This architecture is designed to minimize both T->B and E->B systematics. The detectors will be four 32x40 arrays of BUG detectors, utilizing transition-edge sensors and time-domain multiplexing. Each flight will observe approximately 25% of the sky at a single frequency. Additional flights will increase the frequency coverage.

  17. Smoothing spline primordial power spectrum reconstruction

    SciTech Connect

    Sealfon, Carolyn; Verde, Licia; Jimenez, Raul

    2005-11-15

    We reconstruct the shape of the primordial power spectrum (PPS) using a smoothing spline. Our adapted smoothing spline technique provides a complementary method to existing efforts to search for smooth features in the PPS, such as a running spectral index. With this technique we find no significant indication with Wilkinson Microwave Anisotropy Probe first-year data that the PPS deviates from a Harrison-Zeldovich spectrum and no evidence for loss of power on large scales. We also examine the effect on the cosmological parameters of the additional PPS freedom. Smooth variations in the PPS are not significantly degenerate with other cosmological parameters, but the spline reconstruction greatly increases the errors on the optical depth and baryon fraction.

  18. Microcephalic osteodysplastic primordial dwarfism type 1.

    PubMed

    Ferrell, Steven; Johnson, Aaron; Pearson, Waylon

    2016-06-16

    Microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1) is an uncommon cause of microcephaly and intrauterine growth retardation in a newborn. Early identifying features include but are not limited to sloping forehead, micrognathia, sparse hair, including of eyebrows and short limbs. Immediate radiological findings may include partial or complete agenesis of the corpus callosum, interhemispheric cyst and shallow acetabula leading to dislocation. Genetic testing displaying a mutation in RNU4ATAC gene is necessary for definitive diagnosis. Early identification is important as MOPD1 is an autosomal recessive condition and could present in subsequent pregnancies. The purpose of this case is to both identify and describe some common physical findings related to MOPD1. We present a case of MOPD1 in a girl born to non-consanguineous parents that was distinct for subglottic stenosis and laryngeal cleft.

  19. Dynamical friction in the primordial neutrino sea

    NASA Astrophysics Data System (ADS)

    Okoli, Chiamaka; Scrimgeour, Morag I.; Afshordi, Niayesh; Hudson, Michael J.

    2017-06-01

    Standard big bang cosmology predicts a cosmic neutrino background at Tν ≃ 1.95 K. Given the current neutrino oscillation measurements, we know most neutrinos move at large, but non-relativistic, velocities. Therefore, dark matter haloes moving in the sea of primordial neutrinos form a neutrino wake behind them, which would slow them down, due to the effect of dynamical friction. In this paper, we quantify this effect for realistic haloes, in the context of the halo model of structure formation, and show that it scales as m_ν ^4× relative velocity and monotonically grows with the halo mass. Galaxy redshift surveys can be sensitive to this effect (at >3σ confidence level, depending on survey properties, neutrino mass and hierarchy) through redshift space distortions of distinct galaxy populations.

  20. Resolving primordial physics through correlated signatures

    SciTech Connect

    Enqvist, Kari; Nurmi, Sami; Mulryne, David J. E-mail: d.mulryne@qmul.ac.uk

    2015-05-01

    We discuss correlations among spectral observables as a new tool for differentiating between models for the primordial perturbation. We show that if generated in the isocurvature sector, a running of the scalar spectral index is correlated with the statistical properties of non-Gaussianities. In particular, we find a large running will inevitably be accompanied by a large running of f{sub NL} and enhanced g{sub NL}, with g{sub NL} >> f{sub NL}{sup 2}. If the tensor to scalar ratio is large, a large negative running must turn positive on smaller scales. Interestingly, the characteristic scale of the transition could potentially distinguish between the inflaton and isocurvature fields.

  1. Fluctuations in a Primordial Anisotropic ERA

    NASA Astrophysics Data System (ADS)

    Novello, Mário; de Freitas, Luciane R.

    The primordial Universe is treated in terms of a nonperfect fluid configuration endowed with an anisotropic expansion. The deGennes-Landau mechanism of phase transition acts as a very efficient process to provide the elimination of the previous anisotropy and to set the universe in the current isotropic FRW stage. The entropy produced, as a consequence of the phase transition, depends on the strength of the previous shear. We suggest the hypothesis that the germinal perturbations that will grow into the observed system of galaxies occurring in the anisotropic era. We present a model to deal with this idea that provides a power spectrum of fluctuations of the form δ 2k ˜ 1/(a +bk2). We compare this prediction of our model to the current knowledge on the galaxy formation process.

  2. Primordial Evolution in the Finitary Process Soup

    NASA Astrophysics Data System (ADS)

    Görnerup, Olof; Crutchfield, James P.

    A general and basic model of primordial evolution—a soup of reacting finitary and discrete processes—is employed to identify and analyze fundamental mechanisms that generate and maintain complex structures in prebiotic systems. The processes—ɛ-machines as defined in computational mechanics—and their interaction networks both provide well defined notions of structure. This enables us to quantitatively demonstrate hierarchical self-organization in the soup in terms of complexity. We found that replicating processes evolve the strategy of successively building higher levels of organization by autocatalysis. Moreover, this is facilitated by local components that have low structural complexity, but high generality. In effect, the finitary process soup spontaneously evolves a selection pressure that favors such components. In light of the finitary process soup's generality, these results suggest a fundamental law of hierarchical systems: global complexity requires local simplicity.

  3. The origin of life from primordial planets

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Schild, Rudolph E.; Wickramasinghe, N. Chandra

    2011-04-01

    The origin of life and the origin of the Universe are among the most important problems of science and they might be inextricably linked. Hydro-gravitational-dynamics cosmology predicts hydrogen-helium gas planets in clumps as the dark matter of galaxies, with millions of planets per star. This unexpected prediction is supported by quasar microlensing of a galaxy and a flood of new data from space telescopes. Supernovae from stellar over-accretion of planets produce the chemicals (C, N, O, P, etc.) and abundant liquid-water domains required for first life and the means for wide scattering of life prototypes. Life originated following the plasma-to-gas transition between 2 and 20 Myr after the big bang, while planetary core oceans were between critical and freezing temperatures, and interchanges of material between planets constituted essentially a cosmological primordial soup. Images from optical, radio and infrared space telescopes suggest life on Earth was neither first nor inevitable.

  4. Primordial Germ Cells: Current Knowledge and Perspectives

    PubMed Central

    Nikolic, Aleksandar; Volarevic, Vladislav; Armstrong, Lyle; Lako, Majlinda; Stojkovic, Miodrag

    2016-01-01

    Infertility is a condition that occurs very frequently and understanding what defines normal fertility is crucial to helping patients. Causes of infertility are numerous and the treatment often does not lead to desired pregnancy especially when there is a lack of functional gametes. In humans, the primordial germ cell (PGC) is the primary undifferentiated stem cell type that will differentiate towards gametes: spermatozoa or oocytes. With the development of stem cell biology and differentiation protocols, PGC can be obtained from pluripotent stem cells providing a new therapeutic possibility to treat infertile couples. Recent studies demonstrated that viable mouse pups could be obtained from in vitro differentiated stem cells suggesting that translation of these results to human is closer. Therefore, the aim of this review is to summarize current knowledge about PGC indicating the perspective of their use in both research and medical application for the treatment of infertility. PMID:26635880

  5. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Astrophysics Data System (ADS)

    Gandilo, Natalie; Ade, Peter; Benford, Dominic J.; Bennett, Charles L.; Chuss, David T.; Dotson, Jessie L.; Eimer, Joseph; Fixsen, Dale J.; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F.; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Alan J.; Lowe, Luke; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel H.; Pawlyk, Samuel; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; tucker, carole; Wollack, Edward

    2017-01-01

    We present an overview of PIPER, the Primordial Inflation Polarization Explorer. PIPER is a balloon-borne telescope designed to map the large scale polarization of the Cosmic Microwave Background as well as the polarized emission from galactic dust at 200, 270, 350, and 600 GHz, with 21, 15, 14, and 14 arcminutes of angular resolution respectively. PIPER uses twin telescopes with Variable-delay Polarization Modulators to simultaneously map Stokes I, Q, U and V. Cold optics and the lack of a warm window allow the instrument to achieve background limited sensitivity. Over the course of 8 conventional balloon flights from the Northern and Southern hemisphere, PIPER will map 85% of the sky, measuring the B-mode polarization spectrum from the reionization bump to l~300, and placing an upper limit on the tensor-to-scalar ratio of r<0.007. PIPER's first science flight will be in June 2017 from Palestine, Texas.

  6. Laboratory Simulations: The Primordial Comet Mantle

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1997-01-01

    Laboratory data are needed to understand the formation of organics in cometary and precometary materials and for deciding on the fate of the volatiles. Appropriate experiments were described in the talk at Milipitas. Because of its importance for the comet sample return mission, I discuss here the relevance of this data for predicting the thickness, nature, and ability to survive of the cosmic-ray produced primordial comet mantle ('crust'). That part of the mantle which becomes predominantly refractory is approx. 30 gm/sq cm thick. The tensile strength of this outer mantle is such that it might survive the comet's entrance into the inner solar system. In addition, important modifications to the ices occur to depths approx. 300 gm/cu cm. Based on this it is expected that a deep probe is needed to obtain minimally altered material.

  7. Primordial non-Gaussianity from G inflation

    SciTech Connect

    Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun'ichi

    2011-05-15

    We present a comprehensive study of primordial fluctuations generated from G inflation, in which the inflaton Lagrangian is of the form K({phi},X)-G({phi},X){open_square}{phi} with X=-({partial_derivative}{phi}){sup 2}/2. The Lagrangian still gives rise to second-order gravitational and scalar field equations, and thus offers a more generic class of single-field inflation than ever studied, with a richer phenomenology. We compute the power spectrum and the bispectrum, and clarify how the non-Gaussian amplitude depends upon parameters such as the sound speed. In so doing we try to keep as great generality as possible, allowing for non slow-roll and deviation from the exact scale invariance.

  8. Primordial gravitational waves in bimetric gravity

    SciTech Connect

    Sakakihara, Yuki; Soda, Jiro E-mail: jiro@phys.sci.kobe-u.ac.jp

    2015-09-01

    We study primordial tensor power-spectra generated during inflation in bimetric gravity. More precisely, we examine a homogeneous expanding spacetime in a minimal bimetric model with an inflaton and calculate tensor perturbations on the homogeneous background under slow-roll approximation. In terms of the mass eigenstates, only the power-spectrum of the massless state remains constant and both the power-spectrum of the massive state and the cross power-spectrum rapidly decay during inflation. The amplitude of the physical power-spectrum is suppressed due to the flavor mixing. All power-spectra in the flavor eigenstates coincide with each other up to the first order of the slow-roll parameter.

  9. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2008-01-01

    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne experiment designed to search for the polarized imprint of gravitational waves from cosmic inflation. The discovery of such a signal would provide direct evidence for inflation, and its characterization would provide a means to explore energy scales orders of magnitude larger than any conceivable particle accelerator. PIPER will consist of two cryogenic telescopes-one for each of the Q and U Stokes parameters. Each will use a variable-delay polarization modulator (VPM) as its first element. This architecture is designed to minimize both T->B and E->B systematics. The detectors will be four 32x40 arrays of BUG detectors, utilizing transition-edge sensors and time-domain multiplexing. Each flight will observe approximately 25% of the sky at a single frequency. Additional flights will increase the frequency coverage.

  10. Laboratory Simulations: The Primordial Comet Mantle

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1997-01-01

    Laboratory data are needed to understand the formation of organics in cometary and precometary materials and for deciding on the fate of the volatiles. Appropriate experiments were described in the talk at Milipitas. Because of its importance for the comet sample return mission, I discuss here the relevance of this data for predicting the thickness, nature, and ability to survive of the cosmic-ray produced primordial comet mantle ('crust'). That part of the mantle which becomes predominantly refractory is approx. 30 gm/sq cm thick. The tensile strength of this outer mantle is such that it might survive the comet's entrance into the inner solar system. In addition, important modifications to the ices occur to depths approx. 300 gm/cu cm. Based on this it is expected that a deep probe is needed to obtain minimally altered material.

  11. Viroids: "living fossils" of primordial RNAs?

    PubMed

    Diener, Theodor O

    2016-03-25

    The discovery of the viroid in 1971, which initiated the third major expansion of the biosphere towards smaller living entities-after discovery of the "subvisual" microorganisms in 1675 and that of the "submicroscopic" viruses in 1892-has been officially endorsed by the International Committee on Virus Taxonomy as a new order called subviral agents.In 1989, I proposed that, based on their respective molecular properties, viroids are more plausible "living fossils" of the hypothetical RNA World (widely assumed to have existed prior to the evolution of DNA or proteins) than are intron-derived RNAs, which were, at that time, suggested as putative survivors. There were few citations of my proposal-and virtually none of viroids-beyond plant virology unil 1994, when Cheles-Flores critically examined the hypothesis and pointed out a serious difficulty, as well as a process by which this difficulty could be overcome. In 2013, when investigations by Koonin and Dolja revealed that of extant RNAs, viroids "strikingly" display some of the molecular properties posited for the earliest evolving, selfish RNAs (primordial RNAs), but, because extant organisms, aside from higher plants, appear not to harbor viroids, they cannot be regarded as primordial fossils, but appear to have evolved post LUCA (the Last Universal Common Ancestor). Here, I review whether some evidence nevertheless is compatible with the original postulate of the 1989 hypothesis. My analysis reveals no unequivocal evidence for an ancient origin of viroids, but suggests, alternatively, that viroids may have evolved de novo more recently, probably by novel processes similar to those suggested by each reviewer.These results are important, because they help illuminate a little understood period of abiogenesis--after the abiotic synthesis of life's chemical building blocks, which is, in principle, understood, and before the evolution of DNA and proteins in the late RNA World.

  12. Radiative Transfer in Primordial Atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Adams, E.; Atreya, S.; Kuhn, W.

    2005-05-01

    In light of Huygens measurements, we present our improved model of thermal and photochemical evolution of Titan's atmosphere. Atreya et. al (1978) demonstrated that photolysis of ammonia on primordial Titan is capable of producing a nitrogen atmosphere substantially thicker than that measured by Voyager. E. Wilson (2001) carried this calculation one step further by including methane and water vapor explicitly in the ammonia photochemistry model, and arrived at a preliminary estimate of time required to accumulate different amounts of nitrogen. However, both models assumed an isothermal atmosphere. Since chemistry leading up to nitrogen occurs in the stratosphere, both the thermal structure and saturation effects are important for determining the time constants and amounts of nitrogen production. In this presentation, we discuss preliminary results of a radiative equilibrium model for the primordial middle and lower atmosphere of Titan. It includes CH4, NH3 and H2O in solar proportions for its initial composition, and CH4-CH4 pressure induced absorption, which presently controls the thermal structure in the troposphere. The temperature in the stratosphere is controlled by the haze, and we explore the effects of a haze layer at various altitudes for accelerating conversion of ammonia to nitrogen. Furthermore, we include the effects of enhanced solar flux during the T-Tauri phase, which could speed up both the loss of nitrogen and conversion of ammonia to nitrogen. We are in the process of coupling the radiative transfer model to a comprehensive photochemical model (Wilson and Atreya, 2004) to access the roles of trace species other than those included in this calculation.

  13. Is there primordial gas in IZw 18?

    NASA Astrophysics Data System (ADS)

    Kunth, D.; Lequeux, J.; Sargent, W. L. W.; Viallefond, F.

    1994-02-01

    The dwarf emission line galaxy IZw 18 has one of the lowest known O/H abundances ratios (O/H=1.75 10-5) deduced from its emission lines. Its two main emission patches are associated with two extended HI clouds with very high column densities (N(HI)=1022 H atoms/sq cm). We have obtained spectra of the NW emission region with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope in a spectral range containing OI lambda(1302)A and SiII lambda(1304)A and another range around Lyman-alpha. The GHRS spectrum combined with a lower resolution IUE spectrum shows that the HI column density in front of the NW emission patch is N(HI)=3.5 x 1021/sq cm. Accordingly, the absorption spectrum of IZw 18 would be classified as being a 'damped Lyman-alpha' system. No Lyman-alpha emission is detected from IZW 18 due to multiple scattering in the HI gas. Absorption lines due to OI and SiII were detected at the redshift of IZw 18. The abundances are very uncertain but the best values are O/H=7.9 x 10-7 and Si/H=7.5 x 10-8. We show that most of the observed OI is produced in the HI gas in IZw 18 and very little in the transition region of the HI gas. Our new results strengthen the importance of IZw 18 determine the primordial He abundance. We also detected OI and SiII absorption at a velocity of -160 km/s due to a Galactic high velocity cloud. We derive abundance ratios O/H and Si/H which are about 1/10 that in the local interstellar gas, illustrating that the high velocity clouds are not composed of primordial material.

  14. Progesterone Regulation of Primordial Follicle Assembly In Bovine Fetal Ovaries

    PubMed Central

    Nilsson, Eric E.; Skinner, Michael K.

    2009-01-01

    Fertility in mammals is dependant on females having an adequate primordial follicle pool to supply oocytes for fertilization. The formation of primordial follicles is called ovarian follicular assembly. In rats and mice progesterone and estradiol have been shown to inhibit follicle assembly with assembly occurring after birth when the pups are removed from the high-steroid maternal environment. In contrast, primordial follicle assembly in other species, such as cattle and humans, occurs during fetal development before birth. The objective of the current study is to determine if progesterone levels regulate primordial follicle assembly in fetal bovine ovaries. Ovaries and blood were collected from bovine fetuses. Interestingly, ovarian progesterone and estradiol concentrations were found to decrease with increasing fetal age and correlated to increased primordial follicle assembly. Microarray analysis of fetal ovary RNA suggests that progesterone membrane receptor and estrogen nuclear receptor are expressed. Treatment of fetal bovine ovary cultures with a higher progesterone concentration significantly decreased primordial follicle assembly. Observations indicate that progesterone affects ovarian primordial follicle assembly in cattle, as it does in rats and mice. PMID:19747959

  15. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  16. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, John D.; Gross, Mark E.

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  17. On the Maximum Mass of Accreting Primordial Supermassive Stars

    NASA Astrophysics Data System (ADS)

    Woods, T. E.; Heger, Alexander; Whalen, Daniel J.; Haemmerlé, Lionel; Klessen, Ralf S.

    2017-06-01

    Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z ˜ 6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution, and collapse of accreting, non-rotating supermassive stars under accretion rates of 0.01-10 M ⊙ yr-1 using the stellar evolution code Kepler. Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000-330,000 M ⊙ for accretion rates of 0.1-10 M ⊙ yr-1, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.

  18. Causal Structures of Dynamic Black Holes

    NASA Astrophysics Data System (ADS)

    Brown, Beth A.; Lindesay, James

    2010-10-01

    Dynamic space-times, especially those manifesting horizons, provide useful laboratories for examining how macroscopic quantum behaviors consistently co-generate gravitational phenomena. For this reason, the behaviors and large-scale causal structures of spatially coherent dynamic black holes will be explored in this presentation. Geodesic motions on an evaporating black hole will also be presented. Research recently completed with Beth Brown, including her final Penrose diagram for an accreting black hole, will be presented.

  19. Phenomenology of bouncing black holes in quantum gravity: a closer look

    SciTech Connect

    Barrau, Aurélien; Bolliet, Boris; Weimer, Celine; Vidotto, Francesca E-mail: boris.bolliet@ens-lyon.fr E-mail: celinew@kth.se

    2016-02-01

    It was recently shown that black holes could be bouncing stars as a consequence of quantum gravity. We investigate the astrophysical signals implied by this hypothesis, focusing on primordial black holes. We consider different possible bounce times and study the integrated diffuse emission.

  20. Molecular Mechanism of Water Evaporation.

    PubMed

    Nagata, Yuki; Usui, Kota; Bonn, Mischa

    2015-12-04

    Evaporation is the process by which water changes from a liquid to a gas or vapor, and is a key step in Earth's water cycle. At the molecular level, evaporation requires breaking at least one very strong intermolecular bond between two water molecules at the interface. Despite the importance of this process the molecular mechanism by which an evaporating water molecule gains sufficient energy to escape from the surface has remained elusive. Here, we show, using molecular dynamics simulations at the water-air interface with polarizable classical force field models, that the high kinetic energy of the evaporated water molecule is enabled by a well-timed making and breaking of hydrogen bonds involving at least three water molecules at the interface, the recoil of which allows one of the molecules to escape. The evaporation of water is thus enabled by concerted, ultrafast hydrogen-bond dynamics of interfacial water, and follows one specific molecular pathway.

  1. Experimental Investigation of Microstructured Evaporators

    NASA Astrophysics Data System (ADS)

    Wibel, W.; Westermann, S.; Maikowske, S.; Brandner, J. J.

    2012-11-01

    Microfluidic devices have become more and more popular over the last decades [1]. Cooling is a topic where microstructures offer significant advantages compared to conventional techniques due the much higher possible surface to volume ratios and short heat transfer lengths. By evaporating of a fluid in microchannels, compact, fast and powerful cooling devices become possible [2]. Experimental results for different designs of microstructured evaporators are presented here. They have been obtained either using water as evaporating coolant or the refrigerant R134a (Tetrafluoroethane). A new microstructured evaporator design consisting of bended microchannels instead of straight channels for a better performance is shown and compared to previous results [2] for the evaporation of R134a in straight microchannels.

  2. Measurement of evaporation from snow

    NASA Astrophysics Data System (ADS)

    Kaser, G.

    1982-04-01

    As part of a combined study of the ice, water and energy balance of Hintereisferner (Ötztal Alps) evaporation from snow and ice is measured since 1978 at an altitudes of 3030 m. These measurements are performed with plexiglass lysimeters of 400 em2 surface area. Evaluation of meteorological records yield a good correlation of evaporation with the difference of vapor pressure of the air and of the surface, respectively, for various classes of wind speed. The daily variation displays maximum evaporation before noon, and condensation during the afternoon with a maximum two hours after sunset. There is a sharp reversal from condensation to evaporation around midnight. The mean evaporation of a 12-day period in July/August 1980 was 0.25 mm per day, with a peak of 2.0 mm per day.

  3. Molecular Mechanism of Water Evaporation

    NASA Astrophysics Data System (ADS)

    Nagata, Yuki; Usui, Kota; Bonn, Mischa

    2015-12-01

    Evaporation is the process by which water changes from a liquid to a gas or vapor, and is a key step in Earth's water cycle. At the molecular level, evaporation requires breaking at least one very strong intermolecular bond between two water molecules at the interface. Despite the importance of this process the molecular mechanism by which an evaporating water molecule gains sufficient energy to escape from the surface has remained elusive. Here, we show, using molecular dynamics simulations at the water-air interface with polarizable classical force field models, that the high kinetic energy of the evaporated water molecule is enabled by a well-timed making and breaking of hydrogen bonds involving at least three water molecules at the interface, the recoil of which allows one of the molecules to escape. The evaporation of water is thus enabled by concerted, ultrafast hydrogen-bond dynamics of interfacial water, and follows one specific molecular pathway.

  4. Exploring Black Hole Dynamics

    NASA Astrophysics Data System (ADS)

    Chung, Hyeyoun

    2015-10-01

    the central black hole is BPS in the extremal limit, then the potential is flat and so there is no barrier to the emission of probes. If the central black hole is non-BPS in the extremal limit, then there is a barrier to emission and we compute the decay rate, which depends both on the charge of the central black hole and the charges of the emitted black holes. Finally, we consider the possibility that an extremal black hole, the end-point of the evolution of a non-extremal black hole through evaporation, may itself split into a multi-centered black hole solution through quantum tunneling, via a gravitational instanton analogous to the instanton for the symmetric double well in elementary quantum mechanics. We find a gravitational instanton that connects two vacuum states: one state corresponding to a single-centered extremal Reissner-Nordstrom (ERN) black hole configuration, and another state corresponding to a multi-centered ERN configuration. We evaluate the Euclidean action for this instanton and find that the amplitude for the tunneling process is equal to half the difference in entropy between the initial and final configurations.

  5. Trans-Planckian enhancements of the primordial non-Gaussianities

    SciTech Connect

    Collins, Hael; Holman, R.

    2009-08-15

    This article examines how breaking a Lorentz-invariant description of nature at tiny space-time intervals would affect the non-Gaussian character of the pattern of primordial perturbations left by inflation. We specifically study a set of irrelevant operators that preserve the spatial symmetries of the usual inflationary background. The non-Gaussian component in the primordial fluctuations can be much larger than the usual, small, inflationary prediction and can thus lead to much stronger constraints on the role of 'trans-Planckian' physics in inflation than those from the measurements of the primordial power spectrum.

  6. Forest evaporation models: relationships between stand growth and evaporation

    NASA Astrophysics Data System (ADS)

    Le Maitre, D. C.; Versfeld, D. B.

    1997-06-01

    The relationships between forest stand structure, growth and evaporation were analysed to determine whether forest evaporation can be estimated from stand growth data. This approach permits rapid assessment of the potential impacts of afforestation on the water regime. The basis for this approach is (a) that growth rates are determined by water availability and limited by the maximum water extraction potential, and (b) that stand evaporation is proportional to biomass and biomass increment. The relationships between stand growth and evaporation were modelled for a set of catchment experiments where estimates of both growth and evaporation were available. The predicted mean evaporation, over periods of several years, was generally within 10% of the measured mean annual evaporation (rainfall minus streamflow) when the model from one catchment was applied to other catchments planted with the same species. The residual evaporation, after fitting the models, was correlated with rainfall: above-average rainfall resulted in above-average evaporation. This relationship could be used to derive estimates for dry and wet years. Analyses using the models provide additional evidence that Eucalyptus grandis may be depleting groundwater reserves in catchments where its roots can reach the water table. The models are designed to be integrated into a plantation management system which uses a geographic information system for spatial analysis and modelling. The use of readily available growth parameters as predictor variables may reduce our dependence on intricate process-based models. This is seen as an efficient way of extrapolating existing catchment data — reflecting the impacts of forestry on water supplies across a range of sites, climatic zones and species. This approach has the potential for further development, especially in dealing with low flows and faster growing species.

  7. Micro black holes and the democratic transition

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Pujolàs, Oriol

    2009-03-01

    Unitarity implies that the evaporation of microscopic quasiclassical black holes cannot be universal in different particle species. This creates a puzzle, since it conflicts with the thermal nature of quasiclassical black holes, according to which all of the species should see the same horizon and be produced with the same Hawking temperatures. We resolve this puzzle by showing that for the microscopic black holes, on top of the usual quantum evaporation time, there is a new time scale which characterizes a purely classical process during which the black hole loses the ability to differentiate among the species and becomes democratic. We demonstrate this phenomenon in a well-understood framework of large extra dimensions, with a number of parallel branes. An initially nondemocratic black hole is the one localized on one of the branes, with its high-dimensional Schwarzschild radius being much shorter than the interbrane distance. Such a black hole seemingly cannot evaporate into the species localized on the other branes that are beyond its reach. We demonstrate that in reality the system evolves classically in time, in such a way that the black hole accretes the neighboring branes. The end result is a completely democratic static configuration, in which all of the branes share the same black hole and all of the species are produced with the same Hawking temperature. Thus, just like their macroscopic counterparts, the microscopic black holes are universal bridges to the hidden sector physics.

  8. Lake Evaporation: a Model Study

    NASA Astrophysics Data System (ADS)

    Amayreh, Jumah Ahmad

    1995-01-01

    Reliable evaporation data are an essential requirement in any water and/or energy budget studies. This includes operation and management of both urban and agricultural water resources. Evaporation from large, open water surfaces such as lakes and reservoirs may influence many agricultural and irrigation decisions. In this study evaporation from Bear Lake in the states of Idaho and Utah was measured using advanced research instruments (Bowen Ratio and Eddy Correlation). Actual over-lake evaporation and weather data measurements were used to understand the mechanism of evaporation in the lake, determine lake-related parameters (such as roughness lengths, heat storage, net radiation, etc.), and examine and evaluate existing lake evaporation methods. This enabled the development of a modified and flexible model incorporating the tested methods for hourly and daily best estimates of lake evaporation using nearby simple land-based weather data and, if available, remotely sensed data. Average evaporation from Bear Lake was about 2 mm/day during the summer season (March-October) of this two-year (1993-1994) study. This value reflects the large amount of energy consumed in heating the water body of the lake. Moreover, evaporation from the lake was not directly related to solar radiation. This observation was clear during night time when the evaporation continued with almost the same rate as daytime evaporation. This explains the vital role of heat storage in the lake as the main driving energy for evaporation during night time and day time cloudy sky conditions. When comparing over-lake and nearby land-based weather parameters, land-based wind speed was the only weather parameter that had a significant difference of about 50% lower than over-lake measurements. Other weather parameters were quite similar. The study showed that evaporation from the lake can be accurately estimated using Penman-type equations if related parameters such as net radiation, heat storage, and

  9. Rapid Evaporation of microbubbles

    NASA Astrophysics Data System (ADS)

    Gautam, Jitendra; Esmaeeli, Asghar

    2008-11-01

    When a liquid is heated to a temperature far above its boiling point, it evaporates abruptly. Boiling of liquid at high temperatures can be explosive and destructive, and poses a potential hazard for a host of industrial processes. Explosive boiling may occur if a cold and volatile liquid is brought into contact with a hot and non-volatile liquid, or if a liquid is superheated or depressurized rapidly. Such possibilities are realized, for example, in the depressurization of low boiling point liquefied natural gas (LNG) in the pipelines or storage tanks as a result of a leak. While boiling of highly heated liquids can be destructive at macroscale, the (nearly) instantaneous pace of the process and the release of large amount of kinetic energy make the phenomena extremely attractive at microscale where it is possible to utilize the released energy to derive micromechanical systems. For instance, there is currently a growing interest in micro-explosion of liquid for generation of micro bubbles for actuation purposes. The aim of the current study is to gain a fundamental understanding of the subject using direct numerical simulations. In particular, we seek to investigate the boundary between stable and unstable nucleus growth in terms of the degree of liquid superheat and to compare the dynamics of unstable and stable growth.

  10. Properties of vacuum-evaporated boron films

    NASA Technical Reports Server (NTRS)

    Feakes, F.

    1973-01-01

    The work on the properties of thin boron films made by vacuum evaporation of elemental boron using an electron beam as the energy source is reported. The program aimed at characterizing the properties of vacuum evaporated films. The work was directed toward those variables considered to be important in affecting the tensile strength of the boron films. In general, the thickness of the films was less than 0.002 in. The temperature of the substrate on which the boron was condensed was found to be most important. Three distinctly different forms of boron deposit were produced. Although the transition temperature was not sharply defined, at substrate temperatures of less than approximately 600 deg C the boron deposits were amorphous to X-ray. If the substrate were highly polished, the deposits were black and mirror-like. For substrates with coefficients of thermal expansion close to that of boron, the deposits were then continuous and uncracked. The studies suggest that the potential continues to exist for film-type composites to have both high strength and high modulus.

  11. Volume inside old black holes

    NASA Astrophysics Data System (ADS)

    Christodoulou, Marios; De Lorenzo, Tommaso

    2016-11-01

    Black holes that have nearly evaporated are often thought of as small objects, due to their tiny exterior area. However, the horizon bounds large spacelike hypersurfaces. A compelling geometric perspective on the evolution of the interior geometry was recently shown to be provided by a generally covariant definition of the volume inside a black hole using maximal surfaces. In this article, we expand on previous results and show that finding the maximal surfaces in an arbitrary spherically symmetric spacetime is equivalent to a 1 +1 geodesic problem. We then study the effect of Hawking radiation on the volume by computing the volume of maximal surfaces inside the apparent horizon of an evaporating black hole as a function of time at infinity: while the area is shrinking, the volume of these surfaces grows monotonically with advanced time, up to when the horizon has reached Planckian dimensions. The physical relevance of these results for the information paradox and the remnant scenarios are discussed.

  12. Volatile inventory of Mars-2: Primordial sources and fractionating processes

    NASA Technical Reports Server (NTRS)

    Pepin, R. O.

    1987-01-01

    The total volatile inventory of Mars has been modeled using meteoritic and presumed primordial abundances in the early solar system. Evidence is presented which indicates that the elemental abundances of the noble gases on Earth and Mars are similar, and their ratios are comparable to those in average carbonaceous chondrites with the exception of xenon and krypton. In order to account for presently observed variations in gas abundances, two primordial sources were used. One was the solar composition similar to the solar wind, and the other of carbonaceous grains that were the source for trace exotic components. For Mars, a model in which the early, high solar EUV flux with continued hydrogen production by differentiation results in mass fractionation of the primordial atmosphere, early depletion of xenon, and later depletion of gases lighter than krypton. The result is that the primordial Mars water inventory may have been on the order of 20 to 30 km if spread over the planet.

  13. Primordial Noble Gases from Earth's Core

    NASA Astrophysics Data System (ADS)

    Wang, K.; Lu, X.; Brodholt, J. P.

    2016-12-01

    Recent partitioning experiment suggests helium is more compatible in iron melt than in molten silicates at high pressures (> 10 GPa) (1), thus provide the possibility of the core as being the primordial noble gases warehouse that is responsible for the high primordial/radiogenic noble gas isotopic ratios observed in plume-related basalts. However, the possible transportation mechanism of the noble gases from the core to the overlying mantle is still ambiguous, understanding how this process would affect the noble gas isotopic characteristics of the mantle is critical to validate this core reservoir model. As diffusion is a dominant mass transport process that plays an important role in chemical exchange at the core-mantle boundary (CMB), we have determined the diffusion coefficients of helium, neon and argon in major lower mantle minerals, i.e. periclase (MgO), bridgemanite (MgSiO3-Pv) and post-perovskite (MgSiO3-PPv), by first-principles calculation based on density functional theory (DFT). As expected, the diffusion rate of helium is the fastest at the CMB, which is in the range of 3 × 10-10 to 1 × 10-8 m2/s. The neon diffusion is slightly slower, from 5 × 10-10 to 5 × 10-9 m2/s. Argon diffuses slowest at the rate from 1 × 10-10 to 2 × 10-10 m2/s. We have further simulated the evolution of noble gas isotopic ratios in the mantle near the CMB. Considering its close relationship with the mantle plumes and very likely to be the direct source of "hot-spot" basalts, we took a close investigation on the large low-shear-velocity provinces (LLSVPs). Under reasonable assumptions based on our diffusion parameters, the modelling results indicate that LLSVP is capable of generating all the noble gas isotope signals, e.g., 3He/4He = 55 Ra, 3He/22Ne = 3.1, 3He/36Ar = 0.82, 40Ar/36Ar = 9500, that are in good agreement with the observed values in "hot-spot" basalts (2). Therefore, this core-reservior hypothesis is a self-consistent model that can fits in multiple noble gas

  14. Interfacial Instabilities in Evaporating Drops

    NASA Astrophysics Data System (ADS)

    Moffat, Ross; Sefiane, Khellil; Matar, Omar

    2007-11-01

    We study the effect of substrate thermal properties on the evaporation of sessile drops of various liquids. An infra-red imaging technique was used to record the interfacial temperature. This technique illustrates the non-uniformity in interfacial temperature distribution that characterises the evaporation process. Our results also demonstrate that the evaporation of methanol droplets is accompanied by the formation of wave-trains in the interfacial temperature field; similar patterns, however, were not observed in the case of water droplets. More complex patterns are observed for FC-72 refrigerant drops. The effect of substrate thermal conductivity on the structure of the complex pattern formation is also elucidated.

  15. Anisotropies of the infrared background and primordial galaxies

    NASA Astrophysics Data System (ADS)

    Cooray, Asantha R.

    2007-08-01

    We discuss anisotropies in the near-IR background between 1 to a few microns. This background is expected to contain a signature of primordial galaxies. We have measured fluctuations of resolved galaxies with Spitzer imaging data and we are developing a rocket-borne instrument (the Cosmic Infrared Background ExpeRiment, or CIBER) to search for signatures of primordial galaxy formation in the cosmic near-infrared extra-galactic background.

  16. Halo/galaxy bispectrum with equilateral-type primordial trispectrum

    NASA Astrophysics Data System (ADS)

    Mizuno, Shuntaro; Yokoyama, Shuichiro

    2015-06-01

    We investigate the effect of equilateral-type primordial trispectrum on the halo/galaxy bispectrum. We consider three types of equilateral primordial trispectra which are generated by quartic operators naturally appearing in the effective field theory of inflation and can be characterized by three nonlinearity parameters, gNLσ˙ 4 , gNLσ˙ 2(∂σ )2 , and gNL(∂σ )4 . Recently, constraints on these parameters have been investigated from Cosmic Microwave Background (CMB) observations by using WMAP9 data. In order to consider the halo/galaxy bispectrum with the equilateral-type primordial trispectra, we adopt the integrated perturbation theory in which the effects of primordial non-Gaussianity are wholly encapsulated in the linear primordial polyspectrum for the evaluation of the biased polyspectrum. We show the shapes of the halo/galaxy bispectrum with the equilateral-type primordial trispectra and find that the primordial trispectrum characterized by gNLσ˙ 4 provides the same scale dependence as the gravity-induced halo/galaxy bispectrum. Hence, it would be difficult to obtain the constraint on gNLσ˙ 4 from the observations of the halo/galaxy bispectrum. On the other hand, the primordial trispectra characterized by gNLσ˙ 2(∂σ )2 and gNL(∂σ )4 provide the common scale dependence which is different from that of the gravity-induced halo/galaxy bispectrum on large scales. Hence, future observations of the halo/galaxy bispectrum would give constraints on the nonlinearity parameters, gNLσ˙ 2(∂σ )2 and gNL(∂σ )4 independently from CMB observations.

  17. Gene bionetworks that regulate ovarian primordial follicle assembly.

    PubMed

    Nilsson, Eric; Zhang, Bin; Skinner, Michael K

    2013-07-23

    Primordial follicle assembly is the process by which ovarian primordial follicles are formed. During follicle assembly oocyte nests break down and a layer of pre-granulosa cells surrounds individual oocytes to form primordial follicles. The pool of primordial follicles formed is the source of oocytes for ovulation during a female's reproductive life. The current study utilized a systems approach to detect all genes that are differentially expressed in response to seven different growth factor and hormone treatments known to influence (increase or decrease) primordial follicle assembly in a neonatal rat ovary culture system. One novel factor, basic fibroblast growth factor (FGF2), was experimentally determined to inhibit follicle assembly. The different growth factor and hormone treatments were all found to affect similar physiological pathways, but each treatment affected a unique set of differentially expressed genes (signature gene set). A gene bionetwork analysis identified gene modules of coordinately expressed interconnected genes and it was found that different gene modules appear to accomplish distinct tasks during primordial follicle assembly. Predictions of physiological pathways important to follicle assembly were validated using ovary culture experiments in which ERK1/2 (MAPK1) activity was increased. A number of the highly interconnected genes in these gene networks have previously been linked to primary ovarian insufficiency (POI) and polycystic ovarian disease syndrome (PCOS). Observations have identified novel factors and gene networks that regulate primordial follicle assembly. This systems biology approach has helped elucidate the molecular control of primordial follicle assembly and provided potential therapeutic targets for the treatment of ovarian disease.

  18. Gene bionetworks that regulate ovarian primordial follicle assembly

    PubMed Central

    2013-01-01

    Background Primordial follicle assembly is the process by which ovarian primordial follicles are formed. During follicle assembly oocyte nests break down and a layer of pre-granulosa cells surrounds individual oocytes to form primordial follicles. The pool of primordial follicles formed is the source of oocytes for ovulation during a female’s reproductive life. Results The current study utilized a systems approach to detect all genes that are differentially expressed in response to seven different growth factor and hormone treatments known to influence (increase or decrease) primordial follicle assembly in a neonatal rat ovary culture system. One novel factor, basic fibroblast growth factor (FGF2), was experimentally determined to inhibit follicle assembly. The different growth factor and hormone treatments were all found to affect similar physiological pathways, but each treatment affected a unique set of differentially expressed genes (signature gene set). A gene bionetwork analysis identified gene modules of coordinately expressed interconnected genes and it was found that different gene modules appear to accomplish distinct tasks during primordial follicle assembly. Predictions of physiological pathways important to follicle assembly were validated using ovary culture experiments in which ERK1/2 (MAPK1) activity was increased. Conclusions A number of the highly interconnected genes in these gene networks have previously been linked to primary ovarian insufficiency (POI) and polycystic ovarian disease syndrome (PCOS). Observations have identified novel factors and gene networks that regulate primordial follicle assembly. This systems biology approach has helped elucidate the molecular control of primordial follicle assembly and provided potential therapeutic targets for the treatment of ovarian disease. PMID:23875758

  19. Enhanced solar desalination unit: modified evaporating wick technique

    SciTech Connect

    El-Bassuoni, A.M.A.

    1983-12-01

    The use of solar energy for producing fresh water by desalination could avoid or reduce the expenditure of fossil fuels for that purpose. At the current time, all solar stills can be viewed as being in various stages of development, rather than as an established technology. Evaporating wick technique is developed world wide, but still has got some limitations. In the ordinary evaporating wick still made of black dyed jute, the heat collection, evaporation, and condensation takes place in the same still. To improve the efficiency and reduce the total cost of the solar still a modified unit was designed and tried. In the modified unit, the condensation operation is separated from the evaporation one. The evaporation unit which is inclined at 24/sup 0/ (the latitude of our place) consists mainly of a metallic basin having dimensions ( 1 x 1 meter) insulating with a layer of foam urethane 4 cm. thickness beneath it. The wick is suspended between two tubes, upper feeding perforated tube (2 mm. hole diameter) and lower suspending tube. The condensation unit contains the condenser which is a metallic box having dimensions of (0.9 x 0.9 meter) over which the vapor condenses. In between the evaporation and condensation unit there is a 0.1 HP. fan to suck the humid air from the evaporation unit to the condensation one. The wick still is fed continuously with water (trickle feeding) from a tank equipped with a level control valve. From this feed system water will ascard by capillarity to the edge of the gutter and then flow downward by gravity. It was found that the outside condensation enhance the efficiency of energy utilization, and the productivity of the still. The performance of the still was tested in many periods all over the year, important observations from the still performance during these period were analysed. The temperature distribution was observed and analysed. Experimental results are presented in the full paper.

  20. Dynamics of primordial phase transitions, primordial magnetic fields, and Big Bang Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Cheng, Baolian

    1993-01-01

    In this thesis, I have studied the dynamics of the inflationary universe and the possible cosmological consequences of a series of phase transitions which the universe may have undergone. Specially, I have studied the dynamics of primordial phase transitions, primordial magnetic fields, and Big Bang Nucleosynthesis. In particular, (1) I have derived the effects of magnetic fields on nucleon and particle reaction rates of astrophysical significance. The sensitivity to the presence of arbitrary degeneracy and polarization has also been examined. (2) I have calculated the effects of magnetic fields on Big Bang Nucleosynthesis and explored the impacts on the abundances of the light elements numerically. An upper limit on the strength and coherence scale of primordial magnetic fields compatible with observations of light element abundances has been placed. (3) I have proposed a new mechanism by which a magnetic field of magnitude 106 gauss is generated on scales of 44 m at the quark-hadron phase transition. The possibility of further enhancements due to dynamo action and of the astrophysical applications are discussed. (4) I have explored the dynamics of a general first order phase transition. A covariant jump condition across a bubble wall, including surface tendon and dissipation, for a nongravitational moving surface, has been derived. Specially, the cosmological quark-hadron phase transition has been examined as a specific application of the general formalism, and the possible mechanism of energy transport during the phase transition is studied. (5) I have examined the role of bulk viscosity in the inflationary universe during the GUT phase transition and its effects on cosmological inflation, density fluctuations, and entropy production. Finally, I have investigated the role of gravitation in an inflationary universe and the possible relationship between gravity and inflation The initial condition and the identification of inflation problems are probed in the

  1. Black hole final state conspiracies

    NASA Astrophysics Data System (ADS)

    McInnes, Brett

    2009-01-01

    The principle that unitarity must be preserved in all processes, no matter how exotic, has led to deep insights into boundary conditions in cosmology and black hole theory. In the case of black hole evaporation, Horowitz and Maldacena were led to propose that unitarity preservation can be understood in terms of a restriction imposed on the wave function at the singularity. Gottesman and Preskill showed that this natural idea only works if one postulates the presence of “conspiracies” between systems just inside the event horizon and states at much later times, near the singularity. We argue that some AdS black holes have unusual internal thermodynamics, and that this may permit the required “conspiracies” if real black holes are described by some kind of sum over all AdS black holes having the same entropy.

  2. The origin, evolution and signatures of primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Subramanian, Kandaswamy

    2016-07-01

    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak  ˜  10-16 Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-α forest are outlined. Constraints from radio and γ-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.

  3. Gene Bionetwork Analysis of Ovarian Primordial Follicle Development

    PubMed Central

    Nilsson, Eric E.; Savenkova, Marina I.; Schindler, Ryan; Zhang, Bin; Schadt, Eric E.; Skinner, Michael K.

    2010-01-01

    Ovarian primordial follicles are critical for female reproduction and comprise a finite pool of gametes arrested in development. A systems biology approach was used to identify regulatory gene networks essential for primordial follicle development. Transcriptional responses to eight different growth factors known to influence primordial follicles were used to construct a bionetwork of regulatory genes involved in rat primordial follicle development. Over 1,500 genes were found to be regulated by the various growth factors and a network analysis identified critical gene modules involved in a number of signaling pathways and cellular processes. A set of 55 genes was identified as potential critical regulators of these gene modules, and a sub-network associated with development was determined. Within the network two previously identified regulatory genes were confirmed (i.e., Pdgfa and Fgfr2) and a new factor was identified, connective tissue growth factor (CTGF). CTGF was tested in ovarian organ cultures and found to stimulate primordial follicle development. Therefore, the relevant gene network associated with primordial follicle development was validated and the critical genes and pathways involved in this process were identified. This is one of the first applications of network analysis to a normal developmental process. These observations provide insights into potential therapeutic targets for preventing ovarian disease and promoting female reproduction. PMID:20661288

  4. The origin, evolution and signatures of primordial magnetic fields.

    PubMed

    Subramanian, Kandaswamy

    2016-07-01

    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak  ∼  10(-16) Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-α forest are outlined. Constraints from radio and γ-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.

  5. Two Japanese cases with microcephalic primordial dwarfism: classical Seckel syndrome and osteodysplastic primordial dwarfism type II.

    PubMed

    Sugio, Y; Tsukahara, M; Kajii, T

    1993-06-01

    A male infant with "classical" Seckel syndrome and a girl with osteodysplastic primordial dwarfism type II are described. The boy with classical Seckel syndrome had severe brain dysplasia, a finding hitherto unreported in patients with this syndrome. The patient with osteodysplastic dwarfism type II had skeletal abnormalities including lumbar scoliosis, a small and high pelvis, metaphyseal flaring of the distal radii and ulnae, V-shaped metaphyseal flaring of the distal femorae, and short metacarpals and phalanges. The mother of this girl was short, microcephalic, and had disproportionately short forearms and legs. In view of this, dominant inheritance of the disease was suggested.

  6. Neutron injection during primordial nucleosynthesis alleviates the primordial Li7 problem

    NASA Astrophysics Data System (ADS)

    Albornoz Vásquez, Daniel; Belikov, Alexander; Coc, Alain; Silk, Joseph; Vangioni, Elisabeth

    2012-09-01

    We present a parametrized study of the effects of free thermal neutron injection on primordial nucleosynthesis, where both the rate and the time scale of injection are varied. This generic approach is found to yield a successful solution for reducing the Li7 abundance without causing significant problems to other elemental abundances. Our analysis demonstrates that hadronic injection, possibly due to decays or annihilations of dark matter particles with a mass of about 1 to 30 GeV, provides a possible solution to an outstanding problem in the standard big bang model.

  7. Polarization bispectrum for measuring primordial magnetic fields

    SciTech Connect

    Shiraishi, Maresuke

    2013-11-01

    We examine the potential of polarization bispectra of the cosmic microwave background (CMB) to constrain primordial magnetic fields (PMFs). We compute all possible bispectra between temperature and polarization anisotropies sourced by PMFs and show that they are weakly correlated with well-known local-type and secondary ISW-lensing bispectra. From a Fisher analysis it is found that, owing to E-mode bispectra, in a cosmic-variance-limited experiment the expected uncertainty in the amplitude of magnetized bispectra is 80% improved in comparison with an analysis in terms of temperature auto-bispectrum alone. In the Planck or the proposed PRISM experiment cases, we will be able to measure PMFs with strength 2.6 or 2.2 nG. PMFs also generate bispectra involving B-mode polarization, due to tensor-mode dependence. We also find that the B-mode bispectrum can reduce the uncertainty more drastically and hence PMFs comparable to or less than 1 nG may be measured in a PRISM-like experiment.

  8. The Primordial Inflation Explorer (PIXIE) Mission

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.; Chuss, David T.; Dotson, Jessie L.; Fixsen, Dale J.; Halpern, Mark; Hinshaw, Gary F.; Meyer, Stephan M.; Moseley, S. Harvey; Seiffert, Michael D.; Spergel, David N.; hide

    2011-01-01

    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from frequencies 30 GHz to 6 THz (I cm to 50 I-tm wavelength). PIXIE uses a polarizing Michelson interferometer with 2.7 K optics to measure the difference spectrum between two orthogonal linear polarizations from two co-aligned beams. Either input can view either the sky or a temperature-controlled absolute reference blackbody calibrator. The multimoded optics and high etendu provide sensitivity comparable to kilo-pixel focal plane arrays, but with greatly expanded frequency coverage while using only 4 detectors total. PIXIE builds on the highly successful COBEIFIRAS design by adding large-area polarization-sensitive detectors whose fully symmetric optics are maintained in thermal equilibrium with the CMB. The highly symmetric nulled design provides redundant rejection of major sources of systematic uncertainty. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much less than 10(exp -3). PIXIE will also return a rich data set constraining physical processes ranging from Big Bang cosmology, reionization, and large-scale structure to the local interstellar medium. Keywords: cosmic microwave background, polarization, FTS, bolometer

  9. Primordial gravitational waves in running vacuum cosmologies

    NASA Astrophysics Data System (ADS)

    Tamayo, D. A.; Lima, J. A. S.; Alves, M. E. S.; de Araujo, J. C. N.

    2017-01-01

    We investigate the cosmological production of gravitational waves in a nonsingular flat cosmology powered by a "running vacuum" energy density described by ρΛ ≡ ρΛ(H), a phenomenological expression potentially linked with the renormalization group approach in quantum field theory in curved spacetimes. The model can be interpreted as a particular case of the class recently discussed by Perico et al. (2013) [25] which is termed complete in the sense that the cosmic evolution occurs between two extreme de Sitter stages (early and late time de Sitter phases). The gravitational wave equation is derived and its time-dependent part numerically integrated since the primordial de Sitter stage. The generated spectrum of gravitons is also compared with the standard calculations where an abrupt transition, from the early de Sitter to the radiation phase, is usually assumed. It is found that the stochastic background of gravitons is very similar to the one predicted by the cosmic concordance model plus inflation except at higher frequencies (ν ≳ 100 kHz). This remarkable signature of a "running vacuum" cosmology combined with the proposed high frequency gravitational wave detectors and measurements of the CMB polarization (B-modes) may provide a new window to confront more conventional models of inflation.

  10. Non-biogenic petroleum on primordial Earth

    NASA Astrophysics Data System (ADS)

    Keheyan, Y.; Cataldo, F.; Yeghikyan, A.

    Astrophysical and cosmochemical data show that many kinds of hydrocarbons are widespreaded in space, including giant molecular clouds (GMC), diffuse interstellar medium, comets, interplanetary dust particles and carbonaceous meteorites. Here effort is made to show a close relation between high-molecular weight hydrocarbons, observed in space and existed on primordial Earth. Results of astrochemical modeling of dust grains in dense collapsing cores of GMCs also are presented. They show that about 10 % of the total abundance of dust grains may be resulted as complex aliphatic hydrocarbons. This dust serves as initial material for comets, formed in the protosolar nebula. A problem of survival of cometary organics during impact onto the Earth is discussed, and it is shown, that a so called 'soft-landing comet' hypothesis may explain an accumulation of complex hydrocarbons on the primitive Earth's surface. We conclude that a significant fraction of pre-biotic petroleum was delivered by extraterrestrial matter and might well have been of considerable importance in the development of life.

  11. Rebuilding pluripotency from primordial germ cells.

    PubMed

    Leitch, Harry G; Nichols, Jennifer; Humphreys, Peter; Mulas, Carla; Martello, Graziano; Lee, Caroline; Jones, Ken; Surani, M Azim; Smith, Austin

    2013-01-01

    Mammalian primordial germ cells (PGCs) are unipotent progenitors of the gametes. Nonetheless, they can give rise directly to pluripotent stem cells in vitro or during teratocarcinogenesis. This conversion is inconsistent, however, and has been difficult to study. Here, we delineate requirements for efficient resetting of pluripotency in culture. We demonstrate that in defined conditions, routinely 20% of PGCs become EG cells. Conversion can occur from the earliest specified PGCs. The entire process can be tracked from single cells. It is driven by leukemia inhibitory factor (LIF) and the downstream transcription factor STAT3. In contrast, LIF signaling is not required during germ cell ontogeny. We surmise that ectopic LIF/STAT3 stimulation reconstructs latent pluripotency and self-renewal. Notably, STAT3 targets are significantly upregulated in germ cell tumors, suggesting that dysregulation of this pathway may underlie teratocarcinogenesis. These findings demonstrate that EG cell formation is a robust experimental system for exploring mechanisms involved in reprogramming and cancer.

  12. New constraints on the primordial magnetic field

    SciTech Connect

    Yamazaki, Dai G.; Ichiki, Kiyotomo; Kajino, Toshitaka; Mathews, Grant J.

    2010-01-15

    We present the newest statistical and numerical analysis of the matter and cosmic microwave background power spectrum with effects of the primordial magnetic field (PMF) included. New limits to the PMF strength and power spectral index are obtained based upon the accumulated data for both the matter and CMB power spectra on small angular scales. We find that a maximum develops in the probability distribution for a magnitude of the PMF of |B{sub {lambda}|}=0.85{+-}1.25({+-}1{sigma}) nG on a comoving scale of at 1 Mpc, corresponding to upper limits of <2.10 nG (68% CL) and <2.98 nG (95% CL). While for the power spectral index we find n{sub B}=-2.37{sub -0.73}{sup +0.88}({+-}1{sigma}), corresponding to upper limits of <-1.19 (68% CL) and <-0.25 (95% CL). This result provides new constraints on models for magnetic field generation and the physics of the early universe. We conclude that future observational programs for the CMB and matter power spectrum will likely provide not only upper limits but also lower limits to the PMF parameters.

  13. Primordial fluctuations from deformed quantum algebras

    SciTech Connect

    Day, Andrew C.; Brown, Iain A.; Seahra, Sanjeev S. E-mail: ibrown@astro.uio.no

    2014-03-01

    We study the implications of deformed quantum algebras for the generation of primordial perturbations from slow-roll inflation. Specifically, we assume that the quantum commutator of the inflaton's amplitude and momentum in Fourier space gets modified at energies above some threshold M{sub *}. We show that when the commutator is modified to be a function of the momentum only, the problem of solving for the post-inflationary spectrum of fluctuations is formally equivalent to solving a one-dimensional Schr and quot;odinger equation with a time dependent potential. Depending on the class of modification, we find results either close to or significantly different from nearly scale invariant spectra. For the former case, the power spectrum is characterized by step-like behaviour at some pivot scale, where the magnitude of the jump is O(H{sup 2}/M{sub *}{sup 2}). (H is the inflationary Hubble parameter.) We use our calculated power spectra to generate predictions for the cosmic microwave background and baryon acoustic oscillations, hence demonstrating that certain types of deformations are incompatible with current observations.

  14. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Astrophysics Data System (ADS)

    Gandilo, Natalie N.; Ade, Peter A. R.; Benford, Dominic; Bennett, Charles L.; Chuss, David T.; Dotson, Jessie L.; Eimer, Joseph R.; Fixsen, Dale J.; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F.; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Alan; Lowe, Luke; McMahon, Jeff J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. H.; Pawlyk, Samuel; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes G.; Sullivan, Dan F.; Switzer, Eric R.; Taraschi, Peter; Tucker, Carole E.; Wollack, Edward J.

    2016-07-01

    The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne telescope designed to measure the polarization of the Cosmic Microwave Background on large angular scales. PIPER will map 85% of the sky at 200, 270, 350, and 600 GHz over a series of 8 conventional balloon flights from the northern and southern hemispheres. The first science flight will use two 32 × 40 arrays of backshort-under-grid transition edge sensors, multiplexed in the time domain, and maintained at 100 mK by a Continuous Adiabatic Demagnetization Refrigerator. Front- end cryogenic Variable-delay Polarization Modulators provide systematic control by rotating linear to circular polarization at 3 Hz. Twin telescopes allow PIPER to measure Stokes I, Q, U , and V simultaneously. The telescope is maintained at 1.5 K in an LHe bucket dewar. Cold optics and the lack of a warm window permit sensitivity at the sky-background limit. The ultimate science target is a limit on the tensor-to-scalar ratio of r ˜ 0.007, from the reionization bump to l ˜ 300. PIPER's first flight will be from the Northern hemisphere, and overlap with the CLASS survey at lower frequencies. We describe the current status of the PIPER instrument.

  15. Transient translational quiescence in primordial germ cells.

    PubMed

    Oulhen, Nathalie; Swartz, S Zachary; Laird, Jessica; Mascaro, Alexandra; Wessel, Gary

    2017-02-24

    Stem cells in animals often exhibit a slow cell cycle and/or low transcriptional activity referred to as quiescence. Here we report that the translational activity in the primordial germ cells (PGCs) of the sea urchin embryo (Strongylocentrotus purpuratus) is quiescent. We measured new protein synthesis with O-propargyl-puromycin, and L-homopropargylglycine, Click-iT technologies and determined that these cells synthesize protein at only 6% the level of their adjacent somatic cells. Knock-down of translation of the RNA-binding protein Nanos2 by morpholino anti-sense oligonucleotides, or knock-out of the Nanos2 gene by CRISPR/Cas9 resulted in a significant, but partial increase (47%) in general translation specifically in the PGCs. We found that the mRNA of the translation factor eEF1A is excluded from the PGCs in a Nanos2-dependent manner, a consequence of a Nanos/Pumilio response element (PRE) in its 3'UTR. In addition to eEF1A, the cytoplasmic pH of the PGCs appears to repress translation and simply increasing the pH also significantly restores translation selectively in the PGCs. We conclude that the PGCs of this sea urchin institute parallel pathways to quiesce translation thoroughly but transiently.

  16. Black hole thermodynamics based on unitary evolutions

    NASA Astrophysics Data System (ADS)

    Feng, Yu-Lei; Chen, Yi-Xin

    2015-10-01

    In this paper, we try to construct black hole thermodynamics based on the fact that the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein-Hawking entropy SBH may not be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's ‘first law’ may not simply be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described effectively in a unitary manner, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics.

  17. Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin.

    PubMed

    Havenith, George; Bröde, Peter; den Hartog, Emiel; Kuklane, Kalev; Holmer, Ingvar; Rossi, Rene M; Richards, Mark; Farnworth, Brian; Wang, Xiaoxin

    2013-03-15

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has found little use in recent literature. In this experiment a thermal manikin, (MTNW, Seattle, WA) was used to determine the effective cooling power of moisture evaporation. The manikin measures both heat loss and mass loss independently, allowing a direct calculation of an effective latent heat of evaporation (λeff). The location of the evaporation was varied: from the skin or from the underwear or from the outerwear. Outerwear of different permeabilities was used, and different numbers of layers were used. Tests took place in 20°C, 0.5 m/s at different humidities and were performed both dry and with a wet layer, allowing the breakdown of heat loss in dry and evaporative components. For evaporation from the skin, λeff is close to the theoretical value (2,430 J/g) but starts to drop when more clothing is worn, e.g., by 11% for underwear and permeable coverall. When evaporation is from the underwear, λeff reduction is 28% wearing a permeable outer. When evaporation is from the outermost layer only, the reduction exceeds 62% (no base layer), increasing toward 80% with more layers between skin and wet outerwear. In semi- and impermeable outerwear, the added effect of condensation in the clothing opposes this effect. A general formula for the calculation of λeff was developed.

  18. Horst Meyer and Quantum Evaporation

    NASA Astrophysics Data System (ADS)

    Balibar, S.

    2016-11-01

    With their 1963 article in Cryogenics Horst Meyer and his collaborators triggered intense research activity on the evaporation of superfluid helium. Discussing this subject with him in 1975 was enlightening. Fifty years later, the analogy between the photoelectric effect and the evaporation of superfluid helium in the low temperature limit is not yet clear, although remarkable progress has been made in its observation and its understanding. This special issue of the Journal of Low Temperature Physics is an opportunity to recall the history of quantum evaporation, and to express my gratitude to Horst Meyer. It describes quickly most of the experimental and theoretical works which have been published on quantum evaporation during the last 50 years, but it is not a comprehensive review of this fascinating subject.

  19. Dual manifold heat pipe evaporator

    DOEpatents

    Adkins, Douglas R.; Rawlinson, K. Scott

    1994-01-01

    An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

  20. Dual manifold heat pipe evaporator

    DOEpatents

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  1. Evaporation from open microchannel grooves.

    PubMed

    Kachel, Sibylle; Zhou, Ying; Scharfer, Philip; Vrančić, Christian; Petrich, Wolfgang; Schabel, Wilhelm

    2014-02-21

    The evaporation of water from open u-shaped microchannel grooves was investigated with particular emphasis on the roles of channel width and air flow conditions. Given the small dimensions of the microchannels, all measurements were conducted in a range where convection and diffusion are of equal importance and known correlations for the calculation of mass transfer coefficients cannot be applied. The evaporation rates were measured using a new optical method and a gravimetric method. Both measurement methods yielded mass transfer coefficients that are in agreement with each other. The observed relation between mass transfer coefficient, air velocity and channel width vastly differs from the predictions obtained from macroscopic structures. With respect to diagnostic devices we conclude that analyte concentration in an open microchannel groove strongly increases even within short times due to the evaporation process and we show that wider channels are more favourable in terms of minimizing the relative evaporation rate.

  2. Explosive evaporation in solar flares

    NASA Technical Reports Server (NTRS)

    Fisher, George H.

    1987-01-01

    This paper develops a simple analytical model for the phenomenon of 'explosive evaporation' driven by nonthermal electron heating in solar flares. The model relates the electron energy flux and spectrum, plus details of the preflare atmosphere, to the time scale for explosive evaporation to occur, the maximum pressure and temperature to be reached, rough estimates for the UV pulse emission flux and duration, and the evolution of the blueshifted component of the soft X-ray lines. An expression is given for the time scale for buildup to maximum pressures and the onset of rapid motion of the explosively evaporating plasma. This evaporation can excite a rapid response of UV line and continuum emission. The emission lines formed in the plasma approach a given emissivity-weighted blueshift speed.

  3. Evaporation Tower With Prill Nozzles

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Tower more efficient than conventional evaporation equipment. Liquids such as milk and fruit juice concentrated by passing them through tiny nozzle to form droplets, then allowing droplets to fall through evacuated tower with cooled walls.

  4. Early Structure Formation from Primordial Density Fluctuations with a Blue, Tilted Power Spectrum

    NASA Astrophysics Data System (ADS)

    Hirano, Shingo; Zhu, Nick; Yoshida, Naoki; Spergel, David; Yorke, Harold W.

    2015-11-01

    While observations of large-scale structure and the cosmic microwave background (CMB) provide strong constraints on the amplitude of the primordial power spectrum (PPS) on scales larger than 10 Mpc, the amplitude of the power spectrum on sub-galactic length scales is much more poorly constrained. We study early structure formation in a cosmological model with a blue-tilted PPS. We assume that the standard scale-invariant PPS is modified at small length scales as P(k)∼ {k}{m{{s}}} with ms > 1. We run a series of cosmological hydrodynamic simulations to examine the dependence of the formation epoch and the characteristic mass of primordial stars on the tilt of the PPS. In models with ms > 1, star-forming gas clouds are formed at z > 100 when the formation of hydrogen molecules is inefficient because the intense CMB radiation destroys chemical intermediates. Without efficient coolant, the gas clouds gravitationally contract while retaining a high temperature. The protostars formed in such “hot” clouds grow very rapidly through accretion to become extremely massive stars that may leave massive black holes with a few hundred solar masses at z > 100. The shape of the PPS critically affects the properties and the formation epoch of the first generation of stars. Future experiments on CMB polarization and spectrum distortion may provide important information on the nature of the first stars and their formation epoch, and hence on the shape of the small-scale power spectrum.

  5. Black Voices

    ERIC Educational Resources Information Center

    McGowan, Jr., Martin J.

    1969-01-01

    "A television show by blacks for blacks--coupled with a program of training for black television technicians--was the basic concept of the Black Voices" series aired over KTCA-TV and KTCI-TV in Minneapolis and St. Paul during the 1968-1969 television season. The series was designed to provide understanding among blacks of the Twin…

  6. [Soil evaporation under perforated plastic mulch].

    PubMed

    Li, Yi; Wang, Quanjiu; Wang, Wenyan; Shao, Ming'an

    2005-03-01

    In arid and semiarid regions of northwestern China, where evaporation exceeds precipitation, perforated plastic mulches are widely used to decrease soil water evaporation. To determine the effects of various perforated plastic mulches on soil water evaporation after irrigation, a soil column experiment was conducted, which consisted of six mulches with different perforated rates and four levels of irrigation, and the soil water evaporation from each soil column was measured. The results showed that with 100% perforated mulch, the cumulative evaporation was 2.8-48.5 times higher than that of the control, and increased with increasing irrigation amount. There was a linear relationship between cumulative evaporation and time, which followed the Gardner's theory of bare soil evaporation. A three-factor (evaporation time, perforated rate and irrigation amount) function of cumulative evaporation and the functions of relative cumulative evaporation and cumulative evaporation per unit hole area film were established, which fitted the observed data very well.

  7. DWPF Recycle Evaporator Simulant Tests

    SciTech Connect

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  8. Thermal corpuscular black holes

    NASA Astrophysics Data System (ADS)

    Casadio, Roberto; Giugno, Andrea; Orlandi, Alessio

    2015-06-01

    We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number N of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy m (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy ω >m ). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding N -particle state can be collectively described by a single-particle wave function given by a superposition of a total ground state with energy M =N m and a Planckian distribution for E >M at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction precisely related with the Hawking component. By means of the horizon wave function for the system, we finally show the backreaction of modes with ω >m reduces the Hawking flux. Both corrections, to the entropy and to the Hawking flux, suggest the evaporation properly stops for vanishing mass, if the black hole is in this particular quantum state.

  9. The Primordial Abundance of 4He Revisited

    NASA Astrophysics Data System (ADS)

    Izotov, Yuri I.; Thuan, Trinh X.

    1998-06-01

    We use a sample of 45 low-metallicity H II regions to determine the primordial helium abundance Yp with a precision of better than 1%. The data includes new spectrophotometric observations of 15 blue compact galaxies (BCGs) with oxygen abundance 12 + log (O/H) between 7.83 and 8.35 (Z⊙/13 <= Z <= Z⊙/4), most of which were selected from the First Byurakan and the University of Michigan objective prism surveys. We have included many low-metallicity BCGs in our sample, including the two most metal-deficient galaxies known, I Zw 18 (Z⊙/55) and SBS 0335-052 (Z⊙/43). We have carefully investigated the physical effects that may make the He I line intensities deviate from their recombination values, such as collisional and fluorescent enhancements, underlying He I stellar absorption, and absorption by Galactic interstellar Na I. By extrapolating the Y versus O/H and Y versus N/H linear regressions to O/H = N/H = 0, we obtain Yp = 0.244 +/- 0.002 and 0.245 +/- 0.001, respectively, in agreement with the study of Izotov, Thuan, & Lipovetsky, but higher than previous determinations (Yp = 0.230-0.234). Part of the difference comes from the fact that previous investigators have used the northwest component of I Zw 18 in the determination of Yp. This component is subject to strong underlying He I stellar absorption that reduces the He I line intensities by 5%-25%. The derived Y is 0.233 +/- 0.008 from the He I λ6678 line. Instead, by using the southeast component of I Zw 18, which is much less subject to underlying He I stellar absorption, we obtain Y = 0.242 +/- 0.009. The mean Y of the two most metal-deficient BCGs, I Zw 18 and SBS 0335-052, is Ȳ=0.245+/-0.004, in excellent agreement with the Yp derived from the linear regressions. We derive a slope dY/dZ = 2.3 +/- 1.0, considerably smaller than those derived before. With this smaller slope and taking into account the errors, chemical evolution models with an outflow of well-mixed material can be built for star

  10. Primordial Inflation Polarization Explorer (Phase 2)

    NASA Astrophysics Data System (ADS)

    Kogurt, Alan; Bennett, Charles

    This is the Lead Proposal for the proposed investigation "Primordial Inflation Polarization Explorer (Phase 2)" We propose to fly the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization of the cosmic microwave background (CMB) and search for the imprint of gravitational waves produced during an inflationary epoch in the early universe. Such a signal is expected to exist: the simplest inflation models predict tensor-to-scalar ratio 0.01 < r < 0.16 corresponding to detectable amplitudes in the range 30--100 nK. Detection of the inflationary signal would have profound consequences for both cosmology and high-energy physics. Not only would it establish inflation as a physical reality, it would provide a direct, model- independent determination of the relevant energy scale, shedding light on physics at energies twelve orders of magnitude beyond those accessible to direct experimentation in particle accelerators. PIPER is a balloon-borne instrument optimized to detect the inflationary signal on large angular scales. It consists of two co-aligned telescopes cooled to 1.5 K within a large liquid helium bucket dewar. A variable-delay polarization modulator (VPM) on each telescope chops between linear and circular polarization to isolate the polarized signal while rejecting the much brighter unpolarized emission. PIPER's innovative architecture combines cryogenic optics with kilo-pixel detector arrays to provide unprecedented sensitivity to CMB polarization. The fast modulation between linear and circular polarization takes advantage of the lack of astrophysical circular polarization to eliminate common sources of systematic error. The sensitivity and control of systematic errors in turn enable measurements over most of the sky from mid-latitude launch sites; long-duration Antarctic flights are not required. With sensitivity r < 0.007 at 95% CL, PIPER will either detect the inflationary signal or rule out nearly all large-field inflation models

  11. Primordial Inflation Polarization Explorer (Phase 3)

    NASA Astrophysics Data System (ADS)

    Kogut, Alan

    This is the Lead Proposal for the investigation "Primordial Inflation Polarization Explorer (Phase 3)". We propose to complete and fly the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization of the cosmic microwave background (CMB) and search for the imprint of gravitational waves produced during an inflationary epoch in the early universe. Detection of the inflationary signal would have profound consequences for both cosmology and high-energy physics. Not only would it establish inflation as a physical reality, it would provide a direct, model-independent determination of the relevant energy scale, shedding light on physics at energies twelve orders of magnitude beyond those accessible to direct experimentation in particle accelerators. The recent detection of CMB polarization by the BICEP2 instrument brings new urgency to the field. The BICEP2 detection at degree angular scales is consistent with inflation, but the amplitude is a factor of two higher than upper limits set by unpolarized data. A critical test is the rise in power at large angular scales predicted by inflation. Detecting this rise would confirm the signal's inflationary origin, fulfilling a long quest for cosmology while providing new insight into physics at the highest energies. PIPER is the only suborbital instrument capable of measuring CMB polarization on the large angular scales needed to test an inflationary origin for the BICEP2 detection. PIPER is a balloon-borne instrument, optimized to detect the inflationary signal on large angular scales. It consists of two co-aligned telescopes cooled to 1.5 K within a large liquid helium bucket dewar. A variable-delay polarization modulator (VPM) on each telescope chops between linear and circular polarization to isolate the polarized signal while rejecting the much brighter unpolarized emission. Four 32 x 40 element detector arrays provide background-limited sensitivity. A series of flights from mid-latitude sites will map

  12. The Formation of Primordial Luminous Objects

    SciTech Connect

    Ripamonti, Emanuele; Abel, Tom; /KIPAC, Menlo Park

    2005-08-04

    The scientific belief that the universe evolves in time is one of the legacies of the theory of the Big Bang. The concept that the universe has an history started to attract the interest of cosmologists soon after the first formulation of the theory: already Gamow (1948; 1949) investigated how and when galaxies could have been formed in the context of the expanding Universe. However, the specific topic of the formation (and of the fate) of the first objects dates to two decades later, when no objects with metallicities as low as those predicted by primordial nucleosynthesis (Z {approx}< 10{sup -10} {approx} 10{sup -8}Z{sub {circle_dot}}) were found. Such concerns were addressed in two seminal papers by Peebles & Dicke (1968; hereafter PD68) and by Doroshkevich, Zel'Dovich & Novikov (1967; hereafter DZN67), introducing the idea that some objects could have formed before the stars we presently observe. (1) Both PD68 and DZN67 suggest a mass of {approx} 10{sup 5} M{sub {circle_dot}} for the first generation of bound systems, based on the considerations on the cosmological Jeans length (Gamow 1948; Peebles 1965) and the possible shape of the power spectrum. (2) They point out the role of thermal instabilities in the formation of the proto-galactic bound object, and of the cooling of the gas inside it; in particular, PD68 introduces H{sub 2} cooling and chemistry in the calculations about the contraction of the gas. (3) Even if they do not specifically address the occurrence of fragmentation, these papers make two very different assumptions: PD68 assumes that the gas will fragment into ''normal'' stars to form globular clusters, while DZN67 assumes that fragmentation does not occur, and that a single ''super-star'' forms. (4) Finally, some feedback effects as considered (e.g. Peebles & Dicke considered the effects of supernovae). Today most of the research focuses on the issues when fragmentation may occur, what objects are formed and how they influence subsequent

  13. PRISM: Recovery of the primordial spectrum from Planck data

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Paykari, P.; Starck, J.-L.; Sureau, F.; Bobin, J.; Rassat, A.

    2014-11-01

    Aims: The primordial power spectrum describes the initial perturbations that seeded the large-scale structure we observe today. It provides an indirect probe of inflation or other structure-formation mechanisms. In this Letter, we recover the primordial power spectrum from the Planck PR1 dataset, using our recently published algorithm PRISM. Methods: PRISM is a sparsity-based inversion method that aims at recovering features in the primordial power spectrum from the empirical power spectrum of the cosmic microwave background (CMB). This ill-posed inverse problem is regularised using a sparsity prior on features in the primordial power spectrum in a wavelet dictionary. Although this non-parametric method does not assume a strong prior on the shape of the primordial power spectrum, it is able to recover both its general shape and localised features. As a results, this approach presents a reliable way of detecting deviations from the currently favoured scale-invariant spectrum. Results: We applied PRISM to 100 simulated Planck data to investigate its performance on Planck-like data. We then applied PRISM to the Planck PR1 power spectrum to recover the primordial power spectrum. We also tested the algorithm's ability to recover a small localised feature at k ~ 0.125 Mpc-1, which caused a large dip at ℓ ~ 1800 in the angular power spectrum. Conclusions: We find no significant departures from the fiducial Planck PR1 near scale-invariant primordial power spectrum with As = 2.215 × 10-9 and ns = 0.9624.

  14. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Technical Reports Server (NTRS)

    Lazear, Justin Scott; Ade, Peter A.; Benford, Dominic J.; Bennett, Charles L.; Chuss, David T.; Dotson, Jessie L.; Eimer, Joseph R.; Fixsen, Dale J.; Halpern, Mark; Hinderks, James; hide

    2014-01-01

    The Primordial Inflation Polarization ExploreR (Piper) is a balloon-borne cosmic microwave background (CMB) polarimeter designed to search for evidence of inflation by measuring the large-angular scale CMB polarization signal. Bicep2 recently reported a detection of B-mode power corresponding to the tensor-to-scalar ratio r = 0.2 on approximately 2 degree scales. If the Bicep2 signal is caused by inflationary gravitational waves (IGWs), then there should be a corresponding increase in B-mode power on angular scales larger than 18 degrees. Piper is currently the only suborbital instrument capable of fully testing and extending the Bicep2 results by measuring the B-mode power spectrum on angular scales theta ? = approximately 0.6 deg to 90 deg, covering both the reionization bump and recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007, and four frequency bands to distinguish foregrounds. Piper will accomplish this by mapping 85% of the sky in four frequency bands (200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from the northern and southern hemispheres. The instrument has background-limited sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal onto four 32×40-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 140 milli-Kelvin. Polarization sensitivity and systematic control are provided by front-end Variabledelay Polarization Modulators (VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow Piper to instantaneously measure the full Stokes vector (I,Q,U,0V) for each pointing. We describe the Piper instrument and progress towards its first flight.

  15. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Ade, Peter A. R.; Benford, Dominic J.; Bennett, Charles L.; Dotson, Jessie L.; Eimer, Joseph R.; Fixsen, Dale J.; Halpern, Mark; Hilton, Gene; Hinderks, James; Hinshaw, Gary; Irwin, Kent; Jackson, Michael L.; Jah, Muzariatu A.; Jethava, Nikhil; Jhabvala, Christine; Kogut, Alan J.; Lowe, Luke; McCullagh, Nuala; Miller, Timothy; Mirel, Paul; Moseley, S. Harvey; Rodriguez, Samelys; Rostem, Karwan; Sharp, Elmer

    2010-01-01

    The Primordial Inflation Polarization Explorer (PIPER) is it balloon-borne instrument designed to search for the faint signature of inflation in the polarized component of the cosmic microwave background (C-N-113). Each flight will be configured for a single frequency, but in order to aid in the removal of the polarized foreground signal due to Galactic dust, the filters will be changed between flights. In this way, the CMB polarization at a total of four different frequencies (200, 270, 350, and 600 GHz) will be, measured on large angular scales. PIPER consists of a pair of cryogenic telescopes, one for measuring each of Stokes Q and U in the instrument frame. Each telescope receives both linear orthogonal polarizations in two 32 x 40 element planar arrays that utilize Transition-Edge Sensors (TES). The first element in each telescope is a variable-delay polarization modulator (VPM) that fully modulates the linear Stokes parameter to which the telescope is sensitive. There are several advantages to this architecture. First, by modulating at the front of the optics, instrumental polarization is unmodulated and is therefore cleanly separated from source polarization. Second, by implementing this system with the appropriate symmetry, systematic effects can be further mitigated. In the PIPER design, many of the. systematics are manifest in the unmeasured linear Stokes parameter for each telescope and this can be separated from the desired signal. Finally, the modulation cycle never mixes the Q and U linear Stokes parameters, and thus residuals in the modulation do not twist the observed polarization vector. This is advantageous because measuring the angle of linear polarization is critical for separating the inflationary signal from other polarized components.

  16. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Ade, Peter A. R.; Benford, Dominic J.; Bennett, Charles L.; Dotson, Jessie L.; Eimer, Joseph R.; Fixsen, Dale J.; Halpern, Mark; Hilton, Gene; Hinderks, James; hide

    2010-01-01

    The Primordial Inflation Polarization Explorer (PIPER) is it balloon-borne instrument designed to search for the faint signature of inflation in the polarized component of the cosmic microwave background (C-N-113). Each flight will be configured for a single frequency, but in order to aid in the removal of the polarized foreground signal due to Galactic dust, the filters will be changed between flights. In this way, the CMB polarization at a total of four different frequencies (200, 270, 350, and 600 GHz) will be, measured on large angular scales. PIPER consists of a pair of cryogenic telescopes, one for measuring each of Stokes Q and U in the instrument frame. Each telescope receives both linear orthogonal polarizations in two 32 x 40 element planar arrays that utilize Transition-Edge Sensors (TES). The first element in each telescope is a variable-delay polarization modulator (VPM) that fully modulates the linear Stokes parameter to which the telescope is sensitive. There are several advantages to this architecture. First, by modulating at the front of the optics, instrumental polarization is unmodulated and is therefore cleanly separated from source polarization. Second, by implementing this system with the appropriate symmetry, systematic effects can be further mitigated. In the PIPER design, many of the. systematics are manifest in the unmeasured linear Stokes parameter for each telescope and this can be separated from the desired signal. Finally, the modulation cycle never mixes the Q and U linear Stokes parameters, and thus residuals in the modulation do not twist the observed polarization vector. This is advantageous because measuring the angle of linear polarization is critical for separating the inflationary signal from other polarized components.

  17. AGN III—primordial activity in the nuclei of disk galaxies with pseudobulges

    NASA Astrophysics Data System (ADS)

    Komberg, B. V.; Ermash, A. A.

    2013-06-01

    Observational data on the evolution of quasars and galaxies of various morphological types and numerical simulations carried out by various groups are used to argue that low-redshift ( z < 0.5) quasars of types I and II, identified with massive elliptical and spiral galaxies with classical bulges, cannot be undergoing a single, late phase of activity; i.e., their activity cannot be "primordial," and must have "flared up" at multiple times in the past. This means that their appearance at low z is associated with recurrence of their activity—i.e., with major mergers of gas-rich galaxies (so-called wet major mergers)—since their lifetimes in the active phase do not exceed a few times 107 yrs. Only objects we have referred to earlier as AGN III, which are associated with the nuclei of isolated, late-type spiral galaxies with low-mass, rapidly-rotating "pseudobulges," could represent primordial AGNs at low z. The black holes in such galaxies have masses M BH < 107 M ⊙, and the peculiarities of their nuclear spectra suggest that they may have very high specific rotational angular momenta per unit mass. Type I narrow-line (widths less than 2000 km/s) Seyfert galaxies (NLSyIs) with pseudobulges and black-hole masses M BH < 107 M ⊙ may be characteristic representatives of the AGN III population. Since NLSyI galaxies have pseudobulges while Type I broad-line Seyfert galaxies have classical bulges, these two types of galaxies cannot represent different evolutionary stages of a single type of object. It is possible that the precursors of NLSyIs are "Population A" quasars.

  18. Turkish Undergraduates' Misconceptions of Evaporation, Evaporation Rate, and Vapour Pressure

    NASA Astrophysics Data System (ADS)

    Canpolat, Nurtaç

    2006-12-01

    This study focused on students' misconceptions related to evaporation, evaporation rate, and vapour pressure. Open-ended diagnostic questions were used with 107 undergraduates in the Primary Science Teacher Training Department in a state university in Turkey. In addition, 14 students from that sample were interviewed to clarify their written responses and to further probe their understandings of the questions asked in the test. The findings revealed a number of misconceptions, many of which have not been previously documented. The results have implications for tertiary level teaching suggesting that a substantial review of teaching strategies is needed.

  19. Primordial image and the archetypal design of art.

    PubMed

    Johnson, N B

    1991-07-01

    This paper extends Jung's work on the relationship of art to (postulated) archetypes of the collective unconscious. Archetypes of the collective unconscious, according to Jung, are revealed to ego consciousness only by way of images--images of a specific form. Jung suggests that archetypes, primordial images, combine two aspects in a single form and are therefore paradoxical. The wise old man and youth and hermaphrodites illustrate Jung's definition of a primordial image. My study of Jung's illustrations concludes that he is referring to what I term double-figures as the design form of primordial imagery. I elaborate upon the design form of double-figures, and illustrate my conception of archetypal imagery through comparative analysis of nine cases of double-figure imagery from selected prehistoric and contemporary societies. Double-figures, as archetypal primordial imagery of the collective unconscious, are spontaneously generated, autonomous, and known to a wide variety of societies. I distinguish between form and content in the study of primordial imagery, and conclude with a summary of the importance of Jung to the cross-cultural study of art.

  20. Probing the primordial power spectrum with cluster number counts

    SciTech Connect

    Chantavat, Teeraparb; Gordon, Christopher; Silk, Joseph

    2009-04-15

    We investigate how well galaxy cluster number counts can constrain the primordial power spectrum. Measurements of the primary anisotropies in the cosmic microwave background may be limited, by the presence of foregrounds from secondary sources, to probing the primordial power spectrum at wave numbers less than about 0.30h Mpc{sup -1}. We break up the primordial power spectrum into a number of nodes and interpolate linearly between each node. This allows us to show that cluster number counts could then extend the constraints on the form of the primordial power spectrum up to wave numbers of about 0.45h Mpc{sup -1}. We estimate combinations of constraints from PLANCK and SPT primary cosmic microwave background and their respective Sunyaev-Zeldovich surveys. We find that their constraining ability is limited by uncertainties in the mass-scaling relations. We also estimate the constraint from clusters detected from a SNAP-like gravitational lensing survey. As there is an unambiguous and simple relationship between the filtered shear of the lensing survey and the cluster mass, it may be possible to obtain much tighter constraints on the primordial power spectrum in this case.

  1. Evaporation from layered porous media

    NASA Astrophysics Data System (ADS)

    Shokri, N.; Lehmann, P.; Or, D.

    2010-06-01

    Evaporation rates from porous media may vary considerably due to changes in internal transport mechanisms and potential interruption of hydraulic continuity; both are influenced by media pore space properties. Evaporation behavior in layered porous media is affected by thickness and sequence of layering and capillary characteristics of each layer. We propose a composite characteristic length for predicting drying front depth at the end of a period with a high and constant drying rate (stage 1 evaporation) from layered porous media. The model was tested in laboratory experiments using Hele-Shaw cells filled with alternating layers of coarse and fine sands considering different combinations of thicknesses and positions. The presence of textural interfaces affects drying rate, modifies liquid phase configuration, and affects the dynamics of the receding drying front. Neutron radiography measurements were used to delineate dynamics of liquid phase distribution with high temporal and spatial resolution. Results show that air invading an interface between fine and coarse sand layers results in a capillary pressure jump and subsequent relaxation that significantly modify liquid phase distribution compared with evaporation from homogeneous porous media. Insights are potentially useful for designing mulching strategies and capillary barriers aimed at reducing evaporative losses.

  2. Correlation for Sessile Drop Evaporation

    NASA Astrophysics Data System (ADS)

    Kelly-Zion, Peter; Pursell, Christopher; Wassom, Gregory; Mandelkorn, Brenton; Nkinthorn, Chris

    2016-11-01

    To better understand how the evaporation of sessile drops and small puddles is controlled by the vapor phase transport mechanisms of mass diffusion and buoyancy-induced convection, the evaporation rates of eight liquids evaporating under a broad range of ambient conditions were correlated with physical and geometrical properties. Examination of the correlation provides valuable insight into how the roles of diffusive and convective transport change with physical and geometrical parameters. The correlation predicts measured evaporation rates to within a root-mean-square error of 7.3%. The correlation is composed of two terms, a term which provides the rate of evaporation under diffusion-only conditions, and a term which provides the influence of convection. This second term suggests the manner in which the processes of diffusion and convection are coupled. Both processes are dependent on the distribution of the vapor, through the molar concentration gradient for diffusion and through the mass density gradient for convection. The term representing the influence of convection is approximately inversely proportional to the square root of diffusivity, indicating the tendency of diffusive transport to reduce convection by making the vapor distribution more uniform. Financial support was provided by the ACS Petroleum Research Fund.

  3. Salt stains from evaporating droplets

    PubMed Central

    Shahidzadeh, Noushine; Schut, Marthe F. L.; Desarnaud, Julie; Prat, Marc; Bonn, Daniel

    2015-01-01

    The study of the behavior of sessile droplets on solid substrates is not only associated with common everyday phenomena, such as the coffee stain effect, limescale deposits on our bathroom walls , but also very important in many applications such as purification of pharmaceuticals, de-icing of airplanes, inkjet printing and coating applications. In many of these processes, a phase change happens within the drop because of solvent evaporation, temperature changes or chemical reactions, which consequently lead to liquid to solid transitions in the droplets. Here we show that crystallization patterns of evaporating of water drops containing dissolved salts are different from the stains reported for evaporating colloidal suspensions. This happens because during the solvent evaporation, the salts crystallize and grow during the drying. Our results show that the patterns of the resulting salt crystal stains are mainly governed by wetting properties of the emerging crystal as well as the pathway of nucleation and growth, and are independent of the evaporation rate and thermal conductivity of the substrates. PMID:26012481

  4. Tubular sublimatory evaporator heat sink

    NASA Technical Reports Server (NTRS)

    Webbon, B. W. (Inventor)

    1977-01-01

    An evaporative refrigerator or cooler comprising a bundle of spaced, porous walled tubes closed at one of their ends and vented to a vacuum at the other end is disclosed. The tube bundle is surrounded by a water jacket having a hot water inlet distribution manifold and a cooled water outlet through a plenum chamber. Hot water is pumped into the jacket to circulate around the tubes, and when this water meets the vacuum existing inside the tubes, it evaporates thereby cooling the water in the jacket. If cooling proceeds to the point where water penetrating or surrounding all or part of the tubes freezes, operation continues with local sublimation of the ice on the tubes while the circulating water attempts to melt the ice. Both sublimation and evaporation may take place simultaneously in different regions of the device.

  5. Mechanisms and pathways of growth failure in primordial dwarfism.

    PubMed

    Klingseisen, Anna; Jackson, Andrew P

    2011-10-01

    The greatest difference between species is size; however, the developmental mechanisms determining organism growth remain poorly understood. Primordial dwarfism is a group of human single-gene disorders with extreme global growth failure (which includes Seckel syndrome, microcephalic osteodysplastic primordial dwarfism I [MOPD] types I and II, and Meier-Gorlin syndrome). Ten genes have now been identified for microcephalic primordial dwarfism, encoding proteins involved in fundamental cellular processes including genome replication (ORC1 [origin recognition complex 1], ORC4, ORC6, CDT1, and CDC6), DNA damage response (ATR [ataxia-telangiectasia and Rad3-related]), mRNA splicing (U4atac), and centrosome function (CEP152, PCNT, and CPAP). Here, we review the cellular and developmental mechanisms underlying the pathogenesis of these conditions and address whether further study of these genes could provide novel insight into the physiological regulation of organism growth.

  6. Reconstructing the primordial power spectrum from the CMB

    NASA Astrophysics Data System (ADS)

    Gauthier, Christopher; Bucher, Martin

    2012-10-01

    We propose a straightforward and model independent methodology for characterizing the sensitivity of CMB and other experiments to wiggles, irregularities, and features in the primordial power spectrum. Assuming that the primordial cosmological perturbations are adiabatic, we present a function space generalization of the usual Fisher matrix formalism applied to a CMB experiment resembling Planck with and without ancillary data. This work is closely related to other work on recovering the inflationary potential and exploring specific models of non-minimal, or perhaps baroque, primordial power spectra. The approach adopted here, however, most directly expresses what the data is really telling us. We explore in detail the structure of the available information and quantify exactly what features can be reconstructed and at what statistical significance.

  7. Computation approach for CMB bispectrum from primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Shiraishi, Maresuke; Nitta, Daisuke; Yokoyama, Shuichiro; Ichiki, Kiyotomo; Takahashi, Keitaro

    2011-06-01

    We present a detailed calculation of our previous short paper [M. Shiraishi, D. Nitta, S. Yokoyama, K. Ichiki, and K. Takahashi, Phys. Rev. DPRVDAQ1550-7998 82, 121302 (2010).10.1103/PhysRevD.82.121302] in which we have investigated a constraint on the magnetic field strength through comic microwave background temperature bispectrum of vector modes induced from primordial magnetic fields. By taking into account full angular dependence of the bispectrum with spin spherical harmonics and Wigner symbols, we explicitly show that the cosmic microwave background bispectrum induced from the statistical-isotropic primordial vector fluctuations can be also described as an angle-averaged form in the rotationally invariant way. We also study the cases with different spectral indices of the power spectrum of the primordial magnetic fields.

  8. Mechanisms and pathways of growth failure in primordial dwarfism

    PubMed Central

    Klingseisen, Anna; Jackson, Andrew P.

    2011-01-01

    The greatest difference between species is size; however, the developmental mechanisms determining organism growth remain poorly understood. Primordial dwarfism is a group of human single-gene disorders with extreme global growth failure (which includes Seckel syndrome, microcephalic osteodysplastic primordial dwarfism I [MOPD] types I and II, and Meier-Gorlin syndrome). Ten genes have now been identified for microcephalic primordial dwarfism, encoding proteins involved in fundamental cellular processes including genome replication (ORC1 [origin recognition complex 1], ORC4, ORC6, CDT1, and CDC6), DNA damage response (ATR [ataxia-telangiectasia and Rad3-related]), mRNA splicing (U4atac), and centrosome function (CEP152, PCNT, and CPAP). Here, we review the cellular and developmental mechanisms underlying the pathogenesis of these conditions and address whether further study of these genes could provide novel insight into the physiological regulation of organism growth. PMID:21979914

  9. Reconstruction of the primordial power spectrum from CMB data

    SciTech Connect

    Guo, Zong-Kuan; Zhang, Yuan-Zhong; Schwarz, Dominik J. E-mail: dschwarz@physik.uni-bielefeld.de

    2011-08-01

    Measuring the deviation from scale invariance of the primordial power spectrum is a critical test of inflation. In this paper we reconstruct the shape of the primordial power spectrum of curvature perturbations from the cosmic microwave background data, including the 7-year Wilkinson Microwave Anisotropy Probe data and the Atacama Cosmology Telescope 148 GHz data, by using a binning method of a cubic spline interpolation in log-log space. We find that the power-law spectrum is preferred by the data and that the Harrison-Zel'dovich spectrum is disfavored at 95% confidence level. These conclusions hold with and without allowing for tensor modes, however the simpler model without tensors is preferred by the data. We do not find evidence for a feature in the primordial power spectrum — in full agreement with generic predictions from cosmological inflation.

  10. Black holes

    PubMed Central

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries. PMID:11553801

  11. Black Culture

    ERIC Educational Resources Information Center

    Brown, Angela Khristin

    2013-01-01

    The migration of blacks in North America through slavery became united. The population of blacks passed down a tradition of artist through art to native born citizens. The art tradition involved telling stories to each generation in black families. The black culture elevated by tradition created hope to determine their personal freedom to escape…

  12. Black holes.

    PubMed

    Brügmann, B; Ghez, A M; Greiner, J

    2001-09-11

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  13. Black Alcoholism.

    ERIC Educational Resources Information Center

    Watts, Thomas D.; Wright, Roosevelt

    1988-01-01

    Examines some aspects of the problem of alcoholism among Blacks, asserting that Black alcoholism can best be considered in an ecological, environmental, sociocultural, and public health context. Notes need for further research on alcoholism among Blacks and for action to reduce the problem of Black alcoholism. (NB)

  14. Lhx8 regulates primordial follicle activation and postnatal folliculogenesis.

    PubMed

    Ren, Yu; Suzuki, Hitomi; Jagarlamudi, Krishna; Golnoski, Kayla; McGuire, Megan; Lopes, Rita; Pachnis, Vassilis; Rajkovic, Aleksandar

    2015-06-16

    The early stages of ovarian follicle formation-beginning with the breakdown of germ cell cysts and continuing with the formation of primordial follicles and transition to primary and secondary follicles-are critical in determining reproductive life span and fertility. Previously, we discovered that global knockouts of germ cell-specific transcriptional co-regulators Sohlh1, Sohlh2, Lhx8, and Nobox, cause rapid oocyte loss and ovarian failure. Also factors such as Nobox and Sohlh1 are associated with human premature ovarian failure. In this study, we developed a conditional knockout of Lhx8 to study oocyte-specific pathways in postnatal folliculogenesis. The conditional deficiency of Lhx8 in the oocytes of primordial follicles leads to massive primordial oocyte activation, in part, by indirectly interacting with the PI3K-AKT pathway, as shown by synergistic effects on FOXO3 nucleocytoplasmic translocation and rpS6 activation. However, LHX8 does not directly regulate members of the PI3K-AKT pathway; instead, we show that LHX8 represses Lin28a expression, a known regulator of mammalian metabolism and of the AKT/mTOR pathway. LHX8 can bind to the Lin28a promoter, and the depletion of Lin28a in Lhx8-deficient oocytes partially suppresses primordial oocyte activation. Moreover, unlike the PI3K-AKT pathway, LHX8 is critical beyond primordial follicle activation, and blocks the primary to secondary follicle transition. Our results indicate that the LHX8-LIN28A pathway is essential in the earliest stages of primordial follicle activation, and LHX8 is an important oocyte-specific transcription factor in the ovary for regulating postnatal folliculogenesis.

  15. Origin of the particles in black hole evaporation

    SciTech Connect

    Schuetzhold, Ralf; Unruh, William G.

    2008-08-15

    We present an analytic derivation of Hawking radiation for an arbitrary (spatial) dispersion relation {omega}(k) as a model for ultrahigh-energy deviations from general covariance. It turns out that the Hawking temperature is proportional to the product of the group d{omega}/dk and phase {omega}/k velocities evaluated at the frequency {omega} of the outgoing radiation far away, which suggests that Hawking radiation is basically a low-energy phenomenon. Nevertheless, a group velocity growing too fast at ultrashort distances would generate Hawking radiation at ultrahigh energies ('ultraviolet catastrophe') and hence should not be a realistic model for the microscopic structure of quantum gravity.

  16. Evaporation suppression from water reservoirs using floating covers: Lab scale observations and model predictions

    NASA Astrophysics Data System (ADS)

    Or, D.; Lehmann, P.; Aminzadeh, M.; Sommer, M.; Wey, H.; Wunderli, H.; Breitenstein, D.

    2016-12-01

    The competition over dwindling fresh water resources is expected to intensify with projected increase in human population in arid regions, expansion of irrigated land and changes in climate and drought patterns. The volume of water stored in reservoirs would also increase to mitigate seasonal shortages due to rainfall variability and to meet irrigation water needs. By some estimates up to half of the stored water is lost to evaporation thereby exacerbating the water scarcity problem. Recently, there is an upsurge in the use of self-assembling floating covers to suppress evaporation, yet the design, and implementation remain largely empirical. Studies have shown that evaporation suppression is highly nonlinear, as also known from a century of research on gas exchange from plant leaves (that often evaporate as free water surfaces through stomata that are only 1% of leaf area). We report a systematic evaluation of different cover types and external drivers (radiation, wind, wind+radiation) on evaporation suppression and energy balance of a 1.4 m2 basin placed in a wind-tunnel. Surprisingly, evaporation suppression by black and white floating covers (balls and plates) were similar despite significantly different energy balance regimes over the cover surfaces. Moreover, the evaporation suppression efficiency was a simple function of the uncovered area (square root of the uncovered fraction) with linear relations with the covered area in some cases. The thermally decoupled floating covers offer an efficient solution to the evaporation suppression with limited influence of the surface energy balance (water temperature for black and white covers was similar and remained nearly constant). The results will be linked with a predictive evaporation-energy balance model and issues of spatial scales and long exposure times will be studied.

  17. Primordial lithium and the standard model(s)

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Demarque, Pierre; Kawaler, Steven D.; Romanelli, Paul; Krauss, Lawrence M.

    1989-01-01

    The results of new theoretical work on surface Li-7 and Li-6 evolution in the oldest halo stars are presented, along with a new and refined analysis of the predicted primordial Li abundance resulting from big-bang nucleosynthesis. This makes it possible to determine the constraints which can be imposed on cosmology using primordial Li and both standard big-bang and stellar-evolution models. This leads to limits on the baryon density today of 0.0044-0.025 (where the Hubble constant is 100h km/sec Mpc) and imposes limitations on alternative nucleosynthesis scenarios.

  18. Lepton asymmetry in the primordial gravitational wave spectrum

    SciTech Connect

    Ichiki, Kiyotomo; Yamaguchi, Masahide; Yokoyama, Jun'Ichi

    2007-04-15

    Effects of neutrino free streaming are evaluated on the primordial spectrum of gravitational radiation taking both neutrino chemical potential and masses into account. The former or the lepton asymmetry induces two competitive effects, namely, to increase anisotropic stress, which damps the gravitational wave more, and to delay the matter-radiation equality time, which reduces the damping. The latter effect is more prominent and a large lepton asymmetry would reduce the damping. We may thereby be able to measure the magnitude of lepton asymmetry from the primordial gravitational wave spectrum.

  19. Primordial perturbations in a rainbow universe with running Newton constant

    NASA Astrophysics Data System (ADS)

    Brighenti, Francesco; Gubitosi, Giulia; Magueijo, Joao

    2017-03-01

    We compute the spectral index of primordial perturbations in a rainbow universe. We allow the Newton constant G to run at (super-) Planckian energies and we consider both vacuum and thermal perturbations. If the rainbow metric is the one associated to a generalized Horava-Lifshitz dispersion relation, we find that only when G tends asymptotically to 0 can one match the observed value of the spectral index and solve the horizon problem, both for vacuum and thermal perturbations. For vacuum fluctuations the observational constraints imply that the primordial universe expansion can be both accelerating or decelerating, while in the case of thermal perturbations only decelerating expansion is allowed.

  20. Chirality oscillation of primordial gravitational waves during inflation

    NASA Astrophysics Data System (ADS)

    Cai, Yong; Wang, Yu-Tong; Piao, Yun-Song

    2017-03-01

    We show that if the gravitational Chern-Simons term couples to a massive scalar field ( m > H), the primordial gravitational waves (GWs) will show itself the chirality oscillation, i.e., the amplitudes of the left- and right-handed GWs modes will convert into each other and oscillate in their propagations. This oscillation will eventually develop a permanent difference of the amplitudes of both modes, which leads to nearly opposite oscillating shapes in the power spectra of the left- and right-handed primordial GWs. We discuss its implication to the CMB B-mode polarization.

  1. Probing the primordial universe with gravitational waves detectors

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Tong; Cai, Yong; Liu, Zhi-Guo; Piao, Yun-Song

    2017-01-01

    The spectrum of primordial gravitational waves (GWs), especially its tilt nT, carries significant information about the primordial universe. Combining recent aLIGO and Planck2015+BK14 data, we find that the current limit is nT=0.016+0.614‑0.989 at 95% C.L. We also estimate the impacts of Einstein Telescope and LISA on constraining nT. Moreover, based on the effective field theory of cosmological perturbations, we make an attempt to confront some models of early universe scenarios, which produce blue-tilted GWs spectrum (nT>0), with the corresponding datasets.

  2. Constraints on cosmic strings due to black holes formed from collapsed cosmic string loops

    NASA Technical Reports Server (NTRS)

    Caldwell, R. R.; Gates, Evalyn

    1993-01-01

    The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict f, the fraction of cosmic string loops which collapse to form black holes, and mu, the cosmic string mass-per-unit length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters f and mu is due to the energy density in 100MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of f are reliable, our results severely restrict mu, and therefore limit the viability of the cosmic string large-scale structure scenario.

  3. The primordial explosion of a false white hole from a 5D vacuum

    NASA Astrophysics Data System (ADS)

    Madriz Aguilar, José Edgar; Moreno, Claudia; Bellini, Mauricio

    2014-01-01

    We explore the cosmological consequences of some possible big bang produced by a black-hole with mass M in a 5D extended SdS. Under these particular circumstances, the effective 4D metric obtained by the use of a constant foliation on the extra coordinate is comported as a false white hole (FWH), which evaporates for all unstable modes that have wavelengths bigger than the size of the FWH. Outside the white hole the repulsive gravitational field can be considered as weak, so that the dynamics for fluctuations of the inflaton field and the scalar perturbations of the metric can be linearized.

  4. Rate of runaway evaporative cooling

    SciTech Connect

    Groep, J. van de; Straten, P. van der; Vogels, J. M.

    2011-09-15

    Evaporative cooling is a process that is essential in creating Bose-Einstein condensates in dilute atomic gasses. This process has often been simulated based on a model using a truncated Boltzmann distribution. This model assumes that the energy distribution up to the threshold energy can still be described by a Boltzmann distribution: it assumes detailed balance up to the threshold energy. However, the evolution of the distribution function in time is not taken into account. Here we solve the kinetic Boltzmann equation for a gas undergoing evaporative cooling in a harmonic and linear trap in order to determine the evolution of the energy distribution. The magnitude of the discrepancy with the truncated Boltzmannmodel is calculated by including a polynomial expansion of the distribution function. We find that up to 35% fewer particles are found in the high-energy tail of the distribution with respect to the truncated Boltzmann distribution and up to 15% more collisions are needed to reach quantum degeneracy. Supported by a detailed investigation of the particle loss rate at different energies, we conclude that the limited occupation of high-energy states during the evaporation process causes the lowering of the evaporation speed and efficiency.

  5. Observations of Si field evaporation.

    PubMed

    Thompson, Keith; Sebastian, Jason; Gerstl, Stephan

    2007-01-01

    Field evaporation studies of crystalline <100> Si were performed in a three-dimensional atom-probe, which utilized a local electrode geometry. Several distinct phenomena were observed. Si field evaporation rates showed: (1) no measurable dependence on temperature below 110K, (2) an exponential dependence on evaporation rate as a function of temperature above 110K, and (3) no dependence on substrate doping (i.e., electrical conductivity) as high as 10 Omega cm in the temperature range of 40-150K. Two distinct evaporation modes were observed. The first was associated with approximately 1at% H+ in the mass spectrum. Negligible amounts of H were detected in the mass spectra of the second mode. When the pulse fraction (pf) was increased from 5% to 30%, the presence of H+ in the mass spectra, i.e. operation in the first mode, was associated with a degradation in mass resolution by as much as 80% for the 10 Omega cm Si samples. Conversely, no loss in mass resolution was detected for the approximately 0.001 Omega cm samples over the pf range studied.

  6. Leachate evaporation using landfill gas

    SciTech Connect

    White, T.M.; Grace, V.M.; Freivald, W.

    1996-05-01

    This paper describes a century-old technology with a new twist of using landfill gas as a fuel in an evaporation system. The system is designed to help landfills reduce the cost of leachate disposal while also destroying VOC emissions in an enclosed flare.

  7. Membrane evaporator/sublimator investigation

    NASA Technical Reports Server (NTRS)

    Elam, J.; Ruder, J.; Strumpf, H.

    1974-01-01

    Data are presented on a new evaporator/sublimator concept using a hollow fiber membrane unit with a high permeability to liquid water. The aim of the program was to obtain a more reliable, lightweight and simpler Extra Vehicular Life Support System (EVLSS) cooling concept than is currently being used.

  8. Evaporation rate of nucleating clusters.

    PubMed

    Zapadinsky, Evgeni

    2011-11-21

    The Becker-Döring kinetic scheme is the most frequently used approach to vapor liquid nucleation. In the present study it has been extended so that master equations for all cluster configurations are included into consideration. In the Becker-Döring kinetic scheme the nucleation rate is calculated through comparison of the balanced steady state and unbalanced steady state solutions of the set of kinetic equations. It is usually assumed that the balanced steady state produces equilibrium cluster distribution, and the evaporation rates are identical in the balanced and unbalanced steady state cases. In the present study we have shown that the evaporation rates are not identical in the equilibrium and unbalanced steady state cases. The evaporation rate depends on the number of clusters at the limit of the cluster definition. We have shown that the ratio of the number of n-clusters at the limit of the cluster definition to the total number of n-clusters is different in equilibrium and unbalanced steady state cases. This causes difference in evaporation rates for these cases and results in a correction factor to the nucleation rate. According to rough estimation it is 10(-1) by the order of magnitude and can be lower if carrier gas effectively equilibrates the clusters. The developed approach allows one to refine the correction factor with Monte Carlo and molecular dynamic simulations.

  9. Local temperature for dynamical black holes

    SciTech Connect

    Hayward, Sean A.; Di Criscienzo, R.; Nadalini, M.; Vanzo, L.; Zerbini, S.

    2009-05-01

    A local Hawking temperature was recently derived for any future outer trapping horizon in spherical symmetry, using a Hamilton-Jacobi tunneling method, and is given by a dynamical surface gravity as defined geometrically. Descriptions are given of the operational meaning of the temperature, in terms of what observers measure, and its relation to the usual Hawking temperature for static black holes. Implications for the final fate of an evaporating black hole are discussed.

  10. An Unusual Association of Microcephalic Osteodysplastic Primordial Dwarfism Type I with Cardiac and Brain Anomalies

    PubMed Central

    Bhutia, Euden; Verma, Arushi; Gupta, Amit Kumar; Maria, Arti

    2014-01-01

    Less than 100 cases of primordial dwarfism have been reported worldwide out of which Microcephalic osteodysplastic primordial dwarfism type I comprise about <30 cases. We report a rare case of extreme growth failure in a neonate with primordial dwarfism of antenatal onset due to Microcephalic osteodysplastic primordial dwarfism type I. Our case is also unique in being associated with hitertho unreported association of subpulmonic ventricular septal defect and a dorsal interhemispheric cyst in the brain. PMID:24741545

  11. An unusual association of microcephalic osteodysplastic primordial dwarfism type I with cardiac and brain anomalies.

    PubMed

    Bhutia, Euden; Verma, Arushi; Gupta, Amit Kumar; Maria, Arti

    2014-01-01

    Less than 100 cases of primordial dwarfism have been reported worldwide out of which Microcephalic osteodysplastic primordial dwarfism type I comprise about <30 cases. We report a rare case of extreme growth failure in a neonate with primordial dwarfism of antenatal onset due to Microcephalic osteodysplastic primordial dwarfism type I. Our case is also unique in being associated with hitertho unreported association of subpulmonic ventricular septal defect and a dorsal interhemispheric cyst in the brain.

  12. Primordial inhomogeneities from massive defects during inflation

    NASA Astrophysics Data System (ADS)

    Firouzjahi, Hassan; Karami, Asieh; Rostami, Tahereh

    2016-10-01

    We consider the imprints of local massive defects, such as a black hole or a massive monopole, during inflation. The massive defect breaks the background homogeneity. We consider the limit that the physical Schwarzschild radius of the defect is much smaller than the inflationary Hubble radius so a perturbative analysis is allowed. The inhomogeneities induced in scalar and gravitational wave power spectrum are calculated. We obtain the amplitudes of dipole, quadrupole and octupole anisotropies in curvature perturbation power spectrum and identify the relative configuration of the defect to CMB sphere in which large observable dipole asymmetry can be generated. We observe a curious reflection symmetry in which the configuration where the defect is inside the CMB comoving sphere has the same inhomogeneous variance as its mirror configuration where the defect is outside the CMB sphere.

  13. Tidal Disruption of Primordial Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Asphaug, E.; Agnor, C.; Williams, Q.; Petit, J.; Rivkin, A.

    2003-12-01

    Introduction: We evaluate the tidal disruption of planetary embryos from dynamical, geophysical and meteoritical perspectives. It is widely believed that the present population of asteroids (and thus most meteorites) derive from material that survived intense (99.9%) mass depletion in the protoplanetary disk between Earth and Jupiter. According to this scenario, about one in a thousand bodies survived scattering, close encounters and mergers to become the ancestors of the present main belt and the precursors of meteorites. Close tidal encounters were inevitable, because a deep Roche encounter near a growing planet is about as likely as accretion onto the same planet. Process and Implications: This "long march" took its toll on the survivors, which begat the present asteroids and meteorites. Specifically, for very weak bodies (rubble piles, or those with deep regolith) and for gravity-dominated bodies with viscosity less than (ν lim ˜ √ {G}ρ 3/2 R2~1011 poise for 100 km radius), an encounter with periapsis <~0.5 Rroche results in catastrophic removal of half the original mass [1]. Even partially molten silicate bodies have sufficiently low viscosity to undergo disruptive tidal deformation. Abundant mantle water at this early phase lowers viscosity and enhances disruption energetics. Our dynamical calculations show that a few percent of the surviving primordial asteroids underwent catastrophic tidal disruption during encounters with the transitory main-belt embryos [c.f. 2], if a majority were either partially molten or rubble piles during the first ~3 Ma. Melting and differentiation of asteroid parent bodies took place during this time [3], so planetary mantles may have been tidally stripped in a process that may have been as common as giant collisions. Tidal disruption produces a symmetric chain of fragments. In models of tidal disruption [1], differentiated bodies pull apart into one or more central cores almost devoid of mantle rock, flanked by core

  14. Thermodynamics of the Schwarzschild Black Hole in Noncommutative Space

    SciTech Connect

    Perez-Payan, S.; Sabido, M.

    2009-04-20

    In this paper we study noncommutative black holes. In particular, we use a deform Schwarzschild solution in noncommutative gauge theory of gravity. By means of euclidean quantum gravity we obtain the entropy, temperatute and the time of evaporation of the noncommutative black hole.

  15. Extremal noncommutative black holes as dark matter furnaces

    NASA Astrophysics Data System (ADS)

    Kawamoto, Shoichi; Wei, Chun-Yu; Wen, Wen-Yu

    2017-09-01

    In this paper, we consider dark matter annihilation in the gravitational field of noncommutative black holes. Instead of a violent fate predicted in the usual Hawking radiation, we propose a thermal equilibrium state where a mildly burning black hole relic is fueled by dark matter accretion at the final stage of evaporation.

  16. Squeezed states in the theory of primordial gravitational waves

    NASA Technical Reports Server (NTRS)

    Grishchuk, Leonid P.

    1992-01-01

    It is shown that squeezed states of primordial gravitational waves are inevitably produced in the course of cosmological evolution. The theory of squeezed gravitons is very similar to the theory of squeezed light. Squeezed parameters and statistical properties of the expected relic gravity-wave radiation are described.

  17. Searching for standard clocks in the primordial universe

    SciTech Connect

    Chen, Xingang; Ringeval, Christophe E-mail: christophe.ringeval@uclouvain.be

    2012-08-01

    Classically oscillating massive fields can be used as ''standard clocks'' in the primordial universe. They generate features in primordial density perturbations that directly record the scale factor evolution a(t). Detecting and measuring these ''fingerprint'' signals is challenging but would provide a direct evidence for a specific primordial universe paradigm. In this paper, such a search is performed for the power spectrum of the Cosmic Microwave Background (CMB) anisotropies using the WMAP7 data. Although a good fit to the data privileges a scale around k = 0.01 Mpc{sup −1}, we do not find statistical significance for, neither against, the presence of any feature. We then forecast the expected constraints a Planck-like CMB experiment can impose on the fingerprint parameters by using Markov-Chain-Monte-Carlo (MCMC) methods on mock data. We exhibit a high sensitivity zone for wavenumbers ranging from 0.01 Mpc{sup −1} to 0.1 Mpc{sup −1} in which fingerprints show up first on the posterior probability distribution of the wavenumber at which they occur, and then on the modulation frequency. Within the sensitivity zone, we show that the inflationary paradigm can be inferred from a single feature generating at least a 20% modulation of the primordial power spectrum. This minimal value sensitively depends on the modulation frequency.

  18. RTTN Mutations Cause Primary Microcephaly and Primordial Dwarfism in Humans.

    PubMed

    Shamseldin, Hanan; Alazami, Anas M; Manning, Melanie; Hashem, Amal; Caluseiu, Oana; Tabarki, Brahim; Esplin, Edward; Schelley, Susan; Innes, A Micheil; Parboosingh, Jillian S; Lamont, Ryan; Majewski, Jacek; Bernier, Francois P; Alkuraya, Fowzan S

    2015-12-03

    Primary microcephaly is a developmental brain anomaly that results from defective proliferation of neuroprogenitors in the germinal periventricular zone. More than a dozen genes are known to be mutated in autosomal-recessive primary microcephaly in isolation or in association with a more generalized growth deficiency (microcephalic primordial dwarfism), but the genetic heterogeneity is probably more extensive. In a research protocol involving autozygome mapping and exome sequencing, we recruited a multiplex consanguineous family who is affected by severe microcephalic primordial dwarfism and tested negative on clinical exome sequencing. Two candidate autozygous intervals were identified, and the second round of exome sequencing revealed a single intronic variant therein (c.2885+8A>G [p.Ser963(∗)] in RTTN exon 23). RT-PCR confirmed that this change creates a cryptic splice donor and thus causes retention of the intervening 7 bp of the intron and leads to premature truncation. On the basis of this finding, we reanalyzed the exome file of a second consanguineous family affected by a similar phenotype and identified another homozygous change in RTTN as the likely causal mutation. Combined linkage analysis of the two families confirmed that RTTN maps to the only significant linkage peak. Finally, through international collaboration, a Canadian multiplex family affected by microcephalic primordial dwarfism and biallelic mutation of RTTN was identified. Our results expand the phenotype of RTTN-related disorders, hitherto limited to polymicrogyria, to include microcephalic primordial dwarfism with a complex brain phenotype involving simplified gyration.

  19. HMG-CoA reductase guides migrating primordial germ cells.

    PubMed

    Van Doren, M; Broihier, H T; Moore, L A; Lehmann, R

    1998-12-03

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase is best known for catalysing a rate-limiting step in cholesterol biosynthesis, but it also participates in the production of a wide variety of other compounds. Some clinical benefits attributed to inhibitors of HMG-CoA reductase are now thought to be independent of any serum cholesterol-lowering effect. Here we describe a new cholesterol-independent role for HMG-CoA reductase, in regulating a developmental process: primordial germ cell migration. We show that in Drosophila this enzyme is highly expressed in the somatic gonad and that it is necessary for primordial germ cells to migrate to this tissue. Misexpression of HMG-CoA reductase is sufficient to attract primordial germ cells to tissues other than the gonadal mesoderm. We conclude that the regulated expression of HMG-CoA reductase has a critical developmental function in providing spatial information to guide migrating primordial germ cells.

  20. CMB lensing and primordial squeezed non-gaussianity

    SciTech Connect

    Pearson, Ruth; Lewis, Antony; Regan, Donough E-mail: antony@cosmologist.info

    2012-03-01

    Squeezed primordial non-Gaussianity can strongly constrain early-universe physics, but it can only be observed on the CMB after it has been gravitationally lensed. We give a new simple non-perturbative prescription for accurately calculating the effect of lensing on any squeezed primordial bispectrum shape, and test it with simulations. We give the generalization to polarization bispectra, and discuss the effect of lensing on the trispectrum. We explain why neglecting the lensing smoothing effect does not significantly bias estimators of local primordial non-Gaussianity, even though the change in shape can be ∼>10%. We also show how τ{sub NL} trispectrum estimators can be well approximated by much simpler CMB temperature modulation estimators, and hence that there is potentially a ∼ 10–30% bias due to very large-scale lensing modes, depending on the range of modulation scales included. Including dipole sky modulations can halve the τ{sub NL} error bar if kinematic effects can be subtracted using known properties of the CMB temperature dipole. Lensing effects on the g{sub NL} trispectrum are small compared to the error bar. In appendices we give the general result for lensing of any primordial bispectrum, and show how any full-sky squeezed bispectrum can be decomposed into orthogonal modes of distinct angular dependence.

  1. Cosmic microwave background trispectrum and primordial magnetic field limits.

    PubMed

    Trivedi, Pranjal; Seshadri, T R; Subramanian, Kandaswamy

    2012-06-08

    Primordial magnetic fields will generate non-gaussian signals in the cosmic microwave background (CMB) as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. We compute a new measure of magnetic non-gaussianity, the CMB trispectrum, on large angular scales, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of approximately a few times 10(-29) and 10(-19), respectively. Observational limits on CMB non-gaussianity from WMAP data allow us to conservatively set upper limits of a nG, and plausibly sub-nG, on the present value of the primordial cosmic magnetic field. This represents the tightest limit so far on the strength of primordial magnetic fields, on Mpc scales, and is better than limits from the CMB bispectrum and all modes in the CMB power spectrum. Thus, the CMB trispectrum is a new and more sensitive probe of primordial magnetic fields on large scales.

  2. Renal tubular leakage complicating microcephalic osteodysplastic primordial dwarfism.

    PubMed Central

    Eason, J; Hall, C M; Trounce, J Q

    1995-01-01

    We describe a male infant with phenotypic and radiological features of microcephalic osteodysplastic primordial dwarfism type I/III. He showed severe osteoporosis and biochemical derangement owing to renal tubular leakage, which has not previously been reported in this condition. He died aged 5 months. Images PMID:7783178

  3. RTTN Mutations Cause Primary Microcephaly and Primordial Dwarfism in Humans

    PubMed Central

    Shamseldin, Hanan; Alazami, Anas M.; Manning, Melanie; Hashem, Amal; Caluseiu, Oana; Tabarki, Brahim; Esplin, Edward; Schelley, Susan; Innes, A. Micheil; Parboosingh, Jillian S.; Lamont, Ryan; Majewski, Jacek; Bernier, Francois P.; Alkuraya, Fowzan S.

    2015-01-01

    Primary microcephaly is a developmental brain anomaly that results from defective proliferation of neuroprogenitors in the germinal periventricular zone. More than a dozen genes are known to be mutated in autosomal-recessive primary microcephaly in isolation or in association with a more generalized growth deficiency (microcephalic primordial dwarfism), but the genetic heterogeneity is probably more extensive. In a research protocol involving autozygome mapping and exome sequencing, we recruited a multiplex consanguineous family who is affected by severe microcephalic primordial dwarfism and tested negative on clinical exome sequencing. Two candidate autozygous intervals were identified, and the second round of exome sequencing revealed a single intronic variant therein (c.2885+8A>G [p.Ser963∗] in RTTN exon 23). RT-PCR confirmed that this change creates a cryptic splice donor and thus causes retention of the intervening 7 bp of the intron and leads to premature truncation. On the basis of this finding, we reanalyzed the exome file of a second consanguineous family affected by a similar phenotype and identified another homozygous change in RTTN as the likely causal mutation. Combined linkage analysis of the two families confirmed that RTTN maps to the only significant linkage peak. Finally, through international collaboration, a Canadian multiplex family affected by microcephalic primordial dwarfism and biallelic mutation of RTTN was identified. Our results expand the phenotype of RTTN-related disorders, hitherto limited to polymicrogyria, to include microcephalic primordial dwarfism with a complex brain phenotype involving simplified gyration. PMID:26608784

  4. Stochastic isocurvature baryon fluctuations, baryon diffusion, and primordial nucleosynthesis

    SciTech Connect

    Kurki-Suonio, H.; Jedamzik, K.; Mathews, G.J.

    1997-04-01

    We examine effects on primordial nucleosynthesis from a truly random, one-dimensional spatial distribution in the baryon-to-photon ratio ({eta}). We generate stochastic fluctuation spectra characterized by different spectral indices and rms fluctuation amplitudes. For the first time we explicitly calculate the effects of baryon diffusion on the nucleosynthesis yields of such stochastic fluctuations. We also consider the collapse instability of large mass scale inhomogeneities. Our results are generally applicable to any primordial mechanism producing fluctuations in {eta} which can be characterized by a spectral index. In particular, these results apply to primordial isocurvature baryon fluctuation (PIB) models. The amplitudes of fluctuations that are scale-invariant in baryon fluctuation (PIB) models. The amplitudes of fluctuations that are scale-invariant in baryon density are found to be severely constrained by primordial nucleosynthesis. However, when the {eta} distribution is characterized by decreasing fluctuation amplitudes with increasing length scale, surprisingly large fluctuation amplitudes on the baryon diffusion scale are allowed. {copyright} {ital 1997} {ital The American Astronomical Society}

  5. Primordial non-Gaussianity from the DBI Galileons

    NASA Astrophysics Data System (ADS)

    Mizuno, Shuntaro; Koyama, Kazuya

    2010-11-01

    We study primordial fluctuations generated during inflation in a class of models motivated by the DBI Galileons, which are extensions of the DBI action that yield second-order field equations. This class of models generalizes the DBI Galileons in a similar way with K inflation. We calculate the primordial non-Gaussianity from the bispectrum of the curvature perturbations at leading order in the slow-varying approximations. We show that the estimator for the equilateral-type non-Gaussianity, fNLequil, can be applied to measure the amplitude of the primordial bispectrum even in the presence of the Galileon-like term although it gives a slightly different momentum dependence from K-inflation models. For the DBI Galileons, we find -0.32/cs2primordial non-Gaussianities can be obtained when cs is much smaller than 1 as in the usual DBI inflation. In G-inflation models, where a de Sitter solution is obtained without any potentials, the nonlinear parameter is given by fNLequil=4.62r-2/3, where r is the tensor to scalar ratio, giving a stringent constraint on the model.

  6. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  7. Synthesis on evaporation partitioning using stable isotopes

    NASA Astrophysics Data System (ADS)

    Coenders-Gerrits, Miriam; Bogaard, Thom; Wenninger, Jochen; Jonson Sutanto, Samuel

    2015-04-01

    Partitioning of evaporation into productive (transpiration) and non-productive evaporation (interception, soil evaporation) is of highest importance for water management practices, irrigation scheme design, and climate modeling. Despite this urge, the magnitude of the ratio of transpiration over total evaporation is still under debate and poorly understood due to measuring difficulties. However, with the current development in isotope measuring devices, new opportunities arise to untangle the partitioning of evaporation. In this paper we synthesize the opportunities and limitations using stable water isotopes in evaporation partitioning. We will analyze a set of field as well as laboratory studies to demonstrate the different evaporation components for various climate and vegetation conditions using stable isotopes 18O/16O and 2H/1H. Experimental data on evaporation partitioning of crops, grass, shrubs and trees are presented and we will discuss the specific experimental set-ups and data collection methods. The paper will be a synthesis of these studies.

  8. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  9. The surface temperature of free evaporating drops

    NASA Astrophysics Data System (ADS)

    Borodulin, V. Y.; Letushko, V. N.; Nizovtsev, M. I.; Sterlyagov, A. N.

    2016-10-01

    Complex experimental and theoretical investigation of heat and mass transfer processes was performed at evaporation of free liquid drops. For theoretical calculation the emission-diffusion model was proposed. This allowed taking into account the characteristics of evaporation of small droplets, for which heat and mass transfer processes are not described in the conventional diffusion model. The calculation results of evaporation of droplets of different sizes were compared using two models: the conventional diffusion and emission-diffusion models. To verify the proposed physical model, the evaporation of droplets suspended on a polypropylene fiber was experimentally investigated. The form of droplets in the evaporation process was determined using microphotographing. The temperature was measured on the surfaces of evaporating drops using infrared thermography. The experimental results have showed good agreement with the numerical data for the time of evaporation and the temperature of evaporating drops.

  10. Analysis of energy use in tomato evaporation

    SciTech Connect

    Rumsey, T.; Conant, T.

    1980-01-01

    Field performance data for four tomato product evaporators are presented and analyzed. Steam and feed flow rates along with steam economies were measured and are compared to steady state theoretical evaporator models.

  11. The primordial nucleus of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Davidsson, B. J. R.; Sierks, H.; Güttler, C.; Marzari, F.; Pajola, M.; Rickman, H.; A'Hearn, M. F.; Auger, A.-T.; El-Maarry, M. R.; Fornasier, S.; Gutiérrez, P. J.; Keller, H. U.; Massironi, M.; Snodgrass, C.; Vincent, J.-B.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Feller, C.; Fulle, M.; Groussin, O.; Hviid, S. F.; Höfner, S.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; La Forgia, F.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Moissl-Fraund, R.; Mottola, S.; Naletto, G.; Oklay, N.; Thomas, N.; Tubiana, C.

    2016-07-01

    Context. We investigate the formation and evolution of comet nuclei and other trans-Neptunian objects (TNOs) in the solar nebula and primordial disk prior to the giant planet orbit instability foreseen by the Nice model. Aims: Our goal is to determine whether most observed comet nuclei are primordial rubble-pile survivors that formed in the solar nebula and young primordial disk or collisional rubble piles formed later in the aftermath of catastrophic disruptions of larger parent bodies. We also propose a concurrent comet and TNO formation scenario that is consistent with observations. Methods: We used observations of comet 67P/Churyumov-Gerasimenko by the ESA Rosetta spacecraft, particularly by the OSIRIS camera system, combined with data from the NASA Stardust sample-return mission to comet 81P/Wild 2 and from meteoritics; we also used existing observations from ground or from spacecraft of irregular satellites of the giant planets, Centaurs, and TNOs. We performed modeling of thermophysics, hydrostatics, orbit evolution, and collision physics. Results: We find that thermal processing due to short-lived radionuclides, combined with collisional processing during accretion in the primordial disk, creates a population of medium-sized bodies that are comparably dense, compacted, strong, heavily depleted in supervolatiles like CO and CO2; they contain little to no amorphous water ice, and have experienced extensive metasomatism and aqueous alteration due to liquid water. Irregular satellites Phoebe and Himalia are potential representatives of this population. Collisional rubble piles inherit these properties from their parents. Contrarily, comet nuclei have low density, high porosity, weak strength, are rich in supervolatiles, may contain amorphous water ice, and do not display convincing evidence of in situ metasomatism or aqueous alteration. We outline a comet formation scenario that starts in the solar nebula and ends in the primordial disk, that reproduces these

  12. Detectability of primordial gravitational waves produced in bouncing models

    NASA Astrophysics Data System (ADS)

    Pinto-Neto, Nelson; Scardua, Arthur

    2017-06-01

    It is widely known that bouncing models with a dust hydrodynamical fluid satisfying cs2=pd/ρd≈0 , where cs , pd , ρd are the sound velocity, pressure, and energy density of the dust fluid, respectively, have almost scale invariant spectrum of scalar perturbations and negligible primordial gravitational waves. We investigate whether adding another fluid with 1 /3 primordial gravitational waves is proportional to k2 (9 w -1 )/(1 +3 w ) for wavelengths which become bigger than the Hubble radius when this extra fluid dominates the background. Hence, as w →1 (an almost stiff matter fluid), the energy density of primordial gravitational waves will increase faster in frequency, turning them potentially detectable at high frequencies. However, there is an extra factor Iq(w ) in the amplitude which decreases exponentially with w . The net effect of these two contributions turns the energy density of primordial gravitational waves not sufficiently big at high frequencies in order to be detected by present day or near future observations for models which satisfy the nucleosynthesis bounds and is symmetric with respect to the bounce. Hence, symmetric bouncing models where the background is dominated by a dust hydrodynamical fluid with small sound velocity, do not present any significant amount of primordial gravitational waves at any frequency range compatible with observations, even if there are other fields present in the model dominating the bounce phase. Any detection of such waves will then rule out this kind of model.

  13. POLARBEAR constraints on cosmic birefringence and primordial magnetic fields

    SciTech Connect

    Ade, Peter A. R.; Arnold, Kam; Atlas, Matt; Baccigalupi, Carlo; Barron, Darcy; Boettger, David; Borrill, Julian; Chapman, Scott; Chinone, Yuji; Cukierman, Ari; Dobbs, Matt; Ducout, Anne; Dunner, Rolando; Elleflot, Tucker; Errard, Josquin; Fabbian, Giulio; Feeney, Stephen; Feng, Chang; Gilbert, Adam; Goeckner-Wald, Neil; Groh, John; Hall, Grantland; Halverson, Nils W.; Hasegawa, Masaya; Hattori, Kaori; Hazumi, Masashi; Hill, Charles; Holzapfel, William L.; Hori, Yasuto; Howe, Logan; Inoue, Yuki; Jaehnig, Gregory C.; Jaffe, Andrew H.; Jeong, Oliver; Katayama, Nobuhiko; Kaufman, Jonathan P.; Keating, Brian; Kermish, Zigmund; Keskitalo, Reijo; Kisner, Theodore; Kusaka, Akito; Le Jeune, Maude; Lee, Adrian T.; Leitch, Erik M.; Leon, David; Li, Yun; Linder, Eric; Lowry, Lindsay; Matsuda, Frederick; Matsumura, Tomotake; Miller, Nathan; Montgomery, Josh; Myers, Michael J.; Navaroli, Martin; Nishino, Haruki; Okamura, Takahiro; Paar, Hans; Peloton, Julien; Pogosian, Levon; Poletti, Davide; Puglisi, Giuseppe; Raum, Christopher; Rebeiz, Gabriel; Reichardt, Christian L.; Richards, Paul L.; Ross, Colin; Rotermund, Kaja M.; Schenck, David E.; Sherwin, Blake D.; Shimon, Meir; Shirley, Ian; Siritanasak, Praween; Smecher, Graeme; Stebor, Nathan; Steinbach, Bryan; Suzuki, Aritoki; Suzuki, Jun-ichi; Tajima, Osamu; Takakura, Satoru; Tikhomirov, Alexei; Tomaru, Takayuki; Whitehorn, Nathan; Wilson, Brandon; Yadav, Amit; Zahn, Alex; Zahn, Oliver

    2015-12-08

    Here, we constrain anisotropic cosmic birefringence using four-point correlations of even-parity E-mode and odd-parity B-mode polarization in the cosmic microwave background measurements made by the POLARization of the Background Radiation (POLARBEAR) experiment in its first season of observations. We find that the anisotropic cosmic birefringence signal from any parity-violating processes is consistent with zero. The Faraday rotation from anisotropic cosmic birefringence can be compared with the equivalent quantity generated by primordial magnetic fields if they existed. The POLARBEAR nondetection translates into a 95% confidence level (C.L.) upper limit of 93 nanogauss (nG) on the amplitude of an equivalent primordial magnetic field inclusive of systematic uncertainties. This four-point correlation constraint on Faraday rotation is about 15 times tighter than the upper limit of 1380 nG inferred from constraining the contribution of Faraday rotation to two-point correlations of B-modes measured by Planck in 2015. Metric perturbations sourced by primordial magnetic fields would also contribute to the B-mode power spectrum. Using the POLARBEAR measurements of the B-mode power spectrum (two-point correlation), we set a 95% C.L. upper limit of 3.9 nG on primordial magnetic fields assuming a flat prior on the field amplitude. This limit is comparable to what was found in the Planck 2015 two-point correlation analysis with both temperature and polarization. Finally, we perform a set of systematic error tests and find no evidence for contamination. This work marks the first time that anisotropic cosmic birefringence or primordial magnetic fields have been constrained from the ground at subdegree scales.

  14. POLARBEAR constraints on cosmic birefringence and primordial magnetic fields

    DOE PAGES

    Ade, Peter A. R.; Arnold, Kam; Atlas, Matt; ...

    2015-12-08

    Here, we constrain anisotropic cosmic birefringence using four-point correlations of even-parity E-mode and odd-parity B-mode polarization in the cosmic microwave background measurements made by the POLARization of the Background Radiation (POLARBEAR) experiment in its first season of observations. We find that the anisotropic cosmic birefringence signal from any parity-violating processes is consistent with zero. The Faraday rotation from anisotropic cosmic birefringence can be compared with the equivalent quantity generated by primordial magnetic fields if they existed. The POLARBEAR nondetection translates into a 95% confidence level (C.L.) upper limit of 93 nanogauss (nG) on the amplitude of an equivalent primordial magneticmore » field inclusive of systematic uncertainties. This four-point correlation constraint on Faraday rotation is about 15 times tighter than the upper limit of 1380 nG inferred from constraining the contribution of Faraday rotation to two-point correlations of B-modes measured by Planck in 2015. Metric perturbations sourced by primordial magnetic fields would also contribute to the B-mode power spectrum. Using the POLARBEAR measurements of the B-mode power spectrum (two-point correlation), we set a 95% C.L. upper limit of 3.9 nG on primordial magnetic fields assuming a flat prior on the field amplitude. This limit is comparable to what was found in the Planck 2015 two-point correlation analysis with both temperature and polarization. Finally, we perform a set of systematic error tests and find no evidence for contamination. This work marks the first time that anisotropic cosmic birefringence or primordial magnetic fields have been constrained from the ground at subdegree scales.« less

  15. POLARBEAR constraints on cosmic birefringence and primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Ade, Peter A. R.; Arnold, Kam; Atlas, Matt; Baccigalupi, Carlo; Barron, Darcy; Boettger, David; Borrill, Julian; Chapman, Scott; Chinone, Yuji; Cukierman, Ari; Dobbs, Matt; Ducout, Anne; Dunner, Rolando; Elleflot, Tucker; Errard, Josquin; Fabbian, Giulio; Feeney, Stephen; Feng, Chang; Gilbert, Adam; Goeckner-Wald, Neil; Groh, John; Hall, Grantland; Halverson, Nils W.; Hasegawa, Masaya; Hattori, Kaori; Hazumi, Masashi; Hill, Charles; Holzapfel, William L.; Hori, Yasuto; Howe, Logan; Inoue, Yuki; Jaehnig, Gregory C.; Jaffe, Andrew H.; Jeong, Oliver; Katayama, Nobuhiko; Kaufman, Jonathan P.; Keating, Brian; Kermish, Zigmund; Keskitalo, Reijo; Kisner, Theodore; Kusaka, Akito; Le Jeune, Maude; Lee, Adrian T.; Leitch, Erik M.; Leon, David; Li, Yun; Linder, Eric; Lowry, Lindsay; Matsuda, Frederick; Matsumura, Tomotake; Miller, Nathan; Montgomery, Josh; Myers, Michael J.; Navaroli, Martin; Nishino, Haruki; Okamura, Takahiro; Paar, Hans; Peloton, Julien; Pogosian, Levon; Poletti, Davide; Puglisi, Giuseppe; Raum, Christopher; Rebeiz, Gabriel; Reichardt, Christian L.; Richards, Paul L.; Ross, Colin; Rotermund, Kaja M.; Schenck, David E.; Sherwin, Blake D.; Shimon, Meir; Shirley, Ian; Siritanasak, Praween; Smecher, Graeme; Stebor, Nathan; Steinbach, Bryan; Suzuki, Aritoki; Suzuki, Jun-ichi; Tajima, Osamu; Takakura, Satoru; Tikhomirov, Alexei; Tomaru, Takayuki; Whitehorn, Nathan; Wilson, Brandon; Yadav, Amit; Zahn, Alex; Zahn, Oliver; Polarbear Collaboration

    2015-12-01

    We constrain anisotropic cosmic birefringence using four-point correlations of even-parity E -mode and odd-parity B -mode polarization in the cosmic microwave background measurements made by the POLARization of the Background Radiation (POLARBEAR) experiment in its first season of observations. We find that the anisotropic cosmic birefringence signal from any parity-violating processes is consistent with zero. The Faraday rotation from anisotropic cosmic birefringence can be compared with the equivalent quantity generated by primordial magnetic fields if they existed. The POLARBEAR nondetection translates into a 95% confidence level (C.L.) upper limit of 93 nanogauss (nG) on the amplitude of an equivalent primordial magnetic field inclusive of systematic uncertainties. This four-point correlation constraint on Faraday rotation is about 15 times tighter than the upper limit of 1380 nG inferred from constraining the contribution of Faraday rotation to two-point correlations of B -modes measured by Planck in 2015. Metric perturbations sourced by primordial magnetic fields would also contribute to the B -mode power spectrum. Using the POLARBEAR measurements of the B -mode power spectrum (two-point correlation), we set a 95% C.L. upper limit of 3.9 nG on primordial magnetic fields assuming a flat prior on the field amplitude. This limit is comparable to what was found in the Planck 2015 two-point correlation analysis with both temperature and polarization. We perform a set of systematic error tests and find no evidence for contamination. This work marks the first time that anisotropic cosmic birefringence or primordial magnetic fields have been constrained from the ground at subdegree scales.

  16. Evaporation from a sphagnum moss surface

    Treesearch

    D.S. Nichols; J.M. Brown

    1980-01-01

    Peat cores, 45 cm in diameter, were collected from a sphagnum bog in northern Minnesota, and used to measure the effects of different temperatures and water levels on evaporation from a sphagnum moss surface in a growth chamber. Under all conditions, evaporation from the moss surface was greater than that from a free-water surface. Evaporation from the moss increased...

  17. Iodine retention during evaporative volume reduction

    DOEpatents

    Godbee, H.W.; Cathers, G.I.; Blanco, R.E.

    1975-11-18

    An improved method for retaining radioactive iodine in aqueous waste solutions during volume reduction is disclosed. The method applies to evaporative volume reduction processes whereby the decontaminated (evaporated) water can be returned safely to the environment. The method generally comprises isotopically diluting the waste solution with a nonradioactive iodide and maintaining the solution at a high pH during evaporation.

  18. 21 CFR 131.130 - Evaporated milk.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Evaporated milk. 131.130 Section 131.130 Food and... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a) Description. Evaporated milk is the liquid food obtained by partial removal of water only from milk. It...

  19. Reheating the universe once more: the dissipation of acoustic waves as a novel probe of primordial inhomogeneities on even smaller scales.

    PubMed

    Nakama, Tomohiro; Suyama, Teruaki; Yokoyama, Jun'ichi

    2014-08-08

    We provide a simple but robust bound on the primordial curvature perturbation in the range 10(4)  Mpc(-1)primordial nucleosynthesis but before the redshift z∼2×10(6) and reheat the photon bath without invoking cosmic microwave background distortions. This acoustic reheating results in the decrease of the baryon-photon ratio. By combining independent measurements probing the nucleosynthesis era and around the recombination epoch, we find an upper bound on the amplitude of the curvature perturbation over the above wave number range as P(ζ)<0.06. Implications for supermassive black holes are also discussed.

  20. From primordial germ cells to primordial follicles: a review and visual representation of early ovarian development in mice.

    PubMed

    Wear, Hannah M; McPike, Matthew J; Watanabe, Karen H

    2016-06-21

    Normal development of reproductive organs is crucial for successful reproduction. In mice the early ovarian developmental process occurs during the embryonic and postnatal period and is regulated through a series of molecular signaling events. Early ovarian development in mice is a seventeen-day process that begins with the rise of six primordial germ cells on embryonic day five (E5) and ends with the formation of primordial follicles on postnatal day two (P2). We reviewed the current literature and created a visual representation of early ovarian development that depicts the important molecular events and associated phenotypic outcomes based on primary data. The visual representation shows the timeline of key signaling interactions and regulation of protein expression in different cells involved in ovarian development. The major developmental events were divided into five phases: 1) origin of germ cells and maintenance of pluripotency; 2) primordial germ cell migration; 3) sex differentiation; 4) formation of germ cell nests; and 5) germ cell nest breakdown and primordial follicle formation. This review and visual representation provide a summary of the current scientific understanding of the key regulation and signaling during ovarian development and highlights areas needing further study. The visual representation can be used as an educational resource to link molecular events with phenotypic outcomes; serves as a tool to generate new hypotheses and predictions of adverse reproductive outcomes due to perturbations at the molecular and cellular levels; and provides a comprehendible foundation for computational model development and hypothesis testing.