Sample records for event-driven sensor networks

  1. A New Path-Constrained Rendezvous Planning Approach for Large-Scale Event-Driven Wireless Sensor Networks.

    PubMed

    Vajdi, Ahmadreza; Zhang, Gongxuan; Zhou, Junlong; Wei, Tongquan; Wang, Yongli; Wang, Tianshu

    2018-05-04

    We study the problem of employing a mobile-sink into a large-scale Event-Driven Wireless Sensor Networks (EWSNs) for the purpose of data harvesting from sensor-nodes. Generally, this employment improves the main weakness of WSNs that is about energy-consumption in battery-driven sensor-nodes. The main motivation of our work is to address challenges which are related to a network’s topology by adopting a mobile-sink that moves in a predefined trajectory in the environment. Since, in this fashion, it is not possible to gather data from sensor-nodes individually, we adopt the approach of defining some of the sensor-nodes as Rendezvous Points (RPs) in the network. We argue that RP-planning in this case is a tradeoff between minimizing the number of RPs while decreasing the number of hops for a sensor-node that needs data transformation to the related RP which leads to minimizing average energy consumption in the network. We address the problem by formulating the challenges and expectations as a Mixed Integer Linear Programming (MILP). Henceforth, by proving the NP-hardness of the problem, we propose three effective and distributed heuristics for RP-planning, identifying sojourn locations, and constructing routing trees. Finally, experimental results prove the effectiveness of our approach.

  2. A New Path-Constrained Rendezvous Planning Approach for Large-Scale Event-Driven Wireless Sensor Networks

    PubMed Central

    Zhang, Gongxuan; Wang, Yongli; Wang, Tianshu

    2018-01-01

    We study the problem of employing a mobile-sink into a large-scale Event-Driven Wireless Sensor Networks (EWSNs) for the purpose of data harvesting from sensor-nodes. Generally, this employment improves the main weakness of WSNs that is about energy-consumption in battery-driven sensor-nodes. The main motivation of our work is to address challenges which are related to a network’s topology by adopting a mobile-sink that moves in a predefined trajectory in the environment. Since, in this fashion, it is not possible to gather data from sensor-nodes individually, we adopt the approach of defining some of the sensor-nodes as Rendezvous Points (RPs) in the network. We argue that RP-planning in this case is a tradeoff between minimizing the number of RPs while decreasing the number of hops for a sensor-node that needs data transformation to the related RP which leads to minimizing average energy consumption in the network. We address the problem by formulating the challenges and expectations as a Mixed Integer Linear Programming (MILP). Henceforth, by proving the NP-hardness of the problem, we propose three effective and distributed heuristics for RP-planning, identifying sojourn locations, and constructing routing trees. Finally, experimental results prove the effectiveness of our approach. PMID:29734718

  3. A Hybrid Adaptive Routing Algorithm for Event-Driven Wireless Sensor Networks

    PubMed Central

    Figueiredo, Carlos M. S.; Nakamura, Eduardo F.; Loureiro, Antonio A. F.

    2009-01-01

    Routing is a basic function in wireless sensor networks (WSNs). For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load) may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption. PMID:22423207

  4. A hybrid adaptive routing algorithm for event-driven wireless sensor networks.

    PubMed

    Figueiredo, Carlos M S; Nakamura, Eduardo F; Loureiro, Antonio A F

    2009-01-01

    Routing is a basic function in wireless sensor networks (WSNs). For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load) may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Jiang, Huaiguang; Tan, Jin

    This paper proposes an event-driven approach for reconfiguring distribution systems automatically. Specifically, an optimal synchrophasor sensor placement (OSSP) is used to reduce the number of synchrophasor sensors while keeping the whole system observable. Then, a wavelet-based event detection and location approach is used to detect and locate the event, which performs as a trigger for network reconfiguration. With the detected information, the system is then reconfigured using the hierarchical decentralized approach to seek for the new optimal topology. In this manner, whenever an event happens the distribution network can be reconfigured automatically based on the real-time information that is observablemore » and detectable.« less

  6. Feedforward Categorization on AER Motion Events Using Cortex-Like Features in a Spiking Neural Network.

    PubMed

    Zhao, Bo; Ding, Ruoxi; Chen, Shoushun; Linares-Barranco, Bernabe; Tang, Huajin

    2015-09-01

    This paper introduces an event-driven feedforward categorization system, which takes data from a temporal contrast address event representation (AER) sensor. The proposed system extracts bio-inspired cortex-like features and discriminates different patterns using an AER based tempotron classifier (a network of leaky integrate-and-fire spiking neurons). One of the system's most appealing characteristics is its event-driven processing, with both input and features taking the form of address events (spikes). The system was evaluated on an AER posture dataset and compared with two recently developed bio-inspired models. Experimental results have shown that it consumes much less simulation time while still maintaining comparable performance. In addition, experiments on the Mixed National Institute of Standards and Technology (MNIST) image dataset have demonstrated that the proposed system can work not only on raw AER data but also on images (with a preprocessing step to convert images into AER events) and that it can maintain competitive accuracy even when noise is added. The system was further evaluated on the MNIST dynamic vision sensor dataset (in which data is recorded using an AER dynamic vision sensor), with testing accuracy of 88.14%.

  7. Modeling the energy performance of event-driven wireless sensor network by using static sink and mobile sink.

    PubMed

    Chen, Jiehui; Salim, Mariam B; Matsumoto, Mitsuji

    2010-01-01

    Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations.

  8. Modeling the Energy Performance of Event-Driven Wireless Sensor Network by Using Static Sink and Mobile Sink

    PubMed Central

    Chen, Jiehui; Salim, Mariam B.; Matsumoto, Mitsuji

    2010-01-01

    Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations. PMID:22163503

  9. A Reverse Localization Scheme for Underwater Acoustic Sensor Networks

    PubMed Central

    Moradi, Marjan; Rezazadeh, Javad; Ismail, Abdul Samad

    2012-01-01

    Underwater Wireless Sensor Networks (UWSNs) provide new opportunities to observe and predict the behavior of aquatic environments. In some applications like target tracking or disaster prevention, sensed data is meaningless without location information. In this paper, we propose a novel 3D centralized, localization scheme for mobile underwater wireless sensor network, named Reverse Localization Scheme or RLS in short. RLS is an event-driven localization method triggered by detector sensors for launching localization process. RLS is suitable for surveillance applications that require very fast reactions to events and could report the location of the occurrence. In this method, mobile sensor nodes report the event toward the surface anchors as soon as they detect it. They do not require waiting to receive location information from anchors. Simulation results confirm that the proposed scheme improves the energy efficiency and reduces significantly localization response time with a proper level of accuracy in terms of mobility model of water currents. Major contributions of this method lie on reducing the numbers of message exchange for localization, saving the energy and decreasing the average localization response time. PMID:22666034

  10. A reverse localization scheme for underwater acoustic sensor networks.

    PubMed

    Moradi, Marjan; Rezazadeh, Javad; Ismail, Abdul Samad

    2012-01-01

    Underwater Wireless Sensor Networks (UWSNs) provide new opportunities to observe and predict the behavior of aquatic environments. In some applications like target tracking or disaster prevention, sensed data is meaningless without location information. In this paper, we propose a novel 3D centralized, localization scheme for mobile underwater wireless sensor network, named Reverse Localization Scheme or RLS in short. RLS is an event-driven localization method triggered by detector sensors for launching localization process. RLS is suitable for surveillance applications that require very fast reactions to events and could report the location of the occurrence. In this method, mobile sensor nodes report the event toward the surface anchors as soon as they detect it. They do not require waiting to receive location information from anchors. Simulation results confirm that the proposed scheme improves the energy efficiency and reduces significantly localization response time with a proper level of accuracy in terms of mobility model of water currents. Major contributions of this method lie on reducing the numbers of message exchange for localization, saving the energy and decreasing the average localization response time.

  11. Virtual Sensor Web Architecture

    NASA Astrophysics Data System (ADS)

    Bose, P.; Zimdars, A.; Hurlburt, N.; Doug, S.

    2006-12-01

    NASA envisions the development of smart sensor webs, intelligent and integrated observation network that harness distributed sensing assets, their associated continuous and complex data sets, and predictive observation processing mechanisms for timely, collaborative hazard mitigation and enhanced science productivity and reliability. This paper presents Virtual Sensor Web Infrastructure for Collaborative Science (VSICS) Architecture for sustained coordination of (numerical and distributed) model-based processing, closed-loop resource allocation, and observation planning. VSICS's key ideas include i) rich descriptions of sensors as services based on semantic markup languages like OWL and SensorML; ii) service-oriented workflow composition and repair for simple and ensemble models; event-driven workflow execution based on event-based and distributed workflow management mechanisms; and iii) development of autonomous model interaction management capabilities providing closed-loop control of collection resources driven by competing targeted observation needs. We present results from initial work on collaborative science processing involving distributed services (COSEC framework) that is being extended to create VSICS.

  12. A 300-mV 220-nW event-driven ADC with real-time QRS detection for wearable ECG sensors.

    PubMed

    Zhang, Xiaoyang; Lian, Yong

    2014-12-01

    This paper presents an ultra-low-power event-driven analog-to-digital converter (ADC) with real-time QRS detection for wearable electrocardiogram (ECG) sensors in wireless body sensor network (WBSN) applications. Two QRS detection algorithms, pulse-triggered (PUT) and time-assisted PUT (t-PUT), are proposed based on the level-crossing events generated from the ADC. The PUT detector achieves 97.63% sensitivity and 97.33% positive prediction in simulation on the MIT-BIH Arrhythmia Database. The t-PUT improves the sensitivity and positive prediction to 97.76% and 98.59% respectively. Fabricated in 0.13 μm CMOS technology, the ADC with QRS detector consumes only 220 nW measured under 300 mV power supply, making it the first nanoWatt compact analog-to-information (A2I) converter with embedded QRS detector.

  13. Detecting Service Chains and Feature Interactions in Sensor-Driven Home Network Services

    PubMed Central

    Inada, Takuya; Igaki, Hiroshi; Ikegami, Kosuke; Matsumoto, Shinsuke; Nakamura, Masahide; Kusumoto, Shinji

    2012-01-01

    Sensor-driven services often cause chain reactions, since one service may generate an environmental impact that automatically triggers another service. We first propose a framework that can formalize and detect such service chains based on ECA (event, condition, action) rules. Although the service chain can be a major source of feature interactions, not all service chains lead to harmful interactions. Therefore, we then propose a method that identifies feature interactions within the service chains. Specifically, we characterize the degree of deviation of every service chain by evaluating the gap between expected and actual service states. An experimental evaluation demonstrates that the proposed method successfully detects 11 service chains and 6 feature interactions within 7 practical sensor-driven services. PMID:23012499

  14. Virtualization of event sources in wireless sensor networks for the internet of things.

    PubMed

    Lucas Martínez, Néstor; Martínez, José-Fernán; Hernández Díaz, Vicente

    2014-12-01

    Wireless Sensor Networks (WSNs) are generally used to collect information from the environment. The gathered data are delivered mainly to sinks or gateways that become the endpoints where applications can retrieve and process such data. However, applications would also expect from a WSN an event-driven operational model, so that they can be notified whenever occur some specific environmental changes instead of continuously analyzing the data provided periodically. In either operational model, WSNs represent a collection of interconnected objects, as outlined by the Internet of Things. Additionally, in order to fulfill the Internet of Things principles, Wireless Sensor Networks must have a virtual representation that allows indirect access to their resources, a model that should also include the virtualization of event sources in a WSN. Thus, in this paper a model for a virtual representation of event sources in a WSN is proposed. They are modeled as internet resources that are accessible by any internet application, following an Internet of Things approach. The model has been tested in a real implementation where a WSN has been deployed in an open neighborhood environment. Different event sources have been identified in the proposed scenario, and they have been represented following the proposed model.

  15. Event-Based Stereo Depth Estimation Using Belief Propagation.

    PubMed

    Xie, Zhen; Chen, Shengyong; Orchard, Garrick

    2017-01-01

    Compared to standard frame-based cameras, biologically-inspired event-based sensors capture visual information with low latency and minimal redundancy. These event-based sensors are also far less prone to motion blur than traditional cameras, and still operate effectively in high dynamic range scenes. However, classical framed-based algorithms are not typically suitable for these event-based data and new processing algorithms are required. This paper focuses on the problem of depth estimation from a stereo pair of event-based sensors. A fully event-based stereo depth estimation algorithm which relies on message passing is proposed. The algorithm not only considers the properties of a single event but also uses a Markov Random Field (MRF) to consider the constraints between the nearby events, such as disparity uniqueness and depth continuity. The method is tested on five different scenes and compared to other state-of-art event-based stereo matching methods. The results show that the method detects more stereo matches than other methods, with each match having a higher accuracy. The method can operate in an event-driven manner where depths are reported for individual events as they are received, or the network can be queried at any time to generate a sparse depth frame which represents the current state of the network.

  16. Virtualization of Event Sources in Wireless Sensor Networks for the Internet of Things

    PubMed Central

    Martínez, Néstor Lucas; Martínez, José-Fernán; Díaz, Vicente Hernández

    2014-01-01

    Wireless Sensor Networks (WSNs) are generally used to collect information from the environment. The gathered data are delivered mainly to sinks or gateways that become the endpoints where applications can retrieve and process such data. However, applications would also expect from a WSN an event-driven operational model, so that they can be notified whenever occur some specific environmental changes instead of continuously analyzing the data provided periodically. In either operational model, WSNs represent a collection of interconnected objects, as outlined by the Internet of Things. Additionally, in order to fulfill the Internet of Things principles, Wireless Sensor Networks must have a virtual representation that allows indirect access to their resources, a model that should also include the virtualization of event sources in a WSN. Thus, in this paper a model for a virtual representation of event sources in a WSN is proposed. They are modeled as internet resources that are accessible by any internet application, following an Internet of Things approach. The model has been tested in a real implementation where a WSN has been deployed in an open neighborhood environment. Different event sources have been identified in the proposed scenario, and they have been represented following the proposed model. PMID:25470489

  17. Electrical Design and Evaluation of Asynchronous Serial Bus Communication Network of 48 Sensor Platform LSIs with Single-Ended I/O for Integrated MEMS-LSI Sensors.

    PubMed

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Muroyama, Masanori

    2018-01-15

    For installing many sensors in a limited space with a limited computing resource, the digitization of the sensor output at the site of sensation has advantages such as a small amount of wiring, low signal interference and high scalability. For this purpose, we have developed a dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) (referred to as "sensor platform LSI") for bus-networked Micro-Electro-Mechanical-Systems (MEMS)-LSI integrated sensors. In this LSI, collision avoidance, adaptation and event-driven functions are simply implemented to relieve data collision and congestion in asynchronous serial bus communication. In this study, we developed a network system with 48 sensor platform LSIs based on Printed Circuit Board (PCB) in a backbone bus topology with the bus length being 2.4 m. We evaluated the serial communication performance when 48 LSIs operated simultaneously with the adaptation function. The number of data packets received from each LSI was almost identical, and the average sampling frequency of 384 capacitance channels (eight for each LSI) was 73.66 Hz.

  18. Training Deep Spiking Neural Networks Using Backpropagation.

    PubMed

    Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael

    2016-01-01

    Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.

  19. Novel Hybrid Scheduling Technique for Sensor Nodes with Mixed Criticality Tasks.

    PubMed

    Micea, Mihai-Victor; Stangaciu, Cristina-Sorina; Stangaciu, Valentin; Curiac, Daniel-Ioan

    2017-06-26

    Sensor networks become increasingly a key technology for complex control applications. Their potential use in safety- and time-critical domains has raised the need for task scheduling mechanisms specially adapted to sensor node specific requirements, often materialized in predictable jitter-less execution of tasks characterized by different criticality levels. This paper offers an efficient scheduling solution, named Hybrid Hard Real-Time Scheduling (H²RTS), which combines a static, clock driven method with a dynamic, event driven scheduling technique, in order to provide high execution predictability, while keeping a high node Central Processing Unit (CPU) utilization factor. From the detailed, integrated schedulability analysis of the H²RTS, a set of sufficiency tests are introduced and demonstrated based on the processor demand and linear upper bound metrics. The performance and correct behavior of the proposed hybrid scheduling technique have been extensively evaluated and validated both on a simulator and on a sensor mote equipped with ARM7 microcontroller.

  20. A Greedy Scanning Data Collection Strategy for Large-Scale Wireless Sensor Networks with a Mobile Sink.

    PubMed

    Zhu, Chuan; Zhang, Sai; Han, Guangjie; Jiang, Jinfang; Rodrigues, Joel J P C

    2016-09-06

    Mobile sink is widely used for data collection in wireless sensor networks. It can avoid 'hot spot' problems but energy consumption caused by multihop transmission is still inefficient in real-time application scenarios. In this paper, a greedy scanning data collection strategy (GSDCS) is proposed, and we focus on how to reduce routing energy consumption by shortening total length of routing paths. We propose that the mobile sink adjusts its trajectory dynamically according to the changes of network, instead of predetermined trajectory or random walk. Next, the mobile sink determines which area has more source nodes, then it moves toward this area. The benefit of GSDCS is that most source nodes are no longer needed to upload sensory data for long distances. Especially in event-driven application scenarios, when event area changes, the mobile sink could arrive at the new event area where most source nodes are located currently. Hence energy can be saved. Analytical and simulation results show that compared with existing work, our GSDCS has a better performance in specific application scenarios.

  1. A Greedy Scanning Data Collection Strategy for Large-Scale Wireless Sensor Networks with a Mobile Sink

    PubMed Central

    Zhu, Chuan; Zhang, Sai; Han, Guangjie; Jiang, Jinfang; Rodrigues, Joel J. P. C.

    2016-01-01

    Mobile sink is widely used for data collection in wireless sensor networks. It can avoid ‘hot spot’ problems but energy consumption caused by multihop transmission is still inefficient in real-time application scenarios. In this paper, a greedy scanning data collection strategy (GSDCS) is proposed, and we focus on how to reduce routing energy consumption by shortening total length of routing paths. We propose that the mobile sink adjusts its trajectory dynamically according to the changes of network, instead of predetermined trajectory or random walk. Next, the mobile sink determines which area has more source nodes, then it moves toward this area. The benefit of GSDCS is that most source nodes are no longer needed to upload sensory data for long distances. Especially in event-driven application scenarios, when event area changes, the mobile sink could arrive at the new event area where most source nodes are located currently. Hence energy can be saved. Analytical and simulation results show that compared with existing work, our GSDCS has a better performance in specific application scenarios. PMID:27608022

  2. Statistical-QoS Guaranteed Energy Efficiency Optimization for Energy Harvesting Wireless Sensor Networks

    PubMed Central

    Cheng, Wenchi; Zhang, Hailin

    2017-01-01

    Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks. PMID:28832509

  3. Statistical-QoS Guaranteed Energy Efficiency Optimization for Energy Harvesting Wireless Sensor Networks.

    PubMed

    Gao, Ya; Cheng, Wenchi; Zhang, Hailin

    2017-08-23

    Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks.

  4. Two-layer wireless distributed sensor/control network based on RF

    NASA Astrophysics Data System (ADS)

    Feng, Li; Lin, Yuchi; Zhou, Jingjing; Dong, Guimei; Xia, Guisuo

    2006-11-01

    A project of embedded Wireless Distributed Sensor/Control Network (WDSCN) based on RF is presented after analyzing the disadvantages of traditional measure and control system. Because of high-cost and complexity, such wireless techniques as Bluetooth and WiFi can't meet the needs of WDSCN. The two-layer WDSCN is designed based on RF technique, which operates in the ISM free frequency channel with low power and high transmission speed. Also the network is low cost, portable and moveable, integrated with the technologies of computer network, sensor, microprocessor and wireless communications. The two-layer network topology is selected in the system; a simple but efficient self-organization net protocol is designed to fit the periodic data collection, event-driven and store-and-forward. Furthermore, adaptive frequency hopping technique is adopted for anti-jamming apparently. The problems about power reduction and synchronization of data in wireless system are solved efficiently. Based on the discussion above, a measure and control network is set up to control such typical instruments and sensors as temperature sensor and signal converter, collect data, and monitor environmental parameters around. This system works well in different rooms. Experiment results show that the system provides an efficient solution to WDSCN through wireless links, with high efficiency, low power, high stability, flexibility and wide working range.

  5. An Expert System And Simulation Approach For Sensor Management & Control In A Distributed Surveillance Network

    NASA Astrophysics Data System (ADS)

    Leon, Barbara D.; Heller, Paul R.

    1987-05-01

    A surveillance network is a group of multiplatform sensors cooperating to improve network performance. Network control is distributed as a measure to decrease vulnerability to enemy threat. The network may contain diverse sensor types such as radar, ESM (Electronic Support Measures), IRST (Infrared search and track) and E-0 (Electro-Optical). Each platform may contain a single sensor or suite of sensors. In a surveillance network it is desirable to control sensors to make the overall system more effective. This problem has come to be known as sensor management and control (SM&C). Two major facets of network performance are surveillance and survivability. In a netted environment, surveillance can be enhanced if information from all sensors is combined and sensor operating conditions are controlled to provide a synergistic effect. In contrast, when survivability is the main concern for the network, the best operating status for all sensors would be passive or off. Of course, improving survivability tends to degrade surveillance. Hence, the objective of SM&C is to optimize surveillance and survivability of the network. Too voluminous data of various formats and the quick response time are two characteristics of this problem which make it an ideal application for Artificial Intelligence. A solution to the SM&C problem, presented as a computer simulation, will be presented in this paper. The simulation is a hybrid production written in LISP and FORTRAN. It combines the latest conventional computer programming methods with Artificial Intelligence techniques to produce a flexible state-of-the-art tool to evaluate network performance. The event-driven simulation contains environment models coupled with an expert system. These environment models include sensor (track-while-scan and agile beam) and target models, local tracking, and system tracking. These models are used to generate the environment for the sensor management and control expert system. The expert system, driven by a forward chaining inference engine, makes decisions based on the global database. The global database contains current track and sensor information supplied by the simulation. At present, the rule base emphasizes the surveillance features with rules grouped into three main categories: maintenance and enhancing track on prioritized targets; filling coverage holes and countering jamming; and evaluating sensor status. The paper will describe the architecture used for the expert system and the reasons for selecting the chosen methods. The SM&C simulation produces a graphical representation of sensors and their associated tracks such that the benefits of the sensor management and control expert system are evident. Jammer locations are also part of the display. The paper will describe results from several scenarios that best illustrate the sensor management and control concepts.

  6. Electrical Design and Evaluation of Asynchronous Serial Bus Communication Network of 48 Sensor Platform LSIs with Single-Ended I/O for Integrated MEMS-LSI Sensors

    PubMed Central

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki

    2018-01-01

    For installing many sensors in a limited space with a limited computing resource, the digitization of the sensor output at the site of sensation has advantages such as a small amount of wiring, low signal interference and high scalability. For this purpose, we have developed a dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) (referred to as “sensor platform LSI”) for bus-networked Micro-Electro-Mechanical-Systems (MEMS)-LSI integrated sensors. In this LSI, collision avoidance, adaptation and event-driven functions are simply implemented to relieve data collision and congestion in asynchronous serial bus communication. In this study, we developed a network system with 48 sensor platform LSIs based on Printed Circuit Board (PCB) in a backbone bus topology with the bus length being 2.4 m. We evaluated the serial communication performance when 48 LSIs operated simultaneously with the adaptation function. The number of data packets received from each LSI was almost identical, and the average sampling frequency of 384 capacitance channels (eight for each LSI) was 73.66 Hz. PMID:29342923

  7. Bluetooth-based wireless sensor networks

    NASA Astrophysics Data System (ADS)

    You, Ke; Liu, Rui Qiang

    2007-11-01

    In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.

  8. Novel Hybrid Scheduling Technique for Sensor Nodes with Mixed Criticality Tasks

    PubMed Central

    Micea, Mihai-Victor; Stangaciu, Cristina-Sorina; Stangaciu, Valentin; Curiac, Daniel-Ioan

    2017-01-01

    Sensor networks become increasingly a key technology for complex control applications. Their potential use in safety- and time-critical domains has raised the need for task scheduling mechanisms specially adapted to sensor node specific requirements, often materialized in predictable jitter-less execution of tasks characterized by different criticality levels. This paper offers an efficient scheduling solution, named Hybrid Hard Real-Time Scheduling (H2RTS), which combines a static, clock driven method with a dynamic, event driven scheduling technique, in order to provide high execution predictability, while keeping a high node Central Processing Unit (CPU) utilization factor. From the detailed, integrated schedulability analysis of the H2RTS, a set of sufficiency tests are introduced and demonstrated based on the processor demand and linear upper bound metrics. The performance and correct behavior of the proposed hybrid scheduling technique have been extensively evaluated and validated both on a simulator and on a sensor mote equipped with ARM7 microcontroller. PMID:28672856

  9. Sensor Web Dynamic Measurement Techniques and Adaptive Observing Strategies

    NASA Technical Reports Server (NTRS)

    Talabac, Stephen J.

    2004-01-01

    Sensor Web observing systems may have the potential to significantly improve our ability to monitor, understand, and predict the evolution of rapidly evolving, transient, or variable environmental features and events. This improvement will come about by integrating novel data collection techniques, new or improved instruments, emerging communications technologies and protocols, sensor mark-up languages, and interoperable planning and scheduling systems. In contrast to today's observing systems, "event-driven" sensor webs will synthesize real- or near-real time measurements and information from other platforms and then react by reconfiguring the platforms and instruments to invoke new measurement modes and adaptive observation strategies. Similarly, "model-driven" sensor webs will utilize environmental prediction models to initiate targeted sensor measurements or to use a new observing strategy. The sensor web concept contrasts with today's data collection techniques and observing system operations concepts where independent measurements are made by remote sensing and in situ platforms that do not share, and therefore cannot act upon, potentially useful complementary sensor measurement data and platform state information. This presentation describes NASA's view of event-driven and model-driven Sensor Webs and highlights several research and development activities at the Goddard Space Flight Center.

  10. New early warning system for gravity-driven ruptures based on codetection of acoustic signal

    NASA Astrophysics Data System (ADS)

    Faillettaz, J.

    2016-12-01

    Gravity-driven rupture phenomena in natural media - e.g. landslide, rockfalls, snow or ice avalanches - represent an important class of natural hazards in mountainous regions. To protect the population against such events, a timely evacuation often constitutes the only effective way to secure the potentially endangered area. However, reliable prediction of imminence of such failure events remains challenging due to the nonlinear and complex nature of geological material failure hampered by inherent heterogeneity, unknown initial mechanical state, and complex load application (rainfall, temperature, etc.). Here, a simple method for real-time early warning that considers both the heterogeneity of natural media and characteristics of acoustic emissions attenuation is proposed. This new method capitalizes on codetection of elastic waves emanating from microcracks by multiple and spatially separated sensors. Event-codetection is considered as surrogate for large event size with more frequent codetected events (i.e., detected concurrently on more than one sensor) marking imminence of catastrophic failure. Simple numerical model based on a Fiber Bundle Model considering signal attenuation and hypothetical arrays of sensors confirms the early warning potential of codetection principles. Results suggest that although statistical properties of attenuated signal amplitude could lead to misleading results, monitoring the emergence of large events announcing impeding failure is possible even with attenuated signals depending on sensor network geometry and detection threshold. Preliminary application of the proposed method to acoustic emissions during failure of snow samples has confirmed the potential use of codetection as indicator for imminent failure at lab scale. The applicability of such simple and cheap early warning system is now investigated at a larger scale (hillslope). First results of such a pilot field experiment are presented and analysed.

  11. Bio-inspired UAV routing, source localization, and acoustic signature classification for persistent surveillance

    NASA Astrophysics Data System (ADS)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Pham, Tien

    2011-06-01

    A team consisting of Teledyne Scientific Company, the University of California at Santa Barbara and the Army Research Laboratory* is developing technologies in support of automated data exfiltration from heterogeneous battlefield sensor networks to enhance situational awareness for dismounts and command echelons. Unmanned aerial vehicles (UAV) provide an effective means to autonomously collect data from a sparse network of unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous collection routes that are data-driven. Bio-inspired techniques for search provide a novel strategy to detect, capture and fuse data. A fast and accurate method has been developed to localize an event by fusing data from a sparse number of UGSs. This technique uses a bio-inspired algorithm based on chemotaxis or the motion of bacteria seeking nutrients in their environment. A unique acoustic event classification algorithm was also developed based on using swarm optimization. Additional studies addressed the problem of routing multiple UAVs, optimally placing sensors in the field and locating the source of gunfire at helicopters. A field test was conducted in November of 2009 at Camp Roberts, CA. The field test results showed that a system controlled by bio-inspired software algorithms can autonomously detect and locate the source of an acoustic event with very high accuracy and visually verify the event. In nine independent test runs of a UAV, the system autonomously located the position of an explosion nine times with an average accuracy of 3 meters. The time required to perform source localization using the UAV was on the order of a few minutes based on UAV flight times. In June 2011, additional field tests of the system will be performed and will include multiple acoustic events, optimal sensor placement based on acoustic phenomenology and the use of the International Technology Alliance (ITA) Sensor Network Fabric (IBM).

  12. Wireless Sensor Node Power Profiling Based on IEEE 802.11 and IEEE 802.15.4 Communication Protocols. Modeling and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Vivek; Richardson, Joseph; Zhang, Yanliang

    Most wireless sensor network (comprising of thousands of WSNs) applications require operation over extended periods of time beginning with their deployment. Network lifetime is extremely critical for most applications and is one of the limiting factors for energy-constrained networks. Based on applications, there are wide ranges of different energy sources suitable for powering WSNs. A battery is traditionally used to power WSNs. The deployed WSN is required to last for long time. Due to finite amount of energy present in batteries, it is not feasible to replace batteries. Recently there has been a new surge in the area of energymore » harvesting were ambient energy in the environment can be utilized to prolong the lifetime of WSNs. Some of the sources of ambient energies are solar power, thermal gradient, human motion and body heat, vibrations, and ambient RF energy. The design and development of TEGs to power WSNs that would remain active for a long period of time requires comprehensive understanding of WSN operational. This motivates the research in modeling the lifetime, i.e., power consumption, of a WSN by taking into consideration various node and network level activities. A WSN must perform three essential tasks: sense events, perform quick local information processing of sensed events, and wirelessly exchange locally processed data with the base station or with other WSNs in the network. Each task has a power cost per unit tine and an additional cost when switching between tasks. There are number of other considerations that must also be taken into account when computing the power consumption associated with each task. The considerations includes: number of events occurring in a fixed active time period and the duration of each event, event-information processing time, total communication time, number of retransmission, etc. Additionally, at the network level the communication of information data packets between WSNs involves collisions, latency, and retransmission, which result in unanticipated power losses. This report focuses rigorous stochastic modeling of power demand for a schedule-driven WSN utilizing Institute of Electrical and Electronics Engineers 802.11 and 802.15.4 communication protocols. The model captures the generic operation of a schedule-driven WSN when an external event occurs, i.e., sensing, following by processing, and followed by communication. The report will present development of an expression to compute the expected energy consumption per operational cycle of a schedule-driven WSN by taking into consideration the node level activities, i.e., sensing and processing, and the network level activities, i.e., channel access, packet collision, retransmission attempts, and transmission of a data packet.« less

  13. Feature Representations for Neuromorphic Audio Spike Streams.

    PubMed

    Anumula, Jithendar; Neil, Daniel; Delbruck, Tobi; Liu, Shih-Chii

    2018-01-01

    Event-driven neuromorphic spiking sensors such as the silicon retina and the silicon cochlea encode the external sensory stimuli as asynchronous streams of spikes across different channels or pixels. Combining state-of-art deep neural networks with the asynchronous outputs of these sensors has produced encouraging results on some datasets but remains challenging. While the lack of effective spiking networks to process the spike streams is one reason, the other reason is that the pre-processing methods required to convert the spike streams to frame-based features needed for the deep networks still require further investigation. This work investigates the effectiveness of synchronous and asynchronous frame-based features generated using spike count and constant event binning in combination with the use of a recurrent neural network for solving a classification task using N-TIDIGITS18 dataset. This spike-based dataset consists of recordings from the Dynamic Audio Sensor, a spiking silicon cochlea sensor, in response to the TIDIGITS audio dataset. We also propose a new pre-processing method which applies an exponential kernel on the output cochlea spikes so that the interspike timing information is better preserved. The results from the N-TIDIGITS18 dataset show that the exponential features perform better than the spike count features, with over 91% accuracy on the digit classification task. This accuracy corresponds to an improvement of at least 2.5% over the use of spike count features, establishing a new state of the art for this dataset.

  14. Feature Representations for Neuromorphic Audio Spike Streams

    PubMed Central

    Anumula, Jithendar; Neil, Daniel; Delbruck, Tobi; Liu, Shih-Chii

    2018-01-01

    Event-driven neuromorphic spiking sensors such as the silicon retina and the silicon cochlea encode the external sensory stimuli as asynchronous streams of spikes across different channels or pixels. Combining state-of-art deep neural networks with the asynchronous outputs of these sensors has produced encouraging results on some datasets but remains challenging. While the lack of effective spiking networks to process the spike streams is one reason, the other reason is that the pre-processing methods required to convert the spike streams to frame-based features needed for the deep networks still require further investigation. This work investigates the effectiveness of synchronous and asynchronous frame-based features generated using spike count and constant event binning in combination with the use of a recurrent neural network for solving a classification task using N-TIDIGITS18 dataset. This spike-based dataset consists of recordings from the Dynamic Audio Sensor, a spiking silicon cochlea sensor, in response to the TIDIGITS audio dataset. We also propose a new pre-processing method which applies an exponential kernel on the output cochlea spikes so that the interspike timing information is better preserved. The results from the N-TIDIGITS18 dataset show that the exponential features perform better than the spike count features, with over 91% accuracy on the digit classification task. This accuracy corresponds to an improvement of at least 2.5% over the use of spike count features, establishing a new state of the art for this dataset. PMID:29479300

  15. An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data.

    PubMed

    Stromatias, Evangelos; Soto, Miguel; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabé

    2017-01-01

    This paper introduces a novel methodology for training an event-driven classifier within a Spiking Neural Network (SNN) System capable of yielding good classification results when using both synthetic input data and real data captured from Dynamic Vision Sensor (DVS) chips. The proposed supervised method uses the spiking activity provided by an arbitrary topology of prior SNN layers to build histograms and train the classifier in the frame domain using the stochastic gradient descent algorithm. In addition, this approach can cope with leaky integrate-and-fire neuron models within the SNN, a desirable feature for real-world SNN applications, where neural activation must fade away after some time in the absence of inputs. Consequently, this way of building histograms captures the dynamics of spikes immediately before the classifier. We tested our method on the MNIST data set using different synthetic encodings and real DVS sensory data sets such as N-MNIST, MNIST-DVS, and Poker-DVS using the same network topology and feature maps. We demonstrate the effectiveness of our approach by achieving the highest classification accuracy reported on the N-MNIST (97.77%) and Poker-DVS (100%) real DVS data sets to date with a spiking convolutional network. Moreover, by using the proposed method we were able to retrain the output layer of a previously reported spiking neural network and increase its performance by 2%, suggesting that the proposed classifier can be used as the output layer in works where features are extracted using unsupervised spike-based learning methods. In addition, we also analyze SNN performance figures such as total event activity and network latencies, which are relevant for eventual hardware implementations. In summary, the paper aggregates unsupervised-trained SNNs with a supervised-trained SNN classifier, combining and applying them to heterogeneous sets of benchmarks, both synthetic and from real DVS chips.

  16. Temporal Data-Driven Sleep Scheduling and Spatial Data-Driven Anomaly Detection for Clustered Wireless Sensor Networks

    PubMed Central

    Li, Gang; He, Bin; Huang, Hongwei; Tang, Limin

    2016-01-01

    The spatial–temporal correlation is an important feature of sensor data in wireless sensor networks (WSNs). Most of the existing works based on the spatial–temporal correlation can be divided into two parts: redundancy reduction and anomaly detection. These two parts are pursued separately in existing works. In this work, the combination of temporal data-driven sleep scheduling (TDSS) and spatial data-driven anomaly detection is proposed, where TDSS can reduce data redundancy. The TDSS model is inspired by transmission control protocol (TCP) congestion control. Based on long and linear cluster structure in the tunnel monitoring system, cooperative TDSS and spatial data-driven anomaly detection are then proposed. To realize synchronous acquisition in the same ring for analyzing the situation of every ring, TDSS is implemented in a cooperative way in the cluster. To keep the precision of sensor data, spatial data-driven anomaly detection based on the spatial correlation and Kriging method is realized to generate an anomaly indicator. The experiment results show that cooperative TDSS can realize non-uniform sensing effectively to reduce the energy consumption. In addition, spatial data-driven anomaly detection is quite significant for maintaining and improving the precision of sensor data. PMID:27690035

  17. Network hydraulics inclusion in water quality event detection using multiple sensor stations data.

    PubMed

    Oliker, Nurit; Ostfeld, Avi

    2015-09-01

    Event detection is one of the current most challenging topics in water distribution systems analysis: how regular on-line hydraulic (e.g., pressure, flow) and water quality (e.g., pH, residual chlorine, turbidity) measurements at different network locations can be efficiently utilized to detect water quality contamination events. This study describes an integrated event detection model which combines multiple sensor stations data with network hydraulics. To date event detection modelling is likely limited to single sensor station location and dataset. Single sensor station models are detached from network hydraulics insights and as a result might be significantly exposed to false positive alarms. This work is aimed at decreasing this limitation through integrating local and spatial hydraulic data understanding into an event detection model. The spatial analysis complements the local event detection effort through discovering events with lower signatures by exploring the sensors mutual hydraulic influences. The unique contribution of this study is in incorporating hydraulic simulation information into the overall event detection process of spatially distributed sensors. The methodology is demonstrated on two example applications using base runs and sensitivity analyses. Results show a clear advantage of the suggested model over single-sensor event detection schemes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Event Detection in Aerospace Systems using Centralized Sensor Networks: A Comparative Study of Several Methodologies

    NASA Technical Reports Server (NTRS)

    Mehr, Ali Farhang; Sauvageon, Julien; Agogino, Alice M.; Tumer, Irem Y.

    2006-01-01

    Recent advances in micro electromechanical systems technology, digital electronics, and wireless communications have enabled development of low-cost, low-power, multifunctional miniature smart sensors. These sensors can be deployed throughout a region in an aerospace vehicle to build a network for measurement, detection and surveillance applications. Event detection using such centralized sensor networks is often regarded as one of the most promising health management technologies in aerospace applications where timely detection of local anomalies has a great impact on the safety of the mission. In this paper, we propose to conduct a qualitative comparison of several local event detection algorithms for centralized redundant sensor networks. The algorithms are compared with respect to their ability to locate and evaluate an event in the presence of noise and sensor failures for various node geometries and densities.

  19. Web-Based Interface for Command and Control of Network Sensors

    NASA Technical Reports Server (NTRS)

    Wallick, Michael N.; Doubleday, Joshua R.; Shams, Khawaja S.

    2010-01-01

    This software allows for the visualization and control of a network of sensors through a Web browser interface. It is currently being deployed for a network of sensors monitoring Mt. Saint Helen s volcano; however, this innovation is generic enough that it can be deployed for any type of sensor Web. From this interface, the user is able to fully control and monitor the sensor Web. This includes, but is not limited to, sending "test" commands to individual sensors in the network, monitoring for real-world events, and reacting to those events

  20. CMOS Active-Pixel Image Sensor With Intensity-Driven Readout

    NASA Technical Reports Server (NTRS)

    Langenbacher, Harry T.; Fossum, Eric R.; Kemeny, Sabrina

    1996-01-01

    Proposed complementary metal oxide/semiconductor (CMOS) integrated-circuit image sensor automatically provides readouts from pixels in order of decreasing illumination intensity. Sensor operated in integration mode. Particularly useful in number of image-sensing tasks, including diffractive laser range-finding, three-dimensional imaging, event-driven readout of sparse sensor arrays, and star tracking.

  1. Data-driven Modeling of Metal-oxide Sensors with Dynamic Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Gosangi, Rakesh; Gutierrez-Osuna, Ricardo

    2011-09-01

    We present a data-driven probabilistic framework to model the transient response of MOX sensors modulated with a sequence of voltage steps. Analytical models of MOX sensors are usually built based on the physico-chemical properties of the sensing materials. Although building these models provides an insight into the sensor behavior, they also require a thorough understanding of the underlying operating principles. Here we propose a data-driven approach to characterize the dynamical relationship between sensor inputs and outputs. Namely, we use dynamic Bayesian networks (DBNs), probabilistic models that represent temporal relations between a set of random variables. We identify a set of control variables that influence the sensor responses, create a graphical representation that captures the causal relations between these variables, and finally train the model with experimental data. We validated the approach on experimental data in terms of predictive accuracy and classification performance. Our results show that DBNs can accurately predict the dynamic response of MOX sensors, as well as capture the discriminatory information present in the sensor transients.

  2. Miniature, Low-Power, Waveguide Based Infrared Fourier Transform Spectrometer for Spacecraft Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hewagama, TIlak; Aslam, Shahid; Talabac, Stephen; Allen, John E., Jr.; Annen, John N.; Jennings, Donald E.

    2011-01-01

    Fourier transform spectrometers have a venerable heritage as flight instruments. However, obtaining an accurate spectrum exacts a penalty in instrument mass and power requirements. Recent advances in a broad class of non-scanning Fourier transform spectrometer (FTS) devices, generally called spatial heterodyne spectrometers, offer distinct advantages as flight optimized systems. We are developing a miniaturized system that employs photonics lightwave circuit principles and functions as an FTS operating in the 7-14 micrometer spectral region. The inteferogram is constructed from an ensemble of Mach-Zehnder interferometers with path length differences calibrated to mimic scan mirror sample positions of a classic Michelson type FTS. One potential long-term application of this technology in low cost planetary missions is the concept of a self-contained sensor system. We are developing a systems architecture concept for wide area in situ and remote monitoring of characteristic properties that are of scientific interest. The system will be based on wavelength- and resolution-independent spectroscopic sensors for studying atmospheric and surface chemistry, physics, and mineralogy. The self-contained sensor network is based on our concept of an Addressable Photonics Cube (APC) which has real-time flexibility and broad science applications. It is envisaged that a spatially distributed autonomous sensor web concept that integrates multiple APCs will be reactive and dynamically driven. The network is designed to respond in an event- or model-driven manner or reconfigured as needed.

  3. Compound Event Barrier Coverage in Wireless Sensor Networks under Multi-Constraint Conditions.

    PubMed

    Zhuang, Yaoming; Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi

    2016-12-24

    It is important to monitor compound event by barrier coverage issues in wireless sensor networks (WSNs). Compound event barrier coverage (CEBC) is a novel coverage problem. Unlike traditional ones, the data of compound event barrier coverage comes from different types of sensors. It will be subject to multiple constraints under complex conditions in real-world applications. The main objective of this paper is to design an efficient algorithm for complex conditions that can combine the compound event confidence. Moreover, a multiplier method based on an active-set strategy (ASMP) is proposed to optimize the multiple constraints in compound event barrier coverage. The algorithm can calculate the coverage ratio efficiently and allocate the sensor resources reasonably in compound event barrier coverage. The proposed algorithm can simplify complex problems to reduce the computational load of the network and improve the network efficiency. The simulation results demonstrate that the proposed algorithm is more effective and efficient than existing methods, especially in the allocation of sensor resources.

  4. Compound Event Barrier Coverage in Wireless Sensor Networks under Multi-Constraint Conditions

    PubMed Central

    Zhuang, Yaoming; Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi

    2016-01-01

    It is important to monitor compound event by barrier coverage issues in wireless sensor networks (WSNs). Compound event barrier coverage (CEBC) is a novel coverage problem. Unlike traditional ones, the data of compound event barrier coverage comes from different types of sensors. It will be subject to multiple constraints under complex conditions in real-world applications. The main objective of this paper is to design an efficient algorithm for complex conditions that can combine the compound event confidence. Moreover, a multiplier method based on an active-set strategy (ASMP) is proposed to optimize the multiple constraints in compound event barrier coverage. The algorithm can calculate the coverage ratio efficiently and allocate the sensor resources reasonably in compound event barrier coverage. The proposed algorithm can simplify complex problems to reduce the computational load of the network and improve the network efficiency. The simulation results demonstrate that the proposed algorithm is more effective and efficient than existing methods, especially in the allocation of sensor resources. PMID:28029118

  5. Real-time classification and sensor fusion with a spiking deep belief network.

    PubMed

    O'Connor, Peter; Neil, Daniel; Liu, Shih-Chii; Delbruck, Tobi; Pfeiffer, Michael

    2013-01-01

    Deep Belief Networks (DBNs) have recently shown impressive performance on a broad range of classification problems. Their generative properties allow better understanding of the performance, and provide a simpler solution for sensor fusion tasks. However, because of their inherent need for feedback and parallel update of large numbers of units, DBNs are expensive to implement on serial computers. This paper proposes a method based on the Siegert approximation for Integrate-and-Fire neurons to map an offline-trained DBN onto an efficient event-driven spiking neural network suitable for hardware implementation. The method is demonstrated in simulation and by a real-time implementation of a 3-layer network with 2694 neurons used for visual classification of MNIST handwritten digits with input from a 128 × 128 Dynamic Vision Sensor (DVS) silicon retina, and sensory-fusion using additional input from a 64-channel AER-EAR silicon cochlea. The system is implemented through the open-source software in the jAER project and runs in real-time on a laptop computer. It is demonstrated that the system can recognize digits in the presence of distractions, noise, scaling, translation and rotation, and that the degradation of recognition performance by using an event-based approach is less than 1%. Recognition is achieved in an average of 5.8 ms after the onset of the presentation of a digit. By cue integration from both silicon retina and cochlea outputs we show that the system can be biased to select the correct digit from otherwise ambiguous input.

  6. A Configurable Event-Driven Convolutional Node with Rate Saturation Mechanism for Modular ConvNet Systems Implementation.

    PubMed

    Camuñas-Mesa, Luis A; Domínguez-Cordero, Yaisel L; Linares-Barranco, Alejandro; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabé

    2018-01-01

    Convolutional Neural Networks (ConvNets) are a particular type of neural network often used for many applications like image recognition, video analysis or natural language processing. They are inspired by the human brain, following a specific organization of the connectivity pattern between layers of neurons known as receptive field. These networks have been traditionally implemented in software, but they are becoming more computationally expensive as they scale up, having limitations for real-time processing of high-speed stimuli. On the other hand, hardware implementations show difficulties to be used for different applications, due to their reduced flexibility. In this paper, we propose a fully configurable event-driven convolutional node with rate saturation mechanism that can be used to implement arbitrary ConvNets on FPGAs. This node includes a convolutional processing unit and a routing element which allows to build large 2D arrays where any multilayer structure can be implemented. The rate saturation mechanism emulates the refractory behavior in biological neurons, guaranteeing a minimum separation in time between consecutive events. A 4-layer ConvNet with 22 convolutional nodes trained for poker card symbol recognition has been implemented in a Spartan6 FPGA. This network has been tested with a stimulus where 40 poker cards were observed by a Dynamic Vision Sensor (DVS) in 1 s time. Different slow-down factors were applied to characterize the behavior of the system for high speed processing. For slow stimulus play-back, a 96% recognition rate is obtained with a power consumption of 0.85 mW. At maximum play-back speed, a traffic control mechanism downsamples the input stimulus, obtaining a recognition rate above 63% when less than 20% of the input events are processed, demonstrating the robustness of the network.

  7. A Configurable Event-Driven Convolutional Node with Rate Saturation Mechanism for Modular ConvNet Systems Implementation

    PubMed Central

    Camuñas-Mesa, Luis A.; Domínguez-Cordero, Yaisel L.; Linares-Barranco, Alejandro; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabé

    2018-01-01

    Convolutional Neural Networks (ConvNets) are a particular type of neural network often used for many applications like image recognition, video analysis or natural language processing. They are inspired by the human brain, following a specific organization of the connectivity pattern between layers of neurons known as receptive field. These networks have been traditionally implemented in software, but they are becoming more computationally expensive as they scale up, having limitations for real-time processing of high-speed stimuli. On the other hand, hardware implementations show difficulties to be used for different applications, due to their reduced flexibility. In this paper, we propose a fully configurable event-driven convolutional node with rate saturation mechanism that can be used to implement arbitrary ConvNets on FPGAs. This node includes a convolutional processing unit and a routing element which allows to build large 2D arrays where any multilayer structure can be implemented. The rate saturation mechanism emulates the refractory behavior in biological neurons, guaranteeing a minimum separation in time between consecutive events. A 4-layer ConvNet with 22 convolutional nodes trained for poker card symbol recognition has been implemented in a Spartan6 FPGA. This network has been tested with a stimulus where 40 poker cards were observed by a Dynamic Vision Sensor (DVS) in 1 s time. Different slow-down factors were applied to characterize the behavior of the system for high speed processing. For slow stimulus play-back, a 96% recognition rate is obtained with a power consumption of 0.85 mW. At maximum play-back speed, a traffic control mechanism downsamples the input stimulus, obtaining a recognition rate above 63% when less than 20% of the input events are processed, demonstrating the robustness of the network. PMID:29515349

  8. On the Probability of Error and Stochastic Resonance in Discrete Memoryless Channels

    DTIC Science & Technology

    2013-12-01

    Information - Driven Doppler Shift Estimation and Compensation Methods for Underwater Wireless Sensor Networks ”, which is to analyze and develop... underwater wireless sensor networks . We formulated an analytic relationship that relates the average probability of error to the systems parameters, the...thesis, we studied the performance of Discrete Memoryless Channels (DMC), arising in the context of cooperative underwater wireless sensor networks

  9. Time Series Analysis for Spatial Node Selection in Environment Monitoring Sensor Networks

    PubMed Central

    Bhandari, Siddhartha; Jurdak, Raja; Kusy, Branislav

    2017-01-01

    Wireless sensor networks are widely used in environmental monitoring. The number of sensor nodes to be deployed will vary depending on the desired spatio-temporal resolution. Selecting an optimal number, position and sampling rate for an array of sensor nodes in environmental monitoring is a challenging question. Most of the current solutions are either theoretical or simulation-based where the problems are tackled using random field theory, computational geometry or computer simulations, limiting their specificity to a given sensor deployment. Using an empirical dataset from a mine rehabilitation monitoring sensor network, this work proposes a data-driven approach where co-integrated time series analysis is used to select the number of sensors from a short-term deployment of a larger set of potential node positions. Analyses conducted on temperature time series show 75% of sensors are co-integrated. Using only 25% of the original nodes can generate a complete dataset within a 0.5 °C average error bound. Our data-driven approach to sensor position selection is applicable for spatiotemporal monitoring of spatially correlated environmental parameters to minimize deployment cost without compromising data resolution. PMID:29271880

  10. Comparison of Event Detection Methods for Centralized Sensor Networks

    NASA Technical Reports Server (NTRS)

    Sauvageon, Julien; Agogiono, Alice M.; Farhang, Ali; Tumer, Irem Y.

    2006-01-01

    The development of an Integrated Vehicle Health Management (IVHM) for space vehicles has become a great concern. Smart Sensor Networks is one of the promising technologies that are catching a lot of attention. In this paper, we propose to a qualitative comparison of several local event (hot spot) detection algorithms in centralized redundant sensor networks. The algorithms are compared regarding their ability to locate and evaluate the event under noise and sensor failures. The purpose of this study is to check if the ratio performance/computational power of the Mote Fuzzy Validation and Fusion algorithm is relevant compare to simpler methods.

  11. A Multi-Objective Partition Method for Marine Sensor Networks Based on Degree of Event Correlation.

    PubMed

    Huang, Dongmei; Xu, Chenyixuan; Zhao, Danfeng; Song, Wei; He, Qi

    2017-09-21

    Existing marine sensor networks acquire data from sea areas that are geographically divided, and store the data independently in their affiliated sea area data centers. In the case of marine events across multiple sea areas, the current network structure needs to retrieve data from multiple data centers, and thus severely affects real-time decision making. In this study, in order to provide a fast data retrieval service for a marine sensor network, we use all the marine sensors as the vertices, establish the edge based on marine events, and abstract the marine sensor network as a graph. Then, we construct a multi-objective balanced partition method to partition the abstract graph into multiple regions and store them in the cloud computing platform. This method effectively increases the correlation of the sensors and decreases the retrieval cost. On this basis, an incremental optimization strategy is designed to dynamically optimize existing partitions when new sensors are added into the network. Experimental results show that the proposed method can achieve the optimal layout for distributed storage in the process of disaster data retrieval in the China Sea area, and effectively optimize the result of partitions when new buoys are deployed, which eventually will provide efficient data access service for marine events.

  12. MyHealthAssistant: an event-driven middleware for multiple medical applications on a smartphone-mediated body sensor network.

    PubMed

    Seeger, Christian; Van Laerhoven, Kristof; Buchmann, Alejandro

    2015-03-01

    An ever-growing range of wireless sensors for medical monitoring has shown that there is significant interest in monitoring patients in their everyday surroundings. It however remains a challenge to merge information from several wireless sensors and applications are commonly built from scratch. This paper presents a middleware targeted for medical applications on smartphone-like platforms that relies on an event-based design to enable flexible coupling with changing sets of wireless sensor units, while posing only a minor overhead on the resources and battery capacity of the interconnected devices. We illustrate the requirements for such middleware with three different healthcare applications that were deployed with our middleware solution, and characterize the performance with energy consumption, overhead caused for the smartphone, and processing time under real-world circumstances. Results show that with sensing-intensive applications, our solution only minimally impacts the phone's resources, with an added CPU utilization of 3% and a memory usage under 7 MB. Furthermore, for a minimum message delivery ratio of 99.9%, up to 12 sensor readings per second are guaranteed to be handled, regardless of the number of applications using our middleware.

  13. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network.

    PubMed

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-12-12

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy.

  14. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network

    PubMed Central

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-01-01

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy. PMID:29231868

  15. A Spiking Neural Simulator Integrating Event-Driven and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-Processing: A Case Study.

    PubMed

    Naveros, Francisco; Luque, Niceto R; Garrido, Jesús A; Carrillo, Richard R; Anguita, Mancia; Ros, Eduardo

    2015-07-01

    Time-driven simulation methods in traditional CPU architectures perform well and precisely when simulating small-scale spiking neural networks. Nevertheless, they still have drawbacks when simulating large-scale systems. Conversely, event-driven simulation methods in CPUs and time-driven simulation methods in graphic processing units (GPUs) can outperform CPU time-driven methods under certain conditions. With this performance improvement in mind, we have developed an event-and-time-driven spiking neural network simulator suitable for a hybrid CPU-GPU platform. Our neural simulator is able to efficiently simulate bio-inspired spiking neural networks consisting of different neural models, which can be distributed heterogeneously in both small layers and large layers or subsystems. For the sake of efficiency, the low-activity parts of the neural network can be simulated in CPU using event-driven methods while the high-activity subsystems can be simulated in either CPU (a few neurons) or GPU (thousands or millions of neurons) using time-driven methods. In this brief, we have undertaken a comparative study of these different simulation methods. For benchmarking the different simulation methods and platforms, we have used a cerebellar-inspired neural-network model consisting of a very dense granular layer and a Purkinje layer with a smaller number of cells (according to biological ratios). Thus, this cerebellar-like network includes a dense diverging neural layer (increasing the dimensionality of its internal representation and sparse coding) and a converging neural layer (integration) similar to many other biologically inspired and also artificial neural networks.

  16. Real-time classification and sensor fusion with a spiking deep belief network

    PubMed Central

    O'Connor, Peter; Neil, Daniel; Liu, Shih-Chii; Delbruck, Tobi; Pfeiffer, Michael

    2013-01-01

    Deep Belief Networks (DBNs) have recently shown impressive performance on a broad range of classification problems. Their generative properties allow better understanding of the performance, and provide a simpler solution for sensor fusion tasks. However, because of their inherent need for feedback and parallel update of large numbers of units, DBNs are expensive to implement on serial computers. This paper proposes a method based on the Siegert approximation for Integrate-and-Fire neurons to map an offline-trained DBN onto an efficient event-driven spiking neural network suitable for hardware implementation. The method is demonstrated in simulation and by a real-time implementation of a 3-layer network with 2694 neurons used for visual classification of MNIST handwritten digits with input from a 128 × 128 Dynamic Vision Sensor (DVS) silicon retina, and sensory-fusion using additional input from a 64-channel AER-EAR silicon cochlea. The system is implemented through the open-source software in the jAER project and runs in real-time on a laptop computer. It is demonstrated that the system can recognize digits in the presence of distractions, noise, scaling, translation and rotation, and that the degradation of recognition performance by using an event-based approach is less than 1%. Recognition is achieved in an average of 5.8 ms after the onset of the presentation of a digit. By cue integration from both silicon retina and cochlea outputs we show that the system can be biased to select the correct digit from otherwise ambiguous input. PMID:24115919

  17. Analysis and Tools for Improved Management of Connectionless and Connection-Oriented BLE Devices Coexistence

    PubMed Central

    Del Campo, Antonio; Cintioni, Lorenzo; Spinsante, Susanna; Gambi, Ennio

    2017-01-01

    With the introduction of low-power wireless technologies, like Bluetooth Low Energy (BLE), new applications are approaching the home automation, healthcare, fitness, automotive and consumer electronics markets. BLE devices are designed to maximize the battery life, i.e., to run for long time on a single coin-cell battery. In typical application scenarios of home automation and Ambient Assisted Living (AAL), the sensors that monitor relatively unpredictable and rare events should coexist with other sensors that continuously communicate health or environmental parameter measurements. The former usually work in connectionless mode, acting as advertisers, while the latter need a persistent connection, acting as slave nodes. The coexistence of connectionless and connection-oriented networks, that share the same central node, can be required to reduce the number of handling devices, thus keeping the network complexity low and limiting the packet’s traffic congestion. In this paper, the medium access management, operated by the central node, has been modeled, focusing on the scheduling procedure in both connectionless and connection-oriented communication. The models have been merged to provide a tool supporting the configuration design of BLE devices, during the network design phase that precedes the real implementation. The results highlight the suitability of the proposed tool: the ability to set the device parameters to allow us to keep a practical discovery latency for event-driven sensors and avoid undesired overlaps between scheduled scanning and connection phases due to bad management performed by the central node. PMID:28387724

  18. Analysis and Tools for Improved Management of Connectionless and Connection-Oriented BLE Devices Coexistence.

    PubMed

    Del Campo, Antonio; Cintioni, Lorenzo; Spinsante, Susanna; Gambi, Ennio

    2017-04-07

    With the introduction of low-power wireless technologies, like Bluetooth Low Energy (BLE), new applications are approaching the home automation, healthcare, fitness, automotive and consumer electronics markets. BLE devices are designed to maximize the battery life, i.e., to run for long time on a single coin-cell battery. In typical application scenarios of home automation and Ambient Assisted Living (AAL), the sensors that monitor relatively unpredictable and rare events should coexist with other sensors that continuously communicate health or environmental parameter measurements. The former usually work in connectionless mode, acting as advertisers, while the latter need a persistent connection, acting as slave nodes. The coexistence of connectionless and connection-oriented networks, that share the same central node, can be required to reduce the number of handling devices, thus keeping the network complexity low and limiting the packet's traffic congestion. In this paper, the medium access management, operated by the central node, has been modeled, focusing on the scheduling procedure in both connectionless and connection-oriented communication. The models have been merged to provide a tool supporting the configuration design of BLE devices, during the network design phase that precedes the real implementation. The results highlight the suitability of the proposed tool: the ability to set the device parameters to allow us to keep a practical discovery latency for event-driven sensors and avoid undesired overlaps between scheduled scanning and connection phases due to bad management performed by the central node.

  19. Efficient, Decentralized Detection of Qualitative Spatial Events in a Dynamic Scalar Field

    PubMed Central

    Jeong, Myeong-Hun; Duckham, Matt

    2015-01-01

    This paper describes an efficient, decentralized algorithm to monitor qualitative spatial events in a dynamic scalar field. The events of interest involve changes to the critical points (i.e., peak, pits and passes) and edges of the surface network derived from the field. Four fundamental types of event (appearance, disappearance, movement and switch) are defined. Our algorithm is designed to rely purely on qualitative information about the neighborhoods of nodes in the sensor network and does not require information about nodes’ coordinate positions. Experimental investigations confirm that our algorithm is efficient, with O(n) overall communication complexity (where n is the number of nodes in the sensor network), an even load balance and low operational latency. The accuracy of event detection is comparable to established centralized algorithms for the identification of critical points of a surface network. Our algorithm is relevant to a broad range of environmental monitoring applications of sensor networks. PMID:26343672

  20. Efficient, Decentralized Detection of Qualitative Spatial Events in a Dynamic Scalar Field.

    PubMed

    Jeong, Myeong-Hun; Duckham, Matt

    2015-08-28

    This paper describes an efficient, decentralized algorithm to monitor qualitative spatial events in a dynamic scalar field. The events of interest involve changes to the critical points (i.e., peak, pits and passes) and edges of the surface network derived from the field. Four fundamental types of event (appearance, disappearance, movement and switch) are defined. Our algorithm is designed to rely purely on qualitative information about the neighborhoods of nodes in the sensor network and does not require information about nodes' coordinate positions. Experimental investigations confirm that our algorithm is efficient, with O(n) overall communication complexity (where n is the number of nodes in the sensor network), an even load balance and low operational latency. The accuracy of event detection is comparable to established centralized algorithms for the identification of critical points of a surface network. Our algorithm is relevant to a broad range of environmental monitoring applications of sensor networks.

  1. TwitterSensing: An Event-Based Approach for Wireless Sensor Networks Optimization Exploiting Social Media in Smart City Applications

    PubMed Central

    2018-01-01

    Modern cities are subject to periodic or unexpected critical events, which may bring economic losses or even put people in danger. When some monitoring systems based on wireless sensor networks are deployed, sensing and transmission configurations of sensor nodes may be adjusted exploiting the relevance of the considered events, but efficient detection and classification of events of interest may be hard to achieve. In Smart City environments, several people spontaneously post information in social media about some event that is being observed and such information may be mined and processed for detection and classification of critical events. This article proposes an integrated approach to detect and classify events of interest posted in social media, notably in Twitter, and the assignment of sensing priorities to source nodes. By doing so, wireless sensor networks deployed in Smart City scenarios can be optimized for higher efficiency when monitoring areas under the influence of the detected events. PMID:29614060

  2. TwitterSensing: An Event-Based Approach for Wireless Sensor Networks Optimization Exploiting Social Media in Smart City Applications.

    PubMed

    Costa, Daniel G; Duran-Faundez, Cristian; Andrade, Daniel C; Rocha-Junior, João B; Peixoto, João Paulo Just

    2018-04-03

    Modern cities are subject to periodic or unexpected critical events, which may bring economic losses or even put people in danger. When some monitoring systems based on wireless sensor networks are deployed, sensing and transmission configurations of sensor nodes may be adjusted exploiting the relevance of the considered events, but efficient detection and classification of events of interest may be hard to achieve. In Smart City environments, several people spontaneously post information in social media about some event that is being observed and such information may be mined and processed for detection and classification of critical events. This article proposes an integrated approach to detect and classify events of interest posted in social media, notably in Twitter , and the assignment of sensing priorities to source nodes. By doing so, wireless sensor networks deployed in Smart City scenarios can be optimized for higher efficiency when monitoring areas under the influence of the detected events.

  3. The Deceptively Simple N170 Reflects Network Information Processing Mechanisms Involving Visual Feature Coding and Transfer Across Hemispheres

    PubMed Central

    Ince, Robin A. A.; Jaworska, Katarzyna; Gross, Joachim; Panzeri, Stefano; van Rijsbergen, Nicola J.; Rousselet, Guillaume A.; Schyns, Philippe G.

    2016-01-01

    A key to understanding visual cognition is to determine “where”, “when”, and “how” brain responses reflect the processing of the specific visual features that modulate categorization behavior—the “what”. The N170 is the earliest Event-Related Potential (ERP) that preferentially responds to faces. Here, we demonstrate that a paradigmatic shift is necessary to interpret the N170 as the product of an information processing network that dynamically codes and transfers face features across hemispheres, rather than as a local stimulus-driven event. Reverse-correlation methods coupled with information-theoretic analyses revealed that visibility of the eyes influences face detection behavior. The N170 initially reflects coding of the behaviorally relevant eye contralateral to the sensor, followed by a causal communication of the other eye from the other hemisphere. These findings demonstrate that the deceptively simple N170 ERP hides a complex network information processing mechanism involving initial coding and subsequent cross-hemispheric transfer of visual features. PMID:27550865

  4. Twitter web-service for soft agent reporting in persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Rababaah, Haroun; Shirkhodaie, Amir

    2010-04-01

    Persistent surveillance is an intricate process requiring monitoring, gathering, processing, tracking, and characterization of many spatiotemporal events occurring concurrently. Data associated with events can be readily attained by networking of hard (physical) sensors. Sensors may have homogeneous or heterogeneous (hybrid) sensing modalities with different communication bandwidth requirements. Complimentary to hard sensors are human observers or "soft sensors" that can report occurrences of evolving events via different communication devices (e.g., texting, cell phones, emails, instant messaging, etc.) to the command control center. However, networking of human observers in ad-hoc way is rather a difficult task. In this paper, we present a Twitter web-service for soft agent reporting in persistent surveillance systems (called Web-STARS). The objective of this web-service is to aggregate multi-source human observations in hybrid sensor networks rapidly. With availability of Twitter social network, such a human networking concept can not only be realized for large scale persistent surveillance systems (PSS), but also, it can be employed with proper interfaces to expedite rapid events reporting by human observers. The proposed technique is particularly suitable for large-scale persistent surveillance systems with distributed soft and hard sensor networks. The efficiency and effectiveness of the proposed technique is measured experimentally by conducting several simulated persistent surveillance scenarios. It is demonstrated that by fusion of information from hard and soft agents improves understanding of common operating picture and enhances situational awareness.

  5. Managed traffic evacuation using distributed sensor processing

    NASA Astrophysics Data System (ADS)

    Ramuhalli, Pradeep; Biswas, Subir

    2005-05-01

    This paper presents an integrated sensor network and distributed event processing architecture for managed in-building traffic evacuation during natural and human-caused disasters, including earthquakes, fire and biological/chemical terrorist attacks. The proposed wireless sensor network protocols and distributed event processing mechanisms offer a new distributed paradigm for improving reliability in building evacuation and disaster management. The networking component of the system is constructed using distributed wireless sensors for measuring environmental parameters such as temperature, humidity, and detecting unusual events such as smoke, structural failures, vibration, biological/chemical or nuclear agents. Distributed event processing algorithms will be executed by these sensor nodes to detect the propagation pattern of the disaster and to measure the concentration and activity of human traffic in different parts of the building. Based on this information, dynamic evacuation decisions are taken for maximizing the evacuation speed and minimizing unwanted incidents such as human exposure to harmful agents and stampedes near exits. A set of audio-visual indicators and actuators are used for aiding the automated evacuation process. In this paper we develop integrated protocols, algorithms and their simulation models for the proposed sensor networking and the distributed event processing framework. Also, efficient harnessing of the individually low, but collectively massive, processing abilities of the sensor nodes is a powerful concept behind our proposed distributed event processing algorithms. Results obtained through simulation in this paper are used for a detailed characterization of the proposed evacuation management system and its associated algorithmic components.

  6. Event Coverage Detection and Event Source Determination in Underwater Wireless Sensor Networks.

    PubMed

    Zhou, Zhangbing; Xing, Riliang; Duan, Yucong; Zhu, Yueqin; Xiang, Jianming

    2015-12-15

    With the advent of the Internet of Underwater Things, smart things are deployed in the ocean space and establish underwater wireless sensor networks for the monitoring of vast and dynamic underwater environments. When events are found to have possibly occurred, accurate event coverage should be detected, and potential event sources should be determined for the enactment of prompt and proper responses. To address this challenge, a technique that detects event coverage and determines event sources is developed in this article. Specifically, the occurrence of possible events corresponds to a set of neighboring sensor nodes whose sensory data may deviate from a normal sensing range in a collective fashion. An appropriate sensor node is selected as the relay node for gathering and routing sensory data to sink node(s). When sensory data are collected at sink node(s), the event coverage is detected and represented as a weighted graph, where the vertices in this graph correspond to sensor nodes and the weight specified upon the edges reflects the extent of sensory data deviating from a normal sensing range. Event sources are determined, which correspond to the barycenters in this graph. The results of the experiments show that our technique is more energy efficient, especially when the network topology is relatively steady.

  7. Event Coverage Detection and Event Source Determination in Underwater Wireless Sensor Networks

    PubMed Central

    Zhou, Zhangbing; Xing, Riliang; Duan, Yucong; Zhu, Yueqin; Xiang, Jianming

    2015-01-01

    With the advent of the Internet of Underwater Things, smart things are deployed in the ocean space and establish underwater wireless sensor networks for the monitoring of vast and dynamic underwater environments. When events are found to have possibly occurred, accurate event coverage should be detected, and potential event sources should be determined for the enactment of prompt and proper responses. To address this challenge, a technique that detects event coverage and determines event sources is developed in this article. Specifically, the occurrence of possible events corresponds to a set of neighboring sensor nodes whose sensory data may deviate from a normal sensing range in a collective fashion. An appropriate sensor node is selected as the relay node for gathering and routing sensory data to sink node(s). When sensory data are collected at sink node(s), the event coverage is detected and represented as a weighted graph, where the vertices in this graph correspond to sensor nodes and the weight specified upon the edges reflects the extent of sensory data deviating from a normal sensing range. Event sources are determined, which correspond to the barycenters in this graph. The results of the experiments show that our technique is more energy efficient, especially when the network topology is relatively steady. PMID:26694394

  8. Efficient spatial privacy preserving scheme for sensor network

    NASA Astrophysics Data System (ADS)

    Debnath, Ashmita; Singaravelu, Pradheepkumar; Verma, Shekhar

    2013-03-01

    The privacy of sensitive events observed by a wireless sensor networks (WSN) needs to be protected. Adversaries with the knowledge of sensor deployment and network protocols can infer the location of a sensed event by monitoring the communication from the sensors even when the messages are encrypted. Encryption provides confidentiality; however, the context of the event can used to breach the privacy of sensed objects. An adversary can track the trajectory of a moving object or determine the location of the occurrence of a critical event to breach its privacy. In this paper, we propose ring signature to obfuscate the spatial information. Firstly, the extended region of location of an event of interest as estimated from a sensor communication is presented. Then, the increase in this region of spatial uncertainty due to the effect of ring signature is determined. We observe that ring signature can effectively enhance the region of location uncertainty of a sensed event. As the event of interest can be situated anywhere in the enhanced region of uncertainty, its privacy against local or global adversary is ensured. Both analytical and simulation results show that induced delay and throughput are insignificant with negligible impact on the performance of a WSN.

  9. Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network

    PubMed Central

    Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N.

    2015-01-01

    Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead. PMID:26426701

  10. Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network.

    PubMed

    Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N

    2015-01-01

    Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead.

  11. QPA-CLIPS: A language and representation for process control

    NASA Technical Reports Server (NTRS)

    Freund, Thomas G.

    1994-01-01

    QPA-CLIPS is an extension of CLIPS oriented towards process control applications. Its constructs define a dependency network of process actions driven by sensor information. The language consists of three basic constructs: TASK, SENSOR, and FILTER. TASK's define the dependency network describing alternative state transitions for a process. SENSOR's and FILTER's define sensor information sources used to activate state transitions within the network. Deftemplate's define these constructs and their run-time environment is an interpreter knowledge base, performing pattern matching on sensor information and so activating TASK's in the dependency network. The pattern matching technique is based on the repeatable occurrence of a sensor data pattern. QPA-CIPS has been successfully tested on a SPARCStation providing supervisory control to an Allen-Bradley PLC 5 controller driving molding equipment.

  12. Design and Analysis of a Data Fusion Scheme in Mobile Wireless Sensor Networks Based on Multi-Protocol Mobile Agents

    PubMed Central

    Wu, Chunxue; Wu, Wenliang; Wan, Caihua

    2017-01-01

    Sensors are increasingly used in mobile environments with wireless network connections. Multiple sensor types measure distinct aspects of the same event. Their measurements are then combined to produce integrated, reliable results. As the number of sensors in networks increases, low energy requirements and changing network connections complicate event detection and measurement. We present a data fusion scheme for use in mobile wireless sensor networks with high energy efficiency and low network delays, that still produces reliable results. In the first phase, we used a network simulation where mobile agents dynamically select the next hop migration node based on the stability parameter of the link, and perform the data fusion at the migration node. Agents use the fusion results to decide if it should return the fusion results to the processing center or continue to collect more data. In the second phase. The feasibility of data fusion at the node level is confirmed by an experimental design where fused data from color sensors show near-identical results to actual physical temperatures. These results are potentially important for new large-scale sensor network applications. PMID:29099793

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason L. Wright; Milos Manic

    Time synchronization and event time correlation are important in wireless sensor networks. In particular, time is used to create a sequence events or time line to answer questions of cause and effect. Time is also used as a basis for determining the freshness of received packets and the validity of cryptographic certificates. This paper presents secure method of time synchronization and event time correlation for TESLA-based hierarchical wireless sensor networks. The method demonstrates that events in a TESLA network can be accurately timestamped by adding only a few pieces of data to the existing protocol.

  14. Information-based self-organization of sensor nodes of a sensor network

    DOEpatents

    Ko, Teresa H [Castro Valley, CA; Berry, Nina M [Tracy, CA

    2011-09-20

    A sensor node detects a plurality of information-based events. The sensor node determines whether at least one other sensor node is an information neighbor of the sensor node based on at least a portion of the plurality of information-based events. The information neighbor has an overlapping field of view with the sensor node. The sensor node sends at least one communication to the at least one other sensor node that is an information neighbor of the sensor node in response to at least one information-based event of the plurality of information-based events.

  15. Privacy-preserving discovery of topic-based events from social sensor signals: an experimental study on Twitter.

    PubMed

    Nguyen, Duc T; Jung, Jai E

    2014-01-01

    Social network services (e.g., Twitter and Facebook) can be regarded as social sensors which can capture a number of events in the society. Particularly, in terms of time and space, various smart devices have improved the accessibility to the social network services. In this paper, we present a social software platform to detect a number of meaningful events from information diffusion patterns on such social network services. The most important feature is to process the social sensor signal for understanding social events and to support users to share relevant information along the social links. The platform has been applied to fetch and cluster tweets from Twitter into relevant categories to reveal hot topics.

  16. Data Driven Performance Evaluation of Wireless Sensor Networks

    PubMed Central

    Frery, Alejandro C.; Ramos, Heitor S.; Alencar-Neto, José; Nakamura, Eduardo; Loureiro, Antonio A. F.

    2010-01-01

    Wireless Sensor Networks are presented as devices for signal sampling and reconstruction. Within this framework, the qualitative and quantitative influence of (i) signal granularity, (ii) spatial distribution of sensors, (iii) sensors clustering, and (iv) signal reconstruction procedure are assessed. This is done by defining an error metric and performing a Monte Carlo experiment. It is shown that all these factors have significant impact on the quality of the reconstructed signal. The extent of such impact is quantitatively assessed. PMID:22294920

  17. Formulation and Optimization of Robust Sensor Placement Problems for Drinking Water Contamination Warning Systems

    DOE PAGES

    Watson, Jean-Paul; Murray, Regan; Hart, William E.

    2009-11-13

    We report that the sensor placement problem in contamination warning system design for municipal water distribution networks involves maximizing the protection level afforded by limited numbers of sensors, typically quantified as the expected impact of a contamination event; the issue of how to mitigate against high-consequence events is either handled implicitly or ignored entirely. Consequently, expected-case sensor placements run the risk of failing to protect against high-consequence 9/11-style attacks. In contrast, robust sensor placements address this concern by focusing strictly on high-consequence events and placing sensors to minimize the impact of these events. We introduce several robust variations of themore » sensor placement problem, distinguished by how they quantify the potential damage due to high-consequence events. We explore the nature of robust versus expected-case sensor placements on three real-world large-scale distribution networks. We find that robust sensor placements can yield large reductions in the number and magnitude of high-consequence events, with only modest increases in expected impact. Finally, the ability to trade-off between robust and expected-case impacts is a key unexplored dimension in contamination warning system design.« less

  18. An Efficient Randomized Algorithm for Real-Time Process Scheduling in PicOS Operating System

    NASA Astrophysics Data System (ADS)

    Helmy*, Tarek; Fatai, Anifowose; Sallam, El-Sayed

    PicOS is an event-driven operating environment designed for use with embedded networked sensors. More specifically, it is designed to support the concurrency in intensive operations required by networked sensors with minimal hardware requirements. Existing process scheduling algorithms of PicOS; a commercial tiny, low-footprint, real-time operating system; have their associated drawbacks. An efficient, alternative algorithm, based on a randomized selection policy, has been proposed, demonstrated, confirmed for efficiency and fairness, on the average, and has been recommended for implementation in PicOS. Simulations were carried out and performance measures such as Average Waiting Time (AWT) and Average Turn-around Time (ATT) were used to assess the efficiency of the proposed randomized version over the existing ones. The results prove that Randomized algorithm is the best and most attractive for implementation in PicOS, since it is most fair and has the least AWT and ATT on average over the other non-preemptive scheduling algorithms implemented in this paper.

  19. Rapid-response Sensor Networks Leveraging Open Standards and the Internet of Things

    NASA Astrophysics Data System (ADS)

    Bermudez, L. E.; Lieberman, J. E.; Lewis, L.; Botts, M.; Liang, S.

    2016-12-01

    New sensor technologies provide an unparalleled capability to collect large numbers of diverse observations about the world around us. Networks of such sensors are especially effective for capturing and analyzing unexpected, fast moving events if they can be deployed with a minimum of time, effort, and cost. A rapid-response sensing and processing capability is extremely important in quickly unfolding events not only to collect data for future research.but also to support response efforts that may be needed by providing up-to-date knowledge of the situation. A recent pilot activity coordinated by the Open Geospatial Consortium combined Sensor Web Enablement (SWE) standards with Internet of Things (IoT) practices to understand better how to set up rapid-response sensor networks in comparable event situations involving accidents or disasters. The networks included weather and environmental sensors, georeferenced UAV and PTZ imagery collectors, and observations from "citizen sensors", as well as virtual observations generated by predictive models. A key feature of each "SWE-IoT" network was one or more Sensor Hubs that connected local, often proprietary sensor device protocols to a common set of standard SWE data types and standard Web interfaces on an IP-based internetwork. This IoT approach provided direct, common, interoperable access to all sensor readings from anywhere on the internetwork of sensors, Hubs, and applications. Sensor Hubs also supported an automated discovery protocol in which activated Hubs registered themselves with a canonical catalog service. As each sensor (wireless or wired) was activated within range of an authorized Hub, it registered itself with that Hub, which in turn registered the sensor and its capabilities with the catalog. Sensor Hub functions were implemented in a range of component types, from personal devices such as smartphones and Raspberry Pi's to full cloud-based sensor services platforms. Connected into a network "constellation" the Hubs also enabled reliable exchange and persistence of sensor data in constrained communications environments. Pilot results are being documented in public OGC engineering reports and are feeding into improved standards to support SWE-IoT networks for a range of domains and applications.

  20. Adaptively Adjusted Event-Triggering Mechanism on Fault Detection for Networked Control Systems.

    PubMed

    Wang, Yu-Long; Lim, Cheng-Chew; Shi, Peng

    2016-12-08

    This paper studies the problem of adaptively adjusted event-triggering mechanism-based fault detection for a class of discrete-time networked control system (NCS) with applications to aircraft dynamics. By taking into account the fault occurrence detection progress and the fault occurrence probability, and introducing an adaptively adjusted event-triggering parameter, a novel event-triggering mechanism is proposed to achieve the efficient utilization of the communication network bandwidth. Both the sensor-to-control station and the control station-to-actuator network-induced delays are taken into account. The event-triggered sensor and the event-triggered control station are utilized simultaneously to establish new network-based closed-loop models for the NCS subject to faults. Based on the established models, the event-triggered simultaneous design of fault detection filter (FDF) and controller is presented. A new algorithm for handling the adaptively adjusted event-triggering parameter is proposed. Performance analysis verifies the effectiveness of the adaptively adjusted event-triggering mechanism, and the simultaneous design of FDF and controller.

  1. Event-triggered Kalman-consensus filter for two-target tracking sensor networks.

    PubMed

    Su, Housheng; Li, Zhenghao; Ye, Yanyan

    2017-11-01

    This paper is concerned with the problem of event-triggered Kalman-consensus filter for two-target tracking sensor networks. According to the event-triggered protocol and the mean-square analysis, a suboptimal Kalman gain matrix is derived and a suboptimal event-triggered distributed filter is obtained. Based on the Kalman-consensus filter protocol, all sensors which only depend on its neighbors' information can track their corresponding targets. Furthermore, utilizing Lyapunov method and matrix theory, some sufficient conditions are presented for ensuring the stability of the system. Finally, a simulation example is presented to verify the effectiveness of the proposed event-triggered protocol. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. A Distributed Architecture for Tsunami Early Warning and Collaborative Decision-support in Crises

    NASA Astrophysics Data System (ADS)

    Moßgraber, J.; Middleton, S.; Hammitzsch, M.; Poslad, S.

    2012-04-01

    The presentation will describe work on the system architecture that is being developed in the EU FP7 project TRIDEC on "Collaborative, Complex and Critical Decision-Support in Evolving Crises". The challenges for a Tsunami Early Warning System (TEWS) are manifold and the success of a system depends crucially on the system's architecture. A modern warning system following a system-of-systems approach has to integrate various components and sub-systems such as different information sources, services and simulation systems. Furthermore, it has to take into account the distributed and collaborative nature of warning systems. In order to create an architecture that supports the whole spectrum of a modern, distributed and collaborative warning system one must deal with multiple challenges. Obviously, one cannot expect to tackle these challenges adequately with a monolithic system or with a single technology. Therefore, a system architecture providing the blueprints to implement the system-of-systems approach has to combine multiple technologies and architectural styles. At the bottom layer it has to reliably integrate a large set of conventional sensors, such as seismic sensors and sensor networks, buoys and tide gauges, and also innovative and unconventional sensors, such as streams of messages from social media services. At the top layer it has to support collaboration on high-level decision processes and facilitates information sharing between organizations. In between, the system has to process all data and integrate information on a semantic level in a timely manner. This complex communication follows an event-driven mechanism allowing events to be published, detected and consumed by various applications within the architecture. Therefore, at the upper layer the event-driven architecture (EDA) aspects are combined with principles of service-oriented architectures (SOA) using standards for communication and data exchange. The most prominent challenges on this layer include providing a framework for information integration on a syntactic and semantic level, leveraging distributed processing resources for a scalable data processing platform, and automating data processing and decision support workflows.

  3. Wind-Driven Wireless Networked System of Mobile Sensors for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Davoodi, Faranak; Murphy, Neil

    2013-01-01

    A revolutionary way is proposed of studying the surface of Mars using a wind-driven network of mobile sensors: GOWON. GOWON would be a scalable, self-powered and autonomous distributed system that could allow in situ mapping of a wide range of environmental phenomena in a much larger portion of the surface of Mars compared to earlier missions. It could improve the possibility of finding rare phenomena such as "blueberries' or bio-signatures and mapping their occurrence, through random wind-driven search. It would explore difficult terrains that were beyond the reach of previous missions, such as regions with very steep slopes and cluttered surfaces. GOWON has a potentially long life span, as individual elements can be added to the array periodically. It could potentially provide a cost-effective solution for mapping wide areas of Martian terrain, enabling leaving a long-lasting sensing and searching infrastructure on the surface of Mars. The system proposed here addresses this opportunity using technology advances in a distributed system of wind-driven sensors, referred to as Moballs.

  4. The Deceptively Simple N170 Reflects Network Information Processing Mechanisms Involving Visual Feature Coding and Transfer Across Hemispheres.

    PubMed

    Ince, Robin A A; Jaworska, Katarzyna; Gross, Joachim; Panzeri, Stefano; van Rijsbergen, Nicola J; Rousselet, Guillaume A; Schyns, Philippe G

    2016-08-22

    A key to understanding visual cognition is to determine "where", "when", and "how" brain responses reflect the processing of the specific visual features that modulate categorization behavior-the "what". The N170 is the earliest Event-Related Potential (ERP) that preferentially responds to faces. Here, we demonstrate that a paradigmatic shift is necessary to interpret the N170 as the product of an information processing network that dynamically codes and transfers face features across hemispheres, rather than as a local stimulus-driven event. Reverse-correlation methods coupled with information-theoretic analyses revealed that visibility of the eyes influences face detection behavior. The N170 initially reflects coding of the behaviorally relevant eye contralateral to the sensor, followed by a causal communication of the other eye from the other hemisphere. These findings demonstrate that the deceptively simple N170 ERP hides a complex network information processing mechanism involving initial coding and subsequent cross-hemispheric transfer of visual features. © The Author 2016. Published by Oxford University Press.

  5. Motion-related resource allocation in dynamic wireless visual sensor network environments.

    PubMed

    Katsenou, Angeliki V; Kondi, Lisimachos P; Parsopoulos, Konstantinos E

    2014-01-01

    This paper investigates quality-driven cross-layer optimization for resource allocation in direct sequence code division multiple access wireless visual sensor networks. We consider a single-hop network topology, where each sensor transmits directly to a centralized control unit (CCU) that manages the available network resources. Our aim is to enable the CCU to jointly allocate the transmission power and source-channel coding rates for each node, under four different quality-driven criteria that take into consideration the varying motion characteristics of each recorded video. For this purpose, we studied two approaches with a different tradeoff of quality and complexity. The first one allocates the resources individually for each sensor, whereas the second clusters them according to the recorded level of motion. In order to address the dynamic nature of the recorded scenery and re-allocate the resources whenever it is dictated by the changes in the amount of motion in the scenery, we propose a mechanism based on the particle swarm optimization algorithm, combined with two restarting schemes that either exploit the previously determined resource allocation or conduct a rough estimation of it. Experimental simulations demonstrate the efficiency of the proposed approaches.

  6. Energy modelling in sensor networks

    NASA Astrophysics Data System (ADS)

    Schmidt, D.; Krämer, M.; Kuhn, T.; Wehn, N.

    2007-06-01

    Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.

  7. WIFIRE: A Scalable Data-Driven Monitoring, Dynamic Prediction and Resilience Cyberinfrastructure for Wildfires

    NASA Astrophysics Data System (ADS)

    Altintas, I.; Block, J.; Braun, H.; de Callafon, R. A.; Gollner, M. J.; Smarr, L.; Trouve, A.

    2013-12-01

    Recent studies confirm that climate change will cause wildfires to increase in frequency and severity in the coming decades especially for California and in much of the North American West. The most critical sustainability issue in the midst of these ever-changing dynamics is how to achieve a new social-ecological equilibrium of this fire ecology. Wildfire wind speeds and directions change in an instant, and first responders can only be effective when they take action as quickly as the conditions change. To deliver information needed for sustainable policy and management in this dynamically changing fire regime, we must capture these details to understand the environmental processes. We are building an end-to-end cyberinfrastructure (CI), called WIFIRE, for real-time and data-driven simulation, prediction and visualization of wildfire behavior. The WIFIRE integrated CI system supports social-ecological resilience to the changing fire ecology regime in the face of urban dynamics and climate change. Networked observations, e.g., heterogeneous satellite data and real-time remote sensor data is integrated with computational techniques in signal processing, visualization, modeling and data assimilation to provide a scalable, technological, and educational solution to monitor weather patterns to predict a wildfire's Rate of Spread. Our collaborative WIFIRE team of scientists, engineers, technologists, government policy managers, private industry, and firefighters architects implement CI pathways that enable joint innovation for wildfire management. Scientific workflows are used as an integrative distributed programming model and simplify the implementation of engineering modules for data-driven simulation, prediction and visualization while allowing integration with large-scale computing facilities. WIFIRE will be scalable to users with different skill-levels via specialized web interfaces and user-specified alerts for environmental events broadcasted to receivers before, during and after a wildfire. Scalability of the WIFIRE approach allows many sensors to be subjected to user-specified data processing algorithms to generate threshold alerts within seconds. Integration of this sensor data into both rapidly available fire image data and models will better enable situational awareness, responses and decision support at local, state, national, and international levels. The products of WIFIRE will be initially disseminated to our collaborators (SDG&E, CAL FIRE, USFS), covering academic, private, and government laboratories while generating values to emergency officials, and consequently to the general public. WIFIRE may be used by government agencies in the future to save lives and property during wildfire events, test the effectiveness of response and evacuation scenarios before they occur and assess the effectiveness of high-density sensor networks in improving fire and weather predictions. WIFIRE's high-density network, therefore, will serve as a testbed for future applications worldwide.

  8. Sequence-of-events-driven automation of the deep space network

    NASA Technical Reports Server (NTRS)

    Hill, R., Jr.; Fayyad, K.; Smyth, C.; Santos, T.; Chen, R.; Chien, S.; Bevan, R.

    1996-01-01

    In February 1995, sequence-of-events (SOE)-driven automation technology was demonstrated for a Voyager telemetry downlink track at DSS 13. This demonstration entailed automated generation of an operations procedure (in the form of a temporal dependency network) from project SOE information using artificial intelligence planning technology and automated execution of the temporal dependency network using the link monitor and control operator assistant system. This article describes the overall approach to SOE-driven automation that was demonstrated, identifies gaps in SOE definitions and project profiles that hamper automation, and provides detailed measurements of the knowledge engineering effort required for automation.

  9. Sequence-of-Events-Driven Automation of the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Hill, R., Jr.; Fayyad, K.; Smyth, C.; Santos, T.; Chen, R.; Chien, S.; Bevan, R.

    1996-01-01

    In February 1995, sequence-of-events (SOE)-driven automation technology was demonstrated for a Voyager telemetry downlink track at DSS 13. This demonstration entailed automated generation of an operations procedure (in the form of a temporal dependency network) from project SOE information using artificial intelligence planning technology and automated execution of the temporal dependency network using the link monitor and control operator assistant system. This article describes the overall approach to SOE-driven automation that was demonstrated, identifies gaps in SOE definitions and project profiles that hamper automation, and provides detailed measurements of the knowledge engineering effort required for automation.

  10. A community-based event delivery protocol in publish/subscribe systems for delay tolerant sensor networks.

    PubMed

    Liu, Nianbo; Liu, Ming; Zhu, Jinqi; Gong, Haigang

    2009-01-01

    The basic operation of a Delay Tolerant Sensor Network (DTSN) is to finish pervasive data gathering in networks with intermittent connectivity, while the publish/subscribe (Pub/Sub for short) paradigm is used to deliver events from a source to interested clients in an asynchronous way. Recently, extension of Pub/Sub systems in DTSNs has become a promising research topic. However, due to the unique frequent partitioning characteristic of DTSNs, extension of a Pub/Sub system in a DTSN is a considerably difficult and challenging problem, and there are no good solutions to this problem in published works. To ad apt Pub/Sub systems to DTSNs, we propose CED, a community-based event delivery protocol. In our design, event delivery is based on several unchanged communities, which are formed by sensor nodes in the network according to their connectivity. CED consists of two components: event delivery and queue management. In event delivery, events in a community are delivered to mobile subscribers once a subscriber comes into the community, for improving the data delivery ratio. The queue management employs both the event successful delivery time and the event survival time to decide whether an event should be delivered or dropped for minimizing the transmission overhead. The effectiveness of CED is demonstrated through comprehensive simulation studies.

  11. Event-driven simulation in SELMON: An overview of EDSE

    NASA Technical Reports Server (NTRS)

    Rouquette, Nicolas F.; Chien, Steve A.; Charest, Leonard, Jr.

    1992-01-01

    EDSE (event-driven simulation engine), a model-based event-driven simulator implemented for SELMON, a tool for sensor selection and anomaly detection in real-time monitoring is described. The simulator is used in conjunction with a causal model to predict future behavior of the model from observed data. The behavior of the causal model is interpreted as equivalent to the behavior of the physical system being modeled. An overview of the functionality of the simulator and the model-based event-driven simulation paradigm on which it is based is provided. Included are high-level descriptions of the following key properties: event consumption and event creation, iterative simulation, synchronization and filtering of monitoring data from the physical system. Finally, how EDSE stands with respect to the relevant open issues of discrete-event and model-based simulation is discussed.

  12. Dynamic sensing model for accurate delectability of environmental phenomena using event wireless sensor network

    NASA Astrophysics Data System (ADS)

    Missif, Lial Raja; Kadhum, Mohammad M.

    2017-09-01

    Wireless Sensor Network (WSN) has been widely used for monitoring where sensors are deployed to operate independently to sense abnormal phenomena. Most of the proposed environmental monitoring systems are designed based on a predetermined sensing range which does not reflect the sensor reliability, event characteristics, and the environment conditions. Measuring of the capability of a sensor node to accurately detect an event within a sensing field is of great important for monitoring applications. This paper presents an efficient mechanism for even detection based on probabilistic sensing model. Different models have been presented theoretically in this paper to examine their adaptability and applicability to the real environment applications. The numerical results of the experimental evaluation have showed that the probabilistic sensing model provides accurate observation and delectability of an event, and it can be utilized for different environment scenarios.

  13. Performance Evaluation Modeling of Network Sensors

    NASA Technical Reports Server (NTRS)

    Clare, Loren P.; Jennings, Esther H.; Gao, Jay L.

    2003-01-01

    Substantial benefits are promised by operating many spatially separated sensors collectively. Such systems are envisioned to consist of sensor nodes that are connected by a communications network. A simulation tool is being developed to evaluate the performance of networked sensor systems, incorporating such metrics as target detection probabilities, false alarms rates, and classification confusion probabilities. The tool will be used to determine configuration impacts associated with such aspects as spatial laydown, and mixture of different types of sensors (acoustic, seismic, imaging, magnetic, RF, etc.), and fusion architecture. The QualNet discrete-event simulation environment serves as the underlying basis for model development and execution. This platform is recognized for its capabilities in efficiently simulating networking among mobile entities that communicate via wireless media. We are extending QualNet's communications modeling constructs to capture the sensing aspects of multi-target sensing (analogous to multiple access communications), unimodal multi-sensing (broadcast), and multi-modal sensing (multiple channels and correlated transmissions). Methods are also being developed for modeling the sensor signal sources (transmitters), signal propagation through the media, and sensors (receivers) that are consistent with the discrete event paradigm needed for performance determination of sensor network systems. This work is supported under the Microsensors Technical Area of the Army Research Laboratory (ARL) Advanced Sensors Collaborative Technology Alliance.

  14. Information-Driven Blind Doppler Shift Estimation and Compensation Methods for Underwater Wireless Sensor Networks

    DTIC Science & Technology

    2015-08-24

    SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS b. ABSTRACT 2...network keeping constraints such as transmission rate, transmission delay, Signal-to-Interference and Noise Ratio (SINR) under consideration. Table...distances. It is advantageous to accomplish such transmission using sensors in a multi-hop relay form keeping constraints such as transmission rate

  15. Data collection framework for energy efficient privacy preservation in wireless sensor networks having many-to-many structures.

    PubMed

    Bahşi, Hayretdin; Levi, Albert

    2010-01-01

    Wireless sensor networks (WSNs) generally have a many-to-one structure so that event information flows from sensors to a unique sink. In recent WSN applications, many-to-many structures evolved due to the need for conveying collected event information to multiple sinks. Privacy preserved data collection models in the literature do not solve the problems of WSN applications in which network has multiple un-trusted sinks with different level of privacy requirements. This study proposes a data collection framework bases on k-anonymity for preventing record disclosure of collected event information in WSNs. Proposed method takes the anonymity requirements of multiple sinks into consideration by providing different levels of privacy for each destination sink. Attributes, which may identify an event owner, are generalized or encrypted in order to meet the different anonymity requirements of sinks at the same anonymized output. If the same output is formed, it can be multicasted to all sinks. The other trivial solution is to produce different anonymized outputs for each sink and send them to related sinks. Multicasting is an energy efficient data sending alternative for some sensor nodes. Since minimization of energy consumption is an important design criteria for WSNs, multicasting the same event information to multiple sinks reduces the energy consumption of overall network.

  16. An Integrated Cyberenvironment for Event-Driven Environmental Observatory Research and Education

    NASA Astrophysics Data System (ADS)

    Myers, J.; Minsker, B.; Butler, R.

    2006-12-01

    National environmental observatories will soon provide large-scale data from diverse sensor networks and community models. While much attention is focused on piping data from sensors to archives and users, truly integrating these resources into the everyday research activities of scientists and engineers across the community, and enabling their results and innovations to be brought back into the observatory, also critical to long-term success of the observatories, is often neglected. This talk will give an overview of the Environmental Cyberinfrastructure Demonstrator (ECID) Cyberenvironment for observatory-centric environmental research and education, under development at the National Center for Supercomputing Applications (NCSA), which is designed to address these issues. Cyberenvironments incorporate collaboratory and grid technologies, web services, and other cyberinfrastructure into an overall framework that balances needs for efficient coordination and the ability to innovate. They are designed to support the full scientific lifecycle both in terms of individual experiments moving from data to workflows to publication and at the macro level where new discoveries lead to additional data, models, tools, and conceptual frameworks that augment and evolve community-scale systems such as observatories. The ECID cyberenvironment currently integrates five major components a collaborative portal, workflow engine, event manager, metadata repository, and social network personalization capabilities - that have novel features inspired by the Cyberenvironment concept and enabling powerful environmental research scenarios. A summary of these components and the overall cyberenvironment will be given in this talk, while other posters will give details on several of the components. The summary will be presented within the context of environmental use case scenarios created in collaboration with researchers from the WATERS (WATer and Environmental Research Systems) Network, a joint National Science Foundation-funded initiative of the hydrology and environmental engineering communities. The use case scenarios include identifying sensor anomalies in point- and streaming sensor data and notifying data managers in near-real time; and referring users of data or data products (e.g., workflows, publications) to related data or data products.

  17. Pervasive Monitoring—An Intelligent Sensor Pod Approach for Standardised Measurement Infrastructures

    PubMed Central

    Resch, Bernd; Mittlboeck, Manfred; Lippautz, Michael

    2010-01-01

    Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a “digital skin for planet earth”. The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making. PMID:22163537

  18. Pervasive monitoring--an intelligent sensor pod approach for standardised measurement infrastructures.

    PubMed

    Resch, Bernd; Mittlboeck, Manfred; Lippautz, Michael

    2010-01-01

    Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a "digital skin for planet earth". The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making.

  19. NORDA’s Pattern Analysis Laboratory: Current Contributions to Naval Mapping, Charting, and Geodesy

    DTIC Science & Technology

    1989-04-01

    magnetic observatories (McLeod, 1988). Using system integrates a suite of sensors and control devices the PAL’s VAX 11/780, spherical harmonic models to...DJAO:[FPS]*.OLB 5. Miscellaneous Utilities CALENDAR (NORDA events) 780 $ CALENDAR (menu-driven) DIALER modem controller 780 $ R AUTO DIAL:DIALER DTC...Utilities CALENDAR (NORDA events) 780 CALENDAR (menu-driven) DIALER modem controller 780 $ R AUTO DIAL:DIALER DTC Desk Top Calendar 780 $ DTC (menu-driven

  20. On the use of orientation filters for 3D reconstruction in event-driven stereo vision

    PubMed Central

    Camuñas-Mesa, Luis A.; Serrano-Gotarredona, Teresa; Ieng, Sio H.; Benosman, Ryad B.; Linares-Barranco, Bernabe

    2014-01-01

    The recently developed Dynamic Vision Sensors (DVS) sense visual information asynchronously and code it into trains of events with sub-micro second temporal resolution. This high temporal precision makes the output of these sensors especially suited for dynamic 3D visual reconstruction, by matching corresponding events generated by two different sensors in a stereo setup. This paper explores the use of Gabor filters to extract information about the orientation of the object edges that produce the events, therefore increasing the number of constraints applied to the matching algorithm. This strategy provides more reliably matched pairs of events, improving the final 3D reconstruction. PMID:24744694

  1. A routing protocol based on energy and link quality for Internet of Things applications.

    PubMed

    Machado, Kássio; Rosário, Denis; Cerqueira, Eduardo; Loureiro, Antonio A F; Neto, Augusto; Souza, José Neuman de

    2013-02-04

    The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare, environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols.

  2. A Routing Protocol Based on Energy and Link Quality for Internet of Things Applications

    PubMed Central

    Machado, Kassio; Rosário, Denis; Cerqueira, Eduardo; Loureiro, Antonio A. F.; Neto, Augusto; de Souza, José Neuman

    2013-01-01

    The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare,environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols. PMID:23385410

  3. A low cost strategy to monitor the expansion and contraction of the flowing stream network in mountainous headwater catchments

    NASA Astrophysics Data System (ADS)

    Assendelft, Rick; van Meerveld, Ilja; Seibert, Jan

    2017-04-01

    Streams are dynamic features in the landscape. The flowing stream network expands and contracts, connects and disconnects in response to rainfall events and seasonal changes in catchment wetness. Sections of the river system that experience these wet and dry cycles are often referred to as temporary streams. Temporary streams are abundant and widely distributed freshwater ecosystems. They account for more than half of the total length of the global stream network, are unique habitats and form important hydrological and ecological links between the uplands and perennial streams. However, temporary streams have been largely unstudied, especially in mountainous headwater catchments. The dynamic character of these systems makes it difficult to monitor them. We describe a low-cost, do-it-yourself strategy to monitor the occurrence of water and flow in temporary streams. We evaluate this strategy in two headwater catchments in Switzerland. The low cost sensor network consists of electrical resistivity sensors, water level switches, temperature sensors and flow sensors. These sensors are connected to Arduino microcontrollers and data loggers, which log the data every 5 minutes. The data from the measurement network are compared with observations (mapping of the temporary stream network) as well as time lapse camera data to evaluate the performance of the sensors. We look at how frequently the output of the sensors (presence and absence of water from the ER and water level data, and flow or no-flow from the flow sensors) corresponds to the observed channel state. This is done for each sensor, per sub-catchment, per precipitation event and per sensor location to determine the best sensor combination to monitor temporary streams in mountainous catchments and in which situation which sensor combination works best. The preliminary results show that the sensors and monitoring network work well. The data from the sensors corresponds with the observations and provides information on the expansion of the stream network pattern.

  4. Supervisory control of mobile sensor networks: math formulation, simulation, and implementation.

    PubMed

    Giordano, Vincenzo; Ballal, Prasanna; Lewis, Frank; Turchiano, Biagio; Zhang, Jing Bing

    2006-08-01

    This paper uses a novel discrete-event controller (DEC) for the coordination of cooperating heterogeneous wireless sensor networks (WSNs) containing both unattended ground sensors (UGSs) and mobile sensor robots. The DEC sequences the most suitable tasks for each agent and assigns sensor resources according to the current perception of the environment. A matrix formulation makes this DEC particularly useful for WSN, where missions change and sensor agents may be added or may fail. WSN have peculiarities that complicate their supervisory control. Therefore, this paper introduces several new tools for DEC design and operation, including methods for generating the required supervisory matrices based on mission planning, methods for modifying the matrices in the event of failed nodes, or nodes entering the network, and a novel dynamic priority assignment weighting approach for selecting the most appropriate and useful sensors for a given mission task. The resulting DEC represents a complete dynamical description of the WSN system, which allows a fast programming of deployable WSN, a computer simulation analysis, and an efficient implementation. The DEC is actually implemented on an experimental wireless-sensor-network prototyping system. Both simulation and experimental results are presented to show the effectiveness and versatility of the developed control architecture.

  5. On the powerful use of simulations in the quake-catcher network to efficiently position low-cost earthquake sensors

    USGS Publications Warehouse

    Benson, K.; Estrada, T.; Taufer, M.; Lawrence, J.; Cochran, E.

    2011-01-01

    The Quake-Catcher Network (QCN) uses low-cost sensors connected to volunteer computers across the world to monitor seismic events. The location and density of these sensors' placement can impact the accuracy of the event detection. Because testing different special arrangements of new sensors could disrupt the currently active project, this would best be accomplished in a simulated environment. This paper presents an accurate and efficient framework for simulating the low cost QCN sensors and identifying their most effective locations and densities. Results presented show how our simulations are reliable tools to study diverse scenarios under different geographical and infrastructural constraints. ?? 2011 IEEE.

  6. Event management for large scale event-driven digital hardware spiking neural networks.

    PubMed

    Caron, Louis-Charles; D'Haene, Michiel; Mailhot, Frédéric; Schrauwen, Benjamin; Rouat, Jean

    2013-09-01

    The interest in brain-like computation has led to the design of a plethora of innovative neuromorphic systems. Individually, spiking neural networks (SNNs), event-driven simulation and digital hardware neuromorphic systems get a lot of attention. Despite the popularity of event-driven SNNs in software, very few digital hardware architectures are found. This is because existing hardware solutions for event management scale badly with the number of events. This paper introduces the structured heap queue, a pipelined digital hardware data structure, and demonstrates its suitability for event management. The structured heap queue scales gracefully with the number of events, allowing the efficient implementation of large scale digital hardware event-driven SNNs. The scaling is linear for memory, logarithmic for logic resources and constant for processing time. The use of the structured heap queue is demonstrated on a field-programmable gate array (FPGA) with an image segmentation experiment and a SNN of 65,536 neurons and 513,184 synapses. Events can be processed at the rate of 1 every 7 clock cycles and a 406×158 pixel image is segmented in 200 ms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Accuracy-energy configurable sensor processor and IoT device for long-term activity monitoring in rare-event sensing applications.

    PubMed

    Park, Daejin; Cho, Jeonghun

    2014-01-01

    A specially designed sensor processor used as a main processor in IoT (internet-of-thing) device for the rare-event sensing applications is proposed. The IoT device including the proposed sensor processor performs the event-driven sensor data processing based on an accuracy-energy configurable event-quantization in architectural level. The received sensor signal is converted into a sequence of atomic events, which is extracted by the signal-to-atomic-event generator (AEG). Using an event signal processing unit (EPU) as an accelerator, the extracted atomic events are analyzed to build the final event. Instead of the sampled raw data transmission via internet, the proposed method delays the communication with a host system until a semantic pattern of the signal is identified as a final event. The proposed processor is implemented on a single chip, which is tightly coupled in bus connection level with a microcontroller using a 0.18 μm CMOS embedded-flash process. For experimental results, we evaluated the proposed sensor processor by using an IR- (infrared radio-) based signal reflection and sensor signal acquisition system. We successfully demonstrated that the expected power consumption is in the range of 20% to 50% compared to the result of the basement in case of allowing 10% accuracy error.

  8. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network

    PubMed Central

    Lin, Kai; Wang, Di; Hu, Long

    2016-01-01

    With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC). The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S) evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods. PMID:27376302

  9. Adaptive Self-Tuning Networks

    NASA Astrophysics Data System (ADS)

    Knox, H. A.; Draelos, T.; Young, C. J.; Lawry, B.; Chael, E. P.; Faust, A.; Peterson, M. G.

    2015-12-01

    The quality of automatic detections from seismic sensor networks depends on a large number of data processing parameters that interact in complex ways. The largely manual process of identifying effective parameters is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. Yet, achieving superior automatic detection of seismic events is closely related to these parameters. We present an automated sensor tuning (AST) system that learns near-optimal parameter settings for each event type using neuro-dynamic programming (reinforcement learning) trained with historic data. AST learns to test the raw signal against all event-settings and automatically self-tunes to an emerging event in real-time. The overall goal is to reduce the number of missed legitimate event detections and the number of false event detections. Reducing false alarms early in the seismic pipeline processing will have a significant impact on this goal. Applicable both for existing sensor performance boosting and new sensor deployment, this system provides an important new method to automatically tune complex remote sensing systems. Systems tuned in this way will achieve better performance than is currently possible by manual tuning, and with much less time and effort devoted to the tuning process. With ground truth on detections in seismic waveforms from a network of stations, we show that AST increases the probability of detection while decreasing false alarms.

  10. Trail-Based Search for Efficient Event Report to Mobile Actors in Wireless Sensor and Actor Networks.

    PubMed

    Xu, Zhezhuang; Liu, Guanglun; Yan, Haotian; Cheng, Bin; Lin, Feilong

    2017-10-27

    In wireless sensor and actor networks, when an event is detected, the sensor node needs to transmit an event report to inform the actor. Since the actor moves in the network to execute missions, its location is always unavailable to the sensor nodes. A popular solution is the search strategy that can forward the data to a node without its location information. However, most existing works have not considered the mobility of the node, and thus generate significant energy consumption or transmission delay. In this paper, we propose the trail-based search (TS) strategy that takes advantage of actor's mobility to improve the search efficiency. The main idea of TS is that, when the actor moves in the network, it can leave its trail composed of continuous footprints. The search packet with the event report is transmitted in the network to search the actor or its footprints. Once an effective footprint is discovered, the packet will be forwarded along the trail until it is received by the actor. Moreover, we derive the condition to guarantee the trail connectivity, and propose the redundancy reduction scheme based on TS (TS-R) to reduce nontrivial transmission redundancy that is generated by the trail. The theoretical and numerical analysis is provided to prove the efficiency of TS. Compared with the well-known expanding ring search (ERS), TS significantly reduces the energy consumption and search delay.

  11. Applying traditional signal processing techniques to social media exploitation for situational understanding

    NASA Astrophysics Data System (ADS)

    Abdelzaher, Tarek; Roy, Heather; Wang, Shiguang; Giridhar, Prasanna; Al Amin, Md. Tanvir; Bowman, Elizabeth K.; Kolodny, Michael A.

    2016-05-01

    Signal processing techniques such as filtering, detection, estimation and frequency domain analysis have long been applied to extract information from noisy sensor data. This paper describes the exploitation of these signal processing techniques to extract information from social networks, such as Twitter and Instagram. Specifically, we view social networks as noisy sensors that report events in the physical world. We then present a data processing stack for detection, localization, tracking, and veracity analysis of reported events using social network data. We show using a controlled experiment that the behavior of social sources as information relays varies dramatically depending on context. In benign contexts, there is general agreement on events, whereas in conflict scenarios, a significant amount of collective filtering is introduced by conflicted groups, creating a large data distortion. We describe signal processing techniques that mitigate such distortion, resulting in meaningful approximations of actual ground truth, given noisy reported observations. Finally, we briefly present an implementation of the aforementioned social network data processing stack in a sensor network analysis toolkit, called Apollo. Experiences with Apollo show that our techniques are successful at identifying and tracking credible events in the physical world.

  12. Application of process monitoring to anomaly detection in nuclear material processing systems via system-centric event interpretation of data from multiple sensors of varying reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Humberto E.; Simpson, Michael F.; Lin, Wen-Chiao

    In this paper, we apply an advanced safeguards approach and associated methods for process monitoring to a hypothetical nuclear material processing system. The assessment regarding the state of the processing facility is conducted at a systemcentric level formulated in a hybrid framework. This utilizes architecture for integrating both time- and event-driven data and analysis for decision making. While the time-driven layers of the proposed architecture encompass more traditional process monitoring methods based on time series data and analysis, the event-driven layers encompass operation monitoring methods based on discrete event data and analysis. By integrating process- and operation-related information and methodologiesmore » within a unified framework, the task of anomaly detection is greatly improved. This is because decision-making can benefit from not only known time-series relationships among measured signals but also from known event sequence relationships among generated events. This available knowledge at both time series and discrete event layers can then be effectively used to synthesize observation solutions that optimally balance sensor and data processing requirements. The application of the proposed approach is then implemented on an illustrative monitored system based on pyroprocessing and results are discussed.« less

  13. Event-driven simulations of nonlinear integrate-and-fire neurons.

    PubMed

    Tonnelier, Arnaud; Belmabrouk, Hana; Martinez, Dominique

    2007-12-01

    Event-driven strategies have been used to simulate spiking neural networks exactly. Previous work is limited to linear integrate-and-fire neurons. In this note, we extend event-driven schemes to a class of nonlinear integrate-and-fire models. Results are presented for the quadratic integrate-and-fire model with instantaneous or exponential synaptic currents. Extensions to conductance-based currents and exponential integrate-and-fire neurons are discussed.

  14. Operating systems and network protocols for wireless sensor networks.

    PubMed

    Dutta, Prabal; Dunkels, Adam

    2012-01-13

    Sensor network protocols exist to satisfy the communication needs of diverse applications, including data collection, event detection, target tracking and control. Network protocols to enable these services are constrained by the extreme resource scarcity of sensor nodes-including energy, computing, communications and storage-which must be carefully managed and multiplexed by the operating system. These challenges have led to new protocols and operating systems that are efficient in their energy consumption, careful in their computational needs and miserly in their memory footprints, all while discovering neighbours, forming networks, delivering data and correcting failures.

  15. A smart home application to eldercare: current status and lessons learned.

    PubMed

    Skubic, Marjorie; Alexander, Gregory; Popescu, Mihail; Rantz, Marilyn; Keller, James

    2009-01-01

    To address an aging population, we have been investigating sensor networks for monitoring older adults in their homes. In this paper, we report ongoing work in which passive sensor networks have been installed in 17 apartments in an aging in place eldercare facility. The network under development includes simple motion sensors, video sensors, and a bed sensor that captures sleep restlessness and pulse and respiration levels. Data collection has been ongoing for over two years in some apartments. This longevity in sensor data collection is allowing us to study the data and develop algorithms for identifying alert conditions such as falls, as well as extracting typical daily activity patterns for an individual. The goal is to capture patterns representing physical and cognitive health conditions and then recognize when activity patterns begin to deviate from the norm. In doing so, we strive to provide early detection of potential problems which may lead to serious health events if left unattended. We describe the components of the network and show examples of logged sensor data with correlated references to health events. A summary is also included on the challenges encountered and the lessons learned as a result of our experiences in monitoring aging adults in their homes.

  16. Data driven CAN node reliability assessment for manufacturing system

    NASA Astrophysics Data System (ADS)

    Zhang, Leiming; Yuan, Yong; Lei, Yong

    2017-01-01

    The reliability of the Controller Area Network(CAN) is critical to the performance and safety of the system. However, direct bus-off time assessment tools are lacking in practice due to inaccessibility of the node information and the complexity of the node interactions upon errors. In order to measure the mean time to bus-off(MTTB) of all the nodes, a novel data driven node bus-off time assessment method for CAN network is proposed by directly using network error information. First, the corresponding network error event sequence for each node is constructed using multiple-layer network error information. Then, the generalized zero inflated Poisson process(GZIP) model is established for each node based on the error event sequence. Finally, the stochastic model is constructed to predict the MTTB of the node. The accelerated case studies with different error injection rates are conducted on a laboratory network to demonstrate the proposed method, where the network errors are generated by a computer controlled error injection system. Experiment results show that the MTTB of nodes predicted by the proposed method agree well with observations in the case studies. The proposed data driven node time to bus-off assessment method for CAN networks can successfully predict the MTTB of nodes by directly using network error event data.

  17. a Low-Power Wireless Sensor Network for Monitoring the Microcrack Initiations in Aerospace Composites

    NASA Astrophysics Data System (ADS)

    Li, Jian; Plotnikov, Yuri; Lin, Wendy W.

    2008-02-01

    A low power wireless sensor network was developed to monitor the microcrack events in aerospace composites. The microcracks in the composites mostly result from a stress loading or temperature and/or humidity cycles. Generally, a single microcrack is too small to be detected by conventional techniques such as X-ray or ultrasonic C-scan. The whole developed sensor network is aimed to capture the released acoustic signals by the microcracking events in real time. It comprises of a receiving station as well as a series of sensor nodes. Each sensor node includes two acoustic emission transducers as well as two signal amplification and data acquisition channels. Much of our development effort has been focused on reducing the power consumption of each node and improving the detection reliability for each event. Each sensor node is battery-powered and works in a sleep mode most of time. Once a microcrack is initiated in the composite, the acoustic signal triggers the node and wakes it up. The node will then react in several microseconds and digitize the signal. The digitized data is sent to the station wirelessly. The developed wireless sensor network system has been validated with microscopy of microcracked samples after temperature and humidity cycling and has proved to be an effective tool for microcracking detection. Furthermore, our low power consumption design and sophisticated wireless transmission mechanism enables a system with great potential for field structural health monitoring applications.

  18. An intelligent service matching method for mechanical equipment condition monitoring using the fibre Bragg grating sensor network

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhou, Zude; Liu, Quan; Xu, Wenjun

    2017-02-01

    Due to the advantages of being able to function under harsh environmental conditions and serving as a distributed condition information source in a networked monitoring system, the fibre Bragg grating (FBG) sensor network has attracted considerable attention for equipment online condition monitoring. To provide an overall conditional view of the mechanical equipment operation, a networked service-oriented condition monitoring framework based on FBG sensing is proposed, together with an intelligent matching method for supporting monitoring service management. In the novel framework, three classes of progressive service matching approaches, including service-chain knowledge database service matching, multi-objective constrained service matching and workflow-driven human-interactive service matching, are developed and integrated with an enhanced particle swarm optimisation (PSO) algorithm as well as a workflow-driven mechanism. Moreover, the manufacturing domain ontology, FBG sensor network structure and monitoring object are considered to facilitate the automatic matching of condition monitoring services to overcome the limitations of traditional service processing methods. The experimental results demonstrate that FBG monitoring services can be selected intelligently, and the developed condition monitoring system can be re-built rapidly as new equipment joins the framework. The effectiveness of the service matching method is also verified by implementing a prototype system together with its performance analysis.

  19. A General theory of Signal Integration for Fault-Tolerant Dynamic Distributed Sensor Networks

    DTIC Science & Technology

    1993-10-01

    related to a) the architecture and fault- tolerance of the distributed sensor network, b) the proper synchronisation of sensor signals, c) the...Computational complexities of the problem of distributed detection. 5) Issues related to recording of events and synchronization in distributed sensor...Intervals for Synchronization in Real Time Distributed Systems", Submitted to Electronic Encyclopedia. 3. V. G. Hegde and S. S. Iyengar "Efficient

  20. Enhancing the evaluation of pathogen transmission risk in a hospital by merging hand-hygiene compliance and contact data: a proof-of-concept study.

    PubMed

    Mastrandrea, Rossana; Soto-Aladro, Alberto; Brouqui, Philippe; Barrat, Alain

    2015-09-10

    Hand-hygiene compliance and contacts of health-care workers largely determine the potential paths of pathogen transmission in hospital wards. We explored how the combination of data collected by two automated infrastructures based on wearable sensors and recording (1) use of hydro-alcoholic solution and (2) contacts of health-care workers provide an enhanced view of the risk of transmission events in the ward. We perform a proof-of-concept observational study. Detailed data on contact patterns and hand-hygiene compliance of health-care workers were collected by wearable sensors over 12 days in an infectious disease unit of a hospital in Marseilles, France. 10,837 contact events among 10 doctors, 4 nurses, 4 nurses' aids and 4 housekeeping staff were recorded during the study. Most contacts took place among medical doctors. Aggregate contact durations were highly heterogeneous and the resulting contact network was highly structured. 510 visits of health-care workers to patients' rooms were recorded, with a low rate of hand-hygiene compliance. Both data sets were used to construct histories and statistics of contacts informed by the use of hydro-alcoholic solution, or lack thereof, of the involved health-care workers. Hand-hygiene compliance data strongly enrich the information concerning contacts among health-care workers, by assigning a 'safe' or 'at-risk' value to each contact. The global contact network can thus be divided into 'at-risk' and 'safe' contact networks. The combined data could be of high relevance for outbreak investigation and to inform data-driven models of nosocomial disease spread.

  1. Accuracy-Energy Configurable Sensor Processor and IoT Device for Long-Term Activity Monitoring in Rare-Event Sensing Applications

    PubMed Central

    2014-01-01

    A specially designed sensor processor used as a main processor in IoT (internet-of-thing) device for the rare-event sensing applications is proposed. The IoT device including the proposed sensor processor performs the event-driven sensor data processing based on an accuracy-energy configurable event-quantization in architectural level. The received sensor signal is converted into a sequence of atomic events, which is extracted by the signal-to-atomic-event generator (AEG). Using an event signal processing unit (EPU) as an accelerator, the extracted atomic events are analyzed to build the final event. Instead of the sampled raw data transmission via internet, the proposed method delays the communication with a host system until a semantic pattern of the signal is identified as a final event. The proposed processor is implemented on a single chip, which is tightly coupled in bus connection level with a microcontroller using a 0.18 μm CMOS embedded-flash process. For experimental results, we evaluated the proposed sensor processor by using an IR- (infrared radio-) based signal reflection and sensor signal acquisition system. We successfully demonstrated that the expected power consumption is in the range of 20% to 50% compared to the result of the basement in case of allowing 10% accuracy error. PMID:25580458

  2. Sense, decide, act, communicate (SDAC): next generation of smart sensor systems

    NASA Astrophysics Data System (ADS)

    Berry, Nina; Davis, Jesse; Ko, Teresa H.; Kyker, Ron; Pate, Ron; Stark, Doug; Stinnett, Regan; Baker, James; Cushner, Adam; Van Dyke, Colin; Kyckelhahn, Brian

    2004-09-01

    The recent war on terrorism and increased urban warfare has been a major catalysis for increased interest in the development of disposable unattended wireless ground sensors. While the application of these sensors to hostile domains has been generally governed by specific tasks, this research explores a unique paradigm capitalizing on the fundamental functionality related to sensor systems. This functionality includes a sensors ability to Sense - multi-modal sensing of environmental events, Decide - smart analysis of sensor data, Act - response to environmental events, and Communication - internal to system and external to humans (SDAC). The main concept behind SDAC sensor systems is to integrate the hardware, software, and networking to generate 'knowledge and not just data'. This research explores the usage of wireless SDAC units to collectively make up a sensor system capable of persistent, adaptive, and autonomous behavior. These systems are base on the evaluation of scenarios and existing systems covering various domains. This paper presents a promising view of sensor network characteristics, which will eventually yield smart (intelligent collectives) network arrays of SDAC sensing units generally applicable to multiple related domains. This paper will also discuss and evaluate the demonstration system developed to test the concepts related to SDAC systems.

  3. Underwater Sensor Network Redeployment Algorithm Based on Wolf Search

    PubMed Central

    Jiang, Peng; Feng, Yang; Wu, Feng

    2016-01-01

    This study addresses the optimization of node redeployment coverage in underwater wireless sensor networks. Given that nodes could easily become invalid under a poor environment and the large scale of underwater wireless sensor networks, an underwater sensor network redeployment algorithm was developed based on wolf search. This study is to apply the wolf search algorithm combined with crowded degree control in the deployment of underwater wireless sensor networks. The proposed algorithm uses nodes to ensure coverage of the events, and it avoids the prematurity of the nodes. The algorithm has good coverage effects. In addition, considering that obstacles exist in the underwater environment, nodes are prevented from being invalid by imitating the mechanism of avoiding predators. Thus, the energy consumption of the network is reduced. Comparative analysis shows that the algorithm is simple and effective in wireless sensor network deployment. Compared with the optimized artificial fish swarm algorithm, the proposed algorithm exhibits advantages in network coverage, energy conservation, and obstacle avoidance. PMID:27775659

  4. Trail-Based Search for Efficient Event Report to Mobile Actors in Wireless Sensor and Actor Networks †

    PubMed Central

    Xu, Zhezhuang; Liu, Guanglun; Yan, Haotian; Cheng, Bin; Lin, Feilong

    2017-01-01

    In wireless sensor and actor networks, when an event is detected, the sensor node needs to transmit an event report to inform the actor. Since the actor moves in the network to execute missions, its location is always unavailable to the sensor nodes. A popular solution is the search strategy that can forward the data to a node without its location information. However, most existing works have not considered the mobility of the node, and thus generate significant energy consumption or transmission delay. In this paper, we propose the trail-based search (TS) strategy that takes advantage of actor’s mobility to improve the search efficiency. The main idea of TS is that, when the actor moves in the network, it can leave its trail composed of continuous footprints. The search packet with the event report is transmitted in the network to search the actor or its footprints. Once an effective footprint is discovered, the packet will be forwarded along the trail until it is received by the actor. Moreover, we derive the condition to guarantee the trail connectivity, and propose the redundancy reduction scheme based on TS (TS-R) to reduce nontrivial transmission redundancy that is generated by the trail. The theoretical and numerical analysis is provided to prove the efficiency of TS. Compared with the well-known expanding ring search (ERS), TS significantly reduces the energy consumption and search delay. PMID:29077017

  5. Energy efficient data representation and aggregation with event region detection in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Banerjee, Torsha

    Unlike conventional networks, wireless sensor networks (WSNs) are limited in power, have much smaller memory buffers, and possess relatively slower processing speeds. These characteristics necessitate minimum transfer and storage of information in order to prolong the network lifetime. In this dissertation, we exploit the spatio-temporal nature of sensor data to approximate the current values of the sensors based on readings obtained from neighboring sensors and itself. We propose a Tree based polynomial REGression algorithm, (TREG) that addresses the problem of data compression in wireless sensor networks. Instead of aggregated data, a polynomial function (P) is computed by the regression function, TREG. The coefficients of P are then passed to achieve the following goals: (i) The sink can get attribute values in the regions devoid of sensor nodes, and (ii) Readings over any portion of the region can be obtained at one time by querying the root of the tree. As the size of the data packet from each tree node to its parent remains constant, the proposed scheme scales very well with growing network density or increased coverage area. Since physical attributes exhibit a gradual change over time, we propose an iterative scheme, UPDATE_COEFF, which obviates the need to perform the regression function repeatedly and uses approximations based on previous readings. Extensive simulations are performed on real world data to demonstrate the effectiveness of our proposed aggregation algorithm, TREG. Results reveal that for a network density of 0.0025 nodes/m2, a complete binary tree of depth 4 could provide the absolute error to be less than 6%. A data compression ratio of about 0.02 is achieved using our proposed algorithm, which is almost independent of the tree depth. In addition, our proposed updating scheme makes the aggregation process faster while maintaining the desired error bounds. We also propose a Polynomial-based scheme that addresses the problem of Event Region Detection (PERD) for WSNs. When a single event occurs, a child of the tree sends a Flagged Polynomial (FP) to its parent, if the readings approximated by it falls outside the data range defining the existing phenomenon. After the aggregation process is over, the root having the two polynomials, P and FP can be queried for FP (approximating the new event region) instead of flooding the whole network. For multiple such events, instead of computing a polynomial corresponding to each new event, areas with same data range are combined by the corresponding tree nodes and the aggregated coefficients are passed on. Results reveal that a new event can be detected by PERD while error in detection remains constant and is less than a threshold of 10%. As the node density increases, accuracy and delay for event detection are found to remain almost constant, making PERD highly scalable. Whenever an event occurs in a WSN, data is generated by closeby sensors and relaying the data to the base station (BS) make sensors closer to the BS run out of energy at a much faster rate than sensors in other parts of the network. This gives rise to an unequal distribution of residual energy in the network and makes those sensors with lower remaining energy level die at much faster rate than others. We propose a scheme for enhancing network Lifetime using mobile cluster heads (CH) in a WSN. To maintain remaining energy more evenly, some energy-rich nodes are designated as CHs which move in a controlled manner towards sensors rich in energy and data. This eliminates multihop transmission required by the static sensors and thus increases the overall lifetime of the WSN. We combine the idea of clustering and mobile CH to first form clusters of static sensor nodes. A collaborative strategy among the CHs further increases the lifetime of the network. Time taken for transmitting data to the BS is reduced further by making the CHs follow a connectivity strategy that always maintain a connected path to the BS. Spatial correlation of sensor data can be further exploited for dynamic channel selection in Cellular Communication. In such a scenario within a licensed band, wireless sensors can be deployed (each sensor tuned to a frequency of the channel at a particular time) to sense the interference power of the frequency band. In an ideal channel, interference temperature (IT) which is directly proportional to the interference power, can be assumed to vary spatially with the frequency of the sub channel. We propose a scheme for fitting the sub channel frequencies and corresponding ITs to a regression model for calculating the IT of a random sub channel for further analysis of the channel interference at the base station. Our scheme, based on the readings reported by Sensors helps in Dynamic Channel Selection (S-DCS) in extended C-band for assignment to unlicensed secondary users. S-DCS proves to be economic from energy consumption point of view and it also achieves accuracy with error bound within 6.8%. Again, users are assigned empty sub channels without actually probing them, incurring minimum delay in the process. The overall channel throughput is maximized along with fairness to individual users.

  6. SELF-POWERED WIRELESS SENSOR NODE POWER MODELING BASED ON IEEE 802.11 COMMUNICATION PROTOCOL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivek Agarwal; Raymond A. DeCarlo; Lefteri H. Tsoukalas

    Design and technical advancements in sensing, processing, and wireless communication capabilities of small, portable devices known as wireless sensor nodes (WSNs) have drawn extensive research attention and are vastly applied in science and engineering applications. The WSNs are typically powered by a chemical battery source that has a load dependent finite lifetime. Most applications, including the nuclear industry applications, require WSNs to operate for an extended period of time beginning with their deployment. To ensure longevity, it is important to develop self-powered WSNs. The benefit of self-powered WSNs goes far beyond the cost savings of removing the need for cablemore » installation and maintenance. Self-powered WSNs will potentially offer significant expansion in remote monitoring of nuclear facilities, and provide important data on plant equipment and component status during normal operation, as well as in case of abnormal operation, station blackouts or post-accident evaluation. Advancements in power harvesting technologies enable electric energy generation from many sources, including kinetic, thermal, and radiated energy. For the ongoing research at Idaho National Laboratory, a solid-state thermoelectric-based technology, the thermoelectric generator (TEG), is used to convert thermal energy to power a WSN. The design and development of TEGs to power WSNs that would remain active for a long period of time requires comprehensive understanding of WSN operational. This motivates the research in modeling the lifetime, i.e., power consumption, of a WSN by taking into consideration various node and network level activities. A WSN must perform three essential tasks: sense events, perform quick local information processing of sensed events, and wirelessly exchange locally processed data with the base station or with other WSNs in the network. Each task has a power cost per unit tine and an additional cost when switching between tasks. There are number of other considerations that must also be taken into account when computing the power consumption associated with each task. The considerations includes: number of events occurring in a fixed active time period and the duration of each event, event-information processing time, total communication time, number of retransmission, etc. Additionally, at the network level the communication of information data packets between WSNs involves collisions, latency, andretransmission, which result in unanticipated power losses. This paper presents stochastic modeling of power demand for a schedule-driven WSN utilizing Institute of Electrical and Electronics Engineers, IEEE, 802.11 communication protocols. The model captures the generic operation of a schedule-driven WSN when an external event occurs, i.e., sensing, following by processing, and followed by communication. The results are verified via simulation.« less

  7. A Robust and Energy-Efficient Transport Protocol for Cognitive Radio Sensor Networks

    PubMed Central

    Salim, Shelly; Moh, Sangman

    2014-01-01

    A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. CRSNs benefit from cognitive radio capabilities such as dynamic spectrum access and transmission parameters reconfigurability; but cognitive radio also brings additional challenges and leads to higher energy consumption. Motivated to improve the energy efficiency in CRSNs, we propose a robust and energy-efficient transport protocol (RETP). The novelties of RETP are two-fold: (I) it combines distributed channel sensing and channel decision with centralized schedule-based data transmission; and (II) it differentiates the types of data transmission on the basis of data content and adopts different acknowledgment methods for different transmission types. To the best of our knowledge, no transport layer protocols have yet been designed for CRSNs. Simulation results show that the proposed protocol achieves remarkably longer network lifetime and shorter event-detection delay compared to those achieved with a conventional transport protocol, while simultaneously preserving event-detection reliability. PMID:25333288

  8. Concurrent Bursty Behavior of Social Sensors in Sporting Events.

    PubMed

    Takeichi, Yuki; Sasahara, Kazutoshi; Suzuki, Reiji; Arita, Takaya

    2015-01-01

    The advent of social media expands our ability to transmit information and connect with others instantly, which enables us to behave as "social sensors." Here, we studied concurrent bursty behavior of Twitter users during major sporting events to determine their function as social sensors. We show that the degree of concurrent bursts in tweets (posts) and retweets (re-posts) works as a strong indicator of winning or losing a game. More specifically, our simple tweet analysis of Japanese professional baseball games in 2013 revealed that social sensors can immediately react to positive and negative events through bursts of tweets, but that positive events are more likely to induce a subsequent burst of retweets. We confirm that these findings also hold true for tweets related to Major League Baseball games in 2015. Furthermore, we demonstrate active interactions among social sensors by constructing retweet networks during a baseball game. The resulting networks commonly exhibited user clusters depending on the baseball team, with a scale-free connectedness that is indicative of a substantial difference in user popularity as an information source. While previous studies have mainly focused on bursts of tweets as a simple indicator of a real-world event, the temporal correlation between tweets and retweets implies unique aspects of social sensors, offering new insights into human behavior in a highly connected world.

  9. Intelligent Software Agents: Sensor Integration and Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulesz, James J; Lee, Ronald W

    2013-01-01

    Abstract In a post Macondo world the buzzwords are Integrity Management and Incident Response Management. The twin processes are not new but the opportunity to link the two is novel. Intelligent software agents can be used with sensor networks in distributed and centralized computing systems to enhance real-time monitoring of system integrity as well as manage the follow-on incident response to changing, and potentially hazardous, environmental conditions. The software components are embedded at the sensor network nodes in surveillance systems used for monitoring unusual events. When an event occurs, the software agents establish a new concept of operation at themore » sensing node, post the event status to a blackboard for software agents at other nodes to see , and then react quickly and efficiently to monitor the scale of the event. The technology addresses a current challenge in sensor networks that prevents a rapid and efficient response when a sensor measurement indicates that an event has occurred. By using intelligent software agents - which can be stationary or mobile, interact socially, and adapt to changing situations - the technology offers features that are particularly important when systems need to adapt to active circumstances. For example, when a release is detected, the local software agent collaborates with other agents at the node to exercise the appropriate operation, such as: targeted detection, increased detection frequency, decreased detection frequency for other non-alarming sensors, and determination of environmental conditions so that adjacent nodes can be informed that an event is occurring and when it will arrive. The software agents at the nodes can also post the data in a targeted manner, so that agents at other nodes and the command center can exercise appropriate operations to recalibrate the overall sensor network and associated intelligence systems. The paper describes the concepts and provides examples of real-world implementations including the Threat Detection and Analysis System (TDAS) at the International Port of Memphis and the Biological Warning and Incident Characterization System (BWIC) Environmental Monitoring (EM) Component. Technologies developed for these 24/7 operational systems have applications for improved real-time system integrity awareness as well as provide incident response (as needed) for production and field applications.« less

  10. Tritium-powered radiation sensor network

    NASA Astrophysics Data System (ADS)

    Litz, Marc S.; Russo, Johnny A.; Katsis, Dimos

    2016-05-01

    Isotope power supplies offer long-lived (100 years using 63Ni), low-power energy sources, enabling sensors or communications nodes for the lifetime of infrastructure. A tritium beta-source (12.5-year half-life) encapsulated in a phosphor-lined vial couples directly to a photovoltaic (PV) to generate a trickle current into an electrical load. An inexpensive design is described using commercial-of-the-shelf (COTS) components that generate 100 μWe for nextgeneration compact electronics/sensors. A matched radiation sensor has been built for long-duration missions utilizing microprocessor-controlled sleep modes, low-power electronic components, and a passive interrupt driven environmental wake-up. The low-power early-warning radiation detector network and isotope power source enables no-maintenance mission lifetimes.

  11. Dynamic Data Driven Applications Systems (DDDAS)

    DTIC Science & Technology

    2013-03-06

    INS •  Chip-scale atomic clocks •  Ad hoc networks •  Polymorphic networks •  Agile networks •  Laser communications •  Frequency-agile RF...atomi clocks •  Ad hoc networks •  Polymorphic networks •  Agile networks •  Laser co munications •  Frequency-agile RF systems...Real-Time Doppler Wind Wind field Sensor observations Energy Estimation Atmospheric Models for On-line Planning Planning and Control

  12. Robust Multi Sensor Classification via Jointly Sparse Representation

    DTIC Science & Technology

    2016-03-14

    rank, sensor network, dictionary learning REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8...with ultrafast laser pulses, Optics Express, (04 2015): 10521. doi: Xiaoxia Sun, Nasser M. Nasrabadi, Trac D. Tran. Task-Driven Dictionary Learning...in dictionary design, compressed sensors design, and optimization in sparse recovery also helps. We are able to advance the state of the art

  13. Low-cost failure sensor design and development for water pipeline distribution systems.

    PubMed

    Khan, K; Widdop, P D; Day, A J; Wood, A S; Mounce, S R; Machell, J

    2002-01-01

    This paper describes the design and development of a new sensor which is low cost to manufacture and install and is reliable in operation with sufficient accuracy, resolution and repeatability for use in newly developed systems for pipeline monitoring and leakage detection. To provide an appropriate signal, the concept of a "failure" sensor is introduced, in which the output is not necessarily proportional to the input, but is unmistakably affected when an unusual event occurs. The design of this failure sensor is based on the water opacity which can be indicative of an unusual event in a water distribution network. The laboratory work and field trials necessary to design and prove out this type of failure sensor are described here. It is concluded that a low-cost failure sensor of this type has good potential for use in a comprehensive water monitoring and management system based on Artificial Neural Networks (ANN).

  14. Wireless Zigbee strain gage sensor system for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost, and temperature insensitivity for critical structural applications, which require immediate monitoring and feedback.

  15. Bidirectional QoS support for novelty detection applications based on hierarchical wireless sensor network model

    NASA Astrophysics Data System (ADS)

    Edwards, Mark; Hu, Fei; Kumar, Sunil

    2004-10-01

    The research on the Novelty Detection System (NDS) (called as VENUS) at the authors' universities has generated exciting results. For example, we can detect an abnormal behavior (such as cars thefts from the parking lot) from a series of video frames based on the cognitively motivated theory of habituation. In this paper, we would like to describe the implementation strategies of lower layer protocols for using large-scale Wireless Sensor Networks (WSN) to NDS with Quality-of-Service (QoS) support. Wireless data collection framework, consisting of small and low-power sensor nodes, provides an alternative mechanism to observe the physical world, by using various types of sensing capabilities that include images (and even videos using Panoptos), sound and basic physical measurements such as temperature. We do not want to lose any 'data query command' packets (in the downstream direction: sink-to-sensors) or have any bit-errors in them since they are so important to the whole sensor network. In the upstream direction (sensors-to-sink), we may tolerate the loss of some sensing data packets. But the 'interested' sensing flow should be assigned a higher priority in terms of multi-hop path choice, network bandwidth allocation, and sensing data packet generation frequency (we hope to generate more sensing data packet for that novel event in the specified network area). The focus of this paper is to investigate MAC-level Quality of Service (QoS) issue in Wireless Sensor Networks (WSN) for Novelty Detection applications. Although QoS has been widely studied in other types of networks including wired Internet, general ad hoc networks and mobile cellular networks, we argue that QoS in WSN has its own characteristics. In wired Internet, the main QoS parameters include delay, jitter and bandwidth. In mobile cellular networks, two most common QoS metrics are: handoff call dropping probability and new call blocking probability. Since the main task of WSN is to detect and report events, the most important QoS parameters should include sensing data packet transmission reliability, lifetime extension degree from sensor sleeping control, event detection latency, congestion reduction level through removal of redundant sensing data. In this paper, we will focus on the following bi-directional QoS topics: (1) Downstream (sink-to-sensor) QoS: Reliable data query command forwarding to particular sensor(s). In other words, we do not want to lose the query command packets; (2) Upstream (sensor-to-sink) QoS: transmission of sensed data with priority control. The more interested data that can help in novelty detection should be transmitted on an optimal path with higher reliability. We propose the use of Differentiated Data Collection. Due to the large-scale nature and resource constraints of typical wireless sensor networks, such as limited energy, small memory (typically RAM < 4K bytes) and short communication range, the above problems become even more challenging. Besides QoS support issue, we will also describe our low-energy Sensing Data Transmission network Architecture. Our research results show the scalability and energy-efficiency of our proposed WSN QoS schemes.

  16. On computer vision in wireless sensor networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Nina M.; Ko, Teresa H.

    Wireless sensor networks allow detailed sensing of otherwise unknown and inaccessible environments. While it would be beneficial to include cameras in a wireless sensor network because images are so rich in information, the power cost of transmitting an image across the wireless network can dramatically shorten the lifespan of the sensor nodes. This paper describe a new paradigm for the incorporation of imaging into wireless networks. Rather than focusing on transmitting images across the network, we show how an image can be processed locally for key features using simple detectors. Contrasted with traditional event detection systems that trigger an imagemore » capture, this enables a new class of sensors which uses a low power imaging sensor to detect a variety of visual cues. Sharing these features among relevant nodes cues specific actions to better provide information about the environment. We report on various existing techniques developed for traditional computer vision research which can aid in this work.« less

  17. Network Modeling and Energy-Efficiency Optimization for Advanced Machine-to-Machine Sensor Networks

    PubMed Central

    Jung, Sungmo; Kim, Jong Hyun; Kim, Seoksoo

    2012-01-01

    Wireless machine-to-machine sensor networks with multiple radio interfaces are expected to have several advantages, including high spatial scalability, low event detection latency, and low energy consumption. Here, we propose a network model design method involving network approximation and an optimized multi-tiered clustering algorithm that maximizes node lifespan by minimizing energy consumption in a non-uniformly distributed network. Simulation results show that the cluster scales and network parameters determined with the proposed method facilitate a more efficient performance compared to existing methods. PMID:23202190

  18. D-DSC: Decoding Delay-based Distributed Source Coding for Internet of Sensing Things

    PubMed Central

    Akan, Ozgur B.

    2018-01-01

    Spatial correlation between densely deployed sensor nodes in a wireless sensor network (WSN) can be exploited to reduce the power consumption through a proper source coding mechanism such as distributed source coding (DSC). In this paper, we propose the Decoding Delay-based Distributed Source Coding (D-DSC) to improve the energy efficiency of the classical DSC by employing the decoding delay concept which enables the use of the maximum correlated portion of sensor samples during the event estimation. In D-DSC, network is partitioned into clusters, where the clusterheads communicate their uncompressed samples carrying the side information, and the cluster members send their compressed samples. Sink performs joint decoding of the compressed and uncompressed samples and then reconstructs the event signal using the decoded sensor readings. Based on the observed degree of the correlation among sensor samples, the sink dynamically updates and broadcasts the varying compression rates back to the sensor nodes. Simulation results for the performance evaluation reveal that D-DSC can achieve reliable and energy-efficient event communication and estimation for practical signal detection/estimation applications having massive number of sensors towards the realization of Internet of Sensing Things (IoST). PMID:29538405

  19. D-DSC: Decoding Delay-based Distributed Source Coding for Internet of Sensing Things.

    PubMed

    Aktas, Metin; Kuscu, Murat; Dinc, Ergin; Akan, Ozgur B

    2018-01-01

    Spatial correlation between densely deployed sensor nodes in a wireless sensor network (WSN) can be exploited to reduce the power consumption through a proper source coding mechanism such as distributed source coding (DSC). In this paper, we propose the Decoding Delay-based Distributed Source Coding (D-DSC) to improve the energy efficiency of the classical DSC by employing the decoding delay concept which enables the use of the maximum correlated portion of sensor samples during the event estimation. In D-DSC, network is partitioned into clusters, where the clusterheads communicate their uncompressed samples carrying the side information, and the cluster members send their compressed samples. Sink performs joint decoding of the compressed and uncompressed samples and then reconstructs the event signal using the decoded sensor readings. Based on the observed degree of the correlation among sensor samples, the sink dynamically updates and broadcasts the varying compression rates back to the sensor nodes. Simulation results for the performance evaluation reveal that D-DSC can achieve reliable and energy-efficient event communication and estimation for practical signal detection/estimation applications having massive number of sensors towards the realization of Internet of Sensing Things (IoST).

  20. Dynamic Agent Classification and Tracking Using an Ad Hoc Mobile Acoustic Sensor Network

    NASA Astrophysics Data System (ADS)

    Friedlander, David; Griffin, Christopher; Jacobson, Noah; Phoha, Shashi; Brooks, Richard R.

    2003-12-01

    Autonomous networks of sensor platforms can be designed to interact in dynamic and noisy environments to determine the occurrence of specified transient events that define the dynamic process of interest. For example, a sensor network may be used for battlefield surveillance with the purpose of detecting, identifying, and tracking enemy activity. When the number of nodes is large, human oversight and control of low-level operations is not feasible. Coordination and self-organization of multiple autonomous nodes is necessary to maintain connectivity and sensor coverage and to combine information for better understanding the dynamics of the environment. Resource conservation requires adaptive clustering in the vicinity of the event. This paper presents methods for dynamic distributed signal processing using an ad hoc mobile network of microsensors to detect, identify, and track targets in noisy environments. They seamlessly integrate data from fixed and mobile platforms and dynamically organize platforms into clusters to process local data along the trajectory of the targets. Local analysis of sensor data is used to determine a set of target attribute values and classify the target. Sensor data from a field test in the Marine base at Twentynine Palms, Calif, was analyzed using the techniques described in this paper. The results were compared to "ground truth" data obtained from GPS receivers on the vehicles.

  1. Information-Theoretic Performance Analysis of Sensor Networks via Markov Modeling of Time Series Data.

    PubMed

    Li, Yue; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Yue Li; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Wettergren, Thomas A; Li, Yue; Ray, Asok; Jha, Devesh K

    2018-06-01

    This paper presents information-theoretic performance analysis of passive sensor networks for detection of moving targets. The proposed method falls largely under the category of data-level information fusion in sensor networks. To this end, a measure of information contribution for sensors is formulated in a symbolic dynamics framework. The network information state is approximately represented as the largest principal component of the time series collected across the network. To quantify each sensor's contribution for generation of the information content, Markov machine models as well as x-Markov (pronounced as cross-Markov) machine models, conditioned on the network information state, are constructed; the difference between the conditional entropies of these machines is then treated as an approximate measure of information contribution by the respective sensors. The x-Markov models represent the conditional temporal statistics given the network information state. The proposed method has been validated on experimental data collected from a local area network of passive sensors for target detection, where the statistical characteristics of environmental disturbances are similar to those of the target signal in the sense of time scale and texture. A distinctive feature of the proposed algorithm is that the network decisions are independent of the behavior and identity of the individual sensors, which is desirable from computational perspectives. Results are presented to demonstrate the proposed method's efficacy to correctly identify the presence of a target with very low false-alarm rates. The performance of the underlying algorithm is compared with that of a recent data-driven, feature-level information fusion algorithm. It is shown that the proposed algorithm outperforms the other algorithm.

  2. Modular sensor network node

    DOEpatents

    Davis, Jesse Harper Zehring [Berkeley, CA; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick [Hayward, CA; Kyker, Ronald Dean [Livermore, CA

    2008-06-10

    A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

  3. Concurrent Bursty Behavior of Social Sensors in Sporting Events

    PubMed Central

    Takeichi, Yuki; Sasahara, Kazutoshi; Suzuki, Reiji; Arita, Takaya

    2015-01-01

    The advent of social media expands our ability to transmit information and connect with others instantly, which enables us to behave as “social sensors.” Here, we studied concurrent bursty behavior of Twitter users during major sporting events to determine their function as social sensors. We show that the degree of concurrent bursts in tweets (posts) and retweets (re-posts) works as a strong indicator of winning or losing a game. More specifically, our simple tweet analysis of Japanese professional baseball games in 2013 revealed that social sensors can immediately react to positive and negative events through bursts of tweets, but that positive events are more likely to induce a subsequent burst of retweets. We confirm that these findings also hold true for tweets related to Major League Baseball games in 2015. Furthermore, we demonstrate active interactions among social sensors by constructing retweet networks during a baseball game. The resulting networks commonly exhibited user clusters depending on the baseball team, with a scale-free connectedness that is indicative of a substantial difference in user popularity as an information source. While previous studies have mainly focused on bursts of tweets as a simple indicator of a real-world event, the temporal correlation between tweets and retweets implies unique aspects of social sensors, offering new insights into human behavior in a highly connected world. PMID:26659028

  4. Nitrate dynamics within a stream-lake network through time and space

    NASA Astrophysics Data System (ADS)

    Loken, L. C.; Crawford, J. T.; Childress, E. S.; Casson, N. J.; Stanley, E. H.

    2014-12-01

    Nitrate dynamics in streams are governed by biology, hydrology, and geomorphology, and the ability to parse these drivers apart has improved with the development of accurate high-frequency sensors. By combining a stationary Eulerian and a quasi-Lagrangian sensor platform, we investigated the timing of nitrate flushing and identified locations of elevated biogeochemical cycling along a stream-lake network in Northern Wisconsin, USA. Two years of continuous oxygen, carbon dioxide, and discharge measurements were used to compute gross primary production (GPP) and ecosystem respiration (ER) downstream of a wetland reach of Allequash Creek. Metabolic rates and flow patterns were compared with nitrate concentrations measured every 30 minutes using an optical sensor. Additionally, we floated a sensor array from the headwater spring ponds through a heterogeneous stream reach consisting of wetlands, beaver ponds, forested segments, and two lakes. Two distinct temporal patterns of stream nitrate concentrations were observed. During high flow events such as spring snowmelt and summer rain events, nitrate concentrations increased from ~5 μM (baseflow) to 12 μM, suggesting flushing from catchment sources. During baseflow conditions, nitrate followed a diel cycle with a 0.3-1.0 μM daytime draw down. Daily nitrate reduction was positively correlated with GPP calculated from oxygen and carbon dioxide records. Lastly, spatial analyses revealed lowest nitrate concentrations in the wetland reach, approximately 2-3 μM lower than the upstream spring ponds, and downstream lakes and forested reaches. This snapshot implies greater nitrate removal potential in the wetland reach likely driven by denitrification in organic rich sediments and macrophyte uptake in the open canopy stream segment. Taken together the temporal and spatial results show the dynamics of hydrology, geomorphology, and biology to influence nitrate delivery and variability in ecosystem processing through a stream-lake system. Future ecosystem studies could benefit by including multiple reference frameworks to better assess processes not captured by a single station approach.

  5. Aquatic Nitrate Retention at River Network Scales Across Flow Conditions Determined Using Nested In Situ Sensors

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Mulukutla, G. K.; Cook, C.; Carey, R. O.

    2017-11-01

    Nonpoint pollution sources are strongly influenced by hydrology and are therefore sensitive to climate variability. Some pollutants entering aquatic ecosystems, e.g., nitrate, can be mitigated by in-stream processes during transport through river networks. Whole river network nitrate retention is difficult to quantify with observations. High frequency, in situ nitrate sensors, deployed in nested locations within a single watershed, can improve estimates of both nonpoint inputs and aquatic retention at river network scales. We deployed a nested sensor network and associated sampling in the urbanizing Oyster River watershed in coastal New Hampshire, USA, to quantify storm event-scale loading and retention at network scales. An end member analysis used the relative behavior of reactive nitrate and conservative chloride to infer river network fate of nitrate. In the headwater catchments, nitrate and chloride concentrations are both increasingly diluted with increasing storm size. At the mouth of the watershed, chloride is also diluted, but nitrate tended to increase. The end member analysis suggests that this pattern is the result of high retention during small storms (51-78%) that declines to zero during large storms. Although high frequency nitrate sensors did not alter estimates of fluxes over seasonal time periods compared to less frequent grab sampling, they provide the ability to estimate nitrate flux versus storm size at event scales that is critical for such analyses. Nested sensor networks can improve understanding of the controls of both loading and network scale retention, and therefore also improve management of nonpoint source pollution.

  6. Event-Based Variance-Constrained ${\\mathcal {H}}_{\\infty }$ Filtering for Stochastic Parameter Systems Over Sensor Networks With Successive Missing Measurements.

    PubMed

    Wang, Licheng; Wang, Zidong; Han, Qing-Long; Wei, Guoliang

    2018-03-01

    This paper is concerned with the distributed filtering problem for a class of discrete time-varying stochastic parameter systems with error variance constraints over a sensor network where the sensor outputs are subject to successive missing measurements. The phenomenon of the successive missing measurements for each sensor is modeled via a sequence of mutually independent random variables obeying the Bernoulli binary distribution law. To reduce the frequency of unnecessary data transmission and alleviate the communication burden, an event-triggered mechanism is introduced for the sensor node such that only some vitally important data is transmitted to its neighboring sensors when specific events occur. The objective of the problem addressed is to design a time-varying filter such that both the requirements and the variance constraints are guaranteed over a given finite-horizon against the random parameter matrices, successive missing measurements, and stochastic noises. By recurring to stochastic analysis techniques, sufficient conditions are established to ensure the existence of the time-varying filters whose gain matrices are then explicitly characterized in term of the solutions to a series of recursive matrix inequalities. A numerical simulation example is provided to illustrate the effectiveness of the developed event-triggered distributed filter design strategy.

  7. Geometry-driven distributed compression of the plenoptic function: performance bounds and constructive algorithms.

    PubMed

    Gehrig, Nicolas; Dragotti, Pier Luigi

    2009-03-01

    In this paper, we study the sampling and the distributed compression of the data acquired by a camera sensor network. The effective design of these sampling and compression schemes requires, however, the understanding of the structure of the acquired data. To this end, we show that the a priori knowledge of the configuration of the camera sensor network can lead to an effective estimation of such structure and to the design of effective distributed compression algorithms. For idealized scenarios, we derive the fundamental performance bounds of a camera sensor network and clarify the connection between sampling and distributed compression. We then present a distributed compression algorithm that takes advantage of the structure of the data and that outperforms independent compression algorithms on real multiview images.

  8. Human-centric sensing.

    PubMed

    Srivastava, Mani; Abdelzaher, Tarek; Szymanski, Boleslaw

    2012-01-13

    The first decade of the century witnessed a proliferation of devices with sensing and communication capabilities in the possession of the average individual. Examples range from camera phones and wireless global positioning system units to sensor-equipped, networked fitness devices and entertainment platforms (such as Wii). Social networking platforms emerged, such as Twitter, that allow sharing information in real time. The unprecedented deployment scale of such sensors and connectivity options ushers in an era of novel data-driven applications that rely on inputs collected by networks of humans or measured by sensors acting on their behalf. These applications will impact domains as diverse as health, transportation, energy, disaster recovery, intelligence and warfare. This paper surveys the important opportunities in human-centric sensing, identifies challenges brought about by such opportunities and describes emerging solutions to these challenges.

  9. A Coral Reef Algorithm Based on Learning Automata for the Coverage Control Problem of Heterogeneous Directional Sensor Networks

    PubMed Central

    Li, Ming; Miao, Chunyan; Leung, Cyril

    2015-01-01

    Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches. PMID:26690162

  10. A Coral Reef Algorithm Based on Learning Automata for the Coverage Control Problem of Heterogeneous Directional Sensor Networks.

    PubMed

    Li, Ming; Miao, Chunyan; Leung, Cyril

    2015-12-04

    Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches.

  11. On Mixed Data and Event Driven Design for Adaptive-Critic-Based Nonlinear $H_{\\infty}$ Control.

    PubMed

    Wang, Ding; Mu, Chaoxu; Liu, Derong; Ma, Hongwen

    2018-04-01

    In this paper, based on the adaptive critic learning technique, the control for a class of unknown nonlinear dynamic systems is investigated by adopting a mixed data and event driven design approach. The nonlinear control problem is formulated as a two-player zero-sum differential game and the adaptive critic method is employed to cope with the data-based optimization. The novelty lies in that the data driven learning identifier is combined with the event driven design formulation, in order to develop the adaptive critic controller, thereby accomplishing the nonlinear control. The event driven optimal control law and the time driven worst case disturbance law are approximated by constructing and tuning a critic neural network. Applying the event driven feedback control, the closed-loop system is built with stability analysis. Simulation studies are conducted to verify the theoretical results and illustrate the control performance. It is significant to observe that the present research provides a new avenue of integrating data-based control and event-triggering mechanism into establishing advanced adaptive critic systems.

  12. Structural health monitoring methodology for aircraft condition-based maintenance

    NASA Astrophysics Data System (ADS)

    Saniger, Jordi; Reithler, Livier; Guedra-Degeorges, Didier; Takeda, Nobuo; Dupuis, Jean Pierre

    2001-06-01

    Reducing maintenance costs while keeping a constant level of safety is a major issue for Air Forces and airlines. The long term perspective is to implement condition based maintenance to guarantee a constant safety level while decreasing maintenance costs. On this purpose, the development of a generalized Structural Health Monitoring System (SHMS) is needed. The objective of such a system is to localize the damages and to assess their severity, with enough accuracy to allow low cost corrective actions. The present paper describes a SHMS based on acoustic emission technology. This choice was driven by its reliability and wide use in the aerospace industry. The described SHMS uses a new learning methodology which relies on the generation of artificial acoustic emission events on the structure and an acoustic emission sensor network. The calibrated acoustic emission events picked up by the sensors constitute the knowledge set that the system relies on. With this methodology, the anisotropy of composite structures is taken into account, thus avoiding the major cause of errors of classical localization methods. Moreover, it is adaptive to different structures as it does not rely on any particular model but on measured data. The acquired data is processed and the event's location and corrected amplitude are computed. The methodology has been demonstrated and experimental tests on elementary samples presented a degree of accuracy of 1cm.

  13. On the monitoring and prediction of flash floods in small and medium-sized catchments - the EXTRUSO project

    NASA Astrophysics Data System (ADS)

    Wiemann, Stefan; Eltner, Anette; Sardemann, Hannes; Spieler, Diana; Singer, Thomas; Thanh Luong, Thi; Janabi, Firas Al; Schütze, Niels; Bernard, Lars; Bernhofer, Christian; Maas, Hans-Gerd

    2017-04-01

    Flash floods regularly cause severe socio-economic damage worldwide. In parallel, climate change is very likely to increase the number of such events, due to an increasing frequency of extreme precipitation events (EASAC 2013). Whereas recent work primarily addresses the resilience of large catchment areas, the major impact of hydro-meteorological extremes caused by heavy precipitation is on small areas. Those are very difficult to observe and predict, due to sparse monitoring networks and only few means for hydro-meteorological modelling, especially in small catchment areas. The objective of the EXTRUSO project is to identify and implement appropriate means to close this gap by an interdisciplinary approach, combining comprehensive research expertise from meteorology, hydrology, photogrammetry and geoinformatics. The project targets innovative techniques for achieving spatio-temporal densified monitoring and simulations for the analysis, prediction and warning of local hydro-meteorological extreme events. The following four aspects are of particular interest: 1. The monitoring, analysis and combination of relevant hydro-meteorological parameters from various sources, including existing monitoring networks, ground radar, specific low-cost sensors and crowdsourcing. 2. The determination of relevant hydro-morphological parameters from different photogrammetric sensors (e.g. camera, laser scanner) and sensor platforms (e.g. UAV (unmanned aerial vehicle) and UWV (unmanned water vehicle)). 3. The continuous hydro-meteorological modelling of precipitation, soil moisture and water flows by means of conceptual and data-driven modelling. 4. The development of a collaborative, web-based service infrastructure as an information and communication point, especially in the case of an extreme event. There are three major applications for the planned information system: First, the warning of local extreme events for the population in potentially affected areas, second, the support for decision makers and emergency responders in the case of an event and, third, the development of open, interoperable tools for other researchers to be applied and further developed. The test area of the project is the Free State of Saxony (Germany) with a number of small and medium catchment areas. However, the whole system, comprising models, tools and sensor setups, is planned to be transferred and tested in other areas, within and outside Europe, as well. The team working on the project consists of eight researchers, including five PhD students and three postdocs. The EXTRUSO project is funded by the European Social Fund (ESF grant nr. 100270097) with a project duration of three years until June 2019. EASAC (2013): Trends in extreme weather events in Europe: implications for national and European Union adaption strategies. European Academies Science Advisory Council. Policy report 22, November 2013 The EXTRUSO project is funded by the European Social Fund (ESF), grant nr. 100270097

  14. An Operational Implementation of a CBRN Sensor-Driven Modeling Paradigm for Stochastic Event Reconstruction

    DTIC Science & Technology

    2010-05-01

    Eight (GS) and Twenty (G20) Summits , Francophonie Summit]. iv DRDC Suffield TR 2010-070 Somma ire An Operational Implementation of a CBRN Sensor...terrain Joint Urban 2003 effectuee a Oklahoma City, Okla- homa ), qui comprend le transport et la dispersion d’un agent a une echelle complexe urbaine

  15. Real-Time Earthquake Monitoring with Spatio-Temporal Fields

    NASA Astrophysics Data System (ADS)

    Whittier, J. C.; Nittel, S.; Subasinghe, I.

    2017-10-01

    With live streaming sensors and sensor networks, increasingly large numbers of individual sensors are deployed in physical space. Sensor data streams are a fundamentally novel mechanism to deliver observations to information systems. They enable us to represent spatio-temporal continuous phenomena such as radiation accidents, toxic plumes, or earthquakes almost as instantaneously as they happen in the real world. Sensor data streams discretely sample an earthquake, while the earthquake is continuous over space and time. Programmers attempting to integrate many streams to analyze earthquake activity and scope need to write code to integrate potentially very large sets of asynchronously sampled, concurrent streams in tedious application code. In previous work, we proposed the field stream data model (Liang et al., 2016) for data stream engines. Abstracting the stream of an individual sensor as a temporal field, the field represents the Earth's movement at the sensor position as continuous. This simplifies analysis across many sensors significantly. In this paper, we undertake a feasibility study of using the field stream model and the open source Data Stream Engine (DSE) Apache Spark(Apache Spark, 2017) to implement a real-time earthquake event detection with a subset of the 250 GPS sensor data streams of the Southern California Integrated GPS Network (SCIGN). The field-based real-time stream queries compute maximum displacement values over the latest query window of each stream, and related spatially neighboring streams to identify earthquake events and their extent. Further, we correlated the detected events with an USGS earthquake event feed. The query results are visualized in real-time.

  16. Exact event-driven implementation for recurrent networks of stochastic perfect integrate-and-fire neurons.

    PubMed

    Taillefumier, Thibaud; Touboul, Jonathan; Magnasco, Marcelo

    2012-12-01

    In vivo cortical recording reveals that indirectly driven neural assemblies can produce reliable and temporally precise spiking patterns in response to stereotyped stimulation. This suggests that despite being fundamentally noisy, the collective activity of neurons conveys information through temporal coding. Stochastic integrate-and-fire models delineate a natural theoretical framework to study the interplay of intrinsic neural noise and spike timing precision. However, there are inherent difficulties in simulating their networks' dynamics in silico with standard numerical discretization schemes. Indeed, the well-posedness of the evolution of such networks requires temporally ordering every neuronal interaction, whereas the order of interactions is highly sensitive to the random variability of spiking times. Here, we answer these issues for perfect stochastic integrate-and-fire neurons by designing an exact event-driven algorithm for the simulation of recurrent networks, with delayed Dirac-like interactions. In addition to being exact from the mathematical standpoint, our proposed method is highly efficient numerically. We envision that our algorithm is especially indicated for studying the emergence of polychronized motifs in networks evolving under spike-timing-dependent plasticity with intrinsic noise.

  17. An Event-based Assessment of Uncertainty in Measurements Between Multiple Precipitation Sensors During the North American Monsoon

    NASA Astrophysics Data System (ADS)

    Kautz, M. A.; Keefer, T.; Demaria, E. M.; Goodrich, D. C.; Hazenberg, P.; Petersen, W. A.; Wingo, M. T.; Smith, J.

    2017-12-01

    The USDA - Agricultural Research Service (USDA-ARS) Long-Term Agroecosystem Research network (LTAR) is a partnership between 18 long-term research sites across the United States. As part of the program, LTAR aims to assemble a network of common sensors and measurements of hydrological, meteorological, and biophysical variables to accompany the legacy datasets of individual LTAR sites. Uncertainty remains as to how the common sensor-based measurements will compare to those measured with existing sensors at each site. The USDA-ARS Southwest Watershed Research Center (SWRC) operated Walnut Gulch Experimental Watershed (WGEW) represents the semiarid grazing lands located in southeastern Arizona in the LTAR network. The bimodal precipitation regime of this region is characterized by large-scale frontal precipitation in the winter and isolated, high-intensity, convective thunderstorms in the summer during the North American Monsoon (NAM). SWRC maintains a network of 90 rain gauges across the 150 km2 WGEW and surrounding area, with measurements dating back to the 1950's. The high intensity and isolated nature of the summer storms has historically made it difficult to quantify compared to other regimes in the US. This study assesses the uncertainty of measurement between the common LTAR Belfort All Weather Precipitation Gauge (AEPG 600) and the legacy WGEW weighing-type raingage. Additionally, in a collaboration with NASA Global Precipitation Measurement mission (GPM) and the University of Arizona a dense array of precipitation measuring sensors was installed at WGEW within a 10 meter radius for observation during the NAM, July through October 2017. In addition to two WGEW weighing-type gauges, the array includes: an AEPG 600, a tipping bucket, a weighing-bucket installed with orifice at ground level, an OTT Pluvio2 rain gauge, a Two-Dimensional Video Disdrometer (2DVD), and three OTT Parsivel2 disdrometers. An event-based comparison was made between precipitation sensors using metrics including total depth, peak intensity (1, 15, 30, and 60 minute), event duration, time to peak intensity, and start time of event. These results provide further insight into the uncertainties of measuring point-based precipitation in this unique precipitation regime and representation in large-scale observation networks.

  18. Analytical Models of Cross-Layer Protocol Optimization in Real-Time Wireless Sensor Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    The real-time interactions among the nodes of a wireless sensor network (WSN) to cooperatively process data from multiple sensors are modeled. Quality-of-service (QoS) metrics are associated with the quality of fused information: throughput, delay, packet error rate, etc. Multivariate point process (MVPP) models of discrete random events in WSNs establish stochastic characteristics of optimal cross-layer protocols. Discrete-event, cross-layer interactions in mobile ad hoc network (MANET) protocols have been modeled using a set of concatenated design parameters and associated resource levels by the MVPPs. Characterization of the "best" cross-layer designs for a MANET is formulated by applying the general theory of martingale representations to controlled MVPPs. Performance is described in terms of concatenated protocol parameters and controlled through conditional rates of the MVPPs. Modeling limitations to determination of closed-form solutions versus explicit iterative solutions for ad hoc WSN controls are examined.

  19. Subsurface event detection and classification using Wireless Signal Networks.

    PubMed

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T

    2012-11-05

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events.

  20. Subsurface Event Detection and Classification Using Wireless Signal Networks

    PubMed Central

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T.

    2012-01-01

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events. PMID:23202191

  1. The Impacts of Attitudes and Engagement on Electronic Word of Mouth (eWOM) of Mobile Sensor Computing Applications.

    PubMed

    Zhao, Yu; Liu, Yide; Lai, Ivan K W; Zhang, Hongfeng; Zhang, Yi

    2016-03-18

    As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human-computer interaction (HCI) issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users' compound attitudes (i.e., affective attitudes, cognitive attitude), engagement and electronic word of mouth (eWOM) behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user's compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user-product (brand) relationships.

  2. The Impacts of Attitudes and Engagement on Electronic Word of Mouth (eWOM) of Mobile Sensor Computing Applications

    PubMed Central

    Zhao, Yu; Liu, Yide; Lai, Ivan K. W.; Zhang, Hongfeng; Zhang, Yi

    2016-01-01

    As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human–computer interaction (HCI) issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users’ compound attitudes (i.e., affective attitudes, cognitive attitude), engagement and electronic word of mouth (eWOM) behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user’s compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user—product (brand) relationships. PMID:26999155

  3. Bridge damage detection using spatiotemporal patterns extracted from dense sensor network

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Gong, Yongqiang; Laflamme, Simon; Phares, Brent; Sarkar, Soumik

    2017-01-01

    The alarmingly degrading state of transportation infrastructures combined with their key societal and economic importance calls for automatic condition assessment methods to facilitate smart management of maintenance and repairs. With the advent of ubiquitous sensing and communication capabilities, scalable data-driven approaches is of great interest, as it can utilize large volume of streaming data without requiring detailed physical models that can be inaccurate and computationally expensive to run. Properly designed, a data-driven methodology could enable fast and automatic evaluation of infrastructures, discovery of causal dependencies among various sub-system dynamic responses, and decision making with uncertainties and lack of labeled data. In this work, a spatiotemporal pattern network (STPN) strategy built on symbolic dynamic filtering (SDF) is proposed to explore spatiotemporal behaviors in a bridge network. Data from strain gauges installed on two bridges are generated using finite element simulation for three types of sensor networks from a density perspective (dense, nominal, sparse). Causal relationships among spatially distributed strain data streams are extracted and analyzed for vehicle identification and detection, and for localization of structural degradation in bridges. Multiple case studies show significant capabilities of the proposed approach in: (i) capturing spatiotemporal features to discover causality between bridges (geographically close), (ii) robustness to noise in data for feature extraction, (iii) detecting and localizing damage via comparison of bridge responses to similar vehicle loads, and (iv) implementing real-time health monitoring and decision making work flow for bridge networks. Also, the results demonstrate increased sensitivity in detecting damages and higher reliability in quantifying the damage level with increase in sensor network density.

  4. Simulating Operation of a Complex Sensor Network

    NASA Technical Reports Server (NTRS)

    Jennings, Esther; Clare, Loren; Woo, Simon

    2008-01-01

    Simulation Tool for ASCTA Microsensor Network Architecture (STAMiNA) ["ASCTA" denotes the Advanced Sensors Collaborative Technology Alliance.] is a computer program for evaluating conceptual sensor networks deployed over terrain to provide military situational awareness. This or a similar program is needed because of the complexity of interactions among such diverse phenomena as sensing and communication portions of a network, deployment of sensor nodes, effects of terrain, data-fusion algorithms, and threat characteristics. STAMiNA is built upon a commercial network-simulator engine, with extensions to include both sensing and communication models in a discrete-event simulation environment. Users can define (1) a mission environment, including terrain features; (2) objects to be sensed; (3) placements and modalities of sensors, abilities of sensors to sense objects of various types, and sensor false alarm rates; (4) trajectories of threatening objects; (5) means of dissemination and fusion of data; and (6) various network configurations. By use of STAMiNA, one can simulate detection of targets through sensing, dissemination of information by various wireless communication subsystems under various scenarios, and fusion of information, incorporating such metrics as target-detection probabilities, false-alarm rates, and communication loads, and capturing effects of terrain and threat.

  5. Fog-Based Two-Phase Event Monitoring and Data Gathering in Vehicular Sensor Networks

    PubMed Central

    Yang, Fan; Su, Jinsong; Zhou, Qifeng; Wang, Tian; Zhang, Lu; Xu, Yifan

    2017-01-01

    Vehicular nodes are equipped with more and more sensing units, and a large amount of sensing data is generated. Recently, more and more research considers cooperative urban sensing as the heart of intelligent and green city traffic management. The key components of the platform will be a combination of a pervasive vehicular sensing system, as well as a central control and analysis system, where data-gathering is a fundamental component. However, the data-gathering and monitoring are also challenging issues in vehicular sensor networks because of the large amount of data and the dynamic nature of the network. In this paper, we propose an efficient continuous event-monitoring and data-gathering framework based on fog nodes in vehicular sensor networks. A fog-based two-level threshold strategy is adopted to suppress unnecessary data upload and transmissions. In the monitoring phase, nodes sense the environment in low cost sensing mode and generate sensed data. When the probability of the event is high and exceeds some threshold, nodes transfer to the event-checking phase, and some nodes would be selected to transfer to the deep sensing mode to generate more accurate data of the environment. Furthermore, it adaptively adjusts the threshold to upload a suitable amount of data for decision making, while at the same time suppressing unnecessary message transmissions. Simulation results showed that the proposed scheme could reduce more than 84 percent of the data transmissions compared with other existing algorithms, while it detects the events and gathers the event data. PMID:29286320

  6. Ontology-Based Architecture for Intelligent Transportation Systems Using a Traffic Sensor Network.

    PubMed

    Fernandez, Susel; Hadfi, Rafik; Ito, Takayuki; Marsa-Maestre, Ivan; Velasco, Juan R

    2016-08-15

    Intelligent transportation systems are a set of technological solutions used to improve the performance and safety of road transportation. A crucial element for the success of these systems is the exchange of information, not only between vehicles, but also among other components in the road infrastructure through different applications. One of the most important information sources in this kind of systems is sensors. Sensors can be within vehicles or as part of the infrastructure, such as bridges, roads or traffic signs. Sensors can provide information related to weather conditions and traffic situation, which is useful to improve the driving process. To facilitate the exchange of information between the different applications that use sensor data, a common framework of knowledge is needed to allow interoperability. In this paper an ontology-driven architecture to improve the driving environment through a traffic sensor network is proposed. The system performs different tasks automatically to increase driver safety and comfort using the information provided by the sensors.

  7. Ontology-Based Architecture for Intelligent Transportation Systems Using a Traffic Sensor Network

    PubMed Central

    Fernandez, Susel; Hadfi, Rafik; Ito, Takayuki; Marsa-Maestre, Ivan; Velasco, Juan R.

    2016-01-01

    Intelligent transportation systems are a set of technological solutions used to improve the performance and safety of road transportation. A crucial element for the success of these systems is the exchange of information, not only between vehicles, but also among other components in the road infrastructure through different applications. One of the most important information sources in this kind of systems is sensors. Sensors can be within vehicles or as part of the infrastructure, such as bridges, roads or traffic signs. Sensors can provide information related to weather conditions and traffic situation, which is useful to improve the driving process. To facilitate the exchange of information between the different applications that use sensor data, a common framework of knowledge is needed to allow interoperability. In this paper an ontology-driven architecture to improve the driving environment through a traffic sensor network is proposed. The system performs different tasks automatically to increase driver safety and comfort using the information provided by the sensors. PMID:27537878

  8. Development of inferential sensors for real-time quality control of water-level data for the Everglades Depth Estimation Network

    USGS Publications Warehouse

    Daamen, Ruby C.; Edwin A. Roehl, Jr.; Conrads, Paul

    2010-01-01

    A technology often used for industrial applications is “inferential sensor.” Rather than installing a redundant sensor to measure a process, such as an additional waterlevel gage, an inferential sensor, or virtual sensor, is developed that estimates the processes measured by the physical sensor. The advantage of an inferential sensor is that it provides a redundant signal to the sensor in the field but without exposure to environmental threats. In the event that a gage does malfunction, the inferential sensor provides an estimate for the period of missing data. The inferential sensor also can be used in the quality assurance and quality control of the data. Inferential sensors for gages in the EDEN network are currently (2010) under development. The inferential sensors will be automated so that the real-time EDEN data will continuously be compared to the inferential sensor signal and digital reports of the status of the real-time data will be sent periodically to the appropriate support personnel. The development and application of inferential sensors is easily transferable to other real-time hydrologic monitoring networks.

  9. Technical note: Efficient online source identification algorithm for integration within a contamination event management system

    NASA Astrophysics Data System (ADS)

    Deuerlein, Jochen; Meyer-Harries, Lea; Guth, Nicolai

    2017-07-01

    Drinking water distribution networks are part of critical infrastructures and are exposed to a number of different risks. One of them is the risk of unintended or deliberate contamination of the drinking water within the pipe network. Over the past decade research has focused on the development of new sensors that are able to detect malicious substances in the network and early warning systems for contamination. In addition to the optimal placement of sensors, the automatic identification of the source of a contamination is an important component of an early warning and event management system for security enhancement of water supply networks. Many publications deal with the algorithmic development; however, only little information exists about the integration within a comprehensive real-time event detection and management system. In the following the analytical solution and the software implementation of a real-time source identification module and its integration within a web-based event management system are described. The development was part of the SAFEWATER project, which was funded under FP 7 of the European Commission.

  10. A Fuzzy-Decision Based Approach for Composite Event Detection in Wireless Sensor Networks

    PubMed Central

    Zhang, Shukui; Chen, Hao; Zhu, Qiaoming

    2014-01-01

    The event detection is one of the fundamental researches in wireless sensor networks (WSNs). Due to the consideration of various properties that reflect events status, the Composite event is more consistent with the objective world. Thus, the research of the Composite event becomes more realistic. In this paper, we analyze the characteristics of the Composite event; then we propose a criterion to determine the area of the Composite event and put forward a dominating set based network topology construction algorithm under random deployment. For the unreliability of partial data in detection process and fuzziness of the event definitions in nature, we propose a cluster-based two-dimensional τ-GAS algorithm and fuzzy-decision based composite event decision mechanism. In the case that the sensory data of most nodes are normal, the two-dimensional τ-GAS algorithm can filter the fault node data effectively and reduce the influence of erroneous data on the event determination. The Composite event judgment mechanism which is based on fuzzy-decision holds the superiority of the fuzzy-logic based algorithm; moreover, it does not need the support of a huge rule base and its computational complexity is small. Compared to CollECT algorithm and CDS algorithm, this algorithm improves the detection accuracy and reduces the traffic. PMID:25136690

  11. Intelligent Sensing in Dynamic Environments Using Markov Decision Process

    PubMed Central

    Nanayakkara, Thrishantha; Halgamuge, Malka N.; Sridhar, Prasanna; Madni, Asad M.

    2011-01-01

    In a network of low-powered wireless sensors, it is essential to capture as many environmental events as possible while still preserving the battery life of the sensor node. This paper focuses on a real-time learning algorithm to extend the lifetime of a sensor node to sense and transmit environmental events. A common method that is generally adopted in ad-hoc sensor networks is to periodically put the sensor nodes to sleep. The purpose of the learning algorithm is to couple the sensor’s sleeping behavior to the natural statistics of the environment hence that it can be in optimal harmony with changes in the environment, the sensors can sleep when steady environment and stay awake when turbulent environment. This paper presents theoretical and experimental validation of a reward based learning algorithm that can be implemented on an embedded sensor. The key contribution of the proposed approach is the design and implementation of a reward function that satisfies a trade-off between the above two mutually contradicting objectives, and a linear critic function to approximate the discounted sum of future rewards in order to perform policy learning. PMID:22346624

  12. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System

    PubMed Central

    Milde, Moritz B.; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia

    2017-01-01

    Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware. PMID:28747883

  13. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System.

    PubMed

    Milde, Moritz B; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia

    2017-01-01

    Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware.

  14. Synchronization of Switched Neural Networks With Communication Delays via the Event-Triggered Control.

    PubMed

    Wen, Shiping; Zeng, Zhigang; Chen, Michael Z Q; Huang, Tingwen

    2017-10-01

    This paper addresses the issue of synchronization of switched delayed neural networks with communication delays via event-triggered control. For synchronizing coupled switched neural networks, we propose a novel event-triggered control law which could greatly reduce the number of control updates for synchronization tasks of coupled switched neural networks involving embedded microprocessors with limited on-board resources. The control signals are driven by properly defined events, which depend on the measurement errors and current-sampled states. By using a delay system method, a novel model of synchronization error system with delays is proposed with the communication delays and event-triggered control in the unified framework for coupled switched neural networks. The criteria are derived for the event-triggered synchronization analysis and control synthesis of switched neural networks via the Lyapunov-Krasovskii functional method and free weighting matrix approach. A numerical example is elaborated on to illustrate the effectiveness of the derived results.

  15. Recent progress in distributed optical fiber Raman photon sensors at China Jiliang University

    NASA Astrophysics Data System (ADS)

    Zhang, Zaixuan; Wang, Jianfeng; Li, Yi; Gong, Huaping; Yu, Xiangdong; Liu, Honglin; Jin, Yongxing; Kang, Juan; Li, Chenxia; Zhang, Wensheng; Zhang, Wenping; Niu, Xiaohui; Sun, Zhongzhou; Zhao, Chunliu; Dong, Xinyong; Jin, Shangzhong

    2012-06-01

    A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other facilities, and can be integrated with wireless networks.

  16. Multi-Sensor Data Fusion Project

    DTIC Science & Technology

    2000-02-28

    seismic network by detecting T phases generated by underground events ( generally earthquakes ) and associating these phases to seismic events. The...between underwater explosions (H), underground sources, mostly earthquake - generated (7), and noise detections (N). The phases classified as H are the only...processing for infrasound sensors is most similar to seismic array processing with the exception that the detections are based on a more sophisticated

  17. Coordinating an Autonomous Earth-Observing Sensorweb

    NASA Technical Reports Server (NTRS)

    Sherwood, Robert; Cichy, Benjamin; Tran, Daniel; Chien, Steve; Rabideau, Gregg; Davies, Ashley; Castano, Rebecca; frye, Stuart; Mandl, Dan; Shulman, Seth; hide

    2006-01-01

    A system of software has been developed to coordinate the operation of an autonomous Earth-observing sensorweb. Sensorwebs are collections of sensor units scattered over large regions to gather data on spatial and temporal patterns of physical, chemical, or biological phenomena in those regions. Each sensor unit is a node in a data-gathering/ data-communication network that spans a region of interest. In this case, the region is the entire Earth, and the sensorweb includes multiple terrestrial and spaceborne sensor units. In addition to acquiring data for scientific study, the sensorweb is required to give timely notice of volcanic eruptions, floods, and other hazardous natural events. In keeping with the inherently modular nature of the sensory, communication, and data-processing hardware, the software features a flexible, modular architecture that facilitates expansion of the network, customization of conditions that trigger alarms of hazardous natural events, and customization of responses to alarms. The soft8 NASA Tech Briefs, July 2006 ware facilitates access to multiple sources of data on an event of scientific interest, enables coordinated use of multiple sensors in rapid reaction to detection of an event, and facilitates the tracking of spacecraft operations, including tracking of the acquisition, processing, and downlinking of requested data.

  18. Pulse based sensor networking using mechanical waves through metal substrates

    NASA Astrophysics Data System (ADS)

    Lorenz, S.; Dong, B.; Huo, Q.; Tomlinson, W. J.; Biswas, S.

    2013-05-01

    This paper presents a novel wireless sensor networking technique using ultrasonic signal as the carrier wave for binary data exchange. Using the properties of lamb wave propagation through metal substrates, the proposed network structure can be used for runtime transport of structural fault information to ultrasound access points. Primary applications of the proposed sensor networking technique will include conveying fault information on an aircraft wing or on a bridge to an ultrasonic access point using ultrasonic wave through the structure itself (i.e. wing or bridge). Once a fault event has been detected, a mechanical pulse is forwarded to the access node using shortest path multi-hop ultrasonic pulse routing. The advantages of mechanical waves over traditional radio transmission using pulses are the following: First, unlike radio frequency, surface acoustic waves are not detectable outside the medium, which increases the inherent security for sensitive environments in respect to tapping. Second, event detection can be represented by the injection of a single mechanical pulse at a specific temporal position, whereas radio messages usually take several bits. The contributions of this paper are: 1) Development of a transceiver for transmitting/receiving ultrasound pulses with a pulse loss rate below 2·10-5 and false positive rate with an upper bound of 2·10-4. 2) A novel one-hop distance estimation based on the properties of lamb wave propagation with an accuracy of above 80%. 3) Implementation of a wireless sensor network using mechanical wave propagation for event detection on a 2024 aluminum alloy commonly used for aircraft skin construction.

  19. An On-Demand Emergency Packet Transmission Scheme for Wireless Body Area Networks.

    PubMed

    Al Ameen, Moshaddique; Hong, Choong Seon

    2015-12-04

    The rapid developments of sensor devices that can actively monitor human activities have given rise to a new field called wireless body area network (BAN). A BAN can manage devices in, on and around the human body. Major requirements of such a network are energy efficiency, long lifetime, low delay, security, etc. Traffic in a BAN can be scheduled (normal) or event-driven (emergency). Traditional media access control (MAC) protocols use duty cycling to improve performance. A sleep-wake up cycle is employed to save energy. However, this mechanism lacks features to handle emergency traffic in a prompt and immediate manner. To deliver an emergency packet, a node has to wait until the receiver is awake. It also suffers from overheads, such as idle listening, overhearing and control packet handshakes. An external radio-triggered wake up mechanism is proposed to handle prompt communication. It can reduce the overheads and improve the performance through an on-demand scheme. In this work, we present a simple-to-implement on-demand packet transmission scheme by taking into considerations the requirements of a BAN. The major concern is handling the event-based emergency traffic. The performance analysis of the proposed scheme is presented. The results showed significant improvements in the overall performance of a BAN compared to state-of-the-art protocols in terms of energy consumption, delay and lifetime.

  20. An On-Demand Emergency Packet Transmission Scheme for Wireless Body Area Networks

    PubMed Central

    Al Ameen, Moshaddique; Hong, Choong Seon

    2015-01-01

    The rapid developments of sensor devices that can actively monitor human activities have given rise to a new field called wireless body area network (BAN). A BAN can manage devices in, on and around the human body. Major requirements of such a network are energy efficiency, long lifetime, low delay, security, etc. Traffic in a BAN can be scheduled (normal) or event-driven (emergency). Traditional media access control (MAC) protocols use duty cycling to improve performance. A sleep-wake up cycle is employed to save energy. However, this mechanism lacks features to handle emergency traffic in a prompt and immediate manner. To deliver an emergency packet, a node has to wait until the receiver is awake. It also suffers from overheads, such as idle listening, overhearing and control packet handshakes. An external radio-triggered wake up mechanism is proposed to handle prompt communication. It can reduce the overheads and improve the performance through an on-demand scheme. In this work, we present a simple-to-implement on-demand packet transmission scheme by taking into considerations the requirements of a BAN. The major concern is handling the event-based emergency traffic. The performance analysis of the proposed scheme is presented. The results showed significant improvements in the overall performance of a BAN compared to state-of-the-art protocols in terms of energy consumption, delay and lifetime. PMID:26690161

  1. SPADnet: a fully digital, scalable, and networked photonic component for time-of-flight PET applications

    NASA Astrophysics Data System (ADS)

    Bruschini, Claudio; Charbon, Edoardo; Veerappan, Chockalingam; Braga, Leo H. C.; Massari, Nicola; Perenzoni, Matteo; Gasparini, Leonardo; Stoppa, David; Walker, Richard; Erdogan, Ahmet; Henderson, Robert K.; East, Steve; Grant, Lindsay; Játékos, Balázs; Ujhelyi, Ferenc; Erdei, Gábor; Lörincz, Emöke; André, Luc; Maingault, Laurent; Jacolin, David; Verger, L.; Gros d'Aillon, Eric; Major, Peter; Papp, Zoltan; Nemeth, Gabor

    2014-05-01

    The SPADnet FP7 European project is aimed at a new generation of fully digital, scalable and networked photonic components to enable large area image sensors, with primary target gamma-ray and coincidence detection in (Time-of- Flight) Positron Emission Tomography (PET). SPADnet relies on standard CMOS technology, therefore allowing for MRI compatibility. SPADnet innovates in several areas of PET systems, from optical coupling to single-photon sensor architectures, from intelligent ring networks to reconstruction algorithms. It is built around a natively digital, intelligent SPAD (Single-Photon Avalanche Diode)-based sensor device which comprises an array of 8×16 pixels, each composed of 4 mini-SiPMs with in situ time-to-digital conversion, a multi-ring network to filter, carry, and process data produced by the sensors at 2Gbps, and a 130nm CMOS process enabling mass-production of photonic modules that are optically interfaced to scintillator crystals. A few tens of sensor devices are tightly abutted on a single PCB to form a so-called sensor tile, thanks to TSV (Through Silicon Via) connections to their backside (replacing conventional wire bonding). The sensor tile is in turn interfaced to an FPGA-based PCB on its back. The resulting photonic module acts as an autonomous sensing and computing unit, individually detecting gamma photons as well as thermal and Compton events. It determines in real time basic information for each scintillation event, such as exact time of arrival, position and energy, and communicates it to its peers in the field of view. Coincidence detection does therefore occur directly in the ring itself, in a differed and distributed manner to ensure scalability. The selected true coincidence events are then collected by a snooper module, from which they are transferred to an external reconstruction computer using Gigabit Ethernet.

  2. Augmenting Trust Establishment in Dynamic Systems with Social Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagesse, Brent J; Kumar, Mohan; Venkatesh, Svetha

    2010-01-01

    Social networking has recently flourished in popularity through the use of social websites. Pervasive computing resources have allowed people stay well-connected to each other through access to social networking resources. We take the position that utilizing information produced by relationships within social networks can assist in the establishment of trust for other pervasive computing applications. Furthermore, we describe how such a system can augment a sensor infrastructure used for event observation with information from mobile sensors (ie, mobile phones with cameras) controlled by potentially untrusted third parties. Pervasive computing systems are invisible systems, oriented around the user. As a result,more » many future pervasive systems are likely to include a social aspect to the system. The social communities that are developed in these systems can augment existing trust mechanisms with information about pre-trusted entities or entities to initially consider when beginning to establish trust. An example of such a system is the Collaborative Virtual Observation (CoVO) system fuses sensor information from disaparate sources in soft real-time to recreate a scene that provides observation of an event that has recently transpired. To accomplish this, CoVO must efficently access services whilst protecting the data from corruption from unknown remote nodes. CoVO combines dynamic service composition with virtual observation to utilize existing infrastructure with third party services available in the environment. Since these services are not under the control of the system, they may be unreliable or malicious. When an event of interest occurs, the given infrastructure (bus cameras, etc.) may not sufficiently cover the necessary information (be it in space, time, or sensor type). To enhance observation of the event, infrastructure is augmented with information from sensors in the environment that the infrastructure does not control. These sensors may be unreliable, uncooperative, or even malicious. Additionally, to execute queries in soft real-time, processing must be distributed to available systems in the environment. We propose to use information from social networks to satisfy these requirements. In this paper, we present our position that knowledge gained from social activities can be used to augment trust mechanisms in pervasive computing. The system uses social behavior of nodes to predict a subset that it wants to query for information. In this context, social behavior such as transit patterns and schedules (which can be used to determine if a queried node is likely to be reliable) or known relationships, such as a phone's address book, that can be used to determine networks of nodes that may also be able to assist in retrieving information. Neither implicit nor explicit relationships necessarily imply that the user trusts an entity, but rather will provide a starting place for establishing trust. The proposed framework utilizes social network information to assist in trust establishment when third-party sensors are used for sensing events.« less

  3. Automated information-analytical system for thunderstorm monitoring and early warning alarms using modern physical sensors and information technologies with elements of artificial intelligence

    NASA Astrophysics Data System (ADS)

    Boldyreff, Anton S.; Bespalov, Dmitry A.; Adzhiev, Anatoly Kh.

    2017-05-01

    Methods of artificial intelligence are a good solution for weather phenomena forecasting. They allow to process a large amount of diverse data. Recirculation Neural Networks is implemented in the paper for the system of thunderstorm events prediction. Large amounts of experimental data from lightning sensors and electric field mills networks are received and analyzed. The average recognition accuracy of sensor signals is calculated. It is shown that Recirculation Neural Networks is a promising solution in the forecasting of thunderstorms and weather phenomena, characterized by the high efficiency of the recognition elements of the sensor signals, allows to compress images and highlight their characteristic features for subsequent recognition.

  4. Distributed Event-Based Set-Membership Filtering for a Class of Nonlinear Systems With Sensor Saturations Over Sensor Networks.

    PubMed

    Ma, Lifeng; Wang, Zidong; Lam, Hak-Keung; Kyriakoulis, Nikos

    2017-11-01

    In this paper, the distributed set-membership filtering problem is investigated for a class of discrete time-varying system with an event-based communication mechanism over sensor networks. The system under consideration is subject to sector-bounded nonlinearity, unknown but bounded noises and sensor saturations. Each intelligent sensing node transmits the data to its neighbors only when certain triggering condition is violated. By means of a set of recursive matrix inequalities, sufficient conditions are derived for the existence of the desired distributed event-based filter which is capable of confining the system state in certain ellipsoidal regions centered at the estimates. Within the established theoretical framework, two additional optimization problems are formulated: one is to seek the minimal ellipsoids (in the sense of matrix trace) for the best filtering performance, and the other is to maximize the triggering threshold so as to reduce the triggering frequency with satisfactory filtering performance. A numerically attractive chaos algorithm is employed to solve the optimization problems. Finally, an illustrative example is presented to demonstrate the effectiveness and applicability of the proposed algorithm.

  5. The Development of Wireless Body Area Network for Motion Sensing Application

    NASA Astrophysics Data System (ADS)

    Puspitaningayu, P.; Widodo, A.; Yundra, E.; Ramadhany, F.; Arianto, L.; Habibie, D.

    2018-04-01

    The information era has driven the society into the digitally-controlled lifestyle. Wireless body area networks (WBAN) as the specific scope of wireless sensor networks (WSN) is consistently growing into bigger applications. Currently, people are able to monitor their medical parameters by simply using small electronics devices attached to their body and connected to the authorities. On top of that, this time, smart phones are typically equipped with sensors such as accelerometer, gyroscope, barometric pressure, heart rate monitor, etc. It means that the sensing yet the signal processing can be performed by a single device. Moreover, Android opens lot wider opportunities for new applications as the most popular open-sourced smart phone platform. This paper is intended to show the development of motion sensing application which focused on analysing data from accelerometer and gyroscope. Beside reads the sensors, this application also has the ability to convert the sensors’ numerical value into graphs.

  6. Exploiting Social Media Sensor Networks through Novel Data Fusion Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouri, Tina

    Unprecedented amounts of data are continuously being generated by sensors (“hard” data) and by humans (“soft” data), and this data needs to be exploited to its full potential. The first step in exploiting this data is determine how the hard and soft data are related to each other. In this project we fuse hard and soft data, using the attributes of each (e.g., time and space), to gain more information about interesting events. Next, we attempt to use social networking textual data to predict the present (i.e., predict that an interesting event is occurring and details about the event) usingmore » data mining, machine learning, natural language processing, and text analysis techniques.« less

  7. Assessing the Health of LiFePO4 Traction Batteries through Monotonic Echo State Networks

    PubMed Central

    Anseán, David; Otero, José; Couso, Inés

    2017-01-01

    A soft sensor is presented that approximates certain health parameters of automotive rechargeable batteries from on-vehicle measurements of current and voltage. The sensor is based on a model of the open circuit voltage curve. This last model is implemented through monotonic neural networks and estimate over-potentials arising from the evolution in time of the Lithium concentration in the electrodes of the battery. The proposed soft sensor is able to exploit the information contained in operational records of the vehicle better than the alternatives, this being particularly true when the charge or discharge currents are between moderate and high. The accuracy of the neural model has been compared to different alternatives, including data-driven statistical models, first principle-based models, fuzzy observers and other recurrent neural networks with different topologies. It is concluded that monotonic echo state networks can outperform well established first-principle models. The algorithms have been validated with automotive Li-FePO4 cells. PMID:29267219

  8. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  9. The development of an artificial organic networks toolkit for LabVIEW.

    PubMed

    Ponce, Hiram; Ponce, Pedro; Molina, Arturo

    2015-03-15

    Two of the most challenging problems that scientists and researchers face when they want to experiment with new cutting-edge algorithms are the time-consuming for encoding and the difficulties for linking them with other technologies and devices. In that sense, this article introduces the artificial organic networks toolkit for LabVIEW™ (AON-TL) from the implementation point of view. The toolkit is based on the framework provided by the artificial organic networks technique, giving it the potential to add new algorithms in the future based on this technique. Moreover, the toolkit inherits both the rapid prototyping and the easy-to-use characteristics of the LabVIEW™ software (e.g., graphical programming, transparent usage of other softwares and devices, built-in programming event-driven for user interfaces), to make it simple for the end-user. In fact, the article describes the global architecture of the toolkit, with particular emphasis in the software implementation of the so-called artificial hydrocarbon networks algorithm. Lastly, the article includes two case studies for engineering purposes (i.e., sensor characterization) and chemistry applications (i.e., blood-brain barrier partitioning data model) to show the usage of the toolkit and the potential scalability of the artificial organic networks technique. © 2015 Wiley Periodicals, Inc.

  10. Geochemical evidence for a magmatic CO2 degassing event at Mammoth Mountain, California, September-December 1997

    USGS Publications Warehouse

    McGee, K.A.; Gerlach, T.M.; Kessler, R.; Doukas, M.P.

    2000-01-01

    Recent time series soil CO2 concentration data from monitoring stations in the vicinity of Mammoth Mountain, California, reveal strong evidence for a magmatic degassing event during the fall of 1997 lasting more than 2 months. Two sensors at Horseshoe Lake first recorded the episode on September 23, 1997, followed 10 days later by a sensor on the north flank of Mammoth Mountain. Direct degassing from shallow intruding magma seems an implausible cause of the degassing event, since the gas released at Horseshoe Lake continued to be cold and barren of other magmatic gases, except for He. We suggest that an increase in compressional strain on the area south of Mammoth Mountain driven by movement of major fault blocks in Long Valley caldera may have triggered an episode of increased degassing by squeezing additional accumulated CO2 from a shallow gas reservoir to the surface along faults and other structures where it could be detected by the CO2 monitoring network. Recharge of the gas reservoir by CO2 emanating from the deep intrusions that probably triggered deep long-period earthquakes may also have contributed to the degassing event. The nature of CO2 discharge at the soil-air interface is influenced by the porous character of High Sierra soils and by meteorological processes. Solar insolation is the primary source of energy for the Earth atmosphere and plays a significant role in most diurnal processes at the Earth surface. Data from this study suggest that external forcing due largely to local orographic winds influences the fine structure of the recorded CO2 signals.

  11. Energy efficient sensor network implementations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frigo, Janette R; Raby, Eric Y; Brennan, Sean M

    In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study.more » We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.« less

  12. Tracking and imaging humans on heterogeneous infrared sensor arrays for law enforcement applications

    NASA Astrophysics Data System (ADS)

    Feller, Steven D.; Zheng, Y.; Cull, Evan; Brady, David J.

    2002-08-01

    We present a plan for the integration of geometric constraints in the source, sensor and analysis levels of sensor networks. The goal of geometric analysis is to reduce the dimensionality and complexity of distributed sensor data analysis so as to achieve real-time recognition and response to significant events. Application scenarios include biometric tracking of individuals, counting and analysis of individuals in groups of humans and distributed sentient environments. We are particularly interested in using this approach to provide networks of low cost point detectors, such as infrared motion detectors, with complex imaging capabilities. By extending the capabilities of simple sensors, we expect to reduce the cost of perimeter and site security applications.

  13. PREFACE: Sensors and their Applications XIV

    NASA Astrophysics Data System (ADS)

    Prosser, S. J.; Al-Shamma'a, A. I.

    2007-09-01

    The fourteenth conference in the Sensors and their Applications series took place at the Liverpool John Moores University in Liverpool, UK from 11-13 September 2007. The event was organised by the Instrument Science and Technology Group of the Institute of Physics. Previous conferences in this series were held in Manchester (1983 and 1993), Southampton (1985 and 1998), Cambridge (1987), Canterbury (1989), Edinburgh (1991), Dublin (1995), Glasgow (1997), Cardiff (1999), London (2001), Limerick (2003) and Chatham (2005). The event provided a forum for academic researchers and industrial engineers working in all areas of sensors, instrumentation and measurement to update themselves on the latest technical developments and applications, share knowledge and stimulate new ideas. The third decade of this conference series continues to highlight new technologies and applications as the sensor market benefits from enhanced signal processing power and wireless networking. Through presentation of oral papers, discussions at exhibited posters and informal exchanges of ideas, the conference continues to provide excellent knowledge transfer and networking opportunities. The high quality programme, headlined by notable contributions from invited speakers, included microsensors, automotive sensors, gas sensing, non-destructive inspection, food and healthcare, sensor signal processing, wireless sensing, modelling and imaging techniques. As in previous years, this conference was particularly highlighted by a large number of sensor applications papers. We take this opportunity to thank all of those who have contributed to the event. Our thanks also go to our colleagues in the Instrument Science and Technology Group for their support and encouragement, particularly in the refereeing of papers, and to the Sensors and Instrumentation Knowledge Transfer Network. Special thanks go to Claire Garland from the Conferences Department of the Institute of Physics and the local team at Liverpool John Moores University who have expertly managed the planning and organising of this Conference. We hope that these conference proceedings will provide a technical insight into the development of sensors and their applications during 2007. S J Prosser, Conference Chairman TRW Automotive A I Al-Shamma'a, Local Chairman Liverpool John Moores University

  14. Imagining CO2: development and assessment of interactive visualizations for high resolution greenhouse gas observations collected by BEACO2N

    NASA Astrophysics Data System (ADS)

    Raheja, G.; Shusterman, A.; Martin, S.; Shahar, E.; Laughner, J.; Turner, A. J.; Miller, M. K.; Cohen, R. C.

    2016-12-01

    The Berkeley Atmospheric CO2 Observation Network (BEACO2N) is a high-density network of 28 carbon dioxide sensors distributed around the San Francisco Bay Area that serve to enhance understanding of intra-city variations in CO2 concentrations that are not necessarily captured by sparser networks maintained by local and national air quality management agencies. We partner with designers at the San Francisco Exploratorium to create a suite of interactive exhibits and hands-on activities that creatively visualize data from BEACO2N for general audiences. Museum goers can manipulate a light-up "bar graph" of live CO2 concentrations by exhaling on an in-room sensor, query the current readings of rooftop sensors using a scale model of the Wired Pier observation system, scroll through the data from other BEACO2N sites projected on a 3-D "topographic table" of the Bay Area, and view interpolated CO2 fields driven by research-grade weather models on a nine-screen LCD display. We present lessons learned from these initial installations, from layperson audience feedback to details of the Stochastic Time-Inverted Lagrangian Transport (STILT) model coupled to Weather Research and Forecasting (WRF) weather fields used to generate intuitive concentration maps. We propose that compelling visual demonstrations of elevated CO2 concentrations due to routine small-scale high-emission anthropogenic activities (e.g. rush hour) and/or special events (such as fireworks or factory fires) generate deeper engagement in local environmental issues and interest in undertaking personal actions that can become part of the broader climate solution. While global means and other large-scale aggregate climate metrics can lead to feelings of disconnect and subsequent ambivalence, via such exhibitions, distributed network instruments like BEACO2N can provide the local sensitivity needed to "personalize" greenhouse gas concentrations to a given individual or community and incite the drive toward understanding, education, and action.

  15. Ocean Observatories Initiative (OOI): Status of Design, Capabilities, and Implementation

    NASA Astrophysics Data System (ADS)

    Brasseur, L. H.; Banahan, S.; Cowles, T.

    2009-05-01

    The National Science Foundation's (NSF) Ocean Observatories Initiative (OOI) will implement the construction and operation of an interactive, integrated ocean observing network. This research- driven, multi-scale network will provide the broad ocean science community with access to advanced technology to enable studies of fundamental ocean processes. The OOI will afford observations at coastal, regional, and global scales on timeframes of milliseconds to decades in support of investigations into climate variability, ocean ecosystems, biogeochemical processes, coastal ocean dynamics, circulation and mixing dynamics, fluid-rock interactions, and the sub-seafloor biosphere. The elements of the OOI include arrays of fixed and re-locatable moorings, autonomous underwater vehicles, and cabled seafloor nodes. All assets combined, the OOI network will provide data from over 45 distinct types of sensors, comprising over 800 total sensors distributed in the Pacific and Atlantic oceans. These core sensors for the OOI were determined through a formal process of science requirements development. This core sensor array will be integrated through a system-wide cyberinfrastructure allowing for remote control of instruments, adaptive sampling, and near-real time access to data. Implementation of the network will stimulate new avenues of research and the development of new infrastructure, instrumentation, and sensor technologies. The OOI is funded by the NSF and managed by the Consortium for Ocean Leadership which focuses on the science, technology, education, and outreach for an emerging network of ocean observing systems.

  16. Fault Isolation Filter for Networked Control System with Event-Triggered Sampling Scheme

    PubMed Central

    Li, Shanbin; Sauter, Dominique; Xu, Bugong

    2011-01-01

    In this paper, the sensor data is transmitted only when the absolute value of difference between the current sensor value and the previously transmitted one is greater than the given threshold value. Based on this send-on-delta scheme which is one of the event-triggered sampling strategies, a modified fault isolation filter for a discrete-time networked control system with multiple faults is then implemented by a particular form of the Kalman filter. The proposed fault isolation filter improves the resource utilization with graceful fault estimation performance degradation. An illustrative example is given to show the efficiency of the proposed method. PMID:22346590

  17. Neural network pattern recognition of lingual-palatal pressure for automated detection of swallow.

    PubMed

    Hadley, Aaron J; Krival, Kate R; Ridgel, Angela L; Hahn, Elizabeth C; Tyler, Dustin J

    2015-04-01

    We describe a novel device and method for real-time measurement of lingual-palatal pressure and automatic identification of the oral transfer phase of deglutition. Clinical measurement of the oral transport phase of swallowing is a complicated process requiring either placement of obstructive sensors or sitting within a fluoroscope or articulograph for recording. Existing detection algorithms distinguish oral events with EMG, sound, and pressure signals from the head and neck, but are imprecise and frequently result in false detection. We placed seven pressure sensors on a molded mouthpiece fitting over the upper teeth and hard palate and recorded pressure during a variety of swallow and non-swallow activities. Pressure measures and swallow times from 12 healthy and 7 Parkinson's subjects provided training data for a time-delay artificial neural network to categorize the recordings as swallow or non-swallow events. User-specific neural networks properly categorized 96 % of swallow and non-swallow events, while a generalized population-trained network was able to properly categorize 93 % of swallow and non-swallow events across all recordings. Lingual-palatal pressure signals are sufficient to selectively and specifically recognize the initiation of swallowing in healthy and dysphagic patients.

  18. Communal Cooperation in Sensor Networks for Situation Management

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin,Chunsheng

    2006-01-01

    Situation management is a rapidly evolving science where managed sources are processed as realtime streams of events and fused in a way that maximizes comprehension, thus enabling better decisions for action. Sensor networks provide a new technology that promises ubiquitous input and action throughout an environment, which can substantially improve information available to the process. Here we describe a NASA program that requires improvements in sensor networks and situation management. We present an approach for massively deployed sensor networks that does not rely on centralized control but is founded in lessons learned from the way biological ecosystems are organized. In this approach, fully distributed data aggregation and integration can be performed in a scalable fashion where individual motes operate based on local information, making local decisions that achieve globally-meaningful results. This exemplifies the robust, fault-tolerant infrastructure required for successful situation management systems.

  19. Network-based simulation of aircraft at gates in airport terminals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Y.

    1998-03-01

    Simulation is becoming an essential tool for planning, design, and management of airport facilities. A simulation of aircraft at gates at an airport can be applied for various periodically performed applications, relating to the dynamic behavior of aircraft at gates in airport terminals for analyses, evaluations, and decision supports. Conventionally, such simulations are implemented using an event-driven method. For a more efficient simulation, this paper proposes a network-based method. The basic idea is to transform all the sequence constraint relations of aircraft at gates into a network. The simulation is done by calculating the longest path to all the nodesmore » in the network. The effect of the algorithm of the proposed method has been examined by experiments, and the superiority of the proposed method over the event-driven method is revealed through comprehensive comparisons of their overall simulation performance.« less

  20. Autonomic and Coevolutionary Sensor Networking

    NASA Astrophysics Data System (ADS)

    Boonma, Pruet; Suzuki, Junichi

    (WSNs) applications are often required to balance the tradeoffs among conflicting operational objectives (e.g., latency and power consumption) and operate at an optimal tradeoff. This chapter proposes and evaluates a architecture, called BiSNET/e, which allows WSN applications to overcome this issue. BiSNET/e is designed to support three major types of WSN applications: , and hybrid applications. Each application is implemented as a decentralized group of, which is analogous to a bee colony (application) consisting of bees (agents). Agents collect sensor data or detect an event (a significant change in sensor reading) on individual nodes, and carry sensor data to base stations. They perform these data collection and event detection functionalities by sensing their surrounding network conditions and adaptively invoking behaviors such as pheromone emission, reproduction, migration, swarming and death. Each agent has its own behavior policy, as a set of genes, which defines how to invoke its behaviors. BiSNET/e allows agents to evolve their behavior policies (genes) across generations and autonomously adapt their performance to given objectives. Simulation results demonstrate that, in all three types of applications, agents evolve to find optimal tradeoffs among conflicting objectives and adapt to dynamic network conditions such as traffic fluctuations and node failures/additions. Simulation results also illustrate that, in hybrid applications, data collection agents and event detection agents coevolve to augment their adaptability and performance.

  1. Source Characterization and Seismic Hazard Considerations for Hydraulic Fracture Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Bosman, K.; Viegas, G. F.; Baig, A. M.; Urbancic, T.

    2015-12-01

    Large microseismic events (M>0) have been shown to be generated during hydraulic fracture treatments relatively frequently. These events are a concern both from public safety and engineering viewpoints. Recent microseismic monitoring projects in the Horn River Basin have utilized both downhole and surface sensors to record events associated with hydraulic fracturing. The resulting hybrid monitoring system has produced a large dataset with two distinct groups of events: large events recorded by the surface network (0

  2. Citizen sensors for SHM: use of accelerometer data from smartphones.

    PubMed

    Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin

    2015-01-29

    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications.

  3. Identification and interpretation of patterns in rocket engine data: Artificial intelligence and neural network approaches

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry

    1989-01-01

    This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events, and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system. The artificial intelligence approach is useful because it provides (1) the use of human experts' knowledge of sensor behavior and faulty engine conditions in interpreting data; (2) the use of engine design knowledge and physical sensor locations in establishing relationships among the events of multiple sensors; (3) the use of stored analysis of past data of faulty engine conditions; and (4) the use of knowledge-based reasoning in distinguishing sensor failure from actual faults. The neural network approach appears promising because neural nets (1) can be trained on extremely noisy data and produce classifications which are more robust under noisy conditions than other classification techniques; (2) avoid the necessity of noise removal by digital filtering and therefore avoid the need to make assumptions about frequency bands or other signal characteristics of anomalous behavior; (3) can, in effect, generate their own feature detectors based on the characteristics of the sensor data used in training; and (4) are inherently parallel and therefore are potentially implementable in special-purpose parallel hardware.

  4. Identification of Hot Moments and Hot Spots for Real-Time Adaptive Control of Multi-scale Environmental Sensor Networks

    NASA Astrophysics Data System (ADS)

    Wietsma, T.; Minsker, B. S.

    2012-12-01

    Increased sensor throughput combined with decreasing hardware costs has led to a disruptive growth in data volume. This disruption, popularly termed "the data deluge," has placed new demands for cyberinfrastructure and information technology skills among researchers in many academic fields, including the environmental sciences. Adaptive sampling has been well established as an effective means of improving network resource efficiency (energy, bandwidth) without sacrificing sample set quality relative to traditional uniform sampling. However, using adaptive sampling for the explicit purpose of improving resolution over events -- situations displaying intermittent dynamics and unique hydrogeological signatures -- is relatively new. In this paper, we define hot spots and hot moments in terms of sensor signal activity as measured through discrete Fourier analysis. Following this frequency-based approach, we apply the Nyquist-Shannon sampling theorem, a fundamental contribution from signal processing that led to the field of information theory, for analysis of uni- and multivariate environmental signal data. In the scope of multi-scale environmental sensor networks, we present several sampling control algorithms, derived from the Nyquist-Shannon theorem, that operate at local (field sensor), regional (base station for aggregation of field sensor data), and global (Cloud-based, computationally intensive models) scales. Evaluated over soil moisture data, results indicate significantly greater sample density during precipitation events while reducing overall sample volume. Using these algorithms as indicators rather than control mechanisms, we also discuss opportunities for spatio-temporal modeling as a tool for planning/modifying sensor network deployments. Locally adaptive model based on Nyquist-Shannon sampling theorem Pareto frontiers for local, regional, and global models relative to uniform sampling. Objectives are (1) overall sampling efficiency and (2) sampling efficiency during hot moments as identified using heuristic approach.

  5. Self-assembly of thin, triangular prisms into open networks at a flat air-water interface

    NASA Astrophysics Data System (ADS)

    Solomon, Michael; Ferrar, Joseph; Bedi, Deshpreet; Zhou, Shangnan; Mao, Xiaoming

    We observe capillary-driven binding between thin, equilateral triangle microprisms at a flat air-water interface. The triangles are fabricated from epoxy resin via SU-8 photolithography. For small thickness to length (T/L) ratios, two distinct pairwise particle-particle binding events occur with roughly equal frequency, and optical and environmental scanning electron microscopy (eSEM) demonstrate that these two distinct binding events are driven by the specific manner in which the interface is pinned to the particle surface. Additionally, particle bending is observed for the lowest T/L ratios, which leads to enhanced interface curvature and thus enhanced strength of capillary-driven attractions, and may also play a pivotal role in the dichotomy in particle-particle binding. Dichotomy in particle-particle binding is not observed at thicker T/L ratios, although capillary-driven binding still occurs. Ultimately, the particles self-assemble into space-spanning open networks, and the results suggest design parameters for the fabrication of building blocks of ordered open structures, such as the Kagome lattice.

  6. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, J.; BenZvi, S.; Bravo, S.; Jensen, K.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Santander, M.; Schultz, D.; Simons, A. L.; Tosi, D.

    2016-04-01

    Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available.

  7. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, B.; Norton, T. J.; Haas, P.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution for the readout while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest or by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  8. Massive Cloud-Based Big Data Processing for Ocean Sensor Networks and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Schwehr, K. D.

    2017-12-01

    Until recently, the work required to integrate and analyze data for global-scale environmental issues was prohibitive both in cost and availability. Traditional desktop processing systems are not able to effectively store and process all the data, and super computer solutions are financially out of the reach of most people. The availability of large-scale cloud computing has created tools that are usable by small groups and individuals regardless of financial resources or locally available computational resources. These systems give scientists and policymakers the ability to see how critical resources are being used across the globe with little or no barrier to entry. Google Earth Engine has the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra, MODIS Aqua, and Global Land Data Assimilation Systems (GLDAS) data catalogs available live online. Here we demonstrate these data to calculate the correlation between lagged chlorophyll and rainfall to identify areas of eutrophication, matching these events to ocean currents from datasets like HYbrid Coordinate Ocean Model (HYCOM) to check if there are constraints from oceanographic configurations. The system can provide addition ground truth with observations from sensor networks like the International Comprehensive Ocean-Atmosphere Data Set / Voluntary Observing Ship (ICOADS/VOS) and Argo floats. This presentation is intended to introduce users to the datasets, programming idioms, and functionality of Earth Engine for large-scale, data-driven oceanography.

  9. A method for detecting and locating geophysical events using groups of arrays

    NASA Astrophysics Data System (ADS)

    de Groot-Hedlin, Catherine D.; Hedlin, Michael A. H.

    2015-11-01

    We have developed a novel method to detect and locate geophysical events that makes use of any sufficiently dense sensor network. This method is demonstrated using acoustic sensor data collected in 2013 at the USArray Transportable Array (TA). The algorithm applies Delaunay triangulation to divide the sensor network into a mesh of three-element arrays, called triads. Because infrasound waveforms are incoherent between the sensors within each triad, the data are transformed into envelopes, which are cross-correlated to find signals that satisfy a consistency criterion. The propagation azimuth, phase velocity and signal arrival time are computed for each signal. Triads with signals that are consistent with a single source are bundled as an event group. The ensemble of arrival times and azimuths of detected signals within each group are used to locate a common source in space and time. A total of 513 infrasonic stations that were active for part or all of 2013 were divided into over 2000 triads. Low (0.5-2 Hz) and high (2-8 Hz) catalogues of infrasonic events were created for the eastern USA. The low-frequency catalogue includes over 900 events and reveals several highly active source areas on land that correspond with coal mining regions. The high-frequency catalogue includes over 2000 events, with most occurring offshore. Although their cause is not certain, most events are clearly anthropogenic as almost all occur during regular working hours each week. The regions to which the TA is most sensitive vary seasonally, with the direction of reception dependent on the direction of zonal winds. The catalogue has also revealed large acoustic events that may provide useful insight into the nature of long-range infrasound propagation in the atmosphere.

  10. An Improved Forwarding of Diverse Events with Mobile Sinks in Underwater Wireless Sensor Networks.

    PubMed

    Raza, Waseem; Arshad, Farzana; Ahmed, Imran; Abdul, Wadood; Ghouzali, Sanaa; Niaz, Iftikhar Azim; Javaid, Nadeem

    2016-11-04

    In this paper, a novel routing strategy to cater the energy consumption and delay sensitivity issues in deep underwater wireless sensor networks is proposed. This strategy is named as ESDR: Event Segregation based Delay sensitive Routing. In this strategy sensed events are segregated on the basis of their criticality and, are forwarded to their respective destinations based on forwarding functions. These functions depend on different routing metrics like: Signal Quality Index, Localization free Signal to Noise Ratio, Energy Cost Function and Depth Dependent Function. The problem of incomparable values of previously defined forwarding functions causes uneven delays in forwarding process. Hence forwarding functions are redefined to ensure their comparable values in different depth regions. Packet forwarding strategy is based on the event segregation approach which forwards one third of the generated events (delay sensitive) to surface sinks and two third events (normal events) are forwarded to mobile sinks. Motion of mobile sinks is influenced by the relative distribution of normal nodes. We have also incorporated two different mobility patterns named as; adaptive mobility and uniform mobility for mobile sinks. The later one is implemented for collecting the packets generated by the normal nodes. These improvements ensure optimum holding time, uniform delay and in-time reporting of delay sensitive events. This scheme is compared with the existing ones and outperforms the existing schemes in terms of network lifetime, delay and throughput.

  11. Analysis of power management and system latency in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Oswald, Matthew T.; Rohwer, Judd A.; Forman, Michael A.

    2004-08-01

    Successful power management in a wireless sensor network requires optimization of the protocols which affect energy-consumption on each node and the aggregate effects across the larger network. System optimization for a given deployment scenario requires an analysis and trade off of desired node and network features with their associated costs. The sleep protocol for an energy-efficient wireless sensor network for event detection, target classification, and target tracking developed at Sandia National Laboratories is presented. The dynamic source routing (DSR) algorithm is chosen to reduce network maintenance overhead, while providing a self-configuring and self-healing network architecture. A method for determining the optimal sleep time is developed and presented, providing reference data which spans several orders of magnitude. Message timing diagrams show, that a node in a five-node cluster, employing an optimal cyclic single-radio sleep protocol, consumes 3% more energy and incurs a 16-s increase latency than nodes employing the more complex dual-radio STEM protocol.

  12. Performance of Social Network Sensors during Hurricane Sandy

    PubMed Central

    Kryvasheyeu, Yury; Chen, Haohui; Moro, Esteban; Van Hentenryck, Pascal; Cebrian, Manuel

    2015-01-01

    Information flow during catastrophic events is a critical aspect of disaster management. Modern communication platforms, in particular online social networks, provide an opportunity to study such flow and derive early-warning sensors, thus improving emergency preparedness and response. Performance of the social networks sensor method, based on topological and behavioral properties derived from the “friendship paradox”, is studied here for over 50 million Twitter messages posted before, during, and after Hurricane Sandy. We find that differences in users’ network centrality effectively translate into moderate awareness advantage (up to 26 hours); and that geo-location of users within or outside of the hurricane-affected area plays a significant role in determining the scale of such an advantage. Emotional response appears to be universal regardless of the position in the network topology, and displays characteristic, easily detectable patterns, opening a possibility to implement a simple “sentiment sensing” technique that can detect and locate disasters. PMID:25692690

  13. Performance of social network sensors during Hurricane Sandy.

    PubMed

    Kryvasheyeu, Yury; Chen, Haohui; Moro, Esteban; Van Hentenryck, Pascal; Cebrian, Manuel

    2015-01-01

    Information flow during catastrophic events is a critical aspect of disaster management. Modern communication platforms, in particular online social networks, provide an opportunity to study such flow and derive early-warning sensors, thus improving emergency preparedness and response. Performance of the social networks sensor method, based on topological and behavioral properties derived from the "friendship paradox", is studied here for over 50 million Twitter messages posted before, during, and after Hurricane Sandy. We find that differences in users' network centrality effectively translate into moderate awareness advantage (up to 26 hours); and that geo-location of users within or outside of the hurricane-affected area plays a significant role in determining the scale of such an advantage. Emotional response appears to be universal regardless of the position in the network topology, and displays characteristic, easily detectable patterns, opening a possibility to implement a simple "sentiment sensing" technique that can detect and locate disasters.

  14. Distributed sensor coordination for advanced energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumer, Kagan

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectivesmore » and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor coordination, and sensor network control in advanced power systems. Each application has specific needs, but they all share the one crucial underlying problem: how to ensure that the interactions of a large number of heterogenous agents lead to coordinated system behavior. This proposal describes a new paradigm that addresses that very issue in a systematic way. Key Results and Findings: All milestones have been completed. Our results demonstrate that by properly shaping agent objective functions, we can develop large (up to 10,000 devices) heterogeneous sensor networks with key desirable properties. The first milestone shows that properly choosing agent-specific objective functions increases system performance by up to 99.9% compared to global evaluations. The second milestone shows evolutionary algorithms learn excellent sensor network coordination policies prior to network deployment, and these policies can be refined online once the network is deployed. The third milestone shows the resulting sensor networks networks are extremely robust to sensor noise, where networks with up to 25% sensor noise are capable of providing measurements with errors on the order of 10⁻³. The fourth milestone shows the resulting sensor networks are extremely robust to sensor failure, with 25% of the sensors in the system failing resulting in no significant performance losses after system reconfiguration.« less

  15. Inexpensive Open-Source Data Logging in the Field

    NASA Astrophysics Data System (ADS)

    Wickert, A. D.

    2013-12-01

    I present a general-purpose open-source field-capable data logger, which provides a mechanism to develop dense networks of inexpensive environmental sensors. This data logger was developed as a low-power variant of the Arduino open-source development system, and is named the ALog ("Arduino Logger") BottleLogger (it is slim enough to fit inside a Nalgene water bottle) version 1.0. It features an integrated high-precision real-time clock, SD card slot for high-volume data storage, and integrated power switching. The ALog can interface with sensors via six analog/digital pins, two digital pins, and one digital interrupt pin that can read event-based inputs, such as those from a tipping-bucket rain gauge. We have successfully tested the ALog BottleLogger with ultrasonic rangefinders (for water stage and snow accumulation and melt), temperature sensors, tipping-bucket rain gauges, soil moisture and water potential sensors, resistance-based tools to measure frost heave, and cameras that it triggers based on events. The source code for the ALog, including functions to interface with a a range of commercially-available sensors, is provided as an Arduino C++ library with example implementations. All schematics, circuit board layouts, and source code files are open-source and freely available under GNU GPL v3.0 and Creative Commons Attribution-ShareAlike 3.0 Unported licenses. Through this work, we hope to foster a community-driven movement to collect field environmental data on a budget that permits citizen-scientists and researchers from low-income countries to collect the same high-quality data as researchers in wealthy countries. These data can provide information about global change to managers, governments, scientists, and interested citizens worldwide. Watertight box with ALog BottleLogger data logger on the left and battery pack with 3 D cells on the right. Data can be collected for 3-5 years on one set of batteries.

  16. UHF front-end feeding RFID-based body sensor networks by exploiting the reader signal

    NASA Astrophysics Data System (ADS)

    Pasca, M.; Colella, R.; Catarinucci, L.; Tarricone, L.; D'Amico, S.; Baschirotto, A.

    2016-05-01

    This paper presents an integrated, high-sensitivity UHF radio frequency identification (RFID) power management circuit for body sensor network applications. The circuit consists of a two-stage RF-DC Dickson's rectifier followed by an integrated five-stage DC-DC Pelliconi's charge pump driven by an ultralow start-up voltage LC oscillator. The DC-DC charge pump interposed between the RF-DC rectifier and the output load provides the RF to load isolation avoiding losses due to the diodes reverse saturation current. The RF-DC rectifier has been realized on FR4 substrate, while the charge pump and the oscillator have been realized in 180 nm complementary metal oxide semiconductor (CMOS) technology. Outdoor measurements demonstrate the ability of the power management circuit to provide 400 mV output voltage at 14 m distance from the UHF reader, in correspondence of -25 dBm input signal power. As demonstrated in the literature, such output voltage level is suitable to supply body sensor network nodes.

  17. A Distributed Compressive Sensing Scheme for Event Capture in Wireless Visual Sensor Networks

    NASA Astrophysics Data System (ADS)

    Hou, Meng; Xu, Sen; Wu, Weiling; Lin, Fei

    2018-01-01

    Image signals which acquired by wireless visual sensor network can be used for specific event capture. This event capture is realized by image processing at the sink node. A distributed compressive sensing scheme is used for the transmission of these image signals from the camera nodes to the sink node. A measurement and joint reconstruction algorithm for these image signals are proposed in this paper. Make advantage of spatial correlation between images within a sensing area, the cluster head node which as the image decoder can accurately co-reconstruct these image signals. The subjective visual quality and the reconstruction error rate are used for the evaluation of reconstructed image quality. Simulation results show that the joint reconstruction algorithm achieves higher image quality at the same image compressive rate than the independent reconstruction algorithm.

  18. Mining induced seismic event on an inactive fault in view of local surface and in mine underground networksS

    NASA Astrophysics Data System (ADS)

    Rudzinski, Lukasz; Lizurek, Grzegorz; Plesiewicz, Beata

    2014-05-01

    On 19th March 2013 tremor shook the surface of Polkowice town were "Rudna" mine is located. This event of ML=4.2 was third most powerful seismic event recorded in Legnica Głogów Copper District (LGCD). Citizens of the area reported that felt tremors were bigger and last longer than any other ones felt in last couple years. The event was studied with use of two different networks: underground network of "Rudna" mine and surface local network run by IGF PAS (LUMINEOS network). The first one is composed of 32 vertical seismometers at mining level, except 5 sensors placed in elevator shafts, seismometers location depth varies from 300 down to 1000 meters below surface. The seismometers used in this network are vertical short period Willmore MkII and MkIII sensors, with the frequency band from 1Hz to 100Hz. At the beginning of 2013th the local surface network of the Institute of Geophysics Polish Academy of Sciences (IGF PAS) with acronym LUMINEOS was installed under agreement with KGHM SA and "Rudna" mine officials. This network at the moment of the March 19th 2013 event was composed of 4 short-period one-second triaxial seismometers LE-3D/1s manufactured by Lenartz Electronics. Analysis of spectral parameters of the records from in mine seismic system and surface LUMINEOS network along with broadband station KSP record were carried out. Location of the event was close to the Rudna Główna fault zone, the nodal planes orientations determined with two different approaches were almost parallel to the strike of the fault. The mechanism solutions were also obtained in form of Full Moment Tensor inversion from P wave amplitude pulses of underground records and waveform inversion of surface network seismograms. Final results of the seismic analysis along with macroseismic survey and observed effects from the destroyed part of the mining panel indicate that the mechanism of the event was thrust faulting on inactive tectonic fault. The results confirm that the fault zones are the areas of higher risk, even in case of carefully taken mining operations.

  19. Synchronous wearable wireless body sensor network composed of autonomous textile nodes.

    PubMed

    Vanveerdeghem, Peter; Van Torre, Patrick; Stevens, Christiaan; Knockaert, Jos; Rogier, Hendrik

    2014-10-09

    A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system.

  20. Synchronous Wearable Wireless Body Sensor Network Composed of Autonomous Textile Nodes

    PubMed Central

    Vanveerdeghem, Peter; Van Torre, Patrick; Stevens, Christiaan; Knockaert, Jos; Rogier, Hendrik

    2014-01-01

    A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system. PMID:25302808

  1. Markov logic network based complex event detection under uncertainty

    NASA Astrophysics Data System (ADS)

    Lu, Jingyang; Jia, Bin; Chen, Genshe; Chen, Hua-mei; Sullivan, Nichole; Pham, Khanh; Blasch, Erik

    2018-05-01

    In a cognitive reasoning system, the four-stage Observe-Orient-Decision-Act (OODA) reasoning loop is of interest. The OODA loop is essential for the situational awareness especially in heterogeneous data fusion. Cognitive reasoning for making decisions can take advantage of different formats of information such as symbolic observations, various real-world sensor readings, or the relationship between intelligent modalities. Markov Logic Network (MLN) provides mathematically sound technique in presenting and fusing data at multiple levels of abstraction, and across multiple intelligent sensors to conduct complex decision-making tasks. In this paper, a scenario about vehicle interaction is investigated, in which uncertainty is taken into consideration as no systematic approaches can perfectly characterize the complex event scenario. MLNs are applied to the terrestrial domain where the dynamic features and relationships among vehicles are captured through multiple sensors and information sources regarding the data uncertainty.

  2. SoilNet - A Zigbee based soil moisture sensor network

    NASA Astrophysics Data System (ADS)

    Bogena, H. R.; Weuthen, A.; Rosenbaum, U.; Huisman, J. A.; Vereecken, H.

    2007-12-01

    Soil moisture plays a key role in partitioning water and energy fluxes, in providing moisture to the atmosphere for precipitation, and controlling the pattern of groundwater recharge. Large-scale soil moisture variability is driven by variation of precipitation and radiation in space and time. At local scales, land cover, soil conditions, and topography act to redistribute soil moisture. Despite the importance of soil moisture, it is not yet measured in an operational way, e.g. for a better prediction of hydrological and surface energy fluxes (e.g. runoff, latent heat) at larger scales and in the framework of the development of early warning systems (e.g. flood forecasting) and the management of irrigation systems. The SoilNet project aims to develop a sensor network for the near real-time monitoring of soil moisture changes at high spatial and temporal resolution on the basis of the new low-cost ZigBee radio network that operates on top of the IEEE 802.15.4 standard. The sensor network consists of soil moisture sensors attached to end devices by cables, router devices and a coordinator device. The end devices are buried in the soil and linked wirelessly with nearby aboveground router devices. This ZigBee wireless sensor network design considers channel errors, delays, packet losses, and power and topology constraints. In order to conserve battery power, a reactive routing protocol is used that determines a new route only when it is required. The sensor network is also able to react to external influences, e.g. such as rainfall occurrences. The SoilNet communicator, routing and end devices have been developed by the Forschungszentrum Juelich and will be marketed through external companies. We will present first results of experiments to verify network stability and the accuracy of the soil moisture sensors. Simultaneously, we have developed a data management and visualisation system. We tested the wireless network on a 100 by 100 meter forest plot equipped with 25 end devices each consisting of 6 vertically arranged soil moisture sensors. The next step will be the instrumentation of two small catchments (~30 ha) with a 30 m spacing of the end devices. juelich.de/icg/icg-4/index.php?index=739

  3. Assimilation of Real-Time Satellite And Human Sensor Networks for Modeling Natural Disasters

    NASA Astrophysics Data System (ADS)

    Aulov, O.; Halem, M.; Lary, D. J.

    2011-12-01

    We describe the development of underlying technologies needed to address the merging of a web of real time satellite sensor Web (SSW) and Human Sensor Web (HSW) needed to augment the US response to extreme events. As an initial prototyping step and use case scenario, we consider the development of two major system tools that can be transitioned from research to the responding operational agency for mitigating coastal oil spills. These tools consist of the capture of Situation Aware (SA) Social Media (SM) Data, and assimilation of the processed information into forecasting models to provide incident decision managers with interactive virtual spatial temporal animations superimposed with probabilistic data estimates. The system methodologies are equally applicable to the wider class of extreme events such as plume dispersions from volcanoes or massive fires, major floods, hurricane impacts, radioactive isotope dispersions from nuclear accidents, etc. A successful feasibility demonstration of this technology has been shown in the case of the Deepwater Horizon Oil Spill where Human Sensor Networks have been combined with a geophysical model to perform parameter assessments. Flickr images of beached oil were mined from the spill area, geolocated and timestamped and converted into geophysical data. This data was incorporated into General NOAA Operational Modeling Environment (GNOME), a Lagrangian forecast model that uses near real-time surface winds, ocean currents, and satellite shape profiles of oil to generate a forecast of plume movement. As a result, improved estimates of diffusive coefficients and rates of oil spill were determined. Current approaches for providing satellite derived oil distributions are collected from a satellite sensor web of operational and research sensors from many countries, and a manual analysis is performed by NESDIS. A real time SA HSW processing system based on geolocated SM data from sources such as Twitter, Flickr, YouTube etc., greatly supplements the current operational practice of sending out teams of humans to gather samples of tarballs reaching coastal locations. We show that ensemble Kalman filter assimilation of the combination of SM data with model forecast background data fields can minimize the false positive cases of satellite observations alone. Our future framework consists of two parts, a real time SA HSW processing system and an on-demand SSW processing system. HSW processing system uses a geolocated SM data to provide observations of coastal oil contact. SSW system is composed of selected instruments from NASA EOS, NPP and available Decadal Survey mission satellites along with other in situ data to form a real time regional oil spill observing system. We will automate the NESDIS manual process of providing oil spill maps by using Self Organizing Feature Map (SOFM) algorithm. We use the LETKF scheme for assimilating the satellite sensor web and HSW observations into the GNOME model to reduce the uncertainty of the observations. We intend to infuse these developments in an SOA implementation for execution of event driven model forecast assimilation cycles in a dedicated HPC cloud.

  4. The dynamics of information-driven coordination phenomena: A transfer entropy analysis

    PubMed Central

    Borge-Holthoefer, Javier; Perra, Nicola; Gonçalves, Bruno; González-Bailón, Sandra; Arenas, Alex; Moreno, Yamir; Vespignani, Alessandro

    2016-01-01

    Data from social media provide unprecedented opportunities to investigate the processes that govern the dynamics of collective social phenomena. We consider an information theoretical approach to define and measure the temporal and structural signatures typical of collective social events as they arise and gain prominence. We use the symbolic transfer entropy analysis of microblogging time series to extract directed networks of influence among geolocalized subunits in social systems. This methodology captures the emergence of system-level dynamics close to the onset of socially relevant collective phenomena. The framework is validated against a detailed empirical analysis of five case studies. In particular, we identify a change in the characteristic time scale of the information transfer that flags the onset of information-driven collective phenomena. Furthermore, our approach identifies an order-disorder transition in the directed network of influence between social subunits. In the absence of clear exogenous driving, social collective phenomena can be represented as endogenously driven structural transitions of the information transfer network. This study provides results that can help define models and predictive algorithms for the analysis of societal events based on open source data. PMID:27051875

  5. The dynamics of information-driven coordination phenomena: A transfer entropy analysis.

    PubMed

    Borge-Holthoefer, Javier; Perra, Nicola; Gonçalves, Bruno; González-Bailón, Sandra; Arenas, Alex; Moreno, Yamir; Vespignani, Alessandro

    2016-04-01

    Data from social media provide unprecedented opportunities to investigate the processes that govern the dynamics of collective social phenomena. We consider an information theoretical approach to define and measure the temporal and structural signatures typical of collective social events as they arise and gain prominence. We use the symbolic transfer entropy analysis of microblogging time series to extract directed networks of influence among geolocalized subunits in social systems. This methodology captures the emergence of system-level dynamics close to the onset of socially relevant collective phenomena. The framework is validated against a detailed empirical analysis of five case studies. In particular, we identify a change in the characteristic time scale of the information transfer that flags the onset of information-driven collective phenomena. Furthermore, our approach identifies an order-disorder transition in the directed network of influence between social subunits. In the absence of clear exogenous driving, social collective phenomena can be represented as endogenously driven structural transitions of the information transfer network. This study provides results that can help define models and predictive algorithms for the analysis of societal events based on open source data.

  6. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring.

    PubMed

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K K; Luk, Connie W Y; Ning, Zhi

    2016-02-05

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring.

  7. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring

    PubMed Central

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K.K.; Luk, Connie W.Y.; Ning, Zhi

    2016-01-01

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring. PMID:26861336

  8. Fast Distributed Dynamics of Semantic Networks via Social Media.

    PubMed

    Carrillo, Facundo; Cecchi, Guillermo A; Sigman, Mariano; Slezak, Diego Fernández

    2015-01-01

    We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network.

  9. Fast Distributed Dynamics of Semantic Networks via Social Media

    PubMed Central

    Carrillo, Facundo; Cecchi, Guillermo A.; Sigman, Mariano; Fernández Slezak, Diego

    2015-01-01

    We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network. PMID:26074953

  10. Effects of Interdisciplinary Education on Technology-Driven Application Design

    ERIC Educational Resources Information Center

    Tafa, Z.; Rakocevic, G.; Mihailovic, D.; Milutinovic, V.

    2011-01-01

    This paper describes the structure and the underlying rationale of a new course dedicated to capability maturity model integration (CMMI)-directed design of wireless sensor networks (WSNs)-based biomedical applications that stresses: 1) engineering-, medico-engineering-, and informatics-related issues; 2) design for general- and special-purpose…

  11. Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones

    PubMed Central

    Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin

    2015-01-01

    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications. PMID:25643056

  12. Scalable Multicast Protocols for Overlapped Groups in Broker-Based Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kim, Chayoung; Ahn, Jinho

    In sensor networks, there are lots of overlapped multicast groups because of many subscribers, associated with their potentially varying specific interests, querying every event to sensors/publishers. And gossip based communication protocols are promising as one of potential solutions providing scalability in P(Publish)/ S(Subscribe) paradigm in sensor networks. Moreover, despite the importance of both guaranteeing message delivery order and supporting overlapped multicast groups in sensor or P2P networks, there exist little research works on development of gossip-based protocols to satisfy all these requirements. In this paper, we present two versions of causally ordered delivery guaranteeing protocols for overlapped multicast groups. The one is based on sensor-broker as delegates and the other is based on local views and delegates representing subscriber subgroups. In the sensor-broker based protocol, sensor-broker might lead to make overlapped multicast networks organized by subscriber's interests. The message delivery order has been guaranteed consistently and all multicast messages are delivered to overlapped subscribers using gossip based protocols by sensor-broker. Therefore, these features of the sensor-broker based protocol might be significantly scalable rather than those of the protocols by hierarchical membership list of dedicated groups like traditional committee protocols. And the subscriber-delegate based protocol is much stronger rather than fully decentralized protocols guaranteeing causally ordered delivery based on only local views because the message delivery order has been guaranteed consistently by all corresponding members of the groups including delegates. Therefore, this feature of the subscriber-delegate protocol is a hybrid approach improving the inherent scalability of multicast nature by gossip-based technique in all communications.

  13. Event detection in an assisted living environment.

    PubMed

    Stroiescu, Florin; Daly, Kieran; Kuris, Benjamin

    2011-01-01

    This paper presents the design of a wireless event detection and in building location awareness system. The systems architecture is based on using a body worn sensor to detect events such as falls where they occur in an assisted living environment. This process involves developing event detection algorithms and transmitting such events wirelessly to an in house network based on the 802.15.4 protocol. The network would then generate alerts both in the assisted living facility and remotely to an offsite monitoring facility. The focus of this paper is on the design of the system architecture and the compliance challenges in applying this technology.

  14. Community Seismic Network (CSN)

    NASA Astrophysics Data System (ADS)

    Clayton, R. W.; Heaton, T. H.; Kohler, M. D.; Cheng, M.; Guy, R.; Chandy, M.; Krause, A.; Bunn, J.; Olson, M.; Faulkner, M.

    2011-12-01

    The CSN is a network of low-cost accelerometers deployed in the Pasadena, CA region. It is a prototype network with the goal of demonstrating the importance of dense measurements in determining the rapid lateral variations in ground motion due to earthquakes. The main product of the CSN is a map of peak ground produced within seconds of significant local earthquakes that can be used as a proxy for damage. Examples of this are shown using data from a temporary network in Long Beach, CA. Dense measurements in buildings are also being used to determine the state of health of structures. In addition to fixed sensors, portable sensors such as smart phones are also used in the network. The CSN has necessitated several changes in the standard design of a seismic network. The first is that the data collection and processing is done in the "cloud" (Google cloud in this case) for robustness and the ability to handle large impulsive loads (earthquakes). Second, the database is highly de-normalized (i.e. station locations are part of waveform and event-detection meta data) because of the mobile nature of the sensors. Third, since the sensors are hosted and/or owned by individuals, the privacy of the data is very important. The location of fixed sensors is displayed on maps as sensor counts in block-wide cells, and mobile sensors are shown in a similar way, with the additional requirement to inhibit tracking that at least two must be present in a particular cell before any are shown. The raw waveform data are only released to users outside of the network after a felt earthquake.

  15. Moving multiple sinks through wireless sensor networks for lifetime maximization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrioli, Chiara; Carosi, Alessio; Basagni, Stefano

    2008-01-01

    Unattended sensor networks typically watch for some phenomena such as volcanic events, forest fires, pollution, or movements in animal populations. Sensors report to a collection point periodically or when they observe reportable events. When sensors are too far from the collection point to communicate directly, other sensors relay messages for them. If the collection point location is static, sensor nodes that are closer to the collection point relay far more messages than those on the periphery. Assuming all sensor nodes have roughly the same capabilities, those with high relay burden experience battery failure much faster than the rest of themore » network. However, since their death disconnects the live nodes from the collection point, the whole network is then dead. We consider the problem of moving a set of collectors (sinks) through a wireless sensor network to balance the energy used for relaying messages, maximizing the lifetime of the network. We show how to compute an upper bound on the lifetime for any instance using linear and integer programming. We present a centralized heuristic that produces sink movement schedules that produce network lifetimes within 1.4% of the upper bound for realistic settings. We also present a distributed heuristic that produces lifetimes at most 25:3% below the upper bound. More specifically, we formulate a linear program (LP) that is a relaxation of the scheduling problem. The variables are naturally continuous, but the LP relaxes some constraints. The LP has an exponential number of constraints, but we can satisfy them all by enforcing only a polynomial number using a separation algorithm. This separation algorithm is a p-median facility location problem, which we can solve efficiently in practice for huge instances using integer programming technology. This LP selects a set of good sensor configurations. Given the solution to the LP, we can find a feasible schedule by selecting a subset of these configurations, ordering them via a traveling salesman heuristic, and computing feasible transitions using matching algorithms. This algorithm assumes sinks can get a schedule from a central server or a leader sink. If the network owner prefers the sinks make independent decisions, they can use our distributed heuristic. In this heuristic, sinks maintain estimates of the energy distribution in the network and move greedily (with some coordination) based on local search. This application uses the new SUCASA (Solver Utility for Customization with Automatic Symbol Access) facility within the PICO (Parallel Integer and Combinatorial Optimizer) integer programming solver system. SUCASA allows rapid development of customized math programming (search-based) solvers using a problem's natural multidimensional representation. In this case, SUCASA also significantly improves runtime compared to implementations in the ampl math programming language or in perl.« less

  16. Insights into mountain precipitation and snowpack from a basin-scale wireless-sensor network

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Glaser, S.; Bales, R.; Conklin, M.; Rice, R.; Marks, D.

    2017-08-01

    A spatially distributed wireless-sensor network, installed across the 2154 km2 portion of the 5311 km2 American River basin above 1500 m elevation, provided spatial measurements of temperature, relative humidity, and snow depth in the Sierra Nevada, California. The network consisted of 10 sensor clusters, each with 10 measurement nodes, distributed to capture the variability in topography and vegetation cover. The sensor network captured significant spatial heterogeneity in rain versus snow precipitation for water-year 2014, variability that was not apparent in the more limited operational data. Using daily dew-point temperature to track temporal elevational changes in the rain-snow transition, the amount of snow accumulation at each node was used to estimate the fraction of rain versus snow. This resulted in an underestimate of total precipitation below the 0°C dew-point elevation, which averaged 1730 m across 10 precipitation events, indicating that measuring snow does not capture total precipitation. We suggest blending lower elevation rain gauge data with higher-elevation sensor-node data for each event to estimate total precipitation. Blended estimates were on average 15-30% higher than using either set of measurements alone. Using data from the current operational snow-pillow sites gives even lower estimates of basin-wide precipitation. Given the increasing importance of liquid precipitation in a warming climate, a strategy that blends distributed measurements of both liquid and solid precipitation will provide more accurate basin-wide precipitation estimates, plus spatial and temporal patters of snow accumulation and melt in a basin.

  17. A Space Weather Forecasting System with Multiple Satellites Based on a Self-Recognizing Network

    PubMed Central

    Tokumitsu, Masahiro; Ishida, Yoshiteru

    2014-01-01

    This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing. PMID:24803190

  18. A space weather forecasting system with multiple satellites based on a self-recognizing network.

    PubMed

    Tokumitsu, Masahiro; Ishida, Yoshiteru

    2014-05-05

    This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  19. Fault detection on a sewer network by a combination of a Kalman filter and a binary sequential probability ratio test

    NASA Astrophysics Data System (ADS)

    Piatyszek, E.; Voignier, P.; Graillot, D.

    2000-05-01

    One of the aims of sewer networks is the protection of population against floods and the reduction of pollution rejected to the receiving water during rainy events. To meet these goals, managers have to equip the sewer networks with and to set up real-time control systems. Unfortunately, a component fault (leading to intolerable behaviour of the system) or sensor fault (deteriorating the process view and disturbing the local automatism) makes the sewer network supervision delicate. In order to ensure an adequate flow management during rainy events it is essential to set up procedures capable of detecting and diagnosing these anomalies. This article introduces a real-time fault detection method, applicable to sewer networks, for the follow-up of rainy events. This method consists in comparing the sensor response with a forecast of this response. This forecast is provided by a model and more precisely by a state estimator: a Kalman filter. This Kalman filter provides not only a flow estimate but also an entity called 'innovation'. In order to detect abnormal operations within the network, this innovation is analysed with the binary sequential probability ratio test of Wald. Moreover, by crossing available information on several nodes of the network, a diagnosis of the detected anomalies is carried out. This method provided encouraging results during the analysis of several rains, on the sewer network of Seine-Saint-Denis County, France.

  20. Pheromone-based coordination strategy to static sensors on the ground and unmanned aerial vehicles carried sensors

    NASA Astrophysics Data System (ADS)

    Pignaton de Freitas, Edison; Heimfarth, Tales; Pereira, Carlos Eduardo; Morado Ferreira, Armando; Rech Wagner, Flávio; Larsson, Tony

    2010-04-01

    A current trend that is gaining strength in the wireless sensor network area is the use of heterogeneous sensor nodes in one coordinated overall network, needed to fulfill the requirements of sophisticated emerging applications, such as area surveillance systems. One of the main concerns when developing such sensor networks is how to provide coordination among the heterogeneous nodes, in order to enable them to efficiently respond the user needs. This study presents an investigation of strategies to coordinate a set of static sensor nodes on the ground cooperating with wirelessly connected Unmanned Aerial Vehicles (UAVs) carrying a variety of sensors, in order to provide efficient surveillance over an area of interest. The sensor nodes on the ground are set to issue alarms on the occurrence of a given event of interest, e.g. entrance of a non-authorized vehicle in the area, while the UAVs receive the issued alarms and have to decide which of them is the most suitable to handle the issued alarm. A bio-inspired coordination strategy based on the concept of pheromones is presented. As a complement of this strategy, a utility-based decision making approach is proposed.

  1. Nanosensors-Cellphone Integration for Extended Chemical Sensing Network

    NASA Technical Reports Server (NTRS)

    Li, Jing

    2011-01-01

    This poster is to present the development of a cellphone sensor network for extended chemical sensing. The nanosensors using carbon nanotubes and other nanostructures are used with low power and high sensitivity for chemical detection. The sensing module has been miniaturized to a small size that can plug in or clip on to a smartphone. The chemical information detected by the nanosensors are acquired by a smartphone and transmitted via cellphone 3g or WiFi network to an internet server. The whole integrated sensing system from sensor to cellphone to a cloud will provide an extended chemical sensing network that can cover nation wide and even cover global wide for early warning of a hazardous event.

  2. Preliminary Results from a Model-Driven Architecture Methodology for Development of an Event-Driven Space Communications Service Concept

    NASA Technical Reports Server (NTRS)

    Roberts, Christopher J.; Morgenstern, Robert M.; Israel, David J.; Borky, John M.; Bradley, Thomas H.

    2017-01-01

    NASA's next generation space communications network will involve dynamic and autonomous services analogous to services provided by current terrestrial wireless networks. This architecture concept, known as the Space Mobile Network (SMN), is enabled by several technologies now in development. A pillar of the SMN architecture is the establishment and utilization of a continuous bidirectional control plane space link channel and a new User Initiated Service (UIS) protocol to enable more dynamic and autonomous mission operations concepts, reduced user space communications planning burden, and more efficient and effective provider network resource utilization. This paper provides preliminary results from the application of model driven architecture methodology to develop UIS. Such an approach is necessary to ensure systematic investigation of several open questions concerning the efficiency, robustness, interoperability, scalability and security of the control plane space link and UIS protocol.

  3. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network.

    PubMed

    Lee, Dasheng

    2008-12-02

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient program.

  4. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network

    PubMed Central

    Lee, Dasheng

    2008-01-01

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient program. PMID:27873953

  5. Distributed multimodal data fusion for large scale wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Ertin, Emre

    2006-05-01

    Sensor network technology has enabled new surveillance systems where sensor nodes equipped with processing and communication capabilities can collaboratively detect, classify and track targets of interest over a large surveillance area. In this paper we study distributed fusion of multimodal sensor data for extracting target information from a large scale sensor network. Optimal tracking, classification, and reporting of threat events require joint consideration of multiple sensor modalities. Multiple sensor modalities improve tracking by reducing the uncertainty in the track estimates as well as resolving track-sensor data association problems. Our approach to solving the fusion problem with large number of multimodal sensors is construction of likelihood maps. The likelihood maps provide a summary data for the solution of the detection, tracking and classification problem. The likelihood map presents the sensory information in an easy format for the decision makers to interpret and is suitable with fusion of spatial prior information such as maps, imaging data from stand-off imaging sensors. We follow a statistical approach to combine sensor data at different levels of uncertainty and resolution. The likelihood map transforms each sensor data stream to a spatio-temporal likelihood map ideally suitable for fusion with imaging sensor outputs and prior geographic information about the scene. We also discuss distributed computation of the likelihood map using a gossip based algorithm and present simulation results.

  6. A flexible data fusion architecture for persistent surveillance using ultra-low-power wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hanson, Jeffrey A.; McLaughlin, Keith L.; Sereno, Thomas J.

    2011-06-01

    We have developed a flexible, target-driven, multi-modal, physics-based fusion architecture that efficiently searches sensor detections for targets and rejects clutter while controlling the combinatoric problems that commonly arise in datadriven fusion systems. The informational constraints imposed by long lifetime requirements make systems vulnerable to false alarms. We demonstrate that our data fusion system significantly reduces false alarms while maintaining high sensitivity to threats. In addition, mission goals can vary substantially in terms of targets-of-interest, required characterization, acceptable latency, and false alarm rates. Our fusion architecture provides the flexibility to match these trade-offs with mission requirements unlike many conventional systems that require significant modifications for each new mission. We illustrate our data fusion performance with case studies that span many of the potential mission scenarios including border surveillance, base security, and infrastructure protection. In these studies, we deployed multi-modal sensor nodes - including geophones, magnetometers, accelerometers and PIR sensors - with low-power processing algorithms and low-bandwidth wireless mesh networking to create networks capable of multi-year operation. The results show our data fusion architecture maintains high sensitivities while suppressing most false alarms for a variety of environments and targets.

  7. Survey of energy harvesting and energy scavenging approaches for on-site powering of wireless sensor- and microinstrument-networks

    NASA Astrophysics Data System (ADS)

    Lee, D.; Dulai, G.; Karanassios, Vassili

    2013-05-01

    Energy (or power) harvesting can be defined as the gathering and either storing or immediately using energy "freely" available in a local environment. Examples include harvesting energy from obvious sources such as photon-fluxes (e.g., solar), or wind or water waves, or from unusual sources such as naturally occurring pH differences. Energy scavenging can be defined as gathering and storing or immediately re-using energy that has been discarded, for instance, waste heat from air conditioning units, from in-door lights or from everyday actions such as walking or from body-heat. Although the power levels that can be harvested or scavenged are typically low (e.g., from nWatt/cm2 to mWatt/cm2), the key motivation is to harvest or to scavenge energy for a wide variety of applications. Example applications include powering devices in remote weather stations, or wireless Bluetooth headsets, or wearable computing devices or for sensor networks for health and bio-medical applications. Beyond sensors and sensor networks, there is a need to power compete systems, such as portable and energy-autonomous chemical analysis microinstruments for use on-site. A portable microinstrument is one that offers the same functionality as a large one but one that has at least one critical component in the micrometer regime. This paper surveys continuous or discontinuous energy harvesting and energy scavenging approaches (with particular emphasis on sensor and microinstrument networks) and it discusses current trends. It also briefly explores potential future directions, for example, for nature-inspired (e.g., photosynthesis), for human-power driven (e.g., for biomedical applications, or for wearable sensor networks) or for nanotechnology-enabled energy harvesting and energy scavenging approaches.

  8. Cellular telephone-based radiation sensor and wide-area detection network

    DOEpatents

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2006-12-12

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  9. Lithosphere-to-Ionosphere Plug-and-Play Architecture (LION-PNP): Networking the Physical World Made Cheap and Easy

    NASA Astrophysics Data System (ADS)

    Darling, N. T.; Mendez, J. S.; Fritz, T. A.; Hoffman, C.

    2012-12-01

    The lack of rapidly reconfigurable and easily deployable instrumentation packages often results in information loss during unannounced or time-critical geophysical events such as spaceweather flare-ups, earthquakes, volcanic eruptions, and tsunamis. While increasingly powerful and sensitive sensor technologies have been created in the last years to study our planet, robust, yet simple and cost-effective, mechanical, electrical, and data interfaces between these devices and the user (scientist) have yet to be developed. Non-standardized interfaces make instrument integration and field operation cumbersome and error-prone. Indeed, the assembly and deployment of some systems can take months and incur high costs. To address this problem, we present the LIthosphere-to-IOnosphere Plug-aNd-Play architecture (LION-PNP), a complete, low cost integration protocol for space, atmospheric, and terrestrial sensor networks. Similar to the USB plug-and-play protocols created for personal computers, LION-PNP offers geophysicists and space scientists the ability to assemble and operate complex sensor packages by simply "plugging" devices (magnetometers, seismometers, GPS, spectrometers, etc) into a centralized Command and Data Handling unit (CDH). LION-PNP accomplishes this by inserting a Generic Sensor Interpreter (GSI) between the back-end of a device and the CDH. The GSI allows the CDH to automatically configure a sensor without requiring the user to manually install drivers. Mechanical integration is also accelerated by repackaging instruments according to the CubeSAT form-factor (multiples of 10 x 10 x 10 cm cubes). In the following work, we report on the development of LION-PNP. To demonstrate our initial success, we first discuss the Boston University Student-satellite for Applications and Training (BUSAT), a low-cost, modular, spaceweather satellite running LION-PNP. BUSAT is a completely student-driven project meant for magnetospheric-ionospheric research incorporating 4 scientific payloads. To further stress the broad applicability of LION-PNP we also present VolcanoNET, a ground-based, multi-sensor package that will explore charging of volcanic ash plumes and volcanic lightning.; The Boston University Student satellite for Applications and Training (BUSAT) canisterized scientific satellite concept.

  10. Echo State Networks for data-driven downhole pressure estimation in gas-lift oil wells.

    PubMed

    Antonelo, Eric A; Camponogara, Eduardo; Foss, Bjarne

    2017-01-01

    Process measurements are of vital importance for monitoring and control of industrial plants. When we consider offshore oil production platforms, wells that require gas-lift technology to yield oil production from low pressure oil reservoirs can become unstable under some conditions. This undesirable phenomenon is usually called slugging flow, and can be identified by an oscillatory behavior of the downhole pressure measurement. Given the importance of this measurement and the unreliability of the related sensor, this work aims at designing data-driven soft-sensors for downhole pressure estimation in two contexts: one for speeding up first-principle model simulation of a vertical riser model; and another for estimating the downhole pressure using real-world data from an oil well from Petrobras based only on topside platform measurements. Both tasks are tackled by employing Echo State Networks (ESN) as an efficient technique for training Recurrent Neural Networks. We show that a single ESN is capable of robustly modeling both the slugging flow behavior and a steady state based only on a square wave input signal representing the production choke opening in the vertical riser. Besides, we compare the performance of a standard network to the performance of a multiple timescale hierarchical architecture in the second task and show that the latter architecture performs better in modeling both large irregular transients and more commonly occurring small oscillations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. On the performance of voltage stepping for the simulation of adaptive, nonlinear integrate-and-fire neuronal networks.

    PubMed

    Kaabi, Mohamed Ghaith; Tonnelier, Arnaud; Martinez, Dominique

    2011-05-01

    In traditional event-driven strategies, spike timings are analytically given or calculated with arbitrary precision (up to machine precision). Exact computation is possible only for simplified neuron models, mainly the leaky integrate-and-fire model. In a recent paper, Zheng, Tonnelier, and Martinez (2009) introduced an approximate event-driven strategy, named voltage stepping, that allows the generic simulation of nonlinear spiking neurons. Promising results were achieved in the simulation of single quadratic integrate-and-fire neurons. Here, we assess the performance of voltage stepping in network simulations by considering more complex neurons (quadratic integrate-and-fire neurons with adaptation) coupled with multiple synapses. To handle the discrete nature of synaptic interactions, we recast voltage stepping in a general framework, the discrete event system specification. The efficiency of the method is assessed through simulations and comparisons with a modified time-stepping scheme of the Runge-Kutta type. We demonstrated numerically that the original order of voltage stepping is preserved when simulating connected spiking neurons, independent of the network activity and connectivity.

  12. Comparing catchment hydrologic response to a regional storm using specific conductivity sensors

    USGS Publications Warehouse

    Inserillo, Ashley; Green, Mark B.; Shanley, James B.; Boyer, Joseph

    2017-01-01

    A better understanding of stormwater generation and solute sources is needed to improve the protection of aquatic ecosystems, infrastructure, and human health from large runoff events. Much of our understanding of water and solutes produced during stormflow comes from studies of individual, small headwater catchments. This study compared many different types of catchments during a single large event to help isolate landscape controls on streamwater and solute generation, including human-impacted land cover. We used a distributed network of specific electrical conductivity sensors to trace storm response during the post-tropical cyclone Sandy event of October 2012 at 29 catchments across the state of New Hampshire. A citizen science sensor network, Lotic Volunteer for Temperature, Electrical Conductivity, and Stage, provided a unique opportunity to investigate high-temporal resolution stream behavior at a broad spatial scale. Three storm response metrics were analyzed in this study: (a) fraction of new water contributing to the hydrograph; (b) presence of first flush (mobilization of solutes during the beginning of the rain event); and (c) magnitude of first flush. We compared new water and first flush to 64 predictor attributes related to land cover, soil, topography, and precipitation. The new water fraction was positively correlated with low and medium intensity development in the catchment and riparian buffers and with the precipitation from a rain event 9 days prior to Sandy. The presence of first flush was most closely related (positively) to soil organic matter. Magnitude of first flush was not strongly related to any of the catchment variables. Our results highlight the potentially important role of human landscape modification in runoff generation at multiple spatial scales and the lack of a clear role in solute flushing. Further development of regional-scale in situ sensor networks will provide better understanding of stormflow and solute generation across a wide range of landscape conditions.

  13. Multiple Event Localization in a Sparse Acoustic Sensor Network Using UAVs as Data Mules

    DTIC Science & Technology

    2012-12-01

    necessarily reflect the position or the policy of the Government , and no official endorsement should be inferred. Path Acoustic Sensor Communication Footprint...a Microhard radio to forward the ToAs to the mule-UAV. Two Procerus Unicorn UAVs were used with different payloads. The imaging- UAV was equipped

  14. An Integrative Structural Health Monitoring System for the Local/Global Responses of a Large-Scale Irregular Building under Construction

    PubMed Central

    Park, Hyo Seon; Shin, Yunah; Choi, Se Woon; Kim, Yousok

    2013-01-01

    In this study, a practical and integrative SHM system was developed and applied to a large-scale irregular building under construction, where many challenging issues exist. In the proposed sensor network, customized energy-efficient wireless sensing units (sensor nodes, repeater nodes, and master nodes) were employed and comprehensive communications from the sensor node to the remote monitoring server were conducted through wireless communications. The long-term (13-month) monitoring results recorded from a large number of sensors (75 vibrating wire strain gauges, 10 inclinometers, and three laser displacement sensors) indicated that the construction event exhibiting the largest influence on structural behavior was the removal of bents that were temporarily installed to support the free end of the cantilevered members during their construction. The safety of each member could be confirmed based on the quantitative evaluation of each response. Furthermore, it was also confirmed that the relation between these responses (i.e., deflection, strain, and inclination) can provide information about the global behavior of structures induced from specific events. Analysis of the measurement results demonstrates the proposed sensor network system is capable of automatic and real-time monitoring and can be applied and utilized for both the safety evaluation and precise implementation of buildings under construction. PMID:23860317

  15. Nearest neighbor imputation using spatial–temporal correlations in wireless sensor networks

    PubMed Central

    Li, YuanYuan; Parker, Lynne E.

    2016-01-01

    Missing data is common in Wireless Sensor Networks (WSNs), especially with multi-hop communications. There are many reasons for this phenomenon, such as unstable wireless communications, synchronization issues, and unreliable sensors. Unfortunately, missing data creates a number of problems for WSNs. First, since most sensor nodes in the network are battery-powered, it is too expensive to have the nodes retransmit missing data across the network. Data re-transmission may also cause time delays when detecting abnormal changes in an environment. Furthermore, localized reasoning techniques on sensor nodes (such as machine learning algorithms to classify states of the environment) are generally not robust enough to handle missing data. Since sensor data collected by a WSN is generally correlated in time and space, we illustrate how replacing missing sensor values with spatially and temporally correlated sensor values can significantly improve the network’s performance. However, our studies show that it is important to determine which nodes are spatially and temporally correlated with each other. Simple techniques based on Euclidean distance are not sufficient for complex environmental deployments. Thus, we have developed a novel Nearest Neighbor (NN) imputation method that estimates missing data in WSNs by learning spatial and temporal correlations between sensor nodes. To improve the search time, we utilize a kd-tree data structure, which is a non-parametric, data-driven binary search tree. Instead of using traditional mean and variance of each dimension for kd-tree construction, and Euclidean distance for kd-tree search, we use weighted variances and weighted Euclidean distances based on measured percentages of missing data. We have evaluated this approach through experiments on sensor data from a volcano dataset collected by a network of Crossbow motes, as well as experiments using sensor data from a highway traffic monitoring application. Our experimental results show that our proposed 𝒦-NN imputation method has a competitive accuracy with state-of-the-art Expectation–Maximization (EM) techniques, while using much simpler computational techniques, thus making it suitable for use in resource-constrained WSNs. PMID:28435414

  16. Event-driven visual attention for the humanoid robot iCub

    PubMed Central

    Rea, Francesco; Metta, Giorgio; Bartolozzi, Chiara

    2013-01-01

    Fast reaction to sudden and potentially interesting stimuli is a crucial feature for safe and reliable interaction with the environment. Here we present a biologically inspired attention system developed for the humanoid robot iCub. It is based on input from unconventional event-driven vision sensors and an efficient computational method. The resulting system shows low-latency and fast determination of the location of the focus of attention. The performance is benchmarked against an instance of the state of the art in robotics artificial attention system used in robotics. Results show that the proposed system is two orders of magnitude faster that the benchmark in selecting a new stimulus to attend. PMID:24379753

  17. Machine learning based cloud mask algorithm driven by radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Chen, N.; Li, W.; Tanikawa, T.; Hori, M.; Shimada, R.; Stamnes, K. H.

    2017-12-01

    Cloud detection is a critically important first step required to derive many satellite data products. Traditional threshold based cloud mask algorithms require a complicated design process and fine tuning for each sensor, and have difficulty over snow/ice covered areas. With the advance of computational power and machine learning techniques, we have developed a new algorithm based on a neural network classifier driven by extensive radiative transfer modeling. Statistical validation results obtained by using collocated CALIOP and MODIS data show that its performance is consistent over different ecosystems and significantly better than the MODIS Cloud Mask (MOD35 C6) during the winter seasons over mid-latitude snow covered areas. Simulations using a reduced number of satellite channels also show satisfactory results, indicating its flexibility to be configured for different sensors.

  18. A Database of Tornado Events as Perceived by the USArray Transportable Array Network

    NASA Astrophysics Data System (ADS)

    Tytell, J. E.; Vernon, F.; Reyes, J. C.

    2015-12-01

    Over the course of the deployment of Earthscope's USArray Transportable Array (TA) network there have numerous tornado events that have occurred within the changing footprint of its network. The Array Network Facility based in San Diego, California, has compiled a database of these tornado events based on data provided by the NOAA Storm Prediction Center (SPC). The SPC data itself consists of parameters such as start-end point track data for each event, maximum EF intensities, and maximum track widths. Our database is Antelope driven and combines these data from the SPC with detailed station information from the TA network. We are now able to list all available TA stations during any specific tornado event date and also provide a single calculated "nearest" TA station per individual tornado event. We aim to provide this database as a starting resource for those with an interest in investigating tornado signatures within surface pressure and seismic response data. On a larger scale, the database may be of particular interest to the infrasound research community

  19. Hybrid Collaborative Learning for Classification and Clustering in Sensor Networks

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Sosnowski, Scott; Lane, Terran

    2012-01-01

    Traditionally, nodes in a sensor network simply collect data and then pass it on to a centralized node that archives, distributes, and possibly analyzes the data. However, analysis at the individual nodes could enable faster detection of anomalies or other interesting events as well as faster responses, such as sending out alerts or increasing the data collection rate. There is an additional opportunity for increased performance if learners at individual nodes can communicate with their neighbors. In previous work, methods were developed by which classification algorithms deployed at sensor nodes can communicate information about event labels to each other, building on prior work with co-training, self-training, and active learning. The idea of collaborative learning was extended to function for clustering algorithms as well, similar to ideas from penta-training and consensus clustering. However, collaboration between these learner types had not been explored. A new protocol was developed by which classifiers and clusterers can share key information about their observations and conclusions as they learn. This is an active collaboration in which learners of either type can query their neighbors for information that they then use to re-train or re-learn the concept they are studying. The protocol also supports broadcasts from the classifiers and clusterers to the rest of the network to announce new discoveries. Classifiers observe an event and assign it a label (type). Clusterers instead group observations into clusters without assigning them a label, and they collaborate in terms of pairwise constraints between two events [same-cluster (mustlink) or different-cluster (cannot-link)]. Fundamentally, these two learner types speak different languages. To bridge this gap, the new communication protocol provides four types of exchanges: hybrid queries for information, hybrid "broadcasts" of learned information, each specified for classifiers-to-clusterers, and clusterers-to-classifiers. The new capability has the potential to greatly expand the in situ analysis abilities of sensor networks. Classifiers seeking to categorize incoming data into different types of events can operate in tandem with clusterers that are sensitive to the occurrence of new kinds of events not known to the classifiers. In contrast to current approaches that treat these operations as independent components, a hybrid collaborative learning system can enable them to learn from each other.

  20. A software toolbox for robotics

    NASA Technical Reports Server (NTRS)

    Sanwal, J. C.

    1985-01-01

    A method for programming cooperating manipulators, which is guided by a geometric description of the task to be performed, is given. For this a suitable language must be used and a method for describing the workplace and the objects in it in geometric terms. A task level command language and its implementation for concurrently driven multiple robot arm is described. The language is suitable for driving a cell in which manipulators, end effectors, and sensors are controlled by their own dedicated processors. These processors can communicate with each other through a communication network. A mechanism for keeping track of the history of the commands already executed allows the command language for the manipulators to be event driven. A frame based world modeling system is utilized to describe the objects in the work environment and any relationships that hold between these objects. This system provides a versatile tool for managing information about the world model. Default actions normally needed are invoked when the data base is updated or accessed. Most of the first level error recovery is also invoked by the database by utilizing the concepts of demons. The package can be utilized to generate task level commands in a problem solver or a planner.

  1. The effect of time synchronization of wireless sensors on the modal analysis of structures

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, V.; Fowler, K.; Sazonov, E.

    2008-10-01

    Driven by the need to reduce the installation cost and maintenance cost of structural health monitoring (SHM) systems, wireless sensor networks (WSNs) are becoming increasingly popular. Perfect time synchronization amongst the wireless sensors is a key factor enabling the use of low-cost, low-power WSNs for structural health monitoring applications based on output-only modal analysis of structures. In this paper we present a theoretical framework for analysis of the impact created by time delays in the measured system response on the reconstruction of mode shapes using the popular frequency domain decomposition (FDD) technique. This methodology directly estimates the change in mode shape values based on sensor synchronicity. We confirm the proposed theoretical model by experimental validation in modal identification experiments performed on an aluminum beam. The experimental validation was performed using a wireless intelligent sensor and actuator network (WISAN) which allows for close time synchronization between sensors (0.6-10 µs in the tested configuration) and guarantees lossless data delivery under normal conditions. The experimental results closely match theoretical predictions and show that even very small delays in output response impact the mode shapes.

  2. NASA Tech Briefs, January 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics covered include: Multisensor Instrument for Real-Time Biological Monitoring; Sensor for Monitoring Nanodevice-Fabrication Plasmas; Backed Bending Actuator; Compact Optoelectronic Compass; Micro Sun Sensor for Spacecraft; Passive IFF: Autonomous Nonintrusive Rapid Identification of Friendly Assets; Finned-Ladder Slow-Wave Circuit for a TWT; Directional Radio-Frequency Identification Tag Reader; Integrated Solar-Energy-Harvesting and -Storage Device; Event-Driven Random-Access-Windowing CCD Imaging System; Stroboscope Controller for Imaging Helicopter Rotors; Software for Checking State-charts; Program Predicts Broadband Noise from a Turbofan Engine; Protocol for a Delay-Tolerant Data-Communication Network; Software Implements a Space-Mission File-Transfer Protocol; Making Carbon-Nanotube Arrays Using Block Copolymers: Part 2; Modular Rake of Pitot Probes; Preloading To Accelerate Slow-Crack-Growth Testing; Miniature Blimps for Surveillance and Collection of Samples; Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle; Fabricating Blazed Diffraction Gratings by X-Ray Lithography; Freeze-Tolerant Condensers; The StarLight Space Interferometer; Champagne Heat Pump; Controllable Sonar Lenses and Prisms Based on ERFs; Measuring Gravitation Using Polarization Spectroscopy; Serial-Turbo-Trellis-Coded Modulation with Rate-1 Inner Code; Enhanced Software for Scheduling Space-Shuttle Processing; Bayesian-Augmented Identification of Stars in a Narrow View; Spacecraft Orbits for Earth/Mars-Lander Radio Relay; and Self-Inflatable/Self-Rigidizable Reflectarray Antenna.

  3. FIRESTORM: a collaborative network suite application for rapid sensor data processing and precise decisive responses

    NASA Astrophysics Data System (ADS)

    Kaniyantethu, Shaji

    2011-06-01

    This paper discusses the many features and composed technologies in Firestorm™ - a Distributed Collaborative Fires and Effects software. Modern response management systems capitalize on the capabilities of a plethora of sensors and its output for situational awareness. Firestorm utilizes a unique networked lethality approach by integrating unmanned air and ground vehicles to provide target handoff and sharing of data between humans and sensors. The system employs Bayesian networks for track management of sensor data, and distributed auction algorithms for allocating targets and delivering the right effect without information overload to the Warfighter. Firestorm Networked Effects Component provides joint weapon-target pairing, attack guidance, target selection standards, and other fires and effects components. Moreover, the open and modular architecture allows for easy integration with new data sources. Versatility and adaptability of the application enable it to devise and dispense a suitable response to a wide variety of scenarios. Recently, this application was used for detecting and countering a vehicle intruder with the help of radio frequency spotter sensor, command driven cameras, remote weapon system, portable vehicle arresting barrier, and an unmanned aerial vehicle - which confirmed the presence of the intruder, as well as provided lethal/non-lethal response and battle damage assessment. The completed demonstrations have proved Firestorm's™ validity and feasibility to predict, detect, neutralize, and protect key assets and/or area against a variety of possible threats. The sensors and responding assets can be deployed with numerous configurations to cover the various terrain and environmental conditions, and can be integrated to a number of platforms.

  4. Supervised dictionary learning for inferring concurrent brain networks.

    PubMed

    Zhao, Shijie; Han, Junwei; Lv, Jinglei; Jiang, Xi; Hu, Xintao; Zhao, Yu; Ge, Bao; Guo, Lei; Liu, Tianming

    2015-10-01

    Task-based fMRI (tfMRI) has been widely used to explore functional brain networks via predefined stimulus paradigm in the fMRI scan. Traditionally, the general linear model (GLM) has been a dominant approach to detect task-evoked networks. However, GLM focuses on task-evoked or event-evoked brain responses and possibly ignores the intrinsic brain functions. In comparison, dictionary learning and sparse coding methods have attracted much attention recently, and these methods have shown the promise of automatically and systematically decomposing fMRI signals into meaningful task-evoked and intrinsic concurrent networks. Nevertheless, two notable limitations of current data-driven dictionary learning method are that the prior knowledge of task paradigm is not sufficiently utilized and that the establishment of correspondences among dictionary atoms in different brains have been challenging. In this paper, we propose a novel supervised dictionary learning and sparse coding method for inferring functional networks from tfMRI data, which takes both of the advantages of model-driven method and data-driven method. The basic idea is to fix the task stimulus curves as predefined model-driven dictionary atoms and only optimize the other portion of data-driven dictionary atoms. Application of this novel methodology on the publicly available human connectome project (HCP) tfMRI datasets has achieved promising results.

  5. Node Self-Deployment Algorithm Based on Pigeon Swarm Optimization for Underwater Wireless Sensor Networks

    PubMed Central

    Yu, Shanen; Xu, Yiming; Jiang, Peng; Wu, Feng; Xu, Huan

    2017-01-01

    At present, free-to-move node self-deployment algorithms aim at event coverage and cannot improve network coverage under the premise of considering network connectivity, network reliability and network deployment energy consumption. Thus, this study proposes pigeon-based self-deployment algorithm (PSA) for underwater wireless sensor networks to overcome the limitations of these existing algorithms. In PSA, the sink node first finds its one-hop nodes and maximizes the network coverage in its one-hop region. The one-hop nodes subsequently divide the network into layers and cluster in each layer. Each cluster head node constructs a connected path to the sink node to guarantee network connectivity. Finally, the cluster head node regards the ratio of the movement distance of the node to the change in the coverage redundancy ratio as the target function and employs pigeon swarm optimization to determine the positions of the nodes. Simulation results show that PSA improves both network connectivity and network reliability, decreases network deployment energy consumption, and increases network coverage. PMID:28338615

  6. Community Seismic Network (CSN)

    NASA Astrophysics Data System (ADS)

    Clayton, R. W.; Heaton, T. H.; Kohler, M. D.; Cheng, M.; Guy, R.; Chandy, M.; Krause, A.; Bunn, J.; Olson, M.; Faulkner, M.; Liu, A.; Strand, L.

    2012-12-01

    We report on developments in sensor connectivity, architecture, and data fusion algorithms executed in Cloud computing systems in the Community Seismic Network (CSN), a network of low-cost sensors housed in homes and offices by volunteers in the Pasadena, CA area. The network has over 200 sensors continuously reporting anomalies in local acceleration through the Internet to a Cloud computing service (the Google App Engine) that continually fuses sensor data to rapidly detect shaking from earthquakes. The Cloud computing system consists of data centers geographically distributed across the continent and is likely to be resilient even during earthquakes and other local disasters. The region of Southern California is partitioned in a multi-grid style into sets of telescoping cells called geocells. Data streams from sensors within a geocell are fused to detect anomalous shaking across the geocell. Temporal spatial patterns across geocells are used to detect anomalies across regions. The challenge is to detect earthquakes rapidly with an extremely low false positive rate. We report on two data fusion algorithms, one that tessellates the surface so as to fuse data from a large region around Pasadena and the other, which uses a standard tessellation of equal-sized cells. Since September 2011, the network has successfully detected earthquakes of magnitude 2.5 or higher within 40 Km of Pasadena. In addition to the standard USB device, which connects to the host's computer, we have developed a stand-alone sensor that directly connects to the internet via Ethernet or wifi. This bypasses security concerns that some companies have with the USB-connected devices, and allows for 24/7 monitoring at sites that would otherwise shut down their computers after working hours. In buildings we use the sensors to model the behavior of the structures during weak events in order to understand how they will perform during strong events. Visualization models of instrumented buildings ranging between five and 22 stories tall have been constructed using Google SketchUp. Ambient vibration records are used to identify the first set of horizontal vibrational modal frequencies of the buildings. These frequencies are used to compute the response on every floor of the building, given either observed data or scenario ground motion input at the buildings' base.

  7. A performance study of unmanned aerial vehicle-based sensor networks under cyber attack

    NASA Astrophysics Data System (ADS)

    Puchaty, Ethan M.

    In UAV-based sensor networks, an emerging area of interest is the performance of these networks under cyber attack. This study seeks to evaluate the performance trade-offs from a System-of-Systems (SoS) perspective between various UAV communications architecture options in the context two missions: tracking ballistic missiles and tracking insurgents. An agent-based discrete event simulation is used to model a sensor communication network consisting of UAVs, military communications satellites, ground relay stations, and a mission control center. Network susceptibility to cyber attack is modeled with probabilistic failures and induced data variability, with performance metrics focusing on information availability, latency, and trustworthiness. Results demonstrated that using UAVs as routers increased network availability with a minimal latency penalty and communications satellite networks were best for long distance operations. Redundancy in the number of links between communication nodes helped mitigate cyber-caused link failures and add robustness in cases of induced data variability by an adversary. However, when failures were not independent, redundancy and UAV routing were detrimental in some cases to network performance. Sensitivity studies indicated that long cyber-caused downtimes and increasing failure dependencies resulted in build-ups of failures and caused significant degradations in network performance.

  8. Multi-model data fusion to improve an early warning system for hypo-/hyperglycemic events.

    PubMed

    Botwey, Ransford Henry; Daskalaki, Elena; Diem, Peter; Mougiakakou, Stavroula G

    2014-01-01

    Correct predictions of future blood glucose levels in individuals with Type 1 Diabetes (T1D) can be used to provide early warning of upcoming hypo-/hyperglycemic events and thus to improve the patient's safety. To increase prediction accuracy and efficiency, various approaches have been proposed which combine multiple predictors to produce superior results compared to single predictors. Three methods for model fusion are presented and comparatively assessed. Data from 23 T1D subjects under sensor-augmented pump (SAP) therapy were used in two adaptive data-driven models (an autoregressive model with output correction - cARX, and a recurrent neural network - RNN). Data fusion techniques based on i) Dempster-Shafer Evidential Theory (DST), ii) Genetic Algorithms (GA), and iii) Genetic Programming (GP) were used to merge the complimentary performances of the prediction models. The fused output is used in a warning algorithm to issue alarms of upcoming hypo-/hyperglycemic events. The fusion schemes showed improved performance with lower root mean square errors, lower time lags, and higher correlation. In the warning algorithm, median daily false alarms (DFA) of 0.25%, and 100% correct alarms (CA) were obtained for both event types. The detection times (DT) before occurrence of events were 13.0 and 12.1 min respectively for hypo-/hyperglycemic events. Compared to the cARX and RNN models, and a linear fusion of the two, the proposed fusion schemes represents a significant improvement.

  9. Ten Years of Observatory Science from Saanich Inlet on the VENUS Cabled Ocean Observatory

    NASA Astrophysics Data System (ADS)

    Dewey, R. K.; Tunnicliffe, V.; Macoun, P.; Round, A.

    2016-02-01

    The Saanich Inlet array of the VENUS cabled ocean observatory, maintained and operated by Ocean Networks Canada, was installed in February 2006, and in 2016 will have supported ten years of comprehensive interactive science. Representing the first in the present generation of cabled observing technologies, this coastal array has provided continuous high power and broadband communications to a variety of instrument platforms, hundreds of sensors, and enabled dozens of short, medium, and long-term studies. Saanich Inlet is a protected fjord with limited tidal action, resulting in an extremely productive environment, with strong seasonal chemical variations driven by episodic deep water renewal events and oxygen reduction processes. The breadth of the research has included microbial and benthic community dynamics, biogeochemical cycles, forensics, quantifying inter-annual variations, benthic-pelagic coupling, sensor testing, plankton dynamics, and bio-turbulence. Observatory measurements include core water properties (CTD & O2) and water-column echo-sounder records, as well as experiment-oriented deployments utilizing cameras, Gliders, Dopplers, hydrophones, and a variety of biogeochemical sensors. With a recently installed Buoy Profiler System for monitoring the entire water column, community plans continue with a dedicated Redox experiment through the 2016-17 seasons. Highlights from the dozens of research papers and theses will be presented to demonstrate the achievements enabled by a comprehensive coastal cabled observing system.

  10. The Emerging Wireless Body Area Network on Android Smartphones: A Review

    NASA Astrophysics Data System (ADS)

    Puspitaningayu, P.; Widodo, A.; Yundra, E.

    2018-01-01

    Our society now has driven us into an era where almost everything can be digitally monitored and controlled including the human body. The growth of wireless body area network (WBAN), as a specific scope of sensor networks which mounted or attached to human body also developing rapidly. It allows people to monitor their health and several daily activities. This study is intended to review the trend of WBAN especially on Android, one of the most popular smartphone platforms. A systematic literature review is concerned to the following parameters: the purpose of the device and/or application, the type of sensors, the type of Android device, and its connectivity. Most of the studies were more concern to healthcare or medical monitoring systems: blood pressure, electro cardiograph, tremor detection, etc. On the other hand, the rest of them aimed for activity tracker, environment sensing, and epidemic control. After all, those studies shown that not only Android can be a powerful platform to process data from various sensors but also smartphones can be a good alternative to develop WBANs for medical and other daily applications.

  11. Deploying temporary networks for upscaling of sparse network stations

    NASA Astrophysics Data System (ADS)

    Coopersmith, Evan J.; Cosh, Michael H.; Bell, Jesse E.; Kelly, Victoria; Hall, Mark; Palecki, Michael A.; Temimi, Marouane

    2016-10-01

    Soil observations networks at the national scale play an integral role in hydrologic modeling, drought assessment, agricultural decision support, and our ability to understand climate change. Understanding soil moisture variability is necessary to apply these measurements to model calibration, business and consumer applications, or even human health issues. The installation of soil moisture sensors as sparse, national networks is necessitated by limited financial resources. However, this results in the incomplete sampling of the local heterogeneity of soil type, vegetation cover, topography, and the fine spatial distribution of precipitation events. To this end, temporary networks can be installed in the areas surrounding a permanent installation within a sparse network. The temporary networks deployed in this study provide a more representative average at the 3 km and 9 km scales, localized about the permanent gauge. The value of such temporary networks is demonstrated at test sites in Millbrook, New York and Crossville, Tennessee. The capacity of a single U.S. Climate Reference Network (USCRN) sensor set to approximate the average of a temporary network at the 3 km and 9 km scales using a simple linear scaling function is tested. The capacity of a temporary network to provide reliable estimates with diminishing numbers of sensors, the temporal stability of those networks, and ultimately, the relationship of the variability of those networks to soil moisture conditions at the permanent sensor are investigated. In this manner, this work demonstrates the single-season installation of a temporary network as a mechanism to characterize the soil moisture variability at a permanent gauge within a sparse network.

  12. Tidal analysis of GNSS data from a high resolution sensor network at Helheim Glacier

    NASA Astrophysics Data System (ADS)

    Martin, Ian; Aspey, Robin; Baugé, Tim; Edwards, Stuart; Everett, Alistair; James, Timothy; Loskot, Pavel; Murray, Tavi; O'Farrell, Tim; Rutt, Ian

    2014-05-01

    Changes in Greenland and Antarctic ice sheets due to ice flow/ice-berg calving are a major uncertainty affecting sea-level rise forecasts. Latterly GNSS (Global Navigation Satellite Systems) have been employed extensively to monitor such glacier dynamics. Until recently however, the favoured methodology has been to deploy sensors onto the glacier surface, collect data for a period of time, then retrieve and download the sensors. This approach works well in less dynamic environments where the risk of sensor loss is low. In more extreme environments e.g. approaching the glacial calving front, the risk of sensor loss and hence data loss increases dramatically. In order to provide glaciologists with new insights into flow dynamics and calving processes we have developed a novel sensor network to increase the robustness of data capture. We present details of the technological requirements for an in-situ Zigbee wireless streaming network infrastructure supporting instantaneous data acquisition from high resolution GNSS sensors thereby increasing data capture robustness. The data obtained offers new opportunities to investigate the interdependence of mass flow, uplift, velocity and geometry and the network architecture has been specifically designed for deployment by helicopter close to the calving front to yield unprecedented detailed information. Following successful field trials of a pilot three node network during 2012, a larger 20 node network was deployed on the fast-flowing Helheim glacier, south-east Greenland over the summer months of 2013. The utilisation of dual wireless transceivers in each glacier node, multiple frequencies and four 'collector' stations located on the valley sides creates overlapping networks providing enhanced capacity, diversity and redundancy of data 'back-haul', even close to 'floor' RSSI (Received Signal Strength Indication) levels around -100 dBm. Data loss through radio packet collisions within sub-networks are avoided through the adoption of beacon based time division multiple access (tdma). The processed GNSS data provides 1-2 cm accurate coordinate time-series at 3-5 second intervals. These time series are able to capture the glaciers response to major calving events as it receded ~1.5 km and smaller diurnal and semi-diurnal variations in vertical and horizontal motion linked to tidal forcing. Using images from time lapse cameras to locate the calving events we are able to quantify the variation in tidal response over the 3km x 5km area at the calving front during the 53 day study period.

  13. Congestion Prediction Modeling for Quality of Service Improvement in Wireless Sensor Networks

    PubMed Central

    Lee, Ga-Won; Lee, Sung-Young; Huh, Eui-Nam

    2014-01-01

    Information technology (IT) is pushing ahead with drastic reforms of modern life for improvement of human welfare. Objects constitute “Information Networks” through smart, self-regulated information gathering that also recognizes and controls current information states in Wireless Sensor Networks (WSNs). Information observed from sensor networks in real-time is used to increase quality of life (QoL) in various industries and daily life. One of the key challenges of the WSNs is how to achieve lossless data transmission. Although nowadays sensor nodes have enhanced capacities, it is hard to assure lossless and reliable end-to-end data transmission in WSNs due to the unstable wireless links and low hard ware resources to satisfy high quality of service (QoS) requirements. We propose a node and path traffic prediction model to predict and minimize the congestion. This solution includes prediction of packet generation due to network congestion from both periodic and event data generation. Simulation using NS-2 and Matlab is used to demonstrate the effectiveness of the proposed solution. PMID:24784035

  14. A collaborative computing framework of cloud network and WBSN applied to fall detection and 3-D motion reconstruction.

    PubMed

    Lai, Chin-Feng; Chen, Min; Pan, Jeng-Shyang; Youn, Chan-Hyun; Chao, Han-Chieh

    2014-03-01

    As cloud computing and wireless body sensor network technologies become gradually developed, ubiquitous healthcare services prevent accidents instantly and effectively, as well as provides relevant information to reduce related processing time and cost. This study proposes a co-processing intermediary framework integrated cloud and wireless body sensor networks, which is mainly applied to fall detection and 3-D motion reconstruction. In this study, the main focuses includes distributed computing and resource allocation of processing sensing data over the computing architecture, network conditions and performance evaluation. Through this framework, the transmissions and computing time of sensing data are reduced to enhance overall performance for the services of fall events detection and 3-D motion reconstruction.

  15. Using wireless sensor networks to improve understanding of rain-on-snow events across the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Maurer, T.; Avanzi, F.; Oroza, C.; Malek, S. A.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2017-12-01

    We use data gathered from Wireless Sensor Networks (WSNs) between 2008 and 2017 to investigate the temporal/spatial patterns of rain-on-snow events in three river basins of California's Sierra Nevada. Rain-on-snow transitions occur across a broad elevation range (several hundred meters), both between storms and within a given storm, creating an opportunity to use spatially and temporally dense data to forecast and study them. WSNs collect snow depth; meteorological data; and soil moisture and temperature data across relatively dense sensor clusters. Ten to twelve measurement nodes per cluster are placed across 1-km2 areas in locations representative of snow patterns at larger scales. Combining precipitation and snow data from snow-pillow and climate stations with an estimation of dew-point temperature from WSNs, we determine the frequency, timing, and geographic extent of rain-on-snow events. We compare these results to WSN data to evaluate the impact of rain-on-snow events on snowpack energy balance, density, and depth as well as on soil moisture. Rain-on-snow events are compared to dry warm-weather days to identify the relative importance of rain and radiation as the primary energy input to the snowpack for snowmelt generation. An intercomparison of rain-on-snow events for the WSNs in the Feather, American, and Kings River basins captures the behavior across a 2° latitudinal range of the Sierra Nevada. Rain-on-snow events are potentially a more important streamflow generation mechanism in the lower-elevation Feather River basin. Snowmelt response to rain-on-snow events changes throughout the wet season, with later events resulting in more melt due to snow isothermal conditions, coarser grain size, and more-homogeneous snow stratigraphy. Regardless of snowmelt response, rain-on-snow events tend to result in decreasing snow depth and a corresponding increase in snow density. Our results demonstrate that strategically placed WSNs can provide the necessary data at high temporal resolution to investigate how hydrologic responses evolve in both space and time, data not available from operational networks.

  16. Resource modelling for control: how hydrogeological modelling can support a water quality monitoring infrastructure

    NASA Astrophysics Data System (ADS)

    Scozzari, Andrea; Doveri, Marco

    2015-04-01

    The knowledge of the physical/chemical processes implied with the exploitation of water bodies for human consumption is an essential tool for the optimisation of the monitoring infrastructure. Due to their increasing importance in the context of human consumption (at least in the EU), this work focuses on groundwater resources. In the framework of drinkable water networks, the physical and data-driven modelling of transport phenomena in groundwater can help optimising the sensor network and validating the acquired data. This work proposes the combined usage of physical and data-driven modelling as a support to the design and maximisation of results from a network of distributed sensors. In particular, the validation of physico-chemical measurements and the detection of eventual anomalies by a set of continuous measurements take benefit from the knowledge of the domain from which water is abstracted, and its expected characteristics. Change-detection techniques based on non-specific sensors (presented by quite a large literature during the last two decades) have to deal with the classical issues of maximising correct detections and minimising false alarms, the latter of the two being the most typical problem to be faced, in the view of designing truly applicable monitoring systems. In this context, the definition of "anomaly" in terms of distance from an expected value or feature characterising the quality of water implies the definition of a suitable metric and the knowledge of the physical and chemical peculiarities of the natural domain from which water is exploited, with its implications in terms of characteristics of the water resource.

  17. Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification.

    PubMed

    Rueckauer, Bodo; Lungu, Iulia-Alexandra; Hu, Yuhuang; Pfeiffer, Michael; Liu, Shih-Chii

    2017-01-01

    Spiking neural networks (SNNs) can potentially offer an efficient way of doing inference because the neurons in the networks are sparsely activated and computations are event-driven. Previous work showed that simple continuous-valued deep Convolutional Neural Networks (CNNs) can be converted into accurate spiking equivalents. These networks did not include certain common operations such as max-pooling, softmax, batch-normalization and Inception-modules. This paper presents spiking equivalents of these operations therefore allowing conversion of nearly arbitrary CNN architectures. We show conversion of popular CNN architectures, including VGG-16 and Inception-v3, into SNNs that produce the best results reported to date on MNIST, CIFAR-10 and the challenging ImageNet dataset. SNNs can trade off classification error rate against the number of available operations whereas deep continuous-valued neural networks require a fixed number of operations to achieve their classification error rate. From the examples of LeNet for MNIST and BinaryNet for CIFAR-10, we show that with an increase in error rate of a few percentage points, the SNNs can achieve more than 2x reductions in operations compared to the original CNNs. This highlights the potential of SNNs in particular when deployed on power-efficient neuromorphic spiking neuron chips, for use in embedded applications.

  18. Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification

    PubMed Central

    Rueckauer, Bodo; Lungu, Iulia-Alexandra; Hu, Yuhuang; Pfeiffer, Michael; Liu, Shih-Chii

    2017-01-01

    Spiking neural networks (SNNs) can potentially offer an efficient way of doing inference because the neurons in the networks are sparsely activated and computations are event-driven. Previous work showed that simple continuous-valued deep Convolutional Neural Networks (CNNs) can be converted into accurate spiking equivalents. These networks did not include certain common operations such as max-pooling, softmax, batch-normalization and Inception-modules. This paper presents spiking equivalents of these operations therefore allowing conversion of nearly arbitrary CNN architectures. We show conversion of popular CNN architectures, including VGG-16 and Inception-v3, into SNNs that produce the best results reported to date on MNIST, CIFAR-10 and the challenging ImageNet dataset. SNNs can trade off classification error rate against the number of available operations whereas deep continuous-valued neural networks require a fixed number of operations to achieve their classification error rate. From the examples of LeNet for MNIST and BinaryNet for CIFAR-10, we show that with an increase in error rate of a few percentage points, the SNNs can achieve more than 2x reductions in operations compared to the original CNNs. This highlights the potential of SNNs in particular when deployed on power-efficient neuromorphic spiking neuron chips, for use in embedded applications. PMID:29375284

  19. Smart unattended sensor networks with scene understanding capabilities

    NASA Astrophysics Data System (ADS)

    Kuvich, Gary

    2006-05-01

    Unattended sensor systems are new technologies that are supposed to provide enhanced situation awareness to military and law enforcement agencies. A network of such sensors cannot be very effective in field conditions only if it can transmit visual information to human operators or alert them on motion. In the real field conditions, events may happen in many nodes of a network simultaneously. But the real number of control personnel is always limited, and attention of human operators can be simply attracted to particular network nodes, while more dangerous threat may be unnoticed at the same time in the other nodes. Sensor networks would be more effective if equipped with a system that is similar to human vision in its abilities to understand visual information. Human vision uses for that a rough but wide peripheral system that tracks motions and regions of interests, narrow but precise foveal vision that analyzes and recognizes objects in the center of selected region of interest, and visual intelligence that provides scene and object contexts and resolves ambiguity and uncertainty in the visual information. Biologically-inspired Network-Symbolic models convert image information into an 'understandable' Network-Symbolic format, which is similar to relational knowledge models. The equivalent of interaction between peripheral and foveal systems in the network-symbolic system is achieved via interaction between Visual and Object Buffers and the top-level knowledge system.

  20. Intelligent On-Board Processing in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Tanner, S.

    2005-12-01

    Most existing sensing systems are designed as passive, independent observers. They are rarely aware of the phenomena they observe, and are even less likely to be aware of what other sensors are observing within the same environment. Increasingly, intelligent processing of sensor data is taking place in real-time, using computing resources on-board the sensor or the platform itself. One can imagine a sensor network consisting of intelligent and autonomous space-borne, airborne, and ground-based sensors. These sensors will act independently of one another, yet each will be capable of both publishing and receiving sensor information, observations, and alerts among other sensors in the network. Furthermore, these sensors will be capable of acting upon this information, perhaps altering acquisition properties of their instruments, changing the location of their platform, or updating processing strategies for their own observations to provide responsive information or additional alerts. Such autonomous and intelligent sensor networking capabilities provide significant benefits for collections of heterogeneous sensors within any environment. They are crucial for multi-sensor observations and surveillance, where real-time communication with external components and users may be inhibited, and the environment may be hostile. In all environments, mission automation and communication capabilities among disparate sensors will enable quicker response to interesting, rare, or unexpected events. Additionally, an intelligent network of heterogeneous sensors provides the advantage that all of the sensors can benefit from the unique capabilities of each sensor in the network. The University of Alabama in Huntsville (UAH) is developing a unique approach to data processing, integration and mining through the use of the Adaptive On-Board Data Processing (AODP) framework. AODP is a key foundation technology for autonomous internetworking capabilities to support situational awareness by sensors and their on-board processes. The two primary research areas for this project are (1) the on-board processing and communications framework itself, and (2) data mining algorithms targeted to the needs and constraints of the on-board environment. The team is leveraging its experience in on-board processing, data mining, custom data processing, and sensor network design. Several unique UAH-developed technologies are employed in the AODP project, including EVE, an EnVironmEnt for on-board processing, and the data mining tools included in the Algorithm Development and Mining (ADaM) toolkit.

  1. On-Board Event-Based State Estimation for Trajectory Approaching and Tracking of a Vehicle

    PubMed Central

    Martínez-Rey, Miguel; Espinosa, Felipe; Gardel, Alfredo; Santos, Carlos

    2015-01-01

    For the problem of pose estimation of an autonomous vehicle using networked external sensors, the processing capacity and battery consumption of these sensors, as well as the communication channel load should be optimized. Here, we report an event-based state estimator (EBSE) consisting of an unscented Kalman filter that uses a triggering mechanism based on the estimation error covariance matrix to request measurements from the external sensors. This EBSE generates the events of the estimator module on-board the vehicle and, thus, allows the sensors to remain in stand-by mode until an event is generated. The proposed algorithm requests a measurement every time the estimation distance root mean squared error (DRMS) value, obtained from the estimator's covariance matrix, exceeds a threshold value. This triggering threshold can be adapted to the vehicle's working conditions rendering the estimator even more efficient. An example of the use of the proposed EBSE is given, where the autonomous vehicle must approach and follow a reference trajectory. By making the threshold a function of the distance to the reference location, the estimator can halve the use of the sensors with a negligible deterioration in the performance of the approaching maneuver. PMID:26102489

  2. Elliptic Curve Cryptography with Security System in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Sharma, Dharmendra

    2010-10-01

    The rapid progress of wireless communications and embedded micro-electro-system technologies has made wireless sensor networks (WSN) very popular and even become part of our daily life. WSNs design are generally application driven, namely a particular application's requirements will determine how the network behaves. However, the natures of WSN have attracted increasing attention in recent years due to its linear scalability, a small software footprint, low hardware implementation cost, low bandwidth requirement, and high device performance. It is noted that today's software applications are mainly characterized by their component-based structures which are usually heterogeneous and distributed, including the WSNs. But WSNs typically need to configure themselves automatically and support as hoc routing. Agent technology provides a method for handling increasing software complexity and supporting rapid and accurate decision making. This paper based on our previous works [1, 2], three contributions have made, namely (a) fuzzy controller for dynamic slide window size to improve the performance of running ECC (b) first presented a hidden generation point for protection from man-in-the middle attack and (c) we first investigates multi-agent applying for key exchange together. Security systems have been drawing great attentions as cryptographic algorithms have gained popularity due to the natures that make them suitable for use in constrained environment such as mobile sensor information applications, where computing resources and power availability are limited. Elliptic curve cryptography (ECC) is one of high potential candidates for WSNs, which requires less computational power, communication bandwidth, and memory in comparison with other cryptosystem. For saving pre-computing storages recently there is a trend for the sensor networks that the sensor group leaders rather than sensors communicate to the end database, which highlighted the needs to prevent from the man-in-the middle attack. A designed a hidden generator point that offer a good protection from the man-in-the middle (MinM) attack which becomes one of major worries for the sensor's networks with multiagent system is also discussed.

  3. Cloud-based serviced-orientated data systems for ocean observational data - an example from the coral reef community

    NASA Astrophysics Data System (ADS)

    Bainbridge, S.

    2012-04-01

    The advent of new observing systems, such as sensor networks, have dramatically increased our ability to collect marine data; the issue now is not data drought but data deluge. The challenge now is to extract data representing events of interest from the background data, that is how to deliver information and potentially knowledge from an increasing large store of base observations. Given that each potential user will have differing definitions of 'interesting' and that this is often defined by other events and data, systems need to deliver information or knowledge in a form and context defined by the user. This paper reports on a series of coral reef sensor networks set up under the Coral Reef Environmental Observation Network (CREON). CREON is a community of interest group deploying coral reef sensor networks with the goal of increasing capacity in coral reef observation, especially into developing areas. Issues such as coral bleaching, terrestrial runoff, human impacts and climate change are impacting reefs with one assessment indicating a quarter of the worlds reefs being severely degraded with another quarter under immediate threat. Increasing our ability to collect scientifically valid observations is fundamental to understanding these systems and ultimately in preserving and sustaining them. A cloud based data management system was used to store the base sensor data from each agency involved using service based agents to push the data from individual field sensors to the cloud. The system supports a range of service based outputs such as on-line graphs, a smart-phone application and simple event detection. A more complex event detection system was written that takes input from the cloud services and outputs natural language 'tweets' to Twitter as events occur. It therefore becomes possible to distil the entire data set down to a series of Twitter entries that interested parties can subscribe to. The next step is to allow users to define their own events and to deliver results, in context, to their preferred medium. The paper contrasts what has been achieved within a small community with well defined issues with what it would take to build equivalent systems to hold a wide range of cross community observational data addressing a wider range of potential issues. The role of discoverability, quality control, uncertainly, conformity and metadata are investigated along with a brief discussion of existing and emerging standards in this area. The elements of such as system are described along with the role of modelling and scenario tools in delivering a higher level of outputs linking what may have already occurred (event detection) with what may potentially occur (scenarios). The development of service based cloud computing open data systems coupled with complex event detection systems delivering through social media and other channels linked into model and scenario systems represents one vision for delivering value from the increasing store of ocean observations, most of which lie unknown, unused and unloved.

  4. NEVESIM: event-driven neural simulation framework with a Python interface.

    PubMed

    Pecevski, Dejan; Kappel, David; Jonke, Zeno

    2014-01-01

    NEVESIM is a software package for event-driven simulation of networks of spiking neurons with a fast simulation core in C++, and a scripting user interface in the Python programming language. It supports simulation of heterogeneous networks with different types of neurons and synapses, and can be easily extended by the user with new neuron and synapse types. To enable heterogeneous networks and extensibility, NEVESIM is designed to decouple the simulation logic of communicating events (spikes) between the neurons at a network level from the implementation of the internal dynamics of individual neurons. In this paper we will present the simulation framework of NEVESIM, its concepts and features, as well as some aspects of the object-oriented design approaches and simulation strategies that were utilized to efficiently implement the concepts and functionalities of the framework. We will also give an overview of the Python user interface, its basic commands and constructs, and also discuss the benefits of integrating NEVESIM with Python. One of the valuable capabilities of the simulator is to simulate exactly and efficiently networks of stochastic spiking neurons from the recently developed theoretical framework of neural sampling. This functionality was implemented as an extension on top of the basic NEVESIM framework. Altogether, the intended purpose of the NEVESIM framework is to provide a basis for further extensions that support simulation of various neural network models incorporating different neuron and synapse types that can potentially also use different simulation strategies.

  5. NEVESIM: event-driven neural simulation framework with a Python interface

    PubMed Central

    Pecevski, Dejan; Kappel, David; Jonke, Zeno

    2014-01-01

    NEVESIM is a software package for event-driven simulation of networks of spiking neurons with a fast simulation core in C++, and a scripting user interface in the Python programming language. It supports simulation of heterogeneous networks with different types of neurons and synapses, and can be easily extended by the user with new neuron and synapse types. To enable heterogeneous networks and extensibility, NEVESIM is designed to decouple the simulation logic of communicating events (spikes) between the neurons at a network level from the implementation of the internal dynamics of individual neurons. In this paper we will present the simulation framework of NEVESIM, its concepts and features, as well as some aspects of the object-oriented design approaches and simulation strategies that were utilized to efficiently implement the concepts and functionalities of the framework. We will also give an overview of the Python user interface, its basic commands and constructs, and also discuss the benefits of integrating NEVESIM with Python. One of the valuable capabilities of the simulator is to simulate exactly and efficiently networks of stochastic spiking neurons from the recently developed theoretical framework of neural sampling. This functionality was implemented as an extension on top of the basic NEVESIM framework. Altogether, the intended purpose of the NEVESIM framework is to provide a basis for further extensions that support simulation of various neural network models incorporating different neuron and synapse types that can potentially also use different simulation strategies. PMID:25177291

  6. ARO PECASE: Information Assurance for Energy-Constrained Wireless Sensor Networks

    DTIC Science & Technology

    2011-12-21

    Distribution, 18th Annual IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), September 2007. 2. 2010 IEEE...received the following awards: Student Best Paper Award at the IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC...Localization in Wireless Ad Hoc Networks – Many current and future appli- cations of mobile ad hoc networks, including disaster response and event

  7. Real Time Physiological Status Monitoring (RT-PSM): Accomplishments, Requirements, and Research Roadmap

    DTIC Science & Technology

    2016-03-01

    Maneuver Center of Excellence (US Army - Ft. Benning) MINIMEN Minimalist Wearable Mesh Network Mloco Metabolic Costs of Locomotion MOUT Military...detect blast and ballistic wounding events Quantum Applied Science & Research, Inc. Army A05-163 SBIR 2005 Minimalist Short- Range Wearable for...STTR 2005 (Phase 1) 2005 Minimalist Wearable Mesh Network (MINIMEN) System Develop PSM system linking wearable sensors, mesh networking

  8. Ultra-Low Power Event-Driven Wireless Sensor Node Using Piezoelectric Accelerometer for Health Monitoring

    NASA Astrophysics Data System (ADS)

    Okada, Hironao; Kobayashi, Takeshi; Masuda, Takashi; Itoh, Toshihiro

    2009-07-01

    We describe a low power consumption wireless sensor node designed for monitoring the conditions of animals, especially of chickens. The node detects variations in 24-h behavior patterns by acquiring the number of the movement of an animal whose acceleration exceeds a threshold measured in per unit time. Wireless sensor nodes when operated intermittently are likely to miss necessary data during their sleep mode state and waste the power in the case of acquiring useless data. We design the node worked only when required acceleration is detected using a piezoelectric accelerometer and a comparator for wake-up source of micro controller unit.

  9. Dynamic Data-Driven UAV Network for Plume Characterization

    DTIC Science & Technology

    2016-05-23

    data collection where simulations and measurements become a symbiotic feedback control system where simulations inform measurement locations and the...and measurements become a symbiotic feedback control system where simulations inform measurement locations and the measured data augments simulations...data analysis techniques with mobile sensor data collection where simulations and measurements become a symbiotic feedback control system where

  10. Improving the Forecast Accuracy of an Ocean Observation and Prediction System by Adaptive Control of the Sensor Network

    NASA Astrophysics Data System (ADS)

    Talukder, A.; Panangadan, A. V.; Blumberg, A. F.; Herrington, T.; Georgas, N.

    2008-12-01

    The New York Harbor Observation and Prediction System (NYHOPS) is a real-time, estuarine and coastal ocean observing and modeling system for the New York Harbor and surrounding waters. Real-time measurements from in-situ mobile and stationary sensors in the NYHOPS networks are assimilated into marine forecasts in order to reduce the discrepancy with ground truth. The forecasts are obtained from the ECOMSED hydrodynamic model, a shallow water derivative of the Princeton Ocean Model. Currently, all sensors in the NYHOPS system are operated in a fixed mode with uniform sampling rates. This technology infusion effort demonstrates the use of Model Predictive Control (MPC) to autonomously adapt the operation of both mobile and stationary sensors in response to changing events that are -automatically detected from the ECOMSED forecasts. The controller focuses sensing resources on those regions that are expected to be impacted by the detected events. The MPC approach involves formulating the problem of calculating the optimal sensor parameters as a constrained multi-objective optimization problem. We have developed an objective function that takes into account the spatiotemporal relationship of the in-situ sensor locations and the locations of events detected by the model. Experiments in simulation were carried out using data collected during a freshwater flooding event. The location of the resulting freshwater plume was calculated from the corresponding model forecasts and was used by the MPC controller to derive control parameters for the sensing assets. The operational parameters that are controlled include the sampling rates of stationary sensors, paths of unmanned underwater vehicles (UUVs), and data transfer routes between sensors and the central modeling computer. The simulation experiments show that MPC-based sensor control reduces the RMS error in the forecast by a factor of 380% as compared to uniform sampling. The paths of multiple UUVs were simultaneously calculated such that measurements from on-board sensors would lead to maximal reduction in the forecast error after data assimilation. The MPC controller also reduces the consumption of system resources such as energy expended in sampling and wireless communication. The MPC-based control approach can be generalized to accept data from remote sensing satellites. This will enable in-situ sensors to be regulated using forecasts generated by assimilating local high resolution in-situ measurements with wide-area observations from remote sensing satellites.

  11. Enhanced Precision Time Synchronization for Wireless Sensor Networks

    PubMed Central

    Cho, Hyuntae; Kim, Jongdeok; Baek, Yunju

    2011-01-01

    Time synchronization in wireless sensor networks (WSNs) is a fundamental issue for the coordination of distributed entities and events. Nondeterministic latency, which may decrease the accuracy and precision of time synchronization can occur at any point in the network layers. Specially, random back-off by channel contention leads to a large uncertainty. In order to reduce the large nondeterministic uncertainty from channel contention, we propose an enhanced precision time synchronization protocol in this paper. The proposed method reduces the traffic needed for the synchronization procedure by selectively forwarding the packet. Furthermore, the time difference between sensor nodes increases as time advances because of the use of a clock source with a cheap crystal oscillator. In addition, we provide a means to maintain accurate time by adopting hardware-assisted time stamp and drift correction. Experiments are conducted to evaluate the performance of the proposed method, for which sensor nodes are designed and implemented. According to the evaluation results, the performance of the proposed method is better than that of a traditional time synchronization protocol. PMID:22164035

  12. Enhanced precision time synchronization for wireless sensor networks.

    PubMed

    Cho, Hyuntae; Kim, Jongdeok; Baek, Yunju

    2011-01-01

    Time synchronization in wireless sensor networks (WSNs) is a fundamental issue for the coordination of distributed entities and events. Nondeterministic latency, which may decrease the accuracy and precision of time synchronization can occur at any point in the network layers. Specially, random back-off by channel contention leads to a large uncertainty. In order to reduce the large nondeterministic uncertainty from channel contention, we propose an enhanced precision time synchronization protocol in this paper. The proposed method reduces the traffic needed for the synchronization procedure by selectively forwarding the packet. Furthermore, the time difference between sensor nodes increases as time advances because of the use of a clock source with a cheap crystal oscillator. In addition, we provide a means to maintain accurate time by adopting hardware-assisted time stamp and drift correction. Experiments are conducted to evaluate the performance of the proposed method, for which sensor nodes are designed and implemented. According to the evaluation results, the performance of the proposed method is better than that of a traditional time synchronization protocol.

  13. Algorithmic network monitoring for a modern water utility: a case study in Jerusalem.

    PubMed

    Armon, A; Gutner, S; Rosenberg, A; Scolnicov, H

    2011-01-01

    We report on the design, deployment, and use of TaKaDu, a real-time algorithmic Water Infrastructure Monitoring solution, with a strong focus on water loss reduction and control. TaKaDu is provided as a commercial service to several customers worldwide. It has been in use at HaGihon, the Jerusalem utility, since mid 2009. Water utilities collect considerable real-time data from their networks, e.g. by means of a SCADA system and sensors measuring flow, pressure, and other data. We discuss how an algorithmic statistical solution analyses this wealth of raw data, flexibly using many types of input and picking out and reporting significant events and failures in the network. Of particular interest to most water utilities is the early detection capability for invisible leaks, also a means for preventing large visible bursts. The system also detects sensor and SCADA failures, various water quality issues, DMA boundary breaches, unrecorded or unintended network changes (like a valve or pump state change), and other events, including types unforeseen during system design. We discuss results from use at HaGihon, showing clear operational value.

  14. A multipath routing protocol based on clustering and ant colony optimization for wireless sensor networks.

    PubMed

    Yang, Jing; Xu, Mai; Zhao, Wei; Xu, Baoguo

    2010-01-01

    For monitoring burst events in a kind of reactive wireless sensor networks (WSNs), a multipath routing protocol (MRP) based on dynamic clustering and ant colony optimization (ACO) is proposed. Such an approach can maximize the network lifetime and reduce the energy consumption. An important attribute of WSNs is their limited power supply, and therefore some metrics (such as energy consumption of communication among nodes, residual energy, path length) were considered as very important criteria while designing routing in the MRP. Firstly, a cluster head (CH) is selected among nodes located in the event area according to some parameters, such as residual energy. Secondly, an improved ACO algorithm is applied in the search for multiple paths between the CH and sink node. Finally, the CH dynamically chooses a route to transmit data with a probability that depends on many path metrics, such as energy consumption. The simulation results show that MRP can prolong the network lifetime, as well as balance of energy consumption among nodes and reduce the average energy consumption effectively.

  15. Simulation of Greenhouse Climate Monitoring and Control with Wireless Sensor Network and Event-Based Control

    PubMed Central

    Pawlowski, Andrzej; Guzman, Jose Luis; Rodríguez, Francisco; Berenguel, Manuel; Sánchez, José; Dormido, Sebastián

    2009-01-01

    Monitoring and control of the greenhouse environment play a decisive role in greenhouse production processes. Assurance of optimal climate conditions has a direct influence on crop growth performance, but it usually increases the required equipment cost. Traditionally, greenhouse installations have required a great effort to connect and distribute all the sensors and data acquisition systems. These installations need many data and power wires to be distributed along the greenhouses, making the system complex and expensive. For this reason, and others such as unavailability of distributed actuators, only individual sensors are usually located in a fixed point that is selected as representative of the overall greenhouse dynamics. On the other hand, the actuation system in greenhouses is usually composed by mechanical devices controlled by relays, being desirable to reduce the number of commutations of the control signals from security and economical point of views. Therefore, and in order to face these drawbacks, this paper describes how the greenhouse climate control can be represented as an event-based system in combination with wireless sensor networks, where low-frequency dynamics variables have to be controlled and control actions are mainly calculated against events produced by external disturbances. The proposed control system allows saving costs related with wear minimization and prolonging the actuator life, but keeping promising performance results. Analysis and conclusions are given by means of simulation results. PMID:22389597

  16. Simulation of greenhouse climate monitoring and control with wireless sensor network and event-based control.

    PubMed

    Pawlowski, Andrzej; Guzman, Jose Luis; Rodríguez, Francisco; Berenguel, Manuel; Sánchez, José; Dormido, Sebastián

    2009-01-01

    Monitoring and control of the greenhouse environment play a decisive role in greenhouse production processes. Assurance of optimal climate conditions has a direct influence on crop growth performance, but it usually increases the required equipment cost. Traditionally, greenhouse installations have required a great effort to connect and distribute all the sensors and data acquisition systems. These installations need many data and power wires to be distributed along the greenhouses, making the system complex and expensive. For this reason, and others such as unavailability of distributed actuators, only individual sensors are usually located in a fixed point that is selected as representative of the overall greenhouse dynamics. On the other hand, the actuation system in greenhouses is usually composed by mechanical devices controlled by relays, being desirable to reduce the number of commutations of the control signals from security and economical point of views. Therefore, and in order to face these drawbacks, this paper describes how the greenhouse climate control can be represented as an event-based system in combination with wireless sensor networks, where low-frequency dynamics variables have to be controlled and control actions are mainly calculated against events produced by external disturbances. The proposed control system allows saving costs related with wear minimization and prolonging the actuator life, but keeping promising performance results. Analysis and conclusions are given by means of simulation results.

  17. Event-driven contrastive divergence for spiking neuromorphic systems.

    PubMed

    Neftci, Emre; Das, Srinjoy; Pedroni, Bruno; Kreutz-Delgado, Kenneth; Cauwenberghs, Gert

    2013-01-01

    Restricted Boltzmann Machines (RBMs) and Deep Belief Networks have been demonstrated to perform efficiently in a variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissipation and real-time interfacing with the environment. However, the traditional RBM architecture and the commonly used training algorithm known as Contrastive Divergence (CD) are based on discrete updates and exact arithmetics which do not directly map onto a dynamical neural substrate. Here, we present an event-driven variation of CD to train a RBM constructed with Integrate & Fire (I&F) neurons, that is constrained by the limitations of existing and near future neuromorphic hardware platforms. Our strategy is based on neural sampling, which allows us to synthesize a spiking neural network that samples from a target Boltzmann distribution. The recurrent activity of the network replaces the discrete steps of the CD algorithm, while Spike Time Dependent Plasticity (STDP) carries out the weight updates in an online, asynchronous fashion. We demonstrate our approach by training an RBM composed of leaky I&F neurons with STDP synapses to learn a generative model of the MNIST hand-written digit dataset, and by testing it in recognition, generation and cue integration tasks. Our results contribute to a machine learning-driven approach for synthesizing networks of spiking neurons capable of carrying out practical, high-level functionality.

  18. Event-driven contrastive divergence for spiking neuromorphic systems

    PubMed Central

    Neftci, Emre; Das, Srinjoy; Pedroni, Bruno; Kreutz-Delgado, Kenneth; Cauwenberghs, Gert

    2014-01-01

    Restricted Boltzmann Machines (RBMs) and Deep Belief Networks have been demonstrated to perform efficiently in a variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissipation and real-time interfacing with the environment. However, the traditional RBM architecture and the commonly used training algorithm known as Contrastive Divergence (CD) are based on discrete updates and exact arithmetics which do not directly map onto a dynamical neural substrate. Here, we present an event-driven variation of CD to train a RBM constructed with Integrate & Fire (I&F) neurons, that is constrained by the limitations of existing and near future neuromorphic hardware platforms. Our strategy is based on neural sampling, which allows us to synthesize a spiking neural network that samples from a target Boltzmann distribution. The recurrent activity of the network replaces the discrete steps of the CD algorithm, while Spike Time Dependent Plasticity (STDP) carries out the weight updates in an online, asynchronous fashion. We demonstrate our approach by training an RBM composed of leaky I&F neurons with STDP synapses to learn a generative model of the MNIST hand-written digit dataset, and by testing it in recognition, generation and cue integration tasks. Our results contribute to a machine learning-driven approach for synthesizing networks of spiking neurons capable of carrying out practical, high-level functionality. PMID:24574952

  19. Detection, Localization and Quantification of Impact Events on a Stiffened Composite Panel with Embedded Fiber Bragg Grating Sensor Networks

    PubMed Central

    Lamberti, Alfredo; Luyckx, Geert; Van Paepegem, Wim; Rezayat, Ali; Vanlanduit, Steve

    2017-01-01

    Nowadays, it is possible to manufacture smart composite materials with embedded fiber optic sensors. These sensors can be exploited during the composites’ operating life to identify occurring damages such as delaminations. For composite materials adopted in the aviation and wind energy sector, delaminations are most often caused by impacts with external objects. The detection, localization and quantification of such impacts are therefore crucial for the prevention of catastrophic events. In this paper, we demonstrate the feasibility to perform impact identification in smart composite structures with embedded fiber optic sensors. For our analyses, we manufactured a carbon fiber reinforced plate in which we embedded a distributed network of fiber Bragg grating (FBG) sensors. We impacted the plate with a modal hammer and we identified the impacts by processing the FBG data with an improved fast phase correlation (FPC) algorithm in combination with a variable selective least squares (VS-LS) inverse solver approach. A total of 164 impacts distributed on 41 possible impact locations were analyzed. We compared our methodology with the traditional P-Inv based approach. In terms of impact localization, our methodology performed better in 70.7% of the cases. An improvement on the impact time domain reconstruction was achieved in 95.1% of the cases. PMID:28368319

  20. Detection, Localization and Quantification of Impact Events on a Stiffened Composite Panel with Embedded Fiber Bragg Grating Sensor Networks.

    PubMed

    Lamberti, Alfredo; Luyckx, Geert; Van Paepegem, Wim; Rezayat, Ali; Vanlanduit, Steve

    2017-04-01

    Nowadays, it is possible to manufacture smart composite materials with embedded fiber optic sensors. These sensors can be exploited during the composites' operating life to identify occurring damages such as delaminations. For composite materials adopted in the aviation and wind energy sector, delaminations are most often caused by impacts with external objects. The detection, localization and quantification of such impacts are therefore crucial for the prevention of catastrophic events. In this paper, we demonstrate the feasibility to perform impact identification in smart composite structures with embedded fiber optic sensors. For our analyses, we manufactured a carbon fiber reinforced plate in which we embedded a distributed network of fiber Bragg grating (FBG) sensors. We impacted the plate with a modal hammer and we identified the impacts by processing the FBG data with an improved fast phase correlation (FPC) algorithm in combination with a variable selective least squares (VS-LS) inverse solver approach. A total of 164 impacts distributed on 41 possible impact locations were analyzed. We compared our methodology with the traditional P-Inv based approach. In terms of impact localization, our methodology performed better in 70.7% of the cases. An improvement on the impact time domain reconstruction was achieved in 95 . 1 % of the cases.

  1. An extreme events laboratory to provide network centric collaborative situation assessment and decision making

    NASA Astrophysics Data System (ADS)

    Panulla, Brian J.; More, Loretta D.; Shumaker, Wade R.; Jones, Michael D.; Hooper, Robert; Vernon, Jeffrey M.; Aungst, Stanley G.

    2009-05-01

    Rapid improvements in communications infrastructure and sophistication of commercial hand-held devices provide a major new source of information for assessing extreme situations such as environmental crises. In particular, ad hoc collections of humans can act as "soft sensors" to augment data collected by traditional sensors in a net-centric environment (in effect, "crowd-sourcing" observational data). A need exists to understand how to task such soft sensors, characterize their performance and fuse the data with traditional data sources. In order to quantitatively study such situations, as well as study distributed decision-making, we have developed an Extreme Events Laboratory (EEL) at The Pennsylvania State University. This facility provides a network-centric, collaborative situation assessment and decision-making capability by supporting experiments involving human observers, distributed decision making and cognition, and crisis management. The EEL spans the information chain from energy detection via sensors, human observations, signal and image processing, pattern recognition, statistical estimation, multi-sensor data fusion, visualization and analytics, and modeling and simulation. The EEL command center combines COTS and custom collaboration tools in innovative ways, providing capabilities such as geo-spatial visualization and dynamic mash-ups of multiple data sources. This paper describes the EEL and several on-going human-in-the-loop experiments aimed at understanding the new collective observation and analysis landscape.

  2. Sensor fusion IV: Control paradigms and data structures; Proceedings of the Meeting, Boston, MA, Nov. 12-15, 1991

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S. (Editor)

    1992-01-01

    Various papers on control paradigms and data structures in sensor fusion are presented. The general topics addressed include: decision models and computational methods, sensor modeling and data representation, active sensing strategies, geometric planning and visualization, task-driven sensing, motion analysis, models motivated biology and psychology, decentralized detection and distributed decision, data fusion architectures, robust estimation of shapes and features, application and implementation. Some of the individual subjects considered are: the Firefly experiment on neural networks for distributed sensor data fusion, manifold traversing as a model for learning control of autonomous robots, choice of coordinate systems for multiple sensor fusion, continuous motion using task-directed stereo vision, interactive and cooperative sensing and control for advanced teleoperation, knowledge-based imaging for terrain analysis, physical and digital simulations for IVA robotics.

  3. Greedy Sparse Approaches for Homological Coverage in Location Unaware Sensor Networks

    DTIC Science & Technology

    2017-12-08

    GlobalSIP); 2013 Dec; Austin , TX . p. 595– 598. 33. Farah C, Schwaner F, Abedi A, Worboys M. Distributed homology algorithm to detect topological events...ARL-TR-8235•DEC 2017 US Army Research Laboratory Greedy Sparse Approaches for Homological Coverage in Location-Unaware Sensor Net- works by Terrence...8235•DEC 2017 US Army Research Laboratory Greedy Sparse Approaches for Homological Coverage in Location-Unaware Sensor Net- works by Terrence J Moore

  4. Cross-layer protocol design for QoS optimization in real-time wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2010-04-01

    The metrics of quality of service (QoS) for each sensor type in a wireless sensor network can be associated with metrics for multimedia that describe the quality of fused information, e.g., throughput, delay, jitter, packet error rate, information correlation, etc. These QoS metrics are typically set at the highest, or application, layer of the protocol stack to ensure that performance requirements for each type of sensor data are satisfied. Application-layer metrics, in turn, depend on the support of the lower protocol layers: session, transport, network, data link (MAC), and physical. The dependencies of the QoS metrics on the performance of the higher layers of the Open System Interconnection (OSI) reference model of the WSN protocol, together with that of the lower three layers, are the basis for a comprehensive approach to QoS optimization for multiple sensor types in a general WSN model. The cross-layer design accounts for the distributed power consumption along energy-constrained routes and their constituent nodes. Following the author's previous work, the cross-layer interactions in the WSN protocol are represented by a set of concatenated protocol parameters and enabling resource levels. The "best" cross-layer designs to achieve optimal QoS are established by applying the general theory of martingale representations to the parameterized multivariate point processes (MVPPs) for discrete random events occurring in the WSN. Adaptive control of network behavior through the cross-layer design is realized through the parametric factorization of the stochastic conditional rates of the MVPPs. The cross-layer protocol parameters for optimal QoS are determined in terms of solutions to stochastic dynamic programming conditions derived from models of transient flows for heterogeneous sensor data and aggregate information over a finite time horizon. Markov state processes, embedded within the complex combinatorial history of WSN events, are more computationally tractable and lead to simplifications for any simulated or analytical performance evaluations of the cross-layer designs.

  5. Report of the sensor readout electronics panel

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Carson, J.; Kleinhans, W.; Kosonocky, W.; Kozlowski, L.; Pecsalski, A.; Silver, A.; Spieler, H.; Woolaway, J.

    1991-01-01

    The findings of the Sensor Readout Electronics Panel are summarized in regard to technology assessment and recommended development plans. In addition to two specific readout issues, cryogenic readouts and sub-electron noise, the panel considered three advanced technology areas that impact the ability to achieve large format sensor arrays. These are mega-pixel focal plane packaging issues, focal plane to data processing module interfaces, and event driven readout architectures. Development in each of these five areas was judged to have significant impact in enabling the sensor performance desired for the Astrotech 21 mission set. Other readout issues, such as focal plane signal processing or other high volume data acquisition applications important for Eos-type mapping, were determined not to be relevant for astrophysics science goals.

  6. Sampled-data consensus in switching networks of integrators based on edge events

    NASA Astrophysics Data System (ADS)

    Xiao, Feng; Meng, Xiangyu; Chen, Tongwen

    2015-02-01

    This paper investigates the event-driven sampled-data consensus in switching networks of multiple integrators and studies both the bidirectional interaction and leader-following passive reaction topologies in a unified framework. In these topologies, each information link is modelled by an edge of the information graph and assigned a sequence of edge events, which activate the mutual data sampling and controller updates of the two linked agents. Two kinds of edge-event-detecting rules are proposed for the general asynchronous data-sampling case and the synchronous periodic event-detecting case. They are implemented in a distributed fashion, and their effectiveness in reducing communication costs and solving consensus problems under a jointly connected topology condition is shown by both theoretical analysis and simulation examples.

  7. A novel fiber-optical vibration defending system with on-line intelligent identification function

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Xie, Xin; Li, Hanyu; Li, Xiaoyu; Wu, Yu; Gong, Yuan; Rao, Yunjiang

    2013-09-01

    Capacity of the sensor network is always a bottleneck problem for the novel FBG-based quasi-distributed fiberoptical defending system. In this paper, a highly sensitive sensing network with FBG vibration sensors is presented to relieve stress of the capacity and the system cost. However, higher sensitivity may cause higher Nuisance Alarm Rates (NARs) in practical uses. It is necessary to further classify the intrusion pattern or threat level and determine the validity of an unexpected event. Then an intelligent identification method is proposed by extracting the statistical features of the vibration signals in the time domain, and inputting them into a 3-layer Back-Propagation(BP) Artificial Neural Network to classify the events of interest. Experiments of both simulation and field tests are carried out to validate its effectiveness. The results show the recognition rate can be achieved up to 100% for the simulation signals and as high as 96.03% in the real tests.

  8. A Gaussian Mixture Model-based continuous Boundary Detection for 3D sensor networks.

    PubMed

    Chen, Jiehui; Salim, Mariam B; Matsumoto, Mitsuji

    2010-01-01

    This paper proposes a high precision Gaussian Mixture Model-based novel Boundary Detection 3D (BD3D) scheme with reasonable implementation cost for 3D cases by selecting a minimum number of Boundary sensor Nodes (BNs) in continuous moving objects. It shows apparent advantages in that two classes of boundary and non-boundary sensor nodes can be efficiently classified using the model selection techniques for finite mixture models; furthermore, the set of sensor readings within each sensor node's spatial neighbors is formulated using a Gaussian Mixture Model; different from DECOMO [1] and COBOM [2], we also formatted a BN Array with an additional own sensor reading to benefit selecting Event BNs (EBNs) and non-EBNs from the observations of BNs. In particular, we propose a Thick Section Model (TSM) to solve the problem of transition between 2D and 3D. It is verified by simulations that the BD3D 2D model outperforms DECOMO and COBOM in terms of average residual energy and the number of BNs selected, while the BD3D 3D model demonstrates sound performance even for sensor networks with low densities especially when the value of the sensor transmission range (r) is larger than the value of Section Thickness (d) in TSM. We have also rigorously proved its correctness for continuous geometric domains and full robustness for sensor networks over 3D terrains.

  9. Multi-mode clustering model for hierarchical wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hu, Xiangdong; Li, Yongfu; Xu, Huifen

    2017-03-01

    The topology management, i.e., clusters maintenance, of wireless sensor networks (WSNs) is still a challenge due to its numerous nodes, diverse application scenarios and limited resources as well as complex dynamics. To address this issue, a multi-mode clustering model (M2 CM) is proposed to maintain the clusters for hierarchical WSNs in this study. In particular, unlike the traditional time-trigger model based on the whole-network and periodic style, the M2 CM is proposed based on the local and event-trigger operations. In addition, an adaptive local maintenance algorithm is designed for the broken clusters in the WSNs using the spatial-temporal demand changes accordingly. Numerical experiments are performed using the NS2 network simulation platform. Results validate the effectiveness of the proposed model with respect to the network maintenance costs, node energy consumption and transmitted data as well as the network lifetime.

  10. Exact subthreshold integration with continuous spike times in discrete-time neural network simulations.

    PubMed

    Morrison, Abigail; Straube, Sirko; Plesser, Hans Ekkehard; Diesmann, Markus

    2007-01-01

    Very large networks of spiking neurons can be simulated efficiently in parallel under the constraint that spike times are bound to an equidistant time grid. Within this scheme, the subthreshold dynamics of a wide class of integrate-and-fire-type neuron models can be integrated exactly from one grid point to the next. However, the loss in accuracy caused by restricting spike times to the grid can have undesirable consequences, which has led to interest in interpolating spike times between the grid points to retrieve an adequate representation of network dynamics. We demonstrate that the exact integration scheme can be combined naturally with off-grid spike events found by interpolation. We show that by exploiting the existence of a minimal synaptic propagation delay, the need for a central event queue is removed, so that the precision of event-driven simulation on the level of single neurons is combined with the efficiency of time-driven global scheduling. Further, for neuron models with linear subthreshold dynamics, even local event queuing can be avoided, resulting in much greater efficiency on the single-neuron level. These ideas are exemplified by two implementations of a widely used neuron model. We present a measure for the efficiency of network simulations in terms of their integration error and show that for a wide range of input spike rates, the novel techniques we present are both more accurate and faster than standard techniques.

  11. Remote Autonomous Sensor Networks: A Study in Redundancy and Life Cycle Costs

    NASA Astrophysics Data System (ADS)

    Ahlrichs, M.; Dotson, A.; Cenek, M.

    2017-12-01

    The remote nature of the United States and Canada border and their extreme seasonal shifts has made monitoring much of the area impossible using conventional monitoring techniques. Currently, the United States has large gaps in its ability to detect movement on an as-needed-basis in remote areas. The proposed autonomous sensor network aims to meet that need by developing a product that is low cost, robust, and can be deployed on an as-needed-basis for short term monitoring events. This is accomplished by identifying radio frequency disturbance and acoustic disturbance. This project aims to validate the proposed design and offer optimization strategies by conducting a redundancy model as well as performing a Life Cycle Assessment (LCA). The model will incorporate topological, meteorological, and land cover datasets to estimate sensor loss over a three-month period, ensuring that the remaining network does not have significant gaps in coverage which preclude being able to receive and transmit data. The LCA will investigate the materials used to create the sensor to generate an estimate of the total environmental energy that is utilized to create the network and offer alternative materials and distribution methods that can lower this cost. This platform can function as a stand-alone monitoring network or provide additional spatial and temporal resolution to existing monitoring networks. This study aims to create the framework to determine if a sensor's design and distribution is appropriate for the target environment. The incorporation of a LCA will seek to answer if the data a proposed sensor network will collect outweighs the environmental damage that will result from its deployment. Furthermore, as the arctic continues to thaw and economic development grows, the methodology described in paper will function as a guidance document to ensure that future sensor networks have a minimal impact on these pristine areas.

  12. Design and development of a wireless sensor network to monitor snow depth in multiple catchments in the American River basin, California: hardware selection and sensor placement techniques

    NASA Astrophysics Data System (ADS)

    Kerkez, B.; Rice, R.; Glaser, S. D.; Bales, R. C.; Saksa, P. C.

    2010-12-01

    A 100-node wireless sensor network (WSN) was designed for the purpose of monitoring snow depth in two watersheds, spanning 3 km2 in the American River basin, in the central Sierra Nevada of California. The network will be deployed as a prototype project that will become a core element of a larger water information system for the Sierra Nevada. The site conditions range from mid-elevation forested areas to sub-alpine terrain with light forest cover. Extreme temperature and humidity fluctuations, along with heavy rain and snowfall events, create particularly challenging conditions for wireless communications. We show how statistics gathered from a previously deployed 60-node WSN, located in the Southern Sierra Critical Zone Observatory, were used to inform design. We adapted robust network hardware, manufactured by Dust Networks for highly demanding industrial monitoring, and added linear amplifiers to the radios to improve transmission distances. We also designed a custom data-logging board to interface the WSN hardware with snow-depth sensors. Due to the large distance between sensing locations, and complexity of terrain, we analyzed network statistics to select the location of repeater nodes, to create a redundant and reliable mesh. This optimized network topology will maximize transmission distances, while ensuring power-efficient network operations throughout harsh winter conditions. At least 30 of the 100 nodes will actively sense snow depth, while the remainder will act as sensor-ready repeaters in the mesh. Data from a previously conducted snow survey was used to create a Gaussian Process model of snow depth; variance estimates produced by this model were used to suggest near-optimal locations for snow-depth sensors to measure the variability across a 1 km2 grid. We compare the locations selected by the sensor placement algorithm to those made through expert opinion, and offer explanations for differences resulting from each approach.

  13. Multi-hop routing mechanism for reliable sensor computing.

    PubMed

    Chen, Jiann-Liang; Ma, Yi-Wei; Lai, Chia-Ping; Hu, Chia-Cheng; Huang, Yueh-Min

    2009-01-01

    Current research on routing in wireless sensor computing concentrates on increasing the service lifetime, enabling scalability for large number of sensors and supporting fault tolerance for battery exhaustion and broken nodes. A sensor node is naturally exposed to various sources of unreliable communication channels and node failures. Sensor nodes have many failure modes, and each failure degrades the network performance. This work develops a novel mechanism, called Reliable Routing Mechanism (RRM), based on a hybrid cluster-based routing protocol to specify the best reliable routing path for sensor computing. Table-driven intra-cluster routing and on-demand inter-cluster routing are combined by changing the relationship between clusters for sensor computing. Applying a reliable routing mechanism in sensor computing can improve routing reliability, maintain low packet loss, minimize management overhead and save energy consumption. Simulation results indicate that the reliability of the proposed RRM mechanism is around 25% higher than that of the Dynamic Source Routing (DSR) and ad hoc On-demand Distance Vector routing (AODV) mechanisms.

  14. WIFIRE Data Model and Catalog for Wildfire Data and Tools

    NASA Astrophysics Data System (ADS)

    Altintas, I.; Crawl, D.; Cowart, C.; Gupta, A.; Block, J.; de Callafon, R.

    2014-12-01

    The WIFIRE project (wifire.ucsd.edu) is building an end-to-end cyberinfrastructure for real-time and data-driven simulation, prediction and visualization of wildfire behavior. WIFIRE may be used by wildfire management authorities in the future to predict wildfire rate of spread and direction, and assess the effectiveness of high-density sensor networks in improving fire and weather predictions. WIFIRE has created a data model for wildfire resources including sensed and archived data, sensors, satellites, cameras, modeling tools, workflows and social information including Twitter feeds. This data model and associated wildfire resource catalog includes a detailed description of the HPWREN sensor network, SDG&E's Mesonet, and NASA MODIS. In addition, the WIFIRE data-model describes how to integrate the data from multiple heterogeneous sources to provide detailed fire-related information. The data catalog describes 'Observables' captured by each instrument using multiple ontologies including OGC SensorML and NASA SWEET. Observables include measurements such as wind speed, air temperature, and relative humidity, as well as their accuracy and resolution. We have implemented a REST service for publishing to and querying from the catalog using Web Application Description Language (WADL). We are creating web-based user interfaces and mobile device Apps that use the REST interface for dissemination to wildfire modeling community and project partners covering academic, private, and government laboratories while generating value to emergency officials and the general public. Additionally, the Kepler scientific workflow system is instrumented to interact with this data catalog to access real-time streaming and archived wildfire data and stream it into dynamic data-driven wildfire models at scale.

  15. A Hybrid Path-Oriented Code Assignment CDMA-Based MAC Protocol for Underwater Acoustic Sensor Networks

    PubMed Central

    Chen, Huifang; Fan, Guangyu; Xie, Lei; Cui, Jun-Hong

    2013-01-01

    Due to the characteristics of underwater acoustic channel, media access control (MAC) protocols designed for underwater acoustic sensor networks (UWASNs) are quite different from those for terrestrial wireless sensor networks. Moreover, in a sink-oriented network with event information generation in a sensor field and message forwarding to the sink hop-by-hop, the sensors near the sink have to transmit more packets than those far from the sink, and then a funneling effect occurs, which leads to packet congestion, collisions and losses, especially in UWASNs with long propagation delays. An improved CDMA-based MAC protocol, named path-oriented code assignment (POCA) CDMA MAC (POCA-CDMA-MAC), is proposed for UWASNs in this paper. In the proposed MAC protocol, both the round-robin method and CDMA technology are adopted to make the sink receive packets from multiple paths simultaneously. Since the number of paths for information gathering is much less than that of nodes, the length of the spreading code used in the POCA-CDMA-MAC protocol is shorter greatly than that used in the CDMA-based protocols with transmitter-oriented code assignment (TOCA) or receiver-oriented code assignment (ROCA). Simulation results show that the proposed POCA-CDMA-MAC protocol achieves a higher network throughput and a lower end-to-end delay compared to other CDMA-based MAC protocols. PMID:24193100

  16. A hybrid path-oriented code assignment CDMA-based MAC protocol for underwater acoustic sensor networks.

    PubMed

    Chen, Huifang; Fan, Guangyu; Xie, Lei; Cui, Jun-Hong

    2013-11-04

    Due to the characteristics of underwater acoustic channel, media access control (MAC) protocols designed for underwater acoustic sensor networks (UWASNs) are quite different from those for terrestrial wireless sensor networks. Moreover, in a sink-oriented network with event information generation in a sensor field and message forwarding to the sink hop-by-hop, the sensors near the sink have to transmit more packets than those far from the sink, and then a funneling effect occurs, which leads to packet congestion, collisions and losses, especially in UWASNs with long propagation delays. An improved CDMA-based MAC protocol, named path-oriented code assignment (POCA) CDMA MAC (POCA-CDMA-MAC), is proposed for UWASNs in this paper. In the proposed MAC protocol, both the round-robin method and CDMA technology are adopted to make the sink receive packets from multiple paths simultaneously. Since the number of paths for information gathering is much less than that of nodes, the length of the spreading code used in the POCA-CDMA-MAC protocol is shorter greatly than that used in the CDMA-based protocols with transmitter-oriented code assignment (TOCA) or receiver-oriented code assignment (ROCA). Simulation results show that the proposed POCA-CDMA-MAC protocol achieves a higher network throughput and a lower end-to-end delay compared to other CDMA-based MAC protocols.

  17. Stream Intermittency Sensors Monitor the Onset and Duration of Stream Flow Along a Channel Network During Storms

    NASA Astrophysics Data System (ADS)

    Jensen, C.; McGuire, K. J.

    2017-12-01

    Headwater streams are spatially extensive, accounting for a majority of global stream length, and supply downstream water bodies with water, sediment, organic matter, and pollutants. Much of this transmission occurs episodically during storms when stream flow and connectivity are high. Many headwaters are temporary streams that expand and contract in length in response to storms and seasonality. Understanding where and when streams carry flow is critical for conserving headwaters and protecting downstream water quality, but storm events are difficult to study in small catchments. The rise and fall of stream flow occurs rapidly in headwaters, making observation of the entire stream network difficult. Stream intermittency sensors that detect the presence or absence of water can reveal wetting and drying patterns over short time scales. We installed 50 intermittency sensors along the channel network of a small catchment (35 ha) in the Valley and Ridge of southwest Virginia. Previous work shows stream length is highly variable in this shale catchment, as the drainage density spans two orders of magnitude. The sensors record data every 15 minutes for one year to capture different seasons, antecedent moisture conditions, and precipitation rates. We seek to determine whether hysteresis between stream flow and network length occurs on the rising and falling limbs of events and if reach-scale characteristics such as valley width explain spatial patterns of flow duration. Our results indicate reaches with a wide, sediment-filled valley floor carry water for shorter periods of time than confined channel segments with steep valley side slopes. During earlier field mapping surveys, we only observed flow in a few of the tributaries for the wettest conditions mapped. The sensors now show that these tributaries flow more frequently during much smaller storms, but only for brief periods of time (< 1 hour). The high temporal sampling resolution of the sensors permits a more realistic estimate of flow duration in temporary streams, which field surveys may, otherwise, underestimate. Such continuous datasets on stream network length will allow researchers to more accurately assess the value of headwater reaches for contributions to environmental services such as aquatic habitat, hyporheic exchange, and mass fluxes of solutes.

  18. Motion camera based on a custom vision sensor and an FPGA architecture

    NASA Astrophysics Data System (ADS)

    Arias-Estrada, Miguel

    1998-09-01

    A digital camera for custom focal plane arrays was developed. The camera allows the test and development of analog or mixed-mode arrays for focal plane processing. The camera is used with a custom sensor for motion detection to implement a motion computation system. The custom focal plane sensor detects moving edges at the pixel level using analog VLSI techniques. The sensor communicates motion events using the event-address protocol associated to a temporal reference. In a second stage, a coprocessing architecture based on a field programmable gate array (FPGA) computes the time-of-travel between adjacent pixels. The FPGA allows rapid prototyping and flexible architecture development. Furthermore, the FPGA interfaces the sensor to a compact PC computer which is used for high level control and data communication to the local network. The camera could be used in applications such as self-guided vehicles, mobile robotics and smart surveillance systems. The programmability of the FPGA allows the exploration of further signal processing like spatial edge detection or image segmentation tasks. The article details the motion algorithm, the sensor architecture, the use of the event- address protocol for velocity vector computation and the FPGA architecture used in the motion camera system.

  19. Hybrid Architectural Framework for C4ISR and Discrete-Event Simulation (DES) to Support Sensor-Driven Model Synthesis in Real-World Scenarios

    DTIC Science & Technology

    2013-09-01

    which utilizes FTA and then loads it into a DES engine to generate simulation results. .......44 Figure 21. This simulation architecture is...While Discrete Event Simulation ( DES ) can provide accurate time estimation and fast simulation speed, models utilizing it often suffer...C4ISR progress in MDW is developed in this research to demonstrate the feasibility of AEMF- DES and explore its potential. The simulation (MDSIM

  20. Real-time Monitoring Network to Characterize Anthropogenic and Natural Events Affecting the Hudson River, NY

    NASA Astrophysics Data System (ADS)

    Islam, M. S.; Bonner, J. S.; Fuller, C.; Kirkey, W.; Ojo, T.

    2011-12-01

    The Hudson River watershed spans 34,700 km2 predominantly in New York State, including agricultural, wilderness, and urban areas. The Hudson River supports many activities including shipping, supplies water for municipal, commercial, and agricultural uses, and is an important recreational resource. As the population increases within this watershed, so does the anthropogenic impact on this natural system. To address the impacts of anthropogenic and natural activities on this ecosystem, the River and Estuary Observatory Network (REON) is being developed through a joint venture between the Beacon Institute, Clarkson University, General Electric Inc. and IBM Inc. to monitor New York's Hudson and Mohawk Rivers in real-time. REON uses four sensor platform types with multiple nodes within the network to capture environmentally relevant episodic events. Sensor platform types include: 1) fixed robotic vertical profiler (FRVP); 2) mobile robotic undulating platform (MRUP); 3) fixed acoustic Doppler current profiler (FADCP) and 4) Autonomous Underwater Vehicle (AUV). The FRVP periodically generates a vertical profile with respect to water temperature, salinity, dissolved oxygen, particle concentration and size distribution, and fluorescence. The MRUP utilizes an undulating tow-body tethered behind a research vessel to measure the same set of water parameters as the FRVP, but does so 'synchronically' over a highly-resolved spatial regime. The fixed ADCP provides continuous water current profiles. The AUV maps four-dimensional (time, latitude, longitude, depth) variation of water quality, water currents and bathymetry along a pre-determined transect route. REON data can be used to identify episodic events, both anthropogenic and natural, that impact the Hudson River. For example, a strong heat signature associated with cooling water discharge from the Indian Point nuclear power plant was detected with the MRUP. The FRVP monitoring platform at Beacon, NY, located in the transition region between fresh and saline water, captured the occurrence of strong precipitation event on the Hudson river as indicated by reduced water column salinity levels in the water column. Despite the large influx of freshwater and suspended solids originating as precipitation runoff, tidal forces dominated the net water transport and coincident suspended particle load. Such information is crucial to track the particle-driven contaminant movement in the water column. Both the FRVP and MRUP have been deployed in an active Poly-Chlorinated Biphenyls Superfund site to characterize the fundamental sediment transport mechanisms affecting remedial dredging operations. A potential application of this monitoring system is in the development of an adaptive remedial operation, where activity would be adjusted to maintain conditions within threshold limits based on real time environmental observations. Further, observational REON data can be integrated with water quality and hydrodynamic models that can be used to evaluate episodic events and their subsequent impacts to the Hudson River.

  1. Distributed Efficient Similarity Search Mechanism in Wireless Sensor Networks

    PubMed Central

    Ahmed, Khandakar; Gregory, Mark A.

    2015-01-01

    The Wireless Sensor Network similarity search problem has received considerable research attention due to sensor hardware imprecision and environmental parameter variations. Most of the state-of-the-art distributed data centric storage (DCS) schemes lack optimization for similarity queries of events. In this paper, a DCS scheme with metric based similarity searching (DCSMSS) is proposed. DCSMSS takes motivation from vector distance index, called iDistance, in order to transform the issue of similarity searching into the problem of an interval search in one dimension. In addition, a sector based distance routing algorithm is used to efficiently route messages. Extensive simulation results reveal that DCSMSS is highly efficient and significantly outperforms previous approaches in processing similarity search queries. PMID:25751081

  2. Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array

    NASA Astrophysics Data System (ADS)

    Zang, Arno; Stephansson, Ove; Stenberg, Leif; Plenkers, Katrin; Specht, Sebastian; Milkereit, Claus; Schill, Eva; Kwiatek, Grzegorz; Dresen, Georg; Zimmermann, Günter; Dahm, Torsten; Weber, Michael

    2017-02-01

    In this paper, an underground experiment at the Äspö Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multistage hydraulic fracturing with minimal impact on the environment, that is, seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive and pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Äspö HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocentres obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multistage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broad-band recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Ävrö granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events are found to be smaller in the progressive treatment with frequent phases of depressurization.

  3. Out of Place, Out of Mind: Schema-Driven False Memory Effects for Object-Location Bindings

    ERIC Educational Resources Information Center

    Lew, Adina R.; Howe, Mark L.

    2017-01-01

    Events consist of diverse elements, each processed in specialized neocortical networks, with temporal lobe memory systems binding these elements to form coherent event memories. We provide a novel theoretical analysis of an unexplored consequence of the independence of memory systems for elements and their bindings, 1 that raises the paradoxical…

  4. A Survey of Insider Attack Detection Research

    DTIC Science & Technology

    2008-08-25

    modeling of statistical features , such as the frequency of events, the duration of events, the co-occurrence of multiple events combined through...forms of attack that have been reported [Error! Reference source not found.]. For example: • Unauthorized extraction , duplication, or exfiltration...network level. Schultz pointed out that not one approach will work but solutions need to be based on multiple sensors to be able to find any combination

  5. Model-Driven Approach for Body Area Network Application Development.

    PubMed

    Venčkauskas, Algimantas; Štuikys, Vytautas; Jusas, Nerijus; Burbaitė, Renata

    2016-05-12

    This paper introduces the sensor-networked IoT model as a prototype to support the design of Body Area Network (BAN) applications for healthcare. Using the model, we analyze the synergistic effect of the functional requirements (data collection from the human body and transferring it to the top level) and non-functional requirements (trade-offs between energy-security-environmental factors, treated as Quality-of-Service (QoS)). We use feature models to represent the requirements at the earliest stage for the analysis and describe a model-driven methodology to design the possible BAN applications. Firstly, we specify the requirements as the problem domain (PD) variability model for the BAN applications. Next, we introduce the generative technology (meta-programming as the solution domain (SD)) and the mapping procedure to map the PD feature-based variability model onto the SD feature model. Finally, we create an executable meta-specification that represents the BAN functionality to describe the variability of the problem domain though transformations. The meta-specification (along with the meta-language processor) is a software generator for multiple BAN-oriented applications. We validate the methodology with experiments and a case study to generate a family of programs for the BAN sensor controllers. This enables to obtain the adequate measure of QoS efficiently through the interactive adjustment of the meta-parameter values and re-generation process for the concrete BAN application.

  6. Model-Driven Approach for Body Area Network Application Development

    PubMed Central

    Venčkauskas, Algimantas; Štuikys, Vytautas; Jusas, Nerijus; Burbaitė, Renata

    2016-01-01

    This paper introduces the sensor-networked IoT model as a prototype to support the design of Body Area Network (BAN) applications for healthcare. Using the model, we analyze the synergistic effect of the functional requirements (data collection from the human body and transferring it to the top level) and non-functional requirements (trade-offs between energy-security-environmental factors, treated as Quality-of-Service (QoS)). We use feature models to represent the requirements at the earliest stage for the analysis and describe a model-driven methodology to design the possible BAN applications. Firstly, we specify the requirements as the problem domain (PD) variability model for the BAN applications. Next, we introduce the generative technology (meta-programming as the solution domain (SD)) and the mapping procedure to map the PD feature-based variability model onto the SD feature model. Finally, we create an executable meta-specification that represents the BAN functionality to describe the variability of the problem domain though transformations. The meta-specification (along with the meta-language processor) is a software generator for multiple BAN-oriented applications. We validate the methodology with experiments and a case study to generate a family of programs for the BAN sensor controllers. This enables to obtain the adequate measure of QoS efficiently through the interactive adjustment of the meta-parameter values and re-generation process for the concrete BAN application. PMID:27187394

  7. Real-time classification of signals from three-component seismic sensors using neural nets

    NASA Astrophysics Data System (ADS)

    Bowman, B. C.; Dowla, F.

    1992-05-01

    Adaptive seismic data acquisition systems with capabilities of signal discrimination and event classification are important in treaty monitoring, proliferation, and earthquake early detection systems. Potential applications include monitoring underground chemical explosions, as well as other military, cultural, and natural activities where characteristics of signals change rapidly and without warning. In these applications, the ability to detect and interpret events rapidly without falling behind the influx of the data is critical. We developed a system for real-time data acquisition, analysis, learning, and classification of recorded events employing some of the latest technology in computer hardware, software, and artificial neural networks methods. The system is able to train dynamically, and updates its knowledge based on new data. The software is modular and hardware-independent; i.e., the front-end instrumentation is transparent to the analysis system. The software is designed to take advantage of the multiprocessing environment of the Unix operating system. The Unix System V shared memory and static RAM protocols for data access and the semaphore mechanism for interprocess communications were used. As the three-component sensor detects a seismic signal, it is displayed graphically on a color monitor using X11/Xlib graphics with interactive screening capabilities. For interesting events, the triaxial signal polarization is computed, a fast Fourier Transform (FFT) algorithm is applied, and the normalized power spectrum is transmitted to a backpropagation neural network for event classification. The system is currently capable of handling three data channels with a sampling rate of 500 Hz, which covers the bandwidth of most seismic events. The system has been tested in laboratory setting with artificial events generated in the vicinity of a three-component sensor.

  8. An Intelligent Cooperative Visual Sensor Network for Urban Mobility

    PubMed Central

    Leone, Giuseppe Riccardo; Petracca, Matteo; Salvetti, Ovidio; Azzarà, Andrea

    2017-01-01

    Smart cities are demanding solutions for improved traffic efficiency, in order to guarantee optimal access to mobility resources available in urban areas. Intelligent video analytics deployed directly on board embedded sensors offers great opportunities to gather highly informative data about traffic and transport, allowing reconstruction of a real-time neat picture of urban mobility patterns. In this paper, we present a visual sensor network in which each node embeds computer vision logics for analyzing in real time urban traffic. The nodes in the network share their perceptions and build a global and comprehensive interpretation of the analyzed scenes in a cooperative and adaptive fashion. This is possible thanks to an especially designed Internet of Things (IoT) compliant middleware which encompasses in-network event composition as well as full support of Machine-2-Machine (M2M) communication mechanism. The potential of the proposed cooperative visual sensor network is shown with two sample applications in urban mobility connected to the estimation of vehicular flows and parking management. Besides providing detailed results of each key component of the proposed solution, the validity of the approach is demonstrated by extensive field tests that proved the suitability of the system in providing a scalable, adaptable and extensible data collection layer for managing and understanding mobility in smart cities. PMID:29125535

  9. An Intelligent Cooperative Visual Sensor Network for Urban Mobility.

    PubMed

    Leone, Giuseppe Riccardo; Moroni, Davide; Pieri, Gabriele; Petracca, Matteo; Salvetti, Ovidio; Azzarà, Andrea; Marino, Francesco

    2017-11-10

    Smart cities are demanding solutions for improved traffic efficiency, in order to guarantee optimal access to mobility resources available in urban areas. Intelligent video analytics deployed directly on board embedded sensors offers great opportunities to gather highly informative data about traffic and transport, allowing reconstruction of a real-time neat picture of urban mobility patterns. In this paper, we present a visual sensor network in which each node embeds computer vision logics for analyzing in real time urban traffic. The nodes in the network share their perceptions and build a global and comprehensive interpretation of the analyzed scenes in a cooperative and adaptive fashion. This is possible thanks to an especially designed Internet of Things (IoT) compliant middleware which encompasses in-network event composition as well as full support of Machine-2-Machine (M2M) communication mechanism. The potential of the proposed cooperative visual sensor network is shown with two sample applications in urban mobility connected to the estimation of vehicular flows and parking management. Besides providing detailed results of each key component of the proposed solution, the validity of the approach is demonstrated by extensive field tests that proved the suitability of the system in providing a scalable, adaptable and extensible data collection layer for managing and understanding mobility in smart cities.

  10. Development of Integration Framework for Sensor Network and Satellite Image based on OGC Web Services

    NASA Astrophysics Data System (ADS)

    Ninsawat, Sarawut; Yamamoto, Hirokazu; Kamei, Akihide; Nakamura, Ryosuke; Tsuchida, Satoshi; Maeda, Takahisa

    2010-05-01

    With the availability of network enabled sensing devices, the volume of information being collected by networked sensors has increased dramatically in recent years. Over 100 physical, chemical and biological properties can be sensed using in-situ or remote sensing technology. A collection of these sensor nodes forms a sensor network, which is easily deployable to provide a high degree of visibility into real-world physical processes as events unfold. The sensor observation network could allow gathering of diverse types of data at greater spatial and temporal resolution, through the use of wired or wireless network infrastructure, thus real-time or near-real time data from sensor observation network allow researchers and decision-makers to respond speedily to events. However, in the case of environmental monitoring, only a capability to acquire in-situ data periodically is not sufficient but also the management and proper utilization of data also need to be careful consideration. It requires the implementation of database and IT solutions that are robust, scalable and able to interoperate between difference and distributed stakeholders to provide lucid, timely and accurate update to researchers, planners and citizens. The GEO (Global Earth Observation) Grid is primarily aiming at providing an e-Science infrastructure for the earth science community. The GEO Grid is designed to integrate various kinds of data related to the earth observation using the grid technology, which is developed for sharing data, storage, and computational powers of high performance computing, and is accessible as a set of services. A comprehensive web-based system for integrating field sensor and data satellite image based on various open standards of OGC (Open Geospatial Consortium) specifications has been developed. Web Processing Service (WPS), which is most likely the future direction of Web-GIS, performs the computation of spatial data from distributed data sources and returns the outcome in a standard format. The interoperability capabilities and Service Oriented Architecture (SOA) of web services allow incorporating between sensor network measurement available from Sensor Observation Service (SOS) and satellite remote sensing data from Web Mapping Service (WMS) as distributed data sources for WPS. Various applications have been developed to demonstrate the efficacy of integrating heterogeneous data source. For example, the validation of the MODIS aerosol products (MOD08_D3, the Level-3 MODIS Atmosphere Daily Global Product) by ground-based measurements using the sunphotometer (skyradiometer, Prede POM-02) installed at Phenological Eyes Network (PEN) sites in Japan. Furthermore, the web-based framework system for studying a relationship between calculated Vegetation Index from MODIS satellite image surface reflectance (MOD09GA, the Surface Reflectance Daily L2G Global 1km and 500m Product) and Gross Primary Production (GPP) field measurement at flux tower site in Thailand and Japan has been also developed. The success of both applications will contribute to maximize data utilization and improve accuracy of information by validate MODIS satellite products using high degree of accuracy and temporal measurement of field measurement data.

  11. iSANLA: intelligent sensor and actuator network for life science applications.

    PubMed

    Schloesser, Mario; Schnitzer, Andreas; Ying, Hong; Silex, Carmen; Schiek, Michael

    2008-01-01

    In the fields of neurological rehabilitation and neurophysiological research there is a strong need for miniaturized, multi channel, battery driven, wireless networking DAQ systems enabling real-time digital signal processing and feedback experiments. For the scientific investigation on the passive auditory based 3D-orientation of Barn Owls and the scientific research on vegetative locomotor coordination of Parkinson's disease patients during rehabilitation we developed our 'intelligent Sensor and Actuator Network for Life science Application' (iSANLA) system. Implemented on the ultra low power microcontroller MSP430 sample rates up to 96 kHz have been realised for single channel DAQ. The system includes lossless local data storage up to 4 GB. With its outer dimensions of 20mm per rim and less than 15 g of weight including the Lithium-Ion battery our modular designed sensor node is thoroughly capable of up to eight channel recordings with 8 kHz sample rate each and provides sufficient computational power for digital signal processing ready to start our first mobile experiments. For wireless mobility a compact communication protocol based on the IEEE 802.15.4 wireless standard with net data rates up to 141 kbit/s has been implemented. To merge the lossless acquired data of the distributed iNODEs a time synchronization protocol has been developed preserving causality. Hence the necessary time synchronous start of the data acquisition inside a network of multiple sensors with a precision better than the highest sample rate has been realized.

  12. Resilient filtering for time-varying stochastic coupling networks under the event-triggering scheduling

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Liang, Jinling; Dobaie, Abdullah M.

    2018-07-01

    The resilient filtering problem is considered for a class of time-varying networks with stochastic coupling strengths. An event-triggered strategy is adopted to save the network resources by scheduling the signal transmission from the sensors to the filters based on certain prescribed rules. Moreover, the filter parameters to be designed are subject to gain perturbations. The primary aim of the addressed problem is to determine a resilient filter that ensures an acceptable filtering performance for the considered network with event-triggering scheduling. To handle such an issue, an upper bound on the estimation error variance is established for each node according to the stochastic analysis. Subsequently, the resilient filter is designed by locally minimizing the derived upper bound at each iteration. Moreover, rigorous analysis shows the monotonicity of the minimal upper bound regarding the triggering threshold. Finally, a simulation example is presented to show effectiveness of the established filter scheme.

  13. Event-triggered H∞ state estimation for semi-Markov jumping discrete-time neural networks with quantization.

    PubMed

    Rakkiyappan, R; Maheswari, K; Velmurugan, G; Park, Ju H

    2018-05-17

    This paper investigates H ∞ state estimation problem for a class of semi-Markovian jumping discrete-time neural networks model with event-triggered scheme and quantization. First, a new event-triggered communication scheme is introduced to determine whether or not the current sampled sensor data should be broad-casted and transmitted to the quantizer, which can save the limited communication resource. Second, a novel communication framework is employed by the logarithmic quantizer that quantifies and reduces the data transmission rate in the network, which apparently improves the communication efficiency of networks. Third, a stabilization criterion is derived based on the sufficient condition which guarantees a prescribed H ∞ performance level in the estimation error system in terms of the linear matrix inequalities. Finally, numerical simulations are given to illustrate the correctness of the proposed scheme. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. CIFAR10-DVS: An Event-Stream Dataset for Object Classification

    PubMed Central

    Li, Hongmin; Liu, Hanchao; Ji, Xiangyang; Li, Guoqi; Shi, Luping

    2017-01-01

    Neuromorphic vision research requires high-quality and appropriately challenging event-stream datasets to support continuous improvement of algorithms and methods. However, creating event-stream datasets is a time-consuming task, which needs to be recorded using the neuromorphic cameras. Currently, there are limited event-stream datasets available. In this work, by utilizing the popular computer vision dataset CIFAR-10, we converted 10,000 frame-based images into 10,000 event streams using a dynamic vision sensor (DVS), providing an event-stream dataset of intermediate difficulty in 10 different classes, named as “CIFAR10-DVS.” The conversion of event-stream dataset was implemented by a repeated closed-loop smooth (RCLS) movement of frame-based images. Unlike the conversion of frame-based images by moving the camera, the image movement is more realistic in respect of its practical applications. The repeated closed-loop image movement generates rich local intensity changes in continuous time which are quantized by each pixel of the DVS camera to generate events. Furthermore, a performance benchmark in event-driven object classification is provided based on state-of-the-art classification algorithms. This work provides a large event-stream dataset and an initial benchmark for comparison, which may boost algorithm developments in even-driven pattern recognition and object classification. PMID:28611582

  15. CIFAR10-DVS: An Event-Stream Dataset for Object Classification.

    PubMed

    Li, Hongmin; Liu, Hanchao; Ji, Xiangyang; Li, Guoqi; Shi, Luping

    2017-01-01

    Neuromorphic vision research requires high-quality and appropriately challenging event-stream datasets to support continuous improvement of algorithms and methods. However, creating event-stream datasets is a time-consuming task, which needs to be recorded using the neuromorphic cameras. Currently, there are limited event-stream datasets available. In this work, by utilizing the popular computer vision dataset CIFAR-10, we converted 10,000 frame-based images into 10,000 event streams using a dynamic vision sensor (DVS), providing an event-stream dataset of intermediate difficulty in 10 different classes, named as "CIFAR10-DVS." The conversion of event-stream dataset was implemented by a repeated closed-loop smooth (RCLS) movement of frame-based images. Unlike the conversion of frame-based images by moving the camera, the image movement is more realistic in respect of its practical applications. The repeated closed-loop image movement generates rich local intensity changes in continuous time which are quantized by each pixel of the DVS camera to generate events. Furthermore, a performance benchmark in event-driven object classification is provided based on state-of-the-art classification algorithms. This work provides a large event-stream dataset and an initial benchmark for comparison, which may boost algorithm developments in even-driven pattern recognition and object classification.

  16. Building Intrusion Detection with a Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Wälchli, Markus; Braun, Torsten

    This paper addresses the detection and reporting of abnormal building access with a wireless sensor network. A common office room, offering space for two working persons, has been monitored with ten sensor nodes and a base station. The task of the system is to report suspicious office occupation such as office searching by thieves. On the other hand, normal office occupation should not throw alarms. In order to save energy for communication, the system provides all nodes with some adaptive short-term memory. Thus, a set of sensor activation patterns can be temporarily learned. The local memory is implemented as an Adaptive Resonance Theory (ART) neural network. Unknown event patterns detected on sensor node level are reported to the base station, where the system-wide anomaly detection is performed. The anomaly detector is lightweight and completely self-learning. The system can be run autonomously or it could be used as a triggering system to turn on an additional high-resolution system on demand. Our building monitoring system has proven to work reliably in different evaluated scenarios. Communication costs of up to 90% could be saved compared to a threshold-based approach without local memory.

  17. UAV Cooperation Architectures for Persistent Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, R S; Kent, C A; Jones, E D

    2003-03-20

    With the number of small, inexpensive Unmanned Air Vehicles (UAVs) increasing, it is feasible to build multi-UAV sensing networks. In particular, by using UAVs in conjunction with unattended ground sensors, a degree of persistent sensing can be achieved. With proper UAV cooperation algorithms, sensing is maintained even though exceptional events, e.g., the loss of a UAV, have occurred. In this paper a cooperation technique that allows multiple UAVs to perform coordinated, persistent sensing with unattended ground sensors over a wide area is described. The technique automatically adapts the UAV paths so that on the average, the amount of time thatmore » any sensor has to wait for a UAV revisit is minimized. We also describe the Simulation, Tactical Operations and Mission Planning (STOMP) software architecture. This architecture is designed to help simulate and operate distributed sensor networks where multiple UAVs are used to collect data.« less

  18. Sandwich node architecture for agile wireless sensor networks for real-time structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Wang, Zi; Pakzad, Shamim; Cheng, Liang

    2012-04-01

    In recent years, wireless sensor network (WSN), as a powerful tool, has been widely applied to structural health monitoring (SHM) due to its low cost of deployment. Several commercial hardware platforms of wireless sensor networks (WSN) have been developed and used for structural monitoring applications [1,2]. A typical design of a node includes a sensor board and a mote connected to it. Sensing units, analog filters and analog-to-digital converters (ADCs) are integrated on the sensor board and the mote consists of a microcontroller and a wireless transceiver. Generally, there are a set of sensor boards compatible with the same model of mote and the selection of the sensor board depends on the specific applications. A WSN system based on this node lacks the capability of interrupting its scheduled task to start a higher priority task. This shortcoming is rooted in the hardware architecture of the node. The proposed sandwich-node architecture is designed to remedy the shortcomings of the existing one for task preemption. A sandwich node is composed of a sensor board and two motes. The first mote is dedicated to managing the sensor board and processing acquired data. The second mote controls the first mote via commands. A prototype has been implemented using Imote2 and verified by an emulation in which one mote is triggered by a remote base station and then preempts the running task at the other mote for handling an emergency event.

  19. Distributed video data fusion and mining

    NASA Astrophysics Data System (ADS)

    Chang, Edward Y.; Wang, Yuan-Fang; Rodoplu, Volkan

    2004-09-01

    This paper presents an event sensing paradigm for intelligent event-analysis in a wireless, ad hoc, multi-camera, video surveillance system. In particilar, we present statistical methods that we have developed to support three aspects of event sensing: 1) energy-efficient, resource-conserving, and robust sensor data fusion and analysis, 2) intelligent event modeling and recognition, and 3) rapid deployment, dynamic configuration, and continuous operation of the camera networks. We outline our preliminary results, and discuss future directions that research might take.

  20. Adaptive Information Dissemination Control to Provide Diffdelay for the Internet of Things.

    PubMed

    Liu, Xiao; Liu, Anfeng; Huang, Changqin

    2017-01-12

    Applications running on the Internet of Things, such as the Wireless Sensor and Actuator Networks (WSANs) platform, generally have different quality of service (QoS) requirements. For urgent events, it is crucial that information be reported to the actuator quickly, and the communication cost is the second factor. However, for interesting events, communication costs, network lifetime and time all become important factors. In most situations, these different requirements cannot be satisfied simultaneously. In this paper, an adaptive communication control based on a differentiated delay (ACCDS) scheme is proposed to resolve this conflict. In an ACCDS, source nodes of events adaptively send various searching actuators routings (SARs) based on the degree of sensitivity to delay while maintaining the network lifetime. For a delay-sensitive event, the source node sends a large number of SARs to actuators to identify and inform the actuators in an extremely short time; thus, action can be taken quickly but at higher communication costs. For delay-insensitive events, the source node sends fewer SARs to reduce communication costs and improve network lifetime. Therefore, an ACCDS can meet the QoS requirements of different events using a differentiated delay framework. Theoretical analysis simulation results indicate that an ACCDS provides delay and communication costs and differentiated services; an ACCDS scheme can reduce the network delay by 11.111%-53.684% for a delay-sensitive event and reduce the communication costs by 5%-22.308% for interesting events, and reduce the network lifetime by about 28.713%.

  1. Adaptive Information Dissemination Control to Provide Diffdelay for the Internet of Things

    PubMed Central

    Liu, Xiao; Liu, Anfeng; Huang, Changqin

    2017-01-01

    Applications running on the Internet of Things, such as the Wireless Sensor and Actuator Networks (WSANs) platform, generally have different quality of service (QoS) requirements. For urgent events, it is crucial that information be reported to the actuator quickly, and the communication cost is the second factor. However, for interesting events, communication costs, network lifetime and time all become important factors. In most situations, these different requirements cannot be satisfied simultaneously. In this paper, an adaptive communication control based on a differentiated delay (ACCDS) scheme is proposed to resolve this conflict. In an ACCDS, source nodes of events adaptively send various searching actuators routings (SARs) based on the degree of sensitivity to delay while maintaining the network lifetime. For a delay-sensitive event, the source node sends a large number of SARs to actuators to identify and inform the actuators in an extremely short time; thus, action can be taken quickly but at higher communication costs. For delay-insensitive events, the source node sends fewer SARs to reduce communication costs and improve network lifetime. Therefore, an ACCDS can meet the QoS requirements of different events using a differentiated delay framework. Theoretical analysis simulation results indicate that an ACCDS provides delay and communication costs and differentiated services; an ACCDS scheme can reduce the network delay by 11.111%–53.684% for a delay-sensitive event and reduce the communication costs by 5%–22.308% for interesting events, and reduce the network lifetime by about 28.713%. PMID:28085097

  2. Impact detection and analysis/health monitoring system for composites

    NASA Astrophysics Data System (ADS)

    Child, James E.; Kumar, Amrita; Beard, Shawn; Qing, Peter; Paslay, Don G.

    2006-05-01

    This manuscript includes information from test evaluations and development of a smart event detection system for use in monitoring composite rocket motor cases for damaging impacts. The primary purpose of the system as a sentry for case impact event logging is accomplished through; implementation of a passive network of miniaturized piezoelectric sensors, logger with pre-determined force threshold levels, and analysis software. Empirical approaches to structural characterizations and network calibrations along with implementation techniques were successfully evaluated, testing was performed on both unloaded (less propellants) as well as loaded rocket motors with the cylindrical areas being of primary focus. The logged test impact data with known physical network parameters provided for impact location as well as force determination, typically within 3 inches of actual impact location using a 4 foot network grid and force accuracy within 25%of an actual impact force. The simplistic empirical characterization approach along with the robust / flexible sensor grids and battery operated portable logger show promise of a system that can increase confidence in composite integrity for both new assets progressing through manufacturing processes as well as existing assets that may be in storage or transportation.

  3. FunBlocks. A modular framework for AmI system development.

    PubMed

    Baquero, Rafael; Rodríguez, José; Mendoza, Sonia; Decouchant, Dominique; Papis, Alfredo Piero Mateos

    2012-01-01

    The last decade has seen explosive growth in the technologies required to implement Ambient Intelligence (AmI) systems. Technologies such as facial and speech recognition, home networks, household cleaning robots, to name a few, have become commonplace. However, due to the multidisciplinary nature of AmI systems and the distinct requirements of different user groups, integrating these developments into full-scale systems is not an easy task. In this paper we propose FunBlocks, a minimalist modular framework for the development of AmI systems based on the function module abstraction used in the IEC 61499 standard for distributed control systems. FunBlocks provides a framework for the development of AmI systems through the integration of modules loosely joined by means of an event-driven middleware and a module and sensor/actuator catalog. The modular design of the FunBlocks framework allows the development of AmI systems which can be customized to a wide variety of usage scenarios.

  4. FunBlocks. A Modular Framework for AmI System Development

    PubMed Central

    Baquero, Rafael; Rodríguez, José; Mendoza, Sonia; Decouchant, Dominique; Papis, Alfredo Piero Mateos

    2012-01-01

    The last decade has seen explosive growth in the technologies required to implement Ambient Intelligence (AmI) systems. Technologies such as facial and speech recognition, home networks, household cleaning robots, to name a few, have become commonplace. However, due to the multidisciplinary nature of AmI systems and the distinct requirements of different user groups, integrating these developments into full-scale systems is not an easy task. In this paper we propose FunBlocks, a minimalist modular framework for the development of AmI systems based on the function module abstraction used in the IEC 61499 standard for distributed control systems. FunBlocks provides a framework for the development of AmI systems through the integration of modules loosely joined by means of an event-driven middleware and a module and sensor/actuator catalog. The modular design of the FunBlocks framework allows the development of AmI systems which can be customized to a wide variety of usage scenarios. PMID:23112599

  5. Fundamental Physical Limits for the Size of Future Planetary Surface Exploration Systems

    NASA Astrophysics Data System (ADS)

    Andrews, F.; Hobbs, S. E.; Honstvet, I.; Snelling, M.

    2004-04-01

    With the current interest in the potential use of Nanotechnology for spacecraft, it becomes increasingly likely that environmental sensor probes, such as the "lab-on-a-chip" concept, will take advantage of this technology and become orders of magnitude smaller than current sensor systems. This paper begins to investigate how small these systems could theoretically become, and what are the governing laws and limiting factors that determine that minimum size. The investigation focuses on the three primary subsystems for a sensor network of this nature Sensing, Information Processing and Communication. In general, there are few fundamental physical laws that limit the size of the sensor system. Limits tend to be driven by factors other than the laws of physics. These include user requirements, such as the acceptable probability of error, and the potential external environment.

  6. Patterns of precipitation and soil moisture extremes in Texas, US: A complex network analysis

    NASA Astrophysics Data System (ADS)

    Sun, Alexander Y.; Xia, Youlong; Caldwell, Todd G.; Hao, Zengchao

    2018-02-01

    Understanding of the spatial and temporal dynamics of extreme precipitation not only improves prediction skills, but also helps to prioritize hazard mitigation efforts. This study seeks to enhance the understanding of spatiotemporal covariation patterns embedded in precipitation (P) and soil moisture (SM) by using an event-based, complex-network-theoretic approach. Events concurrences are quantified using a nonparametric event synchronization measure, and spatial patterns of hydroclimate variables are analyzed by using several network measures and a community detection algorithm. SM-P coupling is examined using a directional event coincidence analysis measure that takes the order of event occurrences into account. The complex network approach is demonstrated for Texas, US, a region possessing a rich set of hydroclimate features and is frequented by catastrophic flooding. Gridded daily observed P data and simulated SM data are used to create complex networks of P and SM extremes. The uncovered high degree centrality regions and community structures are qualitatively in agreement with the overall existing knowledge of hydroclimate extremes in the study region. Our analyses provide new visual insights on the propagation, connectivity, and synchronicity of P extremes, as well as the SM-P coupling, in this flood-prone region, and can be readily used as a basis for event-driven predictive analytics for other regions.

  7. Acoustic event location and background noise characterization on a free flying infrasound sensor network in the stratosphere

    NASA Astrophysics Data System (ADS)

    Bowman, Daniel C.; Albert, Sarah A.

    2018-06-01

    A variety of Earth surface and atmospheric sources generate low-frequency sound waves that can travel great distances. Despite a rich history of ground-based sensor studies, very few experiments have investigated the prospects of free floating microphone arrays at high altitudes. However, recent initiatives have shown that such networks have very low background noise and may sample an acoustic wave field that is fundamentally different than that at Earth's surface. The experiments have been limited to at most two stations at altitude, making acoustic event detection and localization difficult. We describe the deployment of four drifting microphone stations at altitudes between 21 and 24 km above sea level. The stations detected one of two regional ground-based chemical explosions as well as the ocean microbarom while travelling almost 500 km across the American Southwest. The explosion signal consisted of multiple arrivals; signal amplitudes did not correlate with sensor elevation or source range. The waveforms and propagation patterns suggest interactions with gravity waves at 35-45 km altitude. A sparse network method that employed curved wave front corrections was able to determine the backazimuth from the free flying network to the acoustic source. Episodic signals similar to those seen on previous flights in the same region were noted, but their source remains unclear. Background noise levels were commensurate with those on infrasound stations in the International Monitoring System below 2 s.

  8. Acoustic Event Location and Background Noise Characterization on a Free Flying Infrasound Sensor Network in the Stratosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Daniel C.; Albert, Sarah A.

    We present that a variety of Earth surface and atmospheric sources generate low frequency sound waves that can travel great distances. Despite a rich history of ground-based sensor studies, very few experiments have investigated the prospects of free floating microphone arrays at high altitudes. However, recent initiatives have shown that such networks have very low background noise and may sample an acoustic wave field that is fundamentally different than that at Earth’s surface. The experiments have been limited to at most two stations at altitude, making acoustic event detection and localization difficult. We describe the deployment of four drifting microphonemore » stations at altitudes between 21 and 24 km above sea level. The stations detected one of two regional ground-based chemical explosions as well as the ocean microbarom while traveling almost 500 km across the American Southwest. The explosion signal consisted of multiple arrivals; signal amplitudes did not correlate with sensor elevation or source range. The waveforms and propagation patterns suggest interactions with gravity waves in the 35-45 km altitude. A sparse network method that employed curved wave front corrections was able to determine the backazimuth from the free flying network to the acoustic source. Episodic signals similar to those seen on previous flights in the same region were noted, but their source remains unclear. Lastly, background noise levels were commensurate with those on infrasound stations in the International Monitoring System below 2 seconds.« less

  9. Acoustic Event Location and Background Noise Characterization on a Free Flying Infrasound Sensor Network in the Stratosphere

    DOE PAGES

    Bowman, Daniel C.; Albert, Sarah A.

    2018-02-22

    We present that a variety of Earth surface and atmospheric sources generate low frequency sound waves that can travel great distances. Despite a rich history of ground-based sensor studies, very few experiments have investigated the prospects of free floating microphone arrays at high altitudes. However, recent initiatives have shown that such networks have very low background noise and may sample an acoustic wave field that is fundamentally different than that at Earth’s surface. The experiments have been limited to at most two stations at altitude, making acoustic event detection and localization difficult. We describe the deployment of four drifting microphonemore » stations at altitudes between 21 and 24 km above sea level. The stations detected one of two regional ground-based chemical explosions as well as the ocean microbarom while traveling almost 500 km across the American Southwest. The explosion signal consisted of multiple arrivals; signal amplitudes did not correlate with sensor elevation or source range. The waveforms and propagation patterns suggest interactions with gravity waves in the 35-45 km altitude. A sparse network method that employed curved wave front corrections was able to determine the backazimuth from the free flying network to the acoustic source. Episodic signals similar to those seen on previous flights in the same region were noted, but their source remains unclear. Lastly, background noise levels were commensurate with those on infrasound stations in the International Monitoring System below 2 seconds.« less

  10. Redesign of the Electronics and the Mechanical Sensor of the STS-1 Very Broadband Seismometer

    NASA Astrophysics Data System (ADS)

    Romanowicz, B.; van Zandt, T.; Friday, J.; Karavas, W.; Porritt, R.; Uhrhammer, R.; Wielandt, E.

    2008-12-01

    The STS-1 VBB, widely viewed as the finest VBB sensor in the world, is currently the principal broad-band seismometer used by the Global Seismographic Network (GSN), GEOSCOPE, and several other global or regional seismic networks. Its continued operation is critical to future, fundamental research in a number of important disciplines within seismology. These include modal studies of the earth, the determination of source processes of very large earthquakes, and tsunami warning. We have recently completed the development of a replacement electronics module for the Streckeisen STS-1 Very Broad-Band (VBB) seismometer. This module maintains the outstanding analog performance of the original sensor electronics, while providing a number of unique performance enhancements that will improve the operability of STS-1 sensors within a modern, digital seismic network. We describe the attributes of this new electronics module, which has now reached production stage. As a second step in this collaboration between the Berkeley Seismological Laboratory and Metrozet (Inc), we have started the development of a commercially-viable replacement to the aging, but state-of-the-art mechanical sensor. We discuss the goals of this new project. The design of the new sensor aims at maintaining many of the unique features that have made the original sensor the world's finest instrument for low frequency seismic recording. It will, however, implement a number of enhancements that promise to improve operating performance and ease-of-use. These include the use of capacitive position sensing to reduce high frequency self-noise, an increase in the upper corner frequency of the sensor, much tighter tolerance (sensor-to-sensor) in scalar response values, and a new, highly-integrated package for deploying the sensors as a standard triaxial set. Importantly, the replacement sensor development is driven by principles of "design-for manufacturing". As such, the new sensor will include a number of features that will allow a modern, "deterministic manufacturing process" to replace what was historically an iterative, "workshop" approach to manufacture the STS-1. This is crucial to reducing the cost, and manufacturing lead time, of the new sensor.

  11. Remote Sensing of Selected Water-Quality Indicators with the Hyperspectral Imager for the Coastal Ocean (HICO) Sensor

    DTIC Science & Technology

    2014-01-01

    monitoring wind -driven re-suspension events (Chen 2006), a predictive factor for patho- gens such as E. coli (Nevers and Whitman 2005), and a...properties where HICO imagery could be acquired as well as along the major salinity gradients of each estuary (Figure 2). A Sea- Bird 25 CTD (Sea- Bird

  12. Daily and Nondaily Oral Preexposure Prophylaxis in Men and Transgender Women Who Have Sex With Men: The Human Immunodeficiency Virus Prevention Trials Network 067/ADAPT Study.

    PubMed

    Grant, Robert M; Mannheimer, Sharon; Hughes, James P; Hirsch-Moverman, Yael; Loquere, Avelino; Chitwarakorn, Anupong; Curlin, Marcel E; Li, Maoji; Amico, K Rivet; Hendrix, Craig W; Anderson, Peter L; Dye, Bonnie J; Marzinke, Mark A; Piwowar-Manning, Estelle; McKinstry, Laura; Elharrar, Vanessa; Stirratt, Michael; Rooney, James F; Eshleman, Susan H; McNicholl, Janet M; van Griensven, Frits; Holtz, Timothy H

    2018-05-17

    Nondaily dosing of oral preexposure prophylaxis (PrEP) may provide equivalent coverage of sex events compared with daily dosing. At-risk men and transgender women who have sex with men were randomly assigned to 1 of 3 dosing regimens: 1 tablet daily, 1 tablet twice weekly with a postsex dose (time-driven), or 1 tablet before and after sex (event-driven), and were followed for coverage of sex events with pre- and postsex dosing measured by weekly self-report, drug concentrations, and electronic drug monitoring. From July 2012 to May 2014, 357 participants were randomized. In Bangkok, the coverage of sex events was 85% for the daily arm compared with 84% for the time-driven arm (P = .79) and 74% for the event-driven arm (P = .02). In Harlem, coverage was 66%, 47% (P = .01), and 52% (P = .01) for these groups. In Bangkok, PrEP medication concentrations in blood were consistent with use of ≥2 tablets per week in >95% of visits when sex was reported in the prior week, while in Harlem, such medication concentrations occurred in 48.5% in the daily arm, 30.9% in the time-driven arm, and 16.7% in the event-driven arm (P < .0001). Creatinine elevations were more common in the daily arm (P = .050), although they were not dose limiting. Daily dosing recommendations increased coverage and protective drug concentrations in the Harlem cohort, while daily and nondaily regimens led to comparably favorable outcomes in Bangkok, where participants had higher levels of education and employment. NCT01327651.

  13. Microwave-Driven Multifunctional Capability of Membrane Structures

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Chu, Sang-Hyong; Song, Kyo D.; King, Glen C.

    2002-01-01

    A large, ultra lightweight space structure, such as solar sails and Gossamer spacecrafts, requires a distributed power source to alleviate wire networks, unlike the localized on-board power infrastructures typically found in most small spacecrafts. The concept of microwave-driven multifunctional capability for membrane structures is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry and on-board power infrastructures. A rectenna array based on a patch configuration for high voltage output was developed to drive membrane actuators, sensors, probes, or other devices. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The use of patch rectennas adds a significant amount of rigidity to membrane flexibility and they are relatively heavy. A dipole rectenna array (DRA) appears to be ideal for thin-film membrane structures, since DRA is flexible and light. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time.

  14. Weather models as virtual sensors to data-driven rainfall predictions in urban watersheds

    NASA Astrophysics Data System (ADS)

    Cozzi, Lorenzo; Galelli, Stefano; Pascal, Samuel Jolivet De Marc; Castelletti, Andrea

    2013-04-01

    Weather and climate predictions are a key element of urban hydrology where they are used to inform water management and assist in flood warning delivering. Indeed, the modelling of the very fast dynamics of urbanized catchments can be substantially improved by the use of weather/rainfall predictions. For example, in Singapore Marina Reservoir catchment runoff processes have a very short time of concentration (roughly one hour) and observational data are thus nearly useless for runoff predictions and weather prediction are required. Unfortunately, radar nowcasting methods do not allow to carrying out long - term weather predictions, whereas numerical models are limited by their coarse spatial scale. Moreover, numerical models are usually poorly reliable because of the fast motion and limited spatial extension of rainfall events. In this study we investigate the combined use of data-driven modelling techniques and weather variables observed/simulated with a numerical model as a way to improve rainfall prediction accuracy and lead time in the Singapore metropolitan area. To explore the feasibility of the approach, we use a Weather Research and Forecast (WRF) model as a virtual sensor network for the input variables (the states of the WRF model) to a machine learning rainfall prediction model. More precisely, we combine an input variable selection method and a non-parametric tree-based model to characterize the empirical relation between the rainfall measured at the catchment level and all possible weather input variables provided by WRF model. We explore different lead time to evaluate the model reliability for different long - term predictions, as well as different time lags to see how past information could improve results. Results show that the proposed approach allow a significant improvement of the prediction accuracy of the WRF model on the Singapore urban area.

  15. What can neuromorphic event-driven precise timing add to spike-based pattern recognition?

    PubMed

    Akolkar, Himanshu; Meyer, Cedric; Clady, Zavier; Marre, Olivier; Bartolozzi, Chiara; Panzeri, Stefano; Benosman, Ryad

    2015-03-01

    This letter introduces a study to precisely measure what an increase in spike timing precision can add to spike-driven pattern recognition algorithms. The concept of generating spikes from images by converting gray levels into spike timings is currently at the basis of almost every spike-based modeling of biological visual systems. The use of images naturally leads to generating incorrect artificial and redundant spike timings and, more important, also contradicts biological findings indicating that visual processing is massively parallel, asynchronous with high temporal resolution. A new concept for acquiring visual information through pixel-individual asynchronous level-crossing sampling has been proposed in a recent generation of asynchronous neuromorphic visual sensors. Unlike conventional cameras, these sensors acquire data not at fixed points in time for the entire array but at fixed amplitude changes of their input, resulting optimally sparse in space and time-pixel individually and precisely timed only if new, (previously unknown) information is available (event based). This letter uses the high temporal resolution spiking output of neuromorphic event-based visual sensors to show that lowering time precision degrades performance on several recognition tasks specifically when reaching the conventional range of machine vision acquisition frequencies (30-60 Hz). The use of information theory to characterize separability between classes for each temporal resolution shows that high temporal acquisition provides up to 70% more information that conventional spikes generated from frame-based acquisition as used in standard artificial vision, thus drastically increasing the separability between classes of objects. Experiments on real data show that the amount of information loss is correlated with temporal precision. Our information-theoretic study highlights the potentials of neuromorphic asynchronous visual sensors for both practical applications and theoretical investigations. Moreover, it suggests that representing visual information as a precise sequence of spike times as reported in the retina offers considerable advantages for neuro-inspired visual computations.

  16. Seamless Tracing of Human Behavior Using Complementary Wearable and House-Embedded Sensors

    PubMed Central

    Augustyniak, Piotr; Smoleń, Magdalena; Mikrut, Zbigniew; Kańtoch, Eliasz

    2014-01-01

    This paper presents a multimodal system for seamless surveillance of elderly people in their living environment. The system uses simultaneously a wearable sensor network for each individual and premise-embedded sensors specific for each environment. The paper demonstrates the benefits of using complementary information from two types of mobility sensors: visual flow-based image analysis and an accelerometer-based wearable network. The paper provides results for indoor recognition of several elementary poses and outdoor recognition of complex movements. Instead of complete system description, particular attention was drawn to a polar histogram-based method of visual pose recognition, complementary use and synchronization of the data from wearable and premise-embedded networks and an automatic danger detection algorithm driven by two premise- and subject-related databases. The novelty of our approach also consists in feeding the databases with real-life recordings from the subject, and in using the dynamic time-warping algorithm for measurements of distance between actions represented as elementary poses in behavioral records. The main results of testing our method include: 95.5% accuracy of elementary pose recognition by the video system, 96.7% accuracy of elementary pose recognition by the accelerometer-based system, 98.9% accuracy of elementary pose recognition by the combined accelerometer and video-based system, and 80% accuracy of complex outdoor activity recognition by the accelerometer-based wearable system. PMID:24787640

  17. SVANET: A smart vehicular ad hoc network for efficient data transmission with wireless sensors.

    PubMed

    Sahoo, Prasan Kumar; Chiang, Ming-Jer; Wu, Shih-Lin

    2014-11-25

    Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET) architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency.

  18. SVANET: A Smart Vehicular Ad Hoc Network for Efficient Data Transmission with Wireless Sensors

    PubMed Central

    Sahoo, Prasan Kumar; Chiang, Ming-Jer; Wu, Shih-Lin

    2014-01-01

    Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET) architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency. PMID:25429409

  19. The “Wireless Sensor Networks for City-Wide Ambient Intelligence (WISE-WAI)” Project

    PubMed Central

    Casari, Paolo; Castellani, Angelo P.; Cenedese, Angelo; Lora, Claudio; Rossi, Michele; Schenato, Luca; Zorzi, Michele

    2009-01-01

    This paper gives a detailed technical overview of some of the activities carried out in the context of the “Wireless Sensor networks for city-Wide Ambient Intelligence (WISE-WAI)” project, funded by the Cassa di Risparmio di Padova e Rovigo Foundation, Italy. The main aim of the project is to demonstrate the feasibility of large-scale wireless sensor network deployments, whereby tiny objects integrating one or more environmental sensors (humidity, temperature, light intensity), a microcontroller and a wireless transceiver are deployed over a large area, which in this case involves the buildings of the Department of Information Engineering at the University of Padova. We will describe how the network is organized to provide full-scale automated functions, and which services and applications it is configured to provide. These applications include long-term environmental monitoring, alarm event detection and propagation, single-sensor interrogation, localization and tracking of objects, assisted navigation, as well as fast data dissemination services to be used, e.g., to rapidly re-program all sensors over-the-air. The organization of such a large testbed requires notable efforts in terms of communication protocols and strategies, whose design must pursue scalability, energy efficiency (while sensors are connected through USB cables for logging and debugging purposes, most of them will be battery-operated), as well as the capability to support applications with diverse requirements. These efforts, the description of a subset of the results obtained so far, and of the final objectives to be met are the scope of the present paper. PMID:22408513

  20. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    PubMed

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  1. Implementation of Cyberinfrastructure and Data Management Workflow for a Large-Scale Sensor Network

    NASA Astrophysics Data System (ADS)

    Jones, A. S.; Horsburgh, J. S.

    2014-12-01

    Monitoring with in situ environmental sensors and other forms of field-based observation presents many challenges for data management, particularly for large-scale networks consisting of multiple sites, sensors, and personnel. The availability and utility of these data in addressing scientific questions relies on effective cyberinfrastructure that facilitates transformation of raw sensor data into functional data products. It also depends on the ability of researchers to share and access the data in useable formats. In addition to addressing the challenges presented by the quantity of data, monitoring networks need practices to ensure high data quality, including procedures and tools for post processing. Data quality is further enhanced if practitioners are able to track equipment, deployments, calibrations, and other events related to site maintenance and associate these details with observational data. In this presentation we will describe the overall workflow that we have developed for research groups and sites conducting long term monitoring using in situ sensors. Features of the workflow include: software tools to automate the transfer of data from field sites to databases, a Python-based program for data quality control post-processing, a web-based application for online discovery and visualization of data, and a data model and web interface for managing physical infrastructure. By automating the data management workflow, the time from collection to analysis is reduced and sharing and publication is facilitated. The incorporation of metadata standards and descriptions and the use of open-source tools enhances the sustainability and reusability of the data. We will describe the workflow and tools that we have developed in the context of the iUTAH (innovative Urban Transitions and Aridregion Hydrosustainability) monitoring network. The iUTAH network consists of aquatic and climate sensors deployed in three watersheds to monitor Gradients Along Mountain to Urban Transitions (GAMUT). The variety of environmental sensors and the multi-watershed, multi-institutional nature of the network necessitate a well-planned and efficient workflow for acquiring, managing, and sharing sensor data, which should be useful for similar large-scale and long-term networks.

  2. Mic Flocks in the Cloud: Harnessing Mobile Ubiquitous Sensor Networks

    NASA Astrophysics Data System (ADS)

    Garces, M. A.; Christe, A.

    2015-12-01

    Smartphones provide a commercial, off-the-shelf solution to capture, store, analyze, and distribute infrasound using on-board or external microphones (mics) as well as on-board barometers. Free iOS infrasound apps can be readily downloaded from the Apple App Store, and Android versions are in progress. Infrasound propagates for great distances, has low sample rates, and provides a tractable pilot study scenario for open distributed sensor networks at regional and global scales using one of the most ubiquitous sensors on Earth - microphones. Data collection is no longer limited to selected vendors at exclusive prices: anybody on Earth can record and stream infrasound, and the diversity of recording systems and environments is rapidly expanding. Global deployment may be fast and easy (www.redvox.io), but comes with the cost of increasing data volume, velocity, variety, and complexity. Flocking - the collective motion of mobile agents - is a natural human response to threats or events of interest. Anticipating, modeling and harnessing flocking sensor topologies will be necessary for adaptive array and network processing. The increasing data quantity and complexity will exceed the processing capacity of human analysts and most research servers. We anticipate practical real-time applications will require the on-demand adaptive scalability and resources of the Cloud. Cloud architectures for such heterogeneous sensor networks will consider eventual integration into the Global Earth Observation System of Systems (GEOSS).

  3. An Amplitude-Based Estimation Method for International Space Station (ISS) Leak Detection and Localization Using Acoustic Sensor Networks

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Madaras, Eric I.

    2009-01-01

    The development of a robust and efficient leak detection and localization system within a space station environment presents a unique challenge. A plausible approach includes the implementation of an acoustic sensor network system that can successfully detect the presence of a leak and determine the location of the leak source. Traditional acoustic detection and localization schemes rely on the phase and amplitude information collected by the sensor array system. Furthermore, the acoustic source signals are assumed to be airborne and far-field. Likewise, there are similar applications in sonar. In solids, there are specialized methods for locating events that are used in geology and in acoustic emission testing that involve sensor arrays and depend on a discernable phase front to the received signal. These methods are ineffective if applied to a sensor detection system within the space station environment. In the case of acoustic signal location, there are significant baffling and structural impediments to the sound path and the source could be in the near-field of a sensor in this particular setting.

  4. The Geothermic Fatigue Hydraulic Fracturing Experiment in Äspö Hard Rock Laboratory, Sweden: New Insights Into Fracture Process through In-situ AE Monitoring

    NASA Astrophysics Data System (ADS)

    Kwiatek, G.; Plenkers, K.; Zang, A.; Stephansson, O.; Stenberg, L.

    2016-12-01

    The geothermic Fatigue Hydraulic Fracturing (FHF) in situ experiment (Nova project 54-14-1) took place in the Äspö Hard Rock Laboratory/Sweden in a 1.8 Ma old granitic to dioritic rock mass. The experiment aims at optimizing geothermal heat exchange in crystalline rock mass by multistage hydraulic fracturing at 10 m scale. Six fractures are driven by three different water injection schemes (continuous, cyclic, pulse pressurization) inside a 28 m long, horizontal borehole at depth level 410 m. The rock volume subject to hydraulic fracturing and monitored by three different networks with acoustic emission (AE), micro-seismicity and electromagnetic sensors is about 30 m x 30 m x 30 m in size. The 16-channel In-situ AE monitoring network by GMuG monitored the rupture generation and propagation in the frequency range 1000 Hz to 100,000 Hz corresponding to rupture dimensions from cm- to dm-scale. The in-situ AE monitoring system detected and analyzed AE activity in-situ (P- and S-wave picking, localization). The results were used to review the ongoing microfracturing activity in near real-time. The in-situ AE monitoring network successfully recorded and localized 196 seismic events for most, but not all, hydraulic fractures. All AE events detected in-situ occurred during fracturing time periods. The source parameters (fracture sizes, moment magnitudes, static stress drop) of AE events framing injection periods were calculated using the combined spectral fitting/spectra ratio techniques. The AE activity is clustered in space and clearly outline the fractures location, its orientation, and expansion as well as their temporal evolution. The outward migration of AE events away from the borehole is observed. Fractures extend up to 7 m from the injection interval in the horizontal borehole. The fractures orientation and location correlate for most fractures roughly with the results gained by image packer. Clear differences in seismic response between hydraulic fractures in different formations and injection schemes are visible which need further investigation. For further analysis all AE data of fracturing time periods were recorded continuously with 1 MHz sampling frequency per channel.

  5. Analysis of three-dimensionally proliferated sensor architectures for flexible SSA

    NASA Astrophysics Data System (ADS)

    Cunio, Phillip M.; Flewelling, Brien

    2018-05-01

    The evolution of space into a congested, contested, and competitive regime drives a commensurate need for awareness of events there. As the number of systems on orbit grows, so will the need for sensing and tracking these systems. One avenue for advanced sensing capability is a widespread network of small but capable Space Situational Awareness (SSA) sensors, proliferated widely in the three-dimensional volume extending from the Earth's surface to the Geosynchronous Earth Orbit (GEO) belt, incorporating multiple different varieties and types of sensors. Due to the freedom of movement afforded by solid surfaces and atmosphere, some of these sensors may have substantial mobility. Accordingly, designing a network for maximum SSA coverage at reasonable cost may entail heterogeneous architectures with common logistics (including modular sensor packages or mobility platforms, which may be flexibly re-assigned). Smaller mobile sensors leveraging Commercial-Off-The-Shelf (COTS) components and software are appealing for their ability to simplify logistics versus large, monolithic, uniquely-exquisite sensor systems. This paper examines concepts for such sensor systems, and analyzes the costs associated with their use, while assessing the benefits (including reduced gap time, weather resilience, and multiple-sensor coverage) that such an architecture enables. Recommendations for preferred modes and mixes of fielding sensors in a heterogeneous architecture are made, and directions for future related research are suggested.

  6. Exploration of Objective Functions for Optimal Placement of Weather Stations

    NASA Astrophysics Data System (ADS)

    Snyder, A.; Dietterich, T.; Selker, J. S.

    2016-12-01

    Many regions of Earth lack ground-based sensing of weather variables. For example, most countries in Sub-Saharan Africa do not have reliable weather station networks. This absence of sensor data has many consequences ranging from public safety (poor prediction and detection of severe weather events), to agriculture (lack of crop insurance), to science (reduced quality of world-wide weather forecasts, climate change measurement, etc.). The Trans-African Hydro-Meteorological Observatory (TAHMO.org) project seeks to address these problems by deploying and operating a large network of weather stations throughout Sub-Saharan Africa. To design the TAHMO network, we must determine where to locate each weather station. We can formulate this as the following optimization problem: Determine a set of N sites that jointly optimize the value of an objective function. The purpose of this poster is to propose and assess several objective functions. In addition to standard objectives (e.g., minimizing the summed squared error of interpolated values over the entire region), we consider objectives that minimize the maximum error over the region and objectives that optimize the detection of extreme events. An additional issue is that each station measures more than 10 variables—how should we balance the accuracy of our interpolated maps for each variable? Weather sensors inevitably drift out of calibration or fail altogether. How can we incorporate robustness to failed sensors into our network design? Another important requirement is that the network should make it possible to detect failed sensors by comparing their readings with those of other stations. How can this requirement be met? Finally, we provide an initial assessment of the computational cost of optimizing these various objective functions. We invite everyone to join the discussion at our poster by proposing additional objectives, identifying additional issues to consider, and expanding our bibliography of relevant papers. A prize (derived from grapes grown in Oregon) will be awarded for the most insightful contribution to the discussion!

  7. Planning and Scheduling for Environmental Sensor Networks

    NASA Astrophysics Data System (ADS)

    Frank, J. D.

    2005-12-01

    Environmental Sensor Networks are a new way of monitoring the environment. They comprise autonomous sensor nodes in the environment that record real-time data, which is retrieved, analyzed, integrated with other data sets (e.g. satellite images, GIS, process models) and ultimately lead to scientific discoveries. Sensor networks must operate within time and resource constraints. Sensors have limited onboard memory, energy, computational power, communications windows and communications bandwidth. The value of data will depend on when, where and how it was collected, how detailed the data is, how long it takes to integrate the data, and how important the data was to the original scientific question. Planning and scheduling of sensor networks is necessary for effective, safe operations in the face of these constraints. For example, power bus limitations may preclude sensors from simultaneously collecting data and communicating without damaging the sensor; planners and schedulers can ensure these operations are ordered so that they do not happen simultaneously. Planning and scheduling can also ensure best use of the sensor network to maximize the value of collected science data. For example, if data is best recorded using a particular camera angle but it is costly in time and energy to achieve this, planners and schedulers can search for times when time and energy are available to achieve the optimal camera angle. Planning and scheduling can handle uncertainty in the problem specification; planners can be re-run when new information is made available, or can generate plans that include contingencies. For example, if bad weather may prevent the collection of data, a contingent plan can check lighting conditions and turn off data collection to save resources if lighting is not ideal. Both mobile and immobile sensors can benefit from planning and scheduling. For example, data collection on otherwise passive sensors can be halted to preserve limited power and memory resources and to reduce the costs of communication. Planning and scheduling is generally a heavy consumer of time, memory and energy resources. This means careful thought must be given to how much planning and scheduling should be done on the sensors themselves, and how much to do elsewhere. The difficulty of planning and scheduling is exacerbated when reasoning about uncertainty. More time, memory and energy is needed to solve such problems, leading either to more expensive sensors, or suboptimal plans. For example, scientifically interesting events may happen at random times, making it difficult to ensure that sufficient resources are availanble. Since uncertainty is usually lowest in proximity to the sensors themselves, this argues for planning and scheduling onboard the sensors. However, cost minimization dictates sensors be kept as simple as possible, reducing the amount of planning and scheduling they can do themselves. Furthermore, coordinating each sensor's independent plans can be difficult. In the full presentation, we will critically review the planning and scheduling systems used by previously fielded sensor networks. We do so primarily from the perspective of the computational sciences, with a focus on taming computational complexity when operating sensor networks. The case studies are derived from sensor networks based on UAVs, satellites, and planetary rovers. Planning and scheduling considerations include multi-sensor coordination, optimizing science value, onboard power management, onboard memory, planning movement actions to acquire data, and managing communications.These case studies offer lessons for future designs of environmental sensor networks.

  8. Soil moisture monitoring in Candelaro basin, Southern Italy

    NASA Astrophysics Data System (ADS)

    Campana, C.; Gigante, V.; Iacobellis, V.

    2012-04-01

    The signature of the hydrologic regime can be investigated, in principle, by recognizing the main mechanisms of runoff generation that take place in the basin and affect the seasonal behavior or the rainfall-driven events. In this framework, besides the implementation of hydrological models, a crucial role should be played by direct observation of key state variables such as soil moisture at different depths and different distances from the river network. In fact, understanding hydrological systems is often limited by the frequency and spatial distribution of observations. Experimental catchments, which are field laboratories with long-term measurements of hydrological variables, are not only sources of data but also sources of knowledge. Wireless distributed sensing platforms are a key technology to address the need for overcoming field limitations such as conflicts between soil use and cable connections. A stand-alone wireless network system has been installed for continuous monitoring of soil water contents at multiple depths along a transect located in Celone basin (sub-basin of Candelaro basin in Puglia, Southern Italy). The transect consists of five verticals, each one having three soil water content sensors at multiple depths: 0,05 m, 0,6 m and 1,2 m below the ground level. The total length of the transect is 307 m and the average distance between the verticals is 77 m. The main elements of the instrumental system installed are: fifteen Decagon 10HS Soil Moisture Sensors, five Decagon Em50R Wireless Radio Data Loggers, one Rain gauge, one Decagon Data Station and one Campbell CR1000 Data Logger. Main advantages of the system as described and presented in this work are that installation of the wireless network system is fast and easy to use, data retrieval and monitoring information over large spatial scales can be obtained in (near) real-time mode and finally other type of sensors can be connected to the system, also offering wide potentials for future applications. First records of the wireless underground network system indicate the presence of interesting patterns in space-time variability of volumetric soil moisture content, that provide evidence of the combined process of vertical infiltration and lateral flow. ACKNOWLEDGEMENT The research in this work is supported by the MIRAGE FP7 project (Grant agreement n. 211732).

  9. A geophone wireless sensor network for investigating glacier stick-slip motion

    NASA Astrophysics Data System (ADS)

    Martinez, Kirk; Hart, Jane K.; Basford, Philip J.; Bragg, Graeme M.; Ward, Tyler; Young, David S.

    2017-08-01

    We have developed an innovative passive borehole geophone system, as part of a wireless environmental sensor network to investigate glacier stick-slip motion. The new geophone nodes use an ARM Cortex-M3 processor with a low power design capable of running on battery power while embedded in the ice. Only data from seismic events was stored, held temporarily on a micro-SD card until they were retrieved by systems on the glacier surface which are connected to the internet. The sampling rates, detection and filtering levels were determined from a field trial using a standard commercial passive seismic system. The new system was installed on the Skalafellsjökull glacier in Iceland and provided encouraging results. The results showed that there was a relationship between surface melt water production and seismic event (ice quakes), and these occurred on a pattern related to the glacier surface melt-water controlled velocity changes (stick-slip motion). Three types of seismic events were identified, which were interpreted to reflect a pattern of till deformation (Type A), basal sliding (Type B) and hydraulic transience (Type C) associated with stick-slip motion.

  10. Collaborative Catchment-Scale Water Quality Management using Integrated Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Zia, Huma; Harris, Nick; Merrett, Geoff

    2013-04-01

    Electronics and Computer Science, University of Southampton, United Kingdom Summary The challenge of improving water quality (WQ) is a growing global concern [1]. Poor WQ is mainly attributed to poor water management and outdated agricultural activities. We propose that collaborative sensor networks spread across an entire catchment can allow cooperation among individual activities for integrated WQ monitoring and management. We show that sharing information on critical parameters among networks of water bodies and farms can enable identification and quantification of the contaminant sources, enabling better decision making for agricultural practices and thereby reducing contaminants fluxes. Motivation and results Nutrient losses from land to water have accelerated due to agricultural and urban pursuits [2]. In many cases, the application of fertiliser can be reduced by 30-50% without any loss of yield [3]. Thus information about nutrient levels and trends around the farm can improve agricultural practices and thereby reduce water contamination. The use of sensor networks for monitoring WQ in a catchment is in its infancy, but more applications are being tested [4]. However, these are focussed on local requirements and are mostly limited to water bodies. They have yet to explore the use of this technology for catchment-scale monitoring and management decisions, in an autonomous and dynamic manner. For effective and integrated WQ management, we propose a system that utilises local monitoring networks across a catchment, with provision for collaborative information sharing. This system of networks shares information about critical events, such as rain or flooding. Higher-level applications make use of this information to inform decisions about nutrient management, improving the quality of monitoring through the provision of richer datasets of catchment information to local networks. In the full paper, we present example scenarios and analyse how the benefits of collaborative information sharing can have a direct influence on agricultural practice. We apply a nutrient management scheme to a model of an example catchment with several individual networks. The networks are able to correlate catchment events to events within their zone of influence, allowing them to adapt their monitoring and control strategy in light of wider changes across the catchment. Results indicate that this can lead to significant reductions in nutrient losses (up to 50%) and better reutilization of nutrients amongst farms, having a positive impact on catchment scale water quality and fertilizer costs. 1. EC, E.C., Directive 2000/60/EC establishing a framework for Community action in the field of water policy, 2000. 2. Rivers, M., K. Smettem, and P. Davies. Estimating future scenarios for farm-watershed nutrient fluxes using dynamic simulation modelling-Can on-farm BMPs really do the job at the watershed scale? in Proc.29th Int.Conf System Dynamics Society, 2011. 2010. Washington 3. Liu, C., et al., On-farm evaluation of winter wheat yield response to residual soil nitrate-N in North China Plain. Agronomy Journal, 2008. 100(6): p. 1527-1534. 4. Kotamäki, N., et al., Wireless in-situ sensor network for agriculture and water monitoring on a river basin scale in Southern Finland: Evaluation from a data user's perspective. Sensors, 2009. 9(4): p. 2862-2883.

  11. A data management and publication workflow for a large-scale, heterogeneous sensor network.

    PubMed

    Jones, Amber Spackman; Horsburgh, Jeffery S; Reeder, Stephanie L; Ramírez, Maurier; Caraballo, Juan

    2015-06-01

    It is common for hydrology researchers to collect data using in situ sensors at high frequencies, for extended durations, and with spatial distributions that produce data volumes requiring infrastructure for data storage, management, and sharing. The availability and utility of these data in addressing scientific questions related to water availability, water quality, and natural disasters relies on effective cyberinfrastructure that facilitates transformation of raw sensor data into usable data products. It also depends on the ability of researchers to share and access the data in useable formats. In this paper, we describe a data management and publication workflow and software tools for research groups and sites conducting long-term monitoring using in situ sensors. Functionality includes the ability to track monitoring equipment inventory and events related to field maintenance. Linking this information to the observational data is imperative in ensuring the quality of sensor-based data products. We present these tools in the context of a case study for the innovative Urban Transitions and Aridregion Hydrosustainability (iUTAH) sensor network. The iUTAH monitoring network includes sensors at aquatic and terrestrial sites for continuous monitoring of common meteorological variables, snow accumulation and melt, soil moisture, surface water flow, and surface water quality. We present the overall workflow we have developed for effectively transferring data from field monitoring sites to ultimate end-users and describe the software tools we have deployed for storing, managing, and sharing the sensor data. These tools are all open source and available for others to use.

  12. ANZA Seismic Network- From Monitoring to Science

    NASA Astrophysics Data System (ADS)

    Vernon, F.; Eakin, J.; Martynov, V.; Newman, R.; Offield, G.; Hindley, A.; Astiz, L.

    2007-05-01

    The ANZA Seismic Network (http:eqinfo.ucsd.edu) utilizes broadband and strong motion sensors with 24-bit dataloggers combined with real-time telemetry to monitor local and regional seismicity in southernmost California. The ANZA network provides real-time data to the IRIS DMC, California Integrated Seismic Network (CISN), other regional networks, and the Advanced National Seismic System (ANSS), in addition to providing near real-time information and monitoring to the greater San Diego community. Twelve high dynamic range broadband and strong motion sensors adjacent to the San Jacinto Fault zone contribute data for earthquake source studies and continue the monitoring of the seismic activity of the San Jacinto fault initiated 24 years ago. Five additional stations are located in the San Diego region with one more station on San Clemente Island. The ANZA network uses the advance wireless networking capabilities of the NSF High Performance Wireless Research and Education Network (http:hpwren.ucsd.edu) to provide the communication infrastructure for the real-time telemetry of Anza seismic stations. The ANZA network uses the Antelope data acquisition software. The combination of high quality hardware, communications, and software allow for an annual network uptime in excess of 99.5% with a median annual station real-time data return rate of 99.3%. Approximately 90,000 events, dominantly local sources but including regional and teleseismic events, comprise the ANZA network waveform database. All waveform data and event data are managed using the Datascope relational database. The ANZA network data has been used in a variety of scientific research including detailed structure of the San Jacinto Fault Zone, earthquake source physics, spatial and temporal studies of aftershocks, array studies of teleseismic body waves, and array studies on the source of microseisms. To augment the location, detection, and high frequency observations of the seismic source spectrum from local earthquakes, the ANZA network is receiving real-time data from borehole arrays located at the UCSD Thornton Hospital, and from UCSB's Borrego Valley and Garner Valley Downhole Arrays. Finally the ANZA network is acquiring data from seven PBO sites each with 300 meter deep MEMs accelerometers, passive seismometers, and a borehole strainmeter.

  13. Cellular telephone-based wide-area radiation detection network

    DOEpatents

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2009-06-09

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  14. THREAT ANTICIPATION AND DECEPTIVE REASONING USING BAYESIAN BELIEF NETWORKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E

    Recent events highlight the need for tools to anticipate threats posed by terrorists. Assessing these threats requires combining information from disparate data sources such as analytic models, simulations, historical data, sensor networks, and user judgments. These disparate data can be combined in a coherent, analytically defensible, and understandable manner using a Bayesian belief network (BBN). In this paper, we develop a BBN threat anticipatory model based on a deceptive reasoning algorithm using a network engineering process that treats the probability distributions of the BBN nodes within the broader context of the system development process.

  15. Limitations of demand- and pressure-driven modeling for large deficient networks

    NASA Astrophysics Data System (ADS)

    Braun, Mathias; Piller, Olivier; Deuerlein, Jochen; Mortazavi, Iraj

    2017-10-01

    The calculation of hydraulic state variables for a network is an important task in managing the distribution of potable water. Over the years the mathematical modeling process has been improved by numerous researchers for utilization in new computer applications and the more realistic modeling of water distribution networks. But, in spite of these continuous advances, there are still a number of physical phenomena that may not be tackled correctly by current models. This paper will take a closer look at the two modeling paradigms given by demand- and pressure-driven modeling. The basic equations are introduced and parallels are drawn with the optimization formulations from electrical engineering. These formulations guarantee the existence and uniqueness of the solution. One of the central questions of the French and German research project ResiWater is the investigation of the network resilience in the case of extreme events or disasters. Under such extraordinary conditions where models are pushed beyond their limits, we talk about deficient network models. Examples of deficient networks are given by highly regulated flow, leakage or pipe bursts and cases where pressure falls below the vapor pressure of water. These examples will be presented and analyzed on the solvability and physical correctness of the solution with respect to demand- and pressure-driven models.

  16. Near real-time analysis of extrinsic Fabry-Perot interferometric sensors under damped vibration using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Dua, Rohit; Watkins, Steve E.

    2009-03-01

    Strain analysis due to vibration can provide insight into structural health. An Extrinsic Fabry-Perot Interferometric (EFPI) sensor under vibrational strain generates a non-linear modulated output. Advanced signal processing techniques, to extract important information such as absolute strain, are required to demodulate this non-linear output. Past research has employed Artificial Neural Networks (ANN) and Fast Fourier Transforms (FFT) to demodulate the EFPI sensor for limited conditions. These demodulation systems could only handle variations in absolute value of strain and frequency of actuation during a vibration event. This project uses an ANN approach to extend the demodulation system to include the variation in the damping coefficient of the actuating vibration, in a near real-time vibration scenario. A computer simulation provides training and testing data for the theoretical output of the EFPI sensor to demonstrate the approaches. FFT needed to be performed on a window of the EFPI output data. A small window of observation is obtained, while maintaining low absolute-strain prediction errors, heuristically. Results are obtained and compared from employing different ANN architectures including multi-layered feedforward ANN trained using Backpropagation Neural Network (BPNN), and Generalized Regression Neural Networks (GRNN). A two-layered algorithm fusion system is developed and tested that yields better results.

  17. GLEON: An Example of Next Generation Network Biogeoscience

    NASA Astrophysics Data System (ADS)

    Weathers, K. C.; Hanson, P. C.

    2014-12-01

    When we think of sensor networks, we often focus on hardware development and deployments and the resulting data and synthesis. Yet, for networks that cross institutional boundaries, such as distributed federations of observatories, people are the critical network resource. They establish the linkages and enable access to and interpretation of the data. In the Global Lake Ecological Observatory Network (GLEON), we found that careful integration of three networks --people, hardware, and data--was essential to providing an effective research environment. Accomplishing this integration is not trivial and requires a shared vision among members, explicit attention to the emerging tenets of the science of team science, and training of scientists at all career stages. In GLEON these efforts have resulted in scientific inferences covering new scales, crossing broad ecosystem gradients, and capturing important environmental events. Network-level capital has been increased by the deployment of instrumented buoys, the creation of new data sets and publicly available models, and new ways to synthesize and analyze high frequency data. The formation of international teams of scientists is essential to these goals. Our approach unites a diverse membership in GLEON-style team science, with emphasis on training and engagement of graduate students while creating knowledge. Examples of the bottom-up scientific output from GLEON include creating and confronting models using high frequency data from sensor networks; interpreting output from biological sensors (e.g., algal pigment sensors) as predictors for water quality indices such as water clarity; and understanding the relationship between occasional, highly noxious algal blooms and fluorometric measurements of pigments from sensor networks. Numerical simulation models are not adequate for predicting highly skewed distributions of phytoplankton in eutrophic lakes, suggesting that our fundamental understanding of phytoplankton population dynamics needs modification as do our models, both of which can be improved with the use of high frequency data.

  18. Social Media in Crisis Management and Forensic Disaster Analysis

    NASA Astrophysics Data System (ADS)

    Dittrich, André; Lucas, Christian

    2014-05-01

    Today, modern sensors or sensor networks provide good quality measurements for the observation of large-scale emergencies as a result of natural disasters. Mostly however, only at certain points in their respective locations and for a very limited number of measurement parameters (e.g. seismograph) and not over the entire course of a disaster event. The proliferation of different social media application (e.g. Twitter, Facebook, Google+, etc.), yields the possibility to use the resulting data as a free and fast supplement or complement to traditional monitoring techniques. In particular, these new channels can serve for rapid detection, for information gathering for emergency protection and for information dissemination. Thus, each user of these networks represents a so-called virtual sensor ('social sensor'), whose eyewitness account can be important for understanding the situation on the ground. The advantages of these social sensors are the high mobility, the versatility of the parameters that can be captured (text, images, videos, etc.) as well as the rapid spread of information. Due to the subjective characteristics however, the data often show different quality and quantity. Against this background, it is essential for an application in crisis management to reasonably (pre-)process the data from social media. Hence, fully-automated processes are used which adequately filter and structure the enormous amount of information and associate it with an event, respectively, a geographic location. This is done through statistical monitoring of the volume of messages (Twitter) in different geographic regions of the world. In combination with a frequency analysis with respect to disaster-relevant terms (in 43 languages), thematic as well as spatio-temporal clustering, an initial assessment regarding the severity and extent of the detected event, its classification and (spatio-temporal) localization can be achieved. This detection in real time (2-5 minutes) thus allows gathering first responder reports or eyewitness reports, which can provide important information for a first situation analysis for the various officials and volunteers, especially in case of large-scale emergencies. Eventually, this can be used in combination with conventional sensors and information sources to conduct a detailed forensic disaster analysis of an event.

  19. Event-Based Sensing and Control for Remote Robot Guidance: An Experimental Case

    PubMed Central

    Santos, Carlos; Martínez-Rey, Miguel; Santiso, Enrique

    2017-01-01

    This paper describes the theoretical and practical foundations for remote control of a mobile robot for nonlinear trajectory tracking using an external localisation sensor. It constitutes a classical networked control system, whereby event-based techniques for both control and state estimation contribute to efficient use of communications and reduce sensor activity. Measurement requests are dictated by an event-based state estimator by setting an upper bound to the estimation error covariance matrix. The rest of the time, state prediction is carried out with the Unscented transformation. This prediction method makes it possible to select the appropriate instants at which to perform actuations on the robot so that guidance performance does not degrade below a certain threshold. Ultimately, we obtained a combined event-based control and estimation solution that drastically reduces communication accesses. The magnitude of this reduction is set according to the tracking error margin of a P3-DX robot following a nonlinear trajectory, remotely controlled with a mini PC and whose pose is detected by a camera sensor. PMID:28878144

  20. System identification of a tied arch bridge using reference-based wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hietbrink, Colby; Whelan, Matthew J.

    2012-04-01

    Vibration-based methods of structural health monitoring are generally founded on the principle that localized damage to a structure would exhibit changes within the global dynamic response. Upon this basis, accelerometers provide a unique health monitoring strategy in that a distributed network of sensors provides the technical feasibility to isolate the onset of damage without requiring that any sensor be located exactly on or in close proximity to the damage. While in theory this may be sufficient, practical experience has shown significant improvement in the application of damage diagnostic routines when mode shapes characterized by strongly localized behavior of specific elements are captured by the instrumentation array. In traditional applications, this presents a challenge since the cost and complexity of cable-based systems often effectively limits the number of instrumented locations thereby constraining the modal parameter extraction to only global modal responses. The advent of the low-cost RF chip transceiver with wireless networking capabilities has afforded a means by which a substantial number of output locations can be measured through referencebased testing using large-scale wireless sensor networks. In the current study, this approach was applied to the Prairie du Chien Bridge over the Mississippi River to extract operational mode shapes with high spatial reconstruction, including strongly localized modes. The tied arch bridge was instrumented at over 230 locations with single-axis accelerometers conditioned and acquired over a high-rate lossless wireless sensor network with simultaneous sampling capabilities. Acquisition of the dynamic response of the web plates of the arch rib was specifically targeted within the instrumentation array for diagnostic purposes. Reference-based operational modal analysis of the full structure through data-driven stochastic subspace identification is presented alongside finite element analysis results for confirmation of modal parameter plausibility. Particular emphasis is placed on the identification and reconstruction of modal response with large contribution from the arch rib web plates.

  1. Data driven innovations in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Rosales, M. J.; Liyanapathirana, R.

    2017-05-01

    At present, substantial investments are being allocated to civil infrastructures also considered as valuable assets at a national or global scale. Structural Health Monitoring (SHM) is an indispensable tool required to ensure the performance and safety of these structures based on measured response parameters. The research to date on damage assessment has tended to focus on the utilization of wireless sensor networks (WSN) as it proves to be the best alternative over the traditional visual inspections and tethered or wired counterparts. Over the last decade, the structural health and behaviour of innumerable infrastructure has been measured and evaluated owing to several successful ventures of implementing these sensor networks. Various monitoring systems have the capability to rapidly transmit, measure, and store large capacities of data. The amount of data collected from these networks have eventually been unmanageable which paved the way to other relevant issues such as data quality, relevance, re-use, and decision support. There is an increasing need to integrate new technologies in order to automate the evaluation processes as well as to enhance the objectivity of data assessment routines. This paper aims to identify feasible methodologies towards the application of time-series analysis techniques to judiciously exploit the vast amount of readily available as well as the upcoming data resources. It continues the momentum of a greater effort to collect and archive SHM approaches that will serve as data-driven innovations for the assessment of damage through efficient algorithms and data analytics.

  2. Wide area sensor network

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Nix, Tricia; Junker, Robert; Brentano, Josef; Khona, Dhiren

    2006-05-01

    The technical concept for this project has existed since the Chernobyl accident in 1986. A host of Eastern European nations have developed countrywide grid of sensors to monitor airborne radiation. The objective is to build a radiological sensor network for real-time monitoring of environmental radiation levels in order to provide data for warning, and consequentially the assessment of a nuclear event. A network of radiation measuring equipment consisting of gamma, neutron, alpha, and beta counters would be distributed over a large area (preferably on fire station roof tops) and connected by a wireless network to the emergency response center. The networks would be deployed in urban environments and would supply first responders and federal augmentation teams (including those from the U.S. Departments of Energy, Defense, Justice, and Homeland Security) with detailed, accurate information regarding the transport of radioactive environmental contaminants, so the agencies can provide a safe and effective response. A networked sensor capability would be developed, with fixed sensors deployed at key locations and in sufficient numbers, to provide adequate coverage for early warning, and input to post-event emergency response. An overall system description and specification will be provided, including detector characteristics, communication protocols, infrastructure and maintenance requirements, and operation procedures. The system/network can be designed for a specifically identified urban area, or for a general urban area scalable to cities of specified size. Data collected via the network will be transmitted directly to the appropriate emergency response center and shared with multiple agencies via the Internet or an Intranet. The data collected will be managed using commercial off - the - shelf Geographical Information System (GIS). The data will be stored in a database and the GIS software will aid in analysis and management of the data. Unique features of the system include each node being assigned a health-effect based risk factor. By connecting the nodes on a particular measured isopleth one can define the plume accurately. Radon counts will be provided and used to calculate the alpha counts. The radiological data collected will also be of value under routine conditions, in the absence of a radiological threat, to provide a detailed map of radiation background in the urban environment and complement predictive models of radiation transport. The data can be transferred to the National Atmospheric Release Advisory Center (NARAC) to augment its predictive model, thereby increasing its fidelity. Initially, as a proof of concept, a few nodes will be built for the purpose of demonstrating the concept.

  3. Compressing Test and Evaluation by Using Flow Data for Scalable Network Traffic Analysis

    DTIC Science & Technology

    2014-10-01

    test events, quality of service and other key metrics of military systems and networks are evaluated. Network data captured in standard flow formats...mentioned here. The Ozone Widget Framework (Next Century, n.d.) has proven to be very useful. Also, an extensive, clean, and optimized JavaScript ...library for visualizing many types of data can be found in D3–Data Driven Documents (Bostock, 2013). Quality of Service from Flow Two essential metrics of

  4. Condition monitoring of an electro-magnetic brake using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Gofran, T.; Neugebauer, P.; Schramm, D.

    2017-10-01

    This paper presents a data-driven approach to Condition Monitoring of Electromagnetic brakes without use of additional sensors. For safe and efficient operation of electric motor a regular evaluation and replacement of the friction surface of the brake is required. One such evaluation method consists of direct or indirect sensing of the air-gap between pressure plate and magnet. A larger gap is generally indicative of worn surface(s). Traditionally this has been accomplished by the use of additional sensors - making existing systems complex, cost- sensitive and difficult to maintain. In this work a feed-forward Artificial Neural Network (ANN) is learned with the electrical data of the brake by supervised learning method to estimate the air-gap. The ANN model is optimized on the training set and validated using the test set. The experimental results of estimated air-gap with accuracy of over 95% demonstrate the validity of the proposed approach.

  5. Infrasound's capability to detect and characterise volcanic events, from local to regional scale.

    NASA Astrophysics Data System (ADS)

    Taisne, Benoit; Perttu, Anna

    2017-04-01

    Local infrasound and seismic networks have been successfully used for identification and quantification of explosions at single volcanoes. However the February, 2014 eruption of Kelud volcano, Indonesia, destroyed most of the local monitoring network. The use of remote seismic and infrasound sensors proved to be essential in the reconstruction of the eruptive sequence. The first recorded explosive event, with relatively weak seismic and infrasonic signature, was followed by a 2 hour sustained signal detected as far away as 11,000 km by infrasound sensors and up to 2,300 km away by seismometers. The volcanic intensity derived from these observations places the 2014 Kelud eruption between the intensity of the 1980 Mount St. Helens and the 1991 Pinatubo eruptions. The use of remote seismic stations and infrasound arrays in deriving valuable information about the onset, evolution, and intensity of volcanic eruptions is clear from the Kelud example. After this eruption the Singapore Infrasound Array became operational. This array, along with the other regional infrasound arrays which are part of the International Monitoring System, have recorded events from fireballs and regional volcanoes. The detection capability of this network for any specific volcanic event is not only dependent on the amplitude of the source, but also the propagation effects, noise level at each station, and characteristics of the regional persistent noise sources (like the microbarum). Combining the spatial and seasonal characteristics of this noise, within the same frequency band as significant eruptive events, with the probability of such events to occur, gives us a comprehensive understanding of detection capability for any of the 750 active or potentially active volcanoes in Southeast Asia.

  6. Data Exploration using Unsupervised Feature Extraction for Mixed Micro-Seismic Signals

    NASA Astrophysics Data System (ADS)

    Meyer, Matthias; Weber, Samuel; Beutel, Jan

    2017-04-01

    We present a system for the analysis of data originating in a multi-sensor and multi-year experiment focusing on slope stability and its underlying processes in fractured permafrost rock walls undertaken at 3500m a.s.l. on the Matterhorn Hörnligrat, (Zermatt, Switzerland). This system incorporates facilities for the transmission, management and storage of large-scales of data ( 7 GB/day), preprocessing and aggregation of multiple sensor types, machine-learning based automatic feature extraction for micro-seismic and acoustic emission data and interactive web-based visualization of the data. Specifically, a combination of three types of sensors are used to profile the frequency spectrum from 1 Hz to 80 kHz with the goal to identify the relevant destructive processes (e.g. micro-cracking and fracture propagation) leading to the eventual destabilization of large rock masses. The sensors installed for this profiling experiment (2 geophones, 1 accelerometers and 2 piezo-electric sensors for detecting acoustic emission), are further augmented with sensors originating from a previous activity focusing on long-term monitoring of temperature evolution and rock kinematics with the help of wireless sensor networks (crackmeters, cameras, weather station, rock temperature profiles, differential GPS) [Hasler2012]. In raw format, the data generated by the different types of sensors, specifically the micro-seismic and acoustic emission sensors, is strongly heterogeneous, in part unsynchronized and the storage and processing demand is large. Therefore, a purpose-built signal preprocessing and event-detection system is used. While the analysis of data from each individual sensor follows established methods, the application of all these sensor types in combination within a field experiment is unique. Furthermore, experience and methods from using such sensors in laboratory settings cannot be readily transferred to the mountain field site setting with its scale and full exposure to the natural environment. Consequently, many state-of-the-art algorithms for big data analysis and event classification requiring a ground truth dataset cannot be applied. The above mentioned challenges require a tool for data exploration. In the presented system, data exploration is supported by unsupervised feature learning based on convolutional neural networks, which is used to automatically extract common features for preliminary clustering and outlier detection. With this information, an interactive web-tool allows for a fast identification of interesting time segments on which segment-selective algorithms for visualization, feature extraction and statistics can be applied. The combination of manual labeling based and unsupervised feature extraction provides an event catalog for classification of different characteristic events related to internal progression of micro-crack in steep fractured bedrock permafrost. References Hasler, A., S. Gruber, and J. Beutel (2012), Kinematics of steep bedrock permafrost, J. Geophys. Res., 117, F01016, doi:10.1029/2011JF001981.

  7. Applications of in situ optical measurements in ecological and biogeochemical studies - a framework for a user-driven national network

    NASA Astrophysics Data System (ADS)

    Bergamaschi, B. A.; Pellerin, B. A.; Downing, B. D.; Saraceno, J.; Aiken, G.; Stumpner, P.

    2010-12-01

    A critical challenge for understanding the dynamics between water quality, and ecological processes is obtaining data at time scales in which changes occur. Traditional, discrete sampling, approaches for data collection are often limited by analytical and field costs, site access, and logistical challenges, for long-term sampling at a large number of sites. The timescales of change, however, are often minutes, hours, or years. In situ optical (absorbance and fluorescence) instruments offer opportunities to help overcome these difficulties by directly or indirectly measuring constituents of interest. In situ optical instrumentation have been in use in oceanographic studies for well over 50 years, and as advances in the science, engineering and technology of these sensors have improved, optical sensors have become more commercially viable and available for research. We present several examples that highlight applications of in situ optical measurements for understanding dynamics in stream, river, and estuary systems. Examples illustrate the utility of in situ optical sensors for studies over short-duration events of days to weeks (diurnal cycles, tidal cycles, storm events and snowmelt periods) as well as longer-term continuous monitoring for months to years. We also highlight applied in situ optical measurements as proxies for constituents that are difficult and expensive to measure at high spatiotemporal resolution, for example, dissolved organic carbon, dissolved organic nitrogen, mercury and methylmercury, trihalomethane precursors, harmful algal blooms, and others. We propose that relatively simple absorbance and fluorescence measurements made in situ could be incorporated into short and long-term ecological research and monitoring programs, resulting in advanced understanding of sources that contribute to water quality improvements or degradation, contaminant and carbon cycling, and the occurrence and persistence of harmful algal blooms. Linking these efforts through common calibration and validation techniques, as well as hosted data sharing and online user forums - as has been proposed by CUAHSI and USGS - will permit more rapid advances in applications of in situ optical sensors as well as in our understanding of aquatic processes.

  8. Social Sensor Analytics: Making Sense of Network Models in Social Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowling, Chase P.; Harrison, Joshua J.; Sathanur, Arun V.

    Social networks can be thought of as noisy sensor networks mapping real world information to the web. Owing to the extensive body of literature in sensor network analysis, this work sought to apply several novel and traditional methods in sensor network analysis for the purposes of efficiently interrogating social media data streams from raw data. We carefully revisit our definition of a social media signal from previous work both in terms of time-varying features within the data and the networked nature of the medium. Further, we detail our analysis of global patterns in Twitter over the months of November 2013more » and June 2014, detect and categorize events, and illustrate how these analyses can be used to inform graph-based models of Twitter, namely using a recent network influence model called PhySense: similar to PageRank but tuned to behavioral analysis by leveraging a sociologically inspired probabilistic model. We ultimately identify forms of information dissemination via analysis of time series and dynamic graph spectra and corroborate these findings through manual investigation of the data as a requisite step in modeling the diffusion process with PhySense. We hope to sufficiently characterize global behavior in a medium such as Twitter as a means of learning global model parameters one may use to predict or simulate behavior on a large scale. We have made our time series and dynamic graph analytical code available via a GitHub repository https://github.com/cpatdowling/salsa and our data are available upon request.« less

  9. Mobile Wireless Sensor Networks for Advanced Soil Sensing and Ecosystem Monitoring

    NASA Astrophysics Data System (ADS)

    Mollenhauer, Hannes; Schima, Robert; Remmler, Paul; Mollenhauer, Olaf; Hutschenreuther, Tino; Toepfer, Hannes; Dietrich, Peter; Bumberger, Jan

    2015-04-01

    For an adequate characterization of ecosystems it is necessary to detect individual processes with suitable monitoring strategies and methods. Due to the natural complexity of all environmental compartments, single point or temporally and spatially fixed measurements are mostly insufficient for an adequate representation. The application of mobile wireless sensor networks for soil and atmosphere sensing offers significant benefits, due to the simple adjustment of the sensor distribution, the sensor types and the sample rate (e.g. by using optimization approaches or event triggering modes) to the local test conditions. This can be essential for the monitoring of heterogeneous and dynamic environmental systems and processes. One significant advantage in the application of mobile ad-hoc wireless sensor networks is their self-organizing behavior. Thus, the network autonomously initializes and optimizes itself. Due to the localization via satellite a major reduction in installation and operation costs and time is generated. In addition, single point measurements with a sensor are significantly improved by measuring at several optimized points continuously. Since performing analog and digital signal processing and computation in the sensor nodes close to the sensors a significant reduction of the data to be transmitted can be achieved which leads to a better energy management of nodes. Furthermore, the miniaturization of the nodes and energy harvesting are current topics under investigation. First results of field measurements are given to present the potentials and limitations of this application in environmental science. In particular, collected in-situ data with numerous specific soil and atmosphere parameters per sensor node (more than 25) recorded over several days illustrates the high performance of this system for advanced soil sensing and soil-atmosphere interaction monitoring. Moreover, investigations of biotic and abiotic process interactions and optimization of sensor positioning for measuring soil moisture are scopes of this work and initial results of these issues will be presented.

  10. Real-Time QoS Routing Protocols in Wireless Multimedia Sensor Networks: Study and Analysis.

    PubMed

    Alanazi, Adwan; Elleithy, Khaled

    2015-09-02

    Many routing protocols have been proposed for wireless sensor networks. These routing protocols are almost always based on energy efficiency. However, recent advances in complementary metal-oxide semiconductor (CMOS) cameras and small microphones have led to the development of Wireless Multimedia Sensor Networks (WMSN) as a class of wireless sensor networks which pose additional challenges. The transmission of imaging and video data needs routing protocols with both energy efficiency and Quality of Service (QoS) characteristics in order to guarantee the efficient use of the sensor nodes and effective access to the collected data. Also, with integration of real time applications in Wireless Senor Networks (WSNs), the use of QoS routing protocols is not only becoming a significant topic, but is also gaining the attention of researchers. In designing an efficient QoS routing protocol, the reliability and guarantee of end-to-end delay are critical events while conserving energy. Thus, considerable research has been focused on designing energy efficient and robust QoS routing protocols. In this paper, we present a state of the art research work based on real-time QoS routing protocols for WMSNs that have already been proposed. This paper categorizes the real-time QoS routing protocols into probabilistic and deterministic protocols. In addition, both categories are classified into soft and hard real time protocols by highlighting the QoS issues including the limitations and features of each protocol. Furthermore, we have compared the performance of mobility-aware query based real-time QoS routing protocols from each category using Network Simulator-2 (NS2). This paper also focuses on the design challenges and future research directions as well as highlights the characteristics of each QoS routing protocol.

  11. Real-Time QoS Routing Protocols in Wireless Multimedia Sensor Networks: Study and Analysis

    PubMed Central

    Alanazi, Adwan; Elleithy, Khaled

    2015-01-01

    Many routing protocols have been proposed for wireless sensor networks. These routing protocols are almost always based on energy efficiency. However, recent advances in complementary metal-oxide semiconductor (CMOS) cameras and small microphones have led to the development of Wireless Multimedia Sensor Networks (WMSN) as a class of wireless sensor networks which pose additional challenges. The transmission of imaging and video data needs routing protocols with both energy efficiency and Quality of Service (QoS) characteristics in order to guarantee the efficient use of the sensor nodes and effective access to the collected data. Also, with integration of real time applications in Wireless Senor Networks (WSNs), the use of QoS routing protocols is not only becoming a significant topic, but is also gaining the attention of researchers. In designing an efficient QoS routing protocol, the reliability and guarantee of end-to-end delay are critical events while conserving energy. Thus, considerable research has been focused on designing energy efficient and robust QoS routing protocols. In this paper, we present a state of the art research work based on real-time QoS routing protocols for WMSNs that have already been proposed. This paper categorizes the real-time QoS routing protocols into probabilistic and deterministic protocols. In addition, both categories are classified into soft and hard real time protocols by highlighting the QoS issues including the limitations and features of each protocol. Furthermore, we have compared the performance of mobility-aware query based real-time QoS routing protocols from each category using Network Simulator-2 (NS2). This paper also focuses on the design challenges and future research directions as well as highlights the characteristics of each QoS routing protocol. PMID:26364639

  12. Addressing practical challenges in utility optimization of mobile wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Eswaran, Sharanya; Misra, Archan; La Porta, Thomas; Leung, Kin

    2008-04-01

    This paper examines the practical challenges in the application of the distributed network utility maximization (NUM) framework to the problem of resource allocation and sensor device adaptation in a mission-centric wireless sensor network (WSN) environment. By providing rich (multi-modal), real-time information about a variety of (often inaccessible or hostile) operating environments, sensors such as video, acoustic and short-aperture radar enhance the situational awareness of many battlefield missions. Prior work on the applicability of the NUM framework to mission-centric WSNs has focused on tackling the challenges introduced by i) the definition of an individual mission's utility as a collective function of multiple sensor flows and ii) the dissemination of an individual sensor's data via a multicast tree to multiple consuming missions. However, the practical application and performance of this framework is influenced by several parameters internal to the framework and also by implementation-specific decisions. This is made further complex due to mobile nodes. In this paper, we use discrete-event simulations to study the effects of these parameters on the performance of the protocol in terms of speed of convergence, packet loss, and signaling overhead thereby addressing the challenges posed by wireless interference and node mobility in ad-hoc battlefield scenarios. This study provides better understanding of the issues involved in the practical adaptation of the NUM framework. It also helps identify potential avenues of improvement within the framework and protocol.

  13. A reduction for spiking integrate-and-fire network dynamics ranging from homogeneity to synchrony.

    PubMed

    Zhang, J W; Rangan, A V

    2015-04-01

    In this paper we provide a general methodology for systematically reducing the dynamics of a class of integrate-and-fire networks down to an augmented 4-dimensional system of ordinary-differential-equations. The class of integrate-and-fire networks we focus on are homogeneously-structured, strongly coupled, and fluctuation-driven. Our reduction succeeds where most current firing-rate and population-dynamics models fail because we account for the emergence of 'multiple-firing-events' involving the semi-synchronous firing of many neurons. These multiple-firing-events are largely responsible for the fluctuations generated by the network and, as a result, our reduction faithfully describes many dynamic regimes ranging from homogeneous to synchronous. Our reduction is based on first principles, and provides an analyzable link between the integrate-and-fire network parameters and the relatively low-dimensional dynamics underlying the 4-dimensional augmented ODE.

  14. Big data and high-performance analytics in structural health monitoring for bridge management

    NASA Astrophysics Data System (ADS)

    Alampalli, Sharada; Alampalli, Sandeep; Ettouney, Mohammed

    2016-04-01

    Structural Health Monitoring (SHM) can be a vital tool for effective bridge management. Combining large data sets from multiple sources to create a data-driven decision-making framework is crucial for the success of SHM. This paper presents a big data analytics framework that combines multiple data sets correlated with functional relatedness to convert data into actionable information that empowers risk-based decision-making. The integrated data environment incorporates near real-time streams of semi-structured data from remote sensors, historical visual inspection data, and observations from structural analysis models to monitor, assess, and manage risks associated with the aging bridge inventories. Accelerated processing of dataset is made possible by four technologies: cloud computing, relational database processing, support from NOSQL database, and in-memory analytics. The framework is being validated on a railroad corridor that can be subjected to multiple hazards. The framework enables to compute reliability indices for critical bridge components and individual bridge spans. In addition, framework includes a risk-based decision-making process that enumerate costs and consequences of poor bridge performance at span- and network-levels when rail networks are exposed to natural hazard events such as floods and earthquakes. Big data and high-performance analytics enable insights to assist bridge owners to address problems faster.

  15. Computational Model of Secondary Palate Fusion and Disruption

    EPA Science Inventory

    Morphogenetic events are driven by cell-generated physical forces and complex cellular dynamics. To improve our capacity to predict developmental effects from cellular alterations, we built a multi-cellular agent-based model in CompuCell3D that recapitulates the cellular networks...

  16. Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks

    PubMed Central

    Naveros, Francisco; Garrido, Jesus A.; Carrillo, Richard R.; Ros, Eduardo; Luque, Niceto R.

    2017-01-01

    Modeling and simulating the neural structures which make up our central neural system is instrumental for deciphering the computational neural cues beneath. Higher levels of biological plausibility usually impose higher levels of complexity in mathematical modeling, from neural to behavioral levels. This paper focuses on overcoming the simulation problems (accuracy and performance) derived from using higher levels of mathematical complexity at a neural level. This study proposes different techniques for simulating neural models that hold incremental levels of mathematical complexity: leaky integrate-and-fire (LIF), adaptive exponential integrate-and-fire (AdEx), and Hodgkin-Huxley (HH) neural models (ranged from low to high neural complexity). The studied techniques are classified into two main families depending on how the neural-model dynamic evaluation is computed: the event-driven or the time-driven families. Whilst event-driven techniques pre-compile and store the neural dynamics within look-up tables, time-driven techniques compute the neural dynamics iteratively during the simulation time. We propose two modifications for the event-driven family: a look-up table recombination to better cope with the incremental neural complexity together with a better handling of the synchronous input activity. Regarding the time-driven family, we propose a modification in computing the neural dynamics: the bi-fixed-step integration method. This method automatically adjusts the simulation step size to better cope with the stiffness of the neural model dynamics running in CPU platforms. One version of this method is also implemented for hybrid CPU-GPU platforms. Finally, we analyze how the performance and accuracy of these modifications evolve with increasing levels of neural complexity. We also demonstrate how the proposed modifications which constitute the main contribution of this study systematically outperform the traditional event- and time-driven techniques under increasing levels of neural complexity. PMID:28223930

  17. Autonomous Multi-Sensor Coordination: The Science Goal Monitor

    NASA Technical Reports Server (NTRS)

    Koratkar, Anuradha; Grosvenor, Sandy; Jung, John; Hess, Melissa; Jones, Jeremy

    2004-01-01

    Many dramatic earth phenomena are dynamic and coupled. In order to fully understand them, we need to obtain timely coordinated multi-sensor observations from widely dispersed instruments. Such a dynamic observing system must include the ability to Schedule flexibly and react autonomously to sciencehser driven events; Understand higher-level goals of a sciencehser defined campaign; Coordinate various space-based and ground-based resources/sensors effectively and efficiently to achieve goals. In order to capture transient events, such a 'sensor web' system must have an automated reactive capability built into its scientific operations. To do this, we must overcome a number of challenges inherent in infusing autonomy. The Science Goal Monitor (SGM) is a prototype software tool being developed to explore the nature of automation necessary to enable dynamic observing. The tools being developed in SGM improve our ability to autonomously monitor multiple independent sensors and coordinate reactions to better observe dynamic phenomena. The SGM system enables users to specify what to look for and how to react in descriptive rather than technical terms. The system monitors streams of data to identify occurrences of the key events previously specified by the scientisther. When an event occurs, the system autonomously coordinates the execution of the users' desired reactions between different sensors. The information can be used to rapidly respond to a variety of fast temporal events. Investigators will no longer have to rely on after-the-fact data analysis to determine what happened. Our paper describes a series of prototype demonstrations that we have developed using SGM and NASA's Earth Observing-1 (EO-1) satellite and Earth Observing Systems' Aqua/Terra spacecrafts' MODIS instrument. Our demonstrations show the promise of coordinating data from different sources, analyzing the data for a relevant event, autonomously updating and rapidly obtaining a follow-on relevant image. SGM was used to investigate forest fires, floods and volcanic eruptions. We are now identifying new Earth science scenarios that will have more complex SGM reasoning. By developing and testing a prototype in an operational environment, we are also establishing and gathering metrics to gauge the success of automating science campaigns.

  18. Earthquake Monitoring with the MyShake Global Smartphone Seismic Network

    NASA Astrophysics Data System (ADS)

    Inbal, A.; Kong, Q.; Allen, R. M.; Savran, W. H.

    2017-12-01

    Smartphone arrays have the potential for significantly improving seismic monitoring in sparsely instrumented urban areas. This approach benefits from the dense spatial coverage of users, as well as from communication and computational capabilities built into smartphones, which facilitate big seismic data transfer and analysis. Advantages in data acquisition with smartphones trade-off with factors such as the low-quality sensors installed in phones, high noise levels, and strong network heterogeneity, all of which limit effective seismic monitoring. Here we utilize network and array-processing schemes to asses event detectability with the MyShake global smartphone network. We examine the benefits of using this network in either triggered or continuous modes of operation. A global database of ground motions measured on stationary phones triggered by M2-6 events is used to establish detection probabilities. We find that the probability of detecting an M=3 event with a single phone located <10 km from the epicenter exceeds 70%. Due to the sensor's self-noise, smaller magnitude events at short epicentral distances are very difficult to detect. To increase the signal-to-noise ratio, we employ array back-projection techniques on continuous data recorded by thousands of phones. In this class of methods, the array is used as a spatial filter that suppresses signals emitted from shallow noise sources. Filtered traces are stacked to further enhance seismic signals from deep sources. We benchmark our technique against traditional location algorithms using recordings from California, a region with large MyShake user database. We find that locations derived from back-projection images of M 3 events recorded by >20 nearby phones closely match the regional catalog locations. We use simulated broadband seismic data to examine how location uncertainties vary with user distribution and noise levels. To this end, we have developed an empirical noise model for the metropolitan Los-Angeles (LA) area. We find that densities larger than 100 stationary phones/km2 are required to accurately locate M 2 events in the LA basin. Given the projected MyShake user distribution, that condition may be met within the next few years.

  19. In-situ trainable intrusion detection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Symons, Christopher T.; Beaver, Justin M.; Gillen, Rob

    A computer implemented method detects intrusions using a computer by analyzing network traffic. The method includes a semi-supervised learning module connected to a network node. The learning module uses labeled and unlabeled data to train a semi-supervised machine learning sensor. The method records events that include a feature set made up of unauthorized intrusions and benign computer requests. The method identifies at least some of the benign computer requests that occur during the recording of the events while treating the remainder of the data as unlabeled. The method trains the semi-supervised learning module at the network node in-situ, such thatmore » the semi-supervised learning modules may identify malicious traffic without relying on specific rules, signatures, or anomaly detection.« less

  20. Integration of launch/impact discrimination algorithm with the UTAMS platform

    NASA Astrophysics Data System (ADS)

    Desai, Sachi; Morcos, Amir; Tenney, Stephen; Mays, Brian

    2008-04-01

    An acoustic array, integrated with an algorithm to discriminate potential Launch (LA) or Impact (IM) events, was augmented by employing the Launch Impact Discrimination (LID) algorithm for mortar events. We develop an added situational awareness capability to determine whether the localized event is a mortar launch or mortar impact at safe standoff distances. The algorithm utilizes a discrete wavelet transform to exploit higher harmonic components of various sub bands of the acoustic signature. Additional features are extracted via the frequency domain exploiting harmonic components generated by the nature of event, i.e. supersonic shrapnel components at impact. The further extrapolations of these features are employed with a neural network to provide a high level of confidence for discrimination and classification. The ability to discriminate between these events is of great interest on the battlefield. Providing more information and developing a common picture of situational awareness. Algorithms exploit the acoustic sensor array to provide detection and identification of IM/LA events at extended ranges. The integration of this algorithm with the acoustic sensor array for mortar detection provides an early warning detection system giving greater battlefield information for field commanders. This paper will describe the integration of the algorithm with a candidate sensor and resulting field tests.

  1. In-vivo determination of chewing patterns using FBG and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Pegorini, Vinicius; Zen Karam, Leandro; Rocha Pitta, Christiano S.; Ribeiro, Richardson; Simioni Assmann, Tangriani; Cardozo da Silva, Jean Carlos; Bertotti, Fábio L.; Kalinowski, Hypolito J.; Cardoso, Rafael

    2015-09-01

    This paper reports the process of pattern classification of the chewing process of ruminants. We propose a simplified signal processing scheme for optical fiber Bragg grating (FBG) sensors based on machine learning techniques. The FBG sensors measure the biomechanical forces during jaw movements and an artificial neural network is responsible for the classification of the associated chewing pattern. In this study, three patterns associated to dietary supplement, hay and ryegrass were considered. Additionally, two other important events for ingestive behavior studies were monitored, rumination and idle period. Experimental results show that the proposed approach for pattern classification has been capable of differentiating the materials involved in the chewing process with a small classification error.

  2. Optimal power allocation and joint source-channel coding for wireless DS-CDMA visual sensor networks

    NASA Astrophysics Data System (ADS)

    Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.

    2011-01-01

    In this paper, we propose a scheme for the optimal allocation of power, source coding rate, and channel coding rate for each of the nodes of a wireless Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network. The optimization is quality-driven, i.e. the received quality of the video that is transmitted by the nodes is optimized. The scheme takes into account the fact that the sensor nodes may be imaging scenes with varying levels of motion. Nodes that image low-motion scenes will require a lower source coding rate, so they will be able to allocate a greater portion of the total available bit rate to channel coding. Stronger channel coding will mean that such nodes will be able to transmit at lower power. This will both increase battery life and reduce interference to other nodes. Two optimization criteria are considered. One that minimizes the average video distortion of the nodes and one that minimizes the maximum distortion among the nodes. The transmission powers are allowed to take continuous values, whereas the source and channel coding rates can assume only discrete values. Thus, the resulting optimization problem lies in the field of mixed-integer optimization tasks and is solved using Particle Swarm Optimization. Our experimental results show the importance of considering the characteristics of the video sequences when determining the transmission power, source coding rate and channel coding rate for the nodes of the visual sensor network.

  3. Maintaining the Database for Information Object Analysis, Intent, Dissemination and Enhancement (IOAIDE) and the US Army Research Laboratory Campus Sensor Network (ARL CSN)

    DTIC Science & Technology

    2017-01-01

    CII-B 2800 Powder Mill Road Adelphi, MD 20783-1138 8. PERFORMING ORGANIZATION REPORT NUMBER ARL-TR-7921 9. SPONSORING/MONITORING AGENCY NAME(S...server database, structured query language, information objects, instructions, maintenance , cursor on target events, unattended ground sensors...unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Computer and Software Development Tools Requirements 1 3. Database Maintenance 2 3.1

  4. Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2008-04-01

    The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.

  5. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms

    PubMed Central

    Bonastre, Alberto; Ors, Rafael

    2017-01-01

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system—such as a wireless sensor network (WSN)—the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues. PMID:29295494

  6. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms.

    PubMed

    Navia, Marlon; Campelo, José Carlos; Bonastre, Alberto; Ors, Rafael

    2017-12-23

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system-such as a wireless sensor network (WSN)-the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues.

  7. Enhanced situational awareness in the maritime domain: an agent-based approach for situation management

    NASA Astrophysics Data System (ADS)

    Brax, Christoffer; Niklasson, Lars

    2009-05-01

    Maritime Domain Awareness is important for both civilian and military applications. An important part of MDA is detection of unusual vessel activities such as piracy, smuggling, poaching, collisions, etc. Today's interconnected sensorsystems provide us with huge amounts of information over large geographical areas which can make the operators reach their cognitive capacity and start to miss important events. We propose and agent-based situation management system that automatically analyse sensor information to detect unusual activity and anomalies. The system combines knowledge-based detection with data-driven anomaly detection. The system is evaluated using information from both radar and AIS sensors.

  8. PBO Borehole Strainmeters and Pore Pressure Sensors: Recording Hydrological Strain Signals

    NASA Astrophysics Data System (ADS)

    Gottlieb, M. H.; Hodgkinson, K. M.; Mencin, D.; Henderson, D. B.; Johnson, W.; Van Boskirk, E.; Pyatt, C.; Mattioli, G. S.

    2017-12-01

    UNAVCO operates a network of 75 borehole strainmeters along the west coast of the United States and Vancouver Island, Canada as part of the Plate Boundary Observatory (PBO), the geodetic component of the NSF-funded Earthscope program. Borehole strainmeters are designed to detect variations in the strain field at the nanostrain level and can easily detect transient strains caused by aseismic creep events, Episodic Tremor and Slip (ETS) events and seismically induced co- and post-seimic signals. In 2016, one strainmeter was installed in an Oklahoma oil field to characterize in-situ deformation during CO2 injection. Twenty-three strainmeter sites also have pore pressure sensors to measure fluctuations in groundwater pressure. Both the strainmeter network and the pore pressure sensors provide unique data against which those using water-level measurements, GPS time-series or InSAR data can compare possible subsidence signals caused by groundwater withdrawal or fluid re-injection. Operating for 12 years, the PBO strainmeter and pore pressure network provides a long-term, continuous, 1-sps record of deformation. PBO deploys GTSM21 tensor strainmeters from GTSM Technologies, which consist of four horizontal strain gauges stacked vertically, at different orientations, within a single 2 m-long instrument. The strainmeters are typically installed at depths of 200 to 250 m and grouted into the bottom of 15 cm diameter boreholes. The pore pressure sensors are Digiquartz Depth Sensors from Paros Scientific. These sensors are installed in 2" PVC, sampling groundwater through a screened section 15 m above the co-located strainmeter. These sensors are also recording at 1-sps with a resolution in the hundredths of hPa. High-rate local barometric pressure data and low-rate rainfall data also available at all locations. PBO Strainmeter and pore pressure data are available in SEED, SAC-ASCII and time-stamped ASCII format from the IRIS Data Managements Center. Strainmeter data are available at 2-hour latency while the pore pressure data are available in real-time. Links for data access, instrument and borehole information and station histories are available from UNAVCO's Borehole Data web page (https://www.unavco.org/data/strain-seismic/bsm-data/bsm-data.html ).

  9. A fuzzy Petri-net-based mode identification algorithm for fault diagnosis of complex systems

    NASA Astrophysics Data System (ADS)

    Propes, Nicholas C.; Vachtsevanos, George

    2003-08-01

    Complex dynamical systems such as aircraft, manufacturing systems, chillers, motor vehicles, submarines, etc. exhibit continuous and event-driven dynamics. These systems undergo several discrete operating modes from startup to shutdown. For example, a certain shipboard system may be operating at half load or full load or may be at start-up or shutdown. Of particular interest are extreme or "shock" operating conditions, which tend to severely impact fault diagnosis or the progression of a fault leading to a failure. Fault conditions are strongly dependent on the operating mode. Therefore, it is essential that in any diagnostic/prognostic architecture, the operating mode be identified as accurately as possible so that such functions as feature extraction, diagnostics, prognostics, etc. can be correlated with the predominant operating conditions. This paper introduces a mode identification methodology that incorporates both time- and event-driven information about the process. A fuzzy Petri net is used to represent the possible successive mode transitions and to detect events from processed sensor signals signifying a mode change. The operating mode is initialized and verified by analysis of the time-driven dynamics through a fuzzy logic classifier. An evidence combiner module is used to combine the results from both the fuzzy Petri net and the fuzzy logic classifier to determine the mode. Unlike most event-driven mode identifiers, this architecture will provide automatic mode initialization through the fuzzy logic classifier and robustness through the combining of evidence of the two algorithms. The mode identification methodology is applied to an AC Plant typically found as a component of a shipboard system.

  10. A Distributed and Energy-Efficient Algorithm for Event K-Coverage in Underwater Sensor Networks.

    PubMed

    Jiang, Peng; Xu, Yiming; Liu, Jun

    2017-01-19

    For event dynamic K-coverage algorithms, each management node selects its assistant node by using a greedy algorithm without considering the residual energy and situations in which a node is selected by several events. This approach affects network energy consumption and balance. Therefore, this study proposes a distributed and energy-efficient event K-coverage algorithm (DEEKA). After the network achieves 1-coverage, the nodes that detect the same event compete for the event management node with the number of candidate nodes and the average residual energy, as well as the distance to the event. Second, each management node estimates the probability of its neighbor nodes' being selected by the event it manages with the distance level, the residual energy level, and the number of dynamic coverage event of these nodes. Third, each management node establishes an optimization model that uses expectation energy consumption and the residual energy variance of its neighbor nodes and detects the performance of the events it manages as targets. Finally, each management node uses a constrained non-dominated sorting genetic algorithm (NSGA-II) to obtain the Pareto set of the model and the best strategy via technique for order preference by similarity to an ideal solution (TOPSIS). The algorithm first considers the effect of harsh underwater environments on information collection and transmission. It also considers the residual energy of a node and a situation in which the node is selected by several other events. Simulation results show that, unlike the on-demand variable sensing K-coverage algorithm, DEEKA balances and reduces network energy consumption, thereby prolonging the network's best service quality and lifetime.

  11. DEVELOPING AND EXPLOITING A UNIQUE SEISMIC DATA SET FROM SOUTH AFRICAN GOLD MINES FOR SOURCE CHARACTERIZATION AND WAVE PROPAGATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julia, J; Nyblade, A A; Gok, R

    2008-07-08

    In this project, we are developing and exploiting a unique seismic data set to address the characteristics of small seismic events and the associated seismic signals observed at local (< 200 km) and regional (< 2000 km) distances. The dataset is being developed using mining-induced events from 3 deep gold mines in South Africa recorded on inmine networks (< 1 km) comprised of tens of high-frequency sensors, a network of 4 broadband stations installed as part of this project at the surface around the mines (1-10 km), and a network of existing broadband seismic stations at local/regional distances (50-1000 km)more » from the mines. After 1 year of seismic monitoring of mine activity (2007), over 10,000 events in the range -3.4 < ML < 4.4 have been catalogued and recorded by the in-mine networks. Events with positive magnitudes are generally well recorded by the surface-mine stations, while magnitudes 3.0 and larger are seen at regional distances (up to {approx}600 km) in high-pass filtered recordings. We have analyzed in-mine recordings in detail at one of the South African mines (Savuka) to (i) improve on reported hypocentral locations, (ii) verify sensor orientations, and (iii) determine full moment tensor solutions. Hypocentral relocations on all catalogued events have been obtained from P- and S-wave travel-times reported by the mine network operator through an automated procedure that selects travel-times falling on Wadati lines with slopes in the 0.6-0.7 range; sensor orientations have been verified and, when possible, corrected by correlating P-, SV-, and SH-waveforms obtained from theoretical and empirical (polarization filter) rotation angles; full moment tensor solutions have been obtained by inverting P-, SV-, and SH- spectral amplitudes measured on the theoretically rotated waveforms with visually assigned polarities. The relocation procedure has revealed that origin times often necessitate a negative correction of a few tenths of second and that hypocentral locations may move a few hundreds of meters. The full moment tensor determination has revealed that the most common focal mechanism (47 out of 82 solutions for events in the 0.2 < ML < 4.1 range) consists of a similar percentage of isotropic (implosive) and deviatoric components, with a normal fault-type best double couple. We have also calibrated the regional stations for seismic coda derived source spectra and moment magnitude using the envelope methodology of Mayeda et al (2003). We tie the coda Mw to independent values from waveform modeling. The resulting coda-based source spectra of shallow mining-related events show significant spectral peaking that is not seen in deeper tectonic earthquakes. This coda peaking may be an independent method of identifying shallow events and is similar to coda peaking previously observed for Nevada explosions, where the frequency of the observed spectral peak correlates with depth of burial (Murphy et al., 2008).« less

  12. Cyber entertainment system using an immersive networked virtual environment

    NASA Astrophysics Data System (ADS)

    Ihara, Masayuki; Honda, Shinkuro; Kobayashi, Minoru; Ishibashi, Satoshi

    2002-05-01

    Authors are examining a cyber entertainment system that applies IPT (Immersive Projection Technology) displays to the entertainment field. This system enables users who are in remote locations to communicate with each other so that they feel as if they are together. Moreover, the system enables those users to experience a high degree of presence, this is due to provision of stereoscopic vision as well as a haptic interface and stereo sound. This paper introduces this system from the viewpoint of space sharing across the network and elucidates its operation using the theme of golf. The system is developed by integrating avatar control, an I/O device, communication links, virtual interaction, mixed reality, and physical simulations. Pairs of these environments are connected across the network. This allows the two players to experience competition. An avatar of each player is displayed by the other player's IPT display in the remote location and is driven by only two magnetic sensors. That is, in the proposed system, users don't need to wear any data suit with a lot of sensors and they are able to play golf without any encumbrance.

  13. Model of mobile agents for sexual interactions networks

    NASA Astrophysics Data System (ADS)

    González, M. C.; Lind, P. G.; Herrmann, H. J.

    2006-02-01

    We present a novel model to simulate real social networks of complex interactions, based in a system of colliding particles (agents). The network is build by keeping track of the collisions and evolves in time with correlations which emerge due to the mobility of the agents. Therefore, statistical features are a consequence only of local collisions among its individual agents. Agent dynamics is realized by an event-driven algorithm of collisions where energy is gained as opposed to physical systems which have dissipation. The model reproduces empirical data from networks of sexual interactions, not previously obtained with other approaches.

  14. Context-aware event detection smartphone application for first responders

    NASA Astrophysics Data System (ADS)

    Boddhu, Sanjay K.; Dave, Rakesh P.; McCartney, Matt; West, James A.; Williams, Robert L.

    2013-05-01

    The rise of social networking platforms like Twitter, Facebook, etc…, have provided seamless sharing of information (as chat, video and other media) among its user community on a global scale. Further, the proliferation of the smartphones and their connectivity networks has powered the ordinary individuals to share and acquire information regarding the events happening in his/her immediate vicinity in a real-time fashion. This human-centric sensed data being generated in "human-as-sensor" approach is tremendously valuable as it delivered mostly with apt annotations and ground truth that would be missing in traditional machine-centric sensors, besides high redundancy factor (same data thru multiple users). Further, when appropriately employed this real-time data can support in detecting localized events like fire, accidents, shooting, etc…, as they unfold and pin-point individuals being affected by those events. This spatiotemporal information, when made available for first responders in the event vicinity (or approaching it) can greatly assist them to make effective decisions to protect property and life in a timely fashion. In this vein, under SATE and YATE programs, the research team at AFRL Tec^Edge Discovery labs had demonstrated the feasibility of developing Smartphone applications, that can provide a augmented reality view of the appropriate detected events in a given geographical location (localized) and also provide an event search capability over a large geographic extent. In its current state, the application thru its backend connectivity utilizes a data (Text & Image) processing framework, which deals with data challenges like; identifying and aggregating important events, analyzing and correlating the events temporally and spatially and building a search enabled event database. Further, the smartphone application with its backend data processing workflow has been successfully field tested with live user generated feeds.

  15. An Energy Efficient Adaptive Sampling Algorithm in a Sensor Network for Automated Water Quality Monitoring.

    PubMed

    Shu, Tongxin; Xia, Min; Chen, Jiahong; Silva, Clarence de

    2017-11-05

    Power management is crucial in the monitoring of a remote environment, especially when long-term monitoring is needed. Renewable energy sources such as solar and wind may be harvested to sustain a monitoring system. However, without proper power management, equipment within the monitoring system may become nonfunctional and, as a consequence, the data or events captured during the monitoring process will become inaccurate as well. This paper develops and applies a novel adaptive sampling algorithm for power management in the automated monitoring of the quality of water in an extensive and remote aquatic environment. Based on the data collected on line using sensor nodes, a data-driven adaptive sampling algorithm (DDASA) is developed for improving the power efficiency while ensuring the accuracy of sampled data. The developed algorithm is evaluated using two distinct key parameters, which are dissolved oxygen (DO) and turbidity. It is found that by dynamically changing the sampling frequency, the battery lifetime can be effectively prolonged while maintaining a required level of sampling accuracy. According to the simulation results, compared to a fixed sampling rate, approximately 30.66% of the battery energy can be saved for three months of continuous water quality monitoring. Using the same dataset to compare with a traditional adaptive sampling algorithm (ASA), while achieving around the same Normalized Mean Error (NME), DDASA is superior in saving 5.31% more battery energy.

  16. An Energy Efficient Adaptive Sampling Algorithm in a Sensor Network for Automated Water Quality Monitoring

    PubMed Central

    Shu, Tongxin; Xia, Min; Chen, Jiahong; de Silva, Clarence

    2017-01-01

    Power management is crucial in the monitoring of a remote environment, especially when long-term monitoring is needed. Renewable energy sources such as solar and wind may be harvested to sustain a monitoring system. However, without proper power management, equipment within the monitoring system may become nonfunctional and, as a consequence, the data or events captured during the monitoring process will become inaccurate as well. This paper develops and applies a novel adaptive sampling algorithm for power management in the automated monitoring of the quality of water in an extensive and remote aquatic environment. Based on the data collected on line using sensor nodes, a data-driven adaptive sampling algorithm (DDASA) is developed for improving the power efficiency while ensuring the accuracy of sampled data. The developed algorithm is evaluated using two distinct key parameters, which are dissolved oxygen (DO) and turbidity. It is found that by dynamically changing the sampling frequency, the battery lifetime can be effectively prolonged while maintaining a required level of sampling accuracy. According to the simulation results, compared to a fixed sampling rate, approximately 30.66% of the battery energy can be saved for three months of continuous water quality monitoring. Using the same dataset to compare with a traditional adaptive sampling algorithm (ASA), while achieving around the same Normalized Mean Error (NME), DDASA is superior in saving 5.31% more battery energy. PMID:29113087

  17. Energy efficient wireless sensor networks by using a fuzzy-based solution

    NASA Astrophysics Data System (ADS)

    Tirrito, Salvatore; Nicolosi, Giuseppina

    2016-12-01

    Wireless Sensor Networks are characterized by a distributed architecture realized by a set of autonomous electronic devices able to sense data from the surrounding environment and to communicate among them. These devices are battery powered since they may be used even to monitor hazardous events in inaccessible areas. As a consequence, it is preferable to assure the adoption of energy management solutions in order to extend the WSN lifetime, as far as possible. Moreover, it is crucial to guarantee that the nodes receive the transmitted data correctly. It is clear that trading off power optimization and quality of service has become one the most important concerns when dealing with modern systems based on WSNs. This paper introduces a solution based on a Fuzzy Logic Controller (FLC) focusing on the minimization of energy consumption of wireless sensor nodes. This is made possible because the sleeping time of these nodes is dynamically regulated by a FLC.

  18. Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients.

    PubMed

    Massé, Fabien; Gonzenbach, Roman R; Arami, Arash; Paraschiv-Ionescu, Anisoara; Luft, Andreas R; Aminian, Kamiar

    2015-08-25

    Stroke survivors often suffer from mobility deficits. Current clinical evaluation methods, including questionnaires and motor function tests, cannot provide an objective measure of the patients' mobility in daily life. Physical activity performance in daily-life can be assessed using unobtrusive monitoring, for example with a single sensor module fixed on the trunk. Existing approaches based on inertial sensors have limited performance, particularly in detecting transitions between different activities and postures, due to the inherent inter-patient variability of kinematic patterns. To overcome these limitations, one possibility is to use additional information from a barometric pressure (BP) sensor. Our study aims at integrating BP and inertial sensor data into an activity classifier in order to improve the activity (sitting, standing, walking, lying) recognition and the corresponding body elevation (during climbing stairs or when taking an elevator). Taking into account the trunk elevation changes during postural transitions (sit-to-stand, stand-to-sit), we devised an event-driven activity classifier based on fuzzy-logic. Data were acquired from 12 stroke patients with impaired mobility, using a trunk-worn inertial and BP sensor. Events, including walking and lying periods and potential postural transitions, were first extracted. These events were then fed into a double-stage hierarchical Fuzzy Inference System (H-FIS). The first stage processed the events to infer activities and the second stage improved activity recognition by applying behavioral constraints. Finally, the body elevation was estimated using a pattern-enhancing algorithm applied on BP. The patients were videotaped for reference. The performance of the algorithm was estimated using the Correct Classification Rate (CCR) and F-score. The BP-based classification approach was benchmarked against a previously-published fuzzy-logic classifier (FIS-IMU) and a conventional epoch-based classifier (EPOCH). The algorithm performance for posture/activity detection, in terms of CCR was 90.4 %, with 3.3 % and 5.6 % improvements against FIS-IMU and EPOCH, respectively. The proposed classifier essentially benefits from a better recognition of standing activity (70.3 % versus 61.5 % [FIS-IMU] and 42.5 % [EPOCH]) with 98.2 % CCR for body elevation estimation. The monitoring and recognition of daily activities in mobility-impaired stoke patients can be significantly improved using a trunk-fixed sensor that integrates BP, inertial sensors, and an event-based activity classifier.

  19. Detecting unknown attacks in wireless sensor networks that contain mobile nodes.

    PubMed

    Banković, Zorana; Fraga, David; Moya, José M; Vallejo, Juan Carlos

    2012-01-01

    As wireless sensor networks are usually deployed in unattended areas, security policies cannot be updated in a timely fashion upon identification of new attacks. This gives enough time for attackers to cause significant damage. Thus, it is of great importance to provide protection from unknown attacks. However, existing solutions are mostly concentrated on known attacks. On the other hand, mobility can make the sensor network more resilient to failures, reactive to events, and able to support disparate missions with a common set of sensors, yet the problem of security becomes more complicated. In order to address the issue of security in networks with mobile nodes, we propose a machine learning solution for anomaly detection along with the feature extraction process that tries to detect temporal and spatial inconsistencies in the sequences of sensed values and the routing paths used to forward these values to the base station. We also propose a special way to treat mobile nodes, which is the main novelty of this work. The data produced in the presence of an attacker are treated as outliers, and detected using clustering techniques. These techniques are further coupled with a reputation system, in this way isolating compromised nodes in timely fashion. The proposal exhibits good performances at detecting and confining previously unseen attacks, including the cases when mobile nodes are compromised.

  20. A Human Sensor Network Framework in Support of Near Real Time Situational Geophysical Modeling

    NASA Astrophysics Data System (ADS)

    Aulov, O.; Price, A.; Smith, J. A.; Halem, M.

    2013-12-01

    The area of Disaster Management is well established among Federal Agencies such as FEMA, EPA, NOAA and NASA. These agencies have well formulated frameworks for response and mitigation based on near real time satellite and conventional observing networks for assimilation into geophysical models. Forecasts from these models are used to communicate with emergency responders and the general public. More recently, agencies have started using social media to broadcast warnings and alerts to potentially affected communities. In this presentation, we demonstrate the added benefits of mining and assimilating the vast amounts of social media data available from heterogeneous hand held devices and social networks into established operational geophysical modeling frameworks as they apply to the five cornerstones of disaster management - Prevention, Mitigation, Preparedness, Response and Recovery. Often, in situations of extreme events, social media provide the earliest notification of adverse extreme events. However, various forms of social media data also can provide useful geolocated and time stamped in situ observations, complementary to directly sensed conventional observations. We use the concept of a Human Sensor Network where one views social media users as carrying field deployed "sensors" whose posts are the remotely "sensed instrument measurements.' These measurements can act as 'station data' providing the resolution and coverage needed for extreme event specific modeling and validation. Here, we explore the use of social media through the use of a Human Sensor Network (HSN) approach as another data input source for assimilation into geophysical models. Employing the HSN paradigm can provide useful feedback in near real-time, but presents software challenges for rapid access, quality filtering and transforming massive social media data into formats consistent with the operational models. As a use case scenario, we demonstrate the value of HSN for disaster management and mitigation in the wake of Hurricane Sandy. Hurricane Sandy devastated multiple regions along the Atlantic coast causing damage estimated at $68 billion to the Eastern United States. We developed a framework consisting of a set of APIs that harvested over 8 million tweets and 370 thousand Instagram photos mentioning Hurricane Sandy over 4 days from Oct. 29 -Nov. 1, 2012. The flexibility of the framework allows for easy integration with such geophysical models such as GNOME, SLOSH, HySplit, and WRF. We use ElasticSearch, a RESTful, distributed search engine based on Apache Lucene, as the underlying platform for indexing, filtering and extracting feature content from the Twitter and Instagram metadata. We identify microscale events and visually present time varying correlation results of forecasts from the NOAA operational surge model SLOSH with those obtained from our SM database on a Google Earth based map. We are exploring the benefits of our framework to illuminate gaps in our understanding of the use of such data in geophysical models.

  1. NPS Collaborative Technology Testbed for ONR CKM Program

    DTIC Science & Technology

    2005-01-11

    or have access to the MIT E-Wall hosted by the TOC. The combination of E-Wall and agents lend themselves to the dynamic gathering and display of...display, intuitive icons or menus that is easy to activate and customize , and automatically seeks and connects to other like services/networks/agents...integration creates network- centric memory mechanism for developing shared understanding of SA events Data Base Integration of Sensor-DM Agents and

  2. A data fusion approach for track monitoring from multiple in-service trains

    NASA Astrophysics Data System (ADS)

    Lederman, George; Chen, Siheng; Garrett, James H.; Kovačević, Jelena; Noh, Hae Young; Bielak, Jacobo

    2017-10-01

    We present a data fusion approach for enabling data-driven rail-infrastructure monitoring from multiple in-service trains. A number of researchers have proposed using vibration data collected from in-service trains as a low-cost method to monitor track geometry. The majority of this work has focused on developing novel features to extract information about the tracks from data produced by individual sensors on individual trains. We extend this work by presenting a technique to combine extracted features from multiple passes over the tracks from multiple sensors aboard multiple vehicles. There are a number of challenges in combining multiple data sources, like different relative position coordinates depending on the location of the sensor within the train. Furthermore, as the number of sensors increases, the likelihood that some will malfunction also increases. We use a two-step approach that first minimizes position offset errors through data alignment, then fuses the data with a novel adaptive Kalman filter that weights data according to its estimated reliability. We show the efficacy of this approach both through simulations and on a data-set collected from two instrumented trains operating over a one-year period. Combining data from numerous in-service trains allows for more continuous and more reliable data-driven monitoring than analyzing data from any one train alone; as the number of instrumented trains increases, the proposed fusion approach could facilitate track monitoring of entire rail-networks.

  3. Combining GOES-16 Geostationary Lightning Mapper with the ground based Earth Networks Total Lightning Network

    NASA Astrophysics Data System (ADS)

    Stock, M.; Lapierre, J. L.; Zhu, Y.

    2017-12-01

    Recently, the Geostationary Lightning Mapper (GLM) began collecting optical data to locate lightning events and flashes over the North and South American continents. This new instrument promises uniformly high detection efficiency (DE) over its entire field of view, with location accuracy on the order of 10 km. In comparison, Earth Networks Total Lightning Networks (ENTLN) has a less uniform coverage, with higher DE in regions with dense sensor coverage, and lower DE with sparse sensor coverage. ENTLN also offers better location accuracy, lightning classification, and peak current estimation for their lightning locations. It is desirable to produce an integrated dataset, combining the strong points of GLM and ENTLN. The easiest way to achieve this is to simply match located lightning processes from each system using time and distance criteria. This simple method will be limited in scope by the uneven coverage of the ground based network. Instead, we will use GLM group locations to look up the electric field change data recorded by ground sensors near each GLM group, vastly increasing the coverage of the ground network. The ground waveforms can then be used for: improvements to differentiation between glint and lightning for GLM, higher precision lighting location, current estimation, and lightning process classification. Presented is an initial implementation of this type of integration using preliminary GLM data, and waveforms from ENTLN.

  4. Detecting NEO Impacts using the International Monitoring System

    NASA Astrophysics Data System (ADS)

    Brown, Peter G.; Dube, Kimberlee; Silber, Elizabeth

    2014-11-01

    As part of the verification regime for the Comprehensive Nuclear Test Ban Treaty an International Monitoring System (IMS) consisting of seismic, hydroacoustic, infrasound and radionuclide technologies has been globally deployed beginning in the late 1990s. The infrasound network sub-component of the IMS consists of 47 active stations as of mid-2014. These microbarograph arrays detect coherent infrasonic signals from a range of sources including volcanoes, man-made explosions and bolides. Bolide detections from IMS stations have been reported since ~2000, but with the maturation of the network over the last several years the rate of detections has increased substantially. Presently the IMS performs semi-automated near real-time global event identification on timescales of 6-12 hours as well as analyst verified event identification having time lags of several weeks. Here we report on infrasound events identified by the IMS between 2010-2014 which are likely bolide impacts. Identification in this context refers to an event being included in one of the event bulletins issued by the IMS. In this untargeted study we find that the IMS globally identifies approximately 16 events per year which are likely bolide impacts. Using data released since the beginning of 2014 of US Government sensor detections (as given at http://neo.jpl.nasa.gov/fireballs/ ) of fireballs we find in a complementary targeted survey that the current IMS system is able to identify ~25% of fireballs with E > 0.1 kT energy. Using all 16 US Government sensor fireballs listed as of July 31, 2014 we are able to detect infrasound from 75% of these events on at least one IMS station. The high ratio of detection/identification is a product of the stricter criteria adopted by the IMS for inclusion in an event bulletin as compared to simple station detection.We discuss energy comparisons between infrasound-estimated energies based on amplitudes and periods and estimates provided by US Government sensors. Specific impact events of interest will be discussed as well as the utility of the global IMS infrasound system for location and timing of future NEAs detected prior to impact.

  5. Near Optimal Event-Triggered Control of Nonlinear Discrete-Time Systems Using Neurodynamic Programming.

    PubMed

    Sahoo, Avimanyu; Xu, Hao; Jagannathan, Sarangapani

    2016-09-01

    This paper presents an event-triggered near optimal control of uncertain nonlinear discrete-time systems. Event-driven neurodynamic programming (NDP) is utilized to design the control policy. A neural network (NN)-based identifier, with event-based state and input vectors, is utilized to learn the system dynamics. An actor-critic framework is used to learn the cost function and the optimal control input. The NN weights of the identifier, the critic, and the actor NNs are tuned aperiodically once every triggered instant. An adaptive event-trigger condition to decide the trigger instants is derived. Thus, a suitable number of events are generated to ensure a desired accuracy of approximation. A near optimal performance is achieved without using value and/or policy iterations. A detailed analysis of nontrivial inter-event times with an explicit formula to show the reduction in computation is also derived. The Lyapunov technique is used in conjunction with the event-trigger condition to guarantee the ultimate boundedness of the closed-loop system. The simulation results are included to verify the performance of the controller. The net result is the development of event-driven NDP.

  6. Multivariate Spatial Condition Mapping Using Subtractive Fuzzy Cluster Means

    PubMed Central

    Sabit, Hakilo; Al-Anbuky, Adnan

    2014-01-01

    Wireless sensor networks are usually deployed for monitoring given physical phenomena taking place in a specific space and over a specific duration of time. The spatio-temporal distribution of these phenomena often correlates to certain physical events. To appropriately characterise these events-phenomena relationships over a given space for a given time frame, we require continuous monitoring of the conditions. WSNs are perfectly suited for these tasks, due to their inherent robustness. This paper presents a subtractive fuzzy cluster means algorithm and its application in data stream mining for wireless sensor systems over a cloud-computing-like architecture, which we call sensor cloud data stream mining. Benchmarking on standard mining algorithms, the k-means and the FCM algorithms, we have demonstrated that the subtractive fuzzy cluster means model can perform high quality distributed data stream mining tasks comparable to centralised data stream mining. PMID:25313495

  7. SociAL Sensor Analytics: Measuring Phenomenology at Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corley, Courtney D.; Dowling, Chase P.; Rose, Stuart J.

    The objective of this paper is to present a system for interrogating immense social media streams through analytical methodologies that characterize topics and events critical to tactical and strategic planning. First, we propose a conceptual framework for interpreting social media as a sensor network. Time-series models and topic clustering algorithms are used to implement this concept into a functioning analytical system. Next, we address two scientific challenges: 1) to understand, quantify, and baseline phenomenology of social media at scale, and 2) to develop analytical methodologies to detect and investigate events of interest. This paper then documents computational methods and reportsmore » experimental findings that address these challenges. Ultimately, the ability to process billions of social media posts per week over a period of years enables the identification of patterns and predictors of tactical and strategic concerns at an unprecedented rate through SociAL Sensor Analytics (SALSA).« less

  8. Secret Forwarding of Events over Distributed Publish/Subscribe Overlay Network.

    PubMed

    Yoon, Young; Kim, Beom Heyn

    2016-01-01

    Publish/subscribe is a communication paradigm where loosely-coupled clients communicate in an asynchronous fashion. Publish/subscribe supports the flexible development of large-scale, event-driven and ubiquitous systems. Publish/subscribe is prevalent in a number of application domains such as social networking, distributed business processes and real-time mission-critical systems. Many publish/subscribe applications are sensitive to message loss and violation of privacy. To overcome such issues, we propose a novel method of using secret sharing and replication techniques. This is to reliably and confidentially deliver decryption keys along with encrypted publications even under the presence of several Byzantine brokers across publish/subscribe overlay networks. We also propose a framework for dynamically and strategically allocating broker replicas based on flexibly definable criteria for reliability and performance. Moreover, a thorough evaluation is done through a case study on social networks using the real trace of interactions among Facebook users.

  9. Secret Forwarding of Events over Distributed Publish/Subscribe Overlay Network

    PubMed Central

    Kim, Beom Heyn

    2016-01-01

    Publish/subscribe is a communication paradigm where loosely-coupled clients communicate in an asynchronous fashion. Publish/subscribe supports the flexible development of large-scale, event-driven and ubiquitous systems. Publish/subscribe is prevalent in a number of application domains such as social networking, distributed business processes and real-time mission-critical systems. Many publish/subscribe applications are sensitive to message loss and violation of privacy. To overcome such issues, we propose a novel method of using secret sharing and replication techniques. This is to reliably and confidentially deliver decryption keys along with encrypted publications even under the presence of several Byzantine brokers across publish/subscribe overlay networks. We also propose a framework for dynamically and strategically allocating broker replicas based on flexibly definable criteria for reliability and performance. Moreover, a thorough evaluation is done through a case study on social networks using the real trace of interactions among Facebook users. PMID:27367610

  10. Integrating Predictive Modeling with Control System Design for Managed Aquifer Recharge and Recovery Applications

    NASA Astrophysics Data System (ADS)

    Drumheller, Z. W.; Regnery, J.; Lee, J. H.; Illangasekare, T. H.; Kitanidis, P. K.; Smits, K. M.

    2014-12-01

    Aquifers around the world show troubling signs of irreversible depletion and seawater intrusion as climate change, population growth, and urbanization led to reduced natural recharge rates and overuse. Scientists and engineers have begun to re-investigate the technology of managed aquifer recharge and recovery (MAR) as a means to increase the reliability of the diminishing and increasingly variable groundwater supply. MAR systems offer the possibility of naturally increasing groundwater storage while improving the quality of impaired water used for recharge. Unfortunately, MAR systems remain wrought with operational challenges related to the quality and quantity of recharged and recovered water stemming from a lack of data-driven, real-time control. Our project seeks to ease the operational challenges of MAR facilities through the implementation of active sensor networks, adaptively calibrated flow and transport models, and simulation-based meta-heuristic control optimization methods. The developed system works by continually collecting hydraulic and water quality data from a sensor network embedded within the aquifer. The data is fed into an inversion algorithm, which calibrates the parameters and initial conditions of a predictive flow and transport model. The calibrated model is passed to a meta-heuristic control optimization algorithm (e.g. genetic algorithm) to execute the simulations and determine the best course of action, i.e., the optimal pumping policy for current aquifer conditions. The optimal pumping policy is manually or autonomously applied. During operation, sensor data are used to assess the accuracy of the optimal prediction and augment the pumping strategy as needed. At laboratory-scale, a small (18"H x 46"L) and an intermediate (6'H x 16'L) two-dimensional synthetic aquifer were constructed and outfitted with sensor networks. Data collection and model inversion components were developed and sensor data were validated by analytical measurements.

  11. Real-Time Field Data Acquisition and Remote Sensor Reconfiguration Using Scientific Workflows

    NASA Astrophysics Data System (ADS)

    Silva, F.; Mehta, G.; Vahi, K.; Deelman, E.

    2010-12-01

    Despite many technological advances, field data acquisition still consists of several manual and laborious steps. Once sensors and data loggers are deployed in the field, scientists often have to periodically return to their study sites in order to collect their data. Even when field deployments have a way to communicate and transmit data back to the laboratory (e.g. by using a satellite or a cellular modem), data analysis still requires several repetitive steps. Because data often needs to be processed and inspected manually, there is usually a significant time delay between data collection and analysis. As a result, sensor failures that could be detected almost in real-time are not noted for weeks or months. Finally, sensor reconfiguration as a result of interesting events in the field is still done manually, making rapid response nearly impossible and causing important data to be missed. By working closely with scientists from different application domains, we identified several tasks that, if automated, could greatly improve the way field data is collected, processed, and distributed. Our goals are to enable real-time data collection and validation, automate sensor reconfiguration in response to interest events in the field, and allow scientists to easily automate their data processing. We began our design by employing the Sensor Processing and Acquisition Network (SPAN) architecture. SPAN uses an embedded processor in the field to coordinate sensor data acquisition from analog and digital sensors by interfacing with different types of devices and data loggers. SPAN is also able to interact with various types of communication devices in order to provide real-time communication to and from field sites. We use the Pegasus Workflow Management System (Pegasus WMS) to coordinate data collection and control sensors and deployments in the field. Because scientific workflows can be used to automate multi-step, repetitive tasks, scientists can create simple workflows to download sensor data, perform basic QA/QC, and identify events of interest as well as sensor and data logger failures almost in real-time. As a result of this automation, scientists can quickly be notified (e.g. via e-mail or SMS) so that important events are not missed. In addition, Pegasus WMS has the ability to abstract the execution environment of where programs run. By placing a Pegasus WMS agent inside an embedded processor in the field, we allow scientists to ship simple computational models to the field, enabling remote data processing at the field site. As an example, scientists can send an image processing algorithm to the field so that the embedded processor can analyze images, thus reducing the bandwidth necessary for communication. In addition, when real-time communication to the laboratory is not possible, scientists can create simple computational models that can be run on sensor nodes autonomously, monitoring sensor data and making adjustments without any human intervention. We believe our system lowers the bar for the adoption of reconfigurable sensor networks by field scientists. In this poster, we will show how this technology can be used to provide not only data acquisition, but also real-time data validation and sensor reconfiguration.

  12. Utilization of extended bayesian networks in decision making under uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Eeckhout, Edward M; Leishman, Deborah A; Gibson, William L

    2009-01-01

    Bayesian network tool (called IKE for Integrated Knowledge Engine) has been developed to assess the probability of undesirable events. The tool allows indications and observables from sensors and/or intelligence to feed directly into hypotheses of interest, thus allowing one to quantify the probability and uncertainty of these events resulting from very disparate evidence. For example, the probability that a facility is processing nuclear fuel or assembling a weapon can be assessed by examining the processes required, establishing the observables that should be present, then assembling information from intelligence, sensors and other information sources related to the observables. IKE also hasmore » the capability to determine tasking plans, that is, prioritize which observable should be collected next to most quickly ascertain the 'true' state and drive the probability toward 'zero' or 'one.' This optimization capability is called 'evidence marshaling.' One example to be discussed is a denied facility monitoring situation; there is concern that certain process(es) are being executed at the site (due to some intelligence or other data). We will show how additional pieces of evidence will then ascertain with some degree of certainty the likelihood of this process(es) as each piece of evidence is obtained. This example shows how both intelligence and sensor data can be incorporated into the analysis. A second example involves real-time perimeter security. For this demonstration we used seismic, acoustic, and optical sensors linked back to IKE. We show how these sensors identified and assessed the likelihood of 'intruder' versus friendly vehicles.« less

  13. Ground Monitoring Neotropical Dry Forests: A Sensor Network for Forest and Microclimate Dynamics in Semi-Arid Environments (Enviro-Net°)

    NASA Astrophysics Data System (ADS)

    Rankine, C. J.; Sánchez-Azofeifa, G.

    2011-12-01

    In the face of unprecedented global change driven by anthropogenic pressure on natural systems it has become imperative to monitor and better understand potential shifts in ecosystem functioning and services from local to global scales. The utilization of automated sensors technologies offers numerous advantages over traditional on-site ecosystem surveying techniques and, as a result, sensor networks are becoming a powerful tool in environmental monitoring programs. Tropical forests, renowned for their biodiversity, are important regulators of land-atmosphere fluxes yet the seasonally dry tropical forests, which account for 40% of forested ecosystems in the American tropics, have been severely degraded over the past several decades and not much is known of their capacity to recover. With less than 1% of these forests protected, our ability to monitor the dynamics and quantify changes in the remaining primary and recovering secondary tropical dry forests is vital to understanding mechanisms of ecosystem stress responses and climate feedback with respect to annual productivity and desertification processes in the tropics. The remote sensing component of the Tropi-Dry: Human and Biophysical Dimensions of Tropical Dry Forests in the Americas research network supports a network of long-term tropical ecosystem monitoring platforms which focus on the dynamics of seasonally dry tropical forests in the Americas. With over 25 sensor station deployments operating across a latitudinal gradient in Mexico, Costa Rica, Brazil, and Argentina continuously collecting hyper-temporal sensory input based on standardized deployment parameters, this monitoring system is unique among tropical environments. Technologies used in the network include optical canopy phenology towers, understory wireless sensing networks, above and below ground microclimate stations, and digital cameras. Sensory data streams are uploaded to a cyber-infrastructure initiative, denominated Enviro-Net°, for data storage, management, visualization, and retrieval for further analysis. The use of tower and ground-based optical sensor networks and meteorological monitoring instrumentation has proven effective in capturing seasonal growth patterns in primary and secondary forest stands. Furthermore, the observed trends in above and below ground microclimate variables are shown to closely correlate with in-situ vegetative indices (NDVI and EVI) across study sites. These long-term environmental sensory data streams provide valuable insights as to how these threatened semi-arid ecosystems regenerate after disturbances and how they respond to environmental stress such as climate change in the tropical and sub-tropical latitudes.

  14. Islanding detection and over voltage mitigation using wireless sensor networks and electric vehicle charging stations.

    DOT National Transportation Integrated Search

    2016-06-01

    An islanding condition occurs when a distributed generation (DG) unit continues to energize a : part of the grid while said part has been isolated from the main electrical utility. In this event, if : the power of the DG exceeds the load, a transient...

  15. Breaking wire detection and strain distribution of seven-wire steel cables with acoustic emission and optical fiber sensors.

    DOT National Transportation Integrated Search

    2013-09-01

    Cable-stayed bridges have been increasingly used as river-crossing links in highway and railway transportation networks. In the event : of an abnormal situation, they can not only impact the local and national economy but also threaten the safety of ...

  16. Theater-Level Stochastic Air-to-Air Engagement Modeling via Event Occurrence Networks Using Piecewise Polynomial Approximation

    DTIC Science & Technology

    2001-09-01

    diagnosis natural language understanding circuit fault diagnosis pattern recognition machine vision nancial auditing map learning sensor... ACCA ACCB A ights degree of command and control FCC value is assumed to be the average of all the ACC values of the aircraft in the

  17. A technique for establishing a reference potential on satellites in planetary ionospheres

    NASA Astrophysics Data System (ADS)

    Zuccaro, D. R.; Holt, B. J.

    1982-10-01

    A simple, nearly passive technique is described that allows a spacecraft sensor to be driven to a potential close to that of a plasma where the ion concentration exceeds about 100 per cu cm even in the presence of a large vehicle potential. Such a technique may become increasingly useful in the event that compatibility constraints in the Space Shuttle demand a 28-V negative ground spacecraft system.

  18. Real-time method for establishing a detection map for a network of sensors

    DOEpatents

    Nguyen, Hung D; Koch, Mark W; Giron, Casey; Rondeau, Daniel M; Russell, John L

    2012-09-11

    A method for establishing a detection map of a dynamically configurable sensor network. This method determines an appropriate set of locations for a plurality of sensor units of a sensor network and establishes a detection map for the network of sensors while the network is being set up; the detection map includes the effects of the local terrain and individual sensor performance. Sensor performance is characterized during the placement of the sensor units, which enables dynamic adjustment or reconfiguration of the placement of individual elements of the sensor network during network set-up to accommodate variations in local terrain and individual sensor performance. The reconfiguration of the network during initial set-up to accommodate deviations from idealized individual sensor detection zones improves the effectiveness of the sensor network in detecting activities at a detection perimeter and can provide the desired sensor coverage of an area while minimizing unintentional gaps in coverage.

  19. A wireless-sensor scoring and training system for combative sports

    NASA Astrophysics Data System (ADS)

    Partridge, Kane; Hayes, Jason P.; James, Daniel A.; Hill, Craig; Gin, Gareth; Hahn, Allan

    2005-02-01

    Although historically among the most popular of sports, today, combative sports are often viewed as an expression of our savage past. Of primary concern are the long term effects of participating in these sports on the health of participants. The scoring of such sports has also been the subject of much debate, with a panel of judges making decisions about very quick events involving large sums of prize money. This paper describes an electronic system for use primarily in the sport of boxing, though it is suitable for martial arts such as karate and taekwondo. The technology is based on a previously described sensor platform and integrates a network of sensors on the athlete"s head, body and hands. Using a Bluetooth network, physical contacts are monitored in near real-time or post event on a remote computer to determine legal hits and hence derivative measures like scoring and final outcomes. It is hoped that this system can be applied to reduce the need for full contact contests as well as provide a more reliable method of determining the outcome of a bout. Other benefits presented here include the ability to analyse an athlete's performance post match or training session, such as assessing the efficacy of training drills and effects of fatigue.

  20. Gait-Cycle-Driven Transmission Power Control Scheme for a Wireless Body Area Network.

    PubMed

    Zang, Weilin; Li, Ye

    2018-05-01

    In a wireless body area network (WBAN), walking movements can result in rapid channel fluctuations, which severely degrade the performance of transmission power control (TPC) schemes. On the other hand, these channel fluctuations are often periodic and are time-synchronized with the user's gait cycle, since they are all driven from the walking movements. In this paper, we propose a novel gait-cycle-driven transmission power control (G-TPC) for a WBAN. The proposed G-TPC scheme reinforces the existing TPC scheme by exploiting the periodic channel fluctuation in the walking scenario. In the proposed scheme, the user's gait cycle information acquired by an accelerometer is used as beacons for arranging the transmissions at the time points with the ideal channel state. The specific transmission power is then determined by using received signal strength indication (RSSI). An experiment was conducted to evaluate the energy efficiency and reliability of the proposed G-TPC based on a CC2420 platform. The results reveal that compared to the original RSSI/link-quality-indication-based TPC, G-TPC reduces energy consumption by 25% on the sensor node and reduce the packet loss rate by 65%.

  1. Multiple Sensing Application on Wireless Sensor Network Simulation using NS3

    NASA Astrophysics Data System (ADS)

    Kurniawan, I. F.; Bisma, R.

    2018-01-01

    Hardware enhancement provides opportunity to install various sensor device on single monitoring node which then enables users to acquire multiple data simultaneously. Constructing multiple sensing application in NS3 is a challenging task since numbers of aspects such as wireless communication, packet transmission pattern, and energy model must be taken into account. Despite of numerous types of monitoring data available, this study only considers two types such as periodic, and event-based data. Periodical data will generate monitoring data follows configured interval, while event-based transmit data when certain determined condition is met. Therefore, this study attempts to cover mentioned aspects in NS3. Several simulations are performed with different number of nodes on arbitrary communication scheme.

  2. Monitoring of Carbon Dioxide and Methane Plumes from Combined Ground-Airborne Sensors

    NASA Astrophysics Data System (ADS)

    Jacob, Jamey; Mitchell, Taylor; Honeycutt, Wes; Materer, Nicholas; Ley, Tyler; Clark, Peter

    2016-11-01

    A hybrid ground-airborne sensing network for real-time plume monitoring of CO2 and CH4 for carbon sequestration is investigated. Conventional soil gas monitoring has difficulty in distinguishing gas flux signals from leakage with those associated with meteorologically driven changes. A low-cost, lightweight sensor system has been developed and implemented onboard a small unmanned aircraft and is combined with a large-scale ground network that measures gas concentration. These are combined with other atmospheric diagnostics, including thermodynamic data and velocity from ultrasonic anemometers and multi-hole probes. To characterize the system behavior and verify its effectiveness, field tests have been conducted with simulated discharges of CO2 and CH4 from compressed gas tanks to mimic leaks and generate gaseous plumes, as well as field tests over the Farnsworth CO2-EOR site in the Anadarko Basin. Since the sensor response time is a function of vehicle airspeed, dynamic calibration models are required to determine accurate location of gas concentration in space and time. Comparisons are made between the two tests and results compared with historical models combining both flight and atmospheric dynamics. Supported by Department of Energy Award DE-FE0012173.

  3. A Proposed Scalable Design and Simulation of Wireless Sensor Network-Based Long-Distance Water Pipeline Leakage Monitoring System

    PubMed Central

    Almazyad, Abdulaziz S.; Seddiq, Yasser M.; Alotaibi, Ahmed M.; Al-Nasheri, Ahmed Y.; BenSaleh, Mohammed S.; Obeid, Abdulfattah M.; Qasim, Syed Manzoor

    2014-01-01

    Anomalies such as leakage and bursts in water pipelines have severe consequences for the environment and the economy. To ensure the reliability of water pipelines, they must be monitored effectively. Wireless Sensor Networks (WSNs) have emerged as an effective technology for monitoring critical infrastructure such as water, oil and gas pipelines. In this paper, we present a scalable design and simulation of a water pipeline leakage monitoring system using Radio Frequency IDentification (RFID) and WSN technology. The proposed design targets long-distance aboveground water pipelines that have special considerations for maintenance, energy consumption and cost. The design is based on deploying a group of mobile wireless sensor nodes inside the pipeline and allowing them to work cooperatively according to a prescheduled order. Under this mechanism, only one node is active at a time, while the other nodes are sleeping. The node whose turn is next wakes up according to one of three wakeup techniques: location-based, time-based and interrupt-driven. In this paper, mathematical models are derived for each technique to estimate the corresponding energy consumption and memory size requirements. The proposed equations are analyzed and the results are validated using simulation. PMID:24561404

  4. A proposed scalable design and simulation of wireless sensor network-based long-distance water pipeline leakage monitoring system.

    PubMed

    Almazyad, Abdulaziz S; Seddiq, Yasser M; Alotaibi, Ahmed M; Al-Nasheri, Ahmed Y; BenSaleh, Mohammed S; Obeid, Abdulfattah M; Qasim, Syed Manzoor

    2014-02-20

    Anomalies such as leakage and bursts in water pipelines have severe consequences for the environment and the economy. To ensure the reliability of water pipelines, they must be monitored effectively. Wireless Sensor Networks (WSNs) have emerged as an effective technology for monitoring critical infrastructure such as water, oil and gas pipelines. In this paper, we present a scalable design and simulation of a water pipeline leakage monitoring system using Radio Frequency IDentification (RFID) and WSN technology. The proposed design targets long-distance aboveground water pipelines that have special considerations for maintenance, energy consumption and cost. The design is based on deploying a group of mobile wireless sensor nodes inside the pipeline and allowing them to work cooperatively according to a prescheduled order. Under this mechanism, only one node is active at a time, while the other nodes are sleeping. The node whose turn is next wakes up according to one of three wakeup techniques: location-based, time-based and interrupt-driven. In this paper, mathematical models are derived for each technique to estimate the corresponding energy consumption and memory size requirements. The proposed equations are analyzed and the results are validated using simulation.

  5. Outlier Detection in Urban Air Quality Sensor Networks.

    PubMed

    van Zoest, V M; Stein, A; Hoek, G

    2018-01-01

    Low-cost urban air quality sensor networks are increasingly used to study the spatio-temporal variability in air pollutant concentrations. Recently installed low-cost urban sensors, however, are more prone to result in erroneous data than conventional monitors, e.g., leading to outliers. Commonly applied outlier detection methods are unsuitable for air pollutant measurements that have large spatial and temporal variations as occur in urban areas. We present a novel outlier detection method based upon a spatio-temporal classification, focusing on hourly NO 2 concentrations. We divide a full year's observations into 16 spatio-temporal classes, reflecting urban background vs. urban traffic stations, weekdays vs. weekends, and four periods per day. For each spatio-temporal class, we detect outliers using the mean and standard deviation of the normal distribution underlying the truncated normal distribution of the NO 2 observations. Applying this method to a low-cost air quality sensor network in the city of Eindhoven, the Netherlands, we found 0.1-0.5% of outliers. Outliers could reflect measurement errors or unusual high air pollution events. Additional evaluation using expert knowledge is needed to decide on treatment of the identified outliers. We conclude that our method is able to detect outliers while maintaining the spatio-temporal variability of air pollutant concentrations in urban areas.

  6. Next Generation Mine Countermeasures for the Very Shallow Water Zone in Support of Amphibious Operations

    DTIC Science & Technology

    2012-03-01

    responsible for self -organizing an appropriate network infrastructure with multi-hop connection between sensor nodes. The network is self - healing ...a self -destruct mechanism that will flood the casing with water in the event that the mine is separated from its mooring. Provided that this does...mechanically severed from its mooring cable, would then initiate its self -destruct sequence whereby the mine is flooded. Then, depending upon the type of

  7. A High-Resolution Sensor Network for Monitoring Glacier Dynamics

    NASA Astrophysics Data System (ADS)

    Edwards, S.; Murray, T.; O'Farrell, T.; Rutt, I. C.; Loskot, P.; Martin, I.; Selmes, N.; Aspey, R.; James, T.; Bevan, S. L.; Baugé, T.

    2013-12-01

    Changes in Greenland and Antarctic ice sheets due to ice flow/ice-berg calving are a major uncertainty affecting sea-level rise forecasts. Latterly GNSS (Global Navigation Satellite Systems) have been employed extensively to monitor such glacier dynamics. Until recently however, the favoured methodology has been to deploy sensors onto the glacier surface, collect data for a period of time, then retrieve and download the sensors. This approach works well in less dynamic environments where the risk of sensor loss is low. In more extreme environments e.g. approaching the glacial calving front, the risk of sensor loss and hence data loss increases dramatically. In order to provide glaciologists with new insights into flow dynamics and calving processes we have developed a novel sensor network to increase the robustness of data capture. We present details of the technological requirements for an in-situ Zigbee wireless streaming network infrastructure supporting instantaneous data acquisition from high resolution GNSS sensors thereby increasing data capture robustness. The data obtained offers new opportunities to investigate the interdependence of mass flow, uplift, velocity and geometry and the network architecture has been specifically designed for deployment by helicopter close to the calving front to yield unprecedented detailed information. Following successful field trials of a pilot three node network during 2012, a larger 20 node network was deployed on the fast-flowing Helheim glacier, south-east Greenland over the summer months of 2013. The utilisation of dual wireless transceivers in each glacier node, multiple frequencies and four ';collector' stations located on the valley sides creates overlapping networks providing enhanced capacity, diversity and redundancy of data 'back-haul', even close to ';floor' RSSI (Received Signal Strength Indication) levels around -100 dBm. Data loss through radio packet collisions within sub-networks are avoided through the adoption of beacon based time division multiple access (tdma). In-house single-epoch GNSS processing software provides 1-2 cm coordinate time-series capable of detecting a major calving event during the 2012 pilot study. These data can be synthesised with other remotely sensed data e.g. airborne lidar, oblique photogrammetry and TanDEM-X satellite imagery derived DEMs giving an opportunity to fine-tune glacial models delivering a deeper understanding of the contribution to sea-level rise made by tidewater glaciers such as Helheim. The flexibility of our network would make it suitable for deployment in other extreme environments such as areas at risk from earthquakes and landslides.

  8. Sensor Exposure, Exploitation, and Experimentation Environment (SE4)

    NASA Astrophysics Data System (ADS)

    Buell, D.; Duff, F.; Goding, J.; Bankston, M.; McLaughlin, T.; Six, S.; Taylor, S.; Wootton, S.

    2011-09-01

    As the resident space object population increases from new launches and events such as the COSMOS/IRIDIUM collision, the maintenance of high-level Space Situational Awareness (SSA) has become increasingly difficult. To maintain situational awareness of the changing environment, new systems and methods must be developed. The Sensor Exposure, Exploitation and Experimentation Environment (SE4) provides a platform to illustrate “The Art of the Possible” that shows the potential benefit of enriched sensor data collections and real-time data sharing. Through modeling and simulation, and a net-centric architecture, SE4 shows the added value of sharing data in real-time and exposing new types of sensor data. The objective of SE4 is to develop an experimentation and innovation environment for sensor data exposure, composable sensor capabilities, reuse, and exploitation that accelerates the delivery of needed Command and Control, Intelligence, Surveillance, and Reconnaissance capabilities to the warfighter. Through modeling, simulation and rapid prototyping, the art of the possible for a fully-connected, net-centric space Command and Control (C2) and sensor enterprise can be demonstrated. This paper provides results that demonstrate the potential for faster cataloging of breakup events and additional event monitoring that are possible with data available today in the Space Surveillance Network (SSN). Demonstrating the art of the possible for the enterprise will guide net-centric requirements definition and facilitate discussions with stakeholder organizations on the Concept of Operations (CONOPS), policy, and Tactics, Techniques, and Procedures (TTP) evolution necessary to take full advantage of net-centric operations. SE4 aligns with direction from Secretary Gates and the Chairman Joint Chief of Staff that emphasizes the need to get the most out of our existing systems. Continuing to utilize SE4 will enable the enterprise by demonstrating the benefits of applying innovative net-centric concepts to SSA, resulting in efficient use of sensors, agile response to space events, and improved maintenance of the Space Catalog.

  9. Sensor Network Architectures for Monitoring Underwater Pipelines

    PubMed Central

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring. PMID:22346669

  10. Sensor network architectures for monitoring underwater pipelines.

    PubMed

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.

  11. Distributed convex optimisation with event-triggered communication in networked systems

    NASA Astrophysics Data System (ADS)

    Liu, Jiayun; Chen, Weisheng

    2016-12-01

    This paper studies the distributed convex optimisation problem over directed networks. Motivated by practical considerations, we propose a novel distributed zero-gradient-sum optimisation algorithm with event-triggered communication. Therefore, communication and control updates just occur at discrete instants when some predefined condition satisfies. Thus, compared with the time-driven distributed optimisation algorithms, the proposed algorithm has the advantages of less energy consumption and less communication cost. Based on Lyapunov approaches, we show that the proposed algorithm makes the system states asymptotically converge to the solution of the problem exponentially fast and the Zeno behaviour is excluded. Finally, simulation example is given to illustrate the effectiveness of the proposed algorithm.

  12. NASA Tech Briefs, April 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics covered include: Analysis of SSEM Sensor Data Using BEAM; Hairlike Percutaneous Photochemical Sensors; Video Guidance Sensors Using Remotely Activated Targets; Simulating Remote Sensing Systems; EHW Approach to Temperature Compensation of Electronics; Polymorphic Electronic Circuits; Micro-Tubular Fuel Cells; Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter; PVM Wrapper; Simulation of Hyperspectral Images; Algorithm for Controlling a Centrifugal Compressor; Hybrid Inflatable Pressure Vessel; Double-Acting, Locking Carabiners; Position Sensor Integral with a Linear Actuator; Improved Electromagnetic Brake; Flow Straightener for a Rotating-Drum Liquid Separator; Sensory-Feedback Exoskeletal Arm Controller; Active Suppression of Instabilities in Engine Combustors; Fabrication of Robust, Flat, Thinned, UV-Imaging CCDs; Chemical Thinning Process for Fabricating UV-Imaging CCDs; Pseudoslit Spectrometer; Waste-Heat-Driven Cooling Using Complex Compound Sorbents; Improved Refractometer for Measuring Temperatures of Drops; Semiconductor Lasers Containing Quantum Wells in Junctions; Phytoplankton-Fluorescence-Lifetime Vertical Profiler; Hexagonal Pixels and Indexing Scheme for Binary Images; Finding Minimum-Power Broadcast Trees for Wireless Networks; and Automation of Design Engineering Processes.

  13. Event-Driven Simulation and Analysis of an Underwater Acoustic Local Area Network

    DTIC Science & Technology

    2010-06-01

    Successful number of data packets % b. PSUP = Successful number of Utility packets % c. PSB = Successful number of byte Tx. % d. PSPRT = Number of sub...g. PFU = Number of failed utilities Tx failures with time log of failure % h. PTO = Number of Time-outs 55 function [PSDP,PSUP, PSB ,PSPRT,PFP,PFSP...transmitted PSB = 0 ; % Number of Bytes transmitted PSPRT = 0; % Number of sub-packets retransmitted PFP = 0; % Number of failed packets event PFSP

  14. Samba: a real-time motion capture system using wireless camera sensor networks.

    PubMed

    Oh, Hyeongseok; Cha, Geonho; Oh, Songhwai

    2014-03-20

    There is a growing interest in 3D content following the recent developments in 3D movies, 3D TVs and 3D smartphones. However, 3D content creation is still dominated by professionals, due to the high cost of 3D motion capture instruments. The availability of a low-cost motion capture system will promote 3D content generation by general users and accelerate the growth of the 3D market. In this paper, we describe the design and implementation of a real-time motion capture system based on a portable low-cost wireless camera sensor network. The proposed system performs motion capture based on the data-driven 3D human pose reconstruction method to reduce the computation time and to improve the 3D reconstruction accuracy. The system can reconstruct accurate 3D full-body poses at 16 frames per second using only eight markers on the subject's body. The performance of the motion capture system is evaluated extensively in experiments.

  15. Samba: A Real-Time Motion Capture System Using Wireless Camera Sensor Networks

    PubMed Central

    Oh, Hyeongseok; Cha, Geonho; Oh, Songhwai

    2014-01-01

    There is a growing interest in 3D content following the recent developments in 3D movies, 3D TVs and 3D smartphones. However, 3D content creation is still dominated by professionals, due to the high cost of 3D motion capture instruments. The availability of a low-cost motion capture system will promote 3D content generation by general users and accelerate the growth of the 3D market. In this paper, we describe the design and implementation of a real-time motion capture system based on a portable low-cost wireless camera sensor network. The proposed system performs motion capture based on the data-driven 3D human pose reconstruction method to reduce the computation time and to improve the 3D reconstruction accuracy. The system can reconstruct accurate 3D full-body poses at 16 frames per second using only eight markers on the subject's body. The performance of the motion capture system is evaluated extensively in experiments. PMID:24658618

  16. Sensor assignment to mission in AI-TECD

    NASA Astrophysics Data System (ADS)

    Ganger, Robert; de Mel, Geeth; Pham, Tien; Rudnicki, Ronald; Schreiber, Yonatan

    2016-05-01

    Sensor-mission assignment involves the allocation of sensors and other information-providing resources to missions in order to cover the information needs of the individual tasks within each mission. The importance of efficient and effective means to find appropriate resources for tasks is exacerbated in the coalition context where the operational environment is dynamic and a multitude of critically important tasks need to achieve their collective goals to meet the objectives of the coalition. The Sensor Assignment to Mission (SAM) framework—a research product of the International Technology Alliance in Network and Information Sciences (NIS-ITA) program—provided the first knowledge intensive resource selection approach for the sensor network domain so that contextual information could be used to effectively select resources for tasks in coalition environments. Recently, CUBRC, Inc. was tasked with operationalizing the SAM framework through the use of the I2WD Common Core Ontologies for the Communications-Electronics Research, Development and Engineering Center (CERDEC) sponsored Actionable Intelligence Technology Enabled Capabilities Demonstration (AI-TECD). The demonstration event took place at Fort Dix, New Jersey during July 2015, and this paper discusses the integration and the successful demonstration of the SAM framework within the AI-TECD, lessons learned, and its potential impact in future operations.

  17. Label-free DNA biosensor based on resistance change of platinum nanoparticles assemblies.

    PubMed

    Skotadis, Evangelos; Voutyras, Konstantinos; Chatzipetrou, Marianneza; Tsekenis, Georgios; Patsiouras, Lampros; Madianos, Leonidas; Chatzandroulis, Stavros; Zergioti, Ioanna; Tsoukalas, Dimitris

    2016-07-15

    A novel nanoparticle based biosensor for the fast and simple detection of DNA hybridization events is presented. The sensor utilizes hybridized DNA's charge transport properties, combining them with metallic nanoparticle networks that act as nano-gapped electrodes. The DNA hybridization events can be detected by a significant reduction in the sensor's resistance due to the conductive bridging offered by hybridized DNA. By modifying the nanoparticle surface coverage, which can be controlled experimentally being a function of deposition time, and the structural properties of the electrodes, an optimized biosensor for the in situ detection of DNA hybridization events is ultimately fabricated. The fabricated biosensor exhibits a wide response range, covering four orders of magnitude, a limit of detection of 1nM and can detect a single base pair mismatch between probe and complementary DNA. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The Quake-Catcher Network: Improving Earthquake Strong Motion Observations Through Community Engagement

    NASA Astrophysics Data System (ADS)

    Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.; Chung, A. I.; Neighbors, C.; Saltzman, J.

    2010-12-01

    The Quake-Catcher Network (QCN) involves the community in strong motion data collection by utilizing volunteer computing techniques and low-cost MEMS accelerometers. Volunteer computing provides a mechanism to expand strong-motion seismology with minimal infrastructure costs, while promoting community participation in science. Micro-Electro-Mechanical Systems (MEMS) triaxial accelerometers can be attached to a desktop computer via USB and are internal to many laptops. Preliminary shake table tests show the MEMS accelerometers can record high-quality seismic data with instrument response similar to research-grade strong-motion sensors. QCN began distributing sensors and software to K-12 schools and the general public in April 2008 and has grown to roughly 1500 stations worldwide. We also recently tested whether sensors could be quickly deployed as part of a Rapid Aftershock Mobilization Program (RAMP) following the 2010 M8.8 Maule, Chile earthquake. Volunteers are recruited through media reports, web-based sensor request forms, as well as social networking sites. Using data collected to date, we examine whether a distributed sensing network can provide valuable seismic data for earthquake detection and characterization while promoting community participation in earthquake science. We utilize client-side triggering algorithms to determine when significant ground shaking occurs and this metadata is sent to the main QCN server. On average, trigger metadata are received within 1-10 seconds from the observation of a trigger; the larger data latencies are correlated with greater server-station distances. When triggers are detected, we determine if the triggers correlate to others in the network using spatial and temporal clustering of incoming trigger information. If a minimum number of triggers are detected then a QCN-event is declared and an initial earthquake location and magnitude is estimated. Initial analysis suggests that the estimated locations and magnitudes are similar to those reported in regional and global catalogs. As the network expands, it will become increasingly important to provide volunteers access to the data they collect, both to encourage continued participation in the network and to improve community engagement in scientific discourse related to seismic hazard. In the future, we hope to provide access to both images and raw data from seismograms in formats accessible to the general public through existing seismic data archives (e.g. IRIS, SCSN) and/or through the QCN project website. While encouraging community participation in seismic data collection, we can extend the capabilities of existing seismic networks to rapidly detect and characterize strong motion events. In addition, the dense waveform observations may provide high-resolution ground shaking information to improve source imaging and seismic risk assessment.

  19. Heimdall System for MSSS Sensor Tasking

    NASA Astrophysics Data System (ADS)

    Herz, A.; Jones, B.; Herz, E.; George, D.; Axelrad, P.; Gehly, S.

    In Norse Mythology, Heimdall uses his foreknowledge and keen eyesight to keep watch for disaster from his home near the Rainbow Bridge. Orbit Logic and the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado (CU) have developed the Heimdall System to schedule observations of known and uncharacterized objects and search for new objects from the Maui Space Surveillance Site. Heimdall addresses the current need for automated and optimized SSA sensor tasking driven by factors associated with improved space object catalog maintenance. Orbit Logic and CU developed an initial baseline prototype SSA sensor tasking capability for select sensors at the Maui Space Surveillance Site (MSSS) using STK and STK Scheduler, and then added a new Track Prioritization Component for FiSST-inspired computations for predicted Information Gain and Probability of Detection, and a new SSA-specific Figure-of-Merit (FOM) for optimized SSA sensor tasking. While the baseline prototype addresses automation and some of the multi-sensor tasking optimization, the SSA-improved prototype addresses all of the key elements required for improved tasking leading to enhanced object catalog maintenance. The Heimdall proof-of-concept was demonstrated for MSSS SSA sensor tasking for a 24 hour period to attempt observations of all operational satellites in the unclassified NORAD catalog, observe a small set of high priority GEO targets every 30 minutes, make a sky survey of the GEO belt region accessible to MSSS sensors, and observe particular GEO regions that have a high probability of finding new objects with any excess sensor time. This Heimdall prototype software paves the way for further R&D that will integrate this technology into the MSSS systems for operational scheduling, improve the software's scalability, and further tune and enhance schedule optimization. The Heimdall software for SSA sensor tasking provides greatly improved performance over manual tasking, improved coordinated sensor usage, and tasking schedules driven by catalog improvement goals (reduced overall covariance, etc.). The improved performance also enables more responsive sensor tasking to address external events, newly detected objects, newly detected object activity, and sensor anomalies. Instead of having to wait until the next day's scheduling phase, events can be addressed with new tasking schedules immediately (within seconds or minutes). Perhaps the most important benefit is improved SSA based on an overall improvement to the quality of the space catalog. By driving sensor tasking and scheduling based on predicted Information Gain and other relevant factors, better decisions are made in the application of available sensor resources, leading to an improved catalog and better information about the objects of most interest. The Heimdall software solution provides a configurable, automated system to improve sensor tasking efficiency and responsiveness for SSA applications. The FISST algorithms for Track Prioritization, SSA specific task and resource attributes, Scheduler algorithms, and configurable SSA-specific Figure-of-Merit together provide optimized and tunable scheduling for the Maui Space Surveillance Site and possibly other sites and organizations across the U.S. military and for allies around the world.

  20. Retrieving quantifiable social media data from human sensor networks for disaster modeling and crisis mapping

    NASA Astrophysics Data System (ADS)

    Aulov, Oleg

    This dissertation presents a novel approach that utilizes quantifiable social media data as a human aware, near real-time observing system, coupled with geophysical predictive models for improved response to disasters and extreme events. It shows that social media data has the potential to significantly improve disaster management beyond informing the public, and emphasizes the importance of different roles that social media can play in management, monitoring, modeling and mitigation of natural and human-caused extreme disasters. In the proposed approach Social Media users are viewed as "human sensors" that are "deployed" in the field, and their posts are considered to be "sensor observations", thus different social media outlets all together form a Human Sensor Network. We utilized the "human sensor" observations, as boundary value forcings, to show improved geophysical model forecasts of extreme disaster events when combined with other scientific data such as satellite observations and sensor measurements. Several recent extreme disasters are presented as use case scenarios. In the case of the Deepwater Horizon oil spill disaster of 2010 that devastated the Gulf of Mexico, the research demonstrates how social media data from Flickr can be used as a boundary forcing condition of GNOME oil spill plume forecast model, and results in an order of magnitude forecast improvement. In the case of Hurricane Sandy NY/NJ landfall impact of 2012, we demonstrate how the model forecasts, when combined with social media data in a single framework, can be used for near real-time forecast validation, damage assessment and disaster management. Owing to inherent uncertainties in the weather forecasts, the NOAA operational surge model only forecasts the worst-case scenario for flooding from any given hurricane. Geolocated and time-stamped Instagram photos and tweets allow near real-time assessment of the surge levels at different locations, which can validate model forecasts, give timely views of the actual levels of surge, as well as provide an upper bound beyond which the surge did not spread. Additionally, we developed AsonMaps---a crisis-mapping tool that combines dynamic model forecast outputs with social media observations and physical measurements to define the regions of event impacts.

  1. A new concept for simulation of vegetated land surface dynamics - Part 1: The event driven phenology model

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G. M.

    2012-01-01

    Phenologies of the vegetated land surface are being used increasingly for diagnosis and prognosis of climate change consequences. Current prospective and retrospective phenological models stand far apart in their approaches to the subject. We report on an exploratory attempt to implement a phenological model based on a new event driven concept which has both diagnostic and prognostic capabilities in the same modeling framework. This Event Driven Phenological Model (EDPM) is shown to simulate land surface phenologies and phenophase transition dates in agricultural landscapes based on assimilation of weather data and land surface observations from spaceborne sensors. The model enables growing season phenologies to develop in response to changing environmental conditions and disturbance events. It also has the ability to ingest remotely sensed data to adjust its output to improve representation of the modeled variable. We describe the model and report results of initial testing of the EDPM using Level 2 flux tower records from the Ameriflux sites at Mead, Nebraska, USA, and at Bondville, Illinois, USA. Simulating the dynamics of normalized difference vegetation index based on flux tower data, the predictions by the EDPM show good agreement (RMSE < 0.08; r2 > 0.8) for maize and soybean during several growing seasons at different locations. This study presents the EDPM used in the companion paper (Kovalskyy and Henebry, 2011) in a coupling scheme to estimate daily actual evapotranspiration over multiple growing seasons.

  2. A new concept for simulation of vegetated land surface dynamics - Part 1: The event driven phenology model

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G. M.

    2011-05-01

    Phenologies of the vegetated land surface are being used increasingly for diagnosis and prognosis of climate change consequences. Current prospective and retrospective phenological models stand far apart in their approaches to the subject. We report on an exploratory attempt to implement a phenological model based on a new event driven concept which has both diagnostic and prognostic capabilities in the same modeling framework. This Event Driven Phenological Model (EDPM) is shown to simulate land surface phenologies and phenophase transition dates in agricultural landscapes based on assimilation of weather data and land surface observations from spaceborne sensors. The model enables growing season phenologies to develop in response to changing environmental conditions and disturbance events. It also has the ability to ingest remotely sensed data to adjust its output to improve representation of the modeled variable. We describe the model and report results of initial testing of the EDPM using Level 2 flux tower records from the Ameriflux sites at Mead, Nebraska, USA, and at Bondville, Illinois, USA. Simulating the dynamics of normalized difference vegetation index based on flux tower data, the predictions by the EDPM show good agreement (RMSE < 0.08; r2>0.8) for maize and soybean during several growing seasons at different locations. This study presents the EDPM used in the companion paper (Kovalskyy and Henebry, 2011) in a coupling scheme to estimate daily actual evapotranspiration over multiple growing seasons.

  3. Event-Based $H_\\infty $ State Estimation for Time-Varying Stochastic Dynamical Networks With State- and Disturbance-Dependent Noises.

    PubMed

    Sheng, Li; Wang, Zidong; Zou, Lei; Alsaadi, Fuad E

    2017-10-01

    In this paper, the event-based finite-horizon H ∞ state estimation problem is investigated for a class of discrete time-varying stochastic dynamical networks with state- and disturbance-dependent noises [also called (x,v) -dependent noises]. An event-triggered scheme is proposed to decrease the frequency of the data transmission between the sensors and the estimator, where the signal is transmitted only when certain conditions are satisfied. The purpose of the problem addressed is to design a time-varying state estimator in order to estimate the network states through available output measurements. By employing the completing-the-square technique and the stochastic analysis approach, sufficient conditions are established to ensure that the error dynamics of the state estimation satisfies a prescribed H ∞ performance constraint over a finite horizon. The desired estimator parameters can be designed via solving coupled backward recursive Riccati difference equations. Finally, a numerical example is exploited to demonstrate the effectiveness of the developed state estimation scheme.

  4. Decentralized event-triggered synchronization of uncertain Markovian jumping neutral-type neural networks with mixed delays.

    PubMed

    Senan, Sibel; Syed Ali, M; Vadivel, R; Arik, Sabri

    2017-02-01

    In this study, we present an approach for the decentralized event-triggered synchronization of Markovian jumping neutral-type neural networks with mixed delays. We present a method for designing decentralized event-triggered synchronization, which only utilizes locally available information, in order to determine the time instants for transmission from sensors to a central controller. By applying a novel Lyapunov-Krasovskii functional, as well as using the reciprocal convex combination method and some inequality techniques such as Jensen's inequality, we obtain several sufficient conditions in terms of a set of linear matrix inequalities (LMIs) under which the delayed neural networks are stochastically stable in terms of the error systems. Finally, we conclude that the drive systems synchronize stochastically with the response systems. We show that the proposed stability criteria can be verified easily using the numerically efficient Matlab LMI toolbox. The effectiveness and feasibility of the results obtained are verified by numerical examples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Simulation and animation of sensor-driven robots.

    PubMed

    Chen, C; Trivedi, M M; Bidlack, C R

    1994-10-01

    Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aid the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the users visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.

  6. Double-driven shield capacitive type proximity sensor

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1993-01-01

    A capacity type proximity sensor comprised of a capacitance type sensor, a capacitance type reference, and two independent and mutually opposing driven shields respectively adjacent to the sensor and reference and which are coupled in an electrical bridge circuit configuration and driven by a single frequency crystal controlled oscillator is presented. The bridge circuit additionally includes a pair of fixed electrical impedance elements which form adjacent arms of the bridge and which comprise either a pair of precision resistances or capacitors. Detection of bridge unbalance provides an indication of the mutual proximity between an object and the sensor. Drift compensation is also utilized to improve performance and thus increase sensor range and sensitivity.

  7. Ergodicity in natural earthquake fault networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiampo, K. F.; Rundle, J. B.; Holliday, J.

    2007-06-15

    Numerical simulations have shown that certain driven nonlinear systems can be characterized by mean-field statistical properties often associated with ergodic dynamics [C. D. Ferguson, W. Klein, and J. B. Rundle, Phys. Rev. E 60, 1359 (1999); D. Egolf, Science 287, 101 (2000)]. These driven mean-field threshold systems feature long-range interactions and can be treated as equilibriumlike systems with statistically stationary dynamics over long time intervals. Recently the equilibrium property of ergodicity was identified in an earthquake fault system, a natural driven threshold system, by means of the Thirumalai-Mountain (TM) fluctuation metric developed in the study of diffusive systems [K. F.more » Tiampo, J. B. Rundle, W. Klein, J. S. Sa Martins, and C. D. Ferguson, Phys. Rev. Lett. 91, 238501 (2003)]. We analyze the seismicity of three naturally occurring earthquake fault networks from a variety of tectonic settings in an attempt to investigate the range of applicability of effective ergodicity, using the TM metric and other related statistics. Results suggest that, once variations in the catalog data resulting from technical and network issues are accounted for, all of these natural earthquake systems display stationary periods of metastable equilibrium and effective ergodicity that are disrupted by large events. We conclude that a constant rate of events is an important prerequisite for these periods of punctuated ergodicity and that, while the level of temporal variability in the spatial statistics is the controlling factor in the ergodic behavior of seismic networks, no single statistic is sufficient to ensure quantification of ergodicity. Ergodicity in this application not only requires that the system be stationary for these networks at the applicable spatial and temporal scales, but also implies that they are in a state of metastable equilibrium, one in which the ensemble averages can be substituted for temporal averages in studying their spatiotemporal evolution.« less

  8. Community Seismic Network (CSN)

    NASA Astrophysics Data System (ADS)

    Clayton, R. W.; Kohler, M. D.; Heaton, T. H.; Massari, A.; Guy, R.; Bunn, J.; Chandy, M.

    2015-12-01

    The CSN now has approximately 600 stations in the northern Los Angeles region. The sensors are class-C MEMs accelerometers that are packaged with backup power and data memory and are connected to a cloud-based processing system through the Internet. Most of the sensors are located in an xy-spatial network with an average minimum station spacing of 800 m. This density allows the lateral variations in ground motion to be determined, which will lead to detailed microzonation maps of the region. Approximately 100 of the sensors are located on campuses of the Los Angeles Unified School District (LAUSD), and this is part of a plan to provide schools with critical earthquake information immediately following an earthquake using the ShakeCast system. The software system in the sensors is being upgraded to allow on site measurements of PGA and PVA to be sent directly to the ShakeMap and earthquake early warning systems. More than 160 of the sensor packages are located on multiple floors of buildings with typically one or two 3-component sensors per floor. With these data we can identify traveling waves in the building, as well as determine the eigenfrequencies and mode shapes. By monitoring these quantities with high spatial density before, during, and after a major shaking event, we hope to determine the state of health of the structure.

  9. Real-time distributed fiber optic sensor for security systems: Performance, event classification and nuisance mitigation

    NASA Astrophysics Data System (ADS)

    Mahmoud, Seedahmed S.; Visagathilagar, Yuvaraja; Katsifolis, Jim

    2012-09-01

    The success of any perimeter intrusion detection system depends on three important performance parameters: the probability of detection (POD), the nuisance alarm rate (NAR), and the false alarm rate (FAR). The most fundamental parameter, POD, is normally related to a number of factors such as the event of interest, the sensitivity of the sensor, the installation quality of the system, and the reliability of the sensing equipment. The suppression of nuisance alarms without degrading sensitivity in fiber optic intrusion detection systems is key to maintaining acceptable performance. Signal processing algorithms that maintain the POD and eliminate nuisance alarms are crucial for achieving this. In this paper, a robust event classification system using supervised neural networks together with a level crossings (LCs) based feature extraction algorithm is presented for the detection and recognition of intrusion and non-intrusion events in a fence-based fiber-optic intrusion detection system. A level crossings algorithm is also used with a dynamic threshold to suppress torrential rain-induced nuisance alarms in a fence system. Results show that rain-induced nuisance alarms can be suppressed for rainfall rates in excess of 100 mm/hr with the simultaneous detection of intrusion events. The use of a level crossing based detection and novel classification algorithm is also presented for a buried pipeline fiber optic intrusion detection system for the suppression of nuisance events and discrimination of intrusion events. The sensor employed for both types of systems is a distributed bidirectional fiber-optic Mach-Zehnder (MZ) interferometer.

  10. Localization Strategies in WSNs as applied to Landslide Monitoring (Invited)

    NASA Astrophysics Data System (ADS)

    Massa, A.; Robol, F.; Polo, A.; Giarola, E.; Viani, F.

    2013-12-01

    In the last years, heterogeneous integrated smart systems based on wireless sensor network (WSN) technology have been developed at the ELEDIA Research Center of the University of Trento [1]. One of the key features of WSNs as applied to distributed monitoring is that, while the capabilities of each single sensor node is limited, the implementation of cooperative schemes throughout the whole network enables the solution of even complex tasks, as the landslide monitoring. The capability of localizing targets respect to the position of the sensor nodes turns out to be fundamental in those application fields where relative movements arise. The main properties like the target typology, the movement characteristics, and the required localization resolution are different changing the reference scenario. However, the common key issue is still the localization of moving targets within the area covered by the sensor network. Many experiences were preparatory for the challenging activities in the field of landslide monitoring where the basic idea is mostly that of detecting slight soil movements. Among them, some examples of WSN-based systems experimentally applied to the localization of people [2] and wildlife [3] have been proposed. More recently, the WSN backbone as well as the investigated sensing technologies have been customized for monitoring superficial movements of the soil. The relative positions of wireless sensor nodes deployed where high probability of landslide exists is carefully monitored to forecast dangerous events. Multiple sensors like ultrasound, laser, high precision GPS, for the precise measurement of relative distances between the nodes of the network and the absolute positions respect to reference targets have been integrated in a prototype system. The millimeter accuracy in the position estimation enables the detection of small soil modifications and to infer the superficial evolution profile of the landslide. This information locally acquired also represent a fine tuning of large scale satellite acquisitions, usually adopted for remote sensing of landslides. The integration of dense and frequent WSN data within satellite image analysis will enhance the sensing capabilities leading to a multi-resolution and an highly space-time calibrated system. The WSN-based system has been preliminary tested in controlled environments in the ELEDIA laboratories and is now installed in a real test site where an active landslide is evolving. Preliminary data are here presented to assess the feasibility of the investigated solution in landslide monitoring and event forecasting. REFERENCES [1] M. Benedetti, L. Ioriatti, M. Martinelli, and F. Viani, 'Wireless sensor network: a pervasive technology for earth observation,' in IEEE Journal of Selected Topics in App. Earth Obs. And Remote Sens., vol. 3, no. 4, pp. 488-497, 2010. [2] F. Viani, M. Donelli, P. Rocca, G. Oliveri, D. Trinchero, and A. Massa, 'Localization, tracking and imaging of targets in wireless sensor networks,' Radio Science, vol. 46, no. 5, 2011. [3] F. Viani, F. Robol, M. Salucci, E. Giarola, S. De Vigili, M. Rocca, F. Boldrini, G. Benedetti, and A. Massa, 'WSN-based early alert system for preventing wildlife-vehicle collisions in Alps regions - From the laboratory test to the real-world implementation,' 7th European Conference on Antennas and Propagation 2013 (EUCAP2013), Gothenburg, Sweden, April 8-12, 2013.

  11. Persistent regional carbon dioxide anomalies driven by land use

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-04-01

    Researchers have traditionally used measurements from remote locations, such as Hawaii's Mauna Loa Observatory and other isolated stations, to determine atmospheric carbon dioxide (CO2) concentrations and estimate the strengths of various carbon sources and sinks. The prevailing wisdom was that attempts to measure regional differences in CO2 over land would end up with signals that were either so small that they were undetectable or that were dominated by high-frequency variability due to atmospheric turbulence or weather. Measurements drawn from a moderately dense network of atmospheric gas composition sensors distributed across the upper midwestern United States, however, showed that large regional variations in tropospheric CO2 are readily observable. Drawing on measurements made at nine sensors spread over 400,000 square kilometers between 2007 and 2009, Miles et al. found that seasonal variations in atmospheric CO2 depend strongly on the type of ecosystem lying at the foot of each sensor tower.

  12. Designing teams of unattended ground sensors using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ayse S.; McQuay, Brian N.; Wu, Annie S.; Sciortino, John C., Jr.

    2004-04-01

    Improvements in sensor capabilities have driven the need for automated sensor allocation and management systems. Such systems provide a penalty-free test environment and valuable input to human operators by offering candidate solutions. These abilities lead, in turn, to savings in manpower and time. Determining an optimal team of cooperating sensors for military operations is a challenging task. There is a tradeoff between the desire to decrease the cost and the need to increase the sensing capabilities of a sensor suite. This work focuses on unattended ground sensor networks consisting of teams of small, inexpensive sensors. Given a possible configuration of enemy radar, our goal isto generate sensor suites that monitor as many enemy radar as possible while minimizing cost. In previous work, we have shown that genetic algorithms (GAs) can be used to evolve successful teams of sensors for this problem. This work extends our previous work in two ways: we use an improved simulator containing a more accurate model of radar and sensor capabilities for out fitness evaluations and we introduce two new genetic operators, insertion and deletion, that are expected to improve the GA's fine tuning abilities. Empirical results show that our GA approach produces near optimal results under a variety of enemy radar configurations using sensors with varying capabilities. Detection percentage remains stable regardless of changes in the enemy radar placements.

  13. Design for the Structure and the Mechanics of Moballs

    NASA Technical Reports Server (NTRS)

    Davoodi, Faranak; Davoudi, Farhooman

    2012-01-01

    The moball is envisioned to be a round, self-powered, and wind-driven multifunctioning sensor used in the Gone with the Wind ON-Mars (GOWON) [http://www.lpi.usra.edu/meetings/ marsconcepts2012/pdf/4238.pdf]: A Wind-Driven Networked System of Mobile sensors on Mars. The moballs would have sensing, processing, and communication capabilities. The moballs would perform in situ detection of key environmental elements such as vaporized water, trace gases, wind, dust, clouds, light and UV exposure, temperature, as well as minerals of interest, possible biosignatures, surface magnetic and electric fields, etc. The embedded various low-power micro instruments could include a Multispectral Microscopic Imager (to detect various minerals), a compact curved focal plane array camera (UV/Vis/NIR) with a large field of view, a compact UV/Visible spectrometer, a micro-weather station, etc. The moballs could communicate with each other and an orbiter. Their wind- or gravity-driven rolling movement could be used to harvest and store electric energy. They could also generate and store energy using the sunlight, when available, and the diurnal temperature variations on Mars. The moballs would be self-aware of their (and their neighbors ) positions, energy storage, and memory availability; they would have processing power and could intelligently cooperate with neighboring moballs by distributing tasks, sharing data, and fusing information. The major advantages of using the wind-driven and spherical moball network over rovers or other fixed sensor webs to explore Mars would be: (1) moballs could explore a much larger expanse of Mars in a much faster fashion, (2) they could explore the difficult terrains such as steep slopes and sand dunes, and (3) they would be self-energy- generating and could work together and move around autonomously. The challenge in designing the structure and the mechanics of the moball would be that it should be sturdy enough to withstand the impact of its initial fall, as well as other impacts from obstacles in its way. A mechanism would be needed that could enable hundreds of moballs to be carried while they would be deflated and compact, then would inflate them just after deploying them to their drop site. Furthermore, the moballs should also be light enough to allow them to move easily over obstacles by force of the wind. They also should have some kind of maneuvering mechanism in place to help them avoid very hazardous sharp objects or events, and to enable them to get closer to the objects of interest. The structure of the moballs was designed so that they would have different layers. The outer layer should comprise a sturdy, yet light, polymer that could withstand both the impact of the initial drop, as well as the impact of the different obstacles it would encounter while traversing the surface of Mars. This polymer should not deteriorate with the 100 K daily temperature swings on Mars. The inner layer should consist of a very light gas such as nitrogen or helium. In terms of maneuvering, six very light weights placed at strategic locations would give moballs the ability to turn, or even hop, over hazardous (e.g., sharp) obstacles, or even initiate a movement (before getting more help from the wind to be carried around) when stuck. Maneuvering would be necessary in order to get closer to objects of interest. If the weights would be allowed to move freely, they could also be used to generate energy.

  14. A Distributed and Energy-Efficient Algorithm for Event K-Coverage in Underwater Sensor Networks

    PubMed Central

    Jiang, Peng; Xu, Yiming; Liu, Jun

    2017-01-01

    For event dynamic K-coverage algorithms, each management node selects its assistant node by using a greedy algorithm without considering the residual energy and situations in which a node is selected by several events. This approach affects network energy consumption and balance. Therefore, this study proposes a distributed and energy-efficient event K-coverage algorithm (DEEKA). After the network achieves 1-coverage, the nodes that detect the same event compete for the event management node with the number of candidate nodes and the average residual energy, as well as the distance to the event. Second, each management node estimates the probability of its neighbor nodes’ being selected by the event it manages with the distance level, the residual energy level, and the number of dynamic coverage event of these nodes. Third, each management node establishes an optimization model that uses expectation energy consumption and the residual energy variance of its neighbor nodes and detects the performance of the events it manages as targets. Finally, each management node uses a constrained non-dominated sorting genetic algorithm (NSGA-II) to obtain the Pareto set of the model and the best strategy via technique for order preference by similarity to an ideal solution (TOPSIS). The algorithm first considers the effect of harsh underwater environments on information collection and transmission. It also considers the residual energy of a node and a situation in which the node is selected by several other events. Simulation results show that, unlike the on-demand variable sensing K-coverage algorithm, DEEKA balances and reduces network energy consumption, thereby prolonging the network’s best service quality and lifetime. PMID:28106837

  15. Performance Evaluation of a Prototyped Wireless Ground Sensor Network

    DTIC Science & Technology

    2005-03-01

    the network was capable of dynamic adaptation to failure and degradation. 14. SUBJECT TERMS: Wireless Sensor Network , Unmanned Sensor, Unattended...2 H. WIRELESS SENSOR NETWORKS .................................................................... 3...zation, and network traffic. The evaluated scenarios included outdoor, urban and indoor environments. The characteristics of wireless sensor networks , types

  16. Sensor Authentication in Collaborating Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bielefeldt, Jake Uriah

    2014-11-01

    In this thesis, we address a new security problem in the realm of collaborating sensor networks. By collaborating sensor networks, we refer to the networks of sensor networks collaborating on a mission, with each sensor network is independently owned and operated by separate entities. Such networks are practical where a number of independent entities can deploy their own sensor networks in multi-national, commercial, and environmental scenarios, and some of these networks will integrate complementary functionalities for a mission. In the scenario, we address an authentication problem wherein the goal is for the Operator O i of Sensor Network S imore » to correctly determine the number of active sensors in Network Si. Such a problem is challenging in collaborating sensor networks where other sensor networks, despite showing an intent to collaborate, may not be completely trustworthy and could compromise the authentication process. We propose two authentication protocols to address this problem. Our protocols rely on Physically Unclonable Functions, which are a hardware based authentication primitive exploiting inherent randomness in circuit fabrication. Our protocols are light-weight, energy efficient, and highly secure against a number of attacks. To the best of our knowledge, ours is the first to addresses a practical security problem in collaborating sensor networks.« less

  17. Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines

    PubMed Central

    Neftci, Emre O.; Augustine, Charles; Paul, Somnath; Detorakis, Georgios

    2017-01-01

    An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Gradient Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored with high-precision memory during learning, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated gradients are not essential for learning deep representations. Building on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated synaptic plasticity for learning deep representations. Using a two-compartment Leaky Integrate & Fire (I&F) neuron, the rule requires only one addition and two comparisons for each synaptic weight, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving classification accuracies on permutation invariant datasets comparable to those obtained in artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning. PMID:28680387

  18. Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines.

    PubMed

    Neftci, Emre O; Augustine, Charles; Paul, Somnath; Detorakis, Georgios

    2017-01-01

    An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Gradient Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored with high-precision memory during learning, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated gradients are not essential for learning deep representations. Building on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated synaptic plasticity for learning deep representations. Using a two-compartment Leaky Integrate & Fire (I&F) neuron, the rule requires only one addition and two comparisons for each synaptic weight, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving classification accuracies on permutation invariant datasets comparable to those obtained in artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning.

  19. Enviro-Net: From Networks of Ground-Based Sensor Systems to a Web Platform for Sensor Data Management

    PubMed Central

    Pastorello, Gilberto Z.; Sanchez-Azofeifa, G. Arturo; Nascimento, Mario A.

    2011-01-01

    Ecosystems monitoring is essential to properly understand their development and the effects of events, both climatological and anthropological in nature. The amount of data used in these assessments is increasing at very high rates. This is due to increasing availability of sensing systems and the development of new techniques to analyze sensor data. The Enviro-Net Project encompasses several of such sensor system deployments across five countries in the Americas. These deployments use a few different ground-based sensor systems, installed at different heights monitoring the conditions in tropical dry forests over long periods of time. This paper presents our experience in deploying and maintaining these systems, retrieving and pre-processing the data, and describes the Web portal developed to help with data management, visualization and analysis. PMID:22163965

  20. An efficient management system for wireless sensor networks.

    PubMed

    Ma, Yi-Wei; Chen, Jiann-Liang; Huang, Yueh-Min; Lee, Mei-Yu

    2010-01-01

    Wireless sensor networks have garnered considerable attention recently. Networks typically have many sensor nodes, and are used in commercial, medical, scientific, and military applications for sensing and monitoring the physical world. Many researchers have attempted to improve wireless sensor network management efficiency. A Simple Network Management Protocol (SNMP)-based sensor network management system was developed that is a convenient and effective way for managers to monitor and control sensor network operations. This paper proposes a novel WSNManagement system that can show the connections stated of relationships among sensor nodes and can be used for monitoring, collecting, and analyzing information obtained by wireless sensor networks. The proposed network management system uses collected information for system configuration. The function of performance analysis facilitates convenient management of sensors. Experimental results show that the proposed method enhances the alive rate of an overall sensor node system, reduces the packet lost rate by roughly 5%, and reduces delay time by roughly 0.2 seconds. Performance analysis demonstrates that the proposed system is effective for wireless sensor network management.

  1. Importance of the spatial data and the sensor web in the ubiquitous computing area

    NASA Astrophysics Data System (ADS)

    Akçit, Nuhcan; Tomur, Emrah; Karslıoǧlu, Mahmut O.

    2014-08-01

    Spatial data has become a critical issue in recent years. In the past years, nearly more than three quarters of databases, were related directly or indirectly to locations referring to physical features, which constitute the relevant aspects. Spatial data is necessary to identify or calculate the relationships between spatial objects when using spatial operators in programs or portals. Originally, calculations were conducted using Geographic Information System (GIS) programs on local computers. Subsequently, through the Internet, they formed a geospatial web, which is integrated into a discoverable collection of geographically related web standards and key features, and constitutes a global network of geospatial data that employs the World Wide Web to process textual data. In addition, the geospatial web is used to gather spatial data producers, resources, and users. Standards also constitute a critical dimension in further globalizing the idea of the geospatial web. The sensor web is an example of the real time service that the geospatial web can provide. Sensors around the world collect numerous types of data. The sensor web is a type of sensor network that is used for visualizing, calculating, and analyzing collected sensor data. Today, people use smart devices and systems more frequently because of the evolution of technology and have more than one mobile device. The considerable number of sensors and different types of data that are positioned around the world have driven the production of interoperable and platform-independent sensor web portals. The focus of such production has been on further developing the idea of an interoperable and interdependent sensor web of all devices that share and collect information. The other pivotal idea consists of encouraging people to use and send data voluntarily for numerous purposes with the some level of credibility. The principal goal is to connect mobile and non-mobile device in the sensor web platform together to operate for serving and collecting information from people.

  2. Smart Rocks for Bridge Scour Monitoring: Design and Localization Using Electromagnetic Techniques and Embedded Orientation Sensors

    NASA Astrophysics Data System (ADS)

    Radchenko, Andro

    River bridge scour is an erosion process in which flowing water removes sediment materials (such as sand, rocks) from a bridge foundation, river beds and banks. As a result, the level of the river bed near a bridge pier is lowering such that the bridge foundation stability can be compromised, and the bridge can collapse. The scour is a dynamic process, which can accelerate rapidly during a flood event. Thus, regular monitoring of the scour progress is necessary to be performed at most river bridges. Present techniques are usually expensive, require large man/hour efforts, and often lack the real-time monitoring capabilities. In this dissertation a new method--'Smart Rocks Network for bridge scour monitoring' is introduced. The method is based on distributed wireless sensors embedded in ground underwater nearby the bridge pillars. The sensor nodes are unconstrained in movement, are equipped with years-lasting batteries and intelligent custom designed electronics, which minimizes power consumption during operation and communication. The electronic part consists of a microcontroller, communication interfaces, orientation and environment sensors (such as are accelerometer, magnetometer, temperature and pressure sensors), supporting power supplies and circuitries. Embedded in the soil nearby a bridge pillar the Smart Rocks can move/drift together with the sediments, and act as the free agent probes transmitting the unique signature signals to the base-station monitors. Individual movement of a Smart Rock can be remotely detected processing the orientation sensors reading. This can give an indication of the on-going scour progress, and set a flag for the on-site inspection. The map of the deployed Smart Rocks Network can be obtained utilizing the custom developed in-network communication protocol with signals intensity (RSSI) analysis. Particle Swarm Optimization (PSO) is applied for map reconstruction. Analysis of the map can provide detailed insight into the scour progress and topology. Smart Rocks Network wireless communication is based on the magnetoinductive (MI) link, at low (125 KHz) frequency, allowing for signal to penetrate through the water, rocks, and the bridge structure. The dissertation describes the Smart Rocks Network implementation, its electronic design and the electromagnetic/computational intelligence techniques used for the network mapping.

  3. Understanding the process of social network evolution: Online-offline integrated analysis of social tie formation

    PubMed Central

    Kwak, Doyeon

    2017-01-01

    It is important to consider the interweaving nature of online and offline social networks when we examine social network evolution. However, it is difficult to find any research that examines the process of social tie formation from an integrated perspective. In our study, we quantitatively measure offline interactions and examine the corresponding evolution of online social network in order to understand the significance of interrelationship between online and offline social factors in generating social ties. We analyze the radio signal strength indicator sensor data from a series of social events to understand offline interactions among the participants and measure the structural attributes of their existing online Facebook social networks. By monitoring the changes in their online social networks before and after offline interactions in a series of social events, we verify that the ability to develop an offline interaction into an online friendship is tied to the number of social connections that participants previously had, while the presence of shared mutual friends between a pair of participants disrupts potential new connections within the pre-designed offline social events. Thus, while our integrative approach enables us to confirm the theory of preferential attachment in the process of network formation, the common neighbor theory is not supported. Our dual-dimensional network analysis allows us to observe the actual process of social network evolution rather than to make predictions based on the assumption of self-organizing networks. PMID:28542367

  4. Understanding the process of social network evolution: Online-offline integrated analysis of social tie formation.

    PubMed

    Kwak, Doyeon; Kim, Wonjoon

    2017-01-01

    It is important to consider the interweaving nature of online and offline social networks when we examine social network evolution. However, it is difficult to find any research that examines the process of social tie formation from an integrated perspective. In our study, we quantitatively measure offline interactions and examine the corresponding evolution of online social network in order to understand the significance of interrelationship between online and offline social factors in generating social ties. We analyze the radio signal strength indicator sensor data from a series of social events to understand offline interactions among the participants and measure the structural attributes of their existing online Facebook social networks. By monitoring the changes in their online social networks before and after offline interactions in a series of social events, we verify that the ability to develop an offline interaction into an online friendship is tied to the number of social connections that participants previously had, while the presence of shared mutual friends between a pair of participants disrupts potential new connections within the pre-designed offline social events. Thus, while our integrative approach enables us to confirm the theory of preferential attachment in the process of network formation, the common neighbor theory is not supported. Our dual-dimensional network analysis allows us to observe the actual process of social network evolution rather than to make predictions based on the assumption of self-organizing networks.

  5. Acquisition and Neural Network Prediction of 3D Deformable Object Shape Using a Kinect and a Force-Torque Sensor.

    PubMed

    Tawbe, Bilal; Cretu, Ana-Maria

    2017-05-11

    The realistic representation of deformations is still an active area of research, especially for deformable objects whose behavior cannot be simply described in terms of elasticity parameters. This paper proposes a data-driven neural-network-based approach for capturing implicitly and predicting the deformations of an object subject to external forces. Visual data, in the form of 3D point clouds gathered by a Kinect sensor, is collected over an object while forces are exerted by means of the probing tip of a force-torque sensor. A novel approach based on neural gas fitting is proposed to describe the particularities of a deformation over the selectively simplified 3D surface of the object, without requiring knowledge of the object material. An alignment procedure, a distance-based clustering, and inspiration from stratified sampling support this process. The resulting representation is denser in the region of the deformation (an average of 96.6% perceptual similarity with the collected data in the deformed area), while still preserving the object's overall shape (86% similarity over the entire surface) and only using on average of 40% of the number of vertices in the mesh. A series of feedforward neural networks is then trained to predict the mapping between the force parameters characterizing the interaction with the object and the change in the object shape, as captured by the fitted neural gas nodes. This series of networks allows for the prediction of the deformation of an object when subject to unknown interactions.

  6. Wide-area littoral discreet observation: success at the tactical edge

    NASA Astrophysics Data System (ADS)

    Toth, Susan; Hughes, William; Ladas, Andrew

    2012-06-01

    In June 2011, the United States Army Research Laboratory (ARL) participated in Empire Challenge 2011 (EC-11). EC-11 was United States Joint Forces Command's (USJFCOM) annual live, joint and coalition intelligence, surveillance and reconnaissance (ISR) interoperability demonstration under the sponsorship of the Under Secretary of Defense for Intelligence (USD/I). EC-11 consisted of a series of ISR interoperability events, using a combination of modeling & simulation, laboratory and live-fly events. Wide-area Littoral Discreet Observation (WALDO) was ARL's maritime/littoral capability. WALDO met a USD(I) directive that EC-11 have a maritime component and WALDO was the primary player in the maritime scenario conducted at Camp Lejeune, North Carolina. The WALDO effort demonstrated the utility of a networked layered sensor array deployed in a maritime littoral environment, focusing on maritime surveillance targeting counter-drug, counter-piracy and suspect activity in a littoral or riverine environment. In addition to an embedded analytical capability, the sensor array and control infrastructure consisted of the Oriole acoustic sensor, iScout unattended ground sensor (UGS), OmniSense UGS, the Compact Radar and the Universal Distributed Management System (UDMS), which included the Proxy Skyraider, an optionally manned aircraft mounting both wide and narrow FOV EO/IR imaging sensors. The capability seeded a littoral area with riverine and unattended sensors in order to demonstrate the utility of a Wide Area Sensor (WAS) capability in a littoral environment focused on maritime surveillance activities. The sensors provided a cue for WAS placement/orbit. A narrow field of view sensor would be used to focus on more discreet activities within the WAS footprint. Additionally, the capability experimented with novel WAS orbits to determine if there are more optimal orbits for WAS collection in a littoral environment. The demonstration objectives for WALDO at EC-11 were: * Demonstrate a networked, layered, multi-modal sensor array deployed in a maritime littoral environment, focusing on maritime surveillance targeting counter-drug, counter-piracy and suspect activity * Assess the utility of a Wide Area Surveillance (WAS) sensor in a littoral environment focused on maritime surveillance activities * Demonstrate the effectiveness of using UGS sensors to cue WAS sensor tasking * Employ a narrow field of view full motion video (FMV) sensor package that is collocated with the WAS to conduct more discrete observation of potential items of interest when queued by near-real-time data from UGS or observers * Couple the ARL Oriole sensor with other modality UGS networks in a ground layer ISR capability, and incorporate data collected from aerial sensors with a GEOINT base layer to form a fused product * Swarm multiple aerial or naval platforms to prosecute single or multiple targets * Track fast moving surface vessels in littoral areas * Disseminate time sensitive, high value data to the users at the tactical edge In short we sought to answer the following question: how do you layer, control and display disparate sensors and sensor modalities in such a way as to facilitate appropriate sensor cross-cue, data integration, and analyst control to effectively monitor activity in a littoral (or novel) environment?

  7. Event-triggered consensus tracking of multi-agent systems with Lur'e nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Na; Duan, Zhisheng; Wen, Guanghui; Zhao, Yu

    2016-05-01

    In this paper, distributed consensus tracking problem for networked Lur'e systems is investigated based on event-triggered information interactions. An event-triggered control algorithm is designed with the advantages of reducing controller update frequency and sensor energy consumption. By using tools of ?-procedure and Lyapunov functional method, some sufficient conditions are derived to guarantee that consensus tracking is achieved under a directed communication topology. Meanwhile, it is shown that Zeno behaviour of triggering time sequences is excluded for the proposed event-triggered rule. Finally, some numerical simulations on coupled Chua's circuits are performed to illustrate the effectiveness of the theoretical algorithms.

  8. A wireless laser displacement sensor node for structural health monitoring.

    PubMed

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-09-30

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  9. Event-based estimation of water budget components using the network of multi-sensor capacitance probes

    USDA-ARS?s Scientific Manuscript database

    A time-scale-free approach was developed for estimation of water fluxes at boundaries of monitoring soil profile using water content time series. The approach uses the soil water budget to compute soil water budget components, i.e. surface-water excess (Sw), infiltration less evapotranspiration (I-E...

  10. Intelligent detection and identification in fiber-optical perimeter intrusion monitoring system based on the FBG sensor network

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Qian, Ya; Zhang, Wei; Li, Hanyu; Xie, Xin

    2015-12-01

    A real-time intelligent fiber-optic perimeter intrusion detection system (PIDS) based on the fiber Bragg grating (FBG) sensor network is presented in this paper. To distinguish the effects of different intrusion events, a novel real-time behavior impact classification method is proposed based on the essential statistical characteristics of signal's profile in the time domain. The features are extracted by the principal component analysis (PCA), which are then used to identify the event with a K-nearest neighbor classifier. Simulation and field tests are both carried out to validate its effectiveness. The average identification rate (IR) for five sample signals in the simulation test is as high as 96.67%, and the recognition rate for eight typical signals in the field test can also be achieved up to 96.52%, which includes both the fence-mounted and the ground-buried sensing signals. Besides, critically high detection rate (DR) and low false alarm rate (FAR) can be simultaneously obtained based on the autocorrelation characteristics analysis and a hierarchical detection and identification flow.

  11. Enhancing situational awareness by means of visualization and information integration of sensor networks

    NASA Astrophysics Data System (ADS)

    Timonen, Jussi; Vankka, Jouko

    2013-05-01

    This paper presents a solution for information integration and sharing architecture, which is able to receive data simultaneously from multiple different sensor networks. Creating a Common Operational Picture (COP) object along with the base map of the building plays a key role in the research. The object is combined with desired map sources and then shared to the mobile devices worn by soldiers in the field. The sensor networks we used focus on location techniques indoors, and a simple set of symbols is created to present the information, as an addition to NATO APP6B symbols. A core element in this research is the MUSAS (Mobile Urban Situational Awareness System), a demonstration environment that implements central functionalities. Information integration of the system is handled by the Internet Connection Engine (Ice) middleware, as well as the server, which hosts COP information and maps. The entire system is closed, such that it does not need any external service, and the information transfer with the mobile devices is organized by a tactical 5 GHz WLAN solution. The demonstration environment is implemented using only commercial off-theshelf (COTS) products. We have presented a field experiment event in which the system was able to integrate and share real time information of a blue force tracking system, received signal strength indicator (RSSI) based intrusion detection system, and a robot using simultaneous location and mapping technology (SLAM), where all the inputs were based on real activities. The event was held in a training area on urban area warfare.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Jerome M.; Kang, Kyungtae; Sastry, Madhavi

    In this study we use mutants of human carbonic anhydrase (HCAII) to examine how changes in the organization of water within a binding pocket can alter the thermodynamics of protein–ligand association. Results from calorimetric, crystallographic, and theoretical analyses suggest that most mutations strengthen networks of water-mediated hydrogen bonds and reduce binding affinity by increasing the enthalpic cost and, to a lesser extent, the entropic benefit of rearranging those networks during binding. The organization of water within a binding pocket can thus determine whether the hydrophobic interactions in which it engages are enthalpy-driven or entropy-driven. Our findings highlight a possible asymmetrymore » in protein–ligand association by suggesting that, within the confines of the binding pocket of HCAII, binding events associated with enthalpically favorable rearrangements of water are stronger than those associated with entropically favorable ones.« less

  13. Community Seismic Network

    NASA Astrophysics Data System (ADS)

    Clayton, R. W.; Kohler, M. D.; Massari, A.; Heaton, T. H.; Guy, R.; Chandy, M.; Bunn, J.; Strand, L.

    2014-12-01

    The CSN is now in its 3rdyear of operation and has expanded to 400 stations in the Los Angeles region. The goal of the network is to produce a map of strong shaking immediately following a major earthquake as a proxy for damage and a guide for first responders. We have also instrumented a number of buildings with the goal of determining the state of health of these structures before and after they have been shaken. In one 15-story structure, our sensors distributed two per floor, and show body waves propagating in the structure after a moderate local earthquake (M4.4 in Encino, CA). Sensors in a 52-story structure, which we plan to instrument with two sensors per floor as well, show the modes of the building (see Figure) down to the fundamental mode at 5 sec due to a M5.1 earthquake in La Habra, CA. The CSN utilizes a number of technologies that will likely be important in building robust low-cost networks. These include: Distributed computing - the sensors themselves are smart-sensors that perform the basic detection and size estimation in the onboard computers and send the results immediately (without packetization latency) to the central facility. Cloud computing - the central facility is housed in the cloud, which means it is more robust than a local site, and has expandable computing resources available so that it can operate with minimal resources during quiet times but still be able to exploit an very large computing facility during an earthquake. Low-cost/low-maintenance sensors - the MEM sensors are capable of staying onscale to +/- 2g, and can measure events in the Los Angeles Basin a low as magnitude 3.

  14. Time difference of arrival to blast localization of potential chemical/biological event on the move

    NASA Astrophysics Data System (ADS)

    Morcos, Amir; Desai, Sachi; Peltzer, Brian; Hohil, Myron E.

    2007-10-01

    Integrating a sensor suite with ability to discriminate potential Chemical/Biological (CB) events from high-explosive (HE) events employing a standalone acoustic sensor with a Time Difference of Arrival (TDOA) algorithm we developed a cueing mechanism for more power intensive and range limited sensing techniques. Enabling the event detection algorithm to locate to a blast event using TDOA we then provide further information of the event as either Launch/Impact and if CB/HE. The added information is provided to a range limited chemical sensing system that exploits spectroscopy to determine the contents of the chemical event. The main innovation within this sensor suite is the system will provide this information on the move while the chemical sensor will have adequate time to determine the contents of the event from a safe stand-off distance. The CB/HE discrimination algorithm exploits acoustic sensors to provide early detection and identification of CB attacks. Distinct characteristics arise within the different airburst signatures because HE warheads emphasize concussive and shrapnel effects, while CB warheads are designed to disperse their contents over large areas, therefore employing a slower burning, less intense explosive to mix and spread their contents. Differences characterized by variations in the corresponding peak pressure and rise time of the blast, differences in the ratio of positive pressure amplitude to the negative amplitude, and variations in the overall duration of the resulting waveform. The discrete wavelet transform (DWT) is used to extract the predominant components of these characteristics from air burst signatures at ranges exceeding 3km. Highly reliable discrimination is achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients and higher frequency details found within different levels of the multiresolution decomposition. The development of an adaptive noise floor to provide early event detection assists in minimizing the false alarm rate and increasing the confidence whether the event is blast event or back ground noise. The integration of these algorithms with the TDOA algorithm provides a complex suite of algorithms that can give early warning detection and highly reliable look direction from a great stand-off distance for a moving vehicle to determine if a candidate blast event is CB and if CB what is the composition of the resulting cloud.

  15. Analysis of lightning outliers in the EUCLID network

    NASA Astrophysics Data System (ADS)

    Poelman, Dieter R.; Schulz, Wolfgang; Kaltenboeck, Rudolf; Delobbe, Laurent

    2017-11-01

    Lightning data as observed by the European Cooperation for Lightning Detection (EUCLID) network are used in combination with radar data to retrieve the temporal and spatial behavior of lightning outliers, i.e., discharges located in a wrong place, over a 5-year period from 2011 to 2016. Cloud-to-ground (CG) stroke and intracloud (IC) pulse data are superimposed on corresponding 5 min radar precipitation fields in two topographically different areas, Belgium and Austria, in order to extract lightning outliers based on the distance between each lightning event and the nearest precipitation. It is shown that the percentage of outliers is sensitive to changes in the network and to the location algorithm itself. The total percentage of outliers for both regions varies over the years between 0.8 and 1.7 % for a distance to the nearest precipitation of 2 km, with an average of approximately 1.2 % in Belgium and Austria. Outside the European summer thunderstorm season, the percentage of outliers tends to increase somewhat. The majority of all the outliers are low peak current events with absolute values falling between 0 and 10 kA. More specifically, positive cloud-to-ground strokes are more likely to be classified as outliers compared to all other types of discharges. Furthermore, it turns out that the number of sensors participating in locating a lightning discharge is different for outliers versus correctly located events, with outliers having the lowest amount of sensors participating. In addition, it is shown that in most cases the semi-major axis (SMA) assigned to a lightning discharge as a confidence indicator in the location accuracy (LA) is smaller for correctly located events compared to the semi-major axis of outliers.

  16. Scheduling Randomly-Deployed Heterogeneous Video Sensor Nodes for Reduced Intrusion Detection Time

    NASA Astrophysics Data System (ADS)

    Pham, Congduc

    This paper proposes to use video sensor nodes to provide an efficient intrusion detection system. We use a scheduling mechanism that takes into account the criticality of the surveillance application and present a performance study of various cover set construction strategies that take into account cameras with heterogeneous angle of view and those with very small angle of view. We show by simulation how a dynamic criticality management scheme can provide fast event detection for mission-critical surveillance applications by increasing the network lifetime and providing low stealth time of intrusions.

  17. Design and Implementation of a Wireless Sensor Network-Based Remote Water-Level Monitoring System

    PubMed Central

    Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke

    2011-01-01

    The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, adata center module and aWEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB). PMID:22319377

  18. Design and implementation of a wireless sensor network-based remote water-level monitoring system.

    PubMed

    Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke

    2011-01-01

    The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, a data center module and a WEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB).

  19. Cellular telephone-based radiation detection instrument

    DOEpatents

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2011-06-14

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  20. Hybrid architecture for building secure sensor networks

    NASA Astrophysics Data System (ADS)

    Owens, Ken R., Jr.; Watkins, Steve E.

    2012-04-01

    Sensor networks have various communication and security architectural concerns. Three approaches are defined to address these concerns for sensor networks. The first area is the utilization of new computing architectures that leverage embedded virtualization software on the sensor. Deploying a small, embedded virtualization operating system on the sensor nodes that is designed to communicate to low-cost cloud computing infrastructure in the network is the foundation to delivering low-cost, secure sensor networks. The second area focuses on securing the sensor. Sensor security components include developing an identification scheme, and leveraging authentication algorithms and protocols that address security assurance within the physical, communication network, and application layers. This function will primarily be accomplished through encrypting the communication channel and integrating sensor network firewall and intrusion detection/prevention components to the sensor network architecture. Hence, sensor networks will be able to maintain high levels of security. The third area addresses the real-time and high priority nature of the data that sensor networks collect. This function requires that a quality-of-service (QoS) definition and algorithm be developed for delivering the right data at the right time. A hybrid architecture is proposed that combines software and hardware features to handle network traffic with diverse QoS requirements.

Top