Science.gov

Sample records for event-related fmri investigation

  1. Pictures of a thousand words: Investigating the neural mechanisms of reading with extremely rapid event-related fMRI

    PubMed Central

    Yarkoni, Tal; Speer, Nicole K.; Balota, David A.; McAvoy, Mark P.; Zacks, Jeffrey M.

    2008-01-01

    Reading is one of the most important skills human beings can acquire, but has proven difficult to study naturalistically using functional magnetic resonance imaging (fMRI). We introduce a novel Event-Related Reading (ERR) fMRI approach that enables reliable estimation of the neural correlates of single-word processing during reading of rapidly presented narrative text (200–300 ms / word). Application to an fMRI experiment in which subjects read coherent narratives and made no overt responses revealed widespread effects of orthographic, phonological, contextual, and semantic variables on brain activation. Word-level variables predicted activity in classical language areas as well as the inferotemporal visual word form area, specifically supporting a role for the latter in mapping visual forms onto articulatory or acoustic representations. Additional analyses demonstrated that ERR results replicate across experiments and predict reading comprehension. The ERR approach represents a powerful and extremely flexible new approach for studying reading and language behavior with fMRI. PMID:18554928

  2. Neural correlates of opposing effects of emotional distraction on working memory and episodic memory: an event-related FMRI investigation.

    PubMed

    Dolcos, Florin; Iordan, Alexandru D; Kragel, James; Stokes, Jared; Campbell, Ryan; McCarthy, Gregory; Cabeza, Roberto

    2013-01-01

    A fundamental question in the emotional memory literature is why emotion enhances memory in some conditions but disrupts memory in other conditions. For example, separate studies have shown that emotional stimuli tend to be better remembered in long-term episodic memory (EM), whereas emotional distracters tend to impair working memory (WM) maintenance. The first goal of this study was to directly compare the neural correlates of EM enhancement (EME) and WM impairing (WMI) effects, and the second goal was to explore individual differences in these mechanisms. During event-related functional magnetic resonance imaging (fMRI), participants maintained faces in WM while being distracted by emotional or neutral pictures presented during the delay period. EM for the distracting pictures was tested after scanning and was used to identify successful encoding activity for the picture distracters. The first goal yielded two findings: (1) emotional pictures that disrupted face WM but enhanced subsequent EM were associated with increased amygdala (AMY) and hippocampal activity (ventral system) coupled with reduced dorsolateral PFC (dlPFC) activity (dorsal system); (2) trials in which emotion enhanced EM without disrupting WM were associated with increased ventrolateral PFC activity. The ventral-dorsal switch can explain EME and WMI, while the ventrolateral PFC effect suggests a coping mechanism. The second goal yielded two additional findings: (3) participants who were more susceptible to WMI showed greater amygdala increases and PFC reductions; (4) AMY activity increased and dlPFC activity decreased with measures of attentional impulsivity. Taken together, these results clarify the mechanisms linking the enhancing and impairing effects of emotion on memory, and provide insights into the role of individual differences in the impact of emotional distraction.

  3. Material-dependent and material-independent selection processes in the frontal and parietal lobes: an event-related fMRI investigation of response competition

    NASA Technical Reports Server (NTRS)

    Hazeltine, Eliot; Bunge, Silvia A.; Scanlon, Michael D.; Gabrieli, John D E.

    2003-01-01

    The present study used the flanker task [Percept. Psychophys. 16 (1974) 143] to identify neural structures that support response selection processes, and to determine which of these structures respond differently depending on the type of stimulus material associated with the response. Participants performed two versions of the flanker task while undergoing event-related functional magnetic resonance imaging (fMRI). Both versions of the task required participants to respond to a central stimulus regardless of the responses associated with simultaneously presented flanking stimuli, but one used colored circle stimuli and the other used letter stimuli. Competition-related activation was identified by comparing Incongruent trials, in which the flanker stimuli indicated a different response than the central stimulus, to Neutral stimuli, in which the flanker stimuli indicated no response. A region within the right inferior frontal gyrus exhibited significantly more competition-related activation for the color stimuli, whereas regions within the middle frontal gyri of both hemispheres exhibited more competition-related activation for the letter stimuli. The border of the right middle frontal and inferior frontal gyri and the anterior cingulate cortex (ACC) were significantly activated by competition for both types of stimulus materials. Posterior foci demonstrated a similar pattern: left inferior parietal cortex showed greater competition-related activation for the letters, whereas right parietal cortex was significantly activated by competition for both materials. These findings indicate that the resolution of response competition invokes both material-dependent and material-independent processes.

  4. Event-Related fMRI of Category Learning: Differences in Classification and Feedback Networks

    ERIC Educational Resources Information Center

    Little, Deborah M.; Shin, Silvia S.; Sisco, Shannon M.; Thulborn, Keith R.

    2006-01-01

    Eighteen healthy young adults underwent event-related (ER) functional magnetic resonance imaging (fMRI) of the brain while performing a visual category learning task. The specific category learning task required subjects to extract the rules that guide classification of quasi-random patterns of dots into categories. Following each classification…

  5. Decreased Parahippocampal Activity in Associative Priming: Evidence from an Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Yang, Jiongjiong; Meckingler, Axel; Xu, Mingwei; Zhao, Yanbing; Weng, Xuchu

    2008-01-01

    In recent years, there has been intense debate on the neural basis of associative priming, particularly on the role of the medial temporal lobe (MTL) in retrieving associative information without awareness. In this study, event-related fMRI was used while healthy subjects performed a perceptual identification task on briefly presented unrelated…

  6. Acute effects of nicotine administration during prospective memory, an event related fMRI study.

    PubMed

    Rusted, Jennifer; Ruest, Torsten; Gray, Marcus A

    2011-07-01

    We previously demonstrated that stimulating neuronal nicotinic acetylcholine receptors modulates prospective memory (PM), the ability to remember and implement a prior intention. Here we used fMRI to explore the neuronal correlates of acute nicotinic (1mg) modulation during PM, employing a double blind, valence-matched placebo-controlled design, and a solely event-related analysis. Eight healthy adults completed on two occasions (1 week washout) a simple attentional task containing infrequent PM trials. PM activated bilateral parietal, prefrontal (BA10) and anterior cingulate, and deactivated genual cingulate and medial prefrontal regions. Further, acute nicotine administration decreased activity within a largely overlapping right parietal region. This data validates a purely event-related approach to exploring PM, and suggests procholinergic modulation of PM by parietal rather than BA10/frontal regions.

  7. Silent speechreading in the absence of scanner noise: an event-related fMRI study.

    PubMed

    MacSweeney, M; Amaro, E; Calvert, G A; Campbell, R; David, A S; McGuire, P; Williams, S C; Woll, B; Brammer, M J

    2000-06-05

    In a previous study we used functional magnetic resonance imaging (fMRI) to demonstrate activation in auditory cortex during silent speechreading. Since image acquisition during fMRI generates acoustic noise, this pattern of activation could have reflected an interaction between background scanner noise and the visual lip-read stimuli. In this study we employed an event-related fMRI design which allowed us to measure activation during speechreading in the absence of acoustic scanner noise. In the experimental condition, hearing subjects were required to speechread random numbers from a silent speaker. In the control condition subjects watched a static image of the same speaker with mouth closed and were required to subvocally count an intermittent visual cue. A single volume of images was collected to coincide with the estimated peak of the blood oxygen level dependent (BOLD) response to these stimuli across multiple baseline and experimental trials. Silent speechreading led to greater activation in lateral temporal cortex relative to the control condition. This indicates that activation of auditory areas during silent speechreading is not a function of acoustic scanner noise and confirms that silent speechreading engages similar regions of auditory cortex as listening to speech.

  8. Spatiotemporal characteristics of form analysis in the human visual cortex revealed by rapid event-related fMRI adaptation.

    PubMed

    Kourtzi, Zoe; Huberle, Elisabeth

    2005-11-01

    The integration of local elements to coherent forms is at the core of understanding visual perception. Accumulating evidence suggests that both early retinotopic and higher occipitotemporal areas contribute to the integration of local elements to global forms. However, the spatiotemporal characteristics of form analysis in the human visual cortex remain largely unknown. The aim of this study was to investigate form analysis at different spatial (global vs. local structure) and temporal (different stimulus presentation rates) scales across stages of visual analysis (from V1 to the lateral occipital complex-LOC) in the human brain. We used closed contours rendered by Gabor elements and manipulated either the global contour structure or the orientation of the local Gabor elements. Our rapid event-related fMRI adaptation studies suggest that contour integration and form processing in early visual areas is transient and limited within the local neighborhood of their cells' receptive field. In contrast, higher visual areas appear to process the perceived global form in a more sustained manner. Finally, we demonstrate that these spatiotemporal properties of form processing in the visual cortex are modulated by attention. Attention to the global form maintains sustained processing in occipitotemporal areas, whereas attention to local elements enhances their integration in early visual areas. These findings provide novel neuroimaging evidence for form analysis at different spatiotemporal scales across human visual areas and validate the use of rapid event-related fMRI adaptation for investigating processing across stages of visual analysis in the human brain.

  9. On the characterization of single-event related brain activity from functional Magnetic Resonance Imaging (fMRI) measurements.

    PubMed

    Khoram, Nafiseh; Zayane, Chadia; Laleg-Kirati, Taous-Meriem; Djellouli, Rabia

    2014-01-01

    We propose an efficient numerical technique for calibrating the mathematical model that describes the single-event related brain response when fMRI measurements are given. This method employs a regularized Newton technique in conjunction with a Kalman filtering procedure. We have applied this method to estimate the biophysiological parameters of the Balloon model that describes the hemodynamic brain responses. Illustrative results obtained with both synthetic and real fMRI measurements are presented.

  10. Event-Related fMRI Studies of Episodic Encoding and Retrieval: Meta-Analyses Using Activation Likelihood Estimation

    ERIC Educational Resources Information Center

    Spaniol, Julia; Davidson, Patrick S. R.; Kim, Alice S. N.; Han, Hua; Moscovitch, Morris; Grady, Cheryl L.

    2009-01-01

    The recent surge in event-related fMRI studies of episodic memory has generated a wealth of information about the neural correlates of encoding and retrieval processes. However, interpretation of individual studies is hampered by methodological differences, and by the fact that sample sizes are typically small. We submitted results from studies of…

  11. Neural correlates of conceptual object priming in young and older adults: An event-related fMRI study

    PubMed Central

    Ballesteros, Soledad; Bischof, Gérard N.; Goh, Joshua O.; Park, Denise C.

    2012-01-01

    In this event-related fMRI study, we investigated age-related differences in brain activity associated with conceptual repetition priming in young and older adults. Participants performed a speeded “living/non-living” classification task with three repetitions of familiar objects. Both young and older adults showed a similar magnitude of behavioral priming to repeated objects and evidencing repetition-related activation reductions in fusiform gyrus, superior occipital, middle and inferior temporal cortex, as well as inferior frontal and insula regions. The neural priming effect in young adults was extensive and continued through both the second and third stimulus repetitions, whereas neural priming in older adults was markedly attenuated and reached floor at the second repetition. In young adults, greater neural priming in multiple brain regions correlated with greater behavioral facilitation whereas in older adults, only activation reduction in the left inferior frontal correlated with faster behavioral responses. These findings provide evidence for altered neural priming in older adults despite preserved behavioral priming, and suggest the possibility that age-invariant behavioral priming is observed as a result of more sustained neural processing of stimuli in older adults which may be a form of compensatory neural activity. PMID:23102512

  12. Enhanced Olfactory Sensory Perception of Threat in Anxiety: An Event-Related fMRI Study

    PubMed Central

    Krusemark, Elizabeth A.; Li, Wen

    2012-01-01

    The current conceptualization of threat processing in anxiety emphasizes emotional hyper-reactivity, which mediates various debilitating symptoms and derangements in anxiety disorders. Here, we investigated olfactory sensory perception of threat as an alternative causal mechanism of anxiety. Combining an event-related functional magnetic resonance imaging paradigm with an olfactory discrimination task, we examined how anxiety modulates basic perception of olfactory threats at behavioral and neural levels. In spite of subthreshold presentation of negative and neutral odors, a positive systematic association emerged between negative odor discrimination accuracy and anxiety levels. In parallel, the right olfactory primary (piriform) cortex indicated augmented response to subthreshold negative (vs. neutral) odors as a function of individual differences in anxiety. Using a psychophysiological interaction analysis, we further demonstrated amplified functional connectivity between the piriform cortex and emotion-related regions (amygdala and hippocampus) in response to negative odor, particularly in anxiety. Finally, anxiety also intensified skin conductance response to negative (vs. neutral) odor, indicative of potentiated emotional arousal to subliminal olfactory threat in anxiety. Together, these findings elucidate exaggerated processing of olfactory threat in anxiety across behavioral, autonomic physiological, and neural domains. Critically, our data emphasized anxiety-related hyper-sensitivity of the primary olfactory cortex and basic olfactory perception in response to threat, highlighting neurosensory mechanisms that may underlie the deleterious symptoms of anxiety. PMID:22866182

  13. The modulating effect of personality traits on neural error monitoring: evidence from event-related FMRI.

    PubMed

    Sosic-Vasic, Zrinka; Ulrich, Martin; Ruchsow, Martin; Vasic, Nenad; Grön, Georg

    2012-01-01

    The present study investigated the association between traits of the Five Factor Model of Personality (Neuroticism, Extraversion, Openness for Experiences, Agreeableness, and Conscientiousness) and neural correlates of error monitoring obtained from a combined Eriksen-Flanker-Go/NoGo task during event-related functional magnetic resonance imaging in 27 healthy subjects. Individual expressions of personality traits were measured using the NEO-PI-R questionnaire. Conscientiousness correlated positively with error signaling in the left inferior frontal gyrus and adjacent anterior insula (IFG/aI). A second strong positive correlation was observed in the anterior cingulate gyrus (ACC). Neuroticism was negatively correlated with error signaling in the inferior frontal cortex possibly reflecting the negative inter-correlation between both scales observed on the behavioral level. Under present statistical thresholds no significant results were obtained for remaining scales. Aligning the personality trait of Conscientiousness with task accomplishment striving behavior the correlation in the left IFG/aI possibly reflects an inter-individually different involvement whenever task-set related memory representations are violated by the occurrence of errors. The strong correlations in the ACC may indicate that more conscientious subjects were stronger affected by these violations of a given task-set expressed by individually different, negatively valenced signals conveyed by the ACC upon occurrence of an error. Present results illustrate that for predicting individual responses to errors underlying personality traits should be taken into account and also lend external validity to the personality trait approach suggesting that personality constructs do reflect more than mere descriptive taxonomies.

  14. Is Broca's Area Involved in the Processing of Passive Sentences? An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Yokoyama, Satoru; Watanabe, Jobu; Iwata, Kazuki; Ikuta, Naho; Haji, Tomoki; Usui, Nobuo; Taira, Masato; Miyamoto, Tadao; Nakamura, Wataru; Sato, Shigeru; Horie, Kaoru; Kawashima, Ryuta

    2007-01-01

    We used functional magnetic resonance imaging (fMRI) to investigate whether activation in Broca's area is greater during the processing of passive versus active sentences in the brains of healthy subjects. Twenty Japanese native speakers performed a visual sentence comprehension task in which they were asked to read a visually presented sentence…

  15. Semantic ambiguity processing in sentence context: Evidence from event-related fMRI.

    PubMed

    Zempleni, Monika-Zita; Renken, Remco; Hoeks, John C J; Hoogduin, Johannes M; Stowe, Laurie A

    2007-02-01

    Lexical semantic ambiguity is the phenomenon when a word has multiple meanings (e.g. 'bank'). The aim of this event-related functional MRI study was to identify those brain areas, which are involved in contextually driven ambiguity resolution. Ambiguous words were selected which have a most frequent, dominant, and less frequent, subordinate meaning. These words were presented in two types of sentences: (1) a sentence congruent with the dominant interpretation and (2) a sentence congruent with the subordinate interpretation. Sentences without ambiguous words served as a control condition. The ambiguous words always occurred early in the sentences and were biased towards one particular meaning by the final word(s) of the sentence; the event at the end of the sentences was modeled. The results indicate that a bilaterally distributed network supports semantic ambiguity comprehension: left (BA 45/44) and right (BA 47) inferior frontal gyri and left (BA 20/37) and right inferior/middle temporal gyri (BA 20). The pattern of activation is most consistent with a scenario in which initially a frequency-based probabilistic choice is made between the alternative meanings, and the meaning is updated when this interpretation does not fit into the final disambiguating context. The neural pattern is consistent with the results of other neuroimaging experiments which manipulated various aspects of integrative and context processing task demands. The presence of a bilateral network is also in line with the lesion and divided visual field literature, but contrary to earlier claims, the two hemispheres appear to play similar roles during semantic ambiguity resolution.

  16. How Brooding Minds Inhibit Negative Material: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Vanderhasselt, Marie-Anne; Baeken, Chris; Van Schuerbeek, Peter; Luypaert, Rob; De Mey, Johan; De Raedt, Rudi

    2013-01-01

    Depressive brooding--a passive ruminative focus on one's problems, negative mood and their consequences--is a thinking style that places individuals at a greater risk to develop future psychopathology. In this study, we investigated whether inter-individual differences in depressive brooding are related to neural differences underlying the…

  17. Single trial classification for the categories of perceived emotional facial expressions: an event-related fMRI study

    NASA Astrophysics Data System (ADS)

    Song, Sutao; Huang, Yuxia; Long, Zhiying; Zhang, Jiacai; Chen, Gongxiang; Wang, Shuqing

    2016-03-01

    Recently, several studies have successfully applied multivariate pattern analysis methods to predict the categories of emotions. These studies are mainly focused on self-experienced emotions, such as the emotional states elicited by music or movie. In fact, most of our social interactions involve perception of emotional information from the expressions of other people, and it is an important basic skill for humans to recognize the emotional facial expressions of other people in a short time. In this study, we aimed to determine the discriminability of perceived emotional facial expressions. In a rapid event-related fMRI design, subjects were instructed to classify four categories of facial expressions (happy, disgust, angry and neutral) by pressing different buttons, and each facial expression stimulus lasted for 2s. All participants performed 5 fMRI runs. One multivariate pattern analysis method, support vector machine was trained to predict the categories of facial expressions. For feature selection, ninety masks defined from anatomical automatic labeling (AAL) atlas were firstly generated and each were treated as the input of the classifier; then, the most stable AAL areas were selected according to prediction accuracies, and comprised the final feature sets. Results showed that: for the 6 pair-wise classification conditions, the accuracy, sensitivity and specificity were all above chance prediction, among which, happy vs. neutral , angry vs. disgust achieved the lowest results. These results suggested that specific neural signatures of perceived emotional facial expressions may exist, and happy vs. neutral, angry vs. disgust might be more similar in information representation in the brain.

  18. Emotional and temporal aspects of situation model processing during text comprehension: an event-related fMRI study.

    PubMed

    Ferstl, Evelyn C; Rinck, Mike; von Cramon, D Yves

    2005-05-01

    Language comprehension in everyday life requires the continuous integration of prior discourse context and general world knowledge with the current utterance or sentence. In the neurolinguistic literature, these so-called situation model building processes have been ascribed to the prefrontal cortex or to the right hemisphere. In this study, we use whole-head event-related fMRI to directly map the neural correlates of narrative comprehension in context. While being scanned using a spin-echo sequence, 20 participants listened to 32 short stories, half of which contained globally inconsistent information. The inconsistencies concerned either temporal or chronological information or the emotional status of the protagonist. Hearing an inconsistent word elicited activation in the right anterior temporal lobe. The comparison of different information aspects revealed activation in the left precuneus and a bilateral frontoparietal network for chronological information. Emotional information elicited activation in the ventromedial prefrontal cortex and the extended amygdaloid complex. In addition, the integration of inconsistent emotional information engaged the dorsal frontomedial cortex (Brodmann's area 8/9), whereas the integration of inconsistent temporal information required the lateral prefrontal cortex bilaterally. These results indicate that listening to stories can elicit activation reflecting content-specific processes. Furthermore, updating of the situation model is not a unitary process but it also depends on the particular requirements of the text. The right hemisphere contributes to language processing in context, but equally important are the left medial and bilateral prefrontal cortices.

  19. Fast joint detection-estimation of evoked brain activity in event-related FMRI using a variational approach

    PubMed Central

    Chaari, Lotfi; Vincent, Thomas; Forbes, Florence; Dojat, Michel; Ciuciu, Philippe

    2013-01-01

    In standard within-subject analyses of event-related fMRI data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based Joint Detection-Estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a Variational Expectation-Maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model mis-specification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery. PMID:23096056

  20. Error-related processing following severe traumatic brain injury: an event-related functional magnetic resonance imaging (fMRI) study.

    PubMed

    Sozda, Christopher N; Larson, Michael J; Kaufman, David A S; Schmalfuss, Ilona M; Perlstein, William M

    2011-10-01

    Continuous monitoring of one's performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI.

  1. Functionally integrated neural processing of linguistic and talker information: An event-related fMRI and ERP study

    PubMed Central

    Zhang, Caicai; Pugh, Kenneth R.; Mencl, W. Einar; Molfese, Peter J.; Frost, Stephen J.; Magnuson, James S.; Peng, Gang; Wang, William S-Y

    2016-01-01

    Speech signals contain information of both linguistic content and a talker’s voice. Conventionally, linguistic and talker processing are thought to be mediated by distinct neural systems in the left and right hemispheres respectively, but there is growing evidence that linguistic and talker processing interact in many ways. Previous studies suggest that talker-related vocal tract changes are processed integrally with phonetic changes in the bilateral posterior superior temporal gyrus/superior temporal sulcus (STG/STS), because the vocal tract parameter influences the perception of phonetic information. It is yet unclear whether the bilateral STG are also activated by the integral processing of another parameter – pitch, which influences the perception of lexical tone information and are related to talker differences in tone languages. In this study, we conducted separate functional magnetic resonance imaging (fMRI) and event-related potential (ERP) experiments to examine the spatial and temporal loci of interactions of lexical tone and talker-related pitch processing in Cantonese. We found that the STG was activated bilaterally during the processing of talker changes when listeners attended to lexical tone changes in the stimuli and during the processing of lexical tone changes when listeners attended to talker changes, suggesting that lexical tone and talker processing are functionally integrated in the bilateral STG. It extends the previous study, providing evidence for a general neural mechanism of integral phonetic and talker processing in the bilateral STG. The ERP results show interactions of lexical tone and talker processing 500–800 ms after auditory word onset (a simultaneous posterior P3b and a frontal negativity). Moreover, there is some asymmetry in the interaction, such that unattended talker changes affect linguistic processing more than vice versa, which may be related to the ambiguity that talker changes cause in speech perception and

  2. The Neural Circuitry of Reward Processing in Complex Social Comparison: Evidence from an Event-Related fMRI Study

    PubMed Central

    Wei, DongTao; Li, Wenfu; Zhang, Qinglin; Qiu, Jiang

    2013-01-01

    In this study, Functional magnetic resonance imaging (fMRI) was conducted to investigate the mechanisms by which the brain activity in a complex social comparison context. One true subject and two pseudo-subjects were asked to complete a simple number estimate task at the same time which including upward and downward comparisons. Two categories of social comparison rewards (fair and unfair rewards distributions) were mainly presented by comparing the true subject with other two pseudo-subjects. Particularly, there were five conditions of unfair distribution when all the three subjects were correct but received different rewards. Behavioral data indicated that the ability to self-regulate was important in satisfaction judgment when the subject perceived an unfair reward distribution. fMRI data indicated that the interaction between the ventral striatum and the prefrontal cortex was important in self-regulation under specific conditions in complex social comparison, especially under condition of reward processing when there were two different reward values and the subject failed to exhibit upward comparison. PMID:24340037

  3. Medial temporal lobe activity for recognition of recent and remote famous names: an event-related fMRI study.

    PubMed

    Douville, Kelli; Woodard, John L; Seidenberg, Michael; Miller, Sarah K; Leveroni, Catherine L; Nielson, Kristy A; Franczak, Malgorzata; Antuono, Piero; Rao, Stephen M

    2005-01-01

    Previous neuroimaging studies examining recognition of famous faces have identified activation of an extensive bilateral neural network [Gorno Tempini, M. L., Price, C. J., Josephs, O., Vandenberghe, R., Cappa, S. F., Kapur, N. et al. (1998). The neural systems sustaining face and proper-name processing. Brain, 121, 2103-2118], including the medial temporal lobe (MTL) and specifically the hippocampal complex [Haist, F., Bowden, G. J., & Mao, H. (2001). Consolidation of human memory over decades revealed by functional magnetic resonance imaging. Nature Neuroscience, 4, 1139-1145; Leveroni, C. L., Seidenberg, M., Mayer, A. R., Mead, L. A., Binder, J. R., & Rao, S. M. (2000). Neural systems underlying the recognition of familiar and newly learned faces. Journal of Neuroscience, 20, 878-886]. One model of hippocampal functioning in autobiographical, episodic memory retrieval argues that the hippocampal complex remains active in retrieval tasks regardless of time or age of memory (multiple trace theory, MTT), whereas another proposal posits that the hippocampal complex plays a time-limited role in retrieval of autobiographical memories. The current event-related fMRI study focused on the medial temporal lobe and its response to recognition judgments of famous names from two distinct time epochs (1990s and 1950s) in 15 right-handed healthy older adults (mean age=70 years). A pilot study with an independent sample of young and older subjects ensured that the stimuli were representative of a recent and remote time period. Increased MR signal activity was observed on a bilateral basis for both the hippocampus and parahippocampal gyrus (PHG) during recognition of familiar names from both the recent and remote time periods when compared to non-famous names. However, the impulse response functions in the right hippocampus and right PHG demonstrated a differential response to stimuli from different time epochs, with the 1990s names showing the greatest MR signal intensity

  4. Fixation based event-related fmri analysis: using eye fixations as events in functional magnetic resonance imaging to reveal cortical processing during the free exploration of visual images.

    PubMed

    Marsman, Jan Bernard C; Renken, Remco; Velichkovsky, Boris M; Hooymans, Johanna M M; Cornelissen, Frans W

    2012-02-01

    Eye movements, comprising predominantly fixations and saccades, are known to reveal information about perception and cognition, and they provide an explicit measure of attention. Nevertheless, fixations have not been considered as events in the analyses of data obtained during functional magnetic resonance imaging (fMRI) experiments. Most likely, this is due to their brevity and statistical properties. Despite these limitations, we used fixations as events to model brain activation in a free viewing experiment with standard fMRI scanning parameters. First, we found that fixations on different objects in different task contexts resulted in distinct cortical patterns of activation. Second, using multivariate pattern analysis, we showed that the BOLD signal revealed meaningful information about the task context of individual fixations and about the object being inspected during these fixations. We conclude that fixation-based event-related (FIBER) fMRI analysis creates new pathways for studying human brain function by enabling researchers to explore natural viewing behavior.

  5. The functional organization of trial-related activity in lexical processing after early left hemispheric brain lesions: An event-related fMRI study.

    PubMed

    Fair, Damien A; Choi, Alexander H; Dosenbach, Yannic B L; Coalson, Rebecca S; Miezin, Francis M; Petersen, Steven E; Schlaggar, Bradley L

    2010-08-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we used an event-related design, which allowed us to isolate trial-related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial-related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries.

  6. Re-Evaluating Dissociations between Implicit and Explicit Category Learning: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Gureckis, Todd M.; James, Thomas W.; Nosofsky, Robert M.

    2011-01-01

    Recent fMRI studies have found that distinct neural systems may mediate perceptual category learning under implicit and explicit learning conditions. In these previous studies, however, different stimulus-encoding processes may have been associated with implicit versus explicit learning. The present design was aimed at decoupling the influence of…

  7. [Event-related EEG and evoked potential investigations in clinical practice].

    PubMed

    Rajna, Péter; Hidasi, Zoltán; Waldemar, Szelenberger

    2005-11-20

    Considering the limits of the traditional EEG techniques the authors review the main methods and clinical importance of the event-related EEG investigations. According to methods, these can be classified into the spectral analysis of task-related, pre-task and post-task recordings as well as stimulus-controlled measurements based on evoked potential techniques. The main results of clinical studies on the event-related EEG methods are summarized according to chief disease groups (Alzheimer's disease, epilepsy, schizophrenia, Parkinson's disease, dyslexia, depression). The authors discuss the stimulus-dependent EEG discharges (P300, cognitive potential) in detail. They present the meta-analysis of 224 recent publications on human application of these methods. They analyze the involved scientific areas and the frequency by which these methods were applied in each. Following this, the results of 83 selected clinical studies are summarized. The frequency of the application of the various event-related EEG methods and the tested wave components and other parameters are listed. Finally a summary of the main clinical results is presented again by groups of diseases (schizophrenia, behavioral disorders, traumatic lesions, enuresis nocturna, depression, memory disturbance and dementia, drug effect). Finally, the potential perspectives and the limitations of the event-related EEG methods are briefly discussed.

  8. On the tip of the tongue: an event-related fMRI study of semantic retrieval failure and cognitive conflict.

    PubMed

    Maril, A; Wagner, A D; Schacter, D L

    2001-08-30

    The tip of the tongue (TOT) state refers to a temporary inaccessibility of information that one is sure exists in long-term memory and is on the verge of recovering. Using event-related fMRI, we assessed the neural correlates of this semantic retrieval failure to determine whether the anterior cingulate-lateral prefrontal neural circuit posited to mediate conflict resolution is engaged during metacognitive conflicts that arise during the TOT. Results revealed that, relative to successful retrieval or unsuccessful retrieval not accompanied by a TOT, retrieval failures accompanied by TOTs elicited a selective response in anterior cingulate-prefrontal cortices. During a TOT, cognitive control mechanisms may be recruited in attempts to resolve the conflict and retrieval failure that characterize this state.

  9. Common neural systems associated with the recognition of famous faces and names: an event-related fMRI study.

    PubMed

    Nielson, Kristy A; Seidenberg, Michael; Woodard, John L; Durgerian, Sally; Zhang, Qi; Gross, William L; Gander, Amelia; Guidotti, Leslie M; Antuono, Piero; Rao, Stephen M

    2010-04-01

    Person recognition can be accomplished through several modalities (face, name, voice). Lesion, neurophysiology and neuroimaging studies have been conducted in an attempt to determine the similarities and differences in the neural networks associated with person identity via different modality inputs. The current study used event-related functional-MRI in 17 healthy participants to directly compare activation in response to randomly presented famous and non-famous names and faces (25 stimuli in each of the four categories). Findings indicated distinct areas of activation that differed for faces and names in regions typically associated with pre-semantic perceptual processes. In contrast, overlapping brain regions were activated in areas associated with the retrieval of biographical knowledge and associated social affective features. Specifically, activation for famous faces was primarily right lateralized and famous names were left-lateralized. However, for both stimuli, similar areas of bilateral activity were observed in the early phases of perceptual processing. Activation for fame, irrespective of stimulus modality, activated an extensive left hemisphere network, with bilateral activity observed in the hippocampi, posterior cingulate, and middle temporal gyri. Findings are discussed within the framework of recent proposals concerning the neural network of person identification.

  10. Age-related functional recruitment for famous name recognition: an event-related fMRI study.

    PubMed

    Nielson, Kristy A; Douville, Kelli L; Seidenberg, Michael; Woodard, John L; Miller, Sarah K; Franczak, Malgorzata; Antuono, Piero; Rao, Stephen M

    2006-10-01

    Recent neuroimaging research shows that older adults exhibit recruitment, or increased activation on various cognitive tasks. The current study evaluated whether a similar pattern also occurs in semantic memory by evaluating age-related differences during recognition of Recent (since the 1990s) and Enduring (1950s to present) famous names. Fifteen healthy older and 15 healthy younger adults performed the name recognition task with a high and comparable degree of accuracy, although older adults had slower reaction time in response to Recent famous names. Event-related functional MRI showed extensive networks of activation in the two groups including posterior cingulate, right hippocampus, temporal lobe and left prefrontal regions. The Recent condition produced more extensive activation than the Enduring condition. Older adults had more extensive and greater magnitude of activation in 15 of 20 regions, particularly for the Recent condition (15 of 15; 7 of 15 also differed for Enduring); young adults did not show greater activation magnitude in any region. There were no group differences for non-famous names, indicating that age differences are task-specific. The results support and extend the existing literature to semantic memory tasks, indicating that older adult brains use functional recruitment to support task performance, even when task performance accuracy is high.

  11. Event-Related Fmri Evidence of Frontotemporal Involvement in Aberrant Response Inhibition and Task Switching in Attention-Deficit/hyperactivity Disorder.

    ERIC Educational Resources Information Center

    Tamm, Leanne; Menon, Vinod; Ringel, Jessica; Reiss, Allan L.

    2004-01-01

    Objective: Response inhibition deficits are characteristic of individuals with attention-deficit/hyperactivity disorder (ADHD). Previous functional magnetic resonance imaging (fMRI) studies investigating the neural correlates of this dysfunction have used block designs, making it difficult to disentangle activation differences specifically related…

  12. The effect of encoding strategies on medial temporal lobe activations during the recognition of words: an event-related fMRI study.

    PubMed

    Tsukiura, Takashi; Mochizuki-Kawai, Hiroko; Fujii, Toshikatsu

    2005-04-01

    It is known that manipulation of the encoding strategy affects behavioral and activation data during later retrieval. In the present fMRI study, we examined brain activity during the recognition of words encoded using three different strategies formed by the combination of two factors of relational and self-performed processes. The first encoding strategy involved subjects learning words using both relational and self-performed processes (R+S+). In the second, subjects learned words using only a relational process (R+S-). In the third, subjects learned words without using either process (R-S-). During fMRI after encoding, subjects were randomly presented with words encoded previously and with new words (New) and were required to judge whether or not the word presented had been previously encoded. The fMRI experiment was performed with the event-related design. Compared to New, activation of the left medial temporal lobe (MTL) occurred during the recognition of words encoded using R+S+ and R+S-, whereas right MTL activations only occurred with the R+S+ strategy. ROI analysis for the bilateral hippocampus and parahippocampal gyrus showed a linear increase in left MTL activity (hippocampus and parahippocampal gyrus) during the recognition of words encoded with the R-S-, R+S-, to R+S+, whereas right MTL activity (parahippocampal gyrus) was only increased with the R+S+ strategy. The findings suggest that the left and right MTL structures may contribute differentially to the processes involved in the recognition of stimuli and that these differential activities may depend on the encoding strategies formed by the two factors of relational and self-performed processes.

  13. The neural implementation of task rule activation in the task-cuing paradigm: an event-related fMRI study.

    PubMed

    Shi, Yiquan; Zhou, Xiaolin; Müller, Hermann J; Schubert, Torsten

    2010-07-01

    To isolate the neural correlates for task rule activation from those related to general task preparation, the effect of a cue explicitly specifying the S-R correspondences (rule-cue) was contrasted with the effects of a cue specifying only the task to performed (task-cue). While the task-cue provides merely information about the type of task, the rule-cue is explicit about both the task type and the task rule (i.e., the set of S-R correspondences). The rule-cue was expected to activate the task rule more efficiently in the preparation period (prior to target presentation); by contrast, in the task-cue condition, part of the task rule activation was expected to be postponed into the task execution period (following the presentation of the target). In an event-related fMRI experiment, we found the right anterior and middle parts of the middle frontal and superior frontal gyri, the right inferior frontal junction, the pre-SMA, as well as the right superior and inferior parietal lobes to show larger activation elicited by the rule-cue than by the task-cue prior to target presentation. Conversely, the results revealed larger activations in these regions in the task-cue than in the rule-cue condition during the task execution period. In summary, this study identified some of the neural correlates of task rule activation and showed that these are a subset of the general task preparation network.

  14. An Event-Related Potential Investigation of Fear Generalization and Intolerance of Uncertainty.

    PubMed

    Nelson, Brady D; Weinberg, Anna; Pawluk, Joe; Gawlowska, Magda; Proudfit, Greg H

    2015-09-01

    Fear generalization is a key process in the development and maintenance of anxiety disorders. Psychobiological investigations of fear generalization have predominantly focused on defensive system activation (e.g., startle reflex), and it is unclear whether aberrant attentional processing contributes to fear generalization. The late positive potential (LPP) is an event-related potential component that indexes sustained attention and elaborative processing of motivationally salient information, and is larger in response to arousing compared to nonarousing stimuli. In the present study 48 participants completed a fear generalization paradigm using electric shocks. The LPP and retrospective risk ratings of shock likelihood were measured in response to the conditioned stimulus (CS+) and multiple generalization stimuli (GS) that varied in perceptual similarity to the CS+. In addition, intolerance of uncertainty (IU) was examined in relation to fear generalization. The LPP was enhanced for the CS+relative to the GS, but the GS did not differ from one another. Thus, overall the LPP did not reflect fear generalization. However, the LPP to the GS differed as a function of IU, such that high Prospective IU was associated with an attenuated LPP to the GS, and this was independent of trait anxiety. Risk ratings tracked fear generalization irrespective of IU. We discuss the potential influence of IU and attentional processing on fear generalization. Overall, the present study supports the LPP as a useful tool for examining individual differences in fear generalization.

  15. Resolving the orthographic ambiguity during visual word recognition in Arabic: an event-related potential investigation

    PubMed Central

    Taha, Haitham; Khateb, Asaid

    2013-01-01

    The Arabic alphabetical orthographic system has various unique features that include the existence of emphatic phonemic letters. These represent several pairs of letters that share a phonological similarity and use the same parts of the articulation system. The phonological and articulatory similarities between these letters lead to spelling errors where the subject tends to produce a pseudohomophone (PHw) instead of the correct word. Here, we investigated whether or not the unique orthographic features of the written Arabic words modulate early orthographic processes. For this purpose, we analyzed event-related potentials (ERPs) collected from adult skilled readers during an orthographic decision task on real words and their corresponding PHw. The subjects' reaction times (RTs) were faster in words than in PHw. ERPs analysis revealed significant response differences between words and the PHw starting during the N170 and extending to the P2 component, with no difference during processing steps devoted to phonological and lexico-semantic processing. Amplitude and latency differences were found also during the P6 component which peaked earlier for words and where source localization indicated the involvement of the classical left language areas. Our findings replicate some of the previous findings on PHw processing and extend them to involve early orthographical processes. PMID:24348367

  16. An Event-Related Potential (ERP) Investigation of Filler-Gap Processing in Native and Second Language Speakers

    ERIC Educational Resources Information Center

    Dallas, Andrea; DeDe, Gayle; Nicol, Janet

    2013-01-01

    The current study employed a neuro-imaging technique, Event-Related Potentials (ERP), to investigate real-time processing of sentences containing filler-gap dependencies by late-learning speakers of English as a second language (L2) with a Chinese native language background. An individual differences approach was also taken to examine the role of…

  17. The dynamics of deductive reasoning: an fMRI investigation.

    PubMed

    Rodriguez-Moreno, Diana; Hirsch, Joy

    2009-03-01

    Although the basis for deductive reasoning has been a traditional focus of philosophical discussion, the neural correlates and mechanisms that underlie deductive reasoning have only recently become the focus of scientific investigation. In syllogistic deductive reasoning information presented in two related sequential premises leads to a subsequent conclusion. While previous imaging studies have identified frontal, parietal, temporal, and occipital complexes that are activated during these reasoning events, there are substantive differences among the findings with respect to the specific regions engaged in reasoning and the contribution of language areas. Further, little is known about the various stages of information processing during reasoning. Using event-related fMRI and an auditory and visual conjunction technique, we identified a long-range supramodal network active during reasoning processes including areas in the left frontal and parietal regions as well as the bilateral caudate nucleus. Time courses of activation for each of these regions suggest that reasoning processes emerge during the presentation of the second premise, and remain active until the validation of the conclusion. Thus, areas within the frontal and parietal regions are differentially engaged at different time points in the reasoning process consistent with coordinated intra-network interactions.

  18. A new approach to measure single-event related brain activity using real-time fMRI: feasibility of sensory, motor, and higher cognitive tasks.

    PubMed

    Posse, S; Binkofski, F; Schneider, F; Gembris, D; Frings, W; Habel, U; Salloum, J B; Mathiak, K; Wiese, S; Kiselev, V; Graf, T; Elghahwagi, B; Grosse-Ruyken, M L; Eickermann, T

    2001-01-01

    Real-time fMRI is a rapidly emerging methodology that enables monitoring changes in brain activity during an ongoing experiment. In this article we demonstrate the feasibility of performing single-event sensory, motor, and higher cognitive tasks in real-time on a clinical whole-body scanner. This approach requires sensitivity optimized fMRI methods: Using statistical parametric mapping we quantified the spatial extent of BOLD contrast signal changes as a function of voxel size and demonstrate that sacrificing spatial resolution and readout bandwidth improves the detection of signal changes in real time. Further increases in BOLD contrast sensitivity were obtained by using real-time multi-echo EPI. Real-time image analysis was performed using our previously described Functional Imaging in REal time (FIRE) software package, which features real-time motion compensation, sliding window correlation analysis, and automatic reference vector optimization. This new fMRI methodology was validated using single-block design paradigms of standard visual, motor, and auditory tasks. Further, we demonstrate the sensitivity of this method for online detection of higher cognitive functions during a language task using single-block design paradigms. Finally, we used single-event fMRI to characterize the variability of the hemodynamic impulse response in primary and supplementary motor cortex in consecutive trials using single movements. Real-time fMRI can improve reliability of clinical and research studies and offers new opportunities for studying higher cognitive functions.

  19. Do children with autism 'switch off' to speech sounds? An investigation using event-related potentials.

    PubMed

    Whitehouse, Andrew J O; Bishop, Dorothy V M

    2008-07-01

    Autism is a disorder characterized by a core impairment in social behaviour. A prominent component of this social deficit is poor orienting to speech. It is unclear whether this deficit involves an impairment in allocating attention to speech sounds, or a sensory impairment in processing phonetic information. In this study, event-related potentials of 15 children with high functioning autism (mean nonverbal IQ = 109.87) and 15 typically developing children (mean nonverbal IQ = 115.73) were recorded in response to sounds in two oddball conditions. Participants heard two stimulus types: vowels and complex tones. In each condition, repetitive 'standard' sounds (condition 1: vowel; condition 2: complex tone) were replaced by a within stimulus-type 'deviant' sound and a between stimulus-type 'novel' sound. Participants' level of attention was also varied between conditions. Children with autism had significantly diminished obligatory components in response to the repetitive speech sound, but not to the repetitive nonspeech sound. This difference disappeared when participants were required to allocate attention to the sound stream. Furthermore, the children with autism showed reduced orienting to novel tones presented in a sequence of speech sounds, but not to novel speech sounds presented in a sequence of tones. These findings indicate that high functioning children with autism can allocate attention to novel speech sounds. However, they use top-down inhibition to attenuate responses to repeated streams of speech. This suggests that problems with speech processing in this population involve efferent pathways.

  20. Neurovascular and Neurometabolic Couplings in Dynamic Calibrated fMRI: Transient Oxidative Neuroenergetics for Block-Design and Event-Related Paradigms

    PubMed Central

    Hyder, Fahmeed; Sanganahalli, Basavaraju G.; Herman, Peter; Coman, Daniel; Maandag, Natasja J. G.; Behar, Kevin L.; Blumenfeld, Hal; Rothman, Douglas L.

    2010-01-01

    Functional magnetic resonance imaging (fMRI) with blood-oxygenation level dependent (BOLD) contrast is an important tool for mapping brain activity. Interest in quantitative fMRI has renewed awareness in importance of oxidative neuroenergetics, as reflected by cerebral metabolic rate of oxygen consumption(CMRO2), for supporting brain function. Relationships between BOLD signal and the underlying neurophysiological parameters have been elucidated to allow determination of dynamic changes inCMRO2 by “calibrated fMRI,” which require multi-modal measurements of BOLD signal along with cerebral blood flow (CBF) and volume (CBV). But how doCMRO2 changes, steady-state or transient, derived from calibrated fMRI compare with neural activity recordings of local field potential (LFP) and/or multi-unit activity (MUA)? Here we discuss recent findings primarily from animal studies which allow high magnetic fields studies for superior BOLD sensitivity as well as multi-modal CBV and CBF measurements in conjunction with LFP and MUA recordings from activated sites. A key observation is that while relationships between neural activity and sensory stimulus features range from linear to non-linear, associations between hyperemic components (BOLD, CBF, CBV) and neural activity (LFP, MUA) are almost always linear. More importantly, the results demonstrate good agreement between the changes inCMRO2 and independent measures of LFP or MUA. The tight neurovascular and neurometabolic couplings, observed from steady-state conditions to events separated by <200 ms, suggest rapid oxygen equilibration between blood and tissue pools and thus calibrated fMRI at high magnetic fields can provide high spatiotemporal mapping ofCMRO2 changes. PMID:20838476

  1. Familial Risk for Distress and Fear Disorders and Emotional Reactivity in Adolescence: An Event-Related Potential Investigation

    PubMed Central

    Nelson, Brady D.; Perlman, Greg; Hajcak, Greg; Klein, Daniel N.; Kotov, Roman

    2015-01-01

    Background The late positive potential (LPP) is an event-related potential component that is sensitive to the motivational salience of stimuli. Children with a parental history of depression, an indicator of risk, have been found to exhibit an attenuated LPP to emotional stimuli. Research on depressive and anxiety disorders has organized these conditions into two empirical classes: distress and fear disorders. The present study examined whether parental history of distress and fear disorders was associated with the LPP to emotional stimuli in a large sample of adolescent girls. Methods The sample of 550 girls (ages 13.5–15.5) with no lifetime history of depression completed an emotional picture-viewing task and the LPP was measured in response to neutral, pleasant, and unpleasant pictures. Parental lifetime history of psychopathology was determined via semi-structured diagnostic interview with a biological parent, and a confirmatory factor analysis was used to model distress and fear dimensions. Results Parental distress risk was associated with an attenuated LPP to all stimuli. In contrast, parental fear risk was associated with an enhanced LPP to unpleasant pictures but was unrelated to the LPP to neutral and pleasant pictures. Furthermore, these results were independent of the adolescent girls’ current depression and anxiety symptoms and pubertal status. Conclusions The present study demonstrates that familial risk for distress and fear disorders may have unique profiles in terms of electrocortical measures of emotional information processing. This study is also one of the first to investigate emotional/motivational processes underlying the distress and fear disorder dimensions. PMID:25851615

  2. Some Alternatives? Event-Related Potential Investigation of Literal and Pragmatic Interpretations of Some Presented in Isolation

    PubMed Central

    Barbet, Cécile; Thierry, Guillaume

    2016-01-01

    In sentence verification tasks involving under-informative statements such as Some elephants are mammals, some adults appear more tolerant to pragmatic violations than others. The underlying causes of such inter-individual variability remain however essentially unknown. Here, we investigated inter-individual variation in adults deriving the scalar inference “not all” triggered by the quantifier some. We first assessed the individual intolerance to pragmatic violations in adult participants presented with under-informative some-statements (e.g., Some infants are young). We then recorded event-related brain potentials in the same participants using an oddball paradigm where an ambiguous deviant word some presented in isolation had to be taken either as a match (in its literal interpretation “at least some”) or as a mismatch (in its pragmatic interpretation “some but not all”) and where an unambiguous deviant target word all was featured as control. Mean amplitude modulation of the classic P3b provided a measure of the ease with which participants considered some and all as deviants within each experimental block. We found that intolerance to pragmatic violations was associated with a reduction in the magnitude of the P3b effect elicited by the target some when it was to be considered a literal match. Furthermore, we failed to replicate a straightforward literal interpretation facilitation effect in our experiment which offers a control for task demands. We propose that the derivation of scalar inferences also relies on general, but flexible, mismatch resolution processes. PMID:27746751

  3. An event-related potential investigation of spatial attention orientation in children trained with mental abacus calculation

    PubMed Central

    Liu, Xiaoqin

    2017-01-01

    The objective of this study was to investigate the effects of long-term mental abacus calculation training (MACT) on children’s spatial attention orientation. Fifteen children with intensive MACT (MACT group) and 15 children without MACT (non-MACT group) were selected. The two groups of children were matched in age, sex, handedness, and academic grade. The participants were tested with a Posner spatial cueing task while their neural activities were recorded with a 32-channel electroencephalogram system. The participants’ behavior scores (reaction time and accuracy) as well as early components of event-related potential (ERP) during the tests were statistically analyzed. The behavioral scores showed no significant difference between the two groups of children, although the MACT group tended to have a shorter reaction time. The early ERP components showed that under valid cueing condition, the MACT group had significantly higher P1 amplitude [F(1, 28)=5.06, P<0.05, effective size=0.72] and lower N1 amplitude [F(1, 28)=6.05, P<0.05, effective size=0.82] in the occipital region compared with the non-MACT group. In the centrofrontal brain region, the MACT group had lower N1 amplitude [F(1, 28)=4.89, P<0.05, effect size=0.70] and longer N1 latency [F(1, 28)=6.26, P<0.05, effect size=0.80] than the non-MACT group. In particular, the MACT group also showed a higher centrofrontal P2 amplitude in the right hemisphere [F(1, 28)=4.82, P<0.05, effect size 0.81] compared with the left hemisphere and the middle location. MACT enhances the children’s spatial attention orientation, which can be detected in the early components of ERP. PMID:27831960

  4. Integral calculus problem solving: an fMRI investigation.

    PubMed

    Krueger, Frank; Spampinato, Maria Vittoria; Pardini, Matteo; Pajevic, Sinisa; Wood, Jacqueline N; Weiss, George H; Landgraf, Steffen; Grafman, Jordan

    2008-07-16

    Only a subset of adults acquires specific advanced mathematical skills, such as integral calculus. The representation of more sophisticated mathematical concepts probably evolved from basic number systems; however its neuroanatomical basis is still unknown. Using fMRI, we investigated the neural basis of integral calculus while healthy participants were engaged in an integration verification task. Solving integrals activated a left-lateralized cortical network including the horizontal intraparietal sulcus, posterior superior parietal lobe, posterior cingulate gyrus, and dorsolateral prefrontal cortex. Our results indicate that solving of more abstract and sophisticated mathematical facts, such as calculus integrals, elicits a pattern of brain activation similar to the cortical network engaged in basic numeric comparison, quantity manipulation, and arithmetic problem solving.

  5. Tracking the time-course of attentional involvement in spatial working memory: an event-related potential investigation.

    PubMed

    Jha, Amishi P

    2002-12-01

    Spatial working memory is a cognitive brain mechanism that enables the temporary maintenance and manipulation of spatial information. Recent neuroimaging and behavioral studies have led to the proposal that directed spatial attention is the mechanism by which location information is maintained in spatial working memory. Yet it is unclear whether attentional involvement is required throughout the period of active maintenance or is only invoked during discrete task-phases such as mnemonic encoding. In the current study, we aimed to track the time-course of attentional involvement during spatial working memory by recording event-related brain potentials (ERPs) from healthy volunteers. In Experiment 1, subjects performed a delayed-recognition task. Each trial began with the presentation of a brief stimulus (S1) that indicated the relevant location that subjects were to maintain in working memory. A 4.8-5.3 sec delay interval followed during which a single task-irrelevant probe was presented. The delay interval concluded with a test item (S2) to which subjects made a response indicating whether the S2-location was the same as the S1-memory location. To determine if attention was differentially engaged during discrete phases of the trial, task-irrelevant probes were presented early (400-800 msec following S1-offset) or late (2600-3000 msec following S1-offset) during the delay interval. Sensory-evoked ERPs (P1 and N1) elicited by these irrelevant probes showed attention-like modulations with greater amplitude responses for probes occurring at the S1-memory locations in comparison to probes presented at other locations. This pattern was obtained for both early- and late-delay probes. Probe-evoked activity during delayed-recognition trials was similar to activity observed when spatial attention was explicitly focused on a location in visual space (Experiment 2). These results are consistent with a model of spatial working memory in which perceptual level selective

  6. EEG and FMRI coregistration to investigate the cortical oscillatory activities during finger movement.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Avesani, Mirko; Cerini, Roberto; Milanese, Franco; Gasparini, Anna; Acler, Michele; Pozzi Mucelli, Roberto; Fiaschi, Antonio; Manganotti, Paolo

    2008-12-01

    Electroencephalography combined with functional magnetic resonance imaging (EEG-fMRI) may be used to identify blood oxygenation level dependent (BOLD) signal changes associated with physiological and pathological EEG event. In this study we used EEG-fMRI to determine the possible correlation between topographical movement-related EEG changes in brain oscillatory activity recorded from EEG electrodes over the scalp and fMRI-BOLD cortical responses in motor areas during finger movement. Thirty-two channels of EEG were recorded in 9 subjects during eyes-open condition inside a 1.5 T magnetic resonance (MR) scanner using a MR-compatible EEG recording system. Off-line MRI artifact subtraction software was applied to obtain continuous EEG data during fMRI acquisition. For EEG data analysis we used the event-related-synchronization/desynchronization (ERS/ERD) approach to investigate where movement-related decreases in alpha and beta power are located. For image statistical analysis we used a general linear model (GLM) approach. There was a significant correlation between the positive-negative ratio of BOLD signal peaks and ERD values in the electrodes over the region of activation. We conclude that combined EEG-fMRI may be used to investigate movement-related oscillations of the human brain inside an MRI scanner and the movement-related changes in the EMG or EEG signals are useful to identify the brain activation sources responsible for BOLD-signal changes.

  7. Politics on the Brain: An fMRI Investigation

    PubMed Central

    Knutson, Kristine M.; Wood, Jacqueline N.; Spampinato, Maria V.; Grafman, Jordan

    2006-01-01

    We assessed political attitudes using the Implicit Association Test (IAT) in which participants were presented faces and names of well-known Democrat and Republican politicians along with positive and negative words while undergoing functional MRI. We found a significant behavioral IAT effect for the face, but not the name, condition. The fMRI face condition results indicated that ventromedial and anterior prefrontal cortices were activated during political attitude inducement. Amygdala and fusiform gyrus were activated during perceptual processing of familiar faces. Amygdala activation also was associated with measures of strength of emotion. Frontopolar activation was positively correlated with an implicit measure of bias and valence strength (how strongly the participants felt about the politicians), while strength of affiliation with political party was negatively correlated with lateral PFC, lending support to the idea that two distinct but interacting networks-one emphasizing rapid, stereotypic, and emotional associative knowledge and the other emphasizing more deliberative and factual knowledge-cooperate in the processing of politicians. Our findings of ventromedial PFC activation suggests that when processing the associative knowledge concerned with politicians, stereotypic knowledge is activated, but in addition, the anterior prefrontal activations indicate that more elaborative, reflective knowledge about the politician is activated. PMID:17372621

  8. Beta event-related desynchronization as an index of individual differences in processing human facial expression: further investigations of autistic traits in typically developing adults

    PubMed Central

    Cooper, Nicholas R.; Simpson, Andrew; Till, Amy; Simmons, Kelly; Puzzo, Ignazio

    2013-01-01

    The human mirror neuron system (hMNS) has been associated with various forms of social cognition and affective processing including vicarious experience. It has also been proposed that a faulty hMNS may underlie some of the deficits seen in the autism spectrum disorders (ASDs). In the present study we set out to investigate whether emotional facial expressions could modulate a putative EEG index of hMNS activation (mu suppression) and if so, would this differ according to the individual level of autistic traits [high versus low Autism Spectrum Quotient (AQ) score]. Participants were presented with 3 s films of actors opening and closing their hands (classic hMNS mu-suppression protocol) while simultaneously wearing happy, angry, or neutral expressions. Mu-suppression was measured in the alpha and low beta bands. The low AQ group displayed greater low beta event-related desynchronization (ERD) to both angry and neutral expressions. The high AQ group displayed greater low beta ERD to angry than to happy expressions. There was also significantly more low beta ERD to happy faces for the low than for the high AQ group. In conclusion, an interesting interaction between AQ group and emotional expression revealed that hMNS activation can be modulated by emotional facial expressions and that this is differentiated according to individual differences in the level of autistic traits. The EEG index of hMNS activation (mu suppression) seems to be a sensitive measure of the variability in facial processing in typically developing individuals with high and low self-reported traits of autism. PMID:23630489

  9. Auditory Verb Perception Recruits Motor Systems in the Developing Brain: An fMRI Investigation

    ERIC Educational Resources Information Center

    James, Karin Harman; Maouene, Josita

    2009-01-01

    This study investigated neural activation patterns during verb processing in children, using fMRI (functional Magnetic Resonance Imaging). Preschool children (aged 4-6) passively listened to lists of verbs and adjectives while neural activation was measured. Findings indicated that verbs were processed differently than adjectives, as the verbs…

  10. Combining a semantic differential with fMRI to investigate brands as cultural symbols.

    PubMed

    Schaefer, Michael; Rotte, Michael

    2010-06-01

    Traditionally, complex cultural symbols like brands are investigated with psychological approaches. Often this is done by using semantic differentials, in which participants are asked to rate a brand regarding different pairs of adjectives. Only recently, functional magnetic resonance imaging (fMRI) has been used to examine brands. In the current work we used fMRI in combination with a semantic differential to cross-validate both methods and to improve the characterization of the basic factors constituting the semantic space. To this end we presented pictures of brands while recording subject's brain activity during an fMRI experiment. Results of the semantic differential arranged the brands in a semantic space illustrating their relationships to other cultural symbols. FMRI results revealed activation of the medial prefrontal cortex for brands that loaded high on the factor 'social competence', suggesting an involvement of a cortical network associated with social cognitions. In contrast, brands closely related to the factor 'potency' showed decreased activity in the superior frontal gyri, possibly related to working memory during task performance. We discuss the results as a different engagement of the prefrontal cortex when perceiving brands as cultural symbols.

  11. Using fMRI to Investigate Memory in Young Children Born Small for Gestational Age

    PubMed Central

    de Bie, Henrica M. A.; de Ruiter, Michiel B.; Ouwendijk, Mieke; Oostrom, Kim J.; Wilke, Marko; Boersma, Maria

    2015-01-01

    Objectives Intrauterine growth restriction (IUGR) can lead to infants being born small for gestational age (SGA). SGA is associated with differences in brain anatomy and impaired cognition. We investigated learning and memory in children born SGA using neuropsychological testing and functional Magnetic Resonance Imaging (fMRI). Study Design 18 children born appropriate for gestational age (AGA) and 34 SGA born children (18 with and 16 without postnatal catch-up growth) participated in this study. All children were between 4 and 7 years old. Cognitive functioning was assessed by IQ and memory testing (Digit/Word Span and Location Learning). A newly developed fMRI picture encoding task was completed by all children in order to assess brain regions involved in memory processes. Results Neuropsychological testing demonstrated that SGA children had IQ’s within the normal range but lower than in AGA and poorer performances across measures of memory. Using fMRI, we observed memory related activity in posterior parahippocampal gyrus as well as the hippocampus proper. Additionally, activation was seen bilaterally in the prefrontal gyrus. Children born SGA showed less activation in the left parahippocampal region compared to AGA. Conclusions This is the first fMRI study demonstrating different brain activation patterns in 4-7 year old children born SGA, suggesting that intrauterine growth restriction continues to affect neural functioning in children later-on. PMID:26132815

  12. Investigations on spinal cord fMRI of cats under ketamine.

    PubMed

    Cohen-Adad, J; Hoge, R D; Leblond, H; Xie, G; Beaudoin, G; Song, A W; Krueger, G; Doyon, J; Benali, H; Rossignol, S

    2009-01-15

    Functional magnetic resonance imaging (fMRI) of the spinal cord has been the subject of intense research for the last ten years. An important motivation for this technique is its ability to detect non-invasively neuronal activity in the spinal cord related to sensorimotor functions in various conditions, such as after spinal cord lesions. Although promising results of spinal cord fMRI have arisen from previous studies, the poor reproducibility of BOLD activations and their characteristics remain a major drawback. In the present study we investigated the reproducibility of BOLD fMRI in the spinal cord of cats (N=9) by repeating the same stimulation protocol over a long period (approximately 2 h). Cats were anaesthetized with ketamine, and spinal cord activity was induced by electrical stimulation of cutaneous nerves of the hind limbs. As a result, task-related signals were detected in most cats with relatively good spatial specificity. However, BOLD response significantly varied within and between cats. This variability was notably attributed to the moderate intensity of the stimulus producing a low amplitude haemodynamic response, variation in end-tidal CO(2) during the session, low signal-to-noise ratio (SNR) in spinal fMRI time series and animal-specific vascular anatomy. Original contributions of the present study are: (i) first spinal fMRI experiment in ketamine-anaesthetized animals, (ii) extensive study of intra- and inter-subject variability of activation, (iii) characterisation of static and temporal SNR in the spinal cord and (iv) investigation on the impact of CO(2) end-tidal level on the amplitude of BOLD response.

  13. Mal-Adaptation of Event-Related EEG Responses Preceding Performance Errors

    PubMed Central

    Eichele, Heike; Juvodden, Hilde T.; Ullsperger, Markus; Eichele, Tom

    2010-01-01

    Recent EEG and fMRI evidence suggests that behavioral errors are foreshadowed by systematic changes in brain activity preceding the outcome by seconds. In order to further characterize this type of error precursor activity, we investigated single-trial event-related EEG activity from 70 participants performing a modified Eriksen flanker task, in particular focusing on the trial-by-trial dynamics of a fronto-central independent component that previously has been associated with error and feedback processing. The stimulus-locked peaks in the N2 and P3 latency range in the event-related averages showed expected compatibility and error-related modulations. In addition, a small pre-stimulus negative slow wave was present at erroneous trials. Significant error-preceding activity was found in local stimulus sequences with decreased conflict in the form of less negativity at the N2 latency (310–350 ms) accumulating across five trials before errors; concomitantly response times were speeding across trials. These results illustrate that error-preceding activity in event-related EEG is associated with the performance monitoring system and we conclude that the dynamics of performance monitoring contribute to the generation of error-prone states in addition to the more remote and indirect effects in ongoing activity such as posterior alpha power in EEG and default mode drifts in fMRI. PMID:20740080

  14. Spatial embedding of fMRI for investigating local coupling in human brain

    NASA Astrophysics Data System (ADS)

    Deshpande, Gopikrishna; LaConte, Stephen M.; Peltier, Scott; Hu, Xiaoping

    2005-04-01

    In this paper, we have investigated local spatial couplings in the human brain by applying nonlinear dynamical techniques on fMRI data. We have recorded BOLD-contrast echo-planar fMRI data along with high-resolution T1-weighted anatomical images from the resting brain of healthy human subjects and performed physiological correction on the functional data. The corrected data from resting subjects is spatially embedded into its phase space and the largest Lyapunov exponent of the resulting attractor is calculated and whole slice maps are obtained. In addition, we segment the high-resolution anatomical image and obtain a down sampled mask corresponding to gray and white matter, which is used to obtain mean indices of the exponents for both the tissues separately. The results show the existence of local couplings, its tissue specificity (more local coupling in gray matter than white matter) and dependence on the size of the neighborhood (larger the neighborhood, lesser the coupling). We believe that these techniques capture the information of a nonlinear and evolving system like the brain that may not be evident from static linear methods. The results show that there is evidence of spatio-temporal chaos in the brain, which is a significant finding hitherto not reported in literature to the best of our knowledge. We try to interpret our results from healthy resting subjects based on our knowledge of the native low frequency fluctuations in the resting brain and obtain a better understanding of the local spatial behavior of fMRI. This exploratory study has demonstrated the utility of nonlinear dynamical techniques like spatial embedding in analyzing fMRI data to gain meaningful insights into the working of human brain.

  15. Investigating the neural mechanisms of aware and unaware fear memory with FMRI.

    PubMed

    Knight, David C; Wood, Kimberly H

    2011-10-06

    Pavlovian fear conditioning is often used in combination with functional magnetic resonance imaging (fMRI) in humans to investigate the neural substrates of associative learning. In these studies, it is important to provide behavioral evidence of conditioning to verify that differences in brain activity are learning-related and correlated with human behavior. Fear conditioning studies often monitor autonomic responses (e.g. skin conductance response; SCR) as an index of learning and memory. In addition, other behavioral measures can provide valuable information about the learning process and/or other cognitive functions that influence conditioning. For example, the impact unconditioned stimulus (UCS) expectancies have on the expression of the conditioned response (CR) and unconditioned response (UCR) has been a topic of interest in several recent studies. SCR and UCS expectancy measures have recently been used in conjunction with fMRI to investigate the neural substrates of aware and unaware fear learning and memory processes. Although these cognitive processes can be evaluated to some degree following the conditioning session, post-conditioning assessments cannot measure expectations on a trial-to-trial basis and are susceptible to interference and forgetting, as well as other factors that may distort results. Monitoring autonomic and behavioral responses simultaneously with fMRI provides a mechanism by which the neural substrates that mediate complex relationships between cognitive processes and behavioral/autonomic responses can be assessed. However, monitoring autonomic and behavioral responses in the MRI environment poses a number of practical problems. Specifically, 1) standard behavioral and physiological monitoring equipment is constructed of ferrous material that cannot be safely used near the MRI scanner, 2) when this equipment is placed outside of the MRI scanning chamber, the cables projecting to the subject can carry RF noise that produces artifacts in

  16. Distinct neural correlates for pragmatic and semantic meaning processing: an event-related potential investigation of scalar implicature processing using picture-sentence verification.

    PubMed

    Politzer-Ahles, Stephen; Fiorentino, Robert; Jiang, Xiaoming; Zhou, Xiaolin

    2013-01-15

    The present study examines the brain-level representation and composition of meaning in scalar quantifiers (e.g., some), which have both a semantic meaning (at least one) and a pragmatic meaning (not all). We adopted a picture-sentence verification design to examine event-related potential (ERP) effects of reading infelicitous quantifiers for which the semantic meaning was correct with respect to the context but the pragmatic meaning was not, compared to quantifiers for which the semantic meaning was inconsistent with the context and no additional pragmatic meaning is available. In the first experiment, only pragmatically inconsistent quantifiers, not semantically inconsistent quantifiers, elicited a sustained posterior negative component. This late negativity contrasts with the N400 effect typically elicited by nouns that are incongruent with their context, suggesting that the recognition of scalar implicature errors elicits a qualitatively different ERP signature than the recognition of lexico-semantic errors. We hypothesize that the sustained negativity reflects cancellation of the pragmatic inference and retrieval of the semantic meaning. In our second experiment, we found that the process of re-interpreting the quantifier was independent from lexico-semantic processing: the N400 elicited by lexico-semantic violations was not modulated by the presence of a pragmatic inconsistency. These findings suggest that inferential pragmatic aspects of meaning are processed using different mechanisms than lexical or combinatorial semantic aspects of meaning, that inferential pragmatic meaning can be realized rapidly, and that the computation of meaning involves continuous negotiation between different aspects of meaning.

  17. Mindfulness training for adolescents: A neurodevelopmental perspective on investigating modifications in attention and emotion regulation using event-related brain potentials.

    PubMed

    Sanger, Kevanne Louise; Dorjee, Dusana

    2015-09-01

    Mindfulness training is increasingly being introduced in schools, yet studies examining its impact on the developing brain have been scarce. A neurodevelopmental perspective on mindfulness has been advocated as a powerful tool to enhance our understanding of underlying neurocognitive changes that have implications for developmental well-being research and the implementation of mindfulness in education. To stimulate more research in the developmental cognitive neuroscience of mindfulness, this article outlines possible indexes of mindfulness-based change in adolescence, with a focus on event-related brain potential (ERP) markers. We provide methodological recommendations for future studies and offer examples of research paradigms. We also discuss how mindfulness practice could impact on the development of prefrontal brain structures and enhance attention control and emotion regulation skills in adolescents, impacting in turn on their self-regulation and coping skills. We highlight advantages of the ERP methodology in neurodevelopmental research of mindfulness. It is proposed that research using established experimental tasks targeting ERP components such as the contingent negative variability, N200, error-related negativity and error positivity, P300, and late positive potential could elucidate developmentally salient shifts in the neural plasticity of the adolescent brain induced by mindfulness practice.

  18. Compromised fronto-striatal functioning in HIV: an fMRI investigation of semantic event sequencing.

    PubMed

    Melrose, Rebecca J; Tinaz, Sule; Castelo, J Mimi Boer; Courtney, Maureen G; Stern, Chantal E

    2008-04-09

    The human immunodeficiency virus (HIV) damages fronto-striatal regions, and is associated with deficits in executive functioning. We recently developed a semantic event sequencing task based on the Picture Arrangement subtest of the Wechsler Adult Intelligence Scale-III for use with functional magnetic resonance imaging (fMRI) and found recruitment of dorsolateral prefrontal cortex and basal ganglia in healthy participants. To assess the impact of HIV on the functioning of the basal ganglia and prefrontal cortex, we administered this task to 11 HIV+ and 11 Control participants matched for age and education. Neuropsychological evaluation demonstrated that the HIV+ group had mild impairment in memory retrieval and motor functioning, but was not demented. Morphometric measurements suggested no atrophy in basal ganglia regions. The results of the fMRI analysis revealed hypoactivation of the left caudate, left dorsolateral prefrontal cortex, and bilateral ventral prefrontal cortex in the HIV+ group. Functional connectivity analysis demonstrated less functional connectivity between the caudate and prefrontal cortex and basal ganglia regions in the HIV+ group. In contrast, the HIV+ group demonstrated increased activation of right postcentral/supramarginal gyrus, and greater connectivity between the caudate and this same anterior parietal region. The results of this study extend previous investigations by demonstrating compromised function of the caudate and connected prefrontal regions in HIV during cognition. This disruption of fronto-striatal circuitry likely precedes the development of cognitive impairment in HIV.

  19. The effects of musical training on movement pre-programming and re-programming abilities: an event-related potential investigation.

    PubMed

    Anatürk, Melis; Jentzsch, Ines

    2015-03-01

    Two response precuing experiments were conducted to investigate effects of musical skill level on the ability to pre- and re-programme simple movements. Participants successfully used advance information to prepare forthcoming responses and showed response slowing when precue information was invalid rather than valid. This slowing was, however, only observed for partially invalid but not fully invalid precues. Musicians were generally faster than non-musicians, but no group differences in the efficiency of movement pre-programming or re-programming were observed. Interestingly, only musicians exhibited a significant foreperiod lateralized readiness potential (LRP) when response hand was pre-specified or full advance information was provided. These LRP findings suggest increased effector-specific motor preparation in musicians than non-musicians. However, here the levels of effector-specific preparation did not predict preparatory advantages observed in behaviour. In sum, combining the response precuing and ERP paradigms serves a valuable tool to examine influences of musical training on movement pre- or re-programming processes.

  20. An fMRI investigation of the impact of withdrawal on regional brain activity during nicotine anticipation

    PubMed Central

    Gloria, Rebecca; Angelos, Lisa; Schaefer, Hillary S.; Davis, James M.; Majeskie, Matthew; Richmond, Burke S.; Curtin, John J.; Davidson, Richard J.; Baker, Timothy B.

    2009-01-01

    Previous research indicates that drug motivational systems are instantiated in structures that process information related to incentive, motivational drive, memorial, motor/habit, craving, and cognitive control processing. The present research tests the hypothesis that activity in such systems will be powerfully affected by the combination of drug anticipation and drug withdrawal. Event-related fMRI was used to examine activation in response to a pre-infusion warning cue in two experimental sessions that manipulated withdrawal status. Significant cue-induced effects were seen in the caudate, ventral anterior nucleus of the thalamus, the insula, subcallosal gyrus, nucleus accumbens, and anterior cingulate. These results suggest that withdrawal and nicotine anticipation produce (1) different motor preparatory and inhibitory response processing and (2) different craving related processing. PMID:19490513

  1. The effects of skin tone on race-related amygdala activity: an fMRI investigation

    PubMed Central

    Denson, Thomas F.; Lickel, Brian; Lu, Zhong-Lin; Nandy, Anirvan; Maddox, Keith B.

    2007-01-01

    Previous work has shown differential amygdala response to African-American faces by Caucasian individuals. Furthermore, behavioral studies have demonstrated the existence of skin tone bias, the tendency to prefer light skin to dark skin. In the present study, we used functional magnetic resonance imaging (fMRI) to investigate whether skin tone bias moderates differential race-related amygdala activity. Eleven White participants viewed photographs of unfamiliar Black and White faces with varied skin tone (light, dark). Replicating past research, greater amygdala activity was observed for Black faces than White faces. Furthermore, dark-skinned targets elicited more amygdala activity than light-skinned targets. However, these results were qualified by a significant interaction between race and skin tone, such that amygdala activity was observed at equivalent levels for light- and dark-skinned Black targets, but dark-skinned White targets elicited greater amygdala activity than light-skinned White targets. PMID:18985117

  2. Investigating the Group-Level Impact of Advanced Dual-Echo fMRI Combinations

    PubMed Central

    Kettinger, Ádám; Hill, Christopher; Vidnyánszky, Zoltán; Windischberger, Christian; Nagy, Zoltán

    2016-01-01

    Multi-echo fMRI data acquisition has been widely investigated and suggested to optimize sensitivity for detecting the BOLD signal. Several methods have also been proposed for the combination of data with different echo times. The aim of the present study was to investigate whether these advanced echo combination methods provide advantages over the simple averaging of echoes when state-of-the-art group-level random-effect analyses are performed. Both resting-state and task-based dual-echo fMRI data were collected from 27 healthy adult individuals (14 male, mean age = 25.75 years) using standard echo-planar acquisition methods at 3T. Both resting-state and task-based data were subjected to a standard image pre-processing pipeline. Subsequently the two echoes were combined as a weighted average, using four different strategies for calculating the weights: (1) simple arithmetic averaging, (2) BOLD sensitivity weighting, (3) temporal-signal-to-noise ratio weighting and (4) temporal BOLD sensitivity weighting. Our results clearly show that the simple averaging of data with the different echoes is sufficient. Advanced echo combination methods may provide advantages on a single-subject level but when considering random-effects group level statistics they provide no benefit regarding sensitivity (i.e., group-level t-values) compared to the simple echo-averaging approach. One possible reason for the lack of clear advantages may be that apart from increasing the average BOLD sensitivity at the single-subject level, the advanced weighted averaging methods also inflate the inter-subject variance. As the echo combination methods provide very similar results, the recommendation is to choose between them depending on the availability of time for collecting additional resting-state data or whether subject-level or group-level analyses are planned. PMID:28018165

  3. Investigation of effective connectivity in the motor cortex of fMRI data using Granger causality model

    NASA Astrophysics Data System (ADS)

    Wu, Xingchun; Tang, Ni; Yin, Kai; Wu, Xia; Wen, Xiaotong; Yao, Li; Zhao, Xiaojie

    2007-03-01

    Effective connectivity of brain regions based on brain data (e.g. EEG, fMRI, etc.) is a focused research at present. Many researchers tried to investigate it using different methods. Granger causality model (GCM) is presently used to investigate effective connectivity of brain regions more and more. It can explore causal relationship between time series, meaning that if a time-series y causes x, then knowledge of y should help predict future values of x. In present work, time invariant GCM was applied to fMRI data considering slow changing of blood oxygenation level dependent (BOLD). The time invariant GCM often requires determining model order, estimating model parameters and significance test. In particular, we extended significance test method to make results more reasonable. The fMRI data were acquired from finger movement experiment of two right-handed subjects. We obtained the activation maps of two subjects using SPM'2 software firstly. Then we chose left SMA and left SMC as regions of interest (ROIs) with different radiuses, and calculated causality from left SMA to left SMC using the mean time courses of the two ROIs. The results from both subjects showed that left SMA influenced on left SMC. Hence GCM was suggested to be an effective approach in investigation of effective connectivity based on fMRI data.

  4. Neuroimaging measures of error-processing: Extracting reliable signals from event-related potentials and functional magnetic resonance imaging.

    PubMed

    Steele, Vaughn R; Anderson, Nathaniel E; Claus, Eric D; Bernat, Edward M; Rao, Vikram; Assaf, Michal; Pearlson, Godfrey D; Calhoun, Vince D; Kiehl, Kent A

    2016-05-15

    Error-related brain activity has become an increasingly important focus of cognitive neuroscience research utilizing both event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI). Given the significant time and resources required to collect these data, it is important for researchers to plan their experiments such that stable estimates of error-related processes can be achieved efficiently. Reliability of error-related brain measures will vary as a function of the number of error trials and the number of participants included in the averages. Unfortunately, systematic investigations of the number of events and participants required to achieve stability in error-related processing are sparse, and none have addressed variability in sample size. Our goal here is to provide data compiled from a large sample of healthy participants (n=180) performing a Go/NoGo task, resampled iteratively to demonstrate the relative stability of measures of error-related brain activity given a range of sample sizes and event numbers included in the averages. We examine ERP measures of error-related negativity (ERN/Ne) and error positivity (Pe), as well as event-related fMRI measures locked to False Alarms. We find that achieving stable estimates of ERP measures required four to six error trials and approximately 30 participants; fMRI measures required six to eight trials and approximately 40 participants. Fewer trials and participants were required for measures where additional data reduction techniques (i.e., principal component analysis and independent component analysis) were implemented. Ranges of reliability statistics for various sample sizes and numbers of trials are provided. We intend this to be a useful resource for those planning or evaluating ERP or fMRI investigations with tasks designed to measure error-processing.

  5. The anatomy and time course of semantic priming investigated by fMRI and ERPs.

    PubMed

    Rossell, Susan L; Price, Cathy J; Nobre, A Christina

    2003-01-01

    We combined complementary non-invasive brain imaging techniques with behavioural measures to investigate the anatomy and time course of brain activity associated with semantic priming in a lexical-decision task. Participants viewed pairs of stimuli, and decided whether the second item was a real word or not. There were two variables, the semantic relationship between the prime and the target (related or unrelated) and the interval between the onset of prime and target (200 or 1000 ms), to vary the degree of semantic expectancy that was possible during task performance. Behavioural results replicated the well-established finding that identification of the target is facilitated by a preceding semantically related prime. Event-related functional magnetic resonance imaging (efMRI) identified two brain areas involved in the semantic-priming effect. Activity in the anterior medial temporal cortex was diminished when target words were primed by semantically related words, suggesting involvement of this brain region during active semantic association or integration. In contrast, activity in the left supramarginal gyrus in the temporal-parietal junction was enhanced for target words primed by semantically related words. Brain areas influenced by the interval between prime and target words, and by the interaction between word interval and semantic priming were also identified. A parallel experiment using event-related potentials (ERPs) unveiled a striking difference in the time course of semantic priming as a function of expectancy. In line with previous reports, the primary effect of semantic priming on ERPs was the attenuation of the N400 component, in both short- and long-interval conditions. However, the priming effect started significantly earlier in the long-interval condition. Activity in the anterior medial temporal cortex has previously been shown to contribute to the N400 component, a finding that links the priming results obtained with efMRI and ERP methods.

  6. Functional topography of the corpus callosum investigated by DTI and fMRI

    PubMed Central

    Fabri, Mara; Pierpaoli, Chiara; Barbaresi, Paolo; Polonara, Gabriele

    2014-01-01

    This short review examines the most recent functional studies of the topographic organization of the human corpus callosum, the main interhemispheric commissure. After a brief description of its anatomy, development, microstructure, and function, it examines and discusses the latest findings obtained using diffusion tensor imaging (DTI) and tractography (DTT) and functional magnetic resonance imaging (fMRI), three recently developed imaging techniques that have significantly expanded and refined our knowledge of the commissure. While DTI and DTT have been providing insights into its microstructure, integrity and level of myelination, fMRI has been the key technique in documenting the activation of white matter fibers, particularly in the corpus callosum. By combining DTT and fMRI it has been possible to describe the trajectory of the callosal fibers interconnecting the primary olfactory, gustatory, motor, somatic sensory, auditory and visual cortices at sites where the activation elicited by peripheral stimulation was detected by fMRI. These studies have demonstrated the presence of callosal fiber tracts that cross the commissure at the level of the genu, body, and splenium, at sites showing fMRI activation. Altogether such findings lend further support to the notion that the corpus callosum displays a functional topographic organization that can be explored with fMRI. PMID:25550994

  7. An fMRI Study Investigating Adolescent Brain Activation by Rewards and Feedback

    PubMed Central

    Choi, Won-Hee; Kim, Yeoung-Rang; Oh, Jong-Hyun; Lee, Sang-Ick; Shin, Chul-Jin; Kim, Sie-Kyeong; Ju, Gawon; Lee, Seungbok; Jo, Seongwoo; Ha, Tae Hyon

    2013-01-01

    Objective This study aimed to investigate the adolescent brain activation patterns in response to performance feedback (PF), social reward (SR) and monetary reward (MR) and their association with psychological factors. Methods Functional magnetic resonance imaging (fMRI) was performed while middle school boys (n=15) performed tests pertained to PF, SR and MR. The brain activation pattern in each condition was investigated, and the extent of brain activation in each of the three conditions was compared at once. Results The caudate and the dorsal prefrontal area were activated in all three conditions. Furthermore, the cuneus showed significantly greater activation in the PF condition than the SR or MR condition. And the self - related areas, such as the right precentral gyrus and paracenral lobule, were more activated in the SR condition than the PF or MR condition. The left middle frontal gyrus was more activated in the MR condition than the PF or SR condition. Conclusion Not only various reward stimuli but also feedback stimulus might commonly activate dorsal prefrontal and subcortical area in adolescents. Moreover, several different brain activation patterns were also observed in each condition. The results of this study could be applied to planning of learning and teaching strategy for adolescents in various ways. PMID:23482680

  8. Combining fMRI and SNP Data to Investigate Connections Between Brain Function and Genetics Using Parallel ICA

    PubMed Central

    Liu, Jingyu; Pearlson, Godfrey; Windemuth, Andreas; Ruano, Gualberto; Perrone-Bizzozero, Nora I.; Calhoun, Vince

    2009-01-01

    There is current interest in understanding genetic influences on both healthy and disordered brain function. We assessed brain function with functional magnetic resonance imaging (fMRI) data collected during an auditory oddball task—detecting an infrequent sound within a series of frequent sounds. Then, task-related imaging findings were utilized as potential intermediate phenotypes (endophenotypes) to investigate genomic factors derived from a single nucleotide polymorphism (SNP) array. Our target is the linkage of these genomic factors to normal/abnormal brain functionality. We explored parallel independent component analysis (paraICA) as a new method for analyzing multimodal data. The method was aimed to identify simultaneously independent components of each modality and the relationships between them. When 43 healthy controls and 20 schizophrenia patients, all Caucasian, were studied, we found a correlation of 0.38 between one fMRI component and one SNP component. This fMRI component consisted mainly of parietal lobe activations. The relevant SNP component was contributed to significantly by 10 SNPs located in genes, including those coding for the nicotinic α-7cholinergic receptor, aromatic amino acid decarboxylase, disrupted in schizophrenia 1, among others. Both fMRI and SNP components showed significant differences in loading parameters between the schizophrenia and control groups (P = 0.0006 for the fMRI component; P = 0.001 for the SNP component). In summary, we constructed a framework to identify interactions between brain functional and genetic information; our findings provide a proof-of-concept that genomic SNP factors can be investigated by using endophenotypic imaging findings in a multivariate format. PMID:18072279

  9. Investigating the impact of sex and cortisol on implicit fear conditioning with fMRI.

    PubMed

    Merz, Christian J; Tabbert, Katharina; Schweckendiek, Jan; Klucken, Tim; Vaitl, Dieter; Stark, Rudolf; Wolf, Oliver T

    2010-01-01

    Fear conditioning is influenced by stress but opposing effects in males and females have often been reported. In a previous human functional magnetic resonance imaging (fMRI) study, we observed acute effects of the stress hormone cortisol on prefrontal structures. Men showed evidence for impaired fear conditioning after cortisol treatment, while the opposite pattern was found for women. In the current experiment, we tested whether similar sex-dependent effects would occur on the neural level if contingency awareness was prevented experimentally to investigate implicit learning processes. A differential fear conditioning experiment with transcutaneous electrical stimulation as unconditioned stimulus and geometric figures as conditioned stimuli (CS) was conducted. One figure was always paired (CS+), whereas the other (CS-) was never paired with the UCS. Thirty-nine (19 female) subjects participated in this fMRI study, receiving either placebo or 30 mg cortisol (hydrocortisone) before conditioning. Dependent variables were skin conductance responses (SCRs) and neural activity (BOLD signal). In line with prior findings in unaware participants, no differential learning could be observed for the SCRs. However, a sex x cortisol interaction was detected with a reduced mean response to the CS after cortisol treatment in men, while the opposite pattern was observed in women (enhanced mean SCR under cortisol). In the contrast CS+ minus CS-, neural activity showed a sex x cortisol interaction in the insula and further trends in the hippocampus and the thalamus. In these regions, cortisol reduced the CS+/CS- differentiation in men but enhanced it in women. In contrast to these sex specific effects, differential amygdala activation was found in the placebo group but not in the cortisol group, irrespective of sex. Further, differential neural activity in the amygdala and thalamus were positively correlated with the SCRs in the placebo group only. The present study in contingency

  10. Paying attention to emotion: an fMRI investigation of cognitive and emotional stroop tasks.

    PubMed

    Compton, Rebecca J; Banich, Marie T; Mohanty, Aprajita; Milham, Michael P; Herrington, John; Miller, Gregory A; Scalf, Paige E; Webb, Andrew; Heller, Wendy

    2003-06-01

    In this research, we investigated the degree to which brain systems involved in ignoring emotionally salient information differ from those involved in ignoring nonemotional information. The design allowed examination of regional brain activity, using fMRI during color-word and emotional Stroop tasks. Twelve participants indicated the color of words while ignoring word meaning in conditions in which neutral words were contrasted to emotionally negative, emotionally positive, and incongruent color words. Dorsolateral frontal lobe activity was increased by both negative and incongruent color words, indicating a common system for maintaining an attentional set in the presence of salient distractors. In posterior regions of the brain, activity depended on the nature of the information to be ignored. Ignoring color-incongruent words increased left parietal activity and decreased parahippocampal gyrus activity, whereas ignoring negative emotional words increased bilateral occipito-temporal activity and decreased amygdala activity. The results indicate that emotion and attention are intimately related via a network of regions that monitor for salient information, maintain attention on the task, suppress irrelevant information, and select appropriate responses.

  11. An fMRI investigation of responses to peer rejection in adolescents with autism spectrum disorders.

    PubMed

    Masten, Carrie L; Colich, Natalie L; Rudie, Jeffrey D; Bookheimer, Susan Y; Eisenberger, Naomi I; Dapretto, Mirella

    2011-07-01

    Peer rejection is particularly pervasive among adolescents with autism spectrum disorders (ASD). However, how adolescents with ASD differ from typically developing adolescents in their responses to peer rejection is poorly understood. The goal of the current investigation was to examine neural responses to peer exclusion among adolescents with ASD compared to typically developing adolescents. Nineteen adolescents with ASD and 17 typically developing controls underwent fMRI as they were ostensibly excluded by peers during an online game called Cyberball. Afterwards, participants reported their distress about the exclusion. Compared to typically developing adolescents, those with ASD displayed less activity in regions previously linked with the distressing aspect of peer exclusion, including the subgenual anterior cingulate and anterior insula, as well as less activity in regions previously linked with the regulation of distress responses during peer exclusion, including the ventrolateral prefrontal cortex and ventral striatum. Interestingly, however, both groups self-reported equivalent levels of distress. This suggests that adolescents with ASD may engage in differential processing of social experiences at the neural level, but be equally aware of, and concerned about, peer rejection. Overall, these findings contribute new insights about how this population may differentially experience negative social events in their daily lives.

  12. Neural correlates of an illusory touch experience investigated with fMRI.

    PubMed

    Lloyd, Donna M; McKenzie, Kirsten J; Brown, Richard J; Poliakoff, Ellen

    2011-10-01

    When asked to judge the presence or absence of near-threshold tactile stimuli, participants often report touch experiences when no tactile stimulation has been delivered ('false alarms'). The simultaneous presentation of a light flash during the stimulation period can increase the frequency of touch reports, both when touch is and is not present. Using fMRI, we investigated the BOLD response during both light-present and light-absent false alarms, testing predictions concerning two possible neural mechanisms underlying these illusory touch experiences: activation of a tactile representation in primary somatosensory cortex (SI) and/or activation of a tactile representation in late processing areas outside of sensory-specific cortex, such as medial prefrontal cortex (MPC). Our behavioural results showed that participants made false alarms in light-present and light-absent trials, both of which activated regions of the medial parietal and medial prefrontal cortex including precuneus, posterior cingulate and paracingulate cortex, suggesting the same underlying mechanism. However, only a non-significant increase in SI activity was measured in response to false alarm vs. correct rejection trials. We argue that our results provide evidence for the role of top-down regions in somatic misperception, consistent with findings from studies in humans and non-human primates.

  13. Semantic association investigated with fMRI and independent component analysis

    PubMed Central

    Kim, Kwang Ki; Karunanayaka, Prasanna; Privitera, Michael D.; Holland, Scott K.; Szaflarski, Jerzy P.

    2010-01-01

    Semantic association, an essential element of human language, enables discourse and inference. Neuroimaging studies have revealed localization and lateralization of semantic circuitry making substantial contributions to cognitive neuroscience. However, due to methodological limitations, these investigations have only identified individual functional components rather than capturing the behavior of the entire network. To overcome these limitations, we have implemented group independent component analysis (ICA) to investigate the cognitive modules used by healthy adults performing fMRI semantic decision task. When compared to the results of a standard GLM analysis, ICA detected several additional brain regions subserving semantic decision. Eight task-related group ICA maps were identified including left inferior frontal gyrus (BA44/45), middle posterior temporal gyrus (BA39/22), angular gyrus/inferior parietal lobule (BA39/40), posterior cingulate (BA30), bilateral lingual gyrus (BA18/23), inferior frontal gyrus (L>R, BA47), hippocampus with parahippocampal gyrus (L>R, BA35/36) and anterior cingulate (BA32/24). While most of the components were represented bilaterally, we found a single, highly left-lateralized component that included the inferior frontal gyrus and the medial and superior temporal gyri, the angular and supramarginal gyri and the inferior parietal cortex. The presence of these spatially independent ICA components implies functional connectivity and can be equated with their modularity. These results are analyzed and presented in the framework of a biologically plausible theoretical model in preparation for similar analyses in patients with right- or left-hemispheric epilepsies. PMID:21296027

  14. fMRI investigation of unexpected somatosensory feedback perturbation during speech.

    PubMed

    Golfinopoulos, Elisa; Tourville, Jason A; Bohland, Jason W; Ghosh, Satrajit S; Nieto-Castanon, Alfonso; Guenther, Frank H

    2011-04-01

    Somatosensory feedback plays a critical role in the coordination of articulator movements for speech production. In response to unexpected resistance to lip or jaw movements during speech, fluent speakers can use the difference between the somatosensory expectations of a speech sound and the actual somatosensory feedback to adjust the trajectories of functionally relevant but unimpeded articulators. In an effort to investigate the neural substrates underlying the somatosensory feedback control of speech, we used an event-related sparse sampling functional magnetic resonance imaging paradigm and a novel pneumatic device that unpredictably blocked subjects' jaw movements. In comparison to speech, perturbed speech, in which jaw perturbation prompted the generation of compensatory speech motor commands, demonstrated increased effects in bilateral ventral motor cortex, right-lateralized anterior supramarginal gyrus, inferior frontal gyrus pars triangularis and ventral premotor cortex, and bilateral inferior posterior cerebellum (lobule VIII). Structural equation modeling revealed a significant increased influence from left anterior supramarginal gyrus to right anterior supramarginal gyrus and from left anterior supramarginal gyrus to right ventral premotor cortex as well as a significant increased reciprocal influence between right ventral premotor cortex and right ventral motor cortex and right anterior supramarginal gyrus and right inferior frontal gyrus pars triangularis for perturbed speech relative to speech. These results suggest that bilateral anterior supramarginal gyrus, right inferior frontal gyrus pars triangularis, right ventral premotor and motor cortices are functionally coupled and influence speech motor output when somatosensory feedback is unexpectedly perturbed during speech production.

  15. Emotional facial expression processing in depression: data from behavioral and event-related potential studies.

    PubMed

    Delle-Vigne, D; Wang, W; Kornreich, C; Verbanck, P; Campanella, S

    2014-04-01

    Behavioral literature investigating emotional processes in depressive populations (i.e., unipolar and bipolar depression) states that, compared to healthy controls, depressive subjects exhibit disrupted emotional processing, indexed by lower performance and/or delayed response latencies. The development of brain imaging techniques, such as functional magnetic resonance imaging (fMRI), provided the possibility to visualize the brain regions engaged in emotional processes and how they fail to interact in psychiatric diseases. However, fMRI suffers from poor temporal resolution and cognitive function involves various steps and cognitive stages (serially or in parallel) to give rise to a normal performance. Thus, the origin of a behavioral deficit may result from the alteration of a cognitive stage differently situated along the information-processing stream, outlining the importance of access to this dynamic "temporal" information. In this paper, we will illustrate, through depression, the role that should be attributed to cognitive event-related potentials (ERPs). Indeed, owing to their optimal temporal resolution, ERPs can monitor the neural processes engaged in disrupted cognitive function and provide crucial information for its treatment, training of the impaired cognitive functions and guidelines for clinicians in the choice and monitoring of appropriate medication for the patient.

  16. Chemosensory anxiety cues moderate the experience of social exclusion - an fMRI investigation with Cyberball.

    PubMed

    Wudarczyk, Olga A; Kohn, Nils; Bergs, Rene; Gur, Raquel E; Turetsky, Bruce; Schneider, Frank; Habel, Ute

    2015-01-01

    Recent evidence suggests that the experience of stress can be communicated between individuals via chemosensory cues. Little is known, however, about the impact of these cues on neurophysiological responses during a socially threatening situation. In the current investigation we implemented a widely used paradigm to study social exclusion-Cyberball-to examine whether chemosensory cues signaling anxiety modulate the neuronal effects of ostracism. In a double-blind, within-subjects design, 24 healthy, normosmic participants were presented with chemosensory cues of anxiety (or control samples) and completed the Cyberball task while in a 3T fMRI scanner. Axillary sweat collected from male students awaiting an oral examination served as the anxiety cues while the chemosensory control stimuli consisted of sweat collected from the same individuals participating in an ergometer training session. The neuroimaging data revealed that under the control chemosensory condition, exclusion from Cyberball was associated with significantly higher orbitofrontal cortex and anterior cingulate cortex activity, which is consistent with previous studies in the field. However, when participants were primed with the anxiety sweat, the activity in these regions was not observed. Further, under exposure to anxiety cues during ostracism the participants showed deactivations in brain regions involved in memory (hippocampus), social cognition (middle temporal gyrus, superior temporal gyrus) and processing of salience (inferior frontal gyrus). These results suggest that successful communication of anxiety via the chemosensory domain may moderate the experience of social exclusion. It is possible that the anxiety signals make it easier for the individuals to detach from the group, pointing to the communicative role of chemosensory anxiety cues in enhancing adjustment mechanisms in light of a distressing situation.

  17. Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM.

    PubMed

    Wang, Yanlu; Li, Tie-Qiang

    2015-01-01

    Different machine learning algorithms have recently been used for assisting automated classification of independent component analysis (ICA) results from resting-state fMRI data. The success of this approach relies on identification of artifact components and meaningful functional networks. A limiting factor of ICA is the uncertainty of the number of independent components (NIC). We aim to develop a framework based on support vector machines (SVM) and optimized feature-selection for automated classification of independent components (ICs) and use the framework to investigate the effects of input NIC on the ICA results. Seven different resting-state fMRI datasets were studied. 18 features were devised by mimicking the empirical criteria for manual evaluation. The five most significant (p < 0.01) features were identified by general linear modeling and used to generate a classification model for the framework. This feature-optimized classification of ICs with SVM (FOCIS) framework was used to classify both group and single subject ICA results. The classification results obtained using FOCIS and previously published FSL-FIX were compared against manually evaluated results. On average the false negative rate in identifying artifact contaminated ICs for FOCIS and FSL-FIX were 98.27 and 92.34%, respectively. The number of artifact and functional network components increased almost linearly with the input NIC. Through tracking, we demonstrate that incrementing NIC affects most ICs when NIC < 33, whereas only a few limited ICs are affected by direct splitting when NIC is incremented beyond NIC > 40. For a given IC, its changes with increasing NIC are individually specific irrespective whether the component is a potential resting-state functional network or an artifact component. Using FOCIS, we investigated experimentally the ICA dimensionality of resting-state fMRI datasets and found that the input NIC can critically affect the ICA results of resting-state fMRI data.

  18. An fMRI Investigation of the Neural Correlates Underlying the Processing of Novel Metaphoric Expressions

    ERIC Educational Resources Information Center

    Mashal, N.; Faust, M.; Hendler, T.; Jung-Beeman, M.

    2007-01-01

    The neural networks associated with processing related pairs of words forming literal, novel, and conventional metaphorical expressions and unrelated pairs of words were studied in a group of 15 normal adults using fMRI. Subjects read the four types of linguistic expressions and decided which relation exists between the two words (metaphoric,…

  19. Differences in Processing of Taxonomic and Sequential Relations in Semantic Memory: An fMRI Investigation

    ERIC Educational Resources Information Center

    Kuchinke, Lars; van der Meer, Elke; Krueger, Frank

    2009-01-01

    Conceptual knowledge of our world is represented in semantic memory in terms of concepts and semantic relations between concepts. We used functional magnetic resonance imaging (fMRI) to examine the cortical regions underlying the processing of sequential and taxonomic relations. Participants were presented verbal cues and performed three tasks:…

  20. Processing of zero-derived words in English: an fMRI investigation.

    PubMed

    Pliatsikas, Christos; Wheeldon, Linda; Lahiri, Aditi; Hansen, Peter C

    2014-01-01

    Derivational morphological processes allow us to create new words (e.g. punish (V) to noun (N) punishment) from base forms. The number of steps from the basic units to derived words often varies (e.g., nationalityinvestigated derivational processes in which morphological complexity is related to a change in surface form. It is therefore unclear whether the effects reported are attributable to underlying morphological complexity or to the processing of multiple surface morphemes. Here we report the first study to investigate morphological processing where derivational steps are not overtly marked (e.g., bridge-N>bridge-V) i.e., zero-derivation (Aronoff, 1980). We compared the processing of one-step (soakingfMRI experiment. Participants were presented with derived forms of words (soaking, bridging) in a lexical decision task. Although the surface derived -ing forms can be contextually participles, gerunds, or even nouns, they are all derived from verbs since the suffix -ing can only be attached to verb roots. Crucially, the verb root is the basic form for the one-step words, whereas for the two-step words the verb root is zero derived from a basic noun. Significantly increased brain activity was observed for complex (one-step and two-step) versus simple (zero-step) forms in regions involved in morphological processing, such as the left inferior frontal gyrus (LIFG). Critically, activation was also more pronounced for two-step compared to one-step forms. Since both types of derived words have the same surface structure, our findings suggest that morphological processing is based on underlying morphological complexity, independent of overt

  1. Reciprocal Benefits of Mass-Univariate and Multivariate Modeling in Brain Mapping: Applications to Event-Related Functional MRI, H2 15O-, and FDG-PET

    PubMed Central

    Habeck, Christian G.

    2006-01-01

    In brain mapping studies of sensory, cognitive, and motor operations, specific waveforms of dynamic neural activity are predicted based on theoretical models of human information processing. For example in event-related functional MRI (fMRI), the general linear model (GLM) is employed in mass-univariate analyses to identify the regions whose dynamic activity closely matches the expected waveforms. By comparison multivariate analyses based on PCA or ICA provide greater flexibility in detecting spatiotemporal properties of experimental data that may strongly support alternative neuroscientific explanations. We investigated conjoint multivariate and mass-univariate analyses that combine the capabilities to (1) verify activation of neural machinery we already understand and (2) discover reliable signatures of new neural machinery. We examined combinations of GLM and PCA that recover latent neural signals (waveforms and footprints) with greater accuracy than either method alone. Comparative results are illustrated with analyses of real fMRI data, adding to Monte Carlo simulation support. PMID:23165047

  2. Event related potentials using visual stimulation.

    PubMed

    Varner, J L; Rohrbaugh, J W

    1993-01-01

    Visual patterns are used to elicit event related potentials. Equipment is available for generating visual geometric patterns such as checkerboards. Slides may be used for patterns which are more complex but preparation is costly and time consuming. A variety of programs exist on PC's for making very elaborate color pictures and in most cases the programs are easy to use making them ideal for generating visual patterns for event related potential experiments. A necessary requirement in event related potential experiments is the ability to control and/or determine precisely when the stimulus is presented to the subject. We have observed that timing is a problem with stimuli generated by the PC as a result of the raster scan and use in many cases of high level system calls in the software. This paper describes a technique which allows for precise control of the time of stimulus presentation using the video control signals to the monitor.

  3. Describing response-event relations: Babel revisited

    PubMed Central

    Lattal, Kennon A.; Poling, Alan D.

    1981-01-01

    The terms used to describe the relations among the three components of contingencies of reinforcement and punishment include many with multiple meanings and imprecise denotation. In particular, usage of the term “contingency” and its variants and acceptance of unsubstantiated functional, rather than procedural, descriptions of response-event relations are especially troublesome in the behavior analysis literature. Clarity seems best served by restricting the term “contingency” to its generic usage and by utilizing procedural descriptions of response-event relations. PMID:22478546

  4. Phantom-based investigation of nonrigid registration constraints in mapping fMRI to anatomical MRI

    NASA Astrophysics Data System (ADS)

    Studholme, Colin; Constable, R. Todd; Duncan, James S.

    2000-06-01

    In previous work we have introduced an approach to improving the registration of EPI fMRI data with anatomical MRI by accounting for differences in magnetic field induced geometric distortion in the two types of MRI acquisition. In particular we began to explore the use of imaging physics based constraints in a non-rigid multi-modality registration algorithm. In this paper we present phantom based experimental work examining the behavior of different non-rigid registration constraints compared to a field map acquisition of the MRI distortion. This acquisition provides a pixel by pixel 'ground truth' estimate of the displacement field within the EPI data. In our registration based approach we employ a B-spline based estimate of the relative geometric distortion with a multi-grid optimization scheme. We maximize the normalized mutual information between the two types of MRI scans to estimate the B-Spline parameters. Using the field map estimates as a gold standard, registration estimates using no additional geometric constraints are compared to those using the spin echo based signal conservation. We also examine the use of logarithmic EPI values in the criteria to provide additional sensitivity in areas of low signal. Results indicate that registration of EPI to conventional MRI incorporating a spin echo distortion model can provide comparable estimates of geometric distortion to those from field mapping data without the need for significant additional acquisitions during each fMRI sequence.

  5. Event-Related Brain Potential Correlates of Emotional Face Processing

    ERIC Educational Resources Information Center

    Eimer, Martin; Holmes, Amanda

    2007-01-01

    Results from recent event-related brain potential (ERP) studies investigating brain processes involved in the detection and analysis of emotional facial expression are reviewed. In all experiments, emotional faces were found to trigger an increased ERP positivity relative to neutral faces. The onset of this emotional expression effect was…

  6. Effects of personal space intrusion in affective contexts: an fMRI investigation with women suffering from borderline personality disorder.

    PubMed

    Schienle, Anne; Wabnegger, Albert; Schöngassner, Florian; Leutgeb, Verena

    2015-10-01

    The amygdala and the parietal cortex play a key role in the neural representation of personal space. Although the concept of personal space is clinically very relevant for borderline personality disorder (BPD), especially in affective contexts, it has not been investigated thus far with functional magnetic resonance imaging (fMRI). In this fMRI study, 25 female BPD patients and 25 healthy women were exposed to photos of angry, disgusted and neutral facial expressions. All stimuli were once shown as still photos, and once were zoomed-in in order to simulate intrusion into one's own personal space. Approaching faces generally provoked activation of the amygdala and the somatosensory cortex. BPD patients showed an increased activation within both regions, but only toward approaching disgusted faces. Their amygdala activation in this specific condition positively correlated with self-disgust scores. Moreover, the clinical group indicated an enhanced personal distance preference, which was associated with parietal activation. The present study revealed altered personal space processing of BPD patients, especially in situations that relate to social contexts involving disgust. Future studies should focus on the temporal stability of personal space processing during the natural course of BPD as well as during therapy.

  7. Attentional Networks in Adolescents with High-functioning Autism: An fMRI Investigation

    PubMed Central

    Hames, Elizabeth C.; Rajmohan, Ravi; Fang, Dan; Anderson, Ronald; Baker, Mary; Richman, David M.; O’Boyle, Michael

    2016-01-01

    Background: Attentional deficits in Autism spectrum disorder (ASD) are often noted, but their specific nature remains unclear. Objective: The present study used the child Attentional Network Task (Child ANT) in combination with functional magnetic resonance imaging (fMRI) to determine if the consistently cited deficits of orienting attention are truly due to dysfunctions of orienting-based networks. We hypothesized that these observations are, in fact, a reflection of executive dysfunctions. As such, we expected that although ASD adolescents would perform worse on the orienting portion of the Child ANT, the strongest differences in activation between them and the neurotypical (NT) control group would be in areas classically associated with executive functioning (e.g., the frontal gyri and anterior cingulate cortex). Method: The brain activity of six high-functioning adolescents with ASD and six NT adolescents was recorded while these individuals performed the three subcomponents of the Child ANT. Results: ASDs were shown to be more accurate than NTs for the alerting, less accurate for the orienting, and similar in accuracy for the executive portions of the Child ANT. fMRI data showed increased bilateral frontal gyri recruitment, areas conventionally associated with executive control, during the orienting task for the ASD group. Conclusion: We submit that the increased activations represent neurocorrelates of signal fixation attributable to the subset of executive control responsible for sustained maintenance signals, not the main components of orienting. Therefore, excessive fixation in ASD adolescents is likely due to dysfunctions of executive control and not the orienting subcomponent of the attention network. PMID:27843514

  8. Event-related single-shot volumetric functional magnetic resonance inverse imaging of visual processing.

    PubMed

    Lin, Fa-Hsuan; Witzel, Thomas; Mandeville, Joseph B; Polimeni, Jonathan R; Zeffiro, Thomas A; Greve, Douglas N; Wiggins, Graham; Wald, Lawrence L; Belliveau, John W

    2008-08-01

    Developments in multi-channel radio-frequency (RF) coil array technology have enabled functional magnetic resonance imaging (fMRI) with higher degrees of spatial and temporal resolution. While modest improvement in temporal acceleration has been achieved by increasing the number of RF coils, the maximum attainable acceleration in parallel MRI acquisition is intrinsically limited only by the amount of independent spatial information in the combined array channels. Since the geometric configuration of a large-n MRI head coil array is similar to that used in EEG electrode or MEG SQUID sensor arrays, the source localization algorithms used in MEG or EEG source imaging can be extended to also process MRI coil array data, resulting in greatly improved temporal resolution by minimizing k-space traversal during signal acquisition. Using a novel approach, we acquire multi-channel MRI head coil array data and then apply inverse reconstruction methods to obtain volumetric fMRI estimates of blood oxygenation level dependent (BOLD) contrast at unprecedented whole-brain acquisition rates of 100 ms. We call this combination of techniques magnetic resonance Inverse Imaging (InI), a method that provides estimates of dynamic spatially-resolved signal change that can be used to construct statistical maps of task-related brain activity. We demonstrate the sensitivity and inter-subject reliability of volumetric InI using an event-related design to probe the hemodynamic signal modulations in primary visual cortex. Robust results from both single subject and group analyses demonstrate the sensitivity and feasibility of using volumetric InI in high temporal resolution investigations of human brain function.

  9. Event-related Single-shot Volumetric Functional Magnetic Resonance Inverse Imaging of Visual Processing

    PubMed Central

    Lin, Fa-Hsuan; Witzel, Thomas; Mandeville, Joseph B.; Polimeni, Jonathan R.; Zeffiro, Thomas A.; Greve, Douglas N.; Wiggins, Graham; Wald, Lawrence L.; Belliveau, John W.

    2008-01-01

    Developments in multi-channel radio-frequency (RF) coil array technology have enabled functional magnetic resonance imaging (fMRI) with higher degrees of spatial and temporal resolution. While modest improvement in temporal acceleration has been achieved by increasing the number of RF coils, in parallel data acquisition techniques, the maximum attainable acceleration is intrinsically limited only by the amount of independent spatial information in the combined array channels. Since the geometric configuration of a large-n MRI head coil array is similar to that used in EEG electrode or MEG SQUID sensor arrays, the source localization algorithms used in MEG or EEG source imaging can be extended to also process MRI coil array data, resulting in greatly improved temporal resolution by minimizing k-space traversal during signal acquisition. Using a novel approach, we acquire multi-channel MRI head coil array data and then apply inverse reconstruction methods to obtain volumetric fMRI estimates of blood oxygenation level dependent (BOLD) contrast at unprecedented whole-brain acquisition rates of 100 ms per sample. We call this combination of techniques magnetic resonance Inverse Imaging (InI), a method that provides estimates of dynamic spatially-resolved signal change that can be used to construct statistical maps of task-related brain activity. We demonstrate the sensitivity and inter-subject reliability of volumetric InI using an event-related design to probe the hemodynamic signal modulations in primary visual cortex. Robust results from both single subject and group analyses demonstrate the sensitivity and feasibility of using volumetric InI in high temporal resolution investigations of human brain function. PMID:18538587

  10. An fMRI investigation of expectation violation in magic tricks.

    PubMed

    Danek, Amory H; Öllinger, Michael; Fraps, Thomas; Grothe, Benedikt; Flanagin, Virginia L

    2015-01-01

    Magic tricks violate the expected causal relationships that form an implicit belief system about what is possible in the world around us. Observing a magic effect seemingly invalidates our implicit assumptions about what action causes which outcome. We aimed at identifying the neural correlates of such expectation violations by contrasting 24 video clips of magic tricks with 24 control clips in which the expected action-outcome relationship is upheld. Using fMRI, we measured the brain activity of 25 normal volunteers while they watched the clips in the scanner. Additionally, we measured the professional magician who had performed the magic tricks under the assumption that, in contrast to naïve observers, the magician himself would not perceive his own magic tricks as an expectation violation. As the main effect of magic - control clips in the normal sample, we found higher activity for magic in the head of the caudate nucleus (CN) bilaterally, the left inferior frontal gyrus and the left anterior insula. As expected, the magician's brain activity substantially differed from these results, with mainly parietal areas (supramarginal gyrus bilaterally) activated, supporting our hypothesis that he did not experience any expectation violation. These findings are in accordance with previous research that has implicated the head of the CN in processing changes in the contingency between action and outcome, even in the absence of reward or feedback.

  11. An fMRI investigation of the cultural specificity of music memory

    PubMed Central

    Morrison, Steven J.; Stambaugh, Laura A.; Beken, Münir; Richards, Todd L.; Johnson, Clark

    2010-01-01

    This study explored the role of culture in shaping music perception and memory. We tested the hypothesis that listeners demonstrate different patterns of activation associated with music processing—particularly right frontal cortex—when encoding and retrieving culturally familiar and unfamiliar stimuli, with the latter evoking broader activation consistent with more complex memory tasks. Subjects (n = 16) were right-handed adults born and raised in the USA (n = 8) or Turkey (n = 8) with minimal music training. Using fMRI procedures, we scanned subjects during two tasks: (i) listening to novel musical examples from their own culture and an unfamiliar culture and (ii) identifying which among a series of brief excerpts were taken from the longer examples. Both groups were more successful remembering music of their home culture. We found greater activation for culturally unfamiliar music listening in the left cerebellar region, right angular gyrus, posterior precuneus and right middle frontal area extending into the inferior frontal cortex. Subjects demonstrated greater activation in the cingulate gyrus and right lingual gyrus when engaged in recall of culturally unfamiliar music. This study provides evidence for the influence of culture on music perception and memory performance at both a behavioral and neurological level. PMID:20035018

  12. Identifying brain systems for gaze orienting during reading: fMRI investigation of the Landolt paradigm

    PubMed Central

    Hillen, Rebekka; Günther, Thomas; Kohlen, Claudia; Eckers, Cornelia; van Ermingen-Marbach, Muna; Sass, Katharina; Scharke, Wolfgang; Vollmar, Josefine; Radach, Ralph; Heim, Stefan

    2013-01-01

    The Landolt reading paradigm was created in order to dissociate effects of eye movements and attention from lexical, syntactic, and sub-lexical processing. While previous eye-tracking and behavioral findings support the usefulness of the paradigm, it remains to be shown that the paradigm actually relies on the brain networks for occulomotor control and attention, but not on systems for lexical/syntactic/orthographic processing. Here, 20 healthy volunteers underwent fMRI scanning while reading sentences (with syntax) or unconnected lists of written stimuli (no syntax) consisting of words (with semantics) or pseudowords (no semantics). In an additional “Landolt reading” condition, all letters were replaced by closed circles, which should be scanned for targets (Landolt's rings) in a reading-like fashion from left to right. A conjunction analysis of all five conditions revealed the visual scanning network which involved bilateral visual cortex, premotor cortex, and superior parietal cortex, but which did not include regions for semantics, syntax, or orthography. Contrasting the Landolt reading condition with all other regions revealed additional involvement of the right superior parietal cortex (areas 7A/7P/7PC) and postcentral gyrus (area 2) involved in deliberate gaze shifting. These neuroimaging findings demonstrate for the first time that the linguistic and orthographic brain network can be dissociated from a pure gaze-orienting network with the Landolt paradigm. Consequently, the Landolt paradigm may provide novel insights into the contributions of linguistic and non-linguistic factors on reading failure e.g., in developmental dyslexia. PMID:23908615

  13. Bi-Directional Tuning of Amygdala Sensitivity in Combat Veterans Investigated with fMRI

    PubMed Central

    Brashers-Krug, Tom; Jorge, Ricardo

    2015-01-01

    Objectives Combat stress can be followed by persistent emotional consequences. It is thought that these emotional consequences are caused in part by increased amygdala reactivity. It is also thought that amygdala hyper-reactivity results from decreased inhibition from portions of the anterior cingulate cortex (ACC) in which activity is negatively correlated with activity in the amygdala. However, experimental support for these proposals has been inconsistent. Methods We showed movies of combat and civilian scenes during a functional magnetic resonance imaging (fMRI) session to 50 veterans of recent combat. We collected skin conductance responses (SCRs) as measures of emotional arousal. We examined the relation of blood oxygenation-level dependent (BOLD) signal in the amygdala and ACC to symptom measures and to SCRs. Results Emotional arousal, as measured with SCR, was greater during the combat movie than during the civilian movie and did not depend on symptom severity. As expected, amygdala signal during the less-arousing movie increased with increasing symptom severity. Surprisingly, during the more-arousing movie amygdala signal decreased with increasing symptom severity. These differences led to the unexpected result that amygdala signal in highly symptomatic subjects was lower during the more-arousing movie than during the less-arousing movie. Also unexpectedly, we found no significant inverse correlation between any portions of the amygdala and ACC. Rather, signal throughout more than 80% of the ACC showed a strong positive correlation with signal throughout more than 90% of the amygdala. Conclusions Amygdala reactivity can be tuned bi-directionally, either up or down, in the same person depending on the stimulus and the degree of post-traumatic symptoms. The exclusively positive correlations in BOLD activity between the amygdala and ACC contrast with findings that have been cited as evidence for inhibitory control of the amygdala by the ACC. The

  14. A longitudinal fMRI investigation in acute post-traumatic stress disorder (PTSD).

    PubMed

    Ke, Jun; Zhang, Li; Qi, Rongfeng; Li, Weihui; Hou, Cailan; Zhong, Yuan; He, Zhong; Li, Lingjiang; Lu, Guangming

    2016-11-01

    Background Neuroimaging studies have implicated limbic, paralimbic, and prefrontal cortex in the pathophysiology of chronic post-traumatic stress disorder (PTSD). However, little is known about the neural substrates of acute PTSD and how they change with symptom improvement. Purpose To examine the neural circuitry underlying acute PTSD and brain function changes during clinical recovery from this disorder. Material and Methods Nineteen acute PTSD patients and nine non-PTSD subjects who all experienced a devastating mining accident underwent clinical assessment as well as functional magnetic resonance imaging (fMRI) scanning while viewing trauma-related and neutral pictures. Two years after the accident, a subgroup of 17 patients completed a second clinical evaluation, of which 13 were given an identical follow-up scan. Results Acute PTSD patients demonstrated greater activation in the vermis and right posterior cingulate, and greater deactivation in the bilateral medial prefrontal cortex and inferior parietal lobules than controls in the traumatic versus neutral condition. At follow-up, PTSD patients showed symptom reduction and decreased activation in the right middle frontal gyrus, bilateral posterior cingulate/precuneus, and cerebellum. Correlation results confirmed these findings and indicated that brain activation in the posterior cingulate/precuneus and vermis was predictive of PTSD symptom improvement. Conclusion The findings support the involvement of the medial prefrontal cortex, inferior parietal lobule, posterior cingulate, and vermis in the pathogenesis of acute PTSD. Brain activation in the vermis and posterior cingulate/precuneus appears to be a biological marker of recovery potential from PTSD. Furthermore, decreased activation of the middle frontal gyrus, posterior cingulate/precuneus, and cerebellum may reflect symptom improvement.

  15. Neural Dynamics Underlying Event-Related Potentials

    NASA Technical Reports Server (NTRS)

    Shah, Ankoor S.; Bressler, Steven L.; Knuth, Kevin H.; Ding, Ming-Zhou; Mehta, Ashesh D.; Ulbert, Istvan; Schroeder, Charles E.

    2003-01-01

    There are two opposing hypotheses about the brain mechanisms underlying sensory event-related potentials (ERPs). One holds that sensory ERPs are generated by phase resetting of ongoing electroencephalographic (EEG) activity, and the other that they result from signal averaging of stimulus-evoked neural responses. We tested several contrasting predictions of these hypotheses by direct intracortical analysis of neural activity in monkeys. Our findings clearly demonstrate evoked response contributions to the sensory ERP in the monkey, and they suggest the likelihood that a mixed (Evoked/Phase Resetting) model may account for the generation of scalp ERPs in humans.

  16. Event related potentials in children of alcoholics.

    PubMed

    Naziel, B; Yavaş, G; Arikan, Z; Ozon, O; Aksoy Ozmenek, O; Irkeç, C

    2007-09-01

    Assessment of ERPs (Event Related Potentials) is a special area of interest in research on vulnerability to alcoholism in human subjects. ERP not only provide information about potential neurofunctional anomalies in healthy individuals, but also relate those neurofunctional characteristics to the cognitive process involved. The aim of the present study is to evaluate the effects of chronic alcoholism and alcoholism risk on children of alcoholic fathers by using ERP parameters. 24 children of alcoholic fathers (9 boys, 15 girls) with a mean age of 18 +/- 3 (range: 15-25) and 17 control subjects (children of non-alcoholic fathers with out a family history of alcoholism) were included to the study. The age range was from 15 to 25 (mean: 21 +/- 3). N200 potential latency recorded from the parietal electrode position was significantly prolonged (p = 0.032) and amplitudes of P200 potential also recorded from the parietal region was significantly low (p = 0.043) relative to controls. However, the rest of the event-related potential parameters including P300 latency and amplitudes recorded from FZ, CZ, PZ electrode positions did not differ significantly from the children of non-alcoholic fathers. The difference in our results from the previous studies may be due to various factors. Genetic, gender, environmental, educational and social factors may have an overall effect on ERP and we believe these factors may be the cause of the differences seen in our study when compared to the previous ones. We believe the gender differences in our group may have had effected the overall results. Consecutive studies with more subject participation are needed to confirm and settle this issue.

  17. How Much We Think of Ourselves and How Little We Think of Others: An Investigation of the Neuronal Signature of Self-Consciousness between Different Personality Traits through an Event-Related Potential Study

    PubMed Central

    Hassan, Auwal Bello; Begum, Tahamina; Reza, Mohammed Faruque; Yusoff, Nasir

    2016-01-01

    Background Previous studies have revealed that self-related tasks (items) receive more attention than non-self-related, and that they elicit event-related potential (ERP) components with larger amplitudes. Since personality has been reported as one of the biological correlates influencing these components, as well as our behavioural differences, it is important to examine how it affects our self-consciousness in relation to tasks of varied relevance and the neurological basis. Methods A total of 33 male and female undergraduate Malaysian medical students of Universiti Sains Malaysia (USM) participated in the study. The participants were divided into two groups, Ambivert (n = 18) and Extravert (n = 15) groups, using the USM personality inventory questionnaire. In the ERP experiment, squares containing standard stimuli of any word other than self and non-self-related nouns (e.g., Bola, Gigi, Anak, etc.; in English: Ball, Teeth, Kids, etc., respectively), those containing self-related pronouns (Saya, Kami or Kita; in English: I, Us or We, respectively), and non-self-related pronouns (Dia, Anda or Mereka; in English: He/She, You or They, respectively), were shown 58%, 21% and 21% of the time, respectively, in a three-stimulus visual oddball paradigm. All words were presented in Bahasa Melayu. The participants were instructed to press 1 for self and 2 for non-self, and ignore standard stimuli. Results Comparison of both N200 and P300 amplitudes for self-related and non-self-related pronouns in the Extravert group revealed significant differences at seven electrode sites, with self-related having larger amplitude at anterior electrodes and less at posterior. This was not seen in the Ambivert group. Conclusion The present study suggests that self-relevant pronouns are psychologically more important to extraverts than to ambiverts; hence, they have more self-awareness. This may be due to large amount of dopamine in the brains of extraverts, which is more concentrated in

  18. Under-Reactive but Easily Distracted: An fMRI Investigation of Attentional Capture in Autism Spectrum Disorder

    PubMed Central

    Keehn, Brandon; Nair, Aarti; Lincoln, Alan J.; Townsend, Jeanne; Müller, Ralph-Axel

    2015-01-01

    For individuals with autism spectrum disorder (ASD), salient behaviorally-relevant information often fails to capture attention, while subtle behaviorally-irrelevant details commonly induce a state of distraction. The present study used functional magnetic resonance imaging (fMRI) to investigate the neurocognitive networks underlying attentional capture in sixteen high-functioning children and adolescents with ASD and twenty-one typically developing (TD) individuals. Participants completed a rapid serial visual presentation paradigm designed to investigate activation of attentional networks to behaviorally-relevant targets and contingent attention capture by task-irrelevant distractors. In individuals with ASD, target stimuli failed to trigger bottom-up activation of the ventral attentional network and the cerebellum. Additionally, the ASD group showed no differences in behavior or occipital activation associated with contingent attentional capture. Rather, results suggest that to-be-ignored distractors that shared either task-relevant or irrelevant features captured attention in ASD. Results indicate that individuals with ASD may be under-reactive to behaviorally-relevant stimuli, unable to filter irrelevant information, and that both top-down and bottom-up attention networks function atypically in ASD. Lastly, deficits in target-related processing were associated with autism symptomatology, providing further support for the hypothesis that non-social attentional processes and their neurofunctional underpinnings may play a significant role in the development of sociocommunicative impairments in ASD. PMID:26708773

  19. The Event-Related Low-Frequency Activity of Highly and Average Intelligent Children

    ERIC Educational Resources Information Center

    Liu, Tongran; Shi, Jiannong; Zhao, Daheng; Yang, Jie

    2008-01-01

    Using time-frequency analysis techniques to investigate the event-related low-frequency (delta: 0.5-4 Hz; theta: 4-8 Hz) activity of auditory event-related potentials (ERPs) data of highly and average intelligent children, 18 intellectually gifted children, and 18 intellectually average children participated the present study. Present findings…

  20. An fMRI Investigation of Covertly and Overtly Produced Mono- And Multisyllabic Words

    ERIC Educational Resources Information Center

    Shuster, Linda I.; Lemieux, Susan K.

    2005-01-01

    Studies suggest that the left insula may play an important role in speech motor programming. We used functional magnetic resonance imaging to investigate the role of the left insula in the production of monosyllabic or multisyllabic words during overt and covert speech conditions. The left insula did not show a BOLD response for multisyllabic…

  1. The Effect of Sublexical and Lexical Frequency on Speech Production: An fMRI Investigation

    ERIC Educational Resources Information Center

    Shuster, Linda I.

    2009-01-01

    There is no consensus regarding the fundamental phonetic units that underlie speech production. There is, however, general agreement that the frequency of occurrence of these units is a significant factor. Investigators often use the effects of manipulating frequency to support the importance of particular units. Studies of pseudoword production…

  2. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions

    PubMed Central

    Luijten, Maartje; Machielsen, Marise W.J.; Veltman, Dick J.; Hester, Robert; de Haan, Lieuwe; Franken, Ingmar H.A.

    2014-01-01

    Background Several current theories emphasize the role of cognitive control in addiction. The present review evaluates neural deficits in the domains of inhibitory control and error processing in individuals with substance dependence and in those showing excessive addiction-like behaviours. The combined evaluation of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) findings in the present review offers unique information on neural deficits in addicted individuals. Methods We selected 19 ERP and 22 fMRI studies using stop-signal, go/no-go or Flanker paradigms based on a search of PubMed and Embase. Results The most consistent findings in addicted individuals relative to healthy controls were lower N2, error-related negativity and error positivity amplitudes as well as hypoactivation in the anterior cingulate cortex (ACC), inferior frontal gyrus and dorsolateral prefrontal cortex. These neural deficits, however, were not always associated with impaired task performance. With regard to behavioural addictions, some evidence has been found for similar neural deficits; however, studies are scarce and results are not yet conclusive. Differences among the major classes of substances of abuse were identified and involve stronger neural responses to errors in individuals with alcohol dependence versus weaker neural responses to errors in other substance-dependent populations. Limitations Task design and analysis techniques vary across studies, thereby reducing comparability among studies and the potential of clinical use of these measures. Conclusion Current addiction theories were supported by identifying consistent abnormalities in prefrontal brain function in individuals with addiction. An integrative model is proposed, suggesting that neural deficits in the dorsal ACC may constitute a hallmark neurocognitive deficit underlying addictive behaviours, such as loss of control. PMID:24359877

  3. Event-related brain potentials - Comparison between children and adults

    NASA Technical Reports Server (NTRS)

    Courchesne, E.

    1977-01-01

    The reported investigation shows that nontarget stimuli which are infrequently presented and deviate from the background elicit Nc and Pc waves in children. The same stimuli elicit P3 waves in adults. The scalp distribution of P3 waves in adults appears to vary with the ease of stimulus recognition or the degree of stimulus novelty. However, the Nc and Pc distributions in children do not seem to vary with these factors. The differences between children and adults in event-related potentials suggest corresponding differences in the mode of processing employed by each when rare, deviant stimuli are encountered

  4. Can Machines Think? Interaction and Perspective Taking with Robots Investigated via fMRI

    PubMed Central

    Krach, Sören; Hegel, Frank; Wrede, Britta; Sagerer, Gerhard; Binkofski, Ferdinand; Kircher, Tilo

    2008-01-01

    Background When our PC goes on strike again we tend to curse it as if it were a human being. Why and under which circumstances do we attribute human-like properties to machines? Although humans increasingly interact directly with machines it remains unclear whether humans implicitly attribute intentions to them and, if so, whether such interactions resemble human-human interactions on a neural level. In social cognitive neuroscience the ability to attribute intentions and desires to others is being referred to as having a Theory of Mind (ToM). With the present study we investigated whether an increase of human-likeness of interaction partners modulates the participants' ToM associated cortical activity. Methodology/Principal Findings By means of functional magnetic resonance imaging (subjects n = 20) we investigated cortical activity modulation during highly interactive human-robot game. Increasing degrees of human-likeness for the game partner were introduced by means of a computer partner, a functional robot, an anthropomorphic robot and a human partner. The classical iterated prisoner's dilemma game was applied as experimental task which allowed for an implicit detection of ToM associated cortical activity. During the experiment participants always played against a random sequence unknowingly to them. Irrespective of the surmised interaction partners' responses participants indicated having experienced more fun and competition in the interaction with increasing human-like features of their partners. Parametric modulation of the functional imaging data revealed a highly significant linear increase of cortical activity in the medial frontal cortex as well as in the right temporo-parietal junction in correspondence with the increase of human-likeness of the interaction partner (computer

  5. Empathy and moral emotions in post-apartheid South Africa: an fMRI investigation.

    PubMed

    Fourie, Melike M; Stein, Dan J; Solms, Mark; Gobodo-Madikizela, Pumla; Decety, Jean

    2017-02-17

    Moral emotions elicited in response to others' suffering are mediated by empathy and affect how we respond to their pain. South Africa provides a unique opportunity to study group processes given its racially divided past. The present study seeks insights into aspects of the moral brain by investigating behavioral and functional MRI responses of White and Black South Africans who lived through apartheid to in- and out-group physical and social pain. Whereas the physical pain task featured faces expressing dynamic suffering, the social pain task featured victims of apartheid violence from the South African Truth and Reconciliation Commission to elicit heartfelt emotion. Black participants' behavioral responses were suggestive of in-group favoritism, whereas White participants' responses were apparently egalitarian. However, all participants showed significant in-group biases in activation in the amygdala (physical pain), as well as areas involved in mental state representation, including the precuneus, temporoparietal junction (TPJ) and frontal pole (physical and social pain). Additionally, Black participants reacted with heightened moral indignation to own-race suffering, whereas White participants reacted with heightened shame to Black suffering, which was associated with blunted neural empathic responding. These findings provide ecologically valid insights into some behavioral and brain processes involved in complex moral situations.

  6. Default distrust? An fMRI investigation of the neural development of trust and cooperation

    PubMed Central

    Gromann, Paula M.; Giampietro, Vincent; Shergill, Sukhi S.; Krabbendam, Lydia

    2014-01-01

    The tendency to trust and to cooperate increases from adolescence to adulthood. This social development has been associated with improved mentalizing and age-related changes in brain function. Thus far, there is limited imaging data investigating these associations. We used two trust games with a trustworthy and an unfair partner to explore the brain mechanisms underlying trust and cooperation in subjects ranging from adolescence to mid-adulthood. Increasing age was associated with higher trust at the onset of social interactions, increased levels of trust during interactions with a trustworthy partner and a stronger decline in trust during interactions with an unfair partner. Our findings demonstrate a behavioural shift towards higher trust and an age-related increase in the sensitivity to others’ negative social signals. Increased brain activation in mentalizing regions, i.e. temporo-parietal junction, posterior cingulate and precuneus, supported the behavioural change. Additionally, age was associated with reduced activation in the reward-related orbitofrontal cortex and caudate nucleus during interactions with a trustworthy partner, possibly reflecting stronger expectations of trustworthiness. During unfair interactions, age-related increases in anterior cingulate activation, an area implicated in conflict monitoring, may mirror the necessity to inhibit pro-social tendencies in the face of the partner’s actual levels of cooperation. PMID:23202661

  7. An fMRI investigation of the effects of attempted naming on word retrieval in aphasia

    PubMed Central

    Heath, Shiree; McMahon, Katie L.; Nickels, Lyndsey A.; Angwin, Anthony; MacDonald, Anna D.; van Hees, Sophia; McKinnon, Eril; Johnson, Kori; Copland, David A.

    2015-01-01

    In healthy controls, picture naming performance can be facilitated by a single prior exposure to the same picture (“priming”). This priming phenomenon is utilized in the treatment of aphasia, which often includes repeated picture naming as part of a therapeutic task. The current study sought to determine whether single and/or multiple exposures facilitate subsequent naming in aphasia and whether such facilitatory effects act through normal priming mechanisms. A functional magnetic resonance imaging paradigm was employed to explore the beneficial effects of attempted naming in two individuals with aphasia and a control group. The timing and number of prior exposures was manipulated, with investigation of both short-term effects (single prior exposure over a period of minutes) and long-term effects (multiple presentations over a period of days). Following attempted naming, both short-term and long-term facilitated items showed improvement for controls, while only the long-term condition showed benefits at a behavioral level for the participants with aphasia. At a neural level, effects of long-term facilitation were noted in the left precuneus for one participant with aphasia, a result also identified for the equivalent contrast in controls. It appears that multiple attempts are required to improve naming performance in the presence of anomia and that for some individuals with aphasia the source of facilitation may be similar to unimpaired mechanisms engaged outside the language network. PMID:26074801

  8. Chemosensory anxiety cues moderate the experience of social exclusion – an fMRI investigation with Cyberball

    PubMed Central

    Wudarczyk, Olga A.; Kohn, Nils; Bergs, Rene; Gur, Raquel E.; Turetsky, Bruce; Schneider, Frank; Habel, Ute

    2015-01-01

    Recent evidence suggests that the experience of stress can be communicated between individuals via chemosensory cues. Little is known, however, about the impact of these cues on neurophysiological responses during a socially threatening situation. In the current investigation we implemented a widely used paradigm to study social exclusion—Cyberball—to examine whether chemosensory cues signaling anxiety modulate the neuronal effects of ostracism. In a double-blind, within-subjects design, 24 healthy, normosmic participants were presented with chemosensory cues of anxiety (or control samples) and completed the Cyberball task while in a 3T fMRI scanner. Axillary sweat collected from male students awaiting an oral examination served as the anxiety cues while the chemosensory control stimuli consisted of sweat collected from the same individuals participating in an ergometer training session. The neuroimaging data revealed that under the control chemosensory condition, exclusion from Cyberball was associated with significantly higher orbitofrontal cortex and anterior cingulate cortex activity, which is consistent with previous studies in the field. However, when participants were primed with the anxiety sweat, the activity in these regions was not observed. Further, under exposure to anxiety cues during ostracism the participants showed deactivations in brain regions involved in memory (hippocampus), social cognition (middle temporal gyrus, superior temporal gyrus) and processing of salience (inferior frontal gyrus). These results suggest that successful communication of anxiety via the chemosensory domain may moderate the experience of social exclusion. It is possible that the anxiety signals make it easier for the individuals to detach from the group, pointing to the communicative role of chemosensory anxiety cues in enhancing adjustment mechanisms in light of a distressing situation. PMID:26500572

  9. Weed or wheel! FMRI, behavioural, and toxicological investigations of how cannabis smoking affects skills necessary for driving.

    PubMed

    Battistella, Giovanni; Fornari, Eleonora; Thomas, Aurélien; Mall, Jean-Frédéric; Chtioui, Haithem; Appenzeller, Monique; Annoni, Jean-Marie; Favrat, Bernard; Maeder, Philippe; Giroud, Christian

    2013-01-01

    Marijuana is the most widely used illicit drug, however its effects on cognitive functions underlying safe driving remain mostly unexplored. Our goal was to evaluate the impact of cannabis on the driving ability of occasional smokers, by investigating changes in the brain network involved in a tracking task. The subject characteristics, the percentage of Δ(9)-Tetrahydrocannabinol in the joint, and the inhaled dose were in accordance with real-life conditions. Thirty-one male volunteers were enrolled in this study that includes clinical and toxicological aspects together with functional magnetic resonance imaging of the brain and measurements of psychomotor skills. The fMRI paradigm was based on a visuo-motor tracking task, alternating active tracking blocks with passive tracking viewing and rest condition. We show that cannabis smoking, even at low Δ(9)-Tetrahydrocannabinol blood concentrations, decreases psychomotor skills and alters the activity of the brain networks involved in cognition. The relative decrease of Blood Oxygen Level Dependent response (BOLD) after cannabis smoking in the anterior insula, dorsomedial thalamus, and striatum compared to placebo smoking suggests an alteration of the network involved in saliency detection. In addition, the decrease of BOLD response in the right superior parietal cortex and in the dorsolateral prefrontal cortex indicates the involvement of the Control Executive network known to operate once the saliencies are identified. Furthermore, cannabis increases activity in the rostral anterior cingulate cortex and ventromedial prefrontal cortices, suggesting an increase in self-oriented mental activity. Subjects are more attracted by intrapersonal stimuli ("self") and fail to attend to task performance, leading to an insufficient allocation of task-oriented resources and to sub-optimal performance. These effects correlate with the subjective feeling of confusion rather than with the blood level of Δ(9)-Tetrahydrocannabinol

  10. The Neurotopography of Written Word Production: An fMRI Investigation of the Distribution of Sensitivity to Length and Frequency

    ERIC Educational Resources Information Center

    Rapp, Brenda; Dufor, Olivier

    2011-01-01

    This research is directed at charting the neurotopography of the component processes of the spelling system by using fMRI to identify the neural substrates that are sensitive to the factors of lexical frequency and word length. In spelling, word frequency effects index orthographic long-term memory whereas length effects, as measured by the number…

  11. Visual, Auditory, and Cross Modal Sensory Processing in Adults with Autism: An EEG Power and BOLD fMRI Investigation

    PubMed Central

    Hames, Elizabeth’ C.; Murphy, Brandi; Rajmohan, Ravi; Anderson, Ronald C.; Baker, Mary; Zupancic, Stephen; O’Boyle, Michael; Richman, David

    2016-01-01

    Electroencephalography (EEG) and blood oxygen level dependent functional magnetic resonance imagining (BOLD fMRI) assessed the neurocorrelates of sensory processing of visual and auditory stimuli in 11 adults with autism (ASD) and 10 neurotypical (NT) controls between the ages of 20–28. We hypothesized that ASD performance on combined audiovisual trials would be less accurate with observable decreased EEG power across frontal, temporal, and occipital channels and decreased BOLD fMRI activity in these same regions; reflecting deficits in key sensory processing areas. Analysis focused on EEG power, BOLD fMRI, and accuracy. Lower EEG beta power and lower left auditory cortex fMRI activity were seen in ASD compared to NT when they were presented with auditory stimuli as demonstrated by contrasting the activity from the second presentation of an auditory stimulus in an all auditory block vs. the second presentation of a visual stimulus in an all visual block (AA2-VV2).We conclude that in ASD, combined audiovisual processing is more similar than unimodal processing to NTs. PMID:27148020

  12. Visual, Auditory, and Cross Modal Sensory Processing in Adults with Autism: An EEG Power and BOLD fMRI Investigation.

    PubMed

    Hames, Elizabeth' C; Murphy, Brandi; Rajmohan, Ravi; Anderson, Ronald C; Baker, Mary; Zupancic, Stephen; O'Boyle, Michael; Richman, David

    2016-01-01

    Electroencephalography (EEG) and blood oxygen level dependent functional magnetic resonance imagining (BOLD fMRI) assessed the neurocorrelates of sensory processing of visual and auditory stimuli in 11 adults with autism (ASD) and 10 neurotypical (NT) controls between the ages of 20-28. We hypothesized that ASD performance on combined audiovisual trials would be less accurate with observable decreased EEG power across frontal, temporal, and occipital channels and decreased BOLD fMRI activity in these same regions; reflecting deficits in key sensory processing areas. Analysis focused on EEG power, BOLD fMRI, and accuracy. Lower EEG beta power and lower left auditory cortex fMRI activity were seen in ASD compared to NT when they were presented with auditory stimuli as demonstrated by contrasting the activity from the second presentation of an auditory stimulus in an all auditory block vs. the second presentation of a visual stimulus in an all visual block (AA2-VV2).We conclude that in ASD, combined audiovisual processing is more similar than unimodal processing to NTs.

  13. Free Language Selection in the Bilingual Brain: An Event-Related fMRI Study.

    PubMed

    Zhang, Yong; Wang, Tao; Huang, Peiyu; Li, Dan; Qiu, Jiang; Shen, Tong; Xie, Peng

    2015-07-16

    Bilingual speakers may select between two languages either on demand (forced language selection) or on their own volition (free language selection). However, the neural substrates underlying free and forced language selection may differ. While the neural substrates underlying forced language selection have been well-explored with language switching paradigms, those underlying free language selection have remained unclear. Using a modified digit-naming switching paradigm, we addressed the neural substrates underlying free language selection by contrasting free language switching with forced language switching. For a digit-pair trial, Chinese-English bilinguals named each digit in Chinese or English either on demand under forced language selection condition or on their own volition under free language selection condition. The results revealed activation in the frontoparietal regions that mediate volition of language selection. Furthermore, a comparison of free and forced language switching demonstrated differences in the patterns of brain activation. Additionally, free language switching showed reduced switching costs as compared to forced language switching. These findings suggest differences between the mechanism(s) underlying free and forced language switching. As such, the current study suggests interactivity between control of volition and control of language switching in free language selection, providing insights into a model of bilingual language control.

  14. An event-related analysis of P300 by simultaneous EEG/fMRI

    NASA Astrophysics Data System (ADS)

    Wang, Li-qun; Wang, Mingshi; Mizuhara, Hiroaki

    2006-09-01

    In this study, P300 that induced by visual stimuli was examined with simultaneous EEG/fMRI. For the purpose of combine the best temporary resolution with the best special resolution together to estimate the brain function, event-related analysis contributed to this methodological trial. A 64 channel MRT-compatible MR EEG amplifier (BrainAmp: made of Brain Production GmbH, Gennany) was used in the measurement simultaneously with fMRI scanning. The reference channel is between Fz, Cz and Pz. Sampling rate of raw EEG was 5 kHz, and the MRT noise reduction was performed. EEG recording synchronized with MRI scan by our original stimulus system, and an oddball paradigm (four-oriented Landolt Ring presentation) was performed in the official manner. After P300 segmentation, the timing of P300 was exported to event-related analysis of fMRI data with SPM99 software. In single subject study, the significant activations appear in the left superior frontal, Broca's area and on both sides of the parietal lobule when P300 occurred. It is suggest that P300 may be an integration carried out by top-down signal from frontal to the parietal lobule, which regulates an Attention-Logical Judgment process. Compared with other current methods, the event related analysis by simultaneous EEG/IMRI is excellent in the point that can describe the cognitive process with reality unifying further temporary and spatial information. It is expected that examination and demonstration of the obtained result will supply with the promotion of this powerful methods.

  15. Common and Segregated Neural Substrates for Automatic Conceptual and Affective Priming as Revealed by Event-Related Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Liu, Hongyan; Hu, Zhiguo; Peng, Danling; Yang, Yanhui; Li, Kuncheng

    2010-01-01

    The brain activity associated with automatic semantic priming has been extensively studied. Thus far there has been no prior study that directly contrasts the neural mechanisms of semantic and affective priming. The present study employed event-related fMRI to examine the common and distinct neural bases underlying conceptual and affective priming…

  16. Causal Inference and Language Comprehension: Event-Related Potential Investigations

    ERIC Educational Resources Information Center

    Davenport, Tristan S.

    2014-01-01

    The most important information conveyed by language is often contained not in the utterance itself, but in the interaction between the utterance and the comprehender's knowledge of the world and the current situation. This dissertation uses psycholinguistic methods to explore the effects of a common type of inference--causal inference--on language…

  17. The effects of left or right hemispheric epilepsy on language networks investigated with semantic decision fMRI task and independent component analysis.

    PubMed

    Karunanayaka, Prasanna; Kim, Kwang Ki; Holland, Scott K; Szaflarski, Jerzy P

    2011-04-01

    Chronic and progressive brain injury, as seen in epilepsy, may alter brain networks that underlie cognitive functions. To evaluate the effect of epilepsy on language functions we investigated the neuroanatomical basis of semantic processing in patients with left (LHE) or right (RHE) hemispheric onset epilepsy using semantic decision fMRI paradigm and group independent component analysis (ICA); we then compared the results of our investigations with language networks in healthy subjects examined with the same language task (Kim K, Karunanayaka P, Privitera M, Holland S, Szaflarski J. Semantic association investigated with fMRI and independent component analysis. In press). Group ICA is a data-driven technique capable of revealing the functional organization of the human brain based on fMRI data. In addition to providing functional connectivity information, ICA can also provide information about the temporal dynamics of underlying networks subserving specific cognitive functions. In this study, we implemented two complementary analyses to investigate group differences in underlying network dynamics based on associated independent component (IC) time courses (a priori defined criterion or a posteriori identified maximum likelihood descriptor). We detected several differences between healthy controls and patients with epilepsy not previously observed with standard fMRI analysis methods. Our analyses confirmed the presence of different effects of LHE or RHE on the behavior of the language network. In particular, a major difference was noted in the nodes subserving verbal encoding and retrieval in the bilateral medial temporal regions. These effects were dependent on the side of the epilepsy onset; that is, effects were different with left or right hemispheric epilepsy. These findings may explain the differences in verbal and nonverbal memory abilities between patients with left and those with right hemispheric epilepsy. Further, although the effects on other nodes of

  18. Colours’ Impact on Morality: Evidence from Event-related Potentials

    PubMed Central

    Gan, Tian; Fang, Wei; Ge, Liezhong

    2016-01-01

    Black and white have been shown to be representations of moral concepts. The purpose of this study was to investigate whether colours other than black and white have similar effects on words related to morality and to determine the time course of these effects. We presented moral and immoral words in three colours (red, green and blue) in a Moral Stroop task and used the event-related potential (ERP) technique to identify the temporal dynamics of the impact of colours on moral judgement. The behavioural results showed that it took longer for people to judge immoral words than moral words when the words were coloured green than when they were red or blue. The ERP results revealed the time course of these effects. Three stages were identified in the significant effects of P200, N300 and LPC. These findings suggest a metaphorical association between the colour green and moral information. PMID:28004749

  19. Event-related potentials during mental imagery of animal sounds.

    PubMed

    Wu, Jianhui; Mai, Xiaoqin; Chan, Chetwyn C H; Zheng, Yaqin; Luo, Yuejia

    2006-11-01

    To investigate the neural correlates of imagined animal sounds, event-related potentials (ERPs) were recorded while subjects were presented with (1) animal pictures without any imagery instruction (control) or (2) animal pictures with instructions to imagine the corresponding sounds (imagery). The results revealed imagery effects starting with an enhancement of the P2, possibly indexing the top-down allocation of attention to the imagery task, and continuing into a more positive-going deflection in the time window of 350-600 ms poststimulus, probably reflecting the formation of auditory imagery. A centro-parietally distributed late positive complex (LPC) was identified in the difference waveform (imagery minus control) and might reflect two subprocesses of imagery formation: sound retrieval from stored information and representation in working memory.

  20. When memory meets beauty: Insights from event-related potentials.

    PubMed

    Marzi, T; Viggiano, M P

    2010-05-01

    Facial attractiveness plays a key role in human social and affective behavior. To study the time course of the neural processing of attractiveness and its influence on recognition memory we investigated the event-related potentials (ERPs) elicited in an old/new recognition task in response to faces with a neutral expression that, at encoding, were rated for their attractiveness. Highly attractive faces elicited a specific early positive-going component on frontal sites; in addition, with respect to less attractive faces, they elicited larger later components related to structural encoding and recognition memory. All in all, our results show that facial attractiveness, independently from facial expression, modulates face processing throughout all stages from encoding to retrieval.

  1. [fMRI study of deliberate deception].

    PubMed

    Kireev, M V; Korotkov, A D; Medvedev, C V

    2012-01-01

    The aim of the present research was to study the deliberate deception. Event related functional magnetic resonance (fMRI) imaging technique was used to assess the changes in functional brain activity by virtue of recording blood oxygen level dependant signal (BOLD-signal). 12 right-handed healthy volunteers aged 19-44 participated in the study. BOLD images were acquired in three different experimental trials. There were deliberate deception, manipulative honest and control truthful trials (catch trials). The main finding of the present study is that the deliberate deception and manipulative honest actions in comparison with instructed truthful responding was characterized by BOLD signal increase within the anterior cingulated cortex (ACC), frontal and parietal areas as well. Comparison of present fMRI data with results demonstrated in our previous research implemented with event related potentials technique points to the involvement of the brain mechanism of error detection to brain processing of deliberate deception.

  2. Neural Correlates of Perceiving Emotional Faces and Bodies in Developmental Prosopagnosia: An Event-Related fMRI-Study

    PubMed Central

    Van den Stock, Jan; van de Riet, Wim A. C.; Righart, Ruthger; de Gelder, Beatrice

    2008-01-01

    Many people experience transient difficulties in recognizing faces but only a small number of them cannot recognize their family members when meeting them unexpectedly. Such face blindness is associated with serious problems in everyday life. A better understanding of the neuro-functional basis of impaired face recognition may be achieved by a careful comparison with an equally unique object category and by a adding a more realistic setting involving neutral faces as well facial expressions. We used event-related functional magnetic resonance imaging (fMRI) to investigate the neuro-functional basis of perceiving faces and bodies in three developmental prosopagnosics (DP) and matched healthy controls. Our approach involved materials consisting of neutral faces and bodies as well as faces and bodies expressing fear or happiness. The first main result is that the presence of emotional information has a different effect in the patient vs. the control group in the fusiform face area (FFA). Neutral faces trigger lower activation in the DP group, compared to the control group, while activation for facial expressions is the same in both groups. The second main result is that compared to controls, DPs have increased activation for bodies in the inferior occipital gyrus (IOG) and for neutral faces in the extrastriate body area (EBA), indicating that body and face sensitive processes are less categorically segregated in DP. Taken together our study shows the importance of using naturalistic emotional stimuli for a better understanding of developmental face deficits. PMID:18797499

  3. Emotional perception: Correspondence of early and late event-related potentials with cortical and subcortical functional MRI

    PubMed Central

    Sabatinelli, Dean; Keil, Andreas; Frank, David W.; Lang, Peter J.

    2012-01-01

    Using a picture perception task, here we investigate the relationship of early occipitotemporal and later centroparietal emotion-modulated event-related potentials (ERPs) in one sample to functional magnetic resonance imaging (fMRI) estimates of neural activity in another sample in a replicated experiment. Using this approach, we aimed to link effects found in time-resolved electrocortical measures to specific cerebral structures across individual emotional and nonemotional picture stimuli. The centroparietal late positive potential (LPP) showed covariation with emotion-modulated regions of hemodynamic activation across multiple dorsal and ventral visual cortical structures, while the early occipitotemporal potential was not reliably associated. Subcortical and corticolimbic structures involved in the perception of motivationally relevant stimuli also related to modulation of the LPP, and were modestly associated to the amplitude of the early occipitotemporal potential. These data suggest that early occipitotemporal potentials may reflect multiple sources of modulation including motivational relevance, and supports the perspective that the slow-wave LPP represents aggregate cortical and subcortical structures involved in emotional discrimination. PMID:22560889

  4. A portable experimental apparatus for human olfactory fMRI experiments.

    PubMed

    Sezille, C; Messaoudi, B; Bertrand, A; Joussain, P; Thévenet, M; Bensafi, M

    2013-08-15

    Human olfactory perception can be measured using psychophysical tools or more complex odor generating devices systems, namely olfactometers. The present paper is aimed at presenting a new inexpensive, non-voluminous portable olfactometer adapted for human fMRI experiments. The system adjusts odorant stimulus presentation to human nasal respiration and records behavioral responses in the same experimental device. Validation by psychophysical measures and photo-ionization detection showed a linear increase in both odor intensity perception and vapor concentration as a function of odorant concentration. Further validation by brain imaging revealed neural activation in typical olfactory areas. In summary, the system represents a new low-cost, easy-use, easy-maintenance portable olfactometry tool for brain imaging, opening up new possibilities for investigating neural response to odors using event-related fMRI designs.

  5. A Critical Review of ERP and fMRI Evidence on L2 Syntactic Processing

    ERIC Educational Resources Information Center

    Kotz, Sonja A.

    2009-01-01

    The current review focuses on recent event-related brain potential (ERPs) and functional magnetic resonance imaging (fMRI) in L2 syntactic processing data. To this end, critical factors influencing both the dynamics of neural mechanisms (ERPs) and critical functional brain correlates (fMRI) are discussed. These entail the critical period…

  6. Neural correlates of experienced moral emotion: an fMRI investigation of emotion in response to prejudice feedback.

    PubMed

    Fourie, Melike M; Thomas, Kevin G F; Amodio, David M; Warton, Christopher M R; Meintjes, Ernesta M

    2014-01-01

    Guilt, shame, and embarrassment are quintessential moral emotions with important regulatory functions for the individual and society. Moral emotions are, however, difficult to study with neuroimaging methods because their elicitation is more intricate than that of basic emotions. Here, using functional MRI (fMRI), we employed a novel social prejudice paradigm to examine specific brain regions associated with real-time moral emotion, focusing on guilt and related moral-negative emotions. The paradigm induced intense moral-negative emotion (primarily guilt) in 22 low-prejudice individuals through preprogrammed feedback indicating implicit prejudice against Black and disabled people. fMRI data indicated that this experience of moral-negative emotion was associated with increased activity in anterior paralimbic structures, including the anterior cingulate cortex (ACC) and anterior insula, in addition to areas associated with mentalizing, including the dorsomedial prefrontal cortex, posterior cingulate cortex, and precuneus. Of significance was prominent conflict-related activity in the supragenual ACC, which is consistent with theories proposing an association between acute guilt and behavioral inhibition. Finally, a significant negative association between self-reported guilt and neural activity in the pregenual ACC suggested a role of self-regulatory processes in response to moral-negative affect. These findings are consistent with the multifaceted self-regulatory functions of moral-negative emotions in social behavior.

  7. fMRI investigation of response inhibition, emotion, impulsivity, and clinical high-risk behavior in adolescents

    PubMed Central

    Brown, Matthew R. G.; Benoit, James R. A.; Juhás, Michal; Dametto, Ericson; Tse, Tiffanie T.; MacKay, Marnie; Sen, Bhaskar; Carroll, Alan M.; Hodlevskyy, Oleksandr; Silverstone, Peter H.; Dolcos, Florin; Dursun, Serdar M.; Greenshaw, Andrew J.

    2015-01-01

    High-risk behavior in adolescents is associated with injury, mental health problems, and poor outcomes in later life. Improved understanding of the neurobiology of high-risk behavior and impulsivity shows promise for informing clinical treatment and prevention as well as policy to better address high-risk behavior. We recruited 21 adolescents (age 14–17) with a wide range of high-risk behavior tendencies, including medically high-risk participants recruited from psychiatric clinics. Risk tendencies were assessed using the Adolescent Risk Behavior Screen (ARBS). ARBS risk scores correlated highly (0.78) with impulsivity scores from the Barratt Impulsivity scale (BIS). Participants underwent 4.7 Tesla functional magnetic resonance imaging (fMRI) while performing an emotional Go/NoGo task. This task presented an aversive or neutral distractor image simultaneously with each Go or NoGo stimulus. Risk behavior and impulsivity tendencies exhibited similar but not identical associations with fMRI activation patterns in prefrontal brain regions. We interpret these results as reflecting differences in response inhibition, emotional stimulus processing, and emotion regulation in relation to participant risk behavior tendencies and impulsivity levels. The results are consistent with high impulsivity playing an important role in determining high risk tendencies in this sample containing clinically high-risk adolescents. PMID:26483645

  8. Silent and continuous fMRI scanning differentially modulate activation in an auditory language comprehension task.

    PubMed

    Schmidt, Conny F; Zaehle, Tino; Meyer, Martin; Geiser, Eveline; Boesiger, Peter; Jancke, Lutz

    2008-01-01

    Sparse temporal acquisition schemes have been adopted to investigate the neural correlates of human audition using blood-oxygen-level dependent (BOLD) based functional magnetic resonance imaging (fMRI) devoid of ambient confounding acoustic scanner noise. These schemes have previously been extended to clustered-sparse temporal acquisition designs which record several subsequent BOLD contrast images in rapid succession in order to enhance temporal sampling efficiency. In the present study we demonstrate that an event-related task design can effectively be combined with a clustered temporal acquisition technique in an auditory language comprehension task. The same fifteen volunteers performed two separate auditory runs which either applied customary fMRI acquisition (CA) composed of continuous scanner noise or "silent" fMRI built on a clustered temporal acquisition (CTA) protocol. In accord with our hypothesis, the CTA scheme relative to the CA protocol is accompanied by significantly stronger functional responses along the entire superior temporal plane. By contrast, the bilateral insulae engage more strongly during continuous scanning. A post-hoc region-of-interest analysis reveals cortical activation in subportions of the supratemporal plane which varies as a function of acquisition protocol. The middle part of the supratemporal plane shows a rightward asymmetry only for the CTA scheme while the posterior supratemporal plane exposes a significantly stronger leftward asymmetry during the CTA. Our findings implicate that silent fMRI is advantageous when it comes to the exploration of auditory and speech functions residing in the supratemporal plane.

  9. fMRI of global visual perception in simultanagnosia.

    PubMed

    Himmelbach, Marc; Erb, Michael; Klockgether, Thomas; Moskau, Susanna; Karnath, Hans-Otto

    2009-03-01

    The integration of visual elements into global perception seems to be implemented separately to single object perception. This assumption is supported by the existence of patients with simultanagnosia who can identify single objects but are incapable of integrating multiple visual items. We investigated a case of simultanagnosia due to posterior cortical atrophy without structural brain damage who demonstrated an incomplete simultanagnosia. The patient successfully recognized a global stimulus in one trial but failed to do so just a few seconds later. Using event-related fMRI, we contrasted post hoc selected trials of successful global perception with trials of global recognition failure. We found circumscribed clusters of activity at the right and left primary intermediate sulci and a bilateral cluster at the ventral precuneus. The integration of multiple visual elements resulting in a conscious perception of their gestalt seems to rely on these bilateral structures in the human lateral and medial inferior parietal cortex.

  10. Novel vibrotactile discrimination task for investigating the neural correlates of short-term learning with fMRI.

    PubMed

    Tang, Kenneth; Staines, W Richard; Black, Sandra E; McIlroy, William E

    2009-03-30

    Innovative perceptual-motor learning paradigms applicable for functional magnetic resonance imaging (fMRI) offer much potential for elucidating the specific cortical mechanisms that underpin short-term learning. In this study, a novel, fMRI-compatible, vibrotactile discrimination task, adapted from a tactile version of the Morse-code, was introduced. Uniquely, this task featured distinct components of training and testing, such that cortical changes associated with these modalities of learning may be dissociated. During testing, the ability to correctly associate matching and non-matching vibrotactile/visual stimulus pairs was assessed. Initial testing in naïve healthy subjects (n = 23) revealed a training-dependent decrease in discrimination error rates and discrimination reaction time over the course of a single fMRI session. The rate and extent of learning were significantly decreased when the complexity of vibrotactile stimuli to be discriminated was increased. In a subgroup of subjects (n = 15) who participated in repeated testing, it was revealed that both initial testing and retesting sessions were characterized by similar within-subject training-related behavioral properties, when different vibrotactile patterns of similar challenge level were presented for the retesting session. Preliminary functional imaging data from a single subject case-study revealed task-related cortical activations over a widely distributed frontoparietal network, which demonstrated spatial consistency within- and also between-sessions (test-retest). Observed behavioral and cortical properties suggest that the current methodology may be suitable for assessing neural changes linked to short-term vibrotactile learning. In addition, demonstrated test-retest capability of the proposed task may uniquely permit applications where test conditions are to be manipulated within-subjects.

  11. Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI.

    PubMed

    Eichele, Tom; Specht, Karsten; Moosmann, Matthias; Jongsma, Marijtje L A; Quiroga, Rodrigo Quian; Nordby, Helge; Hugdahl, Kenneth

    2005-12-06

    The brain acts as an integrated information processing system, which methods in cognitive neuroscience have so far depicted in a fragmented fashion. Here, we propose a simple and robust way to integrate functional MRI (fMRI) with single trial event-related potentials (ERP) to provide a more complete spatiotemporal characterization of evoked responses in the human brain. The idea behind the approach is to find brain regions whose fMRI responses can be predicted by paradigm-induced amplitude modulations of simultaneously acquired single trial ERPs. The method was used to study a variant of a two-stimulus auditory target detection (odd-ball) paradigm that manipulated predictability through alternations of stimulus sequences with random or regular target-to-target intervals. In addition to electrophysiologic and hemodynamic evoked responses to auditory targets per se, single-trial modulations were expressed during the latencies of the P2 (170-ms), N2 (200-ms), and P3 (320-ms) components and predicted spatially separated fMRI activation patterns. These spatiotemporal matches, i.e., the prediction of hemodynamic activation by time-variant information from single trial ERPs, permit inferences about regional responses using fMRI with the temporal resolution provided by electrophysiology.

  12. Multiple Component Event-Related Potential (mcERP) Estimation

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Clanton, S. T.; Shah, A. S.; Truccolo, W. A.; Ding, M.; Bressler, S. L.; Trejo, L. J.; Schroeder, C. E.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We show how model-based estimation of the neural sources responsible for transient neuroelectric signals can be improved by the analysis of single trial data. Previously, we showed that a multiple component event-related potential (mcERP) algorithm can extract the responses of individual sources from recordings of a mixture of multiple, possibly interacting, neural ensembles. McERP also estimated single-trial amplitudes and onset latencies, thus allowing more accurate estimation of ongoing neural activity during an experimental trial. The mcERP algorithm is related to informax independent component analysis (ICA); however, the underlying signal model is more physiologically realistic in that a component is modeled as a stereotypic waveshape varying both in amplitude and onset latency from trial to trial. The result is a model that reflects quantities of interest to the neuroscientist. Here we demonstrate that the mcERP algorithm provides more accurate results than more traditional methods such as factor analysis and the more recent ICA. Whereas factor analysis assumes the sources are orthogonal and ICA assumes the sources are statistically independent, the mcERP algorithm makes no such assumptions thus allowing investigators to examine interactions among components by estimating the properties of single-trial responses.

  13. Emoticons in mind: an event-related potential study.

    PubMed

    Churches, Owen; Nicholls, Mike; Thiessen, Myra; Kohler, Mark; Keage, Hannah

    2014-01-01

    It is now common practice, in digital communication, to use the character combination ":-)", known as an emoticon, to indicate a smiling face. Although emoticons are readily interpreted as smiling faces, it is unclear whether emoticons trigger face-specific mechanisms or whether separate systems are utilized. A hallmark of face perception is the utilization of regions in the occipitotemporal cortex, which are sensitive to configural processing. We recorded the N170 event-related potential to investigate the way in which emoticons are perceived. Inverting faces produces a larger and later N170 while inverting objects which are perceived featurally rather than configurally reduces the amplitude of the N170. We presented 20 participants with images of upright and inverted faces, emoticons and meaningless strings of characters. Emoticons showed a large amplitude N170 when upright and a decrease in amplitude when inverted, the opposite pattern to that shown by faces. This indicates that when upright, emoticons are processed in occipitotemporal sites similarly to faces due to their familiar configuration. However, the characters which indicate the physiognomic features of emoticons are not recognized by the more laterally placed facial feature detection systems used in processing inverted faces.

  14. Event Related Potentials Index Rapid Recalibration to Audiovisual Temporal Asynchrony

    PubMed Central

    Simon, David M.; Noel, Jean-Paul; Wallace, Mark T.

    2017-01-01

    Asynchronous arrival of multisensory information at the periphery is a ubiquitous property of signals in the natural environment due to differences in the propagation time of light and sound. Rapid adaptation to these asynchronies is crucial for the appropriate integration of these multisensory signals, which in turn is a fundamental neurobiological process in creating a coherent perceptual representation of our dynamic world. Indeed, multisensory temporal recalibration has been shown to occur at the single trial level, yet the mechanistic basis of this rapid adaptation is unknown. Here, we investigated the neural basis of rapid recalibration to audiovisual temporal asynchrony in human participants using a combination of psychophysics and electroencephalography (EEG). Consistent with previous reports, participant’s perception of audiovisual temporal synchrony on a given trial (t) was influenced by the temporal structure of stimuli on the previous trial (t−1). When examined physiologically, event related potentials (ERPs) were found to be modulated by the temporal structure of the previous trial, manifesting as late differences (>125 ms post second-stimulus onset) in central and parietal positivity on trials with large stimulus onset asynchronies (SOAs). These findings indicate that single trial adaptation to audiovisual temporal asynchrony is reflected in modulations of late evoked components that have previously been linked to stimulus evaluation and decision-making. PMID:28381993

  15. Investigating effective brain connectivity from fMRI data: past findings and current issues with reference to Granger causality analysis.

    PubMed

    Deshpande, Gopikrishna; Hu, Xiaoping

    2012-01-01

    Interactions between brain regions have been recognized as a critical ingredient required to understand brain function. Two modes of interactions have held prominence-synchronization and causal influence. Efforts to ascertain causal influence from functional magnetic resonance imaging (fMRI) data have relied primarily on confirmatory model-driven approaches, such as dynamic causal modeling and structural equation modeling, and exploratory data-driven approaches such as Granger causality analysis. A slew of recent articles have focused on the relative merits and caveats of these approaches. The relevant studies can be classified into simulations, theoretical developments, and experimental results. In the first part of this review, we will consider each of these themes and critically evaluate their arguments, with regard to Granger causality analysis. Specifically, we argue that simulations are bounded by the assumptions and simplifications made by the simulator, and hence must be regarded only as a guide to experimental design and should not be viewed as the final word. On the theoretical front, we reason that each of the improvements to existing, yet disparate, methods brings them closer to each other with the hope of eventually leading to a unified framework specifically designed for fMRI. We then review latest experimental results that demonstrate the utility and validity of Granger causality analysis under certain experimental conditions. In the second part, we will consider current issues in causal connectivity analysis-hemodynamic variability, sampling, instantaneous versus causal relationship, and task versus resting states. We highlight some of our own work regarding these issues showing the effect of hemodynamic variability and sampling on Granger causality. Further, we discuss recent techniques such as the cubature Kalman filtering, which can perform blind deconvolution of the hemodynamic response robustly well, and hence enabling wider application of

  16. Are There Multiple Kinds of Episodic Memory? An fMRI Investigation Comparing Autobiographical and Recognition Memory Tasks.

    PubMed

    Chen, Hung-Yu; Gilmore, Adrian W; Nelson, Steven M; McDermott, Kathleen B

    2017-03-08

    What brain regions underlie retrieval from episodic memory? The bulk of research addressing this question with fMRI has relied upon recognition memory for materials encoded within the laboratory. Another, less dominant tradition has used autobiographical methods, whereby people recall events from their lifetime, often after being cued with words or pictures. The current study addresses how the neural substrates of successful memory retrieval differed as a function of the targeted memory when the experimental parameters were held constant in the two conditions (except for instructions). Human participants studied a set of scenes and then took two types of memory test while undergoing fMRI scanning. In one condition (the picture memory test), participants reported for each scene (32 studied, 64 nonstudied) whether it was recollected from the prior study episode. In a second condition (the life memory test), participants reported for each scene (32 studied, 64 nonstudied) whether it reminded them of a specific event from their preexperimental lifetime. An examination of successful retrieval (yes responses) for recently studied scenes for the two test types revealed pronounced differences; that is, autobiographical retrieval instantiated with the life memory test preferentially activated the default mode network, whereas hits in the picture memory test preferentially engaged the parietal memory network as well as portions of the frontoparietal control network. When experimental cueing parameters are held constant, the neural underpinnings of successful memory retrieval differ when remembering life events and recently learned events.SIGNIFICANCE STATEMENT Episodic memory is often discussed as a solitary construct. However, experimental traditions examining episodic memory use very different approaches, and these are rarely compared to one another. When the neural correlates associated with each approach have been directly contrasted, results have varied considerably and

  17. Investigation of decision-making under uncertainty in healthy subjects: a multi-centric fMRI study.

    PubMed

    Krug, A; Cabanis, M; Pyka, M; Pauly, K; Walter, H; Landsberg, M; Shah, N Jon; Winterer, G; Wölwer, W; Musso, F; Müller, B W; Wiedemann, G; Herrlich, J; Schnell, K; Vogeley, K; Schilbach, L; Langohr, K; Rapp, A; Klingberg, S; Kircher, T

    2014-03-15

    Decision-making is an everyday routine that entails several subprocesses. Decisions under uncertainty occur when either prior information is incomplete or the outcomes of the decision are unclear. The aim of the present study was to disentangle the neural correlates of information gathering as well as reaching a decision and to explore effects of uncertainty acceptance or avoidance in a large sample of healthy subjects. Sixty-four healthy volunteers performed a decision-making under uncertainty task in a multi-center approach while BOLD signal was measured with fMRI. Subjects either had to indicate via button press from which of two bottles red or blue balls were drawn (decision-making under uncertainty condition), or they had to indicate whether 8 red balls had been presented (baseline condition). During the information gathering phase (contrasted against the counting phase) a widespread network was found encompassing (pre-)frontal, inferior temporal and inferior parietal cortices. Reaching a decision was correlated with activations in the medial frontal cortex as well as the posterior cingulate and the precuneus. Effects of uncertainty acceptance were found within a network comprising of the superior frontal cortex as well as the insula and precuneus while uncertainty avoidance was correlated with activations in the right middle frontal cortex. The results depict two distinct networks for information gathering and the indication of having made a decision. While information-gathering networks are modulated by uncertainty avoidance and - acceptance, underlying networks of the decision itself are independent of these factors.

  18. Schizophrenia Symptom and Functional Correlates of Anterior Cingulate Cortex Activation to Emotion Stimuli: An fMRI Investigation

    PubMed Central

    Nelson, Brady D.; Bjorkquist, Olivia A.; Olsen, Emily K.; Herbener, Ellen S.

    2015-01-01

    Schizophrenia is a chronic mental illness characterized by distinct positive and negative symptoms and functional impairment. The anterior cingulate cortex (ACC) is a region of the brain’s limbic system that is hypoactive during emotion processing in schizophrenia. Recent evidence suggests the hypoactive ACC in schizophrenia is due to negative (and not positive) symptoms. However, this finding has not been replicated and the functional significance of this relationship remains unclear. The present study examined the association between positive and negative symptoms, ACC activation to emotional images, and functional outcome in schizophrenia. Specifically, 16 schizophrenia/schizoaffective disorder (SZ/SZAF) and 15 control (CON) participants underwent an fMRI scan while completing an emotional picture-rating task. SZ/SZAF participants also completed clinician-rated measures of positive and negative symptoms and functional abilities. SZ/SZAF participants with high negative symptoms had reduced ACC activation to pleasant images relative to those with low negative symptoms and CON, who did not differ. Furthermore, amongst all SZ/SZAF participants poorer social functioning was associated with decreased ACC activation to pleasant images. Finally, ACC activation partially mediated the relationship between negative symptoms and social dysfunction. These results provide evidence of the functional significance of the relationship between negative symptoms and ACC dysfunction in schizophrenia. PMID:26596521

  19. Neural Control of Voluntary Eye Closure: A Case Study and an fMRI Investigation of Blinking and Winking

    PubMed Central

    van Koningsbruggen, Martijn G.; Peelen, Marius V.; Davies, Eilir; Rafal, Robert D.

    2012-01-01

    The current paper describes a rare case of a patient who suffered from unilateral apraxia of eye closure as a result of a bilateral stroke. Interestingly, the patient’s ability to voluntarily close both eyelids (i.e. blinking) was not affected, indicating that different neural mechanisms control each type of eye closure. The stroke caused damage to a large part of the right frontal cortex, including the motor cortex, pre-motor cortex and the frontal eye field (FEF). The lesion in the left hemisphere was restricted to the FEF. In order to further study the neural mechanisms of eye closure, we conducted an fMRI study in a group of neurological healthy subjects. We found that all areas of the oculomotor cortex were activated by both left and right winking, including the FEF, supplementary eye field (SEF), and posterior parietal cortex (PPC). Blinking activated FEF and SEF, but not PPC. Both FEF and PPC were significantly more active during winking than blinking. Together, these results provide evidence for a critical role of the FEF in voluntary unilateral eye closure. PMID:22530264

  20. An fMRI investigation of the fronto-striatal learning system in women who exhibit eating disorder behaviors

    PubMed Central

    Celone, Kim A.; Thompson-Brenner, Heather; Ross, Robert S.; Pratt, Elizabeth M.; Stern, Chantal E.

    2013-01-01

    In the present study, we sought to examine whether the fronto-striatal learning system, which has been implicated in bulimia nervosa, would demonstrate altered BOLD activity during probabilistic category learning in women who met subthreshold criteria for bulimia nervosa (Sub-BN). Sub-BN, which falls within the clinical category of Eating Disorder Not Otherwise Specified (EDNOS), is comprised of individuals who demonstrate recurrent binge eating, efforts to minimize their caloric intake and caloric retention, and elevated levels of concern about shape, weight, and/or eating, but just fail to meet the diagnostic threshold for bulimia nervosa (BN). fMRI data were collected from eighteen women with subthreshold-BN (Sub-BN) and nineteen healthy control women group-matched for age, education and body mass index (MC) during the weather prediction task. Sub-BN participants demonstrated increased caudate nucleus and dorsolateral prefrontal cortex (DLPFC) activation during the learning of probabilistic categories. Though the two subject groups did not differ in behavioral performance, over the course of learning, Sub-BN participants showed a dynamic pattern of brain activity differences when compared to matched control participants. Regions implicated in episodic memory, including the medial temporal lobe (MTL), retrosplenial cortex, middle frontal gyrus, and anterior and posterior cingulate cortex showed decreased activity in the Sub-BN participants compared to MCs during early learning which was followed by increased involvement of the DLPFC during later learning. These findings demonstrate that women with Sub-BN demonstrate differences in fronto-striatal learning system activity, as well as a distinct functional pattern between fronto-striatal and MTL learning systems during the course of implicit probabilistic category learning. PMID:21419229

  1. Iconic Meaning in Music: An Event-Related Potential Study

    PubMed Central

    Luo, Qiuling; Huang, Hong; Mo, Lei

    2015-01-01

    Although there has been extensive research on the processing of the emotional meaning of music, little is known about other aspects of listeners’ experience of music. The present study investigated the neural correlates of the iconic meaning of music. Event-related potentials (ERP) were recorded while a group of 20 music majors and a group of 20 non-music majors performed a lexical decision task in the context of implicit musical iconic meaning priming. ERP analysis revealed a significant N400 effect of congruency in time window 260-510 ms following the onset of the target word only in the group of music majors. Time-course analysis using 50 ms windows indicated significant N400 effects both within the time window 410-460 ms and 460-510 ms for music majors, whereas only a partial N400 effect during time window 410-460 ms was observed for non-music majors. There was also a trend for the N400 effects in the music major group to be stronger than those in the non-major group in the sub-windows of 310-360ms and 410-460ms. Especially in the sub-window of 410-460 ms, the topographical map of the difference waveforms between congruent and incongruent conditions revealed different N400 distribution between groups; the effect was concentrated in bilateral frontal areas for music majors, but in central-parietal areas for non-music majors. These results imply probable neural mechanism differences underlying automatic iconic meaning priming of music. Our findings suggest that processing of the iconic meaning of music can be accomplished automatically and that musical training may facilitate the understanding of the iconic meaning of music. PMID:26161561

  2. Iconic Meaning in Music: An Event-Related Potential Study.

    PubMed

    Cai, Liman; Huang, Ping; Luo, Qiuling; Huang, Hong; Mo, Lei

    2015-01-01

    Although there has been extensive research on the processing of the emotional meaning of music, little is known about other aspects of listeners' experience of music. The present study investigated the neural correlates of the iconic meaning of music. Event-related potentials (ERP) were recorded while a group of 20 music majors and a group of 20 non-music majors performed a lexical decision task in the context of implicit musical iconic meaning priming. ERP analysis revealed a significant N400 effect of congruency in time window 260-510 ms following the onset of the target word only in the group of music majors. Time-course analysis using 50 ms windows indicated significant N400 effects both within the time window 410-460 ms and 460-510 ms for music majors, whereas only a partial N400 effect during time window 410-460 ms was observed for non-music majors. There was also a trend for the N400 effects in the music major group to be stronger than those in the non-major group in the sub-windows of 310-360 ms and 410-460 ms. Especially in the sub-window of 410-460 ms, the topographical map of the difference waveforms between congruent and incongruent conditions revealed different N400 distribution between groups; the effect was concentrated in bilateral frontal areas for music majors, but in central-parietal areas for non-music majors. These results imply probable neural mechanism differences underlying automatic iconic meaning priming of music. Our findings suggest that processing of the iconic meaning of music can be accomplished automatically and that musical training may facilitate the understanding of the iconic meaning of music.

  3. Cognitive Association Formation in Episodic Memory: Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Kim, Alice S. N.; Vallesi, Antonino; Picton, Terence W.; Tulving, Endel

    2009-01-01

    The present study focused on the processes underlying cognitive association formation by investigating subsequent memory effects. Event-related potentials were recorded as participants studied pairs of words, presented one word at a time, for later recall. The findings showed that a frontal-positive late wave (LW), which occurred 1-1.6 s after the…

  4. Adapting to Changing Memory Retrieval Demands: Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Benoit, Roland G.; Werkle-Bergner, Markus; Mecklinger, Axel; Kray, Jutta

    2009-01-01

    This study investigated preparatory processes involved in adapting to changing episodic memory retrieval demands. Event-related potentials (ERPs) were recorded while participants performed a general old/new recognition task and a specific task that also required retrieval of perceptual details. The relevant task remained either constant or changed…

  5. Atypical Brain Responses to Reward Cues in Autism as Revealed by Event-Related Potentials

    ERIC Educational Resources Information Center

    Kohls, Gregor; Peltzer, Judith; Schulte-Ruther, Martin; Kamp-Becker, Inge; Remschmidt, Helmut; Herpertz-Dahlmann, Beate; Konrad, Kerstin

    2011-01-01

    Social motivation deficit theories suggest that children with autism do not properly anticipate and appreciate the pleasure of social stimuli. In this study, we investigated event-related brain potentials evoked by cues that triggered social versus monetary reward anticipation in children with autism. Children with autism showed attenuated P3…

  6. Pitch Processing in Tonal-Language-Speaking Children with Autism: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Yu, Luodi; Fan, Yuebo; Deng, Zhizhou; Huang, Dan; Wang, Suiping; Zhang, Yang

    2015-01-01

    The present study investigated pitch processing in Mandarin-speaking children with autism using event-related potential measures. Two experiments were designed to test how acoustic, phonetic and semantic properties of the stimuli contributed to the neural responses for pitch change detection and involuntary attentional orienting. In comparison…

  7. Developmental Changes in Memory Encoding: Insights from Event-Related Potentials

    ERIC Educational Resources Information Center

    Rollins, Leslie; Riggins, Tracy

    2013-01-01

    The aim of the present study was to investigate developmental changes in encoding processes between 6-year-old children and adults using event-related potentials (ERPs). Although episodic memory ("EM") effects have been reported in both children and adults at retrieval and subsequent memory effects have been established in adults, no…

  8. Early Processing of Emotional Faces in Children with Autism: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Batty, Magali; Meaux, Emilie; Wittemeyer, Kerstin; Roge, Bernadette; Taylor, Margot J.

    2011-01-01

    Social deficits are one of the most striking manifestations of autism spectrum disorders (ASDs). Among these social deficits, the recognition and understanding of emotional facial expressions has been widely reported to be affected in ASDs. We investigated emotional face processing in children with and without autism using event-related potentials…

  9. Event Related Potentials in the Understanding of Autism Spectrum Disorders: An Analytical Review

    ERIC Educational Resources Information Center

    Jeste, Shafali S.; Nelson, Charles A., III

    2009-01-01

    In this paper we critically review the literature on the use of event related potentials (ERPs) to elucidate the neural sources of the core deficits in autism. We review auditory and visual ERP studies, and then review the use of ERPs in the investigation of executive function. We conclude that, in autism, impairments likely exist in both low and…

  10. Are Vowels and Consonants Processed Differently? Event-Related Potential Evidence with a Delayed Letter Paradigm

    ERIC Educational Resources Information Center

    Carreiras, Manuel; Gillon-Dowens, Margaret; Vergara, Marta; Perea, Manuel

    2009-01-01

    To investigate the neural bases of consonant and vowel processing, event-related potentials (ERPs) were recorded while participants read words and pseudowords in a lexical decision task. The stimuli were displayed in three different conditions: (i) simultaneous presentation of all letters (baseline condition); (ii) presentation of all letters,…

  11. An Event-Related Potentials Study of Mental Rotation in Identifying Chemical Structural Formulas

    ERIC Educational Resources Information Center

    Huang, Chin-Fei; Liu, Chia-Ju

    2012-01-01

    The purpose of this study was to investigate how mental rotation strategies affect the identification of chemical structural formulas. This study conducted event-related potentials (ERPs) experiments. In addition to the data collected in the ERPs, a Chemical Structure Conceptual Questionnaire and interviews were also admin-istered for data…

  12. (De-)Accentuation and the Processing of Information Status: Evidence from Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Baumann, Stefan; Schumacher, Petra B.

    2012-01-01

    The paper reports on a perception experiment in German that investigated the neuro-cognitive processing of information structural concepts and their prosodic marking using event-related brain potentials (ERPs). Experimental conditions controlled the information status (given vs. new) of referring and non-referring target expressions (nouns vs.…

  13. Event-Related Potentials and the Stroop Effect.

    PubMed

    Sahinoglu, Babur; Dogan, Gamze

    2016-02-01

    In this manuscript, the researches on the Event-Related Potentials (ERP) elicited by the standard Stroop effect were reviewed. For the sake of clarity, only the parts of the manuscripts that reported the standard Stroop effect - ERPs relation were taken into consideration.

  14. Auditory Event-Related Potentials (ERPs) in Audiovisual Speech Perception

    ERIC Educational Resources Information Center

    Pilling, Michael

    2009-01-01

    Purpose: It has recently been reported (e.g., V. van Wassenhove, K. W. Grant, & D. Poeppel, 2005) that audiovisual (AV) presented speech is associated with an N1/P2 auditory event-related potential (ERP) response that is lower in peak amplitude compared with the responses associated with auditory only (AO) speech. This effect was replicated.…

  15. Event-Related Potentials Index Segmentation of Nonsense Sounds

    ERIC Educational Resources Information Center

    Sanders, Lisa D.; Ameral, Victoria; Sayles, Kathryn

    2009-01-01

    To understand the world around us, continuous streams of information including speech must be segmented into units that can be mapped onto stored representations. Recent evidence has shown that event-related potentials (ERPs) can index the online segmentation of sound streams. In the current study, listeners were trained to recognize sequences of…

  16. From prosodic structure to acoustic saliency: A fMRI investigation of speech rate, clarity, and emphasis

    NASA Astrophysics Data System (ADS)

    Golfinopoulos, Elisa

    Acoustic variability in fluent speech can arise at many stages in speech production planning and execution. For example, at the phonological encoding stage, the grouping of phonemes into syllables determines which segments are coarticulated and, by consequence, segment-level acoustic variation. Likewise phonetic encoding, which determines the spatiotemporal extent of articulatory gestures, will affect the acoustic detail of segments. Functional magnetic resonance imaging (fMRI) was used to measure brain activity of fluent adult speakers in four speaking conditions: fast, normal, clear, and emphatic (or stressed) speech. These speech manner changes typically result in acoustic variations that do not change the lexical or semantic identity of productions but do affect the acoustic saliency of phonemes, syllables and/or words. Acoustic responses recorded inside the scanner were assessed quantitatively using eight acoustic measures and sentence duration was used as a covariate of non-interest in the neuroimaging analysis. Compared to normal speech, emphatic speech was characterized acoustically by a greater difference between stressed and unstressed vowels in intensity, duration, and fundamental frequency, and neurally by increased activity in right middle premotor cortex and supplementary motor area, and bilateral primary sensorimotor cortex. These findings are consistent with right-lateralized motor planning of prosodic variation in emphatic speech. Clear speech involved an increase in average vowel and sentence durations and average vowel spacing, along with increased activity in left middle premotor cortex and bilateral primary sensorimotor cortex. These findings are consistent with an increased reliance on feedforward control, resulting in hyper-articulation, under clear as compared to normal speech. Fast speech was characterized acoustically by reduced sentence duration and average vowel spacing, and neurally by increased activity in left anterior frontal

  17. Give me a sign: decoding complex coordinated hand movements using high-field fMRI.

    PubMed

    Bleichner, Martin G; Jansma, Johan M; Sellmeijer, Jim; Raemaekers, Mathijs; Ramsey, Nicolas F

    2014-03-01

    Decoding movements from the human cortex has been a topic of great interest for controlling an artificial limb in non-human primates and severely paralyzed people. Here we investigate feasibility of decoding gestures from the sensorimotor cortex in humans, using 7 T fMRI. Twelve healthy volunteers performed four hand gestures from the American Sign Language Alphabet. These gestures were performed in a rapid event related design used to establish the classifier and a slow event-related design, used to test the classifier. Single trial patterns were classified using a pattern-correlation classifier. The four hand gestures could be classified with an average accuracy of 63 % (range 35–95 %), which was significantly above chance (25 %). The hand region was, as expected, the most active region, and the optimal volume for classification was on average about 200 voxels, although this varied considerably across individuals. Importantly, classification accuracy correlated significantly with consistency of gesture execution. The results of our study demonstrate that decoding gestures from the hand region of the sensorimotor cortex using 7 T fMRI can reach very high accuracy, provided that gestures are executed in a consistent manner. Our results further indicate that the neuronal representation of hand gestures is robust and highly reproducible. Given that the most active foci were located in the hand region, and that 7 T fMRI has been shown to agree with electrocorticography, our results suggest that this confined region could serve to decode sign language gestures for intracranial brain–computer interfacing using surface grids.

  18. An fMRI investigation of analogical mapping in metaphor comprehension: the influence of context and individual cognitive capacities on processing demands.

    PubMed

    Prat, Chantel S; Mason, Robert A; Just, Marcel Adam

    2012-03-01

    This study used fMRI to investigate the neural correlates of analogical mapping during metaphor comprehension, with a focus on dynamic configuration of neural networks with changing processing demands and individual abilities. Participants with varying vocabulary sizes and working memory capacities read 3-sentence passages ending in nominal critical utterances of the form "X is a Y." Processing demands were manipulated by varying preceding contexts. Three figurative conditions manipulated difficulty by varying the extent to which preceding contexts mentioned relevant semantic features for relating the vehicle and topic of the critical utterance to one another. In the easy condition, supporting information was mentioned. In the neutral condition, no relevant information was mentioned. In the most difficult condition, opposite features were mentioned, resulting in an ironic interpretation of the critical utterance. A fourth, literal condition included context that supported a literal interpretation of the critical utterance. Activation in lateral and medial frontal regions increased with increasing contextual difficulty. Lower vocabulary readers also had greater activation across conditions in the right inferior frontal gyrus. In addition, volumetric analyses showed increased right temporo-parietal junction and superior medial frontal activation for all figurative conditions over the literal condition. The results from this experiment imply that the cortical regions are dynamically recruited in language comprehension as a function of the processing demands of a task. Individual differences in cognitive capacities were also associated with differences in recruitment and modulation of working memory and executive function regions, highlighting the overlapping computations in metaphor comprehension and general thinking and reasoning.

  19. A comparison of brain activity evoked by single content and function words: an fMRI investigation of implicit word processing.

    PubMed

    Diaz, Michele T; McCarthy, Gregory

    2009-07-28

    Content and function words have different roles in language and differ greatly in their semantic content. Although previous research has suggested that these different roles may be mediated by different neural substrates, the neuroimaging literature on this topic is particularly scant. Moreover, fMRI studies that have investigated differences between content and function words have utilized tasks that focus the subjects' attention on the differences between these word types. It is possible, then, that task-related differences in attention, working memory, and decision-making contribute to the differential patterns of activation observed. Here, subjects were engaged in a continuous working memory cover task while single, task-irrelevant content and function words were infrequently and irregularly presented. Nonword letter strings were displayed in black font at a fast rate (2/s). Subjects were required to either remember or retrieve occasional nonwords that were presented in colored fonts. Incidental and irrelevant to the memory task, content and function words were interspersed among nonwords at intervals of 12 to 15 s. Both word types strongly activated temporal-parietal cortex, middle and anterior temporal cortex, inferior frontal gyrus, parahippocampal gyrus, and orbital frontal cortex. Activations were more extensive in the left hemisphere. Content words elicited greater activation than function words in middle and anterior temporal cortex, a sub-region of orbital frontal cortex, and the parahippocampal region. Words also evoked extensive deactivation, most notably in brain regions previously associated with working memory and attention.

  20. Receptive Vocabulary Knowledge in Low-Functioning Autism as Assessed by Eye Movements, Pupillary Dilation, and Event-Related Potentials

    DTIC Science & Technology

    2012-06-01

    INTRODUCTION Approximately 50% of individuals affected by autism fail to develop useful speech , and many of these individuals never learn to communicate...Functioning Autism as Assessed by Eye Movements, Pupillary Dilation, and Event-Related Potentials PRINCIPAL INVESTIGATOR: Barry Gordon...Knowledge in Low-Functioning Autism as Assessed by Eye- Movements, Pupillary Dilation, and Event-Related Potentials 5b. GRANT NUMBER W81XWH-10-1-0404

  1. Spatio-Temporal Information Analysis of Event-Related BOLD Responses

    PubMed Central

    Alpert, Galit Fuhrmann; Handwerker, Dan; Sun, Felice T.; D’Esposito, Mark; Knight, Robert T.

    2009-01-01

    A new approach for analysis of event related fMRI (BOLD) signals is proposed. The technique is based on measures from information theory and is used both for spatial localization of task related activity, as well as for extracting temporal information regarding the task dependent propagation of activation across different brain regions. This approach enables whole brain visualization of voxels (areas) most involved in coding of a specific task condition, the time at which they are most informative about the condition, as well as their average amplitude at that preferred time. The approach does not require prior assumptions about the shape of the hemodynamic response function (HRF), nor about linear relations between BOLD response and presented stimuli (or task conditions). We show that relative delays between different brain regions can also be computed without prior knowledge of the experimental design, suggesting a general method that could be applied for analysis of differential time delays that occur during natural, uncontrolled conditions. Here we analyze BOLD signals recorded during performance of a motor learning task. We show that during motor learning, the BOLD response of unimodal motor cortical areas precedes the response in higher-order multimodal association areas, including posterior parietal cortex. Brain areas found to be associated with reduced activity during motor learning, predominantly in prefrontal brain regions, are informative about the task typically at significantly later times. PMID:17188515

  2. Bistable illusory rebound motion: Event-related functional magnetic resonance imaging of perceptual states and switches.

    PubMed

    Hsieh, P-J; Caplovitz, G P; Tse, P U

    2006-08-15

    The neural correlates of a recently discovered visual illusion that we call 'illusory rebound motion' (IRM) are described. This illusion is remarkable because motion is perceived in the absence of any net motion energy in the stimulus. When viewing bars alternating between white and black on a gray background, the percept alternates between one of flashing bars (veridical) and the IRM illusion, where the bars appear to shoot back and forth rather like the opening and closing of a zipper. The event-related functional magnetic resonance imaging (fMRI) data reported here reveal that (1) the blood-oxygen-level-dependent (BOLD) signal in the human analog of macaque motion processing area MT (hMT+) increases when there is a perceptual change from "no-IRM" to "see-IRM" and decreases when there is a perceptual change from "see-IRM" to "no-IRM," although the stimulus remains constant; and (2) the BOLD signal in early retinotopic areas (V1, V2, and V3d) shows switch-related activation whenever there is a perceptual change, regardless whether from IRM to no-IRM or vice versa. We conclude that hMT+ is a neural correlate of this novel illusory motion percept because BOLD signal in hMT+ modulates with the perception of IRM.

  3. Event-related potentials reveal early activation of body part representations in action concept comprehension.

    PubMed

    Lu, Aitao; Liu, Jing; Zhang, John X

    2012-03-09

    With tasks involving action concept comprehension, many fMRI studies have reported brain activations in sensori-motor regions specific to effectors of the referent action. There is relatively less evidence whether such activations reflect early semantic access or late conceptual re-processing. Here we recorded event-related potentials when participants recognized noun-verb pairs. For Congruent pairs, the verb was the one most commonly associated with the noun (e.g., football-kick). Compared with a control condition, verbs in Congruent pairs showed priming effects in the time windows of 100-150 ms and 210-260 ms. Such activation seems to be specific to body part but not other aspects of the action as similar priming effect was also found when the noun and verb involved different actions though sharing the same body part (e.g., football-jump), documenting for the first time the early activation of body part representations in action concept comprehension.

  4. Sample Selected Averaging Method for Analyzing the Event Related Potential

    NASA Astrophysics Data System (ADS)

    Taguchi, Akira; Ono, Youhei; Kimura, Tomoaki

    The event related potential (ERP) is often measured through the oddball task. On the oddball task, subjects are given “rare stimulus” and “frequent stimulus”. Measured ERPs were analyzed by the averaging technique. In the results, amplitude of the ERP P300 becomes large when the “rare stimulus” is given. However, measured ERPs are included samples without an original feature of ERP. Thus, it is necessary to reject unsuitable measured ERPs when using the averaging technique. In this paper, we propose the rejection method for unsuitable measured ERPs for the averaging technique. Moreover, we combine the proposed method and Woody's adaptive filter method.

  5. Interaction of Phonological Awareness and "Magnocellular" Processing during Normal and Dyslexic Reading: Behavioural and fMRI Investigations

    ERIC Educational Resources Information Center

    Heim, Stefan; Grande, Marion; Pape-Neumann, Julia; van Ermingen, Muna; Meffert, Elisabeth; Grabowska, Anna; Huber, Walter; Amunts, Katrin

    2010-01-01

    We investigated whether phonological deficits are a consequence of magnocellular processing deficits in dyslexic and control children. In Experiment 1, children were tested for reading ability, phonological awareness, visuo-magnocellular motion perception, and attention shifting (sometimes considered as magnocellular function). A two-step cluster…

  6. Sex-Related Hemispheric Lateralization of Amygdala Function in Emotionally Influenced Memory: An fMRI Investigation

    ERIC Educational Resources Information Center

    Cahill, Larry; Uncapher, Melina; Kilpatrick, Lisa; Alkire, Mike T.; Turner, Jessica

    2004-01-01

    The amygdala appears necessary for enhanced long-term memory associated with emotionally arousing events. Recent brain imaging investigations support this view and indicate a sex-related hemispheric lateralization exists in the amygdala relationship to memory for emotional material. This study confirms and further explores this finding. Healthy…

  7. Spatial–temporal modelling of fMRI data through spatially regularized mixture of hidden process models

    PubMed Central

    Shen, Yuan; Mayhew, Stephen D.; Kourtzi, Zoe; Tiňo, Peter

    2014-01-01

    Previous work investigated a range of spatio-temporal constraints for fMRI data analysis to provide robust detection of neural activation. We present a mixture-based method for the spatio-temporal modelling of fMRI data. This approach assumes that fMRI time series are generated by a probabilistic superposition of a small set of spatio-temporal prototypes (mixture components). Each prototype comprises a temporal model that explains fMRI signals on a single voxel and the model's “region of influence” through a spatial prior over the voxel space. As the key ingredient of our temporal model, the Hidden Process Model (HPM) framework proposed in Hutchinson et al. (2009) is adopted to infer the overlapping cognitive processes triggered by stimuli. Unlike the original HPM framework, we use a parametric model of Haemodynamic Response Function (HRF) so that biological constraints are naturally incorporated in the HRF estimation. The spatial priors are defined in terms of a parameterised distribution. Thus, the total number of parameters in the model does not depend on the number of voxels. The resulting model provides a conceptually principled and computationally efficient approach to identify spatio-temporal patterns of neural activation from fMRI data, in contrast to most conventional approaches in the literature focusing on the detection of spatial patterns. We first verify the proposed model in a controlled experimental setting using synthetic data. The model is further validated on real fMRI data obtained from a rapid event-related visual recognition experiment (Mayhew et al., 2012). Our model enables us to evaluate in a principled manner the variability of neural activations within individual regions of interest (ROIs). The results strongly suggest that, compared with occipitotemporal regions, the frontal ones are less homogeneous, requiring two HPM prototypes per region. Despite the rapid event-related experimental design, the model is capable of disentangling the

  8. An fMRI investigation of the effects of belief in free will on third-party punishment.

    PubMed

    Krueger, Frank; Hoffman, Morris; Walter, Henrik; Grafman, Jordan

    2014-08-01

    The relationship between belief in free will (BFW) and third-party punishment (TPP) of criminal norm violations has been the subject of great debate among philosophers, criminologists and neuroscientists. We combined a TPP task with functional magnetic resonance imaging to investigate how lay people's BFW might affect their punishment of hypothetical criminal offenses varying in affective content. Our results revealed that people with strong BFW punished more harshly than people with weak BFW, but only in low affective cases, likely driven by a more robust commitment to moral responsibility. This effect was mirrored by a stronger activation in the right temporo-parietal junction, a region presumably involved in attentional selection to salient stimuli and attribution of temporary intentions and beliefs of others. But, for high affective cases, the BFW-based behavioral and neural differences disappeared. Both groups similarly punished high affective cases and showed higher activation in the right insula. The right insula is typically activated during aversive interoceptive-emotional processing for extreme norm violations. Our results demonstrated that the impact of BFW on TPP is context-dependent; perhaps explaining in part why the philosophical debate between free will and determinism is so stubbornly persistent.

  9. What's Unique about Unique Entities? An fMRI Investigation of the Semantics of Famous Faces and Landmarks

    PubMed Central

    Olson, Ingrid R.

    2012-01-01

    Famous people and artifacts are referred to as “unique entities” (UEs) due to the unique nature of the knowledge we have about them. Past imaging and lesion experiments have indicated that the anterior temporal lobes (ATLs) as having a special role in the processing of UEs. It has remained unclear which attributes of UEs were responsible for the observed effects in imaging experiments. In this study, we investigated what factors of UEs influence brain activity. In a training paradigm, we systematically varied the uniqueness of semantic associations, the presence/absence of a proper name, and the number of semantic associations to determine factors modulating activity in regions subserving the processing of UEs. We found that a conjunction of unique semantic information and proper names modulated activity within a section of the left ATL. Overall, the processing of UEs involved a wider left-hemispheric cortical network. Within these regions, brain activity was significantly affected by the unique semantic attributes especially in the presence of a proper name, but we could not find evidence for an effect of the number of semantic associations. Findings are discussed in regard to current models of ATL function, the neurophysiology of semantics, and social cognitive processing. PMID:22021913

  10. Heschl's gyrification pattern is related to speech-listening hemispheric lateralization: FMRI investigation in 281 healthy volunteers.

    PubMed

    Tzourio-Mazoyer, N; Marie, D; Zago, L; Jobard, G; Perchey, G; Leroux, G; Mellet, E; Joliot, M; Crivello, F; Petit, L; Mazoyer, B

    2015-01-01

    This study investigates the structure-function relationships between the anatomy of Heschl's gyri (HG) and speech hemispheric lateralization in 281 healthy volunteers (135 left-handers). Hemispheric lateralization indices (HFLIs) were calculated with Wilke's method from the activations obtained via functional magnetic resonance imaging while listening to lists of words (LIST). The mean HFLI during LIST was rightward asymmetrical, and left-handers displayed a trend toward decreased rightward asymmetry. The correlations between LIST BOLD contrast maps and individual HFLIs demonstrated that among the cortical areas showing significant asymmetry during LIST, only phonological regions explained HFLI variability. Significant positive correlations were present among the left HG, supramarginal gyri, and the anterior insula. Significant negative correlations occurred in the mid-part of the right superior temporal sulcus. Left HG had the largest functional activity during LIST and explained 10% of the HFLI variance. There was a strong anatomo-functional link in the HG: duplication was associated with a decrease in both the surface area of the anterior HG and HG functional activity. Participants with a single left HG exhibited leftward anatomical and functional asymmetry of HG, but participants with a left duplication lost either anatomical and/or functional leftward asymmetries. Finally, manual preference was related to HG anatomy, but not to HG functional asymmetries measured during LIST. The anatomical characteristics of left-handers (lower occurrence of right HG duplication and a smaller surface area of the right first HG) thus appeared to be unrelated to variations in speech lateralization with handedness.

  11. Common and differential neural networks of emotion regulation by Detachment, Reinterpretation, Distraction, and Expressive Suppression: a comparative fMRI investigation.

    PubMed

    Dörfel, Denise; Lamke, Jan-Peter; Hummel, Falk; Wagner, Ullrich; Erk, Susanne; Walter, Henrik

    2014-11-01

    Emotions are an indispensable part of our mental life. The term emotion regulation refers to those processes that influence the generation, the experience and the expression of emotions. There is a great variety of strategies to regulate emotions efficiently, which are used in daily life and that have been investigated by cognitive neuroscience. Distraction guides attention to a secondary task. Reinterpretation, a variant of cognitive reappraisal, works by changing the meaning of an emotional stimulus. Detachment, another reappraisal strategy, refers to distancing oneself from an emotional stimulus, thereby reducing its personal relevance. Expressive Suppression modifies the behavioral or physiological response to an emotional stimulus. These four strategies are not equally effective in terms of emotion regulation success and have been shown to partly rely on different neuronal systems. Here, we compare for the first time the neural mechanisms of these typical strategies directly in a common functional magnetic resonance imaging (fMRI) paradigm of downregulation of negative emotions. Our results indicate that three of those strategies (Detachment, Expressive Suppression and Distraction) conjointly increase brain activation in a right prefronto-parietal regulation network and significantly reduce activation of the left amygdala. Compared to the other regulation strategies, Reinterpretation specifically recruited a different control network comprising left ventrolateral prefrontal cortex and orbitofrontal gyrus and was not effective in downregulation of the amygdala. We conclude that Detachment, Distraction and Expressive Suppression recruit very similar emotion regulation networks, whereas Reinterpretation is associated with activation of a qualitatively different network, making this regulation strategy a special one. Notably, Reinterpretation also proved to be the least effective strategy in neural terms, as measured by downregulation of amygdala activation.

  12. A new method for FMRI activation detection

    NASA Astrophysics Data System (ADS)

    Wei, Jianing; Talavage, Thomas M.; Pollak, Ilya

    2009-02-01

    The objective of fMRI data analysis is to detect the region of the brain that gets activated in response to a specific stimulus presented to the subject. We develop a new algorithm for activation detection in event-related fMRI data. We utilize a forward model for fMRI data acquisition which explicitly incorporates physiological noise, scanner noise and the spatial blurring introduced by the scanner. After slice-by-slice image restoration procedure that independently restores each data slice corresponding to each time index, we estimate the parameters of the hemodynamic response function (HRF) model for each pixel of the restored data. In order to enforce spatial regularity in our estimates, we model the prior distribution of the HRF parameters as a generalized Gaussian Markov random field (GGMRF) model. We develop an algorithm to compute the maximum a posteriori (MAP) estimates of the parameters. We then threshold the amplitude parameters to obtain the final activation map. We illustrate our algorithm by comparing it with the widely used general linear model (GLM) method. In synthetic data experiments, under the same probability of false alarm, the probability of correct detection for our method is up to 15% higher than GLM. In real data experiments, through anatomical analysis and benchmark testing using block paradigm results, we demonstrate that our algorithm produces fewer false alarms than GLM.

  13. Enhancement of event related potentials by iterative restoration algorithms

    NASA Astrophysics Data System (ADS)

    Pomalaza-Raez, Carlos A.; McGillem, Clare D.

    1986-12-01

    An iterative procedure for the restoration of event related potentials (ERP) is proposed and implemented. The method makes use of assumed or measured statistical information about latency variations in the individual ERP components. The signal model used for the restoration algorithm consists of a time-varying linear distortion and a positivity/negativity constraint. Additional preprocessing in the form of low-pass filtering is needed in order to mitigate the effects of additive noise. Numerical results obtained with real data show clearly the presence of enhanced and regenerated components in the restored ERP's. The procedure is easy to implement which makes it convenient when compared to other proposed techniques for the restoration of ERP signals.

  14. Innovations in neuropsychological assessment using event-related brain potentials.

    PubMed

    Connolly, J F; D'Arcy, R C

    2000-07-01

    Historically, clinicians have utilized evoked potentials for evaluating sensory functions and neuropsychological tests for evaluating cognitive functions. However, the clinical implementation of event-related brain potentials (ERPs), an on-line index of cognitive processing, remains to be developed fully. We describe a new method for assessing language functions using neuropsychological tests that are formatted for computer presentation with simultaneous ERP recordings. From its inception, there have been two major objectives of this ERP language assessment research. Practically, we have sought to develop assessment techniques that would enable clinicians to evaluate the language functions of individuals with limited behavioral and communicative abilities. Conceptually, we have endeavored to increase the precision of neuropsychological testing through the development of measures that are sensitive to readily identifiable and objective neural responses. This article summarizes the issues central to the development of ERP assessment techniques, reviews recent normative studies with healthy individuals, and suggests some future avenues of research in this area.

  15. Facing a real person: an event-related potential study.

    PubMed

    Pönkänen, Laura M; Hietanen, Jari K; Peltola, Mikko J; Kauppinen, Pasi K; Haapalainen, Antti; Leppänen, Jukka M

    2008-03-05

    Although faces are typically perceived in the context of human interaction, face processing is commonly studied by displaying faces on a computer screen. This study on event-related potential examined whether the processing of faces differs depending on whether participants are viewing faces live or on a computer screen. In both the conditions, the participants were shown a real face, a dummy face, and a control object. N170 and early posterior negativity discriminated between faces and control object in both the conditions. Interestingly, early posterior negativity differentiated between the real face and the dummy face only in the live condition. The results indicate that a live face, as a potentially interacting stimulus, is processed differently than an inanimate face already at the early processing stages.

  16. Event-Related Potentials and Emotion Processing in Child Psychopathology

    PubMed Central

    Chronaki, Georgia

    2016-01-01

    In recent years there has been increasing interest in the neural mechanisms underlying altered emotional processes in children and adolescents with psychopathology. This review provides a brief overview of the most up-to-date findings in the field of event-related potentials (ERPs) to facial and vocal emotional expressions in the most common child psychopathological conditions. In regards to externalizing behavior (i.e., ADHD, CD), ERP studies show enhanced early components to anger, reflecting enhanced sensory processing, followed by reductions in later components to anger, reflecting reduced cognitive-evaluative processing. In regards to internalizing behavior, research supports models of increased processing of threat stimuli especially at later more elaborate and effortful stages. Finally, in autism spectrum disorders abnormalities have been observed at early visual-perceptual stages of processing. An affective neuroscience framework for understanding child psychopathology can be valuable in elucidating underlying mechanisms and inform preventive intervention. PMID:27199803

  17. Probabilistic delay differential equation modeling of event-related potentials.

    PubMed

    Ostwald, Dirk; Starke, Ludger

    2016-08-01

    "Dynamic causal models" (DCMs) are a promising approach in the analysis of functional neuroimaging data due to their biophysical interpretability and their consolidation of functional-segregative and functional-integrative propositions. In this theoretical note we are concerned with the DCM framework for electroencephalographically recorded event-related potentials (ERP-DCM). Intuitively, ERP-DCM combines deterministic dynamical neural mass models with dipole-based EEG forward models to describe the event-related scalp potential time-series over the entire electrode space. Since its inception, ERP-DCM has been successfully employed to capture the neural underpinnings of a wide range of neurocognitive phenomena. However, in spite of its empirical popularity, the technical literature on ERP-DCM remains somewhat patchy. A number of previous communications have detailed certain aspects of the approach, but no unified and coherent documentation exists. With this technical note, we aim to close this gap and to increase the technical accessibility of ERP-DCM. Specifically, this note makes the following novel contributions: firstly, we provide a unified and coherent review of the mathematical machinery of the latent and forward models constituting ERP-DCM by formulating the approach as a probabilistic latent delay differential equation model. Secondly, we emphasize the probabilistic nature of the model and its variational Bayesian inversion scheme by explicitly deriving the variational free energy function in terms of both the likelihood expectation and variance parameters. Thirdly, we detail and validate the estimation of the model with a special focus on the explicit form of the variational free energy function and introduce a conventional nonlinear optimization scheme for its maximization. Finally, we identify and discuss a number of computational issues which may be addressed in the future development of the approach.

  18. Episodic memory in former professional football players with a history of concussion: an event-related functional neuroimaging study.

    PubMed

    Ford, Jaclyn H; Giovanello, Kelly S; Guskiewicz, Kevin M

    2013-10-15

    Previous research has demonstrated that sport-related concussions can have short-term effects on cognitive processes, but the long-term consequences are less understood and warrant more research. This study was the first to use event-related functional magnetic resonance imaging (fMRI) to examine long-term differences in neural activity during memory tasks in former athletes who have sustained multiple sport-related concussions. In an event-related fMRI study, former football players reporting multiple sport-related concussions (i.e., three or more) were compared with players who reported fewer than three concussions during a memory paradigm examining item memory (i.e., memory for the particular elements of an event) and relational memory (i.e., memory for the relationships between elements). Behaviorally, we observed that concussion history did not significantly affect behavioral performance, because persons in the low and high concussion groups had equivalent performance on both memory tasks, and in addition, that concussion history was not associated with any behavioral memory measures. Despite demonstrating equivalent behavioral performance, the two groups of former players demonstrated different neural recruitment patterns during relational memory retrieval, suggesting that multiple concussions may be associated with functional inefficiencies in the relational memory network. In addition, the number of previous concussions significantly correlated with functional activity in a number of brain regions, including the medial temporal lobe and inferior parietal lobe. Our results provide important insights in understanding the long-term functional consequences of sustaining multiple sports-related concussions.

  19. Episodic Memory in Former Professional Football Players with a History of Concussion: An Event-Related Functional Neuroimaging Study

    PubMed Central

    Giovanello, Kelly S.; Guskiewicz, Kevin M.

    2013-01-01

    Abstract Previous research has demonstrated that sport-related concussions can have short-term effects on cognitive processes, but the long-term consequences are less understood and warrant more research. This study was the first to use event-related functional magnetic resonance imaging (fMRI) to examine long-term differences in neural activity during memory tasks in former athletes who have sustained multiple sport-related concussions. In an event-related fMRI study, former football players reporting multiple sport-related concussions (i.e., three or more) were compared with players who reported fewer than three concussions during a memory paradigm examining item memory (i.e., memory for the particular elements of an event) and relational memory (i.e., memory for the relationships between elements). Behaviorally, we observed that concussion history did not significantly affect behavioral performance, because persons in the low and high concussion groups had equivalent performance on both memory tasks, and in addition, that concussion history was not associated with any behavioral memory measures. Despite demonstrating equivalent behavioral performance, the two groups of former players demonstrated different neural recruitment patterns during relational memory retrieval, suggesting that multiple concussions may be associated with functional inefficiencies in the relational memory network. In addition, the number of previous concussions significantly correlated with functional activity in a number of brain regions, including the medial temporal lobe and inferior parietal lobe. Our results provide important insights in understanding the long-term functional consequences of sustaining multiple sports-related concussions. PMID:23679098

  20. Common Neural Systems Associated with the Recognition of Famous Faces and Names: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Nielson, Kristy A.; Seidenberg, Michael; Woodard, John L.; Durgerian, Sally; Zhang, Qi; Gross, William L.; Gander, Amelia; Guidotti, Leslie M.; Antuono, Piero; Rao, Stephen M.

    2010-01-01

    Person recognition can be accomplished through several modalities (face, name, voice). Lesion, neurophysiology and neuroimaging studies have been conducted in an attempt to determine the similarities and differences in the neural networks associated with person identity via different modality inputs. The current study used event-related…

  1. Analysis and visualization of single-trial event-related potentials

    NASA Technical Reports Server (NTRS)

    Jung, T. P.; Makeig, S.; Westerfield, M.; Townsend, J.; Courchesne, E.; Sejnowski, T. J.

    2001-01-01

    In this study, a linear decomposition technique, independent component analysis (ICA), is applied to single-trial multichannel EEG data from event-related potential (ERP) experiments. Spatial filters derived by ICA blindly separate the input data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain sources. Both the data and their decomposition are displayed using a new visualization tool, the "ERP image," that can clearly characterize single-trial variations in the amplitudes and latencies of evoked responses, particularly when sorted by a relevant behavioral or physiological variable. These tools were used to analyze data from a visual selective attention experiment on 28 control subjects plus 22 neurological patients whose EEG records were heavily contaminated with blink and other eye-movement artifacts. Results show that ICA can separate artifactual, stimulus-locked, response-locked, and non-event-related background EEG activities into separate components, a taxonomy not obtained from conventional signal averaging approaches. This method allows: (1) removal of pervasive artifacts of all types from single-trial EEG records, (2) identification and segregation of stimulus- and response-locked EEG components, (3) examination of differences in single-trial responses, and (4) separation of temporally distinct but spatially overlapping EEG oscillatory activities with distinct relationships to task events. The proposed methods also allow the interaction between ERPs and the ongoing EEG to be investigated directly. We studied the between-subject component stability of ICA decomposition of single-trial EEG epochs by clustering components with similar scalp maps and activation power spectra. Components accounting for blinks, eye movements, temporal muscle activity, event-related potentials, and event-modulated alpha activities were largely replicated across subjects. Applying ICA and ERP image

  2. Gender differences in the processing of standard emotional visual stimuli: integrating ERP and fMRI results

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Tian, Jie; Wang, Xiaoxiang; Hu, Jin

    2005-04-01

    The comprehensive understanding of human emotion processing needs consideration both in the spatial distribution and the temporal sequencing of neural activity. The aim of our work is to identify brain regions involved in emotional recognition as well as to follow the time sequence in the millisecond-range resolution. The effect of activation upon visual stimuli in different gender by International Affective Picture System (IAPS) has been examined. Hemodynamic and electrophysiological responses were measured in the same subjects. Both fMRI and ERP study were employed in an event-related study. fMRI have been obtained with 3.0 T Siemens Magnetom whole-body MRI scanner. 128-channel ERP data were recorded using an EGI system. ERP is sensitive to millisecond changes in mental activity, but the source localization and timing is limited by the ill-posed 'inversed' problem. We try to investigate the ERP source reconstruction problem in this study using fMRI constraint. We chose ICA as a pre-processing step of ERP source reconstruction to exclude the artifacts and provide a prior estimate of the number of dipoles. The results indicate that male and female show differences in neural mechanism during emotion visual stimuli.

  3. Cholinergic modulation of event-related oscillations (ERO)

    PubMed Central

    Sanchez-Alavez, Manuel; Robledo, Patricia; Wills, Derek N.; Havstad, James; Ehlers, Cindy L.

    2014-01-01

    The cholinergic system in the brain modulates patterns of activity involved in general arousal, attention processing, memory and consciousness. In the present study we determined the effects of selective cholinergic lesions of the medial septum area (MS) or nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs). A time–frequency based representation was used to determine ERO energy, phase synchronization across trials, recorded within a structure (phase lock index, PLI), and phase synchronization across trials, recorded between brain structures (phase difference lock index, PDLI), in the frontal cortex (Fctx), dorsal hippocampus (DHPC) and central amygdala (Amyg). Lesions in MS produced: (1) decreases in ERO energy in delta, theta, alpha, beta and gamma frequencies in Amyg, (2) reductions in gamma ERO energy and PLI in Fctx, (3) decreases in PDLI between the Fctx–Amyg in the theta, alpha, beta and gamma frequencies, and (4) decreases in PDLI between the DHPC–Amyg and Fctx–DHPC in the theta frequency bands. Lesions in NBM resulted in: (1) increased ERO energy in delta and theta frequency bands in Fctx, (2) reduced gamma ERO energy in Fctx and Amyg, (3) reductions in PLI in the theta, beta and gamma frequency ranges in Fctx, (4) reductions in gamma PLI in DHPC and (5) reduced beta PLI in Amyg. These studies suggest that the MS cholinergic system can alter phase synchronization between brain areas whereas the NBM cholinergic system modifies phase synchronization/phase resetting within a brain area. PMID:24594019

  4. Event-related potential alterations in fragile X syndrome.

    PubMed

    Knoth, Inga S; Lippé, Sarah

    2012-01-01

    Fragile X Syndrome (FXS) is the most common form of X-linked intellectual disability (ID), associated with a wide range of cognitive and behavioral impairments. FXS is caused by a trinucleotide repeat expansion in the FMR1 gene located on the X-chromosome. FMR1 is expected to prevent the expression of the "fragile X mental retardation protein (FMRP)", which results in altered structural and functional development of the synapse, including a loss of synaptic plasticity. This review aims to unveil the contribution of electrophysiological signal studies for the understanding of the information processing impairments in FXS patients. We discuss relevant event-related potential (ERP) studies conducted with full mutation FXS patients and clinical populations sharing symptoms with FXS in a developmental perspective. Specific deviances found in FXS ERP profiles are described. Alterations are reported in N1, P2, Mismatch Negativity (MMN), N2, and P3 components in FXS compared to healthy controls. Particularly, deviances in N1 and P2 amplitude seem to be specific to FXS. The presented results suggest a cascade of impaired information processes that are in line with symptoms and anatomical findings in FXS.

  5. Communication of ALS Patients by Detecting Event-Related Potential

    NASA Astrophysics Data System (ADS)

    Kanou, Naoyuki; Sakuma, Kenji; Nakashima, Kenji

    Amyotrophic Lateral Sclerosis(ALS) patients are unable to successfully communicate their desires, although their mental capacity is the same as non-affected persons. Therefore, the authors put emphasis on Event-Related Potential(ERP) which elicits the highest outcome for the target visual and hearing stimuli. P300 is one component of ERP. It is positive potential that is elicited when the subject focuses attention on stimuli that appears infrequently. In this paper, the authors focused on P200 and N200 components, in addition to P300, for their great improvement in the rate of correct judgment in the target word-specific experiment. Hence the authors propose the algorithm that specifies target words by detecting these three components. Ten healthy subjects and ALS patient underwent the experiment in which a target word out of five words, was specified by this algorithm. The rates of correct judgment in nine of ten healthy subjects were more than 90.0%. The highest rate was 99.7%. The highest rate of ALS patient was 100.0%. Through these results, the authors found the possibility that ALS patients could communicate with surrounding persons by detecting ERP(P200, N200 and P300) as their desire.

  6. Auditory event-related potentials in poor readers.

    PubMed

    Bernal, J; Harmony, T; Rodríguez, M; Reyes, A; Yáñez, G; Fernández, T; Galán, L; Silva, J; Fernández- Bouzas, A; Rodríguez, H; Guerrero, V; Marosi, E

    2000-04-01

    Although poor readers (PR) are considered the major group among reading-disabled children, there are not event-related potentials (ERP) studies reported of PR on the subject. In this study, attentional and memory processes were studied in an auditory oddball task in PR and normal controls. ERP to auditory stimuli were recorded in 19 leads of the 10/20 system, using linked earlobes as references, in 20 normal children (10 female) and 20 PR (10 female) of the same age (10-12 years old). Two pure tones (1000 and 3000 Hz) were used in an oddball paradigm. No significant differences were observed in the amplitudes and latencies of N100 between the groups. However, N200 to frequent stimuli and P200 to both frequent and infrequent stimuli were of higher amplitude in poor readers than in normal children. There were no differences between groups in the latency and amplitude of P300. The results suggest that PR use more attentional resources in the components occurring before P300 to both frequent and infrequent stimuli than the normal children, and this finding is particularly marked for PR girls.

  7. Event-related Potential Signatures of Relational Memory

    PubMed Central

    Hannula, Deborah E.; Federmeier, Kara D.; Cohen, Neal J.

    2009-01-01

    Various lines of evidence suggest that memory for the relations among arbitrarily paired items acquired prior to testing can influence early processing of a probe stimulus. The event-related potential experiment reported here was designed to explore how early in time memory for a previously established face-scene relationship begins to influence processing of faces, under sequential presentation conditions in which a preview of the scene can promote expectancies about the to-be-presented face. Prior to the current work, the earliest component documented to be sensitive to memory for the relations among arbitrarily paired items was the late positive complex (LPC), but here relational memory effects were evident as early as 270-350 msec after face onset. The latency of these relational memory effects suggests that they may be the precursor to similar effects observed in eye movement behavior. As expected, LPC amplitude was also affected by memory for face-scene relationships, and N400 amplitude reflected some combination of memory for items and memory for the relations among items. PMID:17069477

  8. Verum and sham acupuncture exert distinct cerebral activation in pain processing areas: a crossover fMRI investigation in healthy volunteers.

    PubMed

    Usichenko, Taras I; Wesolowski, Toni; Lotze, Martin

    2015-06-01

    Although acupuncture is effective for treating pain, its site-specificity is questioned. The aim was to compare the cerebral responses of needling applied to an acupuncture point to the needling of a sham point, using functional magnetic resonance imaging (fMRI). Twenty-one healthy male volunteers were enrolled. Manual stimulation of the acupuncture (ST44) and sham points on the dorsum of the left foot was applied during fMRI in a crossover manner. fMRI data analysis was performed contrasting the ST44 and the sham conditions. Stimulation intensity, subjective discrimination of the needling site and the incidence of "Qi" sensation were additionally recorded. Stimulation of ST44 acupoint, in comparison to the sham procedure, was associated with an increased fMRI-activation in the primary somatosensory, the inferior parietal and the prefrontal cortex and the posterior insula. Sham needling was associated with increased activation in the anterior cingulate cortex and the anterior insula. Verum acupuncture increased the activity of discriminative somatosensory and cognitive pain processing areas of the brain, whereas sham needling activated the areas responsible for affective processing of pain. This may explain favorable effects of verum acupuncture in clinical studies about treatment of chronic pain patients.

  9. Simultaneous EEG-fMRI in patients with Unverricht-Lundborg disease: event-related desynchronization/synchronization and hemodynamic response analysis.

    PubMed

    Visani, Elisa; Minati, Ludovico; Canafoglia, Laura; Gilioli, Isabella; Salvatoni, Lucia; Varotto, Giulia; Fazio, Patrik; Aquino, Domenico; Bruzzone, Maria Grazia; Franceschetti, Silvana; Panzica, Ferruccio

    2010-01-01

    We performed simultaneous acquisition of EEG-fMRI in seven patients with Unverricht-Lundborg disease (ULD) and in six healthy controls using self-paced finger extension as a motor task. The event-related desynchronization/synchronization (ERD/ERS) analysis showed a greater and more diffuse alpha desynchronization in central regions and a strongly reduced post-movement beta-ERS in patients compared with controls, suggesting a significant dysfunction of the mechanisms regulating active movement and movement end. The event-related hemodynamic response obtained from fMRI showed delayed BOLD peak latency in the contralateral primary motor area suggesting a less efficient activity of the neuronal populations driving fine movements, which are specifically impaired in ULD.

  10. Simultaneous EEG-fMRI in Patients with Unverricht-Lundborg Disease: Event-Related Desynchronization/Synchronization and Hemodynamic Response Analysis

    PubMed Central

    Visani, Elisa; Minati, Ludovico; Canafoglia, Laura; Gilioli, Isabella; Salvatoni, Lucia; Varotto, Giulia; Fazio, Patrik; Aquino, Domenico; Bruzzone, Maria Grazia; Franceschetti, Silvana; Panzica, Ferruccio

    2010-01-01

    We performed simultaneous acquisition of EEG-fMRI in seven patients with Unverricht-Lundborg disease (ULD) and in six healthy controls using self-paced finger extension as a motor task. The event-related desynchronization/synchronization (ERD/ERS) analysis showed a greater and more diffuse alpha desynchronization in central regions and a strongly reduced post-movement beta-ERS in patients compared with controls, suggesting a significant dysfunction of the mechanisms regulating active movement and movement end. The event-related hemodynamic response obtained from fMRI showed delayed BOLD peak latency in the contralateral primary motor area suggesting a less efficient activity of the neuronal populations driving fine movements, which are specifically impaired in ULD. PMID:20111730

  11. Lying about Facial Recognition: An fMRI Study

    ERIC Educational Resources Information Center

    Bhatt, S.; Mbwana, J.; Adeyemo, A.; Sawyer, A.; Hailu, A.; VanMeter, J.

    2009-01-01

    Novel deception detection techniques have been in creation for centuries. Functional magnetic resonance imaging (fMRI) is a neuroscience technology that non-invasively measures brain activity associated with behavior and cognition. A number of investigators have explored the utilization and efficiency of fMRI in deception detection. In this study,…

  12. Study Design in fMRI: Basic Principles

    ERIC Educational Resources Information Center

    Amaro, Edson, Jr.; Barker, Gareth J.

    2006-01-01

    There is a wide range of functional magnetic resonance imaging (fMRI) study designs available for the neuroscientist who wants to investigate cognition. In this manuscript we review some aspects of fMRI study design, including cognitive comparison strategies (factorial, parametric designs), and stimulus presentation possibilities (block,…

  13. Variation in Event-Related Potentials by State Transitions

    PubMed Central

    Higashi, Hiroshi; Minami, Tetsuto; Nakauchi, Shigeki

    2017-01-01

    The probability of an event's occurrence affects event-related potentials (ERPs) on electroencephalograms. The relation between probability and potentials has been discussed by using a quantity called surprise that represents the self-information that humans receive from the event. Previous studies have estimated surprise based on the probability distribution in a stationary state. Our hypothesis is that state transitions also play an important role in the estimation of surprise. In this study, we compare the effects of surprise on the ERPs based on two models that generate an event sequence: a model of a stationary state and a model with state transitions. To compare these effects, we generate the event sequences with Markov chains to avoid a situation that the state transition probability converges with the stationary probability by the accumulation of the event observations. Our trial-by-trial model-based analysis showed that the stationary probability better explains the P3b component and the state transition probability better explains the P3a component. The effect on P3a suggests that the internal model, which is constantly and automatically generated by the human brain to estimate the probability distribution of the events, approximates the model with state transitions because Bayesian surprise, which represents the degree of updating of the internal model, is highly reflected in P3a. The global effect reflected in P3b, however, may not be related to the internal model because P3b depends on the stationary probability distribution. The results suggest that an internal model can represent state transitions and the global effect is generated by a different mechanism than the one for forming the internal model. PMID:28289380

  14. Variation in Event-Related Potentials by State Transitions.

    PubMed

    Higashi, Hiroshi; Minami, Tetsuto; Nakauchi, Shigeki

    2017-01-01

    The probability of an event's occurrence affects event-related potentials (ERPs) on electroencephalograms. The relation between probability and potentials has been discussed by using a quantity called surprise that represents the self-information that humans receive from the event. Previous studies have estimated surprise based on the probability distribution in a stationary state. Our hypothesis is that state transitions also play an important role in the estimation of surprise. In this study, we compare the effects of surprise on the ERPs based on two models that generate an event sequence: a model of a stationary state and a model with state transitions. To compare these effects, we generate the event sequences with Markov chains to avoid a situation that the state transition probability converges with the stationary probability by the accumulation of the event observations. Our trial-by-trial model-based analysis showed that the stationary probability better explains the P3b component and the state transition probability better explains the P3a component. The effect on P3a suggests that the internal model, which is constantly and automatically generated by the human brain to estimate the probability distribution of the events, approximates the model with state transitions because Bayesian surprise, which represents the degree of updating of the internal model, is highly reflected in P3a. The global effect reflected in P3b, however, may not be related to the internal model because P3b depends on the stationary probability distribution. The results suggest that an internal model can represent state transitions and the global effect is generated by a different mechanism than the one for forming the internal model.

  15. Event-related potential indices of workload in a single task paradigm

    NASA Technical Reports Server (NTRS)

    Horst, R. L.; Munson, R. C.; Ruchkin, D. S.

    1984-01-01

    Many previous studies of both behavioral and physiological correlates of cognitive workload have burdened subjects with a contrived secondary task in order to assess the workload of a primary task. The present study investigated event-related potential (ERP) indices of workload in a single task paradigm. Subjects monitored changing digital readouts for values that went 'out-of-bounds'. The amplitude of a long-latency positivity in the ERPs elicited by readout changes increased with the number of readouts being monitored. This effect of workload on ERPs is reported, along with plans for additional analyses to address theoretical implications.

  16. Cognitive conflict in audiovisual integration: an event-related potential study.

    PubMed

    Yin, Qinqing; Qiu, Jiang; Zhang, Qinglin; Wen, Xiaohui

    2008-03-26

    This study used event-related potentials (ERPs) to investigate the electrophysiological correlates of cognitive conflict in audiovisual integration during an audiovisual task. ERP analyses revealed: (i) the anterior N1 and P1 were elicited in both matched and mismatched conditions and (ii) audiovisual mismatched answers elicited a more negative ERP deflection at 490 ms (N490) than matched answers. Dipole analysis of the difference wave (mismatched minus matched) localized the generator of the N490 to the posterior cingulate cortex, which may be involved in the control and modulation of conflict processing of Chinese characters when visual and auditory information is mismatched.

  17. Altered Dynamics of the fMRI Response to Faces in Individuals with Autism

    ERIC Educational Resources Information Center

    Kleinhans, Natalia M.; Richards, Todd; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth

    2016-01-01

    Abnormal fMRI habituation in autism spectrum disorders (ASDs) has been proposed as a critical component in social impairment. This study investigated habituation to fearful faces and houses in ASD and whether fMRI measures of brain activity discriminate between ASD and typically developing (TD) controls. Two identical fMRI runs presenting masked…

  18. Event-related theta synchronization predicts deficit in facial affect recognition in schizophrenia.

    PubMed

    Csukly, Gábor; Stefanics, Gábor; Komlósi, Sarolta; Czigler, István; Czobor, Pál

    2014-02-01

    Growing evidence suggests that abnormalities in the synchronized oscillatory activity of neurons in schizophrenia may lead to impaired neural activation and temporal coding and thus lead to neurocognitive dysfunctions, such as deficits in facial affect recognition. To gain an insight into the neurobiological processes linked to facial affect recognition, we investigated both induced and evoked oscillatory activity by calculating the Event Related Spectral Perturbation (ERSP) and the Inter Trial Coherence (ITC) during facial affect recognition. Fearful and neutral faces as well as nonface patches were presented to 24 patients with schizophrenia and 24 matched healthy controls while EEG was recorded. The participants' task was to recognize facial expressions. Because previous findings with healthy controls showed that facial feature decoding was associated primarily with oscillatory activity in the theta band, we analyzed ERSP and ITC in this frequency band in the time interval of 140-200 ms, which corresponds to the N170 component. Event-related theta activity and phase-locking to facial expressions, but not to nonface patches, predicted emotion recognition performance in both controls and patients. Event-related changes in theta amplitude and phase-locking were found to be significantly weaker in patients compared with healthy controls, which is in line with previous investigations showing decreased neural synchronization in the low frequency bands in patients with schizophrenia. Neural synchrony is thought to underlie distributed information processing. Our results indicate a less effective functioning in the recognition process of facial features, which may contribute to a less effective social cognition in schizophrenia.

  19. Molecular fMRI

    PubMed Central

    Bartelle, Benjamin B.; Barandov, Ali

    2016-01-01

    Comprehensive analysis of brain function depends on understanding the dynamics of diverse neural signaling processes over large tissue volumes in intact animals and humans. Most existing approaches to measuring brain signaling suffer from limited tissue penetration, poor resolution, or lack of specificity for well-defined neural events. Here we discuss a new brain activity mapping method that overcomes some of these problems by combining MRI with contrast agents sensitive to neural signaling. The goal of this “molecular fMRI” approach is to permit noninvasive whole-brain neuroimaging with specificity and resolution approaching current optical neuroimaging methods. In this article, we describe the context and need for molecular fMRI as well as the state of the technology today. We explain how major types of MRI probes work and how they can be sensitized to neurobiological processes, such as neurotransmitter release, calcium signaling, and gene expression changes. We comment both on past work in the field and on challenges and promising avenues for future development. SIGNIFICANCE STATEMENT Brain researchers currently have a choice between measuring neural activity using cellular-level recording techniques, such as electrophysiology and optical imaging, or whole-brain imaging methods, such as fMRI. Cellular level methods are precise but only address a small portion of mammalian brains; on the other hand, whole-brain neuroimaging techniques provide very little specificity for neural pathways or signaling components of interest. The molecular fMRI techniques we discuss have particular potential to combine the specificity of cellular-level measurements with the noninvasive whole-brain coverage of fMRI. On the other hand, molecular fMRI is only just getting off the ground. This article aims to offer a snapshot of the status and future prospects for development of molecular fMRI techniques. PMID:27076413

  20. Neurovascular coupling in normal aging: A combined optical, ERP and fMRI study

    PubMed Central

    Fabiani, Monica; Gordon, Brian A.; Maclin, Edward L.; Pearson, Melanie A.; Brumback-Peltz, Carrie R.; Low, Kathy A.; McAuley, Edward; Sutton, Bradley P.; Kramer, Arthur F.; Gratton, Gabriele

    2013-01-01

    Brain aging is characterized by changes in both hemodynamic and neuronal responses, which may be influenced by the cardiorespiratory fitness of the individual. To investigate the relationship between neuronal and hemodynamic changes, we studied the brain activity elicited by visual stimulation (checkerboard reversals at different frequencies) in younger adults and in older adults varying in physical fitness. Four functional brain measures were used to compare neuronal and hemodynamic responses obtained from BA17: two reflecting neuronal activity (the event-related optical signal, EROS, and the C1 response of the ERP), and two reflecting functional hemodynamic changes (functional magnetic resonance imaging, fMRI, and near-infrared spectroscopy, NIRS). The results indicated that both younger and older adults exhibited a quadratic relationship between neuronal and hemodynamic effects, with reduced increases of the hemodynamic response at high levels of neuronal activity. Although older adults showed reduced activation, similar neurovascular coupling functions were observed in the two age groups when fMRI and deoxy-hemoglobin measures were used. However, the coupling between oxy-and deoxy-hemoglobin changes decreased with age and increased with increasing fitness. These data indicate that departures from linearity in neurovascular coupling may be present when using hemodynamic measures to study neuronal function. PMID:23664952

  1. Hemispheric Differences in the Time-Course of Semantic Priming Processes: Evidence from Event-Related Potentials (ERPs)

    ERIC Educational Resources Information Center

    Bouaffre, Sarah; Faita-Ainseba, Frederique

    2007-01-01

    To investigate hemispheric differences in the timing of word priming, the modulation of event-related potentials by semantic word relationships was examined in each cerebral hemisphere. Primes and targets, either categorically (silk-wool) or associatively (needle-sewing) related, were presented to the left or right visual field in a go/no-go…

  2. Familiarization, Attention, and Recognition Memory in Infancy: An Event-Related Potential and Cortical Source Localization Study

    ERIC Educational Resources Information Center

    Reynolds, Greg D.; Richards, John E.

    2005-01-01

    This study investigated the effects of familiarization and attention on event-related potential (ERP) correlates of recognition memory in infants. Infants 4.5, 6, or 7.5 months of age were either familiarized with 2 stimuli that were used during later testing or presented 2 stimuli that were not used later. Then, infants were presented with a…

  3. Enhanced Development of Auditory Change Detection in Musically Trained School-Aged Children: A Longitudinal Event-Related Potential Study

    ERIC Educational Resources Information Center

    Putkinen, Vesa; Tervaniemi, Mari; Saarikivi, Katri; Ojala, Pauliina; Huotilainen, Minna

    2014-01-01

    Adult musicians show superior auditory discrimination skills when compared to non-musicians. The enhanced auditory skills of musicians are reflected in the augmented amplitudes of their auditory event-related potential (ERP) responses. In the current study, we investigated longitudinally the development of auditory discrimination skills in…

  4. Right Hemisphere Sensitivity to Word- and Sentence-Level Context: Evidence From Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Coulson, Seana; Federmeier, Kara D.; Van Petten, Cyma; Kutas, Marta

    2005-01-01

    Researchers using lateralized stimuli have suggested that the left hemisphere is sensitive to sentence-level context, whereas the right hemisphere (RH) primarily processes word-level meaning. The authors investigated this message-blind RH model by measuring associative priming with event-related brain potentials (ERPs). For word pairs in…

  5. Individual Differences in Nonverbal Number Discrimination Correlate with Event-Related Potentials and Measures of Probabilistic Reasoning

    ERIC Educational Resources Information Center

    Paulsen, David J.; Woldorff, Marty G.; Brannon, Elizabeth M.

    2010-01-01

    The current study investigated the neural activity patterns associated with numerical sensitivity in adults. Event-related potentials (ERPs) were recorded while adults observed sequentially presented display arrays (S1 and S2) of non-symbolic numerical stimuli (dots) and made same/different judgments of these stimuli by pressing a button only when…

  6. Reduced event-related current density in the anterior cingulate cortex in schizophrenia.

    PubMed

    Mulert, C; Gallinat, J; Pascual-Marqui, R; Dorn, H; Frick, K; Schlattmann, P; Mientus, S; Herrmann, W M; Winterer, G

    2001-04-01

    There is good evidence from neuroanatomic postmortem and functional imaging studies that dysfunction of the anterior cingulate cortex plays a prominent role in the pathophysiology of schizophrenia. So far, no electrophysiological localization study has been performed to investigate this deficit. We investigated 18 drug-free schizophrenic patients and 25 normal subjects with an auditory choice reaction task and measured event-related activity with 19 electrodes. Estimation of the current source density distribution in Talairach space was performed with low-resolution electromagnetic tomography (LORETA). In normals, we could differentiate between an early event-related potential peak of the N1 (90-100 ms) and a later N1 peak (120-130 ms). Subsequent current-density LORETA analysis in Talairach space showed increased activity in the auditory cortex area during the first N1 peak and increased activity in the anterior cingulate gyrus during the second N1 peak. No activation difference was observed in the auditory cortex between normals and patients with schizophrenia. However, schizophrenics showed significantly less anterior cingulate gyrus activation and slowed reaction times. Our results confirm previous findings of an electrical source in the anterior cingulate and an anterior cingulate dysfunction in schizophrenics. Our data also suggest that anterior cingulate function in schizophrenics is disturbed at a relatively early time point in the information-processing stream (100-140 ms poststimulus).

  7. Fluctuation amplitude and local synchronization of brain activity in the ultra-low frequency band: An fMRI investigation of continuous feedback of finger force.

    PubMed

    Zhang, Hang; Zhang, Lijuan; Zang, Yufeng

    2015-12-10

    Functional magnetic resonance imaging (fMRI) studies of motor feedback have suggested that brain activity in the ultra-low frequency band (0-0.01Hz) may be physiologically significant for various feedback conditions, i.e., real and sham feedback. However, the functional role of the ultra-low frequency band of brain activity during the feedback procedure remains unclear. Here, we carried out an fMRI study of continuous feedback (8min) of finger force and assessed two important properties of brain activity: the fluctuation amplitude and local synchronization in the ultra-low frequency band. Two intriguing results were obtained: (1) real feedback recruited a stronger fluctuation amplitude and local synchronization in the basal ganglia compared with sham feedback; however, no significant correlation was found between the two properties across subjects; and (2) the behavioral performance was significantly correlated with the fluctuation amplitude but was not correlated with local synchronization in the basal ganglia. These findings contribute to characterization of the functional role of brain activity in the ultra-low frequency band and further suggest that the fluctuation amplitude and local synchronization in the basal ganglia may contribute differently to motor feedback.

  8. Combining self-organizing mapping and supervised affinity propagation clustering approach to investigate functional brain networks involved in motor imagery and execution with fMRI measurements.

    PubMed

    Zhang, Jiang; Liu, Qi; Chen, Huafu; Yuan, Zhen; Huang, Jin; Deng, Lihua; Lu, Fengmei; Zhang, Junpeng; Wang, Yuqing; Wang, Mingwen; Chen, Liangyin

    2015-01-01

    Clustering analysis methods have been widely applied to identifying the functional brain networks of a multitask paradigm. However, the previously used clustering analysis techniques are computationally expensive and thus impractical for clinical applications. In this study a novel method, called SOM-SAPC that combines self-organizing mapping (SOM) and supervised affinity propagation clustering (SAPC), is proposed and implemented to identify the motor execution (ME) and motor imagery (MI) networks. In SOM-SAPC, SOM was first performed to process fMRI data and SAPC is further utilized for clustering the patterns of functional networks. As a result, SOM-SAPC is able to significantly reduce the computational cost for brain network analysis. Simulation and clinical tests involving ME and MI were conducted based on SOM-SAPC, and the analysis results indicated that functional brain networks were clearly identified with different response patterns and reduced computational cost. In particular, three activation clusters were clearly revealed, which include parts of the visual, ME and MI functional networks. These findings validated that SOM-SAPC is an effective and robust method to analyze the fMRI data with multitasks.

  9. Altered hub configurations within default mode network following acupuncture at ST36: a multimodal investigation combining fMRI and MEG.

    PubMed

    You, Youbo; Bai, Lijun; Dai, Ruwei; Cheng, Hao; Liu, Zhenyu; Wei, Wenjuan; Tian, Jie

    2013-01-01

    Acupuncture, an externally somatosensory stimulation in the Traditional Chinese Medicine, has been proposed about its modulations on the brain's default mode network (DMN). However, it is still unknown on how the internal brain resting networks are modulated and what inferences can be made about the physiological processes underlying these changes. Combining high spatial resolution of functional magnetic resonance imaging (fMRI) with high temporal resolution of magnetoencephalography (MEG), in the current multimodal study, we sought to explore spatiotemporally whether or not band-specific DMN hub configurations would be induced by verum acupuncture, compared with sham control. Spatial independent component analysis was applied to fMRI data, followed by the discrete regional sources seeded into MEG data. Partial correlation analysis was further adopted to estimate the intrinsic functional connectivity and network hub configurations. One of the most striking findings is that the posterior cingulate cortex is not only validated as a robust DMN hub, but served as a hub only within the delta and gamma bands following the verum acupuncture, compared with its consistently being a DMN hub in sham control group. Our preliminary results may provide a new perspective to lend support for the specificity of neural mechanism underlying acupuncture.

  10. Anticipatory regulation of action control in a simon task: behavioral, electrophysiological, and FMRI correlates.

    PubMed

    Strack, Gamze; Kaufmann, Christian; Kehrer, Stefanie; Brandt, Stephan; Stürmer, Birgit

    2013-01-01

    With the present study we investigated cue-induced preparation in a Simon task and measured electroencephalogram and functional magnetic resonance imaging (fMRI) data in two within-subjects sessions. Cues informed either about the upcoming (1) spatial stimulus-response compatibility (rule cues), or (2) the stimulus location (position cues), or (3) were non-informative. Only rule cues allowed anticipating the upcoming compatibility condition. Position cues allowed anticipation of the upcoming location of the Simon stimulus but not its compatibility condition. Rule cues elicited fastest and most accurate performance for both compatible and incompatible trials. The contingent negative variation (CNV) in the event-related potential (ERP) of the cue-target interval is an index of anticipatory preparation and was magnified after rule cues. The N2 in the post-target ERP as a measure of online action control was reduced in Simon trials after rule cues. Although compatible trials were faster than incompatible trials in all cue conditions only non-informative cues revealed a compatibility effect in additional indicators of Simon task conflict like accuracy and the N2. We thus conclude that rule cues induced anticipatory re-coding of the Simon task that did not involve cognitive conflict anymore. fMRI revealed that rule cues yielded more activation of the left rostral, dorsal, and ventral prefrontal cortex as well as the pre-SMA as compared to POS and NON-cues. Pre-SMA and ventrolateral prefrontal activation after rule cues correlated with the effective use of rule cues in behavioral performance. Position cues induced a smaller CNV effect and exhibited less prefrontal and pre-SMA contributions in fMRI. Our data point to the importance to disentangle different anticipatory adjustments that might also include the prevention of upcoming conflict via task re-coding.

  11. Hemodynamic Nonlinearities Affect BOLD fMRI Response Timing and Amplitude

    PubMed Central

    de Zwart, Jacco A; van Gelderen, Peter; Jansma, J Martijn; Fukunaga, Masaki; Bianciardi, Marta; Duyn, Jeff H

    2009-01-01

    The interpretation of functional Magnetic Resonance Imaging (fMRI) studies based on Blood Oxygen-Level Dependent (BOLD) contrast generally relies on the assumption of a linear relationship between evoked neuronal activity and fMRI response. While nonlinearities in this relationship have been suggested by a number of studies, it remains unclear to what extent they relate to the neurovascular response and are therefore inherent to BOLD-fMRI. Full characterization of potential vascular nonlinearities is required for accurate inferences about the neuronal system under study. To investigate the extent of vascular nonlinearities, evoked activity was studied in humans with BOLD-fMRI (n=28) and Magnetoencephalography (MEG) (n=5). Brief (600-800 ms) rapidly repeated (1 Hz) visual stimuli were delivered using a stimulation paradigm that minimized neuronal nonlinearities. Nevertheless, BOLD-fMRI experiments showed substantial remaining nonlinearities. The smallest stimulus separation (200-400 ms) resulted in significant response broadening (15-20% amplitude decrease; 10-12% latency increase; 6-14% duration increase) with respect to a linear prediction. The substantial slowing and widening of the response in the presence of preceding stimuli suggests a vascular rather than neuronal origin to the observed non-linearity. This was confirmed by the MEG data, which showed no significant neuro-electric nonlinear interactions between stimuli as little as 200 ms apart. The presence of substantial vascular nonlinearities has important implications for rapid event-related studies by fMRI and other imaging modalities that infer neuronal activity from hemodynamic parameters. PMID:19520175

  12. Event-related potentials to visual, auditory, and bimodal (combined auditory-visual) stimuli.

    PubMed

    Isoğlu-Alkaç, Ummühan; Kedzior, Karina; Keskindemirci, Gonca; Ermutlu, Numan; Karamursel, Sacit

    2007-02-01

    The purpose of this study was to investigate the response properties of event related potentials to unimodal and bimodal stimulations. The amplitudes of N1 and P2 were larger during bimodal evoked potentials (BEPs) than auditory evoked potentials (AEPs) in the anterior sites and the amplitudes of P1 were larger during BEPs than VEPs especially at the parieto-occipital locations. Responses to bimodal stimulation had longer latencies than responses to unimodal stimulation. The N1 and P2 components were larger in amplitude and longer in latency during the bimodal paradigm and predominantly occurred at the anterior sites. Therefore, the current bimodal paradigm can be used to investigate the involvement and location of specific neural generators that contribute to higher processing of sensory information. Moreover, this paradigm may be a useful tool to investigate the level of sensory dysfunctions in clinical samples.

  13. Disrupting pre-SMA activity impairs facial happiness recognition: an event-related TMS study.

    PubMed

    Rochas, Vincent; Gelmini, Lauriane; Krolak-Salmon, Pierre; Poulet, Emmanuel; Saoud, Mohamed; Brunelin, Jerome; Bediou, Benoit

    2013-07-01

    It has been suggested that the left pre-supplementary motor area (pre-SMA) could be implicated in facial emotion expression and recognition, especially for laughter/happiness. To test this hypothesis, in a single-blind, randomized crossover study, we investigated the impact of transcranial magnetic stimulation (TMS) on performances of 18 healthy participants during a facial emotion recognition task. Using a neuronavigation system based on T1-weighted magnetic resonance imaging of each participant, TMS (5 pulses, 10 Hz) was delivered over the pre-SMA or the vertex (control condition) in an event-related fashion after the presentation of happy, fear, and angry faces. Compared with performances during vertex stimulation, we observed that TMS applied over the left pre-SMA specifically disrupted facial happiness recognition (FHR). No difference was observed between the 2 conditions neither for fear and anger recognition nor for reaction times (RT). Thus, interfering with pre-SMA activity with event-related TMS after stimulus presentation produced a selective impairment in the recognition of happy faces. These findings provide new insights into the functional implication of the pre-SMA in FHR, which may rely on the mirror properties of pre-SMA neurons.

  14. Habituation and recovery of a slow negative wave of the event-related brain potential.

    PubMed

    Zimmer, Heinz

    2002-03-01

    This study is concerned with the question of whether the late, slow negative wave 2 (SNW2) component of the event-related brain potential is a component of the orienting response (OR). As habituation of the SNW2 would be an argument for such a link with the OR, it was investigated using a variant of the classical repetition/change paradigm. Results supported major claims to be made for a component of the OR: the amplitude of the vertex SNW2 exhibited roughly the typical exponential decline with repeated stimulations (six numeric verbal stimuli presented seriatim in an ascending order) and responded incrementally to a change, at least in a narrow time slot, i.e. it exhibited partial recovery to an out-of-sequence stimulus. These findings were accompanied by similar effects on an exemplary OR component, the skin conductance response, and on such possible components of the OR as heart rate deceleration and the vertex P3 of the event-related brain potential. In so far as OR components should behave in comparable fashion in response to orienting stimuli, it is thus reasonable to suppose that the SNW2 relates to the OR.

  15. The other-race effect for face perception: an event-related potential study.

    PubMed

    Herrmann, M J; Schreppel, T; Jäger, D; Koehler, S; Ehlis, A-C; Fallgatter, A J

    2007-07-01

    It is well known that a recognition bias can be observed whenever subjects have to decide whether they have seen a person before that belongs to a different ethnical group. Although this "other-race effect" is well documented on a behavioural level, its underlying mechanisms remain unclear. One plausible explanation might be that cortical areas involved in face processing are not as effective for other-race faces due to a missing experience with individuals from other ethnical groups. This interpretation is strongly supported by a functional magnetic resonance imaging study showing decreased brain activity on other-race faces. Furthermore, two event-related potential studies revealed differences in brain activity in the first 250 ms after face presentation, but with inconsistent results. Therefore, we investigated 12 Caucasian subjects, showing them faces of Asian and Caucasian subjects in a perceptual priming paradigm and measured the event-related brain potentials. On a behavioural level we found slower reaction times to Asian faces compared to Caucasian faces in the unprimed condition, reflecting a deficit for Caucasian subjects to process other-race faces. In accordance with these behavioural data we see a significantly reduced late N250r amplitude in the unprimed condition to the Asian faces compared to the Caucasian faces. These results clearly indicate that the other-race effect was present in our sample and very specific only in the unprimed condition around 350-450 ms after stimulus onset.

  16. Event-related responses to pronoun and proper name anaphors in parallel and nonparallel discourse structures.

    PubMed

    Streb, J; Rösler, F; Hennighausen, E

    1999-11-01

    The present study investigated event-related potential (ERP) effects of pronoun and proper name anaphors in both parallel and nonparallel discourse structures. Thirty-seven students processed 400 semantically different text passages. Each trial consisted of two sentences and a comprehension question. The first sentence introduced a protagonist who was referred to by an anaphoric word in the second sentence. The anaphoric word was either a pronoun or a repetition of the proper name of the protagonist and had either the same or a different syntactic role as its antecedent (subject or object). The sentences were presented word by word as rapid serial visual display. Event-related potentials were recorded from 61 scalp electrodes. In agreement with the parallel function strategy, nonparallel discourse structures required longer decision times and exhibited higher error rates than parallel structures. The ERPs revealed two effects: First, pronoun anaphors evoked a more pronounced negativity than proper name anaphors between 270 and 420 ms latency over the frontal cortex electrodes. Another relative negativity occurred between 510 and 600 ms over the parietal cortex electrodes. Second, anaphors in nonparallel positions were accompanied by a more pronounced negativity over the parietal cortex. These data support the idea that an anaphor in nonparallel position triggers extra processing steps, probably search processes in working memory which integrate currently encountered information with previously activated representations.

  17. Depression-Related Brain Connectivity Analyzed by EEG Event-Related Phase Synchrony Measure

    PubMed Central

    Li, Yuezhi; Kang, Cheng; Qu, Xingda; Zhou, Yunfei; Wang, Wuyi; Hu, Yong

    2016-01-01

    This study is to examine changes of functional connectivity in patients with depressive disorder using synchronous brain activity. Event-related potentials (ERPs) were acquired during a visual oddball task in 14 patients with depressive disorder and 19 healthy controls. Electroencephalogram (EEG) recordings were analyzed using event-related phase coherence (ERPCOH) to obtain the functional network. Alteration of the phase synchronization index (PSI) of the functional network was investigated. Patients with depression showed a decreased number of significant electrode pairs in delta phase synchronization, and an increased number of significant electrode pairs in theta, alpha and beta phase synchronization, compared with controls. Patients with depression showed lower target-dependent PSI increment in the frontal-parietal/temporal/occipital electrode pairs in delta-phase synchronization than healthy participants. However, patients with depression showed higher target-dependent PSI increments in theta band in the prefrontal/frontal and frontal-temporal electrode pairs, higher PSI increments in alpha band in the prefrontal pairs and higher increments of beta PSI in the central and right frontal-parietal pairs than controls. It implied that the decrease in delta PSI activity in major depression may indicate impairment of the connection between the frontal and parietal/temporal/occipital regions. The increase in theta, alpha and beta PSI in the frontal/prefrontal sites might reflect the compensatory mechanism to maintain normal cognitive performance. These findings may provide a foundation for a new approach to evaluate the effectiveness of therapeutic strategies for depression. PMID:27725797

  18. Event-related potential P2 correlates of implicit aesthetic experience.

    PubMed

    Wang, Xiaoyi; Huang, Yujing; Ma, Qingguo; Li, Nan

    2012-10-03

    Using event-related potential measures, the present study investigated the affective responses to aesthetic experience. To differentiate the objective aesthetic value from subjective aesthetic evaluation, an amended oddball task was used in which pendant pictures were presented as frequent nontarget stimuli, whereas the landscape pictures were presented as a rare target. The pendant pictures were chosen from the largest online store in China and divided into beautiful and less beautiful conditions by the sales ranking. A positive component, P2, was recorded for each condition on the participants' frontal, central and parietal scalp areas. Less beautiful pendants elicited greater amplitudes of P2 than the beautiful ones. This indicates that emotion arousal seems to occur at the early stage of processing of aesthetics and can be detected by the P2 component, implying that the event-related potential methodology may be a more sensitive measure of the beauty-related attention bias. From the perspective of artwork design and marketing, our finding also shows that P2 can potentially be used as a reference measure in consumer aesthetic experience.

  19. Synthetic event-related potentials: a computational bridge between neurolinguistic models and experiments.

    PubMed

    Barrès, Victor; Simons, Arthur; Arbib, Michael

    2013-01-01

    Our previous work developed Synthetic Brain Imaging to link neural and schema network models of cognition and behavior to PET and fMRI studies of brain function. We here extend this approach to Synthetic Event-Related Potentials (Synthetic ERP). Although the method is of general applicability, we focus on ERP correlates of language processing in the human brain. The method has two components: Phase 1: To generate cortical electro-magnetic source activity from neural or schema network models; and Phase 2: To generate known neurolinguistic ERP data (ERP scalp voltage topographies and waveforms) from putative cortical source distributions and activities within a realistic anatomical model of the human brain and head. To illustrate the challenges of Phase 2 of the methodology, spatiotemporal information from Friederici's 2002 model of auditory language comprehension was used to define cortical regions and time courses of activation for implementation within a forward model of ERP data. The cortical regions from the 2002 model were modeled using atlas-based masks overlaid on the MNI high definition single subject cortical mesh. The electromagnetic contribution of each region was modeled using current dipoles whose position and orientation were constrained by the cortical geometry. In linking neural network computation via EEG forward modeling to empirical results in neurolinguistics, we emphasize the need for neural network models to link their architecture to geometrically sound models of the cortical surface, and the need for conceptual models to refine and adopt brain-atlas based approaches to allow precise brain anchoring of their modules. The detailed analysis of Phase 2 sets the stage for a brief introduction to Phase 1 of the program, including the case for a schema-theoretic approach to language production and perception presented in detail elsewhere. Unlike Dynamic Causal Modeling (DCM) and Bojak's mean field model, Synthetic ERP builds on models of networks

  20. Too many trees to see the forest: performance, event-related potential, and functional magnetic resonance imaging manifestations of integrative congenital prosopagnosia.

    PubMed

    Bentin, Shlomo; Degutis, Joseph M; D'Esposito, Mark; Robertson, Lynn C

    2007-01-01

    Neuropsychological, event-related potential (ERP), and functional magnetic resonance imaging (fMRI) methods were combined to provide a comprehensive description of performance and neurobiological profiles for K.W., a case of congenital prosopagnosia. We demonstrate that K.W.'s visual perception is characterized by almost unprecedented inability to identify faces, a large bias toward local features, and an extreme deficit in global/configural processing that is not confined to faces. This pattern could be appropriately labeled congenital integrative prosopagnosia, and accounts for some, albeit not all, cases of face recognition impairments without identifiable brain lesions. Absence of face selectivity is evident in both biological markers of face processing, fMRI (the fusiform face area [FFA]), and ERPs (N170). Nevertheless, these two neural signatures probably manifest different perceptual mechanisms. Whereas the N170 is triggered by the occurrence of physiognomic stimuli in the visual field, the deficient face-selective fMRI activation in the caudal brain correlates with the severity of global processing deficits. This correlation suggests that the FFA might be associated with global/configural computation, a crucial part of face identification.

  1. Fractals properties of EEG during event-related desynchronization of motor imagery.

    PubMed

    Nguyen, Ngoc Quang; Truong, Quang Dang Khoa; Kondo, Toshiyuki

    2015-01-01

    Chaos and fractal dimension are emerging modalities for the research of electroencephalogram (EEG) signal processing. The capability of measuring non-linear characteristics of the fractal dimension enables new methodologies to identify distinct brain activities. Recent studies on the topic focus on utilizing various types of fractals as features in order to design better brain state classification system. However, we have little insight about the EEG signals projected in fractal dimension. In this paper, we investigate the relationship between the non-linear characteristics of ongoing EEG signals and event-related desynchronization (ERD) during motor imagery. We observed a considerable synchronization between ERD and fractal dimension. This finding suggests further usage of chaos and fractal theory in investigating brain activities.

  2. Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Jasdzewski, G.; Strangman, G.; Wagner, J.; Kwong, K. K.; Poldrack, R. A.; Boas, D. A.; Sutton, J. P. (Principal Investigator)

    2003-01-01

    Several current brain imaging techniques rest on the assumption of a tight coupling between neural activity and hemodynamic response. The nature of this neurovascular coupling, however, is not completely understood. There is some evidence for a decoupling of these processes at the onset of neural activity, which manifests itself as a momentary increase in the relative concentration of deoxyhemoglobin (HbR). The existence of this early component of the hemodynamic response function, however, is controversial, as it is inconsistently found. Near infrared spectroscopy (NIRS) allows quantification of levels of oxyhemoglobin (HbO(2)) and HbR during task performance in humans. We acquired NIRS data during performance of simple motor and visual tasks, using rapid-presentation event-related paradigms. Our results demonstrate that rapid, event-related NIRS can provide robust estimates of the hemodynamic response without artifacts due to low-frequency signal components, unlike data from blocked designs. In both the motor and visual data the onset of the increase in HbO(2) occurs before HbR decreases, and there is a poststimulus undershoot. Our results also show that total blood volume (HbT) drops before HbO(2) and undershoots baseline, raising a new issue for neurovascular models. We did not find early deoxygenation in the motor data using physiologically plausible values for the differential pathlength factor, but did find one in the visual data. We suggest that this difference, which is consistent with functional magnetic resonance imaging (fMRI) data, may be attributable to different capillary transit times in these cortices.

  3. Event-related changes of the prefrontal cortex oxygen delivery and metabolism during driving measured by hyperspectral fNIRS

    PubMed Central

    Nosrati, Reyhaneh; Vesely, Kristin; Schweizer, Tom A.; Toronov, Vladislav

    2016-01-01

    Recent technological advancements in optical spectroscopy allow for the construction of hyperspectral (broadband) portable tissue oximeters. In a series of our recent papers we have shown that hyperspectral NIRS (hNIRS) has similar or better capabilities in the absolute tissue oximetry as frequency-domain NIRS, and that hNIRS is also very efficient in measuring temporal changes in tissue hemoglobin concentration and oxygenation. In this paper, we extend the application of hNIRS to the measurement of event-related hemodynamic and metabolic functional cerebral responses during simulated driving. In order to check if hNIRS can detect event-related changes in the brain, we measured the concentration changes of oxygenated (HbO2) and deoxygenated (HHb) hemoglobin and of the oxidized state of cytochrome c oxidase, on the right and left prefrontal cortices (PFC) simultaneously during simulated driving on sixteen healthy right-handed participants (aged between 22–32). We used our in-house hNIRS system based on a portable spectrometer with cooled CCD detector and a driving simulator with a fully functional steering wheel and foot pedals. Each participant performed different driving tasks and participants were distracted during some driving conditions by asking general knowledge true/false questions. Our findings suggest that more complex driving tasks (non-distracted) deactivate PFC while distractions during driving significantly activate PFC, which is in agreement with previous fMRI results. Also, we found the changes in the redox state of the cytochrome C oxidase to be very consistent with those in the concentrations of HbO2 and HHb. Overall our findings suggest that in addition to the suitability of absolute tissue oximetry, hyperspectral NIRS may also offer advantages in functional brain imaging. In particular, it can be used to measure the metabolic functional brain activity during actual driving. PMID:27446658

  4. Event-related complexity analysis and its application in the detection of facial attractiveness.

    PubMed

    Deng, Zhidong; Zhang, Zimu

    2014-11-01

    In this study, an event-related complexity (ERC) analysis method is proposed and used to explore the neural correlates of facial attractiveness detection in the context of a cognitive experiment. The ERC method gives a quantitative index for measuring the diverse brain activation properties that represent the neural correlates of event-related responses. This analysis reveals distinct effects of facial attractiveness processing and also provides further information that could not have been achieved from event-related potential alone.

  5. Event-related EEG time-frequency PCA and the orienting reflex to auditory stimuli.

    PubMed

    Barry, Robert J; De Blasio, Frances M; Bernat, Edward M; Steiner, Genevieve Z

    2015-04-01

    We recently reported an auditory habituation series with counterbalanced indifferent and significant (counting) instructions. Time-frequency (t-f) analysis of electrooculogram-corrected EEG was used to explore event-related synchronization (ERS)/desynchronization (ERD) in four EEG bands using arbitrarily selected time epochs and traditional frequency ranges. ERS in delta, theta, and alpha, and subsequent ERD in theta, alpha, and beta, showed substantial decrement over trials, yet effects of stimulus significance (count vs. no-task) were minimal. Here, we used principal components analysis (PCA) of the t-f data to investigate the natural frequency and time combinations involved in such stimulus processing. We identified four ERS and four ERD t-f components: six showed decrement over trials, four showed count > no-task effects, and six showed Significance × Trial interactions. This increased sensitivity argues for the wider use of our data-driven t-f PCA approach.

  6. Bilingualism and increased attention to speech: Evidence from event-related potentials.

    PubMed

    Kuipers, Jan Rouke; Thierry, Guillaume

    2015-10-01

    A number of studies have shown that from an early age, bilinguals outperform their monolingual peers on executive control tasks. We previously found that bilingual children and adults also display greater attention to unexpected language switches within speech. Here, we investigated the effect of a bilingual upbringing on speech perception in one language. We recorded monolingual and bilingual toddlers' event-related potentials (ERPs) to spoken words preceded by pictures. Words matching the picture prime elicited an early frontal positivity in bilingual participants only, whereas later ERP amplitudes associated with semantic processing did not differ between groups. These results add to the growing body of evidence that bilingualism increases overall attention during speech perception whilst semantic integration is unaffected.

  7. Atypical brain responses to reward cues in autism as revealed by event-related potentials.

    PubMed

    Kohls, Gregor; Peltzer, Judith; Schulte-Rüther, Martin; Kamp-Becker, Inge; Remschmidt, Helmut; Herpertz-Dahlmann, Beate; Konrad, Kerstin

    2011-11-01

    Social motivation deficit theories suggest that children with autism do not properly anticipate and appreciate the pleasure of social stimuli. In this study, we investigated event-related brain potentials evoked by cues that triggered social versus monetary reward anticipation in children with autism. Children with autism showed attenuated P3 activity in response to cues associated with a timely reaction to obtain a reward, irrespective of reward type. We attribute this atypical P3 activity in response to reward cues as reflective of diminished motivated attention to reward signals, a possible contributor to reduced social motivation in autism. Thus, our findings suggest a general reward processing deficit rather than a specific social reward dysfunction in autism.

  8. Event-related potential evidence of accessing gender stereotypes to aid source monitoring.

    PubMed

    Leynes, P Andrew; Crawford, Jarret T; Radebaugh, Anne M; Taranto, Elizabeth

    2013-01-23

    Source memory for the speaker's voice (male or female) was investigated when semantic knowledge (gender stereotypes) could and could not inform the episodic source judgment while event-related potentials (ERPs) were recorded. Source accuracy was greater and response times were faster when stereotypes could predict the speaker's voice at test. Recollection supported source judgments in both conditions as indicated by significant parietal "old/new" ERP effects (500-800ms). Prototypical late ERP effects (the right frontal "old/new" effect and the late posterior negativity, LPN) were evident when source judgment was based solely on episodic memory. However, these two late ERP effects were diminished and a novel, frontal-negative ERP with left-central topography was observed when stereotypes aided source judgments. This pattern of ERP activity likely reflects activation of left frontal or left temporal lobes when semantic knowledge, in the form of a gender stereotype, is accessed to inform the episodic source judgment.

  9. Conveying the concept of movement in music: An event-related brain potential study.

    PubMed

    Zhou, Linshu; Jiang, Cunmei; Wu, Yingying; Yang, Yufang

    2015-10-01

    This study on event-related brain potential investigated whether music can convey the concept of movement. Using a semantic priming paradigm, natural musical excerpts were presented to non-musicians, followed by semantically congruent or incongruent pictures that depicted objects either in motion or at rest. The priming effects were tested in object decision and implicit recognition tasks to distinguish the effects of automatic conceptual activation from response competition. Results showed that in both tasks, pictures that were incongruent to preceding musical excerpts elicited larger N400 than congruent pictures, suggesting that music can prime the representations of movement concepts. Results of the multiple regression analysis showed that movement expression could be well predicted by specific acoustic and musical features, indicating the associations between music per se and the processing of iconic musical meaning.

  10. P300 component of event-related potentials in persons with asperger disorder.

    PubMed

    Iwanami, Akira; Okajima, Yuka; Ota, Haruhisa; Tani, Masayuki; Yamada, Takashi; Yamagata, Bun; Hashimoto, Ryuichiro; Kanai, Chieko; Takashio, Osamu; Inamoto, Atsuko; Ono, Taisei; Takayama, Yukiko; Kato, Nobumasa

    2014-10-01

    In the present study, we investigated auditory event-related potentials in adults with Asperger disorder and normal controls using an auditory oddball task and a novelty oddball task. Task performance and the latencies of P300 evoked by both target and novel stimuli in the two tasks did not differ between the two groups. Analysis of variance revealed that there was a significant interaction effect between group and electrode site on the mean amplitude of the P300 evoked by novel stimuli, which indicated that there was an altered distribution of the P300 in persons with Asperger disorder. In contrast, there was no significant interaction effect on the mean P300 amplitude elicited by target stimuli. Considering that P300 comprises two main subcomponents, frontal-central-dominant P3a and parietal-dominant P3b, our results suggested that persons with Asperger disorder have enhanced amplitude of P3a, which indicated activated prefrontal function in this task.

  11. Primary task event-related potentials related to different aspects of information processing

    NASA Technical Reports Server (NTRS)

    Munson, Robert C.; Horst, Richard L.; Mahaffey, David L.

    1988-01-01

    The results of two studies which investigated the relationships between cognitive processing and components of transient event-related potentials (ERPs) are presented in a task in which mental workload was manipulated. The task involved the monitoring of an array of discrete readouts for values that went out of bounds, and was somewhat analogous to tasks performed in cockpits. The ERPs elicited by the changing readouts varied with the number of readouts being monitored, the number of monitored readouts that were close to going out of bounds, and whether or not the change took a monitored readout out of bounds. Moreover, different regions of the waveform differentially reflected these effects. The results confirm the sensitivity of scalp-recorded ERPs to the cognitive processes affected by mental workload and suggest the possibility of extracting useful ERP indices of primary task performance in a wide range of man-machine settings.

  12. Event Related Potentials in the Understanding of Autism Spectrum Disorders: An Analytical Review

    PubMed Central

    Nelson, Charles A.

    2015-01-01

    In this paper we critically review the literature on the use of event related potentials (ERPs) to elucidate the neural sources of the core deficits in autism. We review auditory and visual ERP studies, and then review the use of ERPs in the investigation of executive function. We conclude that, in autism, impairments likely exist in both low and higher level auditory and visual processing, with prominent impairments in the processing of social stimuli. We also discuss the putative neural circuitry underlying these deficits. As we look to the future, we posit that tremendous insight can be gained by applying ERPs to the definition of endophenotypes, which, in turn, can facilitate early diagnosis and the creation of informed interventions for children with autism. PMID:18850262

  13. Event-related potentials increase the discrimination performance of the autonomic-based concealed information test.

    PubMed

    Matsuda, Izumi; Nittono, Hiroshi; Ogawa, Tokihiro

    2011-12-01

    The concealed information test (CIT) assesses an examinee's crime-relevant memory on the basis of physiological differences between crime-relevant and irrelevant items. The CIT based on autonomic measures has been used for criminal investigations, while the CIT based on event-related potentials (ERPs) has been suggested as a useful alternative. To combine these two methods, we developed a quantification method of ERPs measured in the autonomic-based CIT where each item was repeated only 5 times. Results showed that the peak amplitude of the ERP difference wave between crime-relevant and irrelevant items could discriminate between guilty and innocent participants effectively even when only 5 trials were used for averaging. This ERP measure could detect some participants who were missed by the autonomic measures. Combining the ERP and autonomic measures significantly improved the discrimination performance of the autonomic-based CIT.

  14. Information structure influences depth of syntactic processing: event-related potential evidence for the Chomsky illusion.

    PubMed

    Wang, Lin; Bastiaansen, Marcel; Yang, Yufang; Hagoort, Peter

    2012-01-01

    Information structure facilitates communication between interlocutors by highlighting relevant information. It has previously been shown that information structure modulates the depth of semantic processing. Here we used event-related potentials to investigate whether information structure can modulate the depth of syntactic processing. In question-answer pairs, subtle (number agreement) or salient (phrase structure) syntactic violations were placed either in focus or out of focus through information structure marking. P600 effects to these violations reflect the depth of syntactic processing. For subtle violations, a P600 effect was observed in the focus condition, but not in the non-focus condition. For salient violations, comparable P600 effects were found in both conditions. These results indicate that information structure can modulate the depth of syntactic processing, but that this effect depends on the salience of the information. When subtle violations are not in focus, they are processed less elaborately. We label this phenomenon the Chomsky illusion.

  15. Pitch Processing in Tonal-Language-Speaking Children with Autism: An Event-Related Potential Study.

    PubMed

    Yu, Luodi; Fan, Yuebo; Deng, Zhizhou; Huang, Dan; Wang, Suiping; Zhang, Yang

    2015-11-01

    The present study investigated pitch processing in Mandarin-speaking children with autism using event-related potential measures. Two experiments were designed to test how acoustic, phonetic and semantic properties of the stimuli contributed to the neural responses for pitch change detection and involuntary attentional orienting. In comparison with age-matched (6-12 years) typically developing controls (16 participants in Experiment 1, 18 in Experiment 2), children with autism (18 participants in Experiment 1, 16 in Experiment 2) showed enhanced neural discriminatory sensitivity in the nonspeech conditions but not for speech stimuli. The results indicate domain specificity of enhanced pitch processing in autism, which may interfere with lexical tone acquisition and language development for children who speak a tonal language.

  16. The effects of cortisol administration on approach-avoidance behavior: an event-related potential study.

    PubMed

    van Peer, Jacobien M; Roelofs, Karin; Rotteveel, Mark; van Dijk, J Gert; Spinhoven, Philip; Ridderinkhof, K Richard

    2007-10-01

    We investigated the effects of cortisol administration (50 mg) on approach and avoidance tendencies in low and high trait avoidant healthy young men. Event-related brain potentials (ERPs) were measured during a reaction time task, in which participants evaluated the emotional expression of photographs of happy and angry faces by making an approaching (flexion) or avoiding (extension) arm movement. The task consisted of an affect-congruent (approach happy faces and avoid angry faces) and an affect-incongruent (reversed instruction) condition. Behavioral and ERP analyses showed that cortisol enhanced congruency effects for angry faces in highly avoidant individuals only. The ERP effects involved an increase of both early (P150) and late (P3) positive amplitudes, indicative of increased processing of the angry faces in high avoidant subjects after cortisol administration. Together, these results suggest a context-specific effect of cortisol on processing of, and adaptive responses to, motivationally significant threat stimuli, particularly in participants highly sensitive to threat signals.

  17. When mental fatigue maybe characterized by Event Related Potential (P300) during virtual wheelchair navigation.

    PubMed

    Lamti, Hachem A; Gorce, Philippe; Ben Khelifa, Mohamed Moncef; Alimi, Adel M

    2016-12-01

    The goal of this study is to investigate the influence of mental fatigue on the event related potential P300 features (maximum pick, minimum amplitude, latency and period) during virtual wheelchair navigation. For this purpose, an experimental environment was set up based on customizable environmental parameters (luminosity, number of obstacles and obstacles velocities). A correlation study between P300 and fatigue ratings was conducted. Finally, the best correlated features supplied three classification algorithms which are MLP (Multi Layer Perceptron), Linear Discriminate Analysis and Support Vector Machine. The results showed that the maximum feature over visual and temporal regions as well as period feature over frontal, fronto-central and visual regions were correlated with mental fatigue levels. In the other hand, minimum amplitude and latency features didn't show any correlation. Among classification techniques, MLP showed the best performance although the differences between classification techniques are minimal. Those findings can help us in order to design suitable mental fatigue based wheelchair control.

  18. Positive bias in self-appraisals from friend's perspective: an event-related potential study.

    PubMed

    Li, Shifeng; Xu, Kepeng; Xu, Qiongying; Xia, Ruixue; Ren, Deyun; Zhou, Aibao

    2016-06-15

    The present study investigated how positive bias in self-appraisals is differentially modulated when taking a friend's versus a stranger's perspective. Reaction time and event-related potentials were recorded while the participants performed a self-descriptiveness task with positive and negative trait adjectives from one's own perspective, a friend's perspective, or a stranger's perspective. The results showed that faster reaction times and reduced N400 amplitudes were induced by positive relative to negative words both in the self-perspective and friend-perspective conditions, but not in the stranger-perspective condition. This suggests that the perceived closeness between oneself and the other may modulate the neural basis of positive bias in self-appraisals during perspective taking.

  19. Integrating the Meaning of Person Names into Discourse Context: An Event-Related Potential Study

    PubMed Central

    Wang, Lin; Yang, Yufang

    2013-01-01

    The meaning of person names is determined by their associated information. This study used event related potentials to investigate the time course of integrating the newly constructed meaning of person names into discourse context. The meaning of person names was built by two-sentence descriptions of the names. Then we manipulated the congruence of person names relative to discourse context in a way that the meaning of person names either matched or did not match the previous context. ERPs elicited by the names were compared between the congruent and the incongruent conditions. We found that the incongruent names elicited a larger N400 as well as a larger P600 compared to the congruent names. The results suggest that the meaning of unknown names can be effectively constructed from short linguistic descriptions and that the established meaning can be rapidly retrieved and integrated into contexts. PMID:24349462

  20. Archery performance level and repeatability of event-related EMG.

    PubMed

    Soylu, A R; Ertan, H; Korkusuz, F

    2006-12-01

    The purpose of the current study was to compare the repeatability of electromyographic linear envelopes (LE) of archery groups. Surface electromyography (EMG) signals of musculus flexor digitorum superficialis (MFDS) and extensor digitorum (MED) of 23 participants (seven skilled, six beginner archers and ten non-archers) were recorded during archery shooting. Two-second periods (clicker falls at first second) of 12 shots' EMG data were recorded, full-wave rectified and filtered (60 ms moving-average filter) for each participant's drawing arm. Repeatability was investigated by using a statistical criterion, variance ratio (VR). Archers' performances were evaluated in terms of FITA scores. The results showed that FITA scores were significantly correlated to the VRs of MFDS and MED. EMG LEs were more repeatable among archers than non-archers. Therefore, we inferred that VRs of MFDS and MED might be important variables for (a) assessing shooting techniques, (b) evaluation of archers' progress, and (c) selection of talented archers.

  1. Research of personal decision process using event-related potentials

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng

    2011-10-01

    To gain insights into the neural basis of such adaptive decision-making processes, we investigated the nature of learning process in humans playing a competitive game with binary choices, using a matching pennies game. As in reinforcement learning, the subject's choice during a competitive game was biased by its choice and reward history, as well as by the strategies of its opponent. Analyses of ERP data focused on the feedback-related negativity (FRN), we found that the magnitude of ERPs after losing to the computer opponent predicted whether subjects would change decision behavior on the subsequent trial. These findings provide novel evidence that humans engage a reinforcement learning process to adjust representations of competing decision options.

  2. The neural basis of love as a subliminal prime: an event-related functional magnetic resonance imaging study.

    PubMed

    Ortigue, S; Bianchi-Demicheli, F; Hamilton, A F de C; Grafton, S T

    2007-07-01

    Throughout the ages, love has been defined as a motivated and goal-directed mechanism with explicit and implicit mechanisms. Recent evidence demonstrated that the explicit representation of love recruits subcorticocortical pathways mediating reward, emotion, and motivation systems. However, the neural basis of the implicit (unconscious) representation of love remains unknown. To assess this question, we combined event-related functional magnetic resonance imaging (fMRI) with a behavioral subliminal priming paradigm embedded in a lexical decision task. In this task, the name of either a beloved partner, a neutral friend, or a passionate hobby was subliminally presented before a target stimulus (word, nonword, or blank), and participants were required to decide if the target was a word or not. Behavioral results showed that subliminal presentation of either a beloved's name (love prime) or a passion descriptor (passion prime) enhanced reaction times in a similar fashion. Subliminal presentation of a friend's name (friend prime) did not show any beneficial effects. Functional results showed that subliminal priming with a beloved's name (as opposed to either a friend's name or a passion descriptor) specifically recruited brain areas involved in abstract representations of others and the self, in addition to motivation circuits shared with other sources of passion. More precisely, love primes recruited the fusiform and angular gyri. Our findings suggest that love, as a subliminal prime, involves a specific neural network that surpasses a dopaminergic-motivation system.

  3. Non-extensive entropy and the extraction of BOLD spatial information in event-related functional MRI

    NASA Astrophysics Data System (ADS)

    Sturzbecher, M. J.; Tedeschi, W.; Cabella, B. C. T.; Baffa, O.; Neves, U. P. C.; de Araujo, D. B.

    2009-01-01

    Functional magnetic resonance imaging (fMRI) data analysis has been carried out recently in the framework of information theory, by means of the Shannon entropy. As a natural extension, a method based on the generalized Tsallis entropy was developed to the analysis event-related (ER-fMRI), where a brief stimulus is presented, followed by a long period of rest. The new technique aims for spatial localization neuronal activity due to a specific task. This method does not require a priori hypothesis of the hemodynamic response function (HRF) shape and the linear relation between BOLD responses with the presented task. Numerical simulations were performed so as to determine the optimal values of the Tsallis q parameter and the number of levels, L. In order to avoid undesirable divergences of the Tsallis entropy, only positive q values were studied. Results from simulated data (with L = 3) indicated that, for q = 0.8, the active brain areas are detected with the highest performance. Moreover, the method was tested for an in vivo experiment and demonstrated the ability to discriminate active brain regions that selectively responded to a bilateral motor task.

  4. Infant Auditory Processing and Event-related Brain Oscillations

    PubMed Central

    Musacchia, Gabriella; Ortiz-Mantilla, Silvia; Realpe-Bonilla, Teresa; Roesler, Cynthia P.; Benasich, April A.

    2015-01-01

    Rapid auditory processing and acoustic change detection abilities play a critical role in allowing human infants to efficiently process the fine spectral and temporal changes that are characteristic of human language. These abilities lay the foundation for effective language acquisition; allowing infants to hone in on the sounds of their native language. Invasive procedures in animals and scalp-recorded potentials from human adults suggest that simultaneous, rhythmic activity (oscillations) between and within brain regions are fundamental to sensory development; determining the resolution with which incoming stimuli are parsed. At this time, little is known about oscillatory dynamics in human infant development. However, animal neurophysiology and adult EEG data provide the basis for a strong hypothesis that rapid auditory processing in infants is mediated by oscillatory synchrony in discrete frequency bands. In order to investigate this, 128-channel, high-density EEG responses of 4-month old infants to frequency change in tone pairs, presented in two rate conditions (Rapid: 70 msec ISI and Control: 300 msec ISI) were examined. To determine the frequency band and magnitude of activity, auditory evoked response averages were first co-registered with age-appropriate brain templates. Next, the principal components of the response were identified and localized using a two-dipole model of brain activity. Single-trial analysis of oscillatory power showed a robust index of frequency change processing in bursts of Theta band (3 - 8 Hz) activity in both right and left auditory cortices, with left activation more prominent in the Rapid condition. These methods have produced data that are not only some of the first reported evoked oscillations analyses in infants, but are also, importantly, the product of a well-established method of recording and analyzing clean, meticulously collected, infant EEG and ERPs. In this article, we describe our method for infant EEG net

  5. Emotional Granularity Effects on Event-Related Brain Potentials during Affective Picture Processing

    PubMed Central

    Lee, Ja Y.; Lindquist, Kristen A.; Nam, Chang S.

    2017-01-01

    There is debate about whether emotional granularity, the tendency to label emotions in a nuanced and specific manner, is merely a product of labeling abilities, or a systematic difference in the experience of emotion during emotionally evocative events. According to the Conceptual Act Theory of Emotion (CAT) (Barrett, 2006), emotional granularity is due to the latter and is a product of on-going temporal differences in how individuals categorize and thus make meaning of their affective states. To address this question, the present study investigated the effects of individual differences in emotional granularity on electroencephalography-based brain activity during the experience of emotion in response to affective images. Event-related potentials (ERP) and event-related desynchronization and synchronization (ERD/ERS) analysis techniques were used. We found that ERP responses during the very early (60–90 ms), middle (270–300 ms), and later (540–570 ms) moments of stimulus presentation were associated with individuals’ level of granularity. We also observed that highly granular individuals, compared to lowly granular individuals, exhibited relatively stable desynchronization of alpha power (8–12 Hz) and synchronization of gamma power (30–50 Hz) during the 3 s of stimulus presentation. Overall, our results suggest that emotional granularity is related to differences in neural processing throughout emotional experiences and that high granularity could be associated with access to executive control resources and a more habitual processing of affective stimuli, or a kind of “emotional complexity.” Implications for models of emotion are also discussed. PMID:28392761

  6. Decreasing Ventromedial Prefrontal Cortex Activity During Sequential Risk-Taking: An fMRI Investigation of the Balloon Analog Risk Task

    PubMed Central

    Schonberg, Tom; Fox, Craig R.; Mumford, Jeanette A.; Congdon, Eliza; Trepel, Christopher; Poldrack, Russell A.

    2012-01-01

    Functional imaging studies examining the neural correlates of risk have mainly relied on paradigms involving exposure to simple chance gambles and an economic definition of risk as variance in the probability distribution over possible outcomes. However, there is little evidence that choices made during gambling tasks predict naturalistic risk-taking behaviors such as drug use, extreme sports, or even equity investing. To better understand the neural basis of naturalistic risk-taking, we scanned participants using fMRI while they completed the Balloon Analog Risk Task, an experimental measure that includes an active decision/choice component and that has been found to correlate with a number of naturalistic risk-taking behaviors. In the task, as in many naturalistic settings, escalating risk-taking occurs under uncertainty and might be experienced either as the accumulation of greater potential rewards, or as exposure to increasing possible losses (and decreasing expected value). We found that areas previously linked to risk and risk-taking (bilateral anterior insula, anterior cingulate cortex, and right dorsolateral prefrontal cortex) were activated as participants continued to inflate balloons. Interestingly, we found that ventromedial prefrontal cortex (vmPFC) activity decreased as participants further expanded balloons. In light of previous findings implicating the vmPFC in value calculation, this result suggests that escalating risk-taking in the task might be perceived as exposure to increasing possible losses (and decreasing expected value) rather than the increasing potential total reward relative to the starting point of the trial. A better understanding of how neural activity changes with risk-taking behavior in the task offers insight into the potential neural mechanisms driving naturalistic risk-taking. PMID:22675289

  7. Connectivity-based parcellation increases network detection sensitivity in resting state fMRI: An investigation into the cingulate cortex in autism

    PubMed Central

    Balsters, Joshua H.; Mantini, Dante; Apps, Matthew A.J.; Eickhoff, Simon B.; Wenderoth, Nicole

    2016-01-01

    Although resting state fMRI (RS-fMRI) is increasingly used to generate biomarkers of psychiatric illnesses, analytical choices such as seed size and placement can lead to variable findings. Seed placement especially impacts on RS-fMRI studies of Autism Spectrum Disorder (ASD), because individuals with ASD are known to possess more variable network topographies. Here, we present a novel pipeline for analysing RS-fMRI in ASD using the cingulate cortex as an exemplar anatomical region of interest. Rather than using seeds based on previous literature, or gross morphology, we used a combination of structural information, task-independent (RS-fMRI) and task-dependent functional connectivity (Meta-Analytic Connectivity Modeling) to partition the cingulate cortex into six subregions with unique connectivity fingerprints and diverse behavioural profiles. This parcellation was consistent between groups and highly replicable across individuals (up to 93% detection) suggesting that the organisation of cortico-cingulo connections is highly similar between groups. However, our results showed an age-related increase in connectivity between the anterior middle cingulate cortex and right lateral prefrontal cortex in ASD, whilst this connectivity decreased in controls. There was also a Group × Grey Matter (GM) interaction, showing increased connectivity between the anterior cingulate cortex and the rectal gyrus in concert with increasing rectal gyrus GM in controls. By comparing our approach to previously established methods we revealed that our approach improves network detection in both groups, and that the ability to detect group differences using 4 mm radius spheres varies greatly with seed placement. Using our multi-modal approach we find disrupted cortico-cingulo circuits that, based on task-dependent information, may contribute to ASD deficits in attention and social interaction. Moreover, we highlight how more sensitive approaches to RS-fMRI are crucial for establishing

  8. Leading the follower: an fMRI investigation of dynamic cooperativity and leader-follower strategies in synchronization with an adaptive virtual partner.

    PubMed

    Fairhurst, Merle T; Janata, Petr; Keller, Peter E

    2014-01-01

    From everyday experience we know that it is generally easier to interact with someone who adapts to our behavior. Beyond this, achieving a common goal will very much depend on who adapts to whom and to what degree. Therefore, many joint action tasks such as musical performance prove to be more successful when defined leader-follower roles are established. In the present study, we present a novel approach to explore the mechanisms of how individuals lead and, using functional magnetic resonance imaging (fMRI), probe the neural correlates of leading. Specifically, we implemented an adaptive virtual partner (VP), an auditory pacing signal, with which individuals were instructed to tap in synchrony while maintaining a steady tempo. By varying the degree of temporal adaptation (period correction) implemented by the VP, we manipulated the objective control individuals had to exert to maintain the overall tempo of the pacing sequence (which was prone to tempo drift with high levels of period correction). Our imaging data revealed that perceiving greater influence and leading are correlated with right lateralized frontal activation of areas involved in cognitive control and self-related processing. Using participants' subjective ratings of influence and task difficulty, we classified a subgroup of our cohort as "leaders", individuals who found the task of synchronizing easier when they felt more in control. Behavioral tapping measures showed that leaders employed less error correction and focused more on self-tapping (prioritizing the instruction to maintain the given tempo) than on the stability of the interaction (prioritizing the instruction to synchronize with the VP), with correlated activity in areas involved in self-initiated action including the pre-supplementary motor area.

  9. Interoception in insula subregions as a possible state marker for depression—an exploratory fMRI study investigating healthy, depressed and remitted participants

    PubMed Central

    Wiebking, Christine; de Greck, Moritz; Duncan, Niall W.; Tempelmann, Claus; Bajbouj, Malek; Northoff, Georg

    2015-01-01

    Background: Interoceptive awareness (iA), the awareness of stimuli originating inside the body, plays an important role in human emotions and psychopathology. The insula is particularly involved in neural processes underlying iA. However, iA-related neural activity in the insula during the acute state of major depressive disorder (MDD) and in remission from depression has not been explored. Methods: A well-established fMRI paradigm for studying (iA; heartbeat counting) and exteroceptive awareness (eA; tone counting) was used. Study participants formed three independent groups: patients suffering from MDD, patients in remission from MDD or healthy controls. Task-induced neural activity in three functional subdivisions of the insula was compared between these groups. Results: Depressed participants showed neural hypo-responses during iA in anterior insula regions, as compared to both healthy and remitted participants. The right dorsal anterior insula showed the strongest response to iA across all participant groups. In depressed participants there was no differentiation between different stimuli types in this region (i.e., between iA, eA and noTask). Healthy and remitted participants in contrast showed clear activity differences. Conclusions: This is the first study comparing iA and eA-related activity in the insula in depressed participants to that in healthy and remitted individuals. The preliminary results suggest that these groups differ in there being hypo-responses across insula regions in the depressed participants, whilst non-psychiatric participants and patients in remission from MDD show the same neural activity during iA in insula subregions implying a possible state marker for MDD. The lack of activity differences between different stimulus types in the depressed group may account for their symptoms of altered external and internal focus. PMID:25914633

  10. Neural correlates of "analytical-specific visual perception" and degree of task difficulty as investigated by the Mangina-Test: a functional magnetic resonance imaging (fMRI) study in young healthy adults.

    PubMed

    Mangina, Constantine A; Beuzeron-Mangina, Helen; Ricciardi, Emiliano; Pietrini, Pietro; Chiarenza, Giuseppe A; Casarotto, Silvia

    2009-08-01

    The Mangina-Test is a neuropsychometric method for evaluating varying degrees of "analytical-specific perception" as they relate to learning abilities and disabilities. It consists of the identification of simple stimuli which are masked within a complex configuration according to their exact size, dimension, direction, spatial orientation, and shape within a limited span of time. This test has been successfully applied in clinical settings for the assessment of cognitive abilities and disorders in young and elderly populations. This investigation aimed to examine the neural correlates of analytical-specific visual perceptual processes as measured by the Mangina-Test. Functional Magnetic Resonance Imaging (fMRI) was recorded during the administration of a computer-adapted version of the Mangina-Test in twelve young healthy adults. Multiple linear regression analysis was applied to estimate the overall brain activation during task accomplishment. In addition, the fMRI response area was correlated with task difficulty, in order to explore the spatial distribution of brain regions modulated by increasing task demand. Results indicate that a widely distributed bilateral network of brain regions, including the ventral and dorsal occipital cortex, parietal lobule, frontal and supplementary eye field, dorsolateral prefrontal cortex, and supplementary motor area, was significantly activated during test performance. Moreover, increasing difficulty significantly enhanced the neural response of ventral and dorsal occipital regions, frontal eye field, and superior parietal sulcus bilaterally, as well as the right dorsolateral prefrontal cortex. Conversely, neural activity in the left temporo-parietal junction, inferior frontal gyrus, and bilateral middle-superior temporal cortex was inversely correlated with task difficulty. Results also indicate that performance in the Mangina-Test requires an optimal integration between the enhancement of activity in specific task

  11. Performance monitoring in autism spectrum disorders: A systematic literature review of event-related potential studies.

    PubMed

    Hüpen, Philippa; Groen, Yvonne; Gaastra, Geraldina F; Tucha, Lara; Tucha, Oliver

    2016-04-01

    Autism spectrum disorder (ASD) is marked by impairments in social-emotional situations, executive functioning, and behavioral regulation. These symptoms may be related to deficits in performance monitoring, i.e., the ability to observe and evaluate one's own behavior and performance which is necessary for the regulation of future behavior. The present literature review investigated electroencephalic correlates of performance monitoring in ASD. Event-related potentials (ERPs) considered in this review included internal performance monitoring components (error-related negativity, error positivity), external performance monitoring components (feedback-related negativity, feedback-P3), and observational performance monitoring components (observer error-related negativity, observer feedback-related negativity). The majority of studies point to reduced internal performance monitoring in ASD. External performance monitoring in reward-processing paradigms, where rewards are independent of performance, seems to be intact in ASD. So far, no studies have investigated the observer error-related negativity in ASD. Available data on the observer feedback-related negativity are inconclusive, since only two studies with differential study results investigated this construct in ASD. In general, results suggest that individuals with ASD have problems with internal performance monitoring and with learning from external, abstract feedback. In contrast, the processing of external, concrete feedback seems to be largely intact in ASD.

  12. Areas of the Brain Modulated by Single-Dose Methylphenidate Treatment in Youth with ADHD During Task-Based fMRI: A Systematic Review

    PubMed Central

    Czerniak, Suzanne M.; Sikoglu, Elif M.; King, Jean A.; Kennedy, David N.; Mick, Eric; Frazier, Jean; Moore, Constance M.

    2014-01-01

    Objective Attention-Deficit/Hyperactivity Disorder (ADHD) is a psychiatric disorder affecting 5% of children. Methylphenidate (MPH) is a common medication for ADHD. Studies examining MPH's effect on pediatric ADHD patients' brain function using functional Magnetic Resonance Imaging (fMRI) have not been compiled. The goals of this systematic review were to determine (1) which area(s) of the brain in pediatric ADHD patients are modulated by a single dose of MPH, (2) if areas modulated by MPH differ by task type performed during fMRI data acquisition, (3) whether changes in brain activation due to MPH relate to clinical improvements in ADHD-related symptoms. Method We searched the electronic databases PubMed and PsycINFO (1967 to 2011) using the following terms: ADHD AND (methylphenidate OR MPH OR ritalin) AND (neuroimaging OR MRI OR fMRI OR BOLD OR event related) and identified 200 abstracts, 9 of which were reviewed based on predefined criteria. Results The middle and inferior frontal gyri, basal ganglia, and cerebellum were most often affected by MPH within ADHD patients. The middle and inferior frontal gyri were frequently affected by MPH during inhibitory control tasks. Correlation between brain regions and clinical improvement was not possible due to the lack of symptom improvement measures within the included studies. Conclusions Throughout nine task-based fMRI studies investigating MPH's effect on the brains of pediatric patients with ADHD, MPH resulted in increased activation within frontal lobes, basal ganglia, and cerebellum. In most cases, this increase “normalized” activation of at least some brain areas to that seen in typically developing children. PMID:23660970

  13. Enhancement of activity of the primary visual cortex during processing of emotional stimuli as measured with event-related functional near-infrared spectroscopy and event-related potentials.

    PubMed

    Herrmann, Martin J; Huter, Theresa; Plichta, Michael M; Ehlis, Ann-Christine; Alpers, Georg W; Mühlberger, Andreas; Fallgatter, Andreas J

    2008-01-01

    In this study we investigated whether event-related near-infrared spectroscopy (NIRS) is suitable to measure changes in brain activation of the occipital cortex modulated by the emotional content of the visual stimuli. As we found in a previous pilot study that only positive but not negative stimuli differ from neutral stimuli (with respect to oxygenated haemoglobin), we now measured the event-related EEG potentials and NIRS simultaneously during the same session. Thereby, we could evaluate whether the subjects (n = 16) processed the positive as well as the negative emotional stimuli in a similar way. During the task, the subjects passively viewed positive, negative, and neutral emotional pictures (40 presentations were shown in each category, and pictures were taken from the International Affective Picture System, IAPS). The stimuli were presented for 3 s in a randomized order (with a mean of 3 s interstimulus interval). During the task, we measured the event-related EEG potentials over the electrode positions O1, Oz, O2, and Pz and the changes of oxygenated and deoxygenated haemoglobin by multichannel NIRS over the occipital cortex. The EEG results clearly show an increased early posterior negativity over the occipital cortex for both positive as well as negative stimuli compared to neutral. The results for the NIRS measurement were less clear. Although positive as well as negative stimuli lead to significantly higher decrease in deoxygenated haemoglobin than neutral stimuli, this was not found for the oxygenated haemoglobin.

  14. Test-retest reliability of infant event related potentials evoked by faces.

    PubMed

    Munsters, N M; van Ravenswaaij, H; van den Boomen, C; Kemner, C

    2017-04-05

    Reliable measures are required to draw meaningful conclusions regarding developmental changes in longitudinal studies. Little is known, however, about the test-retest reliability of face-sensitive event related potentials (ERPs), a frequently used neural measure in infants. The aim of the current study is to investigate the test-retest reliability of ERPs typically evoked by faces in 9-10 month-old infants. The infants (N=31) were presented with neutral, fearful and happy faces that contained only the lower or higher spatial frequency information. They were tested twice within two weeks. The present results show that the test-retest reliability of the face-sensitive ERP components is moderate (P400 and Nc) to substantial (N290). However, there is low test-retest reliability for the effects of the specific experimental manipulations (i.e. emotion and spatial frequency) on the face-sensitive ERPs. To conclude, in infants the face-sensitive ERP components (i.e. N290, P400 and Nc) show adequate test-retest reliability, but not the effects of emotion and spatial frequency on these ERP components. We propose that further research focuses on investigating elements that might increase the test-retest reliability, as adequate test-retest reliability is necessary to draw meaningful conclusions on individual developmental trajectories of the face-sensitive ERPs in infants.

  15. Causality in the Association between P300 and Alpha Event-Related Desynchronization

    PubMed Central

    Zhang, Zhiguo; Hu, Yong

    2012-01-01

    Recent findings indicated that both P300 and alpha event-related desynchronization (α-ERD) were associated, and similarly involved in cognitive brain functioning, e.g., attention allocation and memory updating. However, an explicit causal influence between the neural generators of P300 and α-ERD has not yet been investigated. In the present study, using an oddball task paradigm, we assessed the task effect (target vs. non-target) on P300 and α-ERD elicited by stimuli of four sensory modalities, i.e., audition, vision, somatosensory, and pain, estimated their respective neural generators, and investigated the information flow among their neural generators using time-varying effective connectivity in the target condition. Across sensory modalities, the scalp topographies of P300 and α-ERD were similar and respectively maximal at parietal and occipital regions in the target condition. Source analysis revealed that P300 and α-ERD were mainly generated from posterior cingulate cortex and occipital lobe respectively. As revealed by time-varying effective connectivity, the cortical information was consistently flowed from α-ERD sources to P300 sources in the target condition for all four sensory modalities. All these findings showed that P300 in the target condition is modulated by the changes of α-ERD, which would be useful to explore neural mechanism of cognitive information processing in the human brain. PMID:22511933

  16. An Event-Related Potential Study of Social Information Processing in Adolescents.

    PubMed

    diFilipo, Danielle; Grose-Fifer, Jillian

    2016-01-01

    Increased social awareness is a hallmark of adolescence. The primary aim of this event-related potential study was to investigate whether adolescents, in comparison to adults, would show relatively enhanced early neural processing of complex pictures containing socially-relevant information. A secondary aim was to investigate whether there are also gender and age differences in the ways adolescents and adults process social and nonsocial information. We recorded EEGs from 12-17 year-olds and 25-37 year-olds (N = 59) while they viewed pleasant pictures from the International Affective Picture System. We found age-related amplitude differences in the N1 and the LPP, and gender-related differences in the N2 region for socially-relevant stimuli. Social pictures (featuring mostly young children and adults) elicited larger N1s than nonsocial stimuli in adolescents, but not adults, whereas larger LPPs to social stimuli were seen in adults, but not adolescents. Furthermore, in general, males (regardless of age) showed larger N2s to nonsocial than to social images, but females did not. Our results imply that compared to adults, adolescents show relatively greater initial orientation toward social than toward nonsocial stimuli.

  17. Processing of musical syntax tonic versus subdominant: an event-related potential study.

    PubMed

    Poulin-Charronnat, Bénédicte; Bigand, Emmanuel; Koelsch, Stefan

    2006-09-01

    The present study investigates the effect of a change in syntactic-like musical function on event-related brain potentials (ERPs). Eight-chord piano sequences were presented to musically expert and novice listeners. Instructed to watch a movie and to ignore the musical sequences, the participants had to react when a chord was played with a different instrument than the piano. Participants were not informed that the relevant manipulation was the musical function of the last chord (target) of the sequences. The target chord acted either as a syntactically stable tonic chord (i.e., a C major chord in the key of C major) or as a less syntactically stable subdominant chord (i.e., a C major chord in the key of G major). The critical aspect of the results related to the impact such a manipulation had on the ERPs. An N5-like frontal negative component was found to be larger for subdominant than for tonic chords and attained significance only in musically expert listeners. These findings suggest that the subdominant chord is more difficult to integrate with the previous context than the tonic chord (as indexing by the observed N5) and that the processing of a small change in musical function occurs in an automatic way in musically expert listeners. The present results are discussed in relation to previous studies investigating harmonic violations with ERPs.

  18. An Event-Related Potential Study of Social Information Processing in Adolescents

    PubMed Central

    diFilipo, Danielle; Grose-Fifer, Jillian

    2016-01-01

    Increased social awareness is a hallmark of adolescence. The primary aim of this event-related potential study was to investigate whether adolescents, in comparison to adults, would show relatively enhanced early neural processing of complex pictures containing socially-relevant information. A secondary aim was to investigate whether there are also gender and age differences in the ways adolescents and adults process social and nonsocial information. We recorded EEGs from 12–17 year-olds and 25–37 year-olds (N = 59) while they viewed pleasant pictures from the International Affective Picture System. We found age-related amplitude differences in the N1 and the LPP, and gender-related differences in the N2 region for socially-relevant stimuli. Social pictures (featuring mostly young children and adults) elicited larger N1s than nonsocial stimuli in adolescents, but not adults, whereas larger LPPs to social stimuli were seen in adults, but not adolescents. Furthermore, in general, males (regardless of age) showed larger N2s to nonsocial than to social images, but females did not. Our results imply that compared to adults, adolescents show relatively greater initial orientation toward social than toward nonsocial stimuli. PMID:27192210

  19. A step into the anarchist’s mind: examining political attitudes and ideology through event-related brain potentials

    PubMed Central

    Van Hiel, Alain; Pattyn, Sven; Onraet, Emma; Severens, Els

    2012-01-01

    The present study investigates patterns of event-related brain potentials following the presentation of attitudinal stimuli among political moderates (N = 12) and anarchists (N = 11). We used a modified oddball paradigm to investigate the evaluative inconsistency effect elicited by stimuli embedded in a sequence of contextual stimuli with an opposite valence. Increased late positive potentials (LPPs) of extreme political attitudes were observed. Moreover, this LPP enhancement was larger among anarchists than among moderates, indicating that an extreme political attitude of a moderate differs from an extreme political attitude of an anarchist. The discussion elaborates on the meaning of attitude extremity for moderates and extremists. PMID:21421734

  20. A Longitudinal Investigation of Visual Event-Related Potentials in the First Year of Life

    ERIC Educational Resources Information Center

    Webb, Sara J.; Long, Jeffrey D.; Nelson, Charles A.

    2005-01-01

    The goal of the current study was to assess general maturational changes in the ERP in the same sample of infants from 4 to 12 months of age. All participants were tested in two experimental manipulations at each age: a test of facial recognition and one of object recognition. Two sets of analyses were undertaken. First, growth curve modeling with…

  1. Do Children with Autism "Switch Off" to Speech Sounds? An Investigation Using Event-Related Potentials

    ERIC Educational Resources Information Center

    Whitehouse, Andrew J. O.; Bishop, Dorothy V. M.

    2008-01-01

    Autism is a disorder characterized by a core impairment in social behaviour. A prominent component of this social deficit is poor orienting to speech. It is unclear whether this deficit involves an impairment in allocating attention to speech sounds, or a sensory impairment in processing phonetic information. In this study, event-related…

  2. Extraversion and short-term memory for chromatic stimuli: an event-related potential analysis.

    PubMed

    Stauffer, Corinne C; Indermühle, Rebekka; Troche, Stefan J; Rammsayer, Thomas H

    2012-10-01

    The present study investigated extraversion-related individual differences in visual short-term memory (VSTM) functioning. Event related potentials were recorded from 50 introverts and 50 extraverts while they performed a VSTM task based on a color-change detection paradigm with three different set sizes. Although introverts and extraverts showed almost identical hit rates and reaction times, introverts displayed larger N1 amplitudes than extraverts independent of color change or set size. Extraverts also showed larger P3 amplitudes compared to introverts when there was a color change, whereas no extraversion-related difference in P3 amplitude was found in the no-change condition. Our findings provided the first experimental evidence that introverts' greater reactivity to punctuate physical stimulation, as indicated by larger N1 amplitude, also holds for complex visual stimulus patterns. Furthermore, P3 amplitude in the change condition was larger for extraverts than introverts suggesting higher sensitivity to context change. Finally, there were no extraversion-related differences in P3 amplitude dependent on set size. This latter finding does not support the resource allocation explanation as a source of differences between introverts and extraverts.

  3. Altered semantic integration in autism beyond language: a cross-modal event-related potentials study.

    PubMed

    Ribeiro, Tatiane C; Valasek, Claudia A; Minati, Ludovico; Boggio, Paulo S

    2013-05-29

    Autism spectrum disorders (ASDs) are characterized by impaired communication, particularly pragmatic and semantic language, resulting in verbal comprehension deficits. Semantic processing in these conditions has been studied extensively, but mostly limited only to linguistic material. Emerging evidence, however, suggests that semantic integration deficits may extend beyond the verbal domain. Here, we explored cross-modal semantic integration using visual targets preceded by musical and linguistic cues. Particularly, we have recorded the event-related potentials to evaluate whether the N400 and late positive potential (LPP) components, two widely studied electrophysiological markers of semantic processing, are differently sensitive to congruence with respect to typically developing children. Seven ASD patients and seven neurotypical participants matched by age, education and intelligence quotient provided usable data. Neuroelectric activity was recorded in response to visual targets that were related or unrelated to a preceding spoken sentence or musical excerpt. The N400 was sensitive to semantic congruence in the controls but not the patients, whereas the LPP showed a complementary pattern. These results suggest that semantic processing in ASD children is also altered in the context of musical and visual stimuli, and point to a functional decoupling between the generators of the N400 and LPP, which may indicate delayed semantic processing. These novel findings underline the importance of exploring semantic integration across multiple modalities in ASDs and provide motivation for further investigation in large clinical samples.

  4. Event-related potentials and neural oscillations dissociate levels of cognitive control.

    PubMed

    Lu, Mingou; Doñamayor, Nuria; Münte, Thomas F; Bahlmann, Jörg

    2017-03-01

    Recent models of human behavior suggest a hierarchical organization of cognitive control processes. These models assume that different sub-goals of cognitive control processes are nested in each other, such that higher-level sub-goals can only be accomplished when lower-level sub-goals have been realized. While the neuroanatomical localization of this organizational principle has already been successfully tested, the exact temporal nature remains to be explored. The present study applied event-related potentials (ERPs) and investigated neural oscillations during performance of three different nested cognitive control tasks. Results demonstrated a parametric modulation of the P300 component as well as beta-band (13-25Hz) oscillations as a function of different levels of cognitive control. Moreover, conditions requiring flexible updating of information exhibited similar alpha-band (8-13Hz) oscillations, which differed from the condition without flexible updating (low-level). These results suggest dissociable mechanisms of flexible information updating and complexity of cognitive control processes indexed by different oscillatory effects.

  5. (De-)accentuation and the process of information status: evidence from event-related brain potentials.

    PubMed

    Baumann, Stefan; Schumacher, Petra B

    2012-09-01

    The paper reports on a perception experiment in German that investigated the neuro-cognitive processing of information structural concepts and their prosodic marking using event-related brain potentials (ERPs). Experimental conditions controlled the information status (given vs. new) of referring and non-referring target expressions (nouns vs. adjectives) and were elicited via context sentences, which did not - unlike most previous ERP studies in the field--trigger an explicit focus expectation. Target utterances displayed prosodic realizations of the critical words which differed in accent position and accent type. Electrophysiological results showed an effect of information status, maximally distributed over posterior sites, displaying a biphasic N400--Late Positivity pattern for new information. We claim that this pattern reflects increased processing demands associated with new information, with the N400 indicating enhanced costs from linking information with the previous discourse and the Late Positivity indicating the listener's effort to update his/her discourse model. The prosodic manipulation registered more pronounced effects over anterior regions and revealed an enhanced negativity followed by a Late Positivity for deaccentuation, probably also reflecting costs from discourse linking and updating respectively. The data further lend indirect support for the idea that givenness applies not only to referents but also to non-referential expressions ('lexical givenness').

  6. The cognitive mechanisms underlying deception: an event-related potential study.

    PubMed

    Suchotzki, Kristina; Crombez, Geert; Smulders, Fren T Y; Meijer, Ewout; Verschuere, Bruno

    2015-03-01

    The cognitive view on deception proposes that lying comes with a cognitive cost. This view is supported by the finding that lying typically takes longer than truth telling. Event-related potentials (ERPs) provide a means to unravel the cognitive processes underlying this cost. Using a mock-crime design, the current study (n=20) investigated the effects of deception on the Contingent Negative Variation (CNV), the Lateralized Readiness Potential (LRP), the Correct Response Negativity (CRN), and the stimulus-locked N200 and P300 components. In line with previous research, lying resulted in more errors, longer reaction times (RTs) and longer RT standard deviations compared to truthful responses. A marginally significant effect suggested a stronger CNV for the anticipation of lying compared to the anticipation of truth telling. There were no significant deception effects on the stimulus- and the response-locked LRPs. Unexpectedly, we found a significantly larger CRN for truth telling compared to lying. Additional analyses revealed an enhanced N200 and a decreased P300 for lying compared to truth telling. Our results support the cognitive load hypothesis for lying, yet are mixed regarding the response conflict hypothesis. Results are discussed with regard to the specific characteristics of our design and their theoretical and applied implications.

  7. Distraction in a visual multi-deviant paradigm: behavioral and event-related potential effects.

    PubMed

    Grimm, Sabine; Bendixen, Alexandra; Deouell, Leon Y; Schröger, Erich

    2009-06-01

    The present study aimed at investigating visual distraction in a serial, multi-deviant oddball paradigm with deviant stimuli occurring regularly (every third trial), having a larger overall probability (1/3), and low dimension-specific probability (1/9). Participants performed a categorization task (odd/even) on centrally presented digits. Task-irrelevant geometrical forms were presented concurrently in the left and right periphery of the target. These forms were green triangles that, in every third trial, contained a deviancy either in location, color, or shape at the left or right peripheral position. Behavioral performance and event-related potentials (ERPs) were measured during the multi-deviant blocks and during corresponding control blocks to compensate for physical differences. Results revealed prolonged reaction times for the categorization task in trials containing a deviant feature relative to the respective control condition. Furthermore, two negative shifts were observed in the ERPs for deviant compared to control stimuli, the early one at the ascending part of the N1 component, and the later one at the onset latency of the N2 component. Deviant displays violating a sequential regularity on one of the dimensions thus elicit respective posterior ERP components of change detection and a deterioration in task performance even when they occur as frequently as in every third trial of a sequence. In analogy to findings in audition, these results reveal the importance of regularity processing and its immediate consequences for adaptive behavior also in vision.

  8. Cognitive processing effects on auditory event-related potentials and the evoked cardiac response.

    PubMed

    Lawrence, Carlie A; Barry, Robert J

    2010-11-01

    The phasic evoked cardiac response (ECR) produced by innocuous stimuli requiring cognitive processing may be described as the sum of two independent response components. An initial heart rate (HR) deceleration (ECR1), and a slightly later HR acceleration (ECR2), have been hypothesised to reflect stimulus registration and cognitive processing load, respectively. This study investigated the effects of processing load in the ECR and the event-related potential, in an attempt to find similarities between measures found important in the autonomic orienting reflex context and ERP literature. We examined the effects of cognitive load within-subjects, using a long inter-stimulus interval (ISI) ANS-style paradigm. Subjects (N=40) were presented with 30-35 80dB, 1000Hz tones with a variable long ISI (7-9s), and required to silently count, or allowed to ignore, the tone in two counterbalanced stimulus blocks. The ECR showed a significant effect of counting, allowing separation of the two ECR components by subtracting the NoCount from the Count condition. The auditory ERP showed the expected obligatory processing effects in the N1, and substantial effects of cognitive load in the late positive complex (LPC). These data offer support for ANS-CNS connections worth pursuing further in future work.

  9. Event-related potentials during word mapping to object shape predict toddlers' vocabulary size

    PubMed Central

    Borgström, Kristina; Torkildsen, Janne von Koss; Lindgren, Magnus

    2015-01-01

    What role does attention to different object properties play in early vocabulary development? This longitudinal study using event-related potentials in combination with behavioral measures investigated 20- and 24-month-olds' (n = 38; n = 34; overlapping n = 24) ability to use object shape and object part information in word-object mapping. The N400 component was used to measure semantic priming by images containing shape or detail information. At 20 months, the N400 to words primed by object shape varied in topography and amplitude depending on vocabulary size, and these differences predicted productive vocabulary size at 24 months. At 24 months, when most of the children had vocabularies of several hundred words, the relation between vocabulary size and the N400 effect in a shape context was weaker. Detached object parts did not function as word primes regardless of age or vocabulary size, although the part-objects were identified behaviorally. The behavioral measure, however, also showed relatively poor recognition of the part-objects compared to the shape-objects. These three findings provide new support for the link between shape recognition and early vocabulary development. PMID:25762957

  10. An Event-Related Potential Study on the Effects of Cannabis on Emotion Processing.

    PubMed

    Troup, Lucy J; Bastidas, Stephanie; Nguyen, Maia T; Andrzejewski, Jeremy A; Bowers, Matthew; Nomi, Jason S

    2016-01-01

    The effect of cannabis on emotional processing was investigated using event-related potential paradigms (ERPs). ERPs associated with emotional processing of cannabis users, and non-using controls, were recorded and compared during an implicit and explicit emotional expression recognition and empathy task. Comparisons in P3 component mean amplitudes were made between cannabis users and controls. Results showed a significant decrease in the P3 amplitude in cannabis users compared to controls. Specifically, cannabis users showed reduced P3 amplitudes for implicit compared to explicit processing over centro-parietal sites which reversed, and was enhanced, at fronto-central sites. Cannabis users also showed a decreased P3 to happy faces, with an increase to angry faces, compared to controls. These effects appear to increase with those participants that self-reported the highest levels of cannabis consumption. Those cannabis users with the greatest consumption rates showed the largest P3 deficits for explicit processing and negative emotions. These data suggest that there is a complex relationship between cannabis consumption and emotion processing that appears to be modulated by attention.

  11. Adapting to changing memory retrieval demands: evidence from event-related potentials.

    PubMed

    Benoit, Roland G; Werkle-Bergner, Markus; Mecklinger, Axel; Kray, Jutta

    2009-06-01

    This study investigated preparatory processes involved in adapting to changing episodic memory retrieval demands. Event-related potentials (ERPs) were recorded while participants performed a general old/new recognition task and a specific task that also required retrieval of perceptual details. The relevant task remained either constant or changed (predictably or randomly) across trials. Responses were slowed when participants switched from the specific to the general task but not vice versa. Hence, asymmetrical switch costs were observed, suggesting that retrieval preparation is dependent not only on the current retrieval goal but also influenced by recent retrieval attempts. Consistently, over posterior scalp regions ERPs associated with advance preparation were modulated by the preceding task, reflecting increased attentional selection requirements for the general task, and by the foreknowledge about the task sequence. When retrieval demands remained constant, frontal slow-waves elicited by retrieval-cues were more positive going for the specific task, indicating full implementation of a retrieval orientation that allows more efficient retrieval of perceptual details.

  12. On decomposing stimulus and response waveforms in event-related potentials recordings.

    PubMed

    Yin, Gang; Zhang, Jun

    2011-06-01

    Event-related potentials (ERPs) reflect the brain activities related to specific behavioral events, and are obtained by averaging across many trial repetitions with individual trials aligned to the onset of a specific event, e.g., the onset of stimulus (s-aligned) or the onset of the behavioral response (r-aligned). However, the s-aligned and r-aligned ERP waveforms do not purely reflect, respectively, underlying stimulus (S-) or response (R-) component waveform, due to their cross-contaminations in the recorded ERP waveforms. Zhang [J. Neurosci. Methods, 80, pp. 49-63, 1998] proposed an algorithm to recover the pure S-component waveform and the pure R-component waveform from the s-aligned and r-aligned ERP average waveforms-however, due to the nature of this inverse problem, a direct solution is sensitive to noise that disproportionally affects low-frequency components, hindering the practical implementation of this algorithm. Here, we apply the Wiener deconvolution technique to deal with noise in input data, and investigate a Tikhonov regularization approach to obtain a stable solution that is robust against variances in the sampling of reaction-time distribution (when number of trials is low). Our method is demonstrated using data from a Go/NoGo experiment about image classification and recognition.

  13. Age difference in numeral recognition and calculation: an event-related potential study.

    PubMed

    Xuan, Dong; Wang, Suhong; Yang, Yilin; Meng, Ping; Xu, Feng; Yang, Wen; Sheng, Wei; Yang, Yuxia

    2007-01-01

    In this study, we investigated the age difference in numeral recognition and calculation in one group of school-aged children (n = 38) and one of undergraduate students (n = 26) using the event-related potential (ERP) methods. Consistent with previous reports, the age difference was significant in behavioral results. Both numeral recognition and calculation elicited a negativity peaking at about 170-280 ms (N2) and a positivity peaking at 200-470 ms (pSW) in raw ERPs, and a difference potential (dN3) between 360 and 450 ms. The difference between the two age groups indicated that more attention resources were devoted to arithmetical tasks in school-aged children, and that school-aged children and undergraduate students appear to use different strategies to solve arithmetical problems. The analysis of frontal negativity suggested that numeral recognition and mental calculation impose greater load on working memory and executive function in schoolchildren than in undergraduate students. The topography data determined that the parietal regions were responsible for arithmetical function in humans, and there was an age-related difference in the area of cerebral activation.

  14. Neurophysiological evidence for the country-of-origin effect: an event-related potential study

    PubMed Central

    Cho, Kwangsu; Sung, Jungyeon; Cho, Erin

    2014-01-01

    Consumers often rely on observable cues that hint at the hidden quality of a product. The aim of this study was to investigate brain activities associated with the country-of-origin (COO) effect and consumer evaluation of a product design. Electroencephalogram recordings were used to observe event-related brain potentials associated with the COO effect and design evaluation. We found that the frontocentral N90 and parieto-occipital P220 amplitudes are involved in forming preference to design, whereas the COO effect is processed in the centroparietal P500 amplitude. We also found a significant interaction effect between COO and design preference with regard to reaction times. Specifically, participants tended to spend more time making a preference decision when they did not like the product design made in a country with a favorable COO. These results imply that the two cognitive processes, evaluation of COO and formation of design preference, are activated independently at an early stage. It also suggests that these two processes interact with each other toward the end of the decision phase. Together, the results of this study provide neuropsychological evidence supporting a significant role of COO in the formation of design preference. Future studies are required to further delve into other neurophysiological activities associated with the COO effect. PMID:24518230

  15. An Event-Related Potential Study on the Effects of Cannabis on Emotion Processing

    PubMed Central

    Troup, Lucy J.; Bastidas, Stephanie; Nguyen, Maia T.; Andrzejewski, Jeremy A.; Bowers, Matthew; Nomi, Jason S.

    2016-01-01

    The effect of cannabis on emotional processing was investigated using event-related potential paradigms (ERPs). ERPs associated with emotional processing of cannabis users, and non-using controls, were recorded and compared during an implicit and explicit emotional expression recognition and empathy task. Comparisons in P3 component mean amplitudes were made between cannabis users and controls. Results showed a significant decrease in the P3 amplitude in cannabis users compared to controls. Specifically, cannabis users showed reduced P3 amplitudes for implicit compared to explicit processing over centro-parietal sites which reversed, and was enhanced, at fronto-central sites. Cannabis users also showed a decreased P3 to happy faces, with an increase to angry faces, compared to controls. These effects appear to increase with those participants that self-reported the highest levels of cannabis consumption. Those cannabis users with the greatest consumption rates showed the largest P3 deficits for explicit processing and negative emotions. These data suggest that there is a complex relationship between cannabis consumption and emotion processing that appears to be modulated by attention. PMID:26926868

  16. Imaging cortical dynamics of language processing with the event-related optical signal

    PubMed Central

    Tse, Chun-Yu; Lee, Chia-Lin; Sullivan, Jason; Garnsey, Susan M.; Dell, Gary S.; Fabiani, Monica; Gratton, Gabriele

    2007-01-01

    Language processing involves the rapid interaction of multiple brain regions. The study of its neurophysiological bases would therefore benefit from neuroimaging techniques combining both good spatial and good temporal resolution. Here we use the event-related optical signal (EROS), a recently developed imaging method, to reveal rapid interactions between left superior/middle temporal cortices (S/MTC) and inferior frontal cortices (IFC) during the processing of semantically or syntactically anomalous sentences. Participants were presented with sentences of these types intermixed with nonanomalous control sentences and were required to judge their acceptability. ERPs were recorded simultaneously with EROS and showed the typical activities that are elicited when processing anomalous stimuli: the N400 and the P600 for semantic and syntactic anomalies, respectively. The EROS response to semantically anomalous words showed increased activity in the S/MTC (corresponding in time with the N400), followed by IFC activity. Syntactically anomalous words evoked a similar sequence, with a temporal-lobe EROS response (corresponding in time with the P600), followed by frontal activity. However, the S/MTC activity corresponding to a semantic anomaly was more ventral than that corresponding to a syntactic anomaly. These data suggest that activation related to anomaly processing in sentences proceeds from temporal to frontal brain regions for both semantic and syntactic anomalies. This first EROS study investigating language processing shows that EROS can be used to image rapid interactions across cortical areas. PMID:17942677

  17. Person perception precedes theory of mind: an event related potential analysis.

    PubMed

    Wang, Y W; Lin, C D; Yuan, B; Huang, L; Zhang, W X; Shen, D L

    2010-09-29

    Prior to developing an understanding of another person's mental state, an ability termed "theory of mind" (ToM), a perception of that person's appearance and actions is required. However the relationship between this "person perception" and ToM is unclear. To investigate the time course of ToM and person perception, event-related potentials (ERP) were recorded while 17 normal adults received three kinds of visual stimuli: cartoons involving people (person perception cartoons), cartoons involving people and also requiring ToM for comprehension (ToM cartoons), and scene cartoons. We hypothesized that the respective patterns of brain activation would be different under these three stimuli, at different stages in time. Our findings supported this proposal: the peak amplitudes of P200 for scene cartoons were significantly lower than for person perception or ToM cartoons, while there were no significant differences between the latter two for P200. During the 1000-1300 ms epoch, the mean amplitudes of the late positive components (LPC) for person perception were more positive than for scene representation, while the mean amplitudes of the LPC for ToM were more positive than for person perception. The present study provides preliminary evidence of the neural dynamic that underlies the dissociation between person perception and ToM.

  18. Auditory processing during sleep in preterm infants: An event related potential study.

    PubMed

    Suppiej, Agnese; Mento, Giovanni; Zanardo, Vincenzo; Franzoi, Malida; Battistella, Pier Antonio; Ermani, Mario; Bisiacchi, Patrizia S

    2010-12-01

    Auditory processing during sleep was investigated in premature infants by auditory event related potentials (AERPs). Twenty-six premature infants (mean GA 30 week- range 25-35) admitted to a neonatal intensive care unit were studied, prior to discharge, in active and quiet sleep at a mean post-conceptional age of 35 weeks. Infant state was determined by behavioral observation according to standard criteria. An auditory odd-ball paradigm was used with frequently occurring 'standard' tones at 1000Hz and infrequent 'deviant' tones at 2000Hz. Waveforms were recorded at Fz, Cz, Pz, T3 and T4 scalp locations. Measurements were performed in 18 patients because 8 preterm infants were excluded since they had less than the required artifact-free deviant trials in each sleep state. The responses to standard tones were equally recorded in both active and quiet sleep, but auditory responses to deviant tones consisting of an increased frontal negativity in the time period from 200 to 300ms after the stimulus were recorded only in active sleep. A significant effect of electrode placement, for frontal location by sleep condition and sleep condition by 50ms time windows was shown by repeated measures analyses of variance. The significance of these findings on evoked potential methodology in preterm infants admitted to neonatal intensive care unit is discussed.

  19. Cognitive Processing in Non-Communicative Patients: What Can Event-Related Potentials Tell Us?

    PubMed Central

    Lugo, Zulay R.; Quitadamo, Lucia R.; Bianchi, Luigi; Pellas, Fréderic; Veser, Sandra; Lesenfants, Damien; Real, Ruben G. L.; Herbert, Cornelia; Guger, Christoph; Kotchoubey, Boris; Mattia, Donatella; Kübler, Andrea; Laureys, Steven; Noirhomme, Quentin

    2016-01-01

    Event-related potentials (ERP) have been proposed to improve the differential diagnosis of non-responsive patients. We investigated the potential of the P300 as a reliable marker of conscious processing in patients with locked-in syndrome (LIS). Eleven chronic LIS patients and 10 healthy subjects (HS) listened to a complex-tone auditory oddball paradigm, first in a passive condition (listen to the sounds) and then in an active condition (counting the deviant tones). Seven out of nine HS displayed a P300 waveform in the passive condition and all in the active condition. HS showed statistically significant changes in peak and area amplitude between conditions. Three out of seven LIS patients showed the P3 waveform in the passive condition and five of seven in the active condition. No changes in peak amplitude and only a significant difference at one electrode in area amplitude were observed in this group between conditions. We conclude that, in spite of keeping full consciousness and intact or nearly intact cortical functions, compared to HS, LIS patients present less reliable results when testing with ERP, specifically in the passive condition. We thus strongly recommend applying ERP paradigms in an active condition when evaluating consciousness in non-responsive patients. PMID:27895567

  20. Evidence for Attentional Gradient in the Serial Position Memory Curve from Event-related Potentials

    PubMed Central

    Azizian, Allen; Polich, John

    2009-01-01

    The occurrence of primacy versus recency effects in free recall is suggested to reflect either two distinct memory systems, or the operation of a single system that is modulated by allocation of attention and less vulnerable to interference. Behavioral and event-related brain potential (ERPs) measures were used to investigate the encoding substrates of the serial position curve and subsequent recall in young adults. Participants were instructed to remember lists of words consisting of 12 common nouns each presented once every 1.5 sec, with a recall signal following the last word to indicate that all remembered items should be written on paper. This procedure was repeated for 20 different word lists. Both performance and late ERP amplitudes reflected classic recall serial position effects. Greater recall and larger late positive component amplitudes were obtained for the primacy and recency items, with less recall and smaller amplitudes for the middle words. The late positive component was larger for recalled compared to unrecalled primacy items, but it did not differ between memory performance outcomes for the recency items. The close relationship between the enhanced amplitude and primacy retrieval supports the view that this positive component reflects one of a process series related to attentional gradient and encoding of events for storage in memory. Recency effects appear to index operations determined by the anticipation of the last stimulus presentation, which occurred for both recalled and unrecalled memory items. Theoretical implications are discussed. PMID:17892393

  1. Event-related potential signatures of perceived and imagined emotional and food real-life photos.

    PubMed

    Marmolejo-Ramos, Fernando; Hellemans, Kim; Comeau, Amy; Heenan, Adam; Faulkner, Andrew; Abizaid, Alfonso; D'Angiulli, Amedeo

    2015-06-01

    Although food and affective pictures share similar emotional and motivational characteristics, the relationship between the neuronal responses to these stimuli is unclear. Particularly, it is not known whether perceiving and imagining food and affective stimuli elicit similar event-related potential (ERP) patterns. In this study, two ERP correlates, the early posterior negativity (EPN) and the late positive potential (LPP) for perceived and imagined emotional and food photographs were investigated. Thirteen healthy volunteers were exposed to a set of food photos, as well as unpleasant, pleasant, and neutral photos from the International Affective Picture System. In each trial, participants were first asked to view a photo (perception condition), and then to create a visual mental image of it and to rate its vividness (imagery condition). The results showed that during perception, brain regions corresponding to sensorimotor and parietal motivational (defensive and appetitive) systems were activated to different extents, producing a graded pattern of EPN and LPP responses specific to the photo content - more prominent for unpleasant than pleasant and food content. Also, an EPN signature occurred in both conditions for unpleasant content, suggesting that, compared to food or pleasant content, unpleasant content may be attended to more intensely during perception and may be represented more distinctly during imagery. Finally, compared to LLP activation during perception, as well as imagery and perception of all other content, LPP activation was significantly reduced during imagery of unpleasant photos, suggesting inhibition of unwanted memories. Results are framed within a neurocognitive working model of embodied emotions.

  2. Event-Related Potentials in Parkinson's Disease Patients with Visual Hallucination

    PubMed Central

    Liou, Li-Min

    2016-01-01

    Using neuropsychological investigation and visual event-related potentials (ERPs), we aimed to compare the ERPs and cognitive function of nondemented Parkinson's disease (PD) patients with and without visual hallucinations (VHs) and of control subjects. We recruited 12 PD patients with VHs (PD-H), 23 PD patients without VHs (PD-NH), and 18 age-matched controls. All subjects underwent comprehensive neuropsychological assessment and visual ERPs measurement. A visual odd-ball paradigm with two different fixed interstimulus intervals (ISI) (1600 ms and 5000 ms) elicited visual ERPs. The frontal test battery was used to assess attention, visual-spatial function, verbal fluency, memory, higher executive function, and motor programming. The PD-H patients had significant cognitive dysfunction in several domains, compared to the PD-NH patients and controls. The mean P3 latency with ISI of 1600 ms in PD-H patients was significantly longer than that in controls. Logistic regression disclosed UPDRS-on score and P3 latency as significant predictors of VH. Our findings suggest that nondemented PD-H patients have worse cognitive function and P3 measurements. The development of VHs in nondemented PD patients might be implicated in executive dysfunction with altered visual information processing. PMID:28053801

  3. Toward brain-computer interface based wheelchair control utilizing tactually-evoked event-related potentials

    PubMed Central

    2014-01-01

    Background People with severe disabilities, e.g. due to neurodegenerative disease, depend on technology that allows for accurate wheelchair control. For those who cannot operate a wheelchair with a joystick, brain-computer interfaces (BCI) may offer a valuable option. Technology depending on visual or auditory input may not be feasible as these modalities are dedicated to processing of environmental stimuli (e.g. recognition of obstacles, ambient noise). Herein we thus validated the feasibility of a BCI based on tactually-evoked event-related potentials (ERP) for wheelchair control. Furthermore, we investigated use of a dynamic stopping method to improve speed of the tactile BCI system. Methods Positions of four tactile stimulators represented navigation directions (left thigh: move left; right thigh: move right; abdomen: move forward; lower neck: move backward) and N = 15 participants delivered navigation commands by focusing their attention on the desired tactile stimulus in an oddball-paradigm. Results Participants navigated a virtual wheelchair through a building and eleven participants successfully completed the task of reaching 4 checkpoints in the building. The virtual wheelchair was equipped with simulated shared-control sensors (collision avoidance), yet these sensors were rarely needed. Conclusion We conclude that most participants achieved tactile ERP-BCI control sufficient to reliably operate a wheelchair and dynamic stopping was of high value for tactile ERP classification. Finally, this paper discusses feasibility of tactile ERPs for BCI based wheelchair control. PMID:24428900

  4. Short-term effects of prosocial video games on aggression: an event-related potential study

    PubMed Central

    Liu, Yanling; Teng, Zhaojun; Lan, Haiying; Zhang, Xin; Yao, Dezhong

    2015-01-01

    Previous research has shown that exposure to violent video games increases aggression, whereas exposure to prosocial video games can reduce aggressive behavior. However, little is known about the neural correlates of these behavioral effects. This work is the first to investigate the electrophysiological features of the relationship between playing a prosocial video game and inhibition of aggressive behavior. Forty-nine subjects played either a prosocial or a neutral video game for 20 min, then participated in an event-related potential (ERP) experiment based on an oddball paradigm and designed to test electrophysiological responses to prosocial and violent words. Finally, subjects completed a competitive reaction time task (CRTT) which based on Taylor's Aggression Paradigm and contains reaction time and noise intensity chosen as a measure of aggressive behavior. The results show that the prosocial video game group (compared to the neutral video game group) displayed smaller P300 amplitudes, were more accurate in distinguishing violent words, and were less aggressive as evaluated by the CRTT of noise intensity chosen. A mediation analysis shows that the P300 amplitude evoked by violent words partially mediates the relationship between type of video game and subsequent aggressive behavior. The results support theories based on the General Learning Model. We provide converging behavioral and neural evidence that exposure to prosocial media may reduce aggression. PMID:26257620

  5. Aesthetic appreciation of poetry correlates with ease of processing in event-related potentials.

    PubMed

    Obermeier, Christian; Kotz, Sonja A; Jessen, Sarah; Raettig, Tim; von Koppenfels, Martin; Menninghaus, Winfried

    2016-04-01

    Rhetorical theory suggests that rhythmic and metrical features of language substantially contribute to persuading, moving, and pleasing an audience. A potential explanation of these effects is offered by "cognitive fluency theory," which stipulates that recurring patterns (e.g., meter) enhance perceptual fluency and can lead to greater aesthetic appreciation. In this article, we explore these two assertions by investigating the effects of meter and rhyme in the reception of poetry by means of event-related brain potentials (ERPs). Participants listened to four versions of lyrical stanzas that varied in terms of meter and rhyme, and rated the stanzas for rhythmicity and aesthetic liking. The behavioral and ERP results were in accord with enhanced liking and rhythmicity ratings for metered and rhyming stanzas. The metered and rhyming stanzas elicited smaller N400/P600 ERP responses than their nonmetered, nonrhyming, or nonmetered and nonrhyming counterparts. In addition, the N400 and P600 effects for the lyrical stanzas correlated with aesthetic liking effects (metered-nonmetered), implying that modulation of the N400 and P600 has a direct bearing on the aesthetic appreciation of lyrical stanzas. We suggest that these effects are indicative of perceptual-fluency-enhanced aesthetic liking, as postulated by cognitive fluency theory.

  6. Executive Dysfunctions and Event-Related Brain Potentials in Patients with Amyotrophic Lateral Sclerosis

    PubMed Central

    Seer, Caroline; Fürkötter, Stefanie; Vogts, Maj-Britt; Lange, Florian; Abdulla, Susanne; Dengler, Reinhard; Petri, Susanne; Kopp, Bruno

    2015-01-01

    A growing body of evidence implies psychological disturbances in amyotrophic lateral sclerosis (ALS). Specifically, executive dysfunctions occur in up to 50% of ALS patients. The recently shown presence of cytoplasmic aggregates (TDP-43) in ALS patients and in patients with behavioral variants of frontotemporal dementia suggests that these two disease entities form the extremes of a spectrum. The present study aimed at investigating behavioral and electrophysiological indices of conflict processing in patients with ALS. A non-verbal variant of the flanker task demanded two-choice responses to target stimuli that were surrounded by flanker stimuli which either primed the correct response or the alternative response (the latter case representing the conflict situation). Behavioral performance, event-related potentials (ERP), and lateralized readiness potentials (LRP) were analyzed in 21 ALS patients and 20 controls. In addition, relations between these measures and executive dysfunctions were examined. ALS patients performed the flanker task normally, indicating preserved conflict processing. In similar vein, ERP and LRP indices of conflict processing did not differ between groups. However, ALS patients showed enhanced posterior negative ERP waveform deflections, possibly indicating increased modulation of visual processing by frontoparietal networks in ALS. We also found that the presence of executive dysfunctions was associated with more error-prone behavior and enhanced LRP amplitudes in ALS patients, pointing to a prefrontal pathogenesis of executive dysfunctions and to a potential link between prefrontal and motor cortical functional dysregulation in ALS, respectively. PMID:26733861

  7. Estimation of single-trial event-related potential with cepstrum-based method

    NASA Astrophysics Data System (ADS)

    Qi, Chun; Jiang, Hang-yi; Liang, Dequn

    1999-07-01

    Event-related potential (ERP) plays a very important role in the field of human brain activities research. It is a practical method for measuring the brain functions. By now, the traditional methods remained in extracting of ERP are that rely on accumulative averaging techniques, which getting in a totally averaging result. In practice, however, it is obviously that the ERPs are not identical with each other in response for a number of repeated stimuli, neither in signal pattern nor response time. So that extracting ERP from a single trial is the goal of investigators in pursuit of. That is a different task, although some worthy works had been reported. A novel method is presented in this paper, which can extract single trial ERP by means of higher order cumulant (HOC) followed by cepstrum technique. Based on the theory of HOC, it can deal with additive noise very well, regardless the noise is white or not. For a single-trial ERP signal measured in strong background noise, the complex cepstrum of higher order cumulants of the signal is calculated firstly, and then the original ERP is reconstructed. The experiment shows that this method has a better performance in reconstructing single-trial ERP in the case of lower signal to noise ratio.

  8. The speed of object recognition from a haptic glance: event-related potential evidence.

    PubMed

    Gurtubay-Antolin, Ane; Rodriguez-Herreros, Borja; Rodríguez-Fornells, Antoni

    2015-05-01

    Recognition of an object usually involves a wide range of sensory inputs. Accumulating evidence shows that first brain responses associated with the visual discrimination of objects emerge around 150 ms, but fewer studies have been devoted to measure the first neural signature of haptic recognition. To investigate the speed of haptic processing, we recorded event-related potentials (ERPs) during a shape discrimination task without visual information. After a restricted exploratory procedure, participants (n = 27) were instructed to judge whether the touched object corresponded to an expected object whose name had been previously presented in a screen. We encountered that any incongruence between the presented word and the shape of the object evoked a frontocentral negativity starting at ∼175 ms. With the use of source analysis and L2 minimum-norm estimation, the neural sources of this differential activity were located in higher level somatosensory areas and prefrontal regions involved in error monitoring and cognitive control. Our findings reveal that the somatosensory system is able to complete an amount of haptic processing substantial enough to trigger conflict-related responses in medial and prefrontal cortices in <200 ms. The present results show that our haptic system is a fast recognition device closely interlinked with error- and conflict-monitoring processes.

  9. Social distance influences the outcome evaluation of cooperation and conflict: Evidence from event-related potentials.

    PubMed

    Chen, Yezi; Lu, Jiamei; Wang, Yiwen; Feng, Zhouqi; Yuan, Bo

    2017-04-24

    Previous research shows that social distance plays an important role in promoting cooperation and that subtle cues that reduce social distance increase the tendency to cooperate. However, it is unclear how social distance influences our outcome evaluation of cooperative and conflict feedback. The present study investigated the influence of social distance on cooperative and conflict behavior and the evaluation process of the cooperative and conflict outcomes, using the event-related potentials (ERPs) technique. We recorded ERPs from 14 normal adults playing a social game task against a friend and a stranger. The results showed that the FRN (Feedback Related Negativity) and P300 were affected by the opponent's choice to cooperate or aggress; however, only the P300 was affected by social distance. Specifically, when the opponent chose to cooperate, the feedback elicited a smaller FRN and a larger P300 amplitude; and compared with playing against friends, the P300 had a larger amplitude when participants gaming with strangers. Our results indicate that at the early stage of the evaluation of cooperation and conflict outcomes, individuals may initially and quickly encode the valence of outcomes, judging whether an outcome is consistent with their expectations. However, at the late stage, which involves a top-down cognitive appraisal process, some social factors, such as social distance, may moderate processing of attention resource allocation of feedback about outcomes, and of higher-level motivation/affective appraisal.

  10. Effects of task repetition on event-related potentials in somatosensory Go/No-go paradigm.

    PubMed

    Nakata, Hiroki; Sakamoto, Kiwako; Kakigi, Ryusuke

    2015-05-06

    We investigated the effects of task repetition on the N140 and P300 components of event-related potentials (ERPs) in somatosensory Go/No-go paradigms. A Go or No-go stimulus was presented to the second or fifth digit of the left hand, respectively, at the same probability, and subjects had to respond by pushing a button with their right thumb as quickly as possible only after the presentation of a Go stimulus. The condition comprised seven sessions of recordings, and subjects were allowed to relax for five minutes after one session. The behavioral data for the reaction time (RT), standard deviation of RT, and error rates showed the absence of an effect by task repetition. In ERP waveforms, the amplitudes of N140 and P300 decreased with task repetition, and the latency of P300 was delayed by task repetition. There was no significant effect of task repetition on the peak latency of N140. Changes in amplitude and latency values in N140 and P300 during Go/No-go paradigms reflected changes in the neural activation of response execution and inhibition processing with task repetition.

  11. Event-related potentials to intact and disrupted actions in children and adults

    PubMed Central

    Pace, Amy; Carver, Leslie J.; Friend, Margaret

    2013-01-01

    The current research used event-related potentials (ERPs) to investigate neurophysiological responses to intact and disrupted actions embedded within an event in children and adults. Responses were recorded as children (24-month-olds) and adults observed a relatively novel event composed of three actions. In one condition pauses were inserted at intact boundaries (i.e., at the endpoint of each action), whereas in the other condition they were inserted at breakpoints that disrupted the action (i.e., in the middle of each action). Evoked responses revealed differences across conditions in both groups; disrupted actions elicited a prolonged negative slow wave from 100 to 700 ms in children, whereas adults demonstrated two distinct negative peaks between 50–150 and 250–350 ms. These findings contribute the first electrophysiological evidence that children readily detect disruptions to ongoing events by the end of the second year, even with limited exposure to the event itself. Furthermore, they suggest that adults rely on two distinct mechanisms when processing novel events. Results are discussed in relation to the role of perceptual and conceptual levels of analysis in the development of action processing. PMID:23374603

  12. Event-related potential map differences depend on the prestimulus microstates.

    PubMed

    Kondákor, I; Pascual-Marqui, R D; Michel, C M; Lehmann, D

    1995-01-01

    The dependency of the landscapes of visually evoked, 47-channel, event-related potential (ERPs) on the functional microstates (momentary map landscape) just before stimulus arrival was investigated, in 12 volunteers. The prestimulus microstates were determined using the map at the last peak of Global Field Power before the stimulus. The landscapes of these maps were described by the electrode locations of the positive and negative extreme potentials, and assigned to basic classes. The two most frequently occurring map-classes were used (left anterior-right posterior, and right anterior-left posterior). ERP map series were averaged for each subject and each prestimulus microstate class. The Randomization-Monte Carlo MANOVA test was used to test the significance of the difference between the ERP map landscapes at each sample point (n = 128, 500 ms) associated with the two prestimulus microstates. At 16 samples the difference was significant at p < 0.05. The longest uninterrupted sequence (n = 9) of significant differences occurred between 164 and 195 ms, i.e. during the conventional component P200. The results demonstrate that the brain electric microstate at stimulus arrival crucially influences the active neuronal populations that contribute to the ERP. This suggests that the processing of information will differ as a function of the momentary brain microstate at information arrival.

  13. Decomposing valence intensity effects in disgusting and fearful stimuli: an event-related potential study.

    PubMed

    Lu, Yingzhi; Luo, Yu; Lei, Yi; Jaquess, Kyle J; Zhou, Chenglin; Li, Hong

    2016-12-01

    We are sensitive to valence intensity in negative emotional stimuli, but not in positive emotional stimuli, a phenomenon known as the valence intensity effect. However, whether this valence intensity effect is processed similarly within different negative stimuli, e.g., fear-inducing and disgust-inducing, remains unclear. In the present study, we investigated whether the valence intensity effects for fearful and disgusting stimuli were perceived in a unique way by using event-related potentials (ERPs). Electroencephalogram was recorded from 22 participants as they performed a standard/deviant categorization task using extremely disgusting pictures, moderately disgusting pictures, extremely fearful pictures, moderately fearful pictures, and neutral pictures. The ERP analysis revealed that the extremely fearful stimuli elicited a larger amplitude N2 than moderately fearful stimuli, whereas the extremely disgusting stimuli elicited a smaller amplitude late positive component than moderately disgusting stimuli. This study is the first to provide evidence that fear and disgust may have different valence intensity effects, which was revealed at early attention allocation stages for fearful stimuli and at late emotional evaluation stages for disgusting stimuli.

  14. Short-term effects of prosocial video games on aggression: an event-related potential study.

    PubMed

    Liu, Yanling; Teng, Zhaojun; Lan, Haiying; Zhang, Xin; Yao, Dezhong

    2015-01-01

    Previous research has shown that exposure to violent video games increases aggression, whereas exposure to prosocial video games can reduce aggressive behavior. However, little is known about the neural correlates of these behavioral effects. This work is the first to investigate the electrophysiological features of the relationship between playing a prosocial video game and inhibition of aggressive behavior. Forty-nine subjects played either a prosocial or a neutral video game for 20 min, then participated in an event-related potential (ERP) experiment based on an oddball paradigm and designed to test electrophysiological responses to prosocial and violent words. Finally, subjects completed a competitive reaction time task (CRTT) which based on Taylor's Aggression Paradigm and contains reaction time and noise intensity chosen as a measure of aggressive behavior. The results show that the prosocial video game group (compared to the neutral video game group) displayed smaller P300 amplitudes, were more accurate in distinguishing violent words, and were less aggressive as evaluated by the CRTT of noise intensity chosen. A mediation analysis shows that the P300 amplitude evoked by violent words partially mediates the relationship between type of video game and subsequent aggressive behavior. The results support theories based on the General Learning Model. We provide converging behavioral and neural evidence that exposure to prosocial media may reduce aggression.

  15. Neural Basis of Intrinsic Motivation: Evidence from Event-Related Potentials.

    PubMed

    Jin, Jia; Yu, Liping; Ma, Qingguo

    2015-01-01

    Human intrinsic motivation is of great importance in human behavior. However, although researchers have focused on this topic for decades, its neural basis was still unclear. The current study employed event-related potentials to investigate the neural disparity between an interesting stop-watch (SW) task and a boring watch-stop task (WS) to understand the neural mechanisms of intrinsic motivation. Our data showed that, in the cue priming stage, the cue of the SW task elicited smaller N2 amplitude than that of the WS task. Furthermore, in the outcome feedback stage, the outcome of the SW task induced smaller FRN amplitude and larger P300 amplitude than that of the WS task. These results suggested that human intrinsic motivation did exist and that it can be detected at the neural level. Furthermore, intrinsic motivation could be quantitatively indexed by the amplitude of ERP components, such as N2, FRN, and P300, in the cue priming stage or feedback stage. Quantitative measurements would also be convenient for intrinsic motivation to be added as a candidate social factor in the construction of a machine learning model.

  16. The Impact of AD Drug Treatments on Event-Related Potentials as Markers of Disease Conversion

    PubMed Central

    Chapman, Robert M.; Porsteinsson, Anton P.; Gardner, Margaret N.; Mapstone, Mark; McCrary, John W.; Sandoval, Tiffany C.; Guillily, Maria D.; Reilly, Lindsey A.; DeGrush, Elizabeth

    2013-01-01

    This paper investigates how commonly prescribed pharmacologic treatments for Alzheimer’s disease (AD) affect Event-Related Potential (ERP) biomarkers as tools for predicting AD conversion in individuals with Mild Cognitive Impairment (MCI). We gathered baseline ERP data from two MCI groups (those taking AD medications and those not) and later determined which subjects developed AD (Convert->AD) and which subjects remained cognitively stable (Stable). We utilized a previously developed and validated multivariate system of ERP components to measure medication effects among these four subgroups. Discriminant analysis produced classification scores for each individual as a measure of similarity to each clinical group (Convert->AD, Stable), and we found a large significant main Group effect but no main AD Medications effect and no Group by Medications interaction. This suggested AD medications have negligible influence on this set of ERP components as weighted markers of disease progression. These results provide practical information to those using ERP measures as a biomarker to identify and track AD in individuals in a clinical or research setting. PMID:23905997

  17. Mathematical anxiety effects on simple arithmetic processing efficiency: an event-related potential study.

    PubMed

    Suárez-Pellicioni, M; Núñez-Peña, M I; Colomé, A

    2013-12-01

    This study uses event-related brain potentials to investigate the difficulties that high math anxious individuals face when processing dramatically incorrect solutions to simple arithmetical problems. To this end, thirteen high math-anxious (HMA) and thirteen low math-anxious (LMA) individuals were presented with simple addition problems in a verification task. The proposed solution could be correct, incorrect but very close to the correct one (small-split), or dramatically incorrect (large-split). The two groups did not differ in mathematical ability or trait anxiety. We reproduced previous results for flawed scores suggesting HMA difficulties in processing large-split solutions. Moreover, large-split solutions elicited a late positive component (P600/P3b) which was more enhanced and delayed in the HMA group. Our study proposes that the pattern of flawed scores found by previous studies (and that we replicate) has to do with HMA individuals'difficulties in inhibiting an extended processing of irrelevant information (large-split solutions).

  18. Effect of empathy trait on attention to faces: an event-related potential (ERP) study

    PubMed Central

    2014-01-01

    Background Empathy is deeply linked with the ability to adapt to human social environments. The present study investigated the relationship between the empathy trait and attention elicited by discriminating facial expressions. Methods Event-related potentials were measured while 32 participants (17 men and 15 women) discriminated facial expressions (happy or angry) and colors of flowers (yellow or purple) under an oddball paradigm. The empathy trait of participants was measured using the Interpersonal Reactivity Index (Davis, 1980). Results The empathy trait correlated positively with both the early portion (300 to 600 ms after stimulus onset) and late portion (600 to 800 ms after stimulus onset) of late positive potential (LPP) amplitude elicited by faces, but not with LPP elicited by flowers. Conclusions This result suggests that, compared to people with low empathy, people with high empathy pay more attention when discriminating facial expressions. The present study suggests that differences exist in methods of adapting to social environments between people with high and low empathy. PMID:24460950

  19. Individuals' attentional bias toward an envied target's name: an event-related potential study.

    PubMed

    Zhong, Jun; Liu, Yongfang; Zhang, Entao; Luo, Junlong; Chen, Jie

    2013-08-29

    Individuals may pay more attention to information about envied targets. Thus, we further investigate the neural correlates underlying the cognitive processing of envy-related stimuli. Participants read information about target persons characterized by two domains: levels of possession and self-relevance of comparison. Event-related potentials (ERPs) were then recorded for three target names (high-envy, moderate-envy, and low-envy) while participants performed a three-stimulus oddball task. The results showed that high- and moderate-envy target names elicited larger P300 amplitudes than did low-envy target names. Specifically, high-envy target names elicited larger P300 amplitudes than did low-envy target names at the left, central, and right sites; in contrast, moderate-envy target names elicited larger P300 amplitudes than did low-envy target names only at central sites. P300 amplitudes did not differ between high- and moderate-envy target names. Thus, we extend previous behavioral findings by showing that people preferentially attend toward envy-related stimuli, as reflected by enhanced P300 amplitudes.

  20. Event-related potential correlates of emergent inference in human arbitrary relational learning.

    PubMed

    Wang, Ting; Dymond, Simon

    2013-01-01

    Two experiments investigated the functional-anatomical correlates of cognition supporting untrained, emergent relational inference in a stimulus equivalence task. In Experiment 1, after learning a series of conditional relations involving words and pseudowords, participants performed a relatedness task during which EEG was recorded. Behavioural performance was faster and more accurate on untrained, indirectly related symmetry (i.e., learn AB and infer BA) and equivalence trials (i.e., learn AB and AC and infer CB) than on unrelated trials, regardless of whether or not a formal test for stimulus equivalence relations had been conducted. Consistent with previous results, event related potentials (ERPs) evoked by trained and emergent trials at parietal and occipital sites differed only for those participants who had not received a prior equivalence test. Experiment 2 further replicated and extended these behavioural and ERP findings using arbitrary symbols as stimuli and demonstrated time and frequency differences for trained and untrained relatedness trials. Overall, the findings demonstrate convincingly the ERP correlates of intra-experimentally established stimulus equivalence relations consisting entirely of arbitrary symbols and offer support for a contemporary cognitive-behavioural model of symbolic categorisation and relational inference.

  1. The time course of psychological stress as revealed by event-related potentials.

    PubMed

    Yang, Juan; Qi, Mingming; Guan, Lili; Hou, Yan; Yang, Yu

    2012-11-14

    Psychological stress is common in everyday life and is believed to affect emotion, cognition and health. Previous brain imaging studies have been able to identify the brain regions involved in the stress response. However, our understanding of the temporal neurological response to psychological stress is limited. The present work aims to investigate the time course of psychological stress induced by a mental arithmetic task, utilizing event-related potentials (ERPs). The elicitation of stress was verified by self-reports of stress and increases in salivary cortisol levels. The subjective and physiological data showed that the stress-elicitation paradigm successfully induced a mild-to-moderate level of psychological stress. The electrophysiological data showed that the amplitude of occipital N1 was more negative in the control task than in the stress task, and the latency of frontal P2 was shorter in the stress task than in the control task. Our results provide electrophysiological evidence that psychological stress occurs primarily at the early stage of cognitive processing.

  2. From mind to mouth: event related potentials of sentence production in classic galactosemia.

    PubMed

    Timmers, Inge; Jansma, Bernadette M; Rubio-Gozalbo, M Estela

    2012-01-01

    Patients with classic galactosemia, an inborn error of metabolism, have speech and language production impairments. Past research primarily focused on speech (motor) problems, but these cannot solely explain the language impairments. Which specific deficits contribute to the impairments in language production is not yet known. Deficits in semantic and syntactic planning are plausible and require further investigation. In the present study, we examined syntactic encoding while patients and matched controls overtly described scenes of moving objects using either separate words (minimal syntactic planning) or sentences (sentence-level syntactic planning). The design of the paradigm also allowed tapping into local noun phrase- and more global sentence-level syntactic planning. Simultaneously, we recorded event-related potentials (ERPs). The patients needed more time to prepare and finish the utterances and made more errors. The patient ERPs had a very similar morphology to that of healthy controls, indicating overall comparable neural processing. Most importantly, the ERPs diverged from those of controls in several functionally informative time windows, ranging from very early (90-150 ms post scene onset) to relatively late (1820-2020 ms post scene onset). These time windows can be associated with different linguistic encoding stages. The ERP results form the first neuroscientific evidence for language production impairments in patients with galactosemia in lexical and syntactic planning stages, i.e., prior to the linguistic output phase. These findings hence shed new light on the language impairments in this disease.

  3. Gender differences in memory processing of female facial attractiveness: evidence from event-related potentials.

    PubMed

    Zhang, Yan; Wei, Bin; Zhao, Peiqiong; Zheng, Minxiao; Zhang, Lili

    2016-06-01

    High rates of agreement in the judgment of facial attractiveness suggest universal principles of beauty. This study investigated gender differences in recognition memory processing of female facial attractiveness. Thirty-four Chinese heterosexual participants (17 females, 17 males) aged 18-24 years (mean age 21.63 ± 1.51 years) participated in the experiment which used event-related potentials (ERPs) based on a study-test paradigm. The behavioral data results showed that both men and women had significantly higher accuracy rates for attractive faces than for unattractive faces, but men reacted faster to unattractive faces. Gender differences on ERPs showed that attractive faces elicited larger early components such as P1, N170, and P2 in men than in women. The results indicated that the effects of recognition bias during memory processing modulated by female facial attractiveness are greater for men than women. Behavioral and ERP evidences indicate that men and women differ in their attentional adhesion to attractive female faces; different mating-related motives may guide the selective processing of attractive men and women. These findings establish a contribution of gender differences on female facial attractiveness during memory processing from an evolutionary perspective.

  4. Neural responses to cartoon facial attractiveness: An event-related potential study.

    PubMed

    Lu, Yingjun; Wang, Jingmei; Wang, Ling; Wang, Junli; Qin, Jinliang

    2014-06-01

    Animation creates a vivid, virtual world and expands the scope of human imagination. In this study, we investigated the time-courses of brain responses related to the evaluation of the attractiveness of cartoon faces using the event-related potential (ERP) technique. The results demonstrated that N170 amplitude was higher for attractive than for unattractive cartoon faces in males, while the opposite was found in females. Facial attractiveness notably modulated the late positive component (LPC), which might reflect the task-related process of aesthetic appraisal of beauty. The mean LPC amplitude in males was significantly higher for attractive cartoon faces than for unattractive faces, while the LPC amplitude in females did not significantly differ between attractive and unattractive cartoon faces. Moreover, the paint mode (computer graphics, gouache, and stick figure) modulated the early encoding of facial structures and the late evaluative process. The early modulation effect by paint mode may be related to the spatial frequency of the pictures. The processing speed and intensity in females were both higher than those in males. In conclusion, our study, for the first time, reported ERP modulation based on the assessment of cartoon facial attractiveness, suggesting the facilitated selection of attractiveness information at the early stage, and that the attentional enhancement of attractive faces at the late stage only exists in males. This suggests that men's brains are hard-wired to be sensitive to facial beauty, even in cartoons.

  5. Individual differences in the recognition of facial expressions: an event-related potentials study.

    PubMed

    Tamamiya, Yoshiyuki; Hiraki, Kazuo

    2013-01-01

    Previous studies have shown that early posterior components of event-related potentials (ERPs) are modulated by facial expressions. The goal of the current study was to investigate individual differences in the recognition of facial expressions by examining the relationship between ERP components and the discrimination of facial expressions. Pictures of 3 facial expressions (angry, happy, and neutral) were presented to 36 young adults during ERP recording. Participants were asked to respond with a button press as soon as they recognized the expression depicted. A multiple regression analysis, where ERP components were set as predictor variables, assessed hits and reaction times in response to the facial expressions as dependent variables. The N170 amplitudes significantly predicted for accuracy of angry and happy expressions, and the N170 latencies were predictive for accuracy of neutral expressions. The P2 amplitudes significantly predicted reaction time. The P2 latencies significantly predicted reaction times only for neutral faces. These results suggest that individual differences in the recognition of facial expressions emerge from early components in visual processing.

  6. Competitive Semantic Memory Retrieval: Temporal Dynamics Revealed by Event-Related Potentials.

    PubMed

    Hellerstedt, Robin; Johansson, Mikael

    2016-01-01

    Memories compete for retrieval when they are related to a common retrieval cue. Previous research has shown that retrieval of a target memory may lead to subsequent retrieval-induced forgetting (RIF) of currently irrelevant competing memories. In the present study, we investigated the time course of competitive semantic retrieval and examined the neurocognitive mechanisms underlying RIF. We contrasted two theoretical accounts of RIF by examining a critical aspect of this memory phenomenon, namely the extent to which it depends on successful retrieval of the target memory. Participants first studied category-exemplar word-pairs (e.g. Fruit-Apple). Next, we recorded electrophysiological measures of brain activity while the participants performed a competitive semantic cued-recall task. In this task, the participants were provided with the studied categories but they were instructed to retrieve other unstudied exemplars (e.g. Fruit-Ma__?). We investigated the event-related potential (ERP) correlates of retrieval success by comparing ERPs from successful and failed retrieval trials. To isolate the ERP correlates of continuous retrieval attempts from the ERP correlates of retrieval success, we included an impossible retrieval condition, with incompletable word-stem cues (Drinks-Wy__) and compared it with a non-retrieval presentation baseline condition (Occupation-Dentist). The participants' memory for all the studied exemplars was tested in the final phase of the experiment. Taken together, the behavioural results suggest that RIF is independent of target retrieval. Beyond investigating the mechanisms underlying RIF, the present study also elucidates the temporal dynamics of semantic cued-recall by isolating the ERP correlates of retrieval attempt and retrieval success. The ERP results revealed that retrieval attempt is reflected in a late posterior negativity, possibly indicating construction of candidates for completing the word-stem cue and retrieval monitoring

  7. Subjective rating of weak tactile stimuli is parametrically encoded in event-related potentials.

    PubMed

    Auksztulewicz, Ryszard; Blankenburg, Felix

    2013-07-17

    Neural signatures of somatosensory awareness have often been studied by examining EEG responses to hardly detectable stimuli. Previous reports consistently showed that event-related potentials (ERPs) measured over early somatosensory cortex diverge for detected and missed perithreshold stimuli at 80-100 ms after stimulus onset. So far, however, all previous studies have operationalized somatosensory awareness as binary stimulus detection. Here, we investigated whether ERP components attributed to neuronal activity in early somatosensory cortices would parametrically reflect subjective ratings of stimulus awareness. EEG (64 channel) was recorded in human participants (N = 20), with perithreshold electrical stimulation applied to the left median nerve. Participants indicated perceptibility on a continuous visual rating scale, and stimulation intensity was readjusted in each block to a perithreshold level. The aim of the analysis was to investigate which brain areas reflect the subsequent perceptual awareness ratings parametrically, and how early such parametric effects occur. Parametric ERP effects were found as early as 86 ms after stimulus onset. This parametric modulation of ERP amplitude was source localized to secondary somatosensory cortex, and attributed to feedforward processing between primary and secondary somatosensory cortex by means of dynamic causal modeling (DCM). Furthermore, later in the analysis window, the subjective rating of stimuli correlated with the amplitude of the N140 component and with a broadly distributed P300 component. By DCM modeling, these late effects were explained in terms of recurrent processing within the network of somatosensory and premotor cortices. Our results indicate that early neural activity in the somatosensory cortex can reflect the subjective quality of tactile perception.

  8. Voluntary Explicit versus Involuntary Conceptual Memory Are Associated with Dissociable fMRI Responses in Hippocampus, Amygdala, and Parietal Cortex for Emotional and Neutral Word Pairs

    ERIC Educational Resources Information Center

    Ramponi, Cristina; Barnard, Philip J.; Kherif, Ferath; Henson, Richard N.

    2011-01-01

    Although functional neuroimaging studies have supported the distinction between explicit and implicit forms of memory, few have matched explicit and implicit tests closely, and most of these tested perceptual rather than conceptual implicit memory. We compared event-related fMRI responses during an intentional test, in which a group of…

  9. Characterizing response to elemental unit of acoustic imaging noise: an FMRI study.

    PubMed

    Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2009-07-01

    Acoustic imaging noise produced during functional magnetic resonance imaging (fMRI) studies can hinder auditory fMRI research analysis by altering the properties of the acquired time-series data. Acoustic imaging noise can be especially confounding when estimating the time course of the hemodynamic response (HDR) in auditory event-related fMRI (fMRI) experiments. This study is motivated by the desire to establish a baseline function that can serve not only as a comparison to other quantities of acoustic imaging noise for determining how detrimental is one's experimental noise, but also as a foundation for a model that compensates for the response to acoustic imaging noise. Therefore, the amplitude and spatial extent of the HDR to the elemental unit of acoustic imaging noise (i.e., a single ping) associated with echoplanar acquisition were characterized and modeled. Results from this fMRI study at 1.5 T indicate that the group-averaged HDR in left and right auditory cortex to acoustic imaging noise (duration of 46 ms) has an estimated peak magnitude of 0.29% (right) to 0.48% (left) signal change from baseline, peaks between 3 and 5 s after stimulus presentation, and returns to baseline and remains within the noise range approximately 8 s after stimulus presentation.

  10. The influence of event-related knowledge on verb-argument processing in aphasia

    PubMed Central

    Dickey, Michael Walsh; Warren, Tessa

    2014-01-01

    Event-related conceptual knowledge outside the language system rapidly affects verb-argument processing in unimpaired adults (McRae & Matsuki, 2009). Some have argued that verb-argument processing is in fact reducible to the activation of such event-related knowledge. However, data favoring this conclusion have come primarily from college-aged healthy adults, for whom both linguistic and conceptual semantic processing is fast and automatic. This study examined the influence of event-related knowledge on verb-argument processing among adults with aphasia (n=8) and older unimpaired controls (n=60), in two self-paced reading studies. Participants read sentences containing a plausible verb-argument combination (Mary used a knife to chop the large carrots before dinner), a combination that violated event-related world knowledge (Mary used some bleach to clean the large carrots before dinner), or a combination that violated the verb’s selectional restrictions (Mary used a pump to inflate the large carrots before dinner). The participants with aphasia naturally split into two groups: Group 1 (n=4) had conceptual-semantic impairments (evidenced by poor performance on tasks like Pyramids & Palm Trees) but reasonably intact language processing (higher Western Aphasia Battery Aphasia Quotients), while Group 2 (n=4) had intact conceptual semantics but poorer language processing. Older unimpaired controls and aphasic Group 1 showed rapid on-line disruption for sentences with selectional-restriction violations (SRVs) and event-related knowledge violations, and also showed SRV-specific penalties in sentence-final acceptability judgments (Experiment 1) and comprehension questions (Experiment 2). In contrast, Group 2 showed very few reliable differences across conditions in either on-line or off-line measures. This difference between aphasic groups suggests that verb-related information and event-related knowledge may be dissociated in aphasia. Furthermore, it suggests that

  11. The influence of event-related knowledge on verb-argument processing in aphasia.

    PubMed

    Dickey, Michael Walsh; Warren, Tessa

    2015-01-01

    Event-related conceptual knowledge outside the language system rapidly affects verb-argument processing in unimpaired adults (McRae and Matsuki, 2009). Some have argued that verb-argument processing is in fact reducible to the activation of such event-related knowledge. However, data favoring this conclusion have come primarily from college-aged healthy adults, for whom both linguistic and conceptual semantic processing is fast and automatic. This study examined the influence of event-related knowledge on verb-argument processing among adults with aphasia (n = 8) and older unimpaired controls (n = 60), in two self-paced reading studies. Participants read sentences containing a plausible verb-argument combination (Mary used a knife to chop the large carrots before dinner), a combination that violated event-related world knowledge (Mary used some bleach to clean the large carrots before dinner), or a combination that violated the verb's selectional restrictions (Mary used a pump to inflate the large carrots before dinner). The participants with aphasia naturally split into two groups: Group 1 (n = 4) had conceptual-semantic impairments (evidenced by poor performance on tasks like Pyramids & Palm Trees) but reasonably intact language processing (higher Western Aphasia Battery Aphasia Quotients), while Group 2 (n = 4) had intact conceptual semantics but poorer language processing. Older unimpaired controls and aphasic Group 1 showed rapid on-line disruption for sentences with selectional-restriction violations (SRVs) and event-related knowledge violations, and also showed SRV-specific penalties in sentence-final acceptability judgments (Experiment 1) and comprehension questions (Experiment 2). In contrast, Group 2 showed very few reliable differences across conditions in either on-line or off-line measures. This difference between aphasic groups suggests that verb-related information and event-related knowledge may be dissociated in aphasia. Furthermore, it suggests

  12. [Adaptive moving averaging based estimation of single event-related potentials].

    PubMed

    Qi, C; Liang, D; Jiang, X

    2001-03-01

    Event-related potentials (ERP) is pertinent to medical research and clinical diagnosis. Estimation of single event-related potentials (sERP) is the objective of ERP processing. A new technique, adaptive moving averaging based method for estimation of sERP, is presented. After analysis of the properties of background noise by crossing zero, the window length of moving averaging is adaptively set according to the maximum width of the impulse noise for each recorded raw data. The experiments are made with real recorded data and the results demonstrate that the performance of sERP estimation is excellent. So the method proposed is suitable to sERP processing.

  13. Task-Dependent Semantic Interference in Language Production: An fMRI Study

    ERIC Educational Resources Information Center

    Spalek, Katharina; Thompson-Schill, Sharon L.

    2008-01-01

    We used fMRI to investigate competition during language production in two word production tasks: object naming and color naming of achromatic line drawings. Generally, fMRI activation was higher for color naming. The line drawings were followed by a word (the distractor word) that referred to either the object, a related object, or an unrelated…

  14. Functional Brain Activation Differences in Stuttering Identified with a Rapid fMRI Sequence

    ERIC Educational Resources Information Center

    Loucks, Torrey; Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.

    2011-01-01

    The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech…

  15. Optimized design and analysis of sparse-sampling FMRI experiments.

    PubMed

    Perrachione, Tyler K; Ghosh, Satrajit S

    2013-01-01

    Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase

  16. The "Mozart effect": an electroencephalographic analysis employing the methods of induced event-related desynchronization/synchronization and event-related coherence.

    PubMed

    Jausovec, Norbert; Habe, Katarina

    2003-01-01

    The event-related responses of 18 individuals were recorded while they were listening to 3 music clips of 6 s duration which were repeated 30 times each. The music clips differed in the level of their complex structure, induced mood, musical tempo and prominent frequency. They were taken from Mozart's sonata (K. 448), and Brahms' Hungarian dance (no. 5). The third clip was a simplified version of the theme taken from Haydn's symphony (no. 94) played by a computer synthesizer. Significant differences in induced event-related desynchronization between the 3 music clips were only observed in the lower-1 alpha band which is related to attentional processes. A similar pattern was observed for the coherence measures. While respondents listened to the Mozart clip, coherence in the lower alpha bands increased more, whereas in the gamma band a less pronounced increase was observed as compared with the Brahms and Haydn clips. The clustering of the three clips based on EEG measures distinguished between the Mozart clip on the one hand, and the Haydn and Brahms clips on the other, even though the Haydn and Brahms clips were at the opposite extremes with regard to the mood they induced in listeners, musical tempo, and complexity of structure. This would suggest that Mozart's music--with no regard to the level of induced mood, musical tempo and complexity--influences the level of arousal. It seems that modulations in the frequency domain of Mozart's sonata have the greatest influence on the reported neurophysiological activity.

  17. An Event Related Field Study of Rapid Grammatical Plasticity in Adult Second-Language Learners.

    PubMed

    Bastarrika, Ainhoa; Davidson, Douglas J

    2017-01-01

    The present study used magnetoencephalography (MEG) to investigate how Spanish adult learners of Basque respond to morphosyntactic violations after a short period of training on a small fragment of Basque grammar. Participants (n = 17) were exposed to violation and control phrases in three phases (pretest, training, generalization-test). In each phase participants listened to short Basque phrases and they judged whether they were correct or incorrect. During the pre-test and generalization-test, participants did not receive any feedback. During the training blocks feedback was provided after each response. We also ran two Spanish control blocks before and after training. We analyzed the event-related magnetic- field (ERF) recorded in response to a critical word during all three phases. In the pretest, classification was below chance and we found no electrophysiological differences between violation and control stimuli. Then participants were explicitly taught a Basque grammar rule. From the first training block participants were able to correctly classify control and violation stimuli and an evoked violation response was present. Although the timing of the electrophysiological responses matched participants' L1 effect, the effect size was smaller for L2 and the topographical distribution differed from the L1. While the L1 effect was bilaterally distributed on the auditory sensors, the L2 effect was present at right frontal sensors. During training blocks two and three, the violation-control effect size increased and the topography evolved to a more L1-like pattern. Moreover, this pattern was maintained in the generalization test. We conclude that rapid changes in neuronal responses can be observed in adult learners of a simple morphosyntactic rule, and that native-like responses can be achieved at least in small fragments of second language.

  18. Temporal Characteristics of Online Syntactic Sentence Planning: An Event-Related Potential Study

    PubMed Central

    Timmers, Inge; Gentile, Francesco; Rubio-Gozalbo, M. Estela; Jansma, Bernadette M.

    2013-01-01

    During sentence production, linguistic information (semantics, syntax, phonology) of words is retrieved and assembled into a meaningful utterance. There is still debate on how we assemble single words into more complex syntactic structures such as noun phrases or sentences. In the present study, event-related potentials (ERPs) were used to investigate the time course of syntactic planning. Thirty-three volunteers described visually animated scenes using naming formats varying in syntactic complexity: from simple words (‘W’, e.g., “triangle”, “red”, “square”, “green”, “to fly towards”), to noun phrases (‘NP’, e.g., “the red triangle”, “the green square”, “to fly towards”), to a sentence (‘S’, e.g., “The red triangle flies towards the green square.”). Behaviourally, we observed an increase in errors and corrections with increasing syntactic complexity, indicating a successful experimental manipulation. In the ERPs following scene onset, syntactic complexity variations were found in a P300-like component (‘S’/‘NP’>‘W’) and a fronto-central negativity (linear increase with syntactic complexity). In addition, the scene could display two actions - unpredictable for the participant, as the disambiguation occurred only later in the animation. Time-locked to the moment of visual disambiguation of the action and thus the verb, we observed another P300 component (‘S’>‘NP’/‘W’). The data show for the first time evidence of sensitivity to syntactic planning within the P300 time window, time-locked to visual events critical of syntactic planning. We discuss the findings in the light of current syntactic planning views. PMID:24376601

  19. How Social Ties Influence Consumer: Evidence from Event-Related Potentials

    PubMed Central

    Yao, Zhong

    2017-01-01

    A considerable amount of marketing research has reported that consumers are more saliently influenced by friends (strong social ties) than by acquaintances and strangers (weak social ties). To shed light on the neural and psychological processes underlying such phenomenon, in this study we designed an amended S1-S2 paradigm (product-[reviewer-review]) that is based on realistic consumer purchase experiences. After incoming all given information (product, reviewer, review), participants were required to state their purchase intentions. The neurocognitive and emotional processes related to friend and stranger stimuli were delineated to suggest how social ties influence consumers during their shopping processes. Larger P2 (fronto-central scalp areas) and P3 (central and posterior-parietal scalp areas) components under stranger condition were elicited successfully. These findings demonstrate that the cognitive and emotional processing of friend and stranger stimuli occurs at stages of neural activity, and can be indicated by the P2 and P3 components. Electrophysiological data also support the hypothesis that different neural and emotional processing magnitude and strength underlie friend and stranger effect in the context of consumer purchase. During this process, the perception of stimuli evoked P2, subsequently emotional processing and attention modulation were activated and indicated by P2 and P3. The friend dominated phenomenon can be interpreted as the result of distinctive neurocognitive and emotional processing magnitude, which suggests that psychological and emotional factors can guide consumer decision making. This study consolidates that event related potential (ERP) methodology is likely to be a more sensitive method for investigating consumer behaviors. From the perspectives of management and marketing, our findings show that the P2 and P3 components can be employed as an indicator to probe the influential factors of consumer purchase intentions. PMID

  20. Event-related potential correlates of paranormal ideation and unusual experiences.

    PubMed

    Sumich, Alex; Kumari, Veena; Gordon, Evian; Tunstall, Nigel; Brammer, Michael

    2008-01-01

    Separate dimensions of schizotypy have been differentially associated with electrophysiological measures of brain function, and further shown to be modified by sex/gender. We investigated event-related potential (ERP) correlates of two subdimensions of positive schizotypy, paranormal ideation (PI) and unusual experiences (UEs). Seventy-two individuals with no psychiatric diagnosis (men=36) completed self-report measures of UE and PI and performed an auditory oddball task. Average scores for N100, N200 and P300 amplitudes were calculated for left and right anterior, central and posterior electrode sites. Multiple linear regression was used to examine the relationships between the measures of schizotypy and ERPs across the entire sample, as well as separately according to sex. PI was inversely associated with P300 amplitude at left-central sites across the entire sample, and at right-anterior electrodes in women only. Right-anterior P300 and right-posterior N100 amplitudes were negatively associated with UE in women only. Across the entire sample, UE was negatively associated with left-central N100 amplitude, and positively associated with left-anterior N200 amplitude. These results provide support from electrophysiological measures for the fractionation of the positive dimension of schizotypy into subdimensions of PI and UE, and lend indirect support to dimensional or quasidimensional conceptions of psychosis. More specifically, they suggest that PI may be associated with alteration in contextual updating processes, and that UE may reflect altered sensory/early-attention (N100) mechanisms. The sex differences observed are consistent with those previously observed in individuals with schizophrenia.

  1. The development of control processes supporting source memory discrimination as revealed by event-related potentials.

    PubMed

    de Chastelaine, Marianne; Friedman, David; Cycowicz, Yael M

    2007-08-01

    Improvement in source memory performance throughout childhood is thought to be mediated by the development of executive control. As postretrieval control processes may be better time-locked to the recognition response rather than the retrieval cue, the development of processes underlying source memory was investigated with both stimulus- and response-locked event-related potentials (ERPs). These were recorded in children, adolescents, and adults during a recognition memory exclusion task. Green- and red-outlined pictures were studied, but were tested in black outline. The test requirement was to endorse old items shown in one study color ("targets") and to reject new items along with old items shown in the alternative study color ("nontargets"). Source memory improved with age. All age groups retrieved target and nontarget memories as reflected by reliable parietal episodic memory (EM) effects, a stimulus-locked ERP correlate of recollection. Response-locked ERPs to targets and nontargets diverged in all groups prior to the response, although this occurred at an increasingly earlier time point with age. We suggest these findings reflect the implementation of attentional control mechanisms to enhance target memories and facilitate response selection with the greatest and least success, respectively, in adults and children. In adults only, response-locked ERPs revealed an early-onsetting parietal negativity for nontargets, but not for targets. This was suggested to reflect adults' ability to consistently inhibit prepotent target responses for nontargets. The findings support the notion that the development of source memory relies on the maturation of control processes that serve to enhance accurate selection of task-relevant memories.

  2. Fluid Intelligence and Automatic Neural Processes in Facial Expression Perception: An Event-Related Potential Study

    PubMed Central

    Liu, Tongran; Xiao, Tong; Li, Xiaoyan; Shi, Jiannong

    2015-01-01

    The relationship between human fluid intelligence and social-emotional abilities has been a topic of considerable interest. The current study investigated whether adolescents with different intellectual levels had different automatic neural processing of facial expressions. Two groups of adolescent males were enrolled: a high IQ group and an average IQ group. Age and parental socioeconomic status were matched between the two groups. Participants counted the numbers of the central cross changes while paired facial expressions were presented bilaterally in an oddball paradigm. There were two experimental conditions: a happy condition, in which neutral expressions were standard stimuli (p = 0.8) and happy expressions were deviant stimuli (p = 0.2), and a fearful condition, in which neutral expressions were standard stimuli (p = 0.8) and fearful expressions were deviant stimuli (p = 0.2). Participants were required to concentrate on the primary task of counting the central cross changes and to ignore the expressions to ensure that facial expression processing was automatic. Event-related potentials (ERPs) were obtained during the tasks. The visual mismatch negativity (vMMN) components were analyzed to index the automatic neural processing of facial expressions. For the early vMMN (50–130 ms), the high IQ group showed more negative vMMN amplitudes than the average IQ group in the happy condition. For the late vMMN (320–450 ms), the high IQ group had greater vMMN responses than the average IQ group over frontal and occipito-temporal areas in the fearful condition, and the average IQ group evoked larger vMMN amplitudes than the high IQ group over occipito-temporal areas in the happy condition. The present study elucidated the close relationships between fluid intelligence and pre-attentive change detection on social-emotional information. PMID:26375031

  3. An Event Related Field Study of Rapid Grammatical Plasticity in Adult Second-Language Learners

    PubMed Central

    Bastarrika, Ainhoa; Davidson, Douglas J.

    2017-01-01

    The present study used magnetoencephalography (MEG) to investigate how Spanish adult learners of Basque respond to morphosyntactic violations after a short period of training on a small fragment of Basque grammar. Participants (n = 17) were exposed to violation and control phrases in three phases (pretest, training, generalization-test). In each phase participants listened to short Basque phrases and they judged whether they were correct or incorrect. During the pre-test and generalization-test, participants did not receive any feedback. During the training blocks feedback was provided after each response. We also ran two Spanish control blocks before and after training. We analyzed the event-related magnetic- field (ERF) recorded in response to a critical word during all three phases. In the pretest, classification was below chance and we found no electrophysiological differences between violation and control stimuli. Then participants were explicitly taught a Basque grammar rule. From the first training block participants were able to correctly classify control and violation stimuli and an evoked violation response was present. Although the timing of the electrophysiological responses matched participants' L1 effect, the effect size was smaller for L2 and the topographical distribution differed from the L1. While the L1 effect was bilaterally distributed on the auditory sensors, the L2 effect was present at right frontal sensors. During training blocks two and three, the violation-control effect size increased and the topography evolved to a more L1-like pattern. Moreover, this pattern was maintained in the generalization test. We conclude that rapid changes in neuronal responses can be observed in adult learners of a simple morphosyntactic rule, and that native-like responses can be achieved at least in small fragments of second language. PMID:28174530

  4. Attention bias in earthquake-exposed survivors: an event-related potential study.

    PubMed

    Zhang, Yan; Kong, Fanchang; Han, Li; Najam Ul Hasan, Abbasi; Chen, Hong

    2014-12-01

    The Chinese Wenchuan earthquake, which happened on the 28th of May in 2008, may leave deep invisible scars in individuals. China has a large number of children and adolescents, who tend to be most vulnerable because they are in an early stage of human development and possible post-traumatic psychological distress may have a life-long consequence. Trauma survivors without post-traumatic stress disorder (PTSD) have received little attention in previous studies, especially in event-related potential (ERP) studies. We compared the attention bias to threat stimuli between the earthquake-exposed group and the control group in a masked version of the dot probe task. The target probe presented at the same space location consistent with earthquake-related words was the congruent trial, while in the space location of neutral words was the incongruent trial. Thirteen earthquake-exposed middle school students without PTSD and 13 matched controls were included in this investigation. The earthquake-exposed group showed significantly faster RTs to congruent trials than to incongruent trials. The earthquake-exposed group produced significantly shorter C1 and P1 latencies and larger C1, P1 and P2 amplitudes than the control group. In particular, enhanced P1 amplitude to threat stimuli was observed in the earthquake-exposed group. These findings are in agreement with the prediction that earthquake-exposed survivors have an attention bias to threat stimuli. The traumatic event had a much greater effect on earthquake-exposed survivors even if they showed no PTSD symptoms than individuals in the controls. These results will provide neurobiological evidences for effective intervention and prevention to post-traumatic mental problems.

  5. Event-related potential study of dynamic neural mechanisms of semantic organizational strategies in verbal learning.

    PubMed

    Blanchet, Sophie; Gagnon, Geneviève; Bastien, Célyne

    2007-09-19

    Neuroimaging and neuropsychological data indicate that the frontal regions are implicated in semantic organizational strategies in verbal learning. Whereas these approaches tend to adopt a localizationist view, we used event-related potentials (ERPs) to investigate the dynamic neural mechanisms involved in these strategies. We recorded ERPs using a 128-channel system in 12 young adults (23.75+/-3.02 years) during 3 encoding conditions that manipulated the levels of semantic organization demands. In the Unrelated condition, the words to encode did not share any semantic attributes. For both Spontaneous and Guided conditions, the words in each list were drawn from four semantic categories. In the Spontaneous condition, participants were not informed about the semantic relationship between items. In contrast, in the Guided condition, participants were instructed to improve their subsequent recall by mentally regrouping related items with the aid of category labels. Results indicated that the P200 amplitude increased with the greater organizational demand of semantic strategies. In contrast, the late positive component (LPC) amplitude was larger in both encoding conditions with semantic related words regardless of their instructions as compared to the Unrelated condition. Finally, there was greater right frontal sustained activity in the Spontaneous condition than in the Unrelated condition. Thus, our data indicate that the P200 is sensitive to attentional processes that increase with the organizational semantic demand. The LPC indexes associative processes voluntarily involved in linking related items together. Finally, the right frontal region appears to play an important role in the self-initiation of semantic organizational strategies.

  6. Anticipation of electric shocks modulates low beta power and event-related fields during memory encoding.

    PubMed

    Bauch, Eva M; Bunzeck, Nico

    2015-09-01

    In humans, the temporal and oscillatory dynamics of pain anticipation and its effects on long-term memory are largely unknown. Here, we investigated this open question by using a previously established behavioral paradigm in combination with magnetoencephalography (MEG). Healthy human subjects encoded a series of scene images, which was combined with cues predicting an aversive electric shock with different probabilities (0.2, 0.5 or 0.8). After encoding, memory for the studied images was tested using a remember/know recognition task. Behaviorally, pain anticipation did not modulate recollection-based recognition memory per se, but interacted with the perceived unpleasantness of the electric shock [visual analogue scale rating from 1 (not unpleasant) to 10 (highly unpleasant)]. More precisely, the relationship between pain anticipation and recollection followed an inverted u-shaped function the more unpleasant the shocks were rated by a subject. At the physiological level, this quadratic effect was mimicked in the event-related magnetic fields associated with successful memory formation ('DM-effect') ∼450ms after image onset at left frontal sensors. Importantly, across all subjects, shock anticipation modulated oscillatory power in the low beta frequency range (13-20Hz) in a linear fashion at left temporal sensors. Taken together, our findings indicate that beta oscillations provide a generic mechanism underlying pain anticipation; the effect on subsequent long-term memory, on the other hand, is much more variable and depends on the level of individual pain perception. As such, our findings give new and important insights into how aversive motivational states can drive memory formation.

  7. Proficiency Differences in Syntactic Processing of Monolingual Native Speakers Indexed by Event-related Potentials

    PubMed Central

    Pakulak, Eric; Neville, Helen J.

    2010-01-01

    While anecdotally there appear to be differences in the way native speakers use and comprehend their native language, most empirical investigations of language processing study university students and none have studied differences in language proficiency which may be independent of resource limitations such as working memory span. We examined differences in language proficiency in adult monolingual native speakers of English using an event-related potential (ERP) paradigm. ERPs were recorded to insertion phrase structure violations in naturally spoken English sentences. Participants recruited from a wide spectrum of society were given standardized measures of English language proficiency, and two complementary ERP analyses were performed. In between-groups analyses, participants were divided, based on standardized proficiency scores, into Lower Proficiency (LP) and Higher Proficiency (HP) groups. Compared to LP participants, HP participants showed an early anterior negativity that was more focal, both spatially and temporally, and a larger and more widely distributed positivity (P600) to violations. In correlational analyses, we utilized a wide spectrum of proficiency scores to examine the degree to which individual proficiency scores correlated with individual neural responses to syntactic violations in regions and time windows identified in the between-group analyses. This approach also employed partial correlation analyses to control for possible confounding variables. These analyses provided evidence for the effects of proficiency that converged with the between-groups analyses. These results suggest that adult monolingual native speakers of English who vary in language proficiency differ in the recruitment of syntactic processes that are hypothesized to be at least in part automatic as well as of those thought to be more controlled. These results also suggest that in order to fully characterize neural organization for language in native speakers it is

  8. Alpha and beta band event-related desynchronization reflects kinematic regularities.

    PubMed

    Meirovitch, Yaron; Harris, Hila; Dayan, Eran; Arieli, Amos; Flash, Tamar

    2015-01-28

    The short-lasting attenuation of brain oscillations is termed event-related desynchronization (ERD). It is frequently found in the alpha and beta bands in humans during generation, observation, and imagery of movement and is considered to reflect cortical motor activity and action-perception coupling. The shared information driving ERD in all these motor-related behaviors is unknown. We investigated whether particular laws governing production and perception of curved movement may account for the attenuation of alpha and beta rhythms. Human movement appears to be governed by relatively few kinematic laws of motion. One dominant law in biological motion kinematics is the 2/3 power law (PL), which imposes a strong dependency of movement speed on curvature and is prominent in action-perception coupling. Here we directly examined whether the 2/3 PL elicits ERD during motion observation by characterizing the spatiotemporal signature of ERD. ERDs were measured while human subjects observed a cloud of dots moving along elliptical trajectories either complying with or violating the 2/3 PL. We found that ERD within both frequency bands was consistently stronger, arose faster, and was more widespread while observing motion obeying the 2/3 PL. An activity pattern showing clear 2/3 PL preference and lying within the alpha band was observed exclusively above central motor areas, whereas 2/3 PL preference in the beta band was observed in additional prefrontal-central cortical sites. Our findings reveal that compliance with the 2/3 PL is sufficient to elicit a selective ERD response in the human brain.

  9. Does cigarette smoking relieve stress? Evidence from the event-related potential (ERP).

    PubMed

    Choi, Damee; Ota, Shotaro; Watanuki, Shigeki

    2015-12-01

    Previous studies have reported a paradox that cigarette smoking reduces stress psychologically; however, it increases the arousal level physiologically. To examine this issue, our study aimed to investigate whether cigarette smoking relieves stress by measuring the late positive potential (LPP), a component of the event-related potential (ERP). In Experiment 1, participants first watched emotionally neutral images; second, they received a break; and finally, they watched emotionally neutral images again. In the break, they smoked a cigarette (smoking condition) or simply rested without smoking (non-smoking condition). The procedure of Experiment 2 was the same as that of Experiment 1, except that the participants watched unpleasant images as stress stimuli before the break. In Experiment 1, the LPP decreased from before to after the break in the smoking condition, but not in the non-smoking condition, suggesting that smoking cigarettes in the neutral state reduces the arousal level. In Experiment 2, the LPP for 400-600 ms decreased from before to after the break, both in the smoking and non-smoking conditions; however, the LPP for 200-400 ms decreased from before to after the break only in the smoking condition. This suggests the possibility that cigarette smoking in the unpleasant state may facilitate a decrease in the arousal level faster than with non-smoking. In both Experiments 1 and 2, the subjective rating results also suggested that cigarette smoking decreased anxiety. Taken together, both the physiological (LPP) and the psychological responses from our study suggest that cigarette smoking perhaps relieves stress.

  10. Examining Event-Related Potential (ERP) Correlates of Decision Bias in Recognition Memory Judgments

    PubMed Central

    Hill, Holger; Windmann, Sabine

    2014-01-01

    Memory judgments can be based on accurate memory information or on decision bias (the tendency to report that an event is part of episodic memory when one is in fact unsure). Event related potentials (ERP) correlates are important research tools for elucidating the dynamics underlying memory judgments but so far have been established only for investigations of accurate old/new discrimination. To identify the ERP correlates of bias, and observe how these interact with ERP correlates of memory, we conducted three experiments that manipulated decision bias within participants via instructions during recognition memory tests while their ERPs were recorded. In Experiment 1, the bias manipulation was performed between blocks of trials (automatized bias) and compared to trial-by-trial shifts of bias in accord with an external cue (flexibly controlled bias). In Experiment 2, the bias manipulation was performed at two different levels of accurate old/new discrimination as the memory strength of old (studied) items was varied. In Experiment 3, the bias manipulation was added to another, bottom-up driven manipulation of bias induced via familiarity. In the first two Experiments, and in the low familiarity condition of Experiment 3, we found evidence of an early frontocentral ERP component at 320 ms poststimulus (the FN320) that was sensitive to the manipulation of bias via instruction, with more negative amplitudes indexing more liberal bias. By contrast, later during the trial (500–700 ms poststimulus), bias effects interacted with old/new effects across all three experiments. Results suggest that the decision criterion is typically activated early during recognition memory trials, and is integrated with retrieved memory signals and task-specific processing demands later during the trial. More generally, the findings demonstrate how ERPs can help to specify the dynamics of recognition memory processes under top-down and bottom-up controlled retrieval conditions. PMID

  11. Emotional modulation of attention affects time perception: evidence from event-related potentials.

    PubMed

    Tamm, Maria; Uusberg, Andero; Allik, Jüri; Kreegipuu, Kairi

    2014-06-01

    Emotional effects on human time perception are generally attributed to arousal speeding up or slowing down the internal clock. The aim of the present study is to investigate the less frequently considered role of attention as an alternative mediator of these effects with the help of event-related potentials (ERPs). Participants produced short intervals (0.9, 1.5, 2.7, and 3.3s) while viewing high arousal images with pleasant and unpleasant contents in comparison to neutral images. Behavioral results revealed that durations were overproduced for the 0.9s interval whereas, for 2.7 and 3.3s intervals, underproduction was observed. The effect of affective valence was present for the shorter durations and decreased as the target intervals became longer. More specifically, the durations for unpleasant images were less overproduced in the 0.9s intervals, and for the 1.5s trials, durations for unpleasant images were slightly underproduced, compared to pleasant images, which were overproduced. The analysis of different ERP components suggests possible attention processes related to the timing of affective images in addition to changes in pacemaker speed. Early Posterior Negativity (EPN) was larger for positive than for negative images, indicating valence-specific differences in activation of early attention mechanisms. Within the early P1 and the Late Positive Potential (LPP) components, both pleasant and unpleasant stimuli exhibited equal affective modulation. Contingent Negative Variation (CNV) remained independent of both timing performance and affective modulation. This pattern suggests that both pleasant and unpleasant stimuli enhanced arousal and captured attention, but the latter effect was more pronounced for pleasant stimuli. The valence-specificity of affective attention revealed by ERPs combined with behavioral timing results suggests that attention processes indeed contribute to emotion-induced temporal distortions, especially for longer target intervals.

  12. Extending or creating a new brand: evidence from a study on event-related potentials.

    PubMed

    Jin, Jia; Wang, Cuicui; Yu, Liping; Ma, Qingguo

    2015-07-08

    Brand strategy is a critical problem in new product promotion. In relation to this, producers typically have two main options, namely, brand extension and new brand creation. The current study investigated the neural basis of evaluating these brand strategies at the brain level by using event-related potentials. The experiment used a word-pair paradigm, in which the first word was either a famous beverage brand name or a newly created brand, and the second word was a product name from one of the two product categories (beverage or household appliance). Therefore, four conditions existed as follows: a famous beverage brand paired with a beverage product (BB) or with a household appliance (BH) and a newly created brand paired with a beverage product (NB) or with a household appliance (NH). Behavioral results showed that brand extension obtained a higher acceptance rate than new brand creation under the beverage product category; however, a lower acceptance rate was observed under the household appliance category. Moreover, at the brain level, BB elicited lower N400 mean amplitude than the new brand product NB, whereas BH led to higher N400 amplitude than the new brand product NH. These results showed that the likelihood of accepting a product depended on the association between the brand name and product name, and that the N400 could serve as an index of brand strategy evaluation. In addition, this study also confirmed that brand extension is not always the best brand strategy; an inappropriate extension sometimes performed worse than the creation of a new brand.

  13. Event-Related Potential Effects of Object Repetition Depend on Attention and Part-Whole Configuration

    PubMed Central

    Gosling, Angela; Thoma, Volker; de Fockert, Jan W.; Richardson-Klavehn, Alan

    2016-01-01

    The effects of spatial attention and part-whole configuration on recognition of repeated objects were investigated with behavioral and event-related potential (ERP) measures. Short-term repetition effects were measured for probe objects as a function of whether a preceding prime object was shown as an intact image or coarsely scrambled (split into two halves) and whether or not it had been attended during the prime display. In line with previous behavioral experiments, priming effects were observed from both intact and split primes for attended objects, but only from intact (repeated same-view) objects when they were unattended. These behavioral results were reflected in ERP waveforms at occipital–temporal locations as more negative-going deflections for repeated items in the time window between 220 and 300 ms after probe onset (N250r). Attended intact images showed generally more enhanced repetition effects than split ones. Unattended images showed repetition effects only when presented in an intact configuration, and this finding was limited to the right-hemisphere electrodes. Repetition effects in earlier (before 200 ms) time windows were limited to attended conditions at occipito-temporal sites during the N1, a component linked to the encoding of object structure, while repetition effects at central locations during the same time window (P150) were found for attended and unattended probes but only when repeated in the same intact configuration. The data indicate that view-generalization is mediated by a combination of analytic (part-based) representations and automatic view-dependent representations. PMID:27721749

  14. Identification of a novel dynamic red blindness in human by event-related brain potentials.

    PubMed

    Zhang, Jiahua; Kong, Weijia; Yang, Zhongle

    2010-12-01

    Dynamic color is an important carrier that takes information in some special occupations. However, up to the present, there are no available and objective tests to evaluate dynamic color processing. To investigate the characteristics of dynamic color processing, we adopted two patterns of visual stimulus called "onset-offset" which reflected static color stimuli and "sustained moving" without abrupt mode which reflected dynamic color stimuli to evoke event-related brain potentials (ERPs) in primary color amblyopia patients (abnormal group) and subjects with normal color recognition ability (normal group). ERPs were recorded by Neuroscan system. The results showed that in the normal group, ERPs in response to the dynamic red stimulus showed frontal positive amplitudes with a latency of about 180 ms, a negative peak at about 240 ms and a peak latency of the late positive potential (LPP) in a time window between 290 and 580 ms. In the abnormal group, ERPs in response to the dynamic red stimulus were fully lost and characterized by vanished amplitudes between 0 and 800 ms. No significant difference was noted in ERPs in response to the dynamic green and blue stimulus between the two groups (P>0.05). ERPs of the two groups in response to the static red, green and blue stimulus were not much different, showing a transient negative peak at about 170 ms and a peak latency of LPP in a time window between 350 and 650 ms. Our results first revealed that some subjects who were not identified as color blindness under static color recognition could not completely apperceive a sort of dynamic red stimulus by ERPs, which was called "dynamic red blindness". Furthermore, these results also indicated that low-frequency ERPs induced by "sustained moving" may be a good and new method to test dynamic color perception competence.

  15. Fluid Intelligence and Automatic Neural Processes in Facial Expression Perception: An Event-Related Potential Study.

    PubMed

    Liu, Tongran; Xiao, Tong; Li, Xiaoyan; Shi, Jiannong

    2015-01-01

    The relationship between human fluid intelligence and social-emotional abilities has been a topic of considerable interest. The current study investigated whether adolescents with different intellectual levels had different automatic neural processing of facial expressions. Two groups of adolescent males were enrolled: a high IQ group and an average IQ group. Age and parental socioeconomic status were matched between the two groups. Participants counted the numbers of the central cross changes while paired facial expressions were presented bilaterally in an oddball paradigm. There were two experimental conditions: a happy condition, in which neutral expressions were standard stimuli (p = 0.8) and happy expressions were deviant stimuli (p = 0.2), and a fearful condition, in which neutral expressions were standard stimuli (p = 0.8) and fearful expressions were deviant stimuli (p = 0.2). Participants were required to concentrate on the primary task of counting the central cross changes and to ignore the expressions to ensure that facial expression processing was automatic. Event-related potentials (ERPs) were obtained during the tasks. The visual mismatch negativity (vMMN) components were analyzed to index the automatic neural processing of facial expressions. For the early vMMN (50-130 ms), the high IQ group showed more negative vMMN amplitudes than the average IQ group in the happy condition. For the late vMMN (320-450 ms), the high IQ group had greater vMMN responses than the average IQ group over frontal and occipito-temporal areas in the fearful condition, and the average IQ group evoked larger vMMN amplitudes than the high IQ group over occipito-temporal areas in the happy condition. The present study elucidated the close relationships between fluid intelligence and pre-attentive change detection on social-emotional information.

  16. Who Are the True Fans? Evidence from an Event-Related Potential Study.

    PubMed

    Ma, Qingguo; Jin, Jia; Yuan, Ruixian; Zhang, Wuke

    2015-01-01

    Fans of celebrities commonly exist in modern society. Researchers from social science have been concerned with this problem for years. Furthermore, such researchers have attempted to measure people's involvement with celebrities in various ways. However, no study measured the degree of addiction to a specific celebrity at the neurological level. Therefore, the current study employed visually evoked event related potentials (ERPs) to examine people's attitude toward celebrities by comparing different brain activities of fans and non-fans when they were shown a set of photos. These photos include a specific celebrity, a familiar person, a stranger and a butterfly. Furthermore, to examine the validity of the detected neural index, we also investigated the correlation between brain activity and the score of the Celebrity Attitude Scale (CAS), which was a questionnaire used to explore people's attitude toward celebrities at behavioral level. Two groups of subjects were asked to complete an implicit task, i.e., to press a button when a picture of a butterfly appeared. Results revealed that fans showed significant positive N2 and P300 deflection when viewing the photos of their favorite celebrity, whereas in the non-fan group, the subjects only showed larger P300 amplitude as a response to the celebrity's photos. Furthermore, a positive correlation between P300 amplitude elicited by the stimuli of a celebrity face and CAS scores was also observed. These findings indicated fan attitude to a specific celebrity can also be observed at the neurological level and suggested the potential utility of using ERP component as an index of fandom involvement.

  17. Prior probabilities modulate cortical surprise responses: A study of event-related potentials.

    PubMed

    Seer, Caroline; Lange, Florian; Boos, Moritz; Dengler, Reinhard; Kopp, Bruno

    2016-07-01

    The human brain predicts events in its environment based on expectations, and unexpected events are surprising. When probabilistic contingencies in the environment are precisely instructed, the individual can form expectations based on quantitative probabilistic information ('inference-based learning'). In contrast, when probabilistic contingencies are imprecisely instructed, expectations are formed based on the individual's cumulative experience ('experience-based learning'). Here, we used the urn-ball paradigm to investigate how variations in prior probabilities and in the precision of information about these priors modulate choice behavior and event-related potential (ERP) correlates of surprise. In the urn-ball paradigm, participants are repeatedly forced to infer hidden states responsible for generating observable events, given small samples of factual observations. We manipulated prior probabilities of the states, and we rendered the priors calculable or incalculable, respectively. The analysis of choice behavior revealed that the tendency to consider prior probabilities when making decisions about hidden states was stronger when prior probabilities were calculable, at least in some of our participants. Surprise-related P3b amplitudes were observed in both the calculable and the incalculable prior probability condition. In contrast, calculability of prior probabilities modulated anteriorly distributed ERP amplitudes: when prior probabilities were calculable, surprising events elicited enhanced P3a amplitudes. However, when prior probabilities were incalculable, surprise was associated with enhanced N2 amplitudes. Furthermore, interindividual variability in reliance on prior probabilities was associated with attenuated P3b surprise responses under calculable in comparison to incalculable prior probabilities. Our results suggest two distinct neural systems for probabilistic learning that are recruited depending on contextual cues such as the precision of

  18. Using event related potentials to identify a user's behavioural intention aroused by product form design.

    PubMed

    Ding, Yi; Guo, Fu; Zhang, Xuefeng; Qu, Qingxing; Liu, Weilin

    2016-07-01

    The capacity of product form to arouse user's behavioural intention plays a decisive role in further user experience, even in purchase decision, while traditional methods rarely give a fully understanding of user experience evoked by product form, especially the feeling of anticipated use of product. Behavioural intention aroused by product form designs has not yet been investigated electrophysiologically. Hence event related potentials (ERPs) were applied to explore the process of behavioural intention when users browsed different smart phone form designs with brand and price not taken into account for mainly studying the brain activity evoked by variety of product forms. Smart phone pictures with different anticipated user experience were displayed with equiprobability randomly. Participants were asked to click the left mouse button when certain picture gave them a feeling of behavioural intention to interact with. The brain signal of each participant was recorded by Curry 7.0. The results show that pictures with an ability to arouse participants' behavioural intention for further experience can evoke enhanced N300 and LPPs (late positive potentials) in central-parietal, parietal and occipital regions. The scalp topography shows that central-parietal, parietal and occipital regions are more activated. The results indicate that the discrepancy of ERPs can reflect the neural activities of behavioural intention formed or not. Moreover, amplitude of ERPs occurred in corresponding brain areas can be used to measure user experience. The exploring of neural correlated with behavioural intention provide an accurate measurement method of user's perception and help marketers to know which product can arouse users' behavioural intention, maybe taken as an evaluating indicator of product design.

  19. Auditory stream segregation using bandpass noises: evidence from event-related potentials

    PubMed Central

    Nie, Yingjiu; Zhang, Yang; Nelson, Peggy B.

    2014-01-01

    The current study measured neural responses to investigate auditory stream segregation of noise stimuli with or without clear spectral contrast. Sequences of alternating A and B noise bursts were presented to elicit stream segregation in normal-hearing listeners. The successive B bursts in each sequence maintained an equal amount of temporal separation with manipulations introduced on the last stimulus. The last B burst was either delayed for 50% of the sequences or not delayed for the other 50%. The A bursts were jittered in between every two adjacent B bursts. To study the effects of spectral separation on streaming, the A and B bursts were further manipulated by using either bandpass-filtered noises widely spaced in center frequency or broadband noises. Event-related potentials (ERPs) to the last B bursts were analyzed to compare the neural responses to the delay vs. no-delay trials in both passive and attentive listening conditions. In the passive listening condition, a trend for a possible late mismatch negativity (MMN) or late discriminative negativity (LDN) response was observed only when the A and B bursts were spectrally separate, suggesting that spectral separation in the A and B burst sequences could be conducive to stream segregation at the pre-attentive level. In the attentive condition, a P300 response was consistently elicited regardless of whether there was spectral separation between the A and B bursts, indicating the facilitative role of voluntary attention in stream segregation. The results suggest that reliable ERP measures can be used as indirect indicators for auditory stream segregation in conditions of weak spectral contrast. These findings have important implications for cochlear implant (CI) studies—as spectral information available through a CI device or simulation is substantially degraded, it may require more attention to achieve stream segregation. PMID:25309306

  20. Who Are the True Fans? Evidence from an Event-Related Potential Study

    PubMed Central

    Ma, Qingguo; Jin, Jia; Yuan, Ruixian; Zhang, Wuke

    2015-01-01

    Fans of celebrities commonly exist in modern society. Researchers from social science have been concerned with this problem for years. Furthermore, such researchers have attempted to measure people’s involvement with celebrities in various ways. However, no study measured the degree of addiction to a specific celebrity at the neurological level. Therefore, the current study employed visually evoked event related potentials (ERPs) to examine people’s attitude toward celebrities by comparing different brain activities of fans and non-fans when they were shown a set of photos. These photos include a specific celebrity, a familiar person, a stranger and a butterfly. Furthermore, to examine the validity of the detected neural index, we also investigated the correlation between brain activity and the score of the Celebrity Attitude Scale (CAS), which was a questionnaire used to explore people’s attitude toward celebrities at behavioral level. Two groups of subjects were asked to complete an implicit task, i.e., to press a button when a picture of a butterfly appeared. Results revealed that fans showed significant positive N2 and P300 deflection when viewing the photos of their favorite celebrity, whereas in the non-fan group, the subjects only showed larger P300 amplitude as a response to the celebrity’s photos. Furthermore, a positive correlation between P300 amplitude elicited by the stimuli of a celebrity face and CAS scores was also observed. These findings indicated fan attitude to a specific celebrity can also be observed at the neurological level and suggested the potential utility of using ERP component as an index of fandom involvement. PMID:26057891

  1. Event-Related Potentials Elicited by Pre-Attentive Emotional Changes in Temporal Context

    PubMed Central

    Fujimura, Tomomi; Okanoya, Kazuo

    2013-01-01

    The ability to detect emotional change in the environment is essential for adaptive behavior. The current study investigated whether event-related potentials (ERPs) can reflect emotional change in a visual sequence. To assess pre-attentive processing, we examined visual mismatch negativity (vMMN): the negative potentials elicited by a deviant (infrequent) stimulus embedded in a sequence of standard (frequent) stimuli. Participants in two experiments pre-attentively viewed visual sequences of Japanese kanji with different emotional connotations while ERPs were recorded. The visual sequence in Experiment 1 consisted of neutral standards and two types of emotional deviants with a strong and weak intensity. Although the results indicated that strongly emotional deviants elicited more occipital negativity than neutral standards, it was unclear whether these negativities were derived from emotional deviation in the sequence or from the emotional significance of the deviants themselves. In Experiment 2, the two identical emotional deviants were presented against different emotional standards. One type of deviants was emotionally incongruent with the standard and the other type of deviants was emotionally congruent with the standard. The results indicated that occipital negativities elicited by deviants resulted from perceptual changes in a visual sequence at a latency of 100–200 ms and from emotional changes at latencies of 200–260 ms. Contrary to the results of the ERP experiment, reaction times to deviants showed no effect of emotional context; negative stimuli were consistently detected more rapidly than were positive stimuli. Taken together, the results suggest that brain signals can reflect emotional change in a temporal context. PMID:23671693

  2. Event-related potentials for better speech perception in noise by cochlear implant users.

    PubMed

    Soshi, Takahiro; Hisanaga, Satoko; Kodama, Narihiro; Kanekama, Yori; Samejima, Yasuhiro; Yumoto, Eiji; Sekiyama, Kaoru

    2014-10-01

    Speech perception in noise is still difficult for cochlear implant (CI) users even with many years of CI use. This study aimed to investigate neurophysiological and behavioral foundations for CI-dependent speech perception in noise. Seventeen post-lingual CI users and twelve age-matched normal hearing adults participated in two experiments. In Experiment 1, CI users' auditory-only word perception in noise (white noise, two-talker babble; at 10 dB SNR) degraded by about 15%, compared to that in quiet (48% accuracy). CI users' auditory-visual word perception was generally better than auditory-only perception. Auditory-visual word perception was degraded under information masking by the two-talker noise (69% accuracy), compared to that in quiet (77%). Such degradation was not observed for white noise (77%), suggesting that the overcoming of information masking is an important issue for CI users' speech perception improvement. In Experiment 2, event-related cortical potentials were recorded in an auditory oddball task in quiet and noise (white noise only). Similarly to the normal hearing participants, the CI users showed the mismatch negative response (MNR) to deviant speech in quiet, indicating automatic speech detection. In noise, the MNR disappeared in the CI users, and only the good CI performers (above 66% accuracy) showed P300 (P3) like the normal hearing participants. P3 amplitude in the CI users was positively correlated with speech perception scores. These results suggest that CI users' difficulty in speech perception in noise is associated with the lack of automatic speech detection indicated by the MNR. Successful performance in noise may begin with attended auditory processing indicated by P3.

  3. The neuromechanism underlying verbal analogical reasoning of metaphorical relations: an event-related potentials study.

    PubMed

    Zhao, Ming; Meng, Huishan; Xu, Zhiyuan; Du, Fenglei; Liu, Tao; Li, Yongxin; Chen, Feiyan

    2011-11-24

    Using event-related potentials (ERPs), this study investigated the neuromechanism underlying verbal analogical reasoning of two different metaphorical relations: attributive metaphor and relational metaphor. The analogical reasoning of attributive metaphor (AM-AR) involves a superficial similarity between analogues, while the analogical reasoning of relational metaphor (RM-AR) requires a structural similarity. Subjects were asked to judge whether one word pair was semantically analogous to another word pair. Results showed that the schema induction stage elicited a greater N400 component at the right anterior scalp for the AM-AR and RM-AR tasks, possibly attributable to semantic processing of metaphorical word pairs. The N400 was then followed by a widely distributed P300 and a late negative component (LNC1) at the left anterior scalp. The P300 was possibly related to the formation of a relational category, while the LNC1 was possibly related to the maintenance of a reasoning cue in working memory. The analogy mapping stage elicited broadly distributed N400 and LNC2, which might indicate the presence of semantic retrieval and analogical transfer. In the answer production stage, all conditions elicited the P2 component due to early stimulus encoding. The largest P2 amplitude was in the RM-AR task. The RM-AR elicited a larger LPC than did the AM-AR, even though the baseline correction was taken as a control for the differential P2 effect. The LPC effect might suggest that relational metaphors involved more integration processing than attributive metaphors.

  4. The neural basis of analogical reasoning: an event-related potential study.

    PubMed

    Qiu, Jiang; Li, Hong; Chen, Antao; Zhang, Qinglin

    2008-10-01

    The spatiotemporal analysis of brain activation during the execution of easy analogy (EA) and difficult analogy (DA) tasks was investigated using high-density event-related brain potentials (ERPs). Results showed that reasoning tasks (schema induction) elicited a more negative ERP deflection (N500-1000) than did the baseline task (BS) between 500 and 1000 ms. Dipole source analysis of difference waves (EA-BS and DA-BS) indicated that the negative components were both localized near the left thalamus, possibly associated with the retrieval of alphabetical information. Furthermore, DA elicited a more positive ERP component (P600-1000) than did EA in the same time window. Two generators of P600-1000 were located in the medial prefrontal cortex (BA10) and the left frontal cortex (BA6) which was possibly involved in integrating information in schema abstraction. In the stage of analogy mapping, a greater negativity (N400-600) in the reasoning tasks as compared to BS was found over fronto-central scalp regions. A generator of this effect was located in the left fusiform gyrus and was possibly related to associative memory and activation of schema. Then, a greater negativity in the reasoning tasks, in comparison to BS task, developed between 900-1200 ms (LNC1) and 2000-2500 ms (LNC2). Dipole source analysis (EA-BS) localized the generator of LNC1 in the left prefrontal cortex (BA 10) which was possibly related to mapping the schema to the target problem, and the generator of LNC2 in the left prefrontal cortex (BA 9) which was possibly related to deciding whether a conclusion correctly follows from the schema.

  5. How Social Ties Influence Consumer: Evidence from Event-Related Potentials.

    PubMed

    Luan, Jing; Yao, Zhong; Bai, Yan

    2017-01-01

    A considerable amount of marketing research has reported that consumers are more saliently influenced by friends (strong social ties) than by acquaintances and strangers (weak social ties). To shed light on the neural and psychological processes underlying such phenomenon, in this study we designed an amended S1-S2 paradigm (product-[reviewer-review]) that is based on realistic consumer purchase experiences. After incoming all given information (product, reviewer, review), participants were required to state their purchase intentions. The neurocognitive and emotional processes related to friend and stranger stimuli were delineated to suggest how social ties influence consumers during their shopping processes. Larger P2 (fronto-central scalp areas) and P3 (central and posterior-parietal scalp areas) components under stranger condition were elicited successfully. These findings demonstrate that the cognitive and emotional processing of friend and stranger stimuli occurs at stages of neural activity, and can be indicated by the P2 and P3 components. Electrophysiological data also support the hypothesis that different neural and emotional processing magnitude and strength underlie friend and stranger effect in the context of consumer purchase. During this process, the perception of stimuli evoked P2, subsequently emotional processing and attention modulation were activated and indicated by P2 and P3. The friend dominated phenomenon can be interpreted as the result of distinctive neurocognitive and emotional processing magnitude, which suggests that psychological and emotional factors can guide consumer decision making. This study consolidates that event related potential (ERP) methodology is likely to be a more sensitive method for investigating consumer behaviors. From the perspectives of management and marketing, our findings show that the P2 and P3 components can be employed as an indicator to probe the influential factors of consumer purchase intentions.

  6. Empirical Markov Chain Monte Carlo Bayesian analysis of fMRI data.

    PubMed

    de Pasquale, F; Del Gratta, C; Romani, G L

    2008-08-01

    In this work an Empirical Markov Chain Monte Carlo Bayesian approach to analyse fMRI data is proposed. The Bayesian framework is appealing since complex models can be adopted in the analysis both for the image and noise model. Here, the noise autocorrelation is taken into account by adopting an AutoRegressive model of order one and a versatile non-linear model is assumed for the task-related activation. Model parameters include the noise variance and autocorrelation, activation amplitudes and the hemodynamic response function parameters. These are estimated at each voxel from samples of the Posterior Distribution. Prior information is included by means of a 4D spatio-temporal model for the interaction between neighbouring voxels in space and time. The results show that this model can provide smooth estimates from low SNR data while important spatial structures in the data can be preserved. A simulation study is presented in which the accuracy and bias of the estimates are addressed. Furthermore, some results on convergence diagnostic of the adopted algorithm are presented. To validate the proposed approach a comparison of the results with those from a standard GLM analysis, spatial filtering techniques and a Variational Bayes approach is provided. This comparison shows that our approach outperforms the classical analysis and is consistent with other Bayesian techniques. This is investigated further by means of the Bayes Factors and the analysis of the residuals. The proposed approach applied to Blocked Design and Event Related datasets produced reliable maps of activation.

  7. Neural substrates of figurative language during natural speech perception: an fMRI study

    PubMed Central

    Nagels, Arne; Kauschke, Christina; Schrauf, Judith; Whitney, Carin; Straube, Benjamin; Kircher, Tilo

    2013-01-01

    Many figurative expressions are fully conventionalized in everyday speech. Regarding the neural basis of figurative language processing, research has predominantly focused on metaphoric expressions in minimal semantic context. It remains unclear in how far metaphoric expressions during continuous text comprehension activate similar neural networks as isolated metaphors. We therefore investigated the processing of similes (figurative language, e.g., “He smokes like a chimney!”) occurring in a short story. Sixteen healthy, male, native German speakers listened to similes that came about naturally in a short story, while blood-oxygenation-level-dependent (BOLD) responses were measured with functional magnetic resonance imaging (fMRI). For the event-related analysis, similes were contrasted with non-figurative control sentences (CS). The stimuli differed with respect to figurativeness, while they were matched for frequency of words, number of syllables, plausibility, and comprehensibility. Similes contrasted with CS resulted in enhanced BOLD responses in the left inferior (IFG) and adjacent middle frontal gyrus. Concrete CS as compared to similes activated the bilateral middle temporal gyri as well as the right precuneus and the left middle frontal gyrus (LMFG). Activation of the left IFG for similes in a short story is consistent with results on single sentence metaphor processing. The findings strengthen the importance of the left inferior frontal region in the processing of abstract figurative speech during continuous, ecologically-valid speech comprehension; the processing of concrete semantic contents goes along with a down-regulation of bilateral temporal regions. PMID:24065897

  8. Event-Related Potentials: Search for Positive and Negative Child-Related Schemata in Individuals at Low and High Risk for Child Physical Abuse

    ERIC Educational Resources Information Center

    Milner, Joel S.; Rabenhorst, Mandy M.; McCanne, Thomas R.; Crouch, Julie L.; Skowronski, John J.; Fleming, Matthew T.; Hiraoka, Regina; Risser, Heather J.

    2011-01-01

    Objective: The present investigation used event-related potentials (ERPs, N400 and N300) to determine the extent to which individuals at low and high risk for child physical abuse (CPA) have pre-existing positive and negative child-related schemata that can be automatically activated by ambiguous child stimuli. Methods: ERP data were obtained from…

  9. Effects of breast milk and milk formula on synthesized speech sound-induced event-related potentials at 3 and 6 months of age

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of breast milk and milk formula supplemented with docosahexaenoic acid and arachidonic acid on speech processing were investigated by recording event-related potentials (ERPs) to synthesized /pa/ and /ba/ (oddball paradigm, 80%:20%) at 3 and 6 months of age. Behavioral assessment was also ob...

  10. Visual Attention to Global and Local Stimulus Properties in 6-Month-Old Infants: Individual Differences and Event-Related Potentials

    ERIC Educational Resources Information Center

    Guy, Maggie W.; Reynolds, Greg D.; Zhang, Dantong

    2013-01-01

    Event-related potentials (ERPs) were utilized in an investigation of 21 six-month-olds' attention to and processing of global and local properties of hierarchical patterns. Overall, infants demonstrated an advantage for processing the overall configuration (i.e., global properties) of local features of hierarchical patterns; however,…

  11. The Phonotactic Influence on the Perception of a Consonant Cluster /pt/ by Native English and Native Polish Listeners: A Behavioral and Event Related Potential (ERP) Study

    ERIC Educational Resources Information Center

    Wagner, Monica; Shafer, Valerie L.; Martin, Brett; Steinschneider, Mitchell

    2012-01-01

    The effect of exposure to the contextual features of the /pt/ cluster was investigated in native-English and native-Polish listeners using behavioral and event-related potential (ERP) methodology. Both groups experience the /pt/ cluster in their languages, but only the Polish group experiences the cluster in the context of word onset examined in…

  12. Predicting Reading Growth with Event-Related Potentials: Thinking Differently about Indexing "Responsiveness"

    ERIC Educational Resources Information Center

    Lemons, Christopher J.; Key, Alexandra P. F.; Fuchs, Douglas; Yoder, Paul J.; Fuchs, Lynn S.; Compton, Donald L.; Williams, Susan M.; Bouton, Bobette

    2010-01-01

    The purpose of this study was to determine if event-related potential (ERP) data collected during three reading-related tasks (Letter Sound Matching, Nonword Rhyming, and Nonword Reading) could be used to predict short-term reading growth on a curriculum-based measure of word identification fluency over 19 weeks in a sample of 29 first-grade…

  13. Early Perception of Written Syllables in French: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Doignon-Camus, Nadege; Bonnefond, Anne; Touzalin-Chretien, Pascale; Dufour, Andre

    2009-01-01

    The present study examined whether written syllable units are perceived in first steps of letter string processing. An illusory conjunction experiment was conducted while event-related potentials were recorded. Colored pseudowords were presented such that there was a match or mismatch between the syllable boundaries and the color boundaries. The…

  14. Event Related Potentials (ERPs) in Elementary Cognitive Tasks Reflect Task Difficulty and Task Threshold.

    ERIC Educational Resources Information Center

    Caryl, P. G.; Harper, Alison

    1996-01-01

    Effects on the event-related potential (ERP) waveform of differences in stimuli (task difficulty) and threshold were studied with 35 undergraduates performing a visual inspection time task and 30 performing a pitch discrimination task. In both tasks, ERP differences related to threshold were temporally localized differences in waveform shape. (SLD)

  15. Mental Rotation of Mirrored Letters: Evidence from Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Nunez-Pena, M. Isabel; Aznar-Casanova, J. Antonio

    2009-01-01

    Event-related brain potentials (ERPs) were recorded while participants (n=13) were presented with mirrored and normal letters at different orientations and were asked to make mirror-normal letter discriminations. As it has been suggested that a mental rotation out of the plane might be necessary to decide on mirrored letters, we wanted to…

  16. Event-Related Potentials in Adolescents with Combined ADHD and CD Disorder: A Single Stimulus Paradigm

    ERIC Educational Resources Information Center

    Du, Jing; Li, Jianming; Wang, Ying; Jiang, Qianjin; Livesley, W. John; Jang, Kerry L.; Wang, Kai; Wang, Wei

    2006-01-01

    Some studies of the event-related potentials demonstrated a reduction of the voluntary component P3 (P300 or P3b) in youngsters with the attention deficit/hyperactivity disorder (ADHD) or in conduct disorders (CD), and a reduction of the automatic processing component, mismatch negativity, in patients with both ADHD and CD (ADHD+CD). Recently, a…

  17. Does Discourse Congruence Influence Spoken Language Comprehension before Lexical Association? Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Boudewyn, Megan A.; Gordon, Peter C.; Long, Debra; Polse, Lara; Swaab, Tamara Y.

    2012-01-01

    The goal of this study was to examine how lexical association and discourse congruence affect the time course of processing incoming words in spoken discourse. In an event-related potential (ERP) norming study, we presented prime-target pairs in the absence of a sentence context to obtain a baseline measure of lexical priming. We observed a…

  18. Orthographic Combinability and Phonological Consistency Effects in Reading Chinese Phonograms: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Hsu, Chun-Hsien; Tsai, Jie-Li; Lee, Chia-Ying; Tzeng, Ovid J. -L.

    2009-01-01

    In this study, event-related potentials (ERPs) were used to trace the temporal dynamics of phonological consistency and phonetic combinability in the reading of Chinese phonograms. The data showed a significant consistency-by-combinability interaction at N170. High phonetic combinability characters elicited greater negativity at N170 than did low…

  19. Contingent Attentional Capture by Top-Down Control Settings: Converging Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Lien, Mei-Ching; Ruthruff, Eric; Goodin, Zachary; Remington, Roger W.

    2008-01-01

    Theories of attentional control are divided over whether the capture of spatial attention depends primarily on stimulus salience or is contingent on attentional control settings induced by task demands. The authors addressed this issue using the N2-posterior-contralateral (N2pc) effect, a component of the event-related brain potential thought to…

  20. Use of Event-Related Potentials in the Study of Typical and Atypical Development

    ERIC Educational Resources Information Center

    Nelson, Charles A., III; McCleery, Joseph P.

    2008-01-01

    Event-related potential is a kind of neuroimaging tool which can be used in the study of neurodevelopment. Two areas of atypical development, children diagnosed with autism and children experiencing early psychosocial neglect, have benefited from ERPs. The physiological basis of ERPs and the constraints on their applications are also discussed.

  1. Perception of Long-Distance Coarticulation: An Event-Related Potential and Behavioral Study

    ERIC Educational Resources Information Center

    Grosvald, Michael; Corina, David

    2012-01-01

    In this study we explore listeners' sensitivity to vowel to vowel (VV) coarticulation, using both event-related potential (ERP) and behavioral methodologies. The stimuli used were vowels "colored" by the coarticulatory influence of other vowels across one, three or five intervening segments. The paradigm used in the ERP portion of the study was…

  2. 12 CFR 620.17 - Special notice provisions for events related to minimum permanent capital.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 7 2014-01-01 2014-01-01 false Special notice provisions for events related to... SYSTEM DISCLOSURE TO SHAREHOLDERS Notice to Shareholders § 620.17 Special notice provisions for events... any event(s) that may have significantly contributed to the institution's noncompliance with...

  3. Conceptual Integration of Arithmetic Operations with Real-World Knowledge: Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Guthormsen, Amy M.; Fisher, Kristie J.; Bassok, Miriam; Osterhout, Lee; DeWolf, Melissa; Holyoak, Keith J.

    2016-01-01

    Research on language processing has shown that the disruption of conceptual integration gives rise to specific patterns of event-related brain potentials (ERPs)--N400 and P600 effects. Here, we report similar ERP effects when adults performed cross-domain conceptual integration of analogous semantic and mathematical relations. In a problem-solving…

  4. Electrophysiological (Event-Related Potentials) Indices of Cognitive Processing in Autistic Learners.

    ERIC Educational Resources Information Center

    Shibley, Ralph, Jr.; And Others

    Event-related Potentials (ERPs) were recorded to both auditory and visual stimuli from the scalps of nine autistic males and nine normal controls (all Ss between 12 and 22 years of age) to examine the differences in information processing strategies. Ss were tested on three different tasks: an auditory missing stimulus paradigm, a visual color…

  5. Pitch Discrimination without Awareness in Congenital Amusia: Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Moreau, Patricia; Jolicoeur, Pierre; Peretz, Isabelle

    2013-01-01

    Congenital amusia is a lifelong disorder characterized by a difficulty in perceiving and producing music despite normal intelligence and hearing. Behavioral data have indicated that it originates from a deficit in fine-grained pitch discrimination, and is expressed by the absence of a P3b event-related brain response for pitch differences smaller…

  6. Event-Related Potentials and Consonant Differentiation in Newborns with Familial Risk for Dyslexia.

    ERIC Educational Resources Information Center

    Guttorm, Tomi K.; Leppanen, Paavo H. T.; Richardson, Ulla; Lyytinen, Heikki

    2001-01-01

    This study examined event-related potentials (ERPs) to synthetic consonant-vowel syllables from 26 newborns with familial risk for dyslexia and 23 control infants participating in a longitudinal study of dyslexia. Results indicated that the cortical electric activation evoked by speech elements differed between children with and without risk for…

  7. Attentional Mechanisms in Sports via Brain-Electrical Event-Related Potentials

    ERIC Educational Resources Information Center

    Hack, Johannes; Memmert, Daniel; Rup, Andre

    2009-01-01

    In this study, we examined attention processes in complex, sport-specific decision-making tasks without interdependencies from anticipation. Psychophysiological and performance data recorded from advanced and intermediate level basketball referees were compared. Event-related potentials obtained while judging game situations in foul recognition…

  8. Reduction in event-related alpha attenuation during performance of an auditory oddball task in schizophrenia.

    PubMed

    Higashima, Masato; Tsukada, Takahiro; Nagasawa, Tatsuya; Oka, Takashi; Okamoto, Takeshi; Okamoto, Yoko; Koshino, Yoshifumi

    2007-08-01

    EEG frequency-domain analyses have demonstrated that cognitive performance produces a reduction in alpha activity, i.e., alpha attenuation, such as event-related desynchronization (ERD), reflecting brain activation. To examine whether schizophrenic patients have abnormalities in frequency-domain, event-related alpha attenuation, as well as in time-domain EEG phenomena, such as event-related potential, we compared alpha power change and P300 elicited simultaneously in response to the presentation of target tones in an auditory oddball paradigm between patients with schizophrenia and normal control subjects. In both patients and controls, alpha power was smaller during the time window of 512 ms following targets than following non-targets, particularly at the parietal and the posterior temporal locations (Pz, T5, and T6). The size of alpha attenuation measured as percent reduction in alpha power produced by targets relative to non-targets was smaller in patients than in controls at the posterior temporal locations. The size of alpha attenuation showed no correlation with P300 amplitude or latency in either patients or controls. Furthermore, in patients, the size of alpha attenuation showed no correlation with symptom severity, while P300 amplitude was correlated negatively with the positive subscale score of the Positive and Negative Syndrome Scale. These findings suggest that the symptom-independent reduction in event-related alpha attenuation in schizophrenia may be useful as an electrophysiological index of the impairment of neural processes distinct from that indexed by symptom-dependent P300 abnormalities.

  9. Event-Related Potentials Reveal Anomalous Morphosyntactic Processing in Developmental Dyslexia

    ERIC Educational Resources Information Center

    Cantiani, Chiara; Lorusso, Maria Luisa; Perego, Paolo; Molteni, Massimo; Guasti, Maria Teresa

    2013-01-01

    In the light of the literature describing oral language difficulties in developmental dyslexia (DD), event-related potentials were used in order to compare morphosyntactic processing in 16 adults with DD (aged 20-28 years) and unimpaired controls. Sentences including subject-verb agreement violations were presented auditorily, with grammaticality…

  10. Event-Related EEG Oscillations to Semantically Unrelated Words in Normal and Learning Disabled Children

    ERIC Educational Resources Information Center

    Fernandez, Thalia; Harmony, Thalia; Mendoza, Omar; Lopez-Alanis, Paula; Marroquin, Jose Luis; Otero, Gloria; Ricardo-Garcell, Josefina

    2012-01-01

    Learning disabilities (LD) are one of the most frequent problems for elementary school-aged children. In this paper, event-related EEG oscillations to semantically related and unrelated pairs of words were studied in a group of 18 children with LD not otherwise specified (LD-NOS) and in 16 children with normal academic achievement. We propose that…

  11. Event-Related Potentials in Year-Old Infants: Relations with Emotionality and Cortisol.

    ERIC Educational Resources Information Center

    Gunnar, Megan R.; Nelson, Charles A.

    1994-01-01

    Event-related potentials (ERPs) were recorded from infants shown sets of familiar faces presented frequently and infrequently, and a set of novel faces presented infrequently, and correlated with infant emotional behavior and cortisol levels. Found that infants scoring higher on the normative ERP factor were more distressed during parent…

  12. P3 Event-Related Potentials and Childhood Maltreatment in Successful and Unsuccessful Psychopaths

    ERIC Educational Resources Information Center

    Gao, Yu; Raine, Adrian; Schug, Robert A.

    2011-01-01

    Although P3 event-related potential abnormalities have been found in psychopathic individuals, it is unknown whether successful (uncaught) psychopaths and unsuccessful (caught) psychopaths show similar deficits. In this study, P3 amplitude and latency were assessed from a community sample of 121 male adults using an auditory three-stimulus oddball…

  13. Two Languages, One Developing Brain: Event-Related Potentials to Words in Bilingual Toddlers

    ERIC Educational Resources Information Center

    Conboy, Barbara T.; Mills, Debra L.

    2006-01-01

    Infant bilingualism offers a unique opportunity to study the relative effects of language experience and maturation on brain development, with each child serving as his or her own control. Event-related potentials (ERPs) to words were examined in 19- to 22-month-old English-Spanish bilingual toddlers. The children's dominant vs. nondominant…

  14. Reasoning with Linear Orders: Differential Parietal Cortex Activation in Sub-Clinical Depression. An fMRI Investigation in Sub-Clinical Depression and Controls

    PubMed Central

    Hinton, Elanor C.; Wise, Richard G.; Singh, Krish D.; von Hecker, Ulrich

    2015-01-01

    The capacity to learn new information and manipulate it for efficient retrieval has long been studied through reasoning paradigms, which also has applicability to the study of social behavior. Humans can learn about the linear order within groups using reasoning, and the success of such reasoning may vary according to affective state, such as depression. We investigated the neural basis of these latter findings using functional neuroimaging. Using BDI-II criteria, 14 non-depressed (ND) and 12 mildly depressed volunteers took part in a linear-order reasoning task during functional magnetic resonance imaging. The hippocampus, parietal, and prefrontal cortices were activated during the task, in accordance with previous studies. In the learning phase and in the test phase, greater activation of the parietal cortex was found in the depressed group, which may be a compensatory mechanism in order to reach the same behavioral performance as the ND group, or evidence for a different reasoning strategy in the depressed group. PMID:25646078

  15. The Response of the Left Ventral Attentional System to Invalid Targets and its Implication for the Spatial Neglect Syndrome: a Multivariate fMRI Investigation.

    PubMed

    Silvetti, Massimo; Lasaponara, Stefano; Lecce, Francesca; Dragone, Alessio; Macaluso, Emiliano; Doricchi, Fabrizio

    2016-12-01

    In humans, invalid visual targets that mismatch spatial expectations induced by attentional cues are considered to selectively engage a right hemispheric "reorienting" network that includes the temporal parietal junction (TPJ), the inferior frontal gyrus (IFG), and the medial frontal gyrus (MFG). However, recent findings suggest that this hemispheric dominance is not absolute and that it is rather observed because the TPJ and IFG areas in the left hemisphere are engaged both by invalid and valid cued targets. Because of this, the BOLD response of the left hemisphere to invalid targets is usually cancelled out by the standard "invalid versus valid" contrast used in functional magnetic resonance imaging investigations of spatial attention. Here, we used multivariate pattern recognition analysis (MVPA) to gain finer insight into the role played by the left TPJ and IFG in reorienting to invalid targets. We found that in left TPJ and IFG blood oxygen level-dependent (BOLD) responses to invalid and valid targets were associated to different patterns of neural activity, possibly reflecting the presence of functionally distinct neuronal populations. Pattern segregation was significant at group level, it was present in almost all of the participants to the study and was observed both for targets in the left and right side of space. A control whole-brain MVPA ("Searchlight" analysis) confirmed the results obtained in predefined regions of interest and highlighted that also other areas, that is, superior parietal and frontal-polar cortex, show different patterns of BOLD response to valid and invalid targets. These results confirm and expand previous evidence highlighting the involvement of the left hemisphere in reorienting of visual attention (Doricchi et al. 2010; Dragone et al. 2015). These findings suggest that asymmetrical reorienting deficits suffered by right brain damaged patients with left spatial neglect, who have severe impairments in contralesional reorienting and

  16. Training-related changes in early visual processing of functionally illiterate adults: evidence from event-related brain potentials

    PubMed Central

    2013-01-01

    Background Event-related brain potentials (ERPs) were used to investigate training-related changes in fast visual word recognition of functionally illiterate adults. Analyses focused on the left-lateralized occipito-temporal N170, which represents the earliest processing of visual word forms. Event-related brain potentials were recorded from 20 functional illiterates receiving intensive literacy training for adults, 10 functional illiterates not participating in the training and 14 regular readers while they read words, pseudowords or viewed symbol strings. Subjects were required to press a button whenever a stimulus was immediately repeated. Results Attending intensive literacy training was associated with improvements in reading and writing skills and with an increase of the word-related N170 amplitude. For untrained functional illiterates and regular readers no changes in literacy skills or N170 amplitude were observed. Conclusions Results of the present study suggest that the word-related N170 can still be modulated in adulthood as a result of the improvements in literacy skills. PMID:24330622

  17. Effects of cannabis use and subclinical depression on the P3 event-related potential in an emotion processing task

    PubMed Central

    Troup, Lucy J.; Torrence, Robert D.; Andrzejewski, Jeremy A.; Braunwalder, Jacob T.

    2017-01-01

    Abstract The effects of residual cannabis use on emotional expression recognition and the P3 event-related potential in participants who scored highly for subclinical depression were investigated. Comparisons were made between participants who were classified as depressed or nondepressed cannabis users, depressed non-cannabis users and controls who neither used cannabis nor were characterized as being depressed. In an emotional expression recognition task, participants were asked to respond to faces depicting happy, angry, fearful, and neutral faces either implicitly, explicitly, or empathically. Residual cannabis use and mood was shown to modulate the P3 event related potential during the task. There was a significant reduction in the P3 amplitude between depressed and nondepressed participants. Residual cannabis use further reduced the P3 amplitude with the greatest deficits being associated with cannabis users who scored highly for subclinical depression. These effects were greatest for explicit and empathic processing of faces depicting negative emotions. We conclude from our study that cannabis and mood state interact to reduce the amplitude of the P3 which has been associated with attention to emotion. PMID:28328830

  18. Biological Computation Indexes of Brain Oscillations in Unattended Facial Expression Processing Based on Event-Related Synchronization/Desynchronization

    PubMed Central

    Ma, Lin; Li, Haifeng; Zhao, Lun; Bo, Hongjian; Wang, Xunda

    2016-01-01

    Estimation of human emotions from Electroencephalogram (EEG) signals plays a vital role in affective Brain Computer Interface (BCI). The present study investigated the different event-related synchronization (ERS) and event-related desynchronization (ERD) of typical brain oscillations in processing Facial Expressions under nonattentional condition. The results show that the lower-frequency bands are mainly used to update Facial Expressions and distinguish the deviant stimuli from the standard ones, whereas the higher-frequency bands are relevant to automatically processing different Facial Expressions. Accordingly, we set up the relations between each brain oscillation and processing unattended Facial Expressions by the measures of ERD and ERS. This research first reveals the contributions of each frequency band for comprehension of Facial Expressions in preattentive stage. It also evidences that participants have emotional experience under nonattentional condition. Therefore, the user's emotional state under nonattentional condition can be recognized in real time by the ERD/ERS computation indexes of different frequency bands of brain oscillations, which can be used in affective BCI to provide the user with more natural and friendly ways. PMID:27471545

  19. Using fMRI to Test Models of Complex Cognition

    ERIC Educational Resources Information Center

    Anderson, John R.; Carter, Cameron S.; Fincham, Jon M.; Qin, Yulin; Ravizza, Susan M.; Rosenberg-Lee, Miriam

    2008-01-01

    This article investigates the potential of fMRI to test assumptions about different components in models of complex cognitive tasks. If the components of a model can be associated with specific brain regions, one can make predictions for the temporal course of the BOLD response in these regions. An event-locked procedure is described for dealing…

  20. Detecting consciousness in a total locked-in syndrome: an active event-related paradigm.

    PubMed

    Schnakers, Caroline; Perrin, Fabien; Schabus, Manuel; Hustinx, Roland; Majerus, Steve; Moonen, Gustave; Boly, Melanie; Vanhaudenhuyse, Audrey; Bruno, Marie-Aurelie; Laureys, Steven

    2009-08-01

    Total locked-in syndrome is characterized by tetraplegia, anarthria and paralysis of eye motility. In this study, consciousness was detected in a 21-year-old woman who presented a total locked-in syndrome after a basilar artery thrombosis (49 days post-injury) using an active event-related paradigm. The patient was presented sequences of names containing the patient's own name and other names. The patient was instructed to count her own name or to count another target name. Similar to 4 age- and gender-matched healthy controls, the P3 response recorded for the voluntarily counted own name was larger than while passively listening. This P3 response was observed 14 days before the first behavioral signs of consciousness. This study shows that our active event-related paradigm allowed to identify voluntary brain activity in a patient who would behaviorally be diagnosed as comatose.

  1. Functional MRI/event-related potential study of sensory consonance and dissonance in musicians and nonmusicians.

    PubMed

    Minati, Ludovico; Rosazza, Cristina; D'Incerti, Ludovico; Pietrocini, Emanuela; Valentini, Laura; Scaioli, Vidmer; Loveday, Catherine; Bruzzone, Maria Grazia

    2009-01-07

    Pleasurability of individual chords, known as sensory consonance, is widely regarded as physiologically determined and has been shown to be associated with differential activity in the auditory cortex and in several other regions. Here, we present results obtained contrasting isolated four-note chords classified as consonant or dissonant in tonal music. Using event-related functional MRI, consonant chords were found to elicit a larger haemodynamic response in the inferior and middle frontal gyri, premotor cortex and inferior parietal lobule. The effect was right lateralized for nonmusicians and less asymmetric for musicians. Using event-related potentials, the degree of sensory consonance was found to modulate the amplitude of the P1 in both groups and of the N2 in musicians only.

  2. Individual differences in brain dynamics: important implications for the calculation of event-related band power.

    PubMed

    Doppelmayr, M; Klimesch, W; Pachinger, T; Ripper, B

    1998-07-01

    Measures of event-related band power such as event-related desynchronization (ERD) are conventionally analyzed within fixed frequency bands, although it is known that EEG frequency varies as a function of a variety of factors. The question of how to determine these frequency bands for ERD analyses is discussed and a new method is proposed. The rationale of this new method is to adjust the frequency bands to the individual alpha frequency (IAF) for each subject and to determine the bandwidth for the alpha and theta bands as a percentage of IAF. As an example, if IAF equals 12 Hz, the widths of the alpha and theta bands are larger as compared to a subject with an IAF of, e.g., only 8 Hz. The results of an oddball paradigm show that the proposed method is superior to methods that are based on fixed frequencies and fixed bandwidths.

  3. The event-related potential effects of cognitive conflict in a Chinese character-generation task.

    PubMed

    Qiu, Jiang; Zhang, Qinglin; Li, Hong; Luo, Yuejia; Yin, Qinging; Chen, Antao; Yuan, Hong

    2007-06-11

    High-density event-related potentials were recorded to examine the electrophysiologic correlates of the evaluation of possible answers provided during a Chinese character-generation task. We examined three conditions: the character given was what participants initially generated (Consistent answer), the character given was correct (Unexpected Correct answer), or it was incorrect (Unexpected Incorrect answer). Results showed that Unexpected Correct and Incorrect answers elicited a more negative event-related potential deflection (N320) than did Consistent answers between 300 and 400 ms. Dipole source analysis of difference waves (Unexpected Correct or Incorrect minus Consistent answers) localized the generator of the N320 in the anterior cingulate cortex. The N320 therefore likely reflects the cognitive change or conflict between old and new ways of thinking while identifying and judging characters.

  4. Neurocognitive impairment of mental rotation in major depressive disorder: evidence from event-related brain potentials.

    PubMed

    Chen, Jiu; Ma, Wentao; Zhang, Yan; Yang, Lai-Qi; Zhang, Zhijun; Wu, Xingqu; Deng, Zihe

    2014-08-01

    Mental rotation performance may be used as an index of mental slowing or bradyphrenia and may reflect speed of motor preparation. Previous studies suggest that major depressive disorder (MDD) presents correlates of impaired behavioral performance for mental rotation and psychomotor disturbance. Very little is known about the electrophysiological mechanism underlying this deficit. The present study was the first to investigate the event-related brain potential (ERP) correlates of mental rotation and their mental slowing or bradyphrenia in MDD. ERPs were recorded while we tested 25 MDD patients and 26 healthy controls by evaluating the performance of MDD patients on hand and letter rotation tasks at different orientations, and their 400-to-600-msec time window was measured and analyzed for latencies and peak amplitudes over the electrodes. First, individuals with MDD were slower and made more errors in mentally rotating hands and letters than healthy controls did, and individuals with MDD exhibited a greater difference in response times and errors than controls did between hands and letters. Second, the mean peak amplitude was significantly lower and the mean latency was significantly longer in the 400-to-600-msec time window at the parietal site in the hand tasks in MDD patients than in controls, but this was not seen in the letter task, with only lower mean peak amplitude. MDD patients present the absence of a typical mental rotation function for the amplitude of the rotation-related negativity in the hand and letter tasks. Third, the scalp activity maps in MDD patients exhibited the absence of activation in the left parietal site for the mental rotation of hands, as shown in healthy participants. In contrast, their brain activation for the letter task was similar to those of healthy participants. These data suggest that mental imagery of hands and letters relies on different cognitive and neural mechanisms and indicate that the left posterior parietal lobe is a

  5. Subclinical alexithymia modulates early audio-visual perceptive and attentional event-related potentials

    PubMed Central

    Delle-Vigne, Dyna; Kornreich, Charles; Verbanck, Paul; Campanella, Salvatore

    2014-01-01

    Introduction: Previous studies have highlighted the advantage of using audio–visual oddball tasks (instead of unimodal ones) in order to electrophysiologically index subclinical behavioral differences. Since alexithymia is highly prevalent in the general population, we investigated whether the use of various bimodal tasks could elicit emotional effects in low- vs. high-alexithymic scorers. Methods: Fifty students (33 females and 17 males) were split into groups based on low and high scores on the Toronto Alexithymia Scale (TAS-20). During event-related potential (ERP) recordings, they were exposed to three kinds of audio–visual oddball tasks: neutral-AVN—(geometrical forms and bips), animal-AVA—(dog and cock with their respective shouts), or emotional-AVE—(faces and voices) stimuli. In each condition, participants were asked to quickly detect deviant events occurring amongst a train of repeated and frequent matching stimuli (e.g., push a button when a sad face–voice pair appeared amongst a train of neutral face–voice pairs). P100, N100, and P300 components were analyzed: P100 refers to visual perceptive and attentional processing, N100 to auditory ones, and the P300 relates to response-related stages, involving memory processes. Results: High-alexithymic scorers presented a particular pattern of results when processing the emotional stimulations, reflected in early ERP components by increased P100 and N100 amplitudes in the emotional oddball tasks [P100: F(2, 48) = 20,319, p < 0.001; N100: F(2, 96) = 8,807, p = 0.001] as compared to the animal or neutral ones. Indeed, regarding the P100, subjects exhibited a higher amplitude in the AVE condition (8.717 μV), which was significantly different from that observed during the AVN condition (4.382 μV, p < 0.001). For the N100, the highest amplitude was found in the AVE condition (−4.035 μV) and the lowest was observed in the AVN condition (−2.687 μV, p = 0.003). However, no effect was found on the

  6. Effects of Experience and Task Difficulty on Event-Related Potentials

    DTIC Science & Technology

    1989-10-13

    MEDICAL RESEARCH AND DEVELOPMENT COMMAND BETHESDA, MARYLAND EFFECTS OF EXPERIENCE AN TASK DIFICILTY * ~ON EVENT-RELATM POTERMALS David A. Kobus Keren B...by the Naval Medical Research and Development : omand , Department of the Navy, under work unit MR.001-6037. The views expressed in this article are...Effects of experience and task difficulty on event-related potentials 12. PERSONAL AUTHOR(S) Kobus, David A. & Stashower, Keren 3a. TYPE OF REPORT

  7. Event-related brain potentials as indices of mental workload and attentional allocation

    NASA Technical Reports Server (NTRS)

    Kramer, Arthur F.; Donchin, Emanuel; Wickens, Christopher D.

    1988-01-01

    Over the past decade considerable strides were made in explicating the antecedant conditions necessary for the elicitation, and the modulation of the amplitude and latency, of a number of components of the event-related brain potential (ERP). The focus of this report is on P300. The degree to which the psychophysiological measures contribute to issues in two real-world domains (communication devices for the motor impaired and the assessment of mental workload of aircraft pilots) are examined.

  8. Nonlinear denoising of transient signals with application to event-related potentials

    NASA Astrophysics Data System (ADS)

    Effern, A.; Lehnertz, K.; Schreiber, T.; Grunwald, T.; David, P.; Elger, C. E.

    2000-06-01

    We present a new wavelet-based method for the denoising of event-related potentials (ERPs), employing techniques recently developed for the paradigm of deterministic chaotic systems. The denoising scheme has been constructed to be appropriate for short and transient time sequences using circular state space embedding. Its effectiveness was successfully tested on simulated signals as well as on ERPs recorded from within a human brain. The method enables the study of individual ERPs against strong ongoing brain electrical activity.

  9. Detection of Olfactory Dysfunction Using Olfactory Event Related Potentials in Young Patients with Multiple Sclerosis

    PubMed Central

    Caminiti, Fabrizia; De Salvo, Simona; De Cola, Maria Cristina; Russo, Margherita; Bramanti, Placido; Marino, Silvia; Ciurleo, Rosella

    2014-01-01

    Background Several studies reported olfactory dysfunction in patients with multiple sclerosis. The estimate of the incidence of olfactory deficits in multiple sclerosis is uncertain; this may arise from different testing methods that may be influenced by patients' response bias and clinical, demographic and cognitive features. Aims To evaluate objectively the olfactory function using Olfactory Event Related Potentials. Materials and Methods We tested the olfactory function of 30 patients with relapsing remitting multiple sclerosis (mean age of 36.03±6.96 years) and of 30 age, sex and smoking–habit matched healthy controls by using olfactory potentials. A selective and controlled stimulation of the olfactory system to elicit the olfactory event related potentials was achieved by a computer-controlled olfactometer linked directly with electroencephalograph. Relationships between olfactory potential results and patients' clinical characteristics, such as gender, disability status score, disease-modifying therapy, and disease duration, were evaluated. Results Seven of 30 patients did not show olfactory event related potentials. Sixteen of remaining 23 patients had a mean value of amplitude significantly lower than control group (p<0.01). The presence/absence of olfactory event related potentials was associated with dichotomous expanded disability status scale (p = 0.0433), as well as inversely correlated with the disease duration (r = −0.3641, p = 0.0479). Conclusion Unbiased olfactory dysfunction of different severity found in multiple sclerosis patients suggests an organic impairment which could be related to neuroinflammatory and/or neurodegenerative processes of olfactory networks, supporting the recent findings on neurophysiopathology of disease. PMID:25047369

  10. On the Processing of Semantic Aspects of Experience in the Anterior Medial Temporal Lobe: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Meyer, Patric; Mecklinger, Axel; Friederici, Angela D.

    2010-01-01

    Recognition memory based on familiarity judgments is a form of declarative memory that has been repeatedly associated with the anterior medial temporal lobe. It has been argued that this region sustains familiarity-based recognition not only by retrieving item-specific information but also by coding for those semantic aspects of an event that…

  11. The Functional Organization of Trial-Related Activity in Lexical Processing after Early Left Hemispheric Brain Lesions: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Fair, Damien A.; Choi, Alexander H.; Dosenbach, Yannic B. L.; Coalson, Rebecca S.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2010-01-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In…

  12. Simultaneous functional near-infrared brain imaging and event-related potential studies of Stroop effect

    NASA Astrophysics Data System (ADS)

    Zhai, Jiahuan; Li, Ting; Zhang, Zhongxing; Gong, Hui

    2009-02-01

    Functional near-infrared brain imaging (fNIRI) and event-related potential (ERP) were used simultaneous to detect the prefrontal cortex (PFC) which is considered to execute cognitive control of the subjects while performing the Chinese characters color-word matching Stroop task with event-related design. The fNIRI instrument is a portable system operating at three wavelengths (735nm & 805nm &850nm) with continuous-wave. The event-related potentials were acquired by Neuroscan system. The locations of optodes corresponding to the electrodes were defined four areas symmetrically. In nine native Chinese-speaking fit volunteers, fNIRI measured the hemodynamic parameters (involving oxy-/deoxy- hemoglobin) changes when the characteristic waveforms (N500/P600) were recorded by ERP. The interference effect was obvious as a longer reaction time for incongruent than congruent and neutral stimulus. The responses of hemodynamic and electrophysiology were also stronger during incongruent compared to congruent and neutral trials, and these results are similar to those obtained with fNIRI or ERP separately. There are high correlations, even linear relationship, in the two kinds of signals. In conclusion, the multi-modality approach combining of fNIRI and ERP is feasible and could obtain more cognitive function information with hemodynamic and electrophysiology signals. It also provides a perspective to prove the neurovascular coupling mechanism.

  13. Estimating the Single-Trial Characteristics of Event-Related Responses: Evaluation of the MCERP Algorithm

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Shah, A. S.; Truccolo, W. A.; Ding, M.; Bressler, S. L.; Schroeder, C. E.; Korsmey, Dave (Technical Monitor)

    2002-01-01

    Single-trial event-related responses collected during the course of an experiment are typically averaged before analysis resulting in a rather crude picture of event-related brain dynamics. It has been quite clear for some time that these responses exhibit trial-to-trial variability: however, the computational techniques necessary to deal with such responses in noisy conditions have not been available. To this end we have developed the multiple-component, event-related potential model (mcERP), which assumes that the each event-related response consists of a sum of multiple evoked components each described by a stereotypical waveshape. These waveshapes are allowed to vary in amplitude and onset latency from trial to trial, which allows us to capture, to first-order, the trial-dependent variations in event-related brain dynamics. We have constructed many sets of synthetic data designed to simulate intracortical recordings from a 15 channel, linear-array multielectrode implanted acutely in V1 of an awake-behaving macaque undergoing visual stimulation with a red light flash. This synthetic data was used to characterize the performance of the mcERP algorithm. First we quantified the degree to which such trial-to-trial variability aids in the identification of multiple components, and we demonstrate that amplitude variability is a more important factor in component separation than latency variability. Second, we quantified the behavior of the algorithm under two distinct signal-to-noise ratio (SNR) conditions: Gaussian noise independently present in each channel, and highly correlated (1/f distributed), far-field noise presented identically in each channel of the array. The mcERP algorithm was found to be robust to noise accurately identifying all component waveshapes and their associated single-trial characteristics down to SNR levels of -20dB for Gaussian noise and -7dB for 1/f far-field noise. Comparisons of the performance of this algorithm with factor analysis (FA

  14. Raloxifene treatment enhances brain activation during recognition of familiar items: a pharmacological fMRI study in healthy elderly males.

    PubMed

    Goekoop, Rutger; Barkhof, Frederik; Duschek, Erik J J; Netelenbos, Coen; Knol, Dirk L; Scheltens, Philip; Rombouts, Serge A R B

    2006-07-01

    Raloxifene is a selective estrogen receptor modulator that may delay the onset of mild cognitive impairment in elderly women. Effects of raloxifene treatment on mental performance in males remain to be investigated. In a previous functional magnetic resonance imaging (fMRI) study, we showed that raloxifene treatment enhanced brain activation in elderly males during encoding of new information (faces) into memory. The current study used fMRI in the same group of subjects to screen for effects of raloxifene treatment on brain function during face recognition. Healthy elderly males (n=28; mean age 63.6 years, SD 2.4) were scanned at baseline and after 3 months of treatment with either raloxifene 120 mg (n=14) or placebo (n=14) in a randomized, double-blind, placebo-controlled study design. Functional data were analyzed in an event-related fashion with respect to correct hits and correct rejections using FSL software. Performance data were analyzed with respect to recognition accuracy, latency, and response bias. Functional effects of treatment were found on brain activation related to correct hits only. When compared to placebo treatment, raloxifene treatment enhanced brain activation in the left posterior parahippocampal area (Z=3.9) and right inferior prefrontal cortex (Z=3.5). Recognition accuracy scores remained stable in the raloxifene group, whereas the placebo group showed a small but significant decrease in accuracy scores (p=0.02). No significant effects were found on response bias or latency. In conclusion, raloxifene treatment affects brain function during memory performance in a way that may reflect increased arousal during initial encoding, with downstream effects on brain function during retrieval of information. Behaviorally, such neurofunctional effects may actively block decreased memory performance as a result of context-dependency. The validity of these predictions can be tested in large-scale clinical trials.

  15. First steps in using machine learning on fMRI data to predict intrusive memories of traumatic film footage

    PubMed Central

    Clark, Ian A.; Niehaus, Katherine E.; Duff, Eugene P.; Di Simplicio, Martina C.; Clifford, Gari D.; Smith, Stephen M.; Mackay, Clare E.; Woolrich, Mark W.; Holmes, Emily A.

    2014-01-01

    After psychological trauma, why do some only some parts of the traumatic event return as intrusive memories while others do not? Intrusive memories are key to cognitive behavioural treatment for post-traumatic stress disorder, and an aetiological understanding is warranted. We present here analyses using multivariate pattern analysis (MVPA) and a machine learning classifier to investigate whether peri-traumatic brain activation was able to predict later intrusive memories (i.e. before they had happened). To provide a methodological basis for understanding the context of the current results, we first show how functional magnetic resonance imaging (fMRI) during an experimental analogue of trauma (a trauma film) via a prospective event-related design was able to capture an individual's later intrusive memories. Results showed widespread increases in brain activation at encoding when viewing a scene in the scanner that would later return as an intrusive memory in the real world. These fMRI results were replicated in a second study. While traditional mass univariate regression analysis highlighted an association between brain processing and symptomatology, this is not the same as prediction. Using MVPA and a machine learning classifier, it was possible to predict later intrusive memories across participants with 68% accuracy, and within a participant with 97% accuracy; i.e. the classifier could identify out of multiple scenes those that would later return as an intrusive memory. We also report here brain networks key in intrusive memory prediction. MVPA opens the possibility of decoding brain activity to reconstruct idiosyncratic cognitive events with relevance to understanding and predicting mental health symptoms. PMID:25151915

  16. An event-related potential evoked by movement planning is modulated by performance and learning in visuomotor control.

    PubMed

    Hill, Holger

    2009-06-01

    Based on a previous exploratory study, the functionality of event-related potentials related to visuomotor processing and learning was investigated. Three pursuit tracking tasks (cursor control either mouse, joystick, or bimanually) revealed the greatest tracking error and greatest learning effect in the bimanual task. The smallest error without learning was found in the mouse task. Error reduction reflected visuomotor learning. In detail, target-cursor distance was reduced continuously, indicating a better fit to a changed direction, whereas response time remained at 300 ms. A central positive ERP component with an activity onset 100 ms after a directional change of the target and most likely generated in premotor areas could be assigned to response planning and execution. The magnitude of this component was modulated by within-and-between-task difficulty and size of the tracking error. Most importantly, the size of this component was sensitive to between-subject performance and increased with visuomotor learning.

  17. Using Event-Related Brain Potentials to Assess Perceptibility: The Case of French Speakers and English [h].

    PubMed

    Mah, Jennifer; Goad, Heather; Steinhauer, Karsten

    2016-01-01

    French speaking learners of English encounter persistent difficulty acquiring English [h], thus confusing words like eat and heat in both production and perception. We assess the hypothesis that the acoustic properties of [h] may render detection of this segment in the speech stream insufficiently reliable for second language acquisition. We use the mismatch negativity (MMN) in event-related potentials to investigate [h] perception in French speaking learners of English and native English controls, comparing both linguistic and non-linguistic conditions in an unattended oddball paradigm. Unlike native speakers, French learners of English elicit an MMN response only in the non-linguistic condition. Our results provide neurobiological evidence against the hypothesis that French speakers' difficulties with [h] are acoustically based. They instead suggest that the problem is in constructing an appropriate phonological representation for [h] in the interlanguage grammar.

  18. A Beautiful Day in the Neighborhood: An Event-Related Potential Study of Lexical Relationships and Prediction in Context

    PubMed Central

    Laszlo, Sarah; Federmeier, Kara D.

    2009-01-01

    Two related questions critical to understanding the predictive processes that come online during sentence comprehension are 1) what information is included in the representation created through prediction and 2) at what functional stage does top-down, predicted information begin to affect bottom-up word processing? We investigated these questions by recording event-related potentials (ERPs) as participants read sentences that ended with expected words or with unexpected items (words, pseudowords, or illegal strings) that were either orthographically unrelated to the expected word or were one of its orthographic neighbors. The data show that, regardless of lexical status, attempts at semantic access (N400) for orthographic neighbors of expected words is facilitated relative to the processing of orthographically unrelated items. Our findings support a view of sentence processing wherein orthographically organized information is brought online by prediction and interacts with input prior to any filter on lexical status. PMID:20161064

  19. Using Event-Related Brain Potentials to Assess Perceptibility: The Case of French Speakers and English [h

    PubMed Central

    Mah, Jennifer; Goad, Heather; Steinhauer, Karsten

    2016-01-01

    French speaking learners of English encounter persistent difficulty acquiring English [h], thus confusing words like eat and heat in both production and perception. We assess the hypothesis that the acoustic properties of [h] may render detection of this segment in the speech stream insufficiently reliable for second language acquisition. We use the mismatch negativity (MMN) in event-related potentials to investigate [h] perception in French speaking learners of English and native English controls, comparing both linguistic and non-linguistic conditions in an unattended oddball paradigm. Unlike native speakers, French learners of English elicit an MMN response only in the non-linguistic condition. Our results provide neurobiological evidence against the hypothesis that French speakers’ difficulties with [h] are acoustically based. They instead suggest that the problem is in constructing an appropriate phonological representation for [h] in the interlanguage grammar. PMID:27757086

  20. Robust analysis of event-related functional magnetic resonance imaging data using independent component analysis

    NASA Astrophysics Data System (ADS)

    Kadah, Yasser M.

    2002-04-01

    We propose a technique that enables robust use of blind source separation techniques in fMRI data analysis. The fMRI temporal signal is modeled as the summation of the true activation signal, a physiological baseline fluctuation component, and a random noise component. A preprocessing denoising is used to reduce the dimensionality of the random noise component in this mixture before applying the principal/independent component analysis (PCA/ICA) methods. The set of denoised time courses from a localized region are utilized to capture the region-specific activation patterns. We show a significant improvement in the convergence properties of the ICA iteration when the denoised time courses are used. We also demonstrate the advantage of using ICA over PCA to separate components due to physiological signals from those corresponding to actual activation. Moreover, we propose the use of ICA to analyze the magnitude of the Fourier domain of the time courses. This allows ICA to group signals with similar patterns and different delays together, which makes the iteration even more efficient. The proposed technique is verified using computer simulations as well as actual data from a healthy human volunteer. The results confirm the robustness of the new strategy and demonstrate its value for clinical use.

  1. Coping with Trial-to-Trial Variability of Event Related Signals: A Bayesian Inference Approach

    NASA Technical Reports Server (NTRS)

    Ding, Mingzhou; Chen, Youghong; Knuth, Kevin H.; Bressler, Steven L.; Schroeder, Charles E.

    2005-01-01

    In electro-neurophysiology, single-trial brain responses to a sensory stimulus or a motor act are commonly assumed to result from the linear superposition of a stereotypic event-related signal (e.g. the event-related potential or ERP) that is invariant across trials and some ongoing brain activity often referred to as noise. To extract the signal, one performs an ensemble average of the brain responses over many identical trials to attenuate the noise. To date, h s simple signal-plus-noise (SPN) model has been the dominant approach in cognitive neuroscience. Mounting empirical evidence has shown that the assumptions underlying this model may be overly simplistic. More realistic models have been proposed that account for the trial-to-trial variability of the event-related signal as well as the possibility of multiple differentially varying components within a given ERP waveform. The variable-signal-plus-noise (VSPN) model, which has been demonstrated to provide the foundation for separation and characterization of multiple differentially varying components, has the potential to provide a rich source of information for questions related to neural functions that complement the SPN model. Thus, being able to estimate the amplitude and latency of each ERP component on a trial-by-trial basis provides a critical link between the perceived benefits of the VSPN model and its many concrete applications. In this paper we describe a Bayesian approach to deal with this issue and the resulting strategy is referred to as the differentially Variable Component Analysis (dVCA). We compare the performance of dVCA on simulated data with Independent Component Analysis (ICA) and analyze neurobiological recordings from monkeys performing cognitive tasks.

  2. Failure to modulate neural response to increased task demand in mild Alzheimer's disease: fMRI study of visuospatial processing.

    PubMed

    Vannini, Patrizia; Lehmann, Christoph; Dierks, Thomas; Jann, Kay; Viitanen, Matti; Wahlund, Lars-Olof; Almkvist, Ove

    2008-09-01

    Alzheimer's disease (AD) is characterized by disturbances of visuospatial cognition. Given that these impairments are closely related to metabolic and neuropathological changes, our study aimed to investigate the functional competency of brain regions in the visuospatial networks responsible for early clinical symptoms in AD using event-related functional magnetic resonance imaging (fMRI). Participants (13AD patients with mild symptoms and 13 age- and education-matched controls) performed an angle discrimination task with varying task demand. Using a novel approach that modeled the dependency of the blood oxygenation level-dependent (BOLD) signal on the subject's reaction time allowed us to investigate task demand-dependent signal changes between the groups. Both groups demonstrated overlapping neural networks engaged in angle discrimination, including the parieto-occipital and frontal regions. In several network regions, AD patients showed a significantly weaker and sometimes no BOLD signal due to increased task demand compared with controls, demonstrating failure to modulate the neural response to increased task demand. A general task demand-independent increase of activation in AD patients compared with controls was found in right middle temporal gyrus. This latter finding may indicate an attempt to compensate for dysfunctional areas in the dorsal visual pathway. These results confirm deficits in visuospatial abilities, which occur early in AD, and offer new insights into the neural mechanisms underlying this impairment.

  3. Neural correlate of vernier acuity tasks assessed by functional MRI (FMRI).

    PubMed

    Sheth, Kevin N; Walker, B Michael; Modestino, Edward J; Miki, Atsushi; Terhune, Kyla P; Francis, Ellie L; Haselgrove, John C; Liu, Grant T

    2007-01-01

    Vernier acuity refers to the ability to discern a small offset within a line. However, while Vernier acuity has been extensively studied psychophysically, its neural correlates are uncertain. Based upon previous psychophysical and electrophysiologic data, we hypothesized that extrastriate areas of the brain would be involved in Vernier acuity tasks, so we designed event-related functional MRI (fMRI) paradigms to identify cortical regions of the brain involved in this behavior. Normal subjects identified suprathreshold and subthreshold Vernier offsets. The results suggest a cortical network including frontal, parietal, occipital, and cerebellar regions subserves the observation, processing, interpretation, and acknowledgment of briefly presented Vernier offsets.

  4. High-Significance Averages of Event-Related Potential Via Genetic Programming

    NASA Astrophysics Data System (ADS)

    Citi, Luca; Poli, Riccardo; Cinel, Caterina

    In this paper we use register-based genetic programming with memory-with memory to discover probabilistic membership functions that are used to divide up data-sets of event-related potentials recorded via EEG in psycho-physiological experiments based on the corresponding response times. The objective is to evolve membership functions which lead to maximising the statistical significance with which true brain waves can be reconstructed when averaging the trials in each bin. Results show that GP can significantly improve the fidelity with which ERP components can be recovered.

  5. Second pain event related potentials to argon laser stimuli: recording and quantification.

    PubMed Central

    Arendt-Nielsen, L

    1990-01-01

    A non-invasive technique for quantification of argon laser induced burning second pain (C-fibre) is suggested. Using frequency analysis event related responses to burning pain can be detected in the EEG interval 1-2 seconds after laser stimulation. When the laser stimulus induced a burning pain perception, the power from 0.5-2.5 Hz of the EEG interval 1-2 seconds after stimulation differed significantly from the power calculated from the same time interval when no burning pain was perceived. PMID:2351970

  6. Stereotype activation is unintentional: Behavioural and event-related potenials evidence.

    PubMed

    Wang, Pei; Yang, Ya-Ping; Tan, Chen-Hao; Zhao, Xiang-Xia; Liu, Yong-He; Lin, Chong-De

    2016-04-01

    In this study, a priming Stroop paradigm was used to determine whether stereotype activation is unintentional. Priming conditions (priming/no-priming) and the relationship between priming and target (consistent/inconsistent/no-relation) were the independent variables; accuracy, reaction time and N400 amplitude were used as dependent variables. The reaction time revealed that stereotype activation is, to some extent, unintentional. Furthermore, the event-related potenial (ERP) results showed that N400 amplitude was larger for inconsistent conditions than for consistent conditions. This result supported the notion that stereotype activation is an unintentional and automatic process.

  7. Event-related potentials reflect impaired face recognition in patients with congenital prosopagnosia.

    PubMed

    Kress, Thomas; Daum, Irene

    2003-12-04

    Event-related brain potentials (ERPs) to faces have been shown to be altered in patients suffering from prosopagnosia. In this report we present ERP findings from two patients suffering from a congenital form of prosopagnosia, with other visual and cognitive functions being spared and without any structural abnormalities as assessed by anatomical brain imaging. Subjects were presented with photographs of faces and houses, and they had to respond to photographs of hands. Both patients did not show a difference in N170 amplitude to faces compared to houses, whereas there was a significant N170 difference of these two stimulus classes in healthy control subjects.

  8. Neuroethics and fMRI: Mapping a Fledgling Relationship

    PubMed Central

    Garnett, Alex; Whiteley, Louise; Piwowar, Heather; Rasmussen, Edie; Illes, Judy

    2011-01-01

    Human functional magnetic resonance imaging (fMRI) informs the understanding of the neural basis of mental function and is a key domain of ethical enquiry. It raises questions about the practice and implications of research, and reflexively informs ethics through the empirical investigation of moral judgments. It is at the centre of debate surrounding the importance of neuroscience findings for concepts such as personhood and free will, and the extent of their practical consequences. Here, we map the landscape of fMRI and neuroethics, using citation analysis to uncover salient topics. We find that this landscape is sparsely populated: despite previous calls for debate, there are few articles that discuss both fMRI and ethical, legal, or social implications (ELSI), and even fewer direct citations between the two literatures. Recognizing that practical barriers exist to integrating ELSI discussion into the research literature, we argue nonetheless that the ethical challenges of fMRI, and controversy over its conceptual and practical implications, make this essential. PMID:21526115

  9. Multivoxel Pattern Analysis for fMRI Data: A Review

    PubMed Central

    Takerkart, Sylvain; Regragui, Fakhita; Boussaoud, Driss; Brovelli, Andrea

    2012-01-01

    Functional magnetic resonance imaging (fMRI) exploits blood-oxygen-level-dependent (BOLD) contrasts to map neural activity associated with a variety of brain functions including sensory processing, motor control, and cognitive and emotional functions. The general linear model (GLM) approach is used to reveal task-related brain areas by searching for linear correlations between the fMRI time course and a reference model. One of the limitations of the GLM approach is the assumption that the covariance across neighbouring voxels is not informative about the cognitive function under examination. Multivoxel pattern analysis (MVPA) represents a promising technique that is currently exploited to investigate the information contained in distributed patterns of neural activity to infer the functional role of brain areas and networks. MVPA is considered as a supervised classification problem where a classifier attempts to capture the relationships between spatial pattern of fMRI activity and experimental conditions. In this paper , we review MVPA and describe the mathematical basis of the classification algorithms used for decoding fMRI signals, such as support vector machines (SVMs). In addition, we describe the workflow of processing steps required for MVPA such as feature selection, dimensionality reduction, cross-validation, and classifier performance estimation based on receiver operating characteristic (ROC) curves. PMID:23401720

  10. Neuroethics and fMRI: mapping a fledgling relationship.

    PubMed

    Garnett, Alex; Whiteley, Louise; Piwowar, Heather; Rasmussen, Edie; Illes, Judy

    2011-04-22

    Human functional magnetic resonance imaging (fMRI) informs the understanding of the neural basis of mental function and is a key domain of ethical enquiry. It raises questions about the practice and implications of research, and reflexively informs ethics through the empirical investigation of moral judgments. It is at the centre of debate surrounding the importance of neuroscience findings for concepts such as personhood and free will, and the extent of their practical consequences. Here, we map the landscape of fMRI and neuroethics, using citation analysis to uncover salient topics. We find that this landscape is sparsely populated: despite previous calls for debate, there are few articles that discuss both fMRI and ethical, legal, or social implications (ELSI), and even fewer direct citations between the two literatures. Recognizing that practical barriers exist to integrating ELSI discussion into the research literature, we argue nonetheless that the ethical challenges of fMRI, and controversy over its conceptual and practical implications, make this essential.

  11. Influence of negative emotion on the framing effect: evidence from event-related potentials.

    PubMed

    Ma, Qingguo; Pei, Guanxiong; Wang, Kai

    2015-04-15

    The framing effect is the phenomenon in which different descriptions of an identical problem can result in different choices. The influence of negative emotions on the framing effect and its neurocognitive basis are important issues, especially in the domain of saving lives, which is essential and highly risky. In each trial of our experiment, the emotion stimulus is presented to the participants, followed by the decision-making stimulus, which comprises certain and risky options with the same expected value. Each pair of options is positively or negatively framed. The behavioral results indicate a significant interactive effect between negative emotion and frame; thus, the risk preference under the positive frame can be enhanced by negative emotions, whereas this finding is not true under the negative frame. The event-related potential analysis indicates that choosing certain options under the positive frame with negative emotion priming generates smaller P2 and P3 amplitudes and a larger N2 amplitude than with neutral emotion priming. The event-related potential findings indicate that individuals can detect risk faster and experience more conflict and increased decision difficulty if they choose certain options under the positive frame with negative priming compared with neutral priming.

  12. Event-related delta, theta, alpha and gamma correlates to auditory oddball processing during Vipassana meditation.

    PubMed

    Cahn, B Rael; Delorme, Arnaud; Polich, John

    2013-01-01

    Long-term Vipassana meditators sat in meditation vs. a control (instructed mind wandering) states for 25 min, electroencephalography (EEG) was recorded and condition order counterbalanced. For the last 4 min, a three-stimulus auditory oddball series was presented during both meditation and control periods through headphones and no task imposed. Time-frequency analysis demonstrated that meditation relative to the control condition evinced decreased evoked delta (2-4 Hz) power to distracter stimuli concomitantly with a greater event-related reduction of late (500-900 ms) alpha-1 (8-10 Hz) activity, which indexed altered dynamics of attentional engagement to distracters. Additionally, standard stimuli were associated with increased early event-related alpha phase synchrony (inter-trial coherence) and evoked theta (4-8 Hz) phase synchrony, suggesting enhanced processing of the habituated standard background stimuli. Finally, during meditation, there was a greater differential early-evoked gamma power to the different stimulus classes. Correlation analysis indicated that this effect stemmed from a meditation state-related increase in early distracter-evoked gamma power and phase synchrony specific to longer-term expert practitioners. The findings suggest that Vipassana meditation evokes a brain state of enhanced perceptual clarity and decreased automated reactivity.

  13. Resilience to traumatic events related to urban violence and increased IL10 serum levels.

    PubMed

    Teche, Stefania P; Rovaris, Diego L; Aguiar, Bianca W; Hauck, Simone; Vitola, Eduardo S; Bau, Claiton H D; Freitas, Lucia H; Grevet, Eugenio H

    2017-04-01

    The exposition to traumatic events related to urban violence is epidemic in Brazil, with rate of 80% in the general population, and is becoming a major cause of post-traumatic stress disorder (PTSD). The objective of the study was to compare serum levels of pro-inflammatory interleukin-6 (IL-6) and anti-inflammatory interleukin-10 (IL-10) in PTSD and resilient individuals. We hypothesized that resilient individuals present an attenuated pro-inflammatory and enhanced anti-inflammatory state. We conducted a case-control study comparing 30 resilient individuals and 30 PTSD patients exposed to traumatic events related to urban violence. The groups were evaluated using Self-Report Questionnaire (SRQ-20), Mini-International Neuropsychiatric Interview (MINI) and the Davidson Trauma Scale. For all individuals, blood samples were collected to determine IL-6, IL-10 and cortisol serum levels. All samples were frozen at -80°C until the assay and were analyzed with the same immunoassay kit and in duplicates. The resilient group presented higher IL-10 levels than PTSD patients [mean (CI95%); 1.03 (0.52-2.08) pg/mL vs. 0.29 (0.20-0.43) pg/mL; P=0.002]. There were no differences in terms of IL-6 or cortisol levels. The results provided evidence for increased levels of IL-10 in resilient individuals when compared to PTSD patients, probably conferring them a better anti-inflammatory response after exposition.

  14. Time-frequency analysis of event-related potentials: a brief tutorial.

    PubMed

    Herrmann, Christoph S; Rach, Stefan; Vosskuhl, Johannes; Strüber, Daniel

    2014-07-01

    Event-related potentials (ERPs) reflect cognitive processes and are usually analyzed in the so-called time domain. Additional information on cognitive functions can be assessed when analyzing ERPs in the frequency domain and treating them as event-related oscillations (EROs). This procedure results in frequency spectra but lacks information about the temporal dynamics of EROs. Here, we describe a method-called time-frequency analysis-that allows analyzing both the frequency of an ERO and its evolution over time. In a brief tutorial, the reader will learn how to use wavelet analysis in order to compute time-frequency transforms of ERP data. Basic steps as well as potential artifacts are described. Rather than in terms of formulas, descriptions are in textual form (written text) with numerous figures illustrating the topics. Recommendations on how to present frequency and time-frequency data in journal articles are provided. Finally, we briefly review studies that have applied time-frequency analysis to mismatch negativity paradigms. The deviant stimulus of such a paradigm evokes an ERO in the theta frequency band that is stronger than for the standard stimulus. Conversely, the standard stimulus evokes a stronger gamma-band response than does the deviant. This is interpreted in the context of the so-called match-and-utilization model.

  15. Social exclusion modulates event-related frontal theta and tracks ostracism distress in children

    PubMed Central

    van Noordt, Stefon J.R.; White, Lars O.; Wu, Jia; Mayes, Linda C.; Crowley, Michael J.

    2015-01-01

    Social exclusion is a potent elicitor of distress. Previous studies have shown that medial frontal theta oscillations are modulated by the experience of social exclusion. Using the Cyberball paradigm, we examined event-related dynamics of theta power in the EEG at medial frontal sites while children aged 8–12 years were exposed to conditions of fair play and social exclusion. Using an event-related design, we found that medial frontal theta oscillations (4–8 Hz) increase during both early (i.e., 200–400 ms) and late (i.e., 400–800 ms) processing of rejection events during social exclusion relative to perceptually identical “not my turn” events during inclusion. Importantly, we show that only for the later time window (400–800 ms) slow-wave theta power tracks self-reported ostracism distress. Specifically, greater theta power at medial frontal sites to “rejection” events predicted higher levels of ostracism distress. Alpha and beta oscillations for rejection events were unrelated to ostracism distress at either 200–400 ms or 400–800 ms time windows. Our findings extend previous studies by showing that medial frontal theta oscillations for rejection events are a neural signature of social exclusion, linked to experienced distress in middle childhood. PMID:26048623

  16. Event-related desynchronization and synchronization quantification in motor-related EEG by Kolmogorov entropy

    NASA Astrophysics Data System (ADS)

    Gao, Lin; Wang, Jue; Chen, Longwei

    2013-06-01

    Objective. Various approaches have been applied for the quantification of event-related desynchronization/synchronization (ERD/ERS) in EEG/MEG data analysis, but most of them are based on band power analysis. In this paper, we sought a novel method using a nonlinear measurement to quantify the ERD/ERS time course of motor-related EEG. Approach. We applied Kolmogorov entropy to quantify the ERD/ERS time course of motor-related EEG in relation to hand movement imagination and execution for the first time. To further test the validity of the Kolmogorov entropy measure, we tested it on five human subjects for feature extraction to classify the left and right hand motor tasks. Main results. The results show that the relative increase and decrease of Kolmogorov entropy indicates the ERD and ERS respectively. An average classification accuracy of 87.3% was obtained for five subjects. Significance. The results prove that Kolmogorov entropy can effectively quantify the dynamic process of event-related EEG, and it also provides a novel method of classifying motor imagery tasks from scalp EEG by Kolmogorov entropy measurement with promising classification accuracy.

  17. Increased Temporal Variability of Auditory Event Related Potentials in Schizophrenia and Schizotypal Personality Disorder

    PubMed Central

    Shin, Yong Wook; Krishnan, Giri; Hetrick, William P.; Brenner, Colleen A.; Shekhar, Anantha; Malloy, Frederick W.; O'Donnell, Brian F.

    2010-01-01

    Previous studies suggest that deficits in neural synchronization and temporal integration are characteristic of schizophrenia. These phenomena have been rarely studied in SPD, which shares phenomenological and genetic similarities with schizophrenia. Event-related potentials (ERPs) were obtained using an auditory oddball task from 21 patients with schizophrenia, 19 subjects with SPD and 19 healthy control subjects. Inter-trial coherence (ITC) and event-related spectral perturbation (ERSP) were measured across trials to target tones using time-frequency analysis. ITC measures phase locking or consistency, while ERSP measures changes in power relative to baseline activity. P300 latency and amplitude were also measured from the averaged ERP to target tones. In the time-frequency analysis, subjects with SPD showed intact power but a deficit in the ITC in delta and theta frequencies compared to control subjects. Patients with schizophrenia showed deficits for both ERSP and ITC in the delta and theta frequencies. While patients with schizophrenia showed reduced P300 amplitude and delayed latency for averaged ERPs, subjects with SPD did not differ from either group. Synchronization or timing abnormalities may represent a biomarker for schizophrenia spectrum disorders, and contribute to aberrant perceptual and cognitive integration. PMID:20817485

  18. Wavelet entropy analysis of event-related potentials indicates modality-independent theta dominance.

    PubMed

    Yordanova, Juliana; Kolev, Vasil; Rosso, Osvaldo A; Schürmann, Martin; Sakowitz, Oliver W; Ozgören, Murat; Basar, Erol

    2002-05-30

    Sensory/cognitive stimulation elicits multiple electroencephalogram (EEG)-oscillations that may be partly or fully overlapping over the time axis. To evaluate co-existent multi-frequency oscillations, EEG responses to unimodal (auditory or visual) and bimodal (combined auditory and visual) stimuli were analyzed by applying a new method called wavelet entropy (WE). The method is based on the wavelet transform (WT) and quantifies entropy of short segments of the event-related brain potentials (ERPs). For each modality, a significant transient decrease of WE emerged in the post-stimulus EEG epoch indicating a highly-ordered state in the ERP. WE minimum was always determined by a prominent dominance of theta (4-8 Hz) ERP components over other frequency bands. Event-related 'transition to order' was most pronounced and stable at anterior electrodes, and after bimodal stimulation. Being consistently observed across different modalities, a transient theta-dominated state may reflect a processing stage that is obligatory for stimulus evaluation, during which interfering activations from other frequency networks are minimized.

  19. Social exclusion modulates event-related frontal theta and tracks ostracism distress in children.

    PubMed

    van Noordt, Stefon J R; White, Lars O; Wu, Jia; Mayes, Linda C; Crowley, Michael J

    2015-09-01

    Social exclusion is a potent elicitor of distress. Previous studies have shown that medial frontal theta oscillations are modulated by the experience of social exclusion. Using the Cyberball paradigm, we examined event-related dynamics of theta power in the EEG at medial frontal sites while children aged 8-12 years were exposed to conditions of fair play and social exclusion. Using an event-related design, we found that medial frontal theta oscillations (4-8Hz) increase during both early (i.e., 200-400ms) and late (i.e., 400-800ms) processing of rejection events during social exclusion relative to perceptually identical "not my turn" events during inclusion. Importantly, we show that only for the later time window (400-800ms) slow-wave theta power tracks self-reported ostracism distress. Specifically, greater theta power at medial frontal sites to "rejection" events predicted higher levels of ostracism distress. Alpha and beta oscillations for rejection events were unrelated to ostracism distress at either 200-400ms or 400-800ms time windows. Our findings extend previous studies by showing that medial frontal theta oscillations for rejection events are a neural signature of social exclusion, linked to experienced distress in middle childhood.

  20. Event-related EEG desynchronization and synchronization during an auditory memory task.

    PubMed

    Krause, C M; Lang, A H; Laine, M; Kuusisto, M; Pörn, B

    1996-04-01

    Event-related desynchronization (ERD) and synchronization (ERS) of the lower (8-10 Hz) and upper (10-12 Hz) alpha bands of background EEG were studied in 10 subjects during an auditory memory scanning paradigm. Each experimental trial started with the presentation of a visual warning signal, after which an auditory 4-vowel memory set was presented for memorization. Thereafter the probe, a fifth vowel, was presented and identified by the subject as belonging or not belonging to the memorized set. In 50% of the cases, the probe was among the previously presented memory set. The presentation of the memory set elicited a significant ERS in the both alpha frequency bands. In contrast, the presentation of the probe elicited a significant bilateral ERD in both alpha frequency bands studied. The results suggest that the ERD phenomenon is closely associated with higher cortical processes such as memory functions rather than with auditory stimulus processing per se. Event-related desynchronization provides a potentially valuable tool for studying cortical activity during cognitive processing in the auditory stimulus modality.

  1. Processing of famous faces and medial temporal lobe event-related potentials: a depth electrode study.

    PubMed

    Dietl, T; Trautner, P; Staedtgen, M; Vannucci, M; Vannuchi, M; Mecklinger, A; Grunwald, T; Clusmann, H; Elger, C E; Kurthen, M

    2005-04-01

    The present study aims at analyzing the modulation of two types of event-related potentials originating from the human medial temporal lobe, the rhinal AMTL-N400 and the hippocampal P600 by the processing of famous faces. Therefore, we used a face recognition paradigm in which subjects had to discriminate the faces of famous persons from the faces of non-famous persons. Eleven patients with unilateral medial temporal lobe epilepsy undergoing intrahippocampal depth electrode recording for presurgical evaluation participated in this study. Event-related potentials (ERP) were recorded while a sequence of famous and non-famous faces was presented to the patients. The presentation of each face was repeated. The faces evoked N400-like potentials (anterior medial temporal lobe N400, AMTL-N400) in the rhinal cortex and P600-like potentials in the hippocampus. ERPs elicited by famous faces were contrasted with ERPs elicited by non-famous faces. The first presentation of famous faces elicited an enhanced AMTL-N400 and an enhanced hippocampal P600 in comparison to the second presentations of the famous faces or the (first and second presentation of the) non-famous faces. This findings are discussed in terms of associative semantic memory processes and the retrieval of person-specific information from long-term memory stores triggered by the processing of famous faces.

  2. Effect of Anodal-tDCS on Event-Related Potentials: A Controlled Study

    PubMed Central

    Izzidien, Ahmed; Ramaraju, Sriharasha; McCarthy, Peter W.

    2016-01-01

    We aim to measure the postintervention effects of A-tDCS (anodal-tDCS) on brain potentials commonly used in BCI applications, namely, Event-Related Desynchronization (ERD), Event-Related Synchronization (ERS), and P300. Ten subjects were given sham and 1.5 mA A-tDCS for 15 minutes on two separate experiments in a double-blind, randomized order. Postintervention EEG was recorded while subjects were asked to perform a spelling task based on the “oddball paradigm” while P300 power was measured. Additionally, ERD and ERS were measured while subjects performed mental motor imagery tasks. ANOVA results showed that the absolute P300 power exhibited a statistically significant difference between sham and A-tDCS when measured over channel Pz (p = 0.0002). However, the difference in ERD and ERS power was found to be statistically insignificant, in controversion of the the mainstay of the litrature on the subject. The outcomes confirm the possible postintervention effect of tDCS on the P300 response. Heightening P300 response using A-tDCS may help improve the accuracy of P300 spellers for neurologically impaired subjects. Additionally, it may help the development of neurorehabilitation methods targeting the parietal lobe. PMID:27957487

  3. Across Languages, Space, and Time: A Review of the Role of Cross-Language Similarity in L2 (Morpho)Syntactic Processing as Revealed by fMRI and ERP Methods

    ERIC Educational Resources Information Center

    Tolentino, Leida C.; Tokowicz, Natasha

    2011-01-01

    This review examines whether similarity between the first language (L1) and second language (L2) influences the (morpho)syntactic processing of the L2, using both neural location and temporal processing information. Results from functional magnetic resonance imaging (fMRI) and event-related potential (ERP) studies show that nonnative speakers can…

  4. Neural Correlates of Temporal Auditory Processing in Developmental Dyslexia during German Vowel Length Discrimination: An fMRI Study

    ERIC Educational Resources Information Center

    Steinbrink, Claudia; Groth, Katarina; Lachmann, Thomas; Riecker, Axel

    2012-01-01

    This fMRI study investigated phonological vs. auditory temporal processing in developmental dyslexia by means of a German vowel length discrimination paradigm (Groth, Lachmann, Riecker, Muthmann, & Steinbrink, 2011). Behavioral and fMRI data were collected from dyslexics and controls while performing same-different judgments of vowel duration in…

  5. Large-scale, high-resolution neurophysiological maps underlying FMRI of macaque temporal lobe.

    PubMed

    Issa, Elias B; Papanastassiou, Alex M; DiCarlo, James J

    2013-09-18

    Maps obtained by functional magnetic resonance imaging (fMRI) are thought to reflect the underlying spatial layout of neural activity. However, previous studies have not been able to directly compare fMRI maps to high-resolution neurophysiological maps, particularly in higher level visual areas. Here, we used a novel stereo microfocal x-ray system to localize thousands of neural recordings across monkey inferior temporal cortex (IT), construct large-scale maps of neuronal object selectivity at subvoxel resolution, and compare those neurophysiology maps with fMRI maps from the same subjects. While neurophysiology maps contained reliable structure at the sub-millimeter scale, fMRI maps of object selectivity contained information at larger scales (>2.5 mm) and were only partly correlated with raw neurophysiology maps collected in the same subjects. However, spatial smoothing of neurophysiology maps more than doubled that correlation, while a variety of alternative transforms led to no significant improvement. Furthermore, raw spiking signals, once spatially smoothed, were as predictive of fMRI maps as local field potential signals. Thus, fMRI of the inferior temporal lobe reflects a spatially low-passed version of neurophysiology signals. These findings strongly validate the widespread use of fMRI for detecting large (>2.5 mm) neuronal domains of object selectivity but show that a complete understanding of even the most pure domains (e.g., faces vs nonface objects) requires investigation at fine scales that can currently only be obtained with invasive neurophysiological methods.

  6. The effects of orientation and attention during surround suppression of small image features: A 7 Tesla fMRI study

    PubMed Central

    Schallmo, Michael-Paul; Grant, Andrea N.; Burton, Philip C.; Olman, Cheryl A.

    2016-01-01

    Although V1 responses are driven primarily by elements within a neuron's receptive field, which subtends about 1° visual angle in parafoveal regions, previous work has shown that localized fMRI responses to visual elements reflect not only local feature encoding but also long-range pattern attributes. However, separating the response to an image feature from the response to the surrounding stimulus and studying the interactions between these two responses demands both spatial precision and signal independence, which may be challenging to attain with fMRI. The present study used 7 Tesla fMRI with 1.2-mm resolution to measure the interactions between small sinusoidal grating patches (targets) at 3° eccentricity and surrounds of various sizes and orientations to test the conditions under which localized, context-dependent fMRI responses could be predicted from either psychophysical or electrophysiological data. Targets were presented at 8%, 16%, and 32% contrast while manipulating (a) spatial extent of parallel (strongly suppressive) or orthogonal (weakly suppressive) surrounds, (b) locus of attention, (c) stimulus onset asynchrony between target and surround, and (d) blocked versus event-related design. In all experiments, the V1 fMRI signal was lower when target stimuli were flanked by parallel versus orthogonal context. Attention amplified fMRI responses to all stimuli but did not show a selective effect on central target responses or a measurable effect on orientation-dependent surround suppression. Suppression of the V1 fMRI response by parallel surrounds was stronger than predicted from psychophysics but showed a better match to previous electrophysiological reports. PMID:27565016

  7. Functional anatomy of outcome evaluation during Iowa Gambling Task performance in patients with Parkinson's disease: an fMRI study.

    PubMed

    Gescheidt, Tomáš; Mareček, Radek; Mikl, Michal; Czekóová, Kristína; Urbánek, Tomáš; Vaníček, Jiří; Shaw, Daniel J; Bareš, Martin

    2013-12-01

    The aim of this study was to investigate the functional anatomy of decision-making during the Iowa Gambling Task in patients with Parkinson's disease. We used event-related functional magnetic resonance imaging (fMRI) during a computerized version of IGT to compare 18 PD patients on dopaminergic medication in the ON state and 18 healthy control subjects. Our analyses focused on outcome evaluation following card selection, because we expected this aspect of decision-making to be impaired in PD patients. The PD patients exhibited lower activation of the left putamen than the control group as a reaction to penalty. Using psychophysiological interaction analysis, we identified decreased functional connectivity between the right globus pallidus internus and the left anterior cingulate gyrus in the PD group. In contrast, increased connectivity between these structures was observed after penalty in the control group. Our results suggest altered functioning of the basal ganglia and their connections with the cortical structures involved in the limbic loop (e.g., the limbic fronto-striatal circuit of the basal ganglia) during decision-making in PD patients. Differences in the response to loss could be associated with insufficient negative reinforcement after a loss in PD patients in the ON state in comparison to a healthy population.

  8. Evaluating cognitive models of visual word recognition using fMRI: Effects of lexical and sublexical variables.

    PubMed

    Protopapas, Athanassios; Orfanidou, Eleni; Taylor, J S H; Karavasilis, Efstratios; Kapnoula, Efthymia C; Panagiotaropoulou, Georgia; Velonakis, Georgios; Poulou, Loukia S; Smyrnis, Nikolaos; Kelekis, Dimitrios

    2016-03-01

    In this study predictions of the dual-route cascaded (DRC) model of word reading were tested using fMRI. Specifically, patterns of co-localization were investigated: (a) between pseudoword length effects and a pseudowords vs. fixation contrast, to reveal the sublexical grapho-phonemic conversion (GPC) system; and (b) between word frequency effects and a words vs. pseudowords contrast, to reveal the orthographic and phonological lexicon. Forty four native speakers of Greek were scanned at 3T in an event-related lexical decision task with three event types: (a) 150 words in which frequency, length, bigram and syllable frequency, neighborhood, and orthographic consistency were decorrelated; (b) 150 matched pseudowords; and (c) fixation. Whole-brain analysis failed to reveal the predicted co-localizations. Further analysis with participant-specific regions of interest defined within masks from the group contrasts revealed length effects in left inferior parietal cortex and frequency effects in the left middle temporal gyrus. These findings could be interpreted as partially consistent with the existence of the GPC system and phonological lexicon of the model, respectively. However, there was no evidence in support of an orthographic lexicon, weakening overall support for the model. The results are discussed with respect to the prospect of using neuroimaging in cognitive model evaluation.

  9. Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal

    PubMed Central

    Wen, Haiguang

    2016-01-01

    Spontaneous activity observed with resting-state fMRI is used widely to uncover the brain's intrinsic functional networks in health and disease. Although many networks appear modular and specific, global and nonspecific fMRI fluctuations also exist and both pose a challenge and present an opportunity for characterizing and understanding brain networks. Here, we used a multimodal approach to investigate the neural correlates to the global fMRI signal in the resting state. Like fMRI, resting-state power fluctuations of broadband and arrhythmic, or scale-free, macaque electrocorticography and human magnetoencephalography activity were correlated globally. The power fluctuations of scale-free human electroencephalography (EEG) were coupled with the global component of simultaneously acquired resting-state fMRI, with the global hemodynamic change lagging the broadband spectral change of EEG by ∼5 s. The levels of global and nonspecific fluctuation and synchronization in scale-free population activity also varied across and depended on arousal states. Together, these results suggest that the neural origin of global resting-state fMRI activity is the broadband power fluctuation in scale-free population activity observable with macroscopic electrical or magnetic recordings. Moreover, the global fluctuation in neurophysiological and hemodynamic activity is likely modulated through diffuse neuromodulation pathways that govern arousal states and vigilance levels. SIGNIFICANCE STATEMENT This study provides new insights into the neural origin of resting-state fMRI. Results demonstrate that the broadband power fluctuation of scale-free electrophysiology is globally synchronized and directly coupled with the global component of spontaneous fMRI signals, in contrast to modularly synchronized fluctuations in oscillatory neural activity. These findings lead to a new hypothesis that scale-free and oscillatory neural processes account for global and modular patterns of functional

  10. Peritraumatic dissociation and PTSD severity: do event-related fears about death and control mediate their relation?

    PubMed

    Gershuny, Beth S; Cloitre, Marylene; Otto, Micheal W

    2003-02-01

    Relations among peritraumatic dissociation, PTSD severity, event-related fear (i.e. fear experienced during traumatic event) about death, and event-related fear about losing control were examined in the current study. Particular emphasis was placed on testing whether or not fears about death and losing control mediate the relation between peritraumatic dissociation and PTSD severity in a sample of 146 nontreatment-seeking university women. Results indicated that event-related fears about death and losing control accounted for the relation between peritraumatic dissociation and PTSD severity; that is, the effect of peritraumatic dissociation on PTSD severity was eliminated after controlling for these fears. Speculations about findings are discussed.

  11. Combining EEG Microstates with fMRI Structural Features for Modeling Brain Activity.

    PubMed

    Michalopoulos, Kostas; Bourbakis, Nikolaos

    2015-12-01

    Combining information from Electroencephalography (EEG) and Functional Magnetic Resonance Imaging (fMRI) has been a topic of increased interest recently. The main advantage of the EEG is its high temporal resolution, in the scale of milliseconds, while the main advantage of fMRI is the detection of functional activity with good spatial resolution. The advantages of each modality seem to complement each other, providing better insight in the neuronal activity of the brain. The main goal of combining information from both modalities is to increase the spatial and the temporal localization of the underlying neuronal activity captured by each modality. This paper presents a novel technique based on the combination of these two modalities (EEG, fMRI) that allow a better representation and understanding of brain activities in time. EEG is modeled as a sequence of topographies, based on the notion of microstates. Hidden Markov Models (HMMs) were used to model the temporal evolution of the topography of the average Event Related Potential (ERP). For each model the Fisher score of the sequence is calculated by taking the gradient of the trained model parameters. The Fisher score describes how this sequence deviates from the learned HMM. Canonical Partial Least Squares (CPLS) were used to decompose the two datasets and fuse the EEG and fMRI features. In order to test the effectiveness of this method, the results of this methodology were compared with the results of CPLS using the average ERP signal of a single channel. The presented methodology was able to derive components that co-vary between EEG and fMRI and present significant differences between the two tasks.

  12. Analysis of extrinsic and intrinsic factors affecting event related desynchronization production.

    PubMed

    Takata, Yohei; Kondo, Toshiyuki; Saeki, Midori; Izawa, Jun; Takeda, Kotaro; Otaka, Yohei; It, Koji

    2012-01-01

    Recently there has been an increase in the number of stroke patients with motor paralysis. Appropriate re-afferent sensory feedback synchronized with a voluntary motor intention would be effective for promoting neural plasticity in the stroke rehabilitation. Therefore, BCI technology is considered to be a promising approach in the neuro-rehabilitation. To estimate human motor intention, an event-related desynchronization (ERD), a feature of electroencephalogram (EEG) evoked by motor execution or motor imagery is usually used. However, there exists various factors that affect ERD production, and its neural mechanism is still an open question. As a preliminary stage, we evaluate mutual effects of intrinsic (voluntary motor imagery) and extrinsic (visual and somatosensory stimuli) factors on the ERD production. Experimental results indicate that these three factors are not always additively interacting with each other and affecting the ERD production.

  13. Event-related EEG time-frequency analysis and the Orienting Reflex to auditory stimuli.

    PubMed

    Barry, Robert J; Steiner, Genevieve Z; De Blasio, Frances M

    2012-06-01

    Sokolov's classic works discussed electroencephalogram (EEG) alpha desynchronization as a measure of the Orienting Reflex (OR). Early studies confirmed that this reduced with repeated auditory stimulation, but without reliable stimulus-significance effects. We presented an auditory habituation series with counterbalanced indifferent and significant (counting) instructions. Time-frequency analysis of electrooculogram (EOG)-corrected EEG was used to explore prestimulus levels and the timing and amplitude of event-related increases and decreases in 4 classic EEG bands. Decrement over trials and response recovery were substantial for the transient increase (in delta, theta, and alpha) and subsequent desynchronization (in theta, alpha, and beta). There was little evidence of dishabituation and few effects of counting. Expected effects in stimulus-induced alpha desynchronization were confirmed. Two EEG response patterns over trials and conditions, distinct from the full OR pattern, warrant further research.

  14. How personal earthquake experience impacts on the Stroop interference effect: an event-related potential study.

    PubMed

    Qiu, Jiang; Su, Yanhua; Li, Hong; Wei, Dongtao; Tu, Shen; Zhang, Qinglin

    2010-11-01

    Event-related brain potentials (ERPs) were measured when 24 Chinese subjects performed the classical Stroop task. All of subjects had experienced the great Sichuan earthquake (5/12), with 12 people in each of the Far (Chengdu city) and the Close (Deyang city) earthquake experience groups. The behavioral data showed that the Stroop task yielded a robust Stroop interference effect as indexed by longer RT for incongruent than congruent color words in both the Chengdu and Deyang groups. Scalp ERP data showed that incongruent stimuli elicited a more negative ERP deflection (N400-600; Stroop interference effect) than did congruent stimuli between 400-600 ms in the Chengdu group, while the Stroop interference ERP effect was not found in the Deyang group. Dipole source analysis localized the generator of the N400-600 in the right prefrontal cortex (PFC) and was possibly related to conflict monitoring and cognitive control.

  15. An event-related potential paradigm for identifying (rare negative) attitude stimuli that people intentionally misreport.

    PubMed

    Crites, Stephen L; Mojica, Andrew J; Corral, Guadalupe; Taylor, Jennifer H

    2010-09-01

    This experiment explored whether a late positive potential (LPP) of the event-related brain potential is useful for examining attitudes that people attempt to conceal. Participants identified a set of liked, neutral, and disliked people and viewed sequences consisting of either names or pictures of these people. Disliked people appeared rarely among liked people, and participants either: (1) always accurately reported their negative attitudes toward the people; (2) misreported negative attitudes as positive when they saw a picture of a disliked person; or (3) misreported negative attitudes as positive when they saw a name of a disliked person. Rare negative stimuli evoked a larger-amplitude LPP than frequent positive stimuli. Misreporting attitudes significantly reduced the amplitude difference between rare negative and frequent positive stimuli, though it remained significant.

  16. The effects of learning on event-related potential correlates of musical expectancy.

    PubMed

    Carrión, Ricardo E; Bly, Benjamin Martin

    2008-09-01

    Musical processing studies have shown that unexpected endings in familiar musical sequences produce extended latencies of the P300 component. The present study sought to identify event-related potential (ERP) correlates of musical expectancy by entraining participants with rule-governed chord sequences and testing whether unexpected endings created similar responses. Two experiments were conducted in which participants performed grammaticality classifications without training (Experiment 1) and with training (Experiment 2). In both experiments, deviant chords differing in instrumental timbre elicited a MMN/P3a waveform complex. Violations related to learned patterns elicited an early right anterior negativity and P3b. Latency and amplitude of peak components were modulated by the physical characteristics of the chords, expectations due to prior knowledge of musical harmony, and contextually defined expectations developed through entrainment.

  17. Detecting event-related recurrences by symbolic analysis: applications to human language processing

    PubMed Central

    beim Graben, Peter; Hutt, Axel

    2015-01-01

    Quasi-stationarity is ubiquitous in complex dynamical systems. In brain dynamics, there is ample evidence that event-related potentials (ERPs) reflect such quasi-stationary states. In order to detect them from time series, several segmentation techniques have been proposed. In this study, we elaborate a recent approach for detecting quasi-stationary states as recurrence domains by means of recurrence analysis and subsequent symbolization methods. We address two pertinent problems of contemporary recurrence analysis: optimizing the size of recurrence neighbourhoods and identifying symbols from different realizations for sequence alignment. As possible solutions for these problems, we suggest a maximum entropy criterion and a Hausdorff clustering algorithm. The resulting recurrence domains for single-subject ERPs are obtained as partition cells reflecting quasi-stationary brain states. PMID:25548270

  18. Digital memory encoding in Chinese dyscalculia: An event-related potential study.

    PubMed

    Wang, Enguo; Qin, Shutao; Chang, MengYan; Zhu, Xiangru

    2014-10-22

    This study reports the neurophysiological and behavioral correlates of digital memory encoding features in Chinese individuals with and without dyscalculia. Eighteen children with dyscalculia (ages 11.5-13.5) and 18 matched controls were tested, and their event-related potentials (ERPs) were digitally recorded simultaneously with behavioral measures. The results showed that both groups had a significant Dm effect, and this effect was greater in the control group. In the 300-400-ms, 400-500-ms, and 600-700-ms processing stages, both groups showed significant differences of digital memory encoding in the frontal, central, and parietal regions. In the 500-600-ms period, the Dm effect in the control group was significantly greater than that in the dyscalculia group only in the parietal region. These results suggest that individuals with dyscalculia exhibit impaired digital memory encoding and deficits in psychological resource allocation.

  19. Neural correlates of mental state decoding in human adults: an event-related potential study.

    PubMed

    Sabbagh, Mark A; Moulson, Margaret C; Harkness, Kate L

    2004-04-01

    Successful negotiation of human social interactions rests on having a theory of mind - an understanding of how others' behaviors can be understood in terms of internal mental states, such as beliefs, desires, intentions, and emotions. A core theory-of-mind skill is the ability to decode others' mental states on the basis of observable information, such as facial expressions. Although several recent studies have focused on the neural correlates of reasoning about mental states, no research has addressed the question of what neural systems underlie mental state decoding. We used dense-array event-related potentials (ERP) to show that decoding mental states from pictures of eyes is associated with an N270-400 component over inferior frontal and anterior temporal regions of the right hemisphere. Source estimation procedures suggest that orbitofrontal and medial temporal regions may underlie this ERP effect. These findings suggest that different components of everyday theory-of-mind skills may rely on dissociable neural mechanisms.

  20. Processing syntactic relations in language and music: an event-related potential study.

    PubMed

    Patel, A D; Gibson, E; Ratner, J; Besson, M; Holcomb, P J

    1998-11-01

    In order to test the language-specificity of a known neural correlate of syntactic processing [the P600 event-related brain potential (ERP) component], this study directly compared ERPs elicited by syntactic incongruities in language and music. Using principles of phrase structure for language and principles of harmony and key-relatedness for music, sequences were constructed in which an element was either congruous, moderately incongruous, or highly incongruous with the preceding structural context. A within-subjects design using 15 musically educated adults revealed that linguistic and musical structural incongruities elicited positivities that were statistically indistinguishable in a specified latency range. In contrast, a music-specific ERP component was observed that showed antero-temporal right-hemisphere lateralization. The results argue against the language-specificity of the P600 and suggest that language and music can be studied in parallel to address questions of neural specificity in cognitive processing.

  1. Online Motor Imagery Training Effect for the Appearance of Event Related Desynchronization (ERD)

    NASA Astrophysics Data System (ADS)

    Takahashi, Mitsuru; Gouko, Manabu; Ito, Koji

    Stroke patients have some motor deficits, but they can regain their motor abilities by rehabilitation. In the aspect of rehabilitation, voluntary movement is very important. We propose a system which can make a closed loop in brain for stroke patients like voluntary movement. Event Related Desynchronization (ERD) is used to extract patients' motor intention, and then Functional Electrical Stimulation (FES) stimuls their paralyzed muscles. In many Brain Computer Interface (BCI) researches, subjects are trained for several months or years to do the task, because of the difficulty to extract clear ERD without training. Thinking about applying for stroke patients, motor imagery training should be shorter, because of the brain plasticity. We did a pilot study about the effect of visual feedback training for three days with healthy subjects. The result indicated that ERD could be clearly extracted in three days, but the training effect differs in each subjects.

  2. Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review.

    PubMed

    Groppe, David M; Urbach, Thomas P; Kutas, Marta

    2011-12-01

    Event-related potentials (ERPs) and magnetic fields (ERFs) are typically analyzed via ANOVAs on mean activity in a priori windows. Advances in computing power and statistics have produced an alternative, mass univariate analyses consisting of thousands of statistical tests and powerful corrections for multiple comparisons. Such analyses are most useful when one has little a priori knowledge of effect locations or latencies, and for delineating effect boundaries. Mass univariate analyses complement and, at times, obviate traditional analyses. Here we review this approach as applied to ERP/ERF data and four methods for multiple comparison correction: strong control of the familywise error rate (FWER) via permutation tests, weak control of FWER via cluster-based permutation tests, false discovery rate control, and control of the generalized FWER. We end with recommendations for their use and introduce free MATLAB software for their implementation.

  3. The temporal reliability of sound modulates visual detection: an event-related potential study.

    PubMed

    Li, Qi; Wu, Yan; Yang, Jingjing; Wu, Jinglong; Touge, Tetsuo

    2015-01-01

    Utilizing the high temporal resolution of event-related potentials (ERPs), we examined the effects of temporal reliability of sounds on visual detection. Significantly faster reaction times to visual target stimuli were observed when reliable temporal information was provided by a task-irrelevant auditory stimulus. Three main ERP components related to the effects of auditory temporal reliability were found: the first at 180-240 ms over a wide central area, the second at 300-400 ms over an anterior area, and the third at 300-380 ms over bilateral temporal areas. Our results support the hypothesis that temporal reliability affects visual detection and indicate that auditory facilitation of visual detection is partly due to spread of attention and thus results from implicit temporal linking of auditory and visual information at a relatively late processing stage.

  4. Neuroprotection against vascular dementia after acupuncture combined with donepezil hydrochloride: P300 event related potential

    PubMed Central

    Liu, Qiang; Wang, Xiu-juan; Zhang, Zhe-cheng; Xue, Rong; Li, Ping; Li, Bo

    2016-01-01

    Acupuncture can be used to treat various nervous system diseases. Here, 168 vascular dementia patients were orally administered donepezil hydrochloride alone (5 mg/day, once a day for 56 days), or combined with acupuncture at Shenting (DU24), Tianzhu (BL10), Sishencong (Extra), Yintang (Extra), Renzhong (DU26), Neiguan (PC6), Shenmen (HT7), Fengchi (GB20), Wangu (GB12) and Baihui (DU20) (once a day for 56 days). Compared with donepezil hydrochloride alone, P300 event related potential latency was shorter with an increased amplitude in patients treated with donepezil hydrochloride and acupuncture. Mini-Mental State Examination score was also higher. Moreover, these differences in P300 latency were identified within different infarcted regions in patients treated with donepezil hydrochloride and acupuncture. These findings indicate that acupuncture combined with donepezil hydrochloride noticeably improves cognitive function in patients with vascular dementia, and exerts neuroprotective effects against vascular dementia. PMID:27127486

  5. The functional significance of absolute power with respect to event-related desynchronization.

    PubMed

    Doppelmayr, M M; Klimesch, W; Pachinger, T; Ripper, B

    1998-01-01

    The question is examined whether the extent of changes in relative band power as measured by event-related desynchronization (ERD) depends on absolute band power. The results for target stimuli of a simple oddball task indicate that the prestimulus (reference) level of absolute band power has indeed a strong influence on ERD. Whereas for the alpha band large band power in the reference interval is related to a strong degree of alpha suppression as measured by ERD, the opposite holds true for the theta band. Here, a low level of band power during the reference interval is related to a pronounced increase in band power during the processing of the target stimulus. In contrast to alpha and theta, ERD in the delta band is not influenced by the magnitude of band power in the reference interval.

  6. Event-related potentials can reveal differences between two decision-making groups.

    PubMed

    Cutmore, T R; Muckert, T D

    1998-02-01

    Previous research has shown that a complex decision is dependent on an underlying utility metric that is used by decision making processes to accumulate preference for one alternative. This study postulated that a state of indecision may arise if this underlying metric is poorly organized. The underlying metric was examined with a paired comparison task while measuring event-related potentials (ERP) for subjects classified as 'career decided' and 'career undecided'. Stimuli for comparison were presented either sequentially or simultaneously. The simultaneous condition produced results consistent with the hypothesis that undecided subjects have a poorly organized value metric as revealed in both the behavioral data and the P3 component. A relationship between P3 amplitude and word distance on the underlying metric was found only for the decided group. This was interpreted in terms of the previously documented relationship between P3 and the constructs of decision confidence and task difficulty.

  7. Cortical processing of simultaneous hand and foot movements: evidence from event-related potentials.

    PubMed

    Miller, Jeff; Gerstner, Natascha

    2013-10-01

    The motor processes involved in generating simultaneous hand and foot movements were studied by recording event-related potentials (ERPs) during reaction time tasks in which participants made hand and foot movements either alone or in combination with one another. In particular, we assessed whether the motor potentials generated during combined movements were simply superpositions of the potentials generated during the individual movements in isolation. ERPs generated during single-limb movements replicated previously observed motor potentials, and those generated during both the execution (Experiment 1) and preparation (Experiment 2) of combined movements showed some deviations from the predictions of the superposition hypothesis, suggesting the presence of neural interactions between the hand and foot movement systems during preparation and execution of these actions.

  8. Deficient auditory processing in children with Asperger Syndrome, as indexed by event-related potentials.

    PubMed

    Jansson-Verkasalo, Eira; Ceponiene, Rita; Kielinen, Marko; Suominen, Kalervo; Jäntti, Ville; Linna, Sirkka Liisa; Moilanen, Irma; Näätänen, Risto

    2003-03-06

    Asperger Syndrome (AS) is characterized by normal language development but deficient understanding and use of the intonation and prosody of speech. While individuals with AS report difficulties in auditory perception, there are no studies addressing auditory processing at the sensory level. In this study, event-related potentials (ERP) were recorded for syllables and tones in children with AS and in their control counterparts. Children with AS displayed abnormalities in transient sound-feature encoding, as indexed by the obligatory ERPs, and in sound discrimination, as indexed by the mismatch negativity. These deficits were more severe for the tone stimuli than for the syllables. These results indicate that auditory sensory processing is deficient in children with AS, and that these deficits might be implicated in the perceptual problems encountered by children with AS.

  9. Processing inferences derived from event-related potential measures in a monitoring task

    NASA Technical Reports Server (NTRS)

    Horst, R. L.; Munson, R. C.; Ruchkin, D. S.

    1985-01-01

    Event-related potentials (ERPs) were recorded from the scalp of subjects as they monitored changing digital readouts for values that went 'out-of-bounds'. Workload was manipulated by varying the number of readouts that were monitored concurrently. The ERPs elicited by changes in the readouts showed long latency positivities that increased in amplitude, not only with the number of readouts monitored, but also with the number of monitored readouts that were 'in danger' of going out-of-bounds. No effects were found due to the number of nonmonitored readouts 'in danger'. This evidence indicates that subjects (1) selectively attended to the monitored readouts and (2) processed the monitored readouts differently as the readouts approached the out-of-bounds levels to which an overt response was required.

  10. Probe-evoked event-related potential techniques for evaluating aspects of attention and information processing

    NASA Technical Reports Server (NTRS)

    Stern, John A.

    1988-01-01

    The study of probe event related potentials (probe ERPs) is reviewed. Several recent experiments are described which seem to leave in doubt the usefulness of applying ERP to simulation and field conditions as well as laboratory situations. Relatively minor changes in the experimental paradigm can produce major shifts in ERP findings, for reasons that are not clear. However, task-elicited ERPs might be used on a flight simulator if the experimenter takes time of arrival of the eyes on a particular instrument as one variable of concern and dwell time on the instrument as a second variable. One can then look at ERPs triggered by saccade termination for fixation pauses of specified durations. It may well be that ERP to a momentarily important display will differ from that elicited by routine instrument check.

  11. Event-related potentials elicited by errors during the stop-signal task. I: Macaque monkeys

    PubMed Central

    Godlove, David C.; Emeric, Erik E.; Segovis, Courtney M.; Young, Michelle S.; Schall, Jeffrey D.; Woodman, Geoffrey F.

    2011-01-01

    The error-related negativity (ERN) and positivity (Pe) are components of event-related potential (ERP) waveforms recorded from humans that are thought to reflect performance monitoring. Error-related signals have also been found in single-neuron responses and local-field potentials recorded in supplementary eye field and anterior cingulate cortex of macaque monkeys. However, the homology of these neural signals across species remains controversial. Here, we show that monkeys exhibit ERN and Pe components when they commit errors during a saccadic stop-signal task. The voltage distributions and current densities of these components were similar to those found in humans performing the same task. Subsequent analyses show that neither stimulus- nor response-related artifacts accounted for the error-ERPs. This demonstration of macaque homologues of the ERN and Pe forms a keystone in the bridge linking human and nonhuman primate studies on the neural basis of performance monitoring. PMID:22049407

  12. Event-related brain potentials in the study of visual selective attention

    PubMed Central

    Hillyard, Steven A.; Anllo-Vento, Lourdes

    1998-01-01

    Event-related brain potentials (ERPs) provide high-resolution measures of the time course of neuronal activity patterns associated with perceptual and cognitive processes. New techniques for ERP source analysis and comparisons with data from blood-flow neuroimaging studies enable improved localization of cortical activity during visual selective attention. ERP modulations during spatial attention point toward a mechanism of gain control over information flow in extrastriate visual cortical pathways, starting about 80 ms after stimulus onset. Paying attention to nonspatial features such as color, motion, or shape is manifested by qualitatively different ERP patterns in multiple cortical areas that begin with latencies of 100–150 ms. The processing of nonspatial features seems to be contingent upon the prior selection of location, consistent with early selection theories of attention and with the hypothesis that spatial attention is “special.” PMID:9448241

  13. A comparative study of event-related coupling patterns during an auditory oddball task in schizophrenia

    NASA Astrophysics Data System (ADS)

    Bachiller, Alejandro; Poza, Jesús; Gómez, Carlos; Molina, Vicente; Suazo, Vanessa; Hornero, Roberto

    2015-02-01

    Objective. The aim of this research is to explore the coupling patterns of brain dynamics during an auditory oddball task in schizophrenia (SCH). Approach. Event-related electroencephalographic (ERP) activity was recorded from 20 SCH patients and 20 healthy controls. The coupling changes between auditory response and pre-stimulus baseline were calculated in conventional EEG frequency bands (theta, alpha, beta-1, beta-2 and gamma), using three coupling measures: coherence, phase-locking value and Euclidean distance. Main results. Our results showed a statistically significant increase from baseline to response in theta coupling and a statistically significant decrease in beta-2 coupling in controls. No statistically significant changes were observed in SCH patients. Significance. Our findings support the aberrant salience hypothesis, since SCH patients failed to change their coupling dynamics between stimulus response and baseline when performing an auditory cognitive task. This result may reflect an impaired communication among neural areas, which may be related to abnormal cognitive functions.

  14. Multimodal emotion processing in autism spectrum disorders: an event-related potential study.

    PubMed

    Lerner, Matthew D; McPartland, James C; Morris, James P

    2013-01-01

    This study sought to describe heterogeneity in emotion processing in autism spectrum disorders (ASD) via electrophysiological markers of perceptual and cognitive processes that underpin emotion recognition across perceptual modalities. Behavioral and neural indicators of emotion processing were collected, as event-related potentials (ERPs) were recorded while youth with ASD completed a standardized facial and vocal emotion identification task. Children with ASD exhibited impaired emotion recognition performance for adult faces and child voices, with a subgroup displaying intact recognition. Latencies of early perceptual ERP components, marking social information processing speed, and amplitudes of subsequent components reflecting emotion evaluation, each correlated across modalities. Social information processing speed correlated with emotion recognition performance, and predicted membership in a subgroup with intact adult vocal emotion recognition. Results indicate that the essential multimodality of emotion recognition in individuals with ASDs may derive from early social information processing speed, despite heterogeneous behavioral performance; this process represents a novel social-emotional intervention target for ASD.

  15. Predicting Reading Growth with Event-Related Potentials: Thinking Differently about Indexing “Responsiveness”

    PubMed Central

    Lemons, Christopher J.; Key, Alexandra P.F.; Fuchs, Douglas; Yoder, Paul J.; Fuchs, Lynn S.; Compton, Donald L.; Williams, Susan M.; Bouton, Bobette

    2009-01-01

    The purpose of this study was to determine if event-related potential (ERP) data collected during three reading-related tasks (Letter Sound Matching, Nonword Rhyming, and Nonword Reading) could be used to predict short-term reading growth on a curriculum-based measure of word identification fluency over 19 weeks in a sample of 29 first-grade children. Results indicate that ERP responses to the Letter Sound Matching task were predictive of reading change and remained so after controlling for two previously validated behavioral predictors of reading, Rapid Letter Naming and Segmenting. ERP data for the other tasks were not correlated with reading change. The potential for cognitive neuroscience to enhance current methods of indexing responsiveness in a response-to-intervention (RTI) model is discussed. PMID:20514353

  16. The cognitive demands of second order manual control: Applications of the event related brain potential

    NASA Technical Reports Server (NTRS)

    Wickens, C.; Gill, R.; Kramer, A.; Ross, W.; Donchin, E.

    1981-01-01

    Three experiments are described in which tracking difficulty is varied in the presence of a covert tone discrimination task. Event related brain potentials (ERPs) elicited by the tones are employed as an index of the resource demands of tracking. The ERP measure reflected the control order variation, and this variable was thereby assumed to compete for perceptual/central processing resources. A fine-grained analysis of the results suggested that the primary demands of second order tracking involve the central processing operations of maintaining a more complex internal model of the dynamic system, rather than the perceptual demands of higher derivative perception. Experiment 3 varied tracking bandwidth in random input tracking, and the ERP was unaffected. Bandwidth was then inferred to compete for response-related processing resources that are independent of the ERP.

  17. Mental workload measurement: Event-related potentials and ratings of workload and fatigue

    NASA Technical Reports Server (NTRS)

    Biferno, M. A.

    1985-01-01

    Event-related potentials were elicited when a digitized word representing a pilot's call-sign was presented. This auditory probe was presented during 27 workload conditions in a 3x3x3 design where the following variables were manipulated: short-term load, tracking task difficulty, and time-on-task. Ratings of workload and fatigue were obtained between each trial of a 2.5-hour test. The data of each subject were analyzed individually to determine whether significant correlations existed between subjective ratings and ERP component measures. Results indicated that a significant number of subjects had positive correlations between: (1) ratings of workload and P300 amplitude, (2) ratings of workload and N400 amplitude, and (3) ratings of fatigue and P300 amplitude. These data are the first to show correlations between ratings of workload or fatigue and ERP components thereby reinforcing their validity as measures of mental workload and fatigue.

  18. Processing of emotional faces in congenital amusia: An emotional music priming event-related potential study.

    PubMed

    Zhishuai, Jin; Hong, Liu; Daxing, Wu; Pin, Zhang; Xuejing, Lu

    2017-01-01

    Congenital amusia is characterized by lifelong impairments in music perception and processing. It is unclear whether pitch detection deficits impact amusic individuals' perception of musical emotion. In the current work, 19 amusics and 21 healthy controls were subjected to electroencephalography (EEG) while being exposed to music excerpts and emotional faces. We assessed each individual's ability to discriminate positive- and negative-valenced emotional faces and analyzed electrophysiological indices, in the form of event-related potentials (ERPs) recorded at 32 sites, following exposure to emotionally positive or negative music excerpts. We observed smaller N2 amplitudes in response to facial expressions in the amusia group than in the control group, suggesting that amusics were less affected by the musical stimuli. The late-positive component (LPC) in amusics was similar to that in controls. Our results suggest that the neurocognitive deficit characteristic of congenital amusia is fundamentally an impairment in musical information processing rather than an impairment in emotional processing.

  19. Event-related potential responses to love-related facial stimuli.

    PubMed

    Langeslag, Sandra J E; Jansma, Bernadette M; Franken, Ingmar H A; Van Strien, Jan W

    2007-09-01

    In event-related potential (ERPs) studies, emotional stimuli usually elicit an enhanced late positive potential (LPP), which is assumed to reflect motivated attention. However, whether a stimulus elicits emotional responses may depend on the individual's state, such as experiencing romantic love. It has been suggested that stimuli that are related to someone's beloved will elicit increased attention in that infatuated individual. In this study, participants who were in love viewed faces of their beloved, their friend, and of an unknown, beautiful person. The friend was included to control for familiarity, and the unknown person for perceived beauty. As expected, the LPP was larger in response to the face of the beloved than to the other two emotionally significant faces. Interpreting the LPP as reflecting motivated attention, this implies that romantic love is accompanied by increased attention for the face of one's beloved.

  20. Language of the aging brain: Event-related potential studies of comprehension in older adults

    PubMed Central

    Wlotko, Edward W.; Lee, Chia-Lin; Federmeier, Kara D.

    2010-01-01

    Normal aging brings increased richness in knowledge and experience as well as declines in cognitive abilities. Event-related brain potential (ERP) studies of language comprehension corroborate findings showing that the structure and organization of semantic knowledge remains relatively stable with age. Highlighting the advantages of the temporal and functional specificity of ERPs, this survey focuses on age-related changes in higher-level processes required for the successful comprehension of meaning representations built from multiple words. Older adults rely on different neural pathways and cognitive processes during normal, everyday comprehension, including a shift away from the predictive use of sentential context, differential recruitment of neural resources, and reduced engagement of controlled processing. Within age groups, however, there are important individual differences that, for example, differentiate a subset of older adults whose processing patterns more closely resemble that of young adults, providing a window into cognitive skills and abilities that may mediate or moderate age-related declines. PMID:20823949

  1. Clinical application of event related potentials in patients with brain tumours and traumatic head injuries.

    PubMed

    Olbrich, H M; Nau, H E; Zerbin, D; Lanczos, L; Lodemann, E; Engelmeier, M P; Grote, W

    1986-01-01

    Event related potential recording and psychometric evaluation of cognitive impairment were carried out on 21 patients with brain tumours, 21 patients with severe head injuries and 24 controls. The tumour and trauma patients who met the psychometric inclusion criteria for dementia, but not the non-demented patients, had significantly longer N2 and P3 latencies than the controls. In assessing individual patients P3 latency correctly differentiated between demented and non-demented patients in 81% of cases (for N2 latency 77%). Particularly P3 latency may provide a practical and objective measure of mental impairment in neurosurgical disorders producing dementia. Marked asymmetry in N2 and P3 amplitudes between hemispheres was observed in a number of cases. No significant relationship was found between diminution of N2 and P3 components and side of lesion.

  2. Single event-related changes in cerebral oxygenated hemoglobin using word game in schizophrenia.

    PubMed

    Fujiki, Ryo; Morita, Kiichiro; Sato, Mamoru; Yamashita, Yuji; Kato, Yusuke; Ishii, Yohei; Shoji, Yoshihisa; Uchimura, Naohisa

    2014-01-01

    Neuroimaging studies have been conducted using word generation tasks and have shown greater hypofrontality in patients with schizophrenia compared with healthy subjects. In this study, we compared the characteristics of oxygenated hemoglobin changes involved in both phonological and categorical verbal fluency between 35 outpatients with schizophrenia and 35 healthy subjects during a Japanese "shiritori" task using single-event-related near-infrared spectroscopy. During this task, the schizophrenic patients showed significantly smaller activation in the prefrontal cortex area than the controls. In addition, a significant positive correlation was obtained between oxygenated hemoglobin changes (prefrontal cortex area, inferior parietal area) and the severity of positive psychiatric symptoms. It is possible that hypofrontality of patients may be a diagnostic assistance tool for schizophrenia, and that the relationship between activation and positive syndrome scores may be of help in predicting functional outcome in patients.

  3. Prospective and retrospective semantic processing: prediction, time, and relationship strength in event-related potentials.

    PubMed

    Luka, Barbara J; Van Petten, Cyma

    2014-08-01

    Semantic context effects have variously been attributed to prospective processing - predictions about upcoming words - or to retrospective appreciation of relationships after reading both context and target. In two experiments, we altered the core variable distinguishing prospective from retrospective processing, namely time. Word pairs varying in strength of relationship were presented sequentially, to allow time for anticipation of the second word, or simultaneously. For both sorts of presentation, the amplitude of the N400 component of the event-related potential was graded from Unrelated to Moderate/Weak to Strong associates. Strong associates showed a temporal advantage over weaker associates - an earlier context effect - only during sequential presentation. Spatial distributions of the N400 context effects also differed for simultaneous versus sequential presentation.

  4. Event-related potential practice effects on the Paced Auditory Serial Addition Test (PASAT)

    PubMed Central

    Rogers, Jeffrey M.; Fox, Alison M.

    2012-01-01

    Practice can change the nature and quality of a stimulus-response relationship. The current study observed the effects of repeated administration of the Paced Auditory Serial Addition Test (PASAT) in 12 healthy individuals, in an effort to establish distinct profiles associated with novel and practiced processing. Over four training sessions the mean number of correct responses on this demanding test of attention significantly improved and was approaching ceiling for most task conditions. Behavioural improvements were associated with significantly reduced amplitude of late Processing Negativity, a frontally distributed component of the event-related potential waveform associated with voluntary, limited-capacity activity within higher-order attentional systems. These results suggest that PASAT performance became more efficient as practice seemingly eased the strategic planning and coordination requirements the task places on frontally-mediated executive attention resources. The findings of the current study extend our understanding of the functional and behavioural mechanisms underlying the effects of practice. PMID:23717344

  5. Event-related potential evidence suggesting voters remember political events that never happened.

    PubMed

    Coronel, Jason C; Federmeier, Kara D; Gonsalves, Brian D

    2014-03-01

    Voters tend to misattribute issue positions to political candidates that are consistent with their partisan affiliation, even though these candidates have never explicitly stated or endorsed such stances. The prevailing explanation in political science is that voters misattribute candidates' issue positions because they use their political knowledge to make educated but incorrect guesses. We suggest that voter errors can also stem from a different source: false memories. The current study examined event-related potential (ERP) responses to misattributed and accurately remembered candidate issue information. We report here that ERP responses to misattributed information can elicit memory signals similar to that of correctly remembered old information--a pattern consistent with a false memory rather than educated guessing interpretation of these misattributions. These results suggest that some types of voter misinformation about candidates may be harder to correct than previously thought.

  6. Event-related potential evidence suggesting voters remember political events that never happened

    PubMed Central

    Federmeier, Kara D.; Gonsalves, Brian D.

    2014-01-01

    Voters tend to misattribute issue positions to political candidates that are consistent with their partisan affiliation, even though these candidates have never explicitly stated or endorsed such stances. The prevailing explanation in political science is that voters misattribute candidates’ issue positions because they use their political knowledge to make educated but incorrect guesses. We suggest that voter errors can also stem from a different source: false memories. The current study examined event-related potential (ERP) responses to misattributed and accurately remembered candidate issue information. We report here that ERP responses to misattributed information can elicit memory signals similar to that of correctly remembered old information—a pattern consistent with a false memory rather than educated guessing interpretation of these misattributions. These results suggest that some types of voter misinformation about candidates may be harder to correct than previously thought. PMID:23202775

  7. The neural basis of desire reasoning for self and others: an event-related potential study.

    PubMed

    Jiang, Qin; Li, Peng; Li, Fuhong; Wang, Qi; Cao, Bihua; Li, Hong

    2016-01-20

    Theory of mind refers to the ability to attribute mental states to self and others, and predict actions in terms of mental states. It is still unclear how certain kinds of processing occur in theory of mind operation. The present study compared neural activities elicited by desire reasoning for self and for others under consistent or inconsistent conditions using the event-related potential method. The results showed that the late positive component (LPC) associated with desire reasoning was larger during the 450-550 ms time period in the condition of reasoning for self than that for others when desires were inconsistent. A left hemisphere effect on the scalp distribution was observed for the LPC component. The present study showed that a left frontal LPC component might reflect the subjective categorization process in desire reasoning.

  8. Time-series analysis for rapid event-related skin conductance responses

    PubMed Central

    Bach, Dominik R.; Flandin, Guillaume; Friston, Karl J.; Dolan, Raymond J.

    2009-01-01

    Event-related skin conductance responses (SCRs) are traditionally analysed by comparing the amplitude of individual peaks against a pre-stimulus baseline. Many experimental manipulations in cognitive neuroscience dictate paradigms with short inter trial intervals, precluding accurate baseline estimation for SCR measurements. Here, we present a novel and general approach to SCR analysis, derived from methods used in neuroimaging that estimate responses using a linear convolution model. In effect, the method obviates peak-scoring and makes use of the full SCR. We demonstrate, across three experiments, that the method has face validity in analysing reactions to a loud white noise and emotional pictures, can be generalised to paradigms where the shape of the response function is unknown and can account for parametric trial-by-trial effects. We suggest our approach provides greater flexibility in analysing SCRs than existing methods. PMID:19686778

  9. Single event-related changes in cerebral oxygenated hemoglobin using word game in schizophrenia

    PubMed Central

    Fujiki, Ryo; Morita, Kiichiro; Sato, Mamoru; Yamashita, Yuji; Kato, Yusuke; Ishii, Yohei; Shoji, Yoshihisa; Uchimura, Naohisa

    2014-01-01

    Neuroimaging studies have been conducted using word generation tasks and have shown greater hypofrontality in patients with schizophrenia compared with healthy subjects. In this study, we compared the characteristics of oxygenated hemoglobin changes involved in both phonological and categorical verbal fluency between 35 outpatients with schizophrenia and 35 healthy subjects during a Japanese “shiritori” task using single-event-related near-infrared spectroscopy. During this task, the schizophrenic patients showed significantly smaller activation in the prefrontal cortex area than the controls. In addition, a significant positive correlation was obtained between oxygenated hemoglobin changes (prefrontal cortex area, inferior parietal area) and the severity of positive psychiatric symptoms. It is possible that hypofrontality of patients may be a diagnostic assistance tool for schizophrenia, and that the relationship between activation and positive syndrome scores may be of help in predicting functional outcome in patients. PMID:25525364

  10. P3 event-related potentials and childhood maltreatment in successful and unsuccessful psychopaths

    PubMed Central

    Gao, Yu; Raine, Adrian; Schug, Robert A.

    2011-01-01

    Although P3 event-related potential abnormalities have been found in psychopathic individuals, it is unknown whether successful (uncaught) psychopaths and unsuccessful (caught) psychopaths show similar deficits. In this study, P3 amplitude and latency were assessed from a community sample of 121 male adults using an auditory three-stimulus oddball task. Psychopathy was assessed using the Psychopathy Checklist-Revised (Hare, 2003) while childhood physical maltreatment was assessed using the Conflict Tactic Scale (Strauss, 1979). Results revealed that compared to normal controls, unsuccessful psychopaths showed reduced parietal P3 amplitudes to target stimuli and reported experienced more physical abuse in childhood. In contrast, successful psychopaths exhibited larger parietal P3 amplitude and shorter frontal P3 latency to irrelevant nontarget stimuli than unsuccessful psychopaths. This is the first report of electrophysiological processing differences between successful and unsuccessful psychopaths, possibly indicating neurocognitive and psychosocial distinctions between these two subtypes of psychopathy. PMID:21820788

  11. Electroencephalography (EEG) and event-related potentials (ERPs) with human participants.

    PubMed

    Light, Gregory A; Williams, Lisa E; Minow, Falk; Sprock, Joyce; Rissling, Anthony; Sharp, Richard; Swerdlow, Neal R; Braff, David L

    2010-07-01

    Understanding the basic neural processes that underlie complex higher-order cognitive operations and functional domains is a fundamental goal of cognitive neuroscience. Electroencephalography (EEG) is a non-invasive and relatively inexpensive method for assessing neurophysiological function that can be used to achieve this goal. EEG measures the electrical activity of large, synchronously firing populations of neurons in the brain with electrodes placed on the scalp. This unit outlines the basics of setting up an EEG experiment with human participants, including equipment, and a step-by-step guide to applying and preparing an electrode cap. Also included are support protocols for two event-related potential (ERP) paradigms, P50 suppression, and mismatch negativity (MMN), which are measures of early sensory processing. These paradigms can be used to assess the integrity of early sensory processing in normal individuals and clinical populations, such as individuals with schizophrenia.

  12. Psychopathy-Related Differences in Selective Attention Are Captured by an Early Event-Related Potential

    PubMed Central

    Baskin–Sommers, Arielle; Curtin, John J.; Li, Wen; Newman, Joseph P.

    2012-01-01

    According to the response modulation model, the poorly regulated behavior of psychopathic individuals reflects a problem reallocating attention to process peripheral information while engaged in goal-directed behavior (Patterson & Newman, 1993). We evaluated this tenet using male prisoners and an early event-related potential component (P140) to index attentional processing. In all task conditions, participants viewed and categorized letter stimuli that could also be used to predict electric shocks. Instructions focused attention either on the threat-relevant dimension of the letters or an alternative, threat-irrelevant dimension. Offenders with high scores on Hare’s (2003) Psychopathy Checklist-Revised displayed a larger P140 under alternative versus threat conditions. Beyond demonstrating psychopathy-related differences in early attention, these findings suggest that psychopathic individuals find it easier to ignore threat-related distractors when they are peripheral versus central to their goal-directed behavior. PMID:22452763

  13. Attentional Selection Accompanied by Eye Vergence as Revealed by Event-Related Brain Potentials

    PubMed Central

    Sole Puig, Maria; Pallarés, Josep Marco; Perez Zapata, Laura; Puigcerver, Laura; Cañete, Josep

    2016-01-01

    Neural mechanisms of attention allow selective sensory information processing. Top-down deployment of visual-spatial attention is conveyed by cortical feedback connections from frontal regions to lower sensory areas modulating late stimulus responses. A recent study reported the occurrence of small eye vergence during orienting top-down attention. Here we assessed a possible link between vergence and attention by comparing visual event related potentials (vERPs) to a cue stimulus that induced attention to shift towards the target location to the vERPs to a no-cue stimulus that did not trigger orienting attention. The results replicate the findings of eye vergence responses during orienting attention and show that the strength and time of eye vergence coincide with the onset and strength of the vERPs when subjects oriented attention. Our findings therefore support the idea that eye vergence relates to and possibly has a role in attentional selection. PMID:27973591

  14. Self-relevant beauty evaluation: Evidence from an event-related potentials study.

    PubMed

    Kong, Fanchang; Zhang, Yan; Tian, Yuan; Fan, Cuiying; Zhou, Zongkui

    2015-03-01

    This study examines the electrophysiological correlates of beauty evaluation when participants performed the self-reference task. About 13 (7 men, 6 women) undergraduates participated in the experiment using event-related potentials. Results showed that the response to self-relevant information was faster compared to other-relevant information and no significant differences for self-relevant relative to mother-relevant information were observed. Both physical and interior beauty words for self-relevant information showed an enhanced late positive component as compared to other-relevant information. Physical beauty for self-relevant information yielded a larger late positive component in contrast to mother-relevant information but not for interior beauty. This study indicates that beauty is specific to the person who judges it though an individual and one's mother may hold similar views of interior beauty.

  15. Dehydroepiandrosterone inhibits events related with the metastatic process in breast tumor cell lines.

    PubMed

    López-Marure, Rebeca; Zapata-Gómez, Estrella; Rocha-Zavaleta, Leticia; Aguilar, María Cecilia; Espinosa Castilla, Magali; Meléndez Zajgla, Jorge; Meraz-Cruz, Noemí; Huesca-Gómez, Claudia; Gamboa-Ávila, Ricardo; Gómez-González, Erika Olivia

    2016-09-01

    Dehydroepiandrosterone (DHEA), an adrenal hormone, has a protective role against cancer. We previously shown that DHEA inhibits the proliferation and migration of cell lines derived from breast cancer; however, the role of DHEA in others events related with these effects are unknown. We hypothesized that DHEA inhibits the expression of proteins and some events related with cell migration and metastasis. We determined the migration in Boyden chambers, the invasion in matrigel, anchorage-independent growth and the formation of spheroids in 3 cell lines (MCF-7, MDA-MB-231, ZR-75-30) derived from breast cancer exposed to DHEA. The secretion of metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and several pro-inflammatory molecules in the secretome of these cells was also evaluated.  DHEA inhibited the migration in transwells and the invasion in matrigel of MCF-7 and MDA-MB-231 cells. Besides, DHEA inhibited the anchorage-independent growth on agar and decreased the size of spheroids, and also reduced the secretion of IL-1α, IL-6, IL-8, and TNF-α in all cell lines. Metalloproteinase-1 (MMP-1) secretion was slightly decreased by DHEA treatment in MDA-MB-231 cells. Our results also showed that inhibition of migration and invasion induced by DHEA in breast cancer cells is correlated with the decrease of cytokine/chemokine secretion and the diminution of tumor cells growth.  MCF-7 cells were the most responsive to the exposure to DHEA, whereas ZR-75-30 cells responded less to this hormone, suggesting that DHEA could be used in the treatment of breast cancer in early stages.

  16. Impairments in Background and Event-Related Alpha-Band Oscillatory Activity in Patients with Schizophrenia

    PubMed Central

    Abeles, Ilana Y.; Gomez-Ramirez, Manuel

    2014-01-01

    Studies show that patients with schizophrenia exhibit impaired responses to sensory stimuli, especially at the early stages of neural processing. In particular, patients’ alpha-band (8–14 Hz) event-related desynchronization (ERD) and visual P1 event-related potential (ERP) component tend to be significantly reduced, with P1 ERP deficits greater for visual stimuli biased towards the magnocellular system. In healthy controls, studies show that pre-stimulus alpha (background alpha) plays a pivotal role in sensory processing and behavior, largely by shaping the neural responses to incoming stimuli. Here, we address whether patients’ ERD and P1 deficits stem from impairments in pre-stimulus alpha mechanisms. To address this question we recorded electrophysiological activity in patients with schizophrenia and healthy controls while they engaged in a visual discrimination task with low, medium, and high contrast stimuli. The results revealed a significant decrease in patients’ ERDs, which was largely driven by reductions in pre-stimulus alpha. These reductions were most prominent in right-hemispheric areas. We also observed a systematic relationship between pre-stimulus alpha and the P1 component across different contrast levels. However, this relationship was only observed in healthy controls. Taken together, these findings highlight a substantial anomaly in patients’ amplitude-based alpha background activity over visual areas. The results provide further support that pre-stimulus alpha activity plays an active role in perception by modulating the neural responses to incoming sensory inputs, a mechanism that seems to be compromised in schizophrenia. PMID:24646909

  17. Neural correlates of intelligence as revealed by fMRI of fluid analogies.

    PubMed

    Geake, John G; Hansen, Peter C

    2005-06-01

    It has been conjectured that the cognitive basis of intelligence is the ability to make fluid or creative analogical relationships between distantly related concepts or pieces of information (Hofstadter, D.R. 1995. Fluid Concepts and Creative Analogies. Basic Books, New York., Hofstadter, D.R. 2001. Analogy as the Core of Cognition. In The Analogical Mind: Perspectives from Cognitive Science (D. Gentner, K. J. Holyoak and B. N. Kokinov, Ed.). pp. 504-537. MIT Press, Cambridge, Mass.). We hypothesised that fluid analogy-making tasks would activate specific regions of frontal cortex that were common to those of previous inferential reasoning tasks. We report here a novel self-paced event-related fMRI study employed to investigate the neural correlates of intelligence associated with undertaking fluid letter string analogy tasks. Stimuli were adapted from items of the AI program Copycat (Mitchell, M. 1993. Analogy-making as Perception: A computer model. The MIT Press, Cambridge MA.). Twelve right-handed adults chose their own "best" completions from four plausible response choices to 55 fluid letter string analogies across a range of analogical depths. An analysis using covariates determined per subject by analogical depth revealed significant bilateral neural activations in the superior, inferior, and middle frontal gyri and in the anterior cingulate/paracingulate cortex. These frontal areas have been previously associated with reasoning tasks involving inductive syllogisms, syntactic hierarchies, and linguistic creativity. A higher-order analysis covarying participants' verbal intelligence measures found correlations with individual BOLD activation strengths in two ROIs within BA 9 and BA 45/46. This is a provocative result given that verbal intelligence is conceptualised as being a measure of crystallised intelligence, while analogy making is conceptualised as requiring fluid intelligence. The results therefore support the conjecture that fluid analogising could

  18. Contribution of the motor system to the perception of reachable space: an fMRI study.

    PubMed

    Bartolo, Angela; Coello, Yann; Edwards, Martin G; Delepoulle, Samuel; Endo, Satoshi; Wing, Alan M

    2014-12-01

    The present functional magnetic resonance imaging (fMRI) study investigates the neural correlates of reachability judgements. In a block design experiment, 14 healthy participants judged whether a visual target presented at different distances in a virtual environment display was reachable or not with the right hand. In two control tasks, they judged the colour or the relative position of the visual target according to flankers. Contrasting the activations registered in the reachability judgement task and in the control tasks, we found activations in the frontal structures, and in the bilateral inferior and superior parietal lobe, including the precuneus, and the bilateral cerebellum. This fronto-parietal network including the cerebellum overlaps with the brain network usually activated during actual motor production and motor imagery. In a following event-related design experiment, we contrasted brain activations when targets were rated as 'reachable' with those when they were rated as 'unreachable'. We found activations in the left premotor cortex, the bilateral frontal structures, and the left middle temporal gyrus. At a lower threshold, we also found activations in the left motor cortex, and in the bilateral cerebellum. Given that reaction time increased with target distance in reachable space, we performed a subsequent parametric analysis that revealed a related increase of activity in the fronto-parietal network including the cerebellum. Unreachable targets did not show similar activation, and particularly in regions associated to motor production and motor imagery. Taken together, these results suggest that dynamical motor representations used to determine what is reachable are also part of the perceptual process leading to the distinct representation of peripersonal and extrapersonal spaces.

  19. Dysfunctional information processing during an auditory event-related potential task in individuals with Internet gaming disorder.

    PubMed

    Park, M; Choi, J-S; Park, S M; Lee, J-Y; Jung, H Y; Sohn, B K; Kim, S N; Kim, D J; Kwon, J S

    2016-01-26

    Internet gaming disorder (IGD) leading to serious impairments in cognitive, psychological and social functions has gradually been increasing. However, very few studies conducted to date have addressed issues related to the event-related potential (ERP) patterns in IGD. Identifying the neurobiological characteristics of IGD is important to elucidate the pathophysiology of this condition. P300 is a useful ERP component for investigating electrophysiological features of the brain. The aims of the present study were to investigate differences between patients with IGD and healthy controls (HCs), with regard to the P300 component of the ERP during an auditory oddball task, and to examine the relationship of this component to the severity of IGD symptoms in identifying the relevant neurophysiological features of IGD. Twenty-six patients diagnosed with IGD and 23 age-, sex-, education- and intelligence quotient-matched HCs participated in this study. During an auditory oddball task, participants had to respond to the rare, deviant tones presented in a sequence of frequent, standard tones. The IGD group exhibited a significant reduction in response to deviant tones compared with the HC group in the P300 amplitudes at the midline centro-parietal electrode regions. We also found a negative correlation between the severity of IGD and P300 amplitudes. The reduced amplitude of the P300 component in an auditory oddball task may reflect dysfunction in auditory information processing and cognitive capabilities in IGD. These findings suggest that reduced P300 amplitudes may be candidate neurobiological marker for IGD.

  20. Final Report on LDRD project 130784 : functional brain imaging by tunable multi-spectral Event-Related Optical Signal (EROS).

    SciTech Connect

    Speed, Ann Elizabeth; Spahn, Olga Blum; Hsu, Alan Yuan-Chun

    2009-09-01

    Functional brain imaging is of great interest for understanding correlations between specific cognitive processes and underlying neural activity. This understanding can provide the foundation for developing enhanced human-machine interfaces, decision aides, and enhanced cognition at the physiological level. The functional near infrared spectroscopy (fNIRS) based event-related optical signal (EROS) technique can provide direct, high-fidelity measures of temporal and spatial characteristics of neural networks underlying cognitive behavior. However, current EROS systems are hampered by poor signal-to-noise-ratio (SNR) and depth of measure, limiting areas of the brain and associated cognitive processes that can be investigated. We propose to investigate a flexible, tunable, multi-spectral fNIRS EROS system which will provide up to 10x greater SNR as well as improved spatial and temporal resolution through significant improvements in electronics, optoelectronics and optics, as well as contribute to the physiological foundation of higher-order cognitive processes and provide the technical foundation for miniaturized portable neuroimaging systems.

  1. Hippocampal negative event-related potential recorded in humans during a simple sensorimotor task occurs independently of motor execution.

    PubMed

    Roman, Robert; Brázdil, Milan; Chládek, Jan; Rektor, Ivan; Jurák, Pavel; Světlák, Miroslav; Damborská, Alena; Shaw, Daniel J; Kukleta, Miloslav

    2013-12-01

    A hippocampal-prominent event-related potential (ERP) with a peak latency at around 450 ms is consistently observed as a correlate of hippocampal activity during various cognitive tasks. Some intracranial EEG studies demonstrated that the amplitude of this hippocampal potential was greater in response to stimuli requiring an overt motor response, in comparison with stimuli for which no motor response is required. These findings could indicate that hippocampal-evoked activity is related to movement execution as well as stimulus evaluation and associated memory processes. The aim of the present study was to investigate the temporal relationship between the hippocampal negative potential latency and motor responses. We analyzed ERPs recorded with 22 depth electrodes implanted into the hippocampi of 11 epileptic patients. Subjects were instructed to press a button after the presentation of a tone. All investigated hippocampi generated a prominent negative ERP peaking at ~420 ms. In 16 from 22 cases, we found that the ERP latency did not correlate with the reaction time; in different subjects, this potential could either precede or follow the motor response. Our results indicate that the hippocampal negative ERP occurs independently of motor execution. We suggest that hippocampal-evoked activity, recorded in a simple sensorimotor task, is related to the evaluation of stimulus meaning within the context of situation.

  2. Differences in Cortical Sources of the Event-Related P3 Potential Between Young and Old Participants Indicate Frontal Compensation.

    PubMed

    van Dinteren, R; Huster, R J; Jongsma, M L A; Kessels, R P C; Arns, M

    2017-01-18

    The event-related P3 potential, as elicited in auditory signal detection tasks, originates from neural activity of multiple cortical structures and presumably reflects an overlap of several cognitive processes. The fact that the P3 is affected by aging makes it a potential metric for age-related cognitive change. The P3 in older participants is thought to encompass frontal compensatory activity in addition to task-related processes. The current study investigates this by decomposing the P3 using group independent component analysis (ICA). Independent components (IC) of young and old participants were compared in order to investigate the effects of aging. Exact low-resolution tomography analysis (eLORETA) was used to compare current source densities between young and old participants for the P3-ICs to localize differences in cortical source activity for every IC. One of the P3-related ICs reflected a different constellation of cortical generators in older participants compared to younger participants, suggesting that this P3-IC reflects shifts in neural activations and compensatory processes with aging. This P3-IC was localized to the orbitofrontal/temporal, and the medio-parietal regions. For this IC, older participants showed more frontal activation and less parietal activation as measured on the scalp. The differences in cortical sources were localized in the precentral gyrus and the parahippocampal gyrus. This finding might reflect compensatory activity recruited from these cortical sources during a signal detection task.

  3. Different event-related patterns of gamma-band power in brain waves of fast- and slow-reacting subjects.

    PubMed Central

    Jokeit, H; Makeig, S

    1994-01-01

    Fast- and slow-reacting subjects exhibit different patterns of gamma-band electroencephalogram (EEG) activity when responding as quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects produce speeded reactions in different ways and demonstrates that analysis of event-related changes in the amplitude of EEG activity recorded from the human scalp can reveal information about event-related brain processes unavailable using event-related potential measures. Time-varying spectral power in a selected (35- to 43-Hz) gamma frequency band was averaged across trials in two experimental conditions: passive listening and speeded reacting to binaural clicks, forming 40-Hz event-related spectral responses. Factor analysis of between-subject event-related spectral response differences split subjects into two near-equal groups composed of faster- and slower-reacting subjects. In faster-reacting subjects, 40-Hz power peaked near 200 ms and 400 ms poststimulus in the react condition, whereas in slower-reacting subjects, 40-Hz power just before stimulus delivery was larger in the react condition. These group differences were preserved in separate averages of relatively long and short reaction-time epochs for each group. gamma-band (20-60 Hz)-filtered event-related potential response averages did not differ between the two groups or conditions. Because of this and because gamma-band power in the auditory event-related potential is small compared with the EEG, the observed event-related spectral response features must represent gamma-band EEG activity reliably induced by, but not phase-locked to, experimental stimuli or events. PMID:8022783

  4. Topographical organization of human corpus callosum: an fMRI mapping study.

    PubMed

    Fabri, Mara; Polonara, Gabriele; Mascioli, Giulia; Salvolini, Ugo; Manzoni, Tullio

    2011-01-25

    The concept of a topographical map of the corpus callosum (CC) has emerged from human lesion studies and from anatomical tracing investigations in other mammals. Over the last few years, a rising number of researchers have been reporting functional magnetic resonance imaging (fMRI) activation in white matter, particularly the CC. In this study, the scope for describing CC topography with fMRI was explored by evoking activation through simple sensory stimulation and motor tasks. We reviewed our published and unpublished fMRI data on the cortical representation of tactile, gustatory, and visual sensitivity and of motor activation, obtained in 36 volunteers. Activation foci were consistently detected in discrete CC regions: anterior (taste stimuli), central (motor tasks), central and posterior (tactile stimuli), and splenium (visual stimuli). These findings demonstrate that the functional topography of the CC can be explored with fMRI.

  5. Event-Related Potential Measures of a Violation of an Expected Increase and Decrease in Intensity

    PubMed Central

    Macdonald, Margaret; Campbell, Kenneth

    2013-01-01

    Unexpected physical increases in the intensity of a frequently occurring “standard” auditory stimulus are experienced as obtrusive. This could either be because of a physical change, the increase in intensity of the “deviant” stimulus, or a psychological change, the violation of the expectancy for the occurrence of the lower intensity standard stimulus. Two experiments were run in which event-related potentials (ERPs) were recorded to determine whether “psychological” increments (violation of an expectancy for a lower intensity) would be processed differently than psychological decrements (violation of an expectancy for a higher intensity). Event-related potentials (ERPs) were recorded while subjects were presented with auditory tones that alternated between low and high intensity. The subjects ignored the auditory stimuli while watching a video. Deviants were created by repeating the same stimulus. In the first experiment, pairs of stimuli alternating in intensity, were presented in separate increment (H-L…H-L…H-H…H-L, in which H = 80 dB SPL and L = 60 dB SPL) and decrement conditions (L-H…L-H…L-L… L-H, in which H = 90 dB SPL and L = 80 dB SPL). The paradigm employed in the second experiment consisted of an alternating intensity pattern (H-L-H-L-H-H-H-L) or (H-L-H-L-L-L-H-L). Importantly, the stimulus prior to the deviant (the standard) and the actual deviants in both increment and decrement conditions in both experiments were physically identical (80 dB SPL tones). The repetition of the lower intensity tone therefore acted as a psychological rather than a physical decrement (a higher intensity tone was expected) while the repetition of the higher intensity tone acted as a psychological increment (a lower intensity tone was expected). The psychological increments in both experiments elicited a larger amplitude mismatch negativity (MMN) than the decrements. Thus, regardless of whether an acoustic change signals a physical

  6. A signal subspace approach for modeling the hemodynamic response function in fMRI.

    PubMed

    Hossein-Zadeh, Gholam-Ali; Ardekani, Babak A; Soltanian-Zadeh, Hamid

    2003-10-01

    Many fMRI analysis methods use a model for the hemodynamic response function (HRF). Common models of the HRF, such as the Gaussian or Gamma functions, have parameters that are usually selected a priori by the data analyst. A new method is presented that characterizes the HRF over a wide range of parameters via three basis signals derived using principal component analysis (PCA). Covering the HRF variability, these three basis signals together with the stimulation pattern define signal subspaces which are applicable to both linear and nonlinear modeling and identification of the HRF and for various activation detection strategies. Analysis of simulated fMRI data using the proposed signal subspace showed increased detection sensitivity compared to the case of using a previously proposed trigonometric subspace. The methodology was also applied to activation detection in both event-related and block design experimental fMRI data using both linear and nonlinear modeling of the HRF. The activated regions were consistent with previous studies, indicating the ability of the proposed approach in detecting brain activation without a priori assumptions about the shape parameters of the HRF. The utility of the proposed basis functions in identifying the HRF is demonstrated by estimating the HRF in different activated regions.

  7. Semantic, syntactic, and phonological processing of written words in adult developmental dyslexic readers: an event-related brain potential study

    PubMed Central

    Rüsseler, Jascha; Becker, Petra; Johannes, Sönke; Münte, Thomas F

    2007-01-01

    Background The present study used event-related brain potentials to investigate semantic, phonological and syntactic processes in adult German dyslexic and normal readers in a word reading task. Pairs of German words were presented one word at a time. Subjects had to perform a semantic judgment task (house – window; are they semantically related?), a rhyme judgment task (house – mouse; do they rhyme?) and a gender judgment task (das – Haus [the – house]; is the gender correct? [in German, house has a neutral gender: das Haus]). Results Normal readers responded faster compared to dyslexic readers in all three tasks. Onset latencies of the N400 component were delayed in dyslexic readers in the rhyme judgment and in the gender judgment task, but not in the semantic judgment task. N400 and the anterior negativity peak amplitudes did not differ between the two groups. However, the N400 persisted longer in the dyslexic group in the rhyme judgment and in the semantic judgment tasks. Conclusion These findings indicate that dyslexics are phonologically impaired (delayed N400 in the rhyme judgment task) but that they also have difficulties in other, non-phonological aspects of reading (longer response times, longer persistence of the N400). Specifically, semantic and syntactic integration seem to require more effort for dyslexic readers and take longer irrespective of the reading task that has to be performed. PMID:17640332

  8. Diminished social reward anticipation in the broad autism phenotype as revealed by event-related brain potentials.

    PubMed

    Cox, Anthony; Kohls, Gregor; Naples, Adam J; Mukerji, Cora E; Coffman, Marika C; Rutherford, Helena J V; Mayes, Linda C; McPartland, James C

    2015-10-01

    Diminished responsivity to reward incentives is a key contributor to the social-communication problems seen in autism spectrum disorders (ASDs). Social motivation theories suggest that individuals with ASD do not experience social interactions as rewarding, leading to negative consequences for the development of brain circuitry subserving social information. In this study, we examined neural responses to social and non-social reward anticipation in 35 typically developing young adults, examining modulation of reward sensitivity by level of autistic traits. Using an Event-related potential incentive-delay task incorporating novel, more ecologically valid forms of reward, higher expression of autistic traits was associated with an attenuated P3 response to the anticipation of social (simulated real-time video feedback from an observer), but not non-social (candy), rewards. Exploratory analyses revealed that this was unrelated to mentalizing ability. The P3 component reflects motivated attention to reward signals, suggesting attenuated motivation allocation specific to social incentives. The study extends prior findings of atypical reward anticipation in ASD, demonstrating that attenuated social reward responsiveness extends to autistic traits in the range of typical functioning. Results support the development of innovative paradigms for investigating social and non-social reward responsiveness. Insight into vulnerabilities in reward processing is critical for understanding social function in ASD.

  9. Diminished social reward anticipation in the broad autism phenotype as revealed by event-related brain potentials

    PubMed Central

    Cox, Anthony; Kohls, Gregor; Naples, Adam J.; Mukerji, Cora E.; Coffman, Marika C.; Rutherford, Helena J. V.; Mayes, Linda C.

    2015-01-01

    Diminished responsivity to reward incentives is a key contributor to the social-communication problems seen in autism spectrum disorders (ASDs). Social motivation theories suggest that individuals with ASD do not experience social interactions as rewarding, leading to negative consequences for the development of brain circuitry subserving social information. In this study, we examined neural responses to social and non-social reward anticipation in 35 typically developing young adults, examining modulation of reward sensitivity by level of autistic traits. Using an Event-related potential incentive-delay task incorporating novel, more ecologically valid forms of reward, higher expression of autistic traits was associated with an attenuated P3 response to the anticipation of social (simulated real-time video feedback from an observer), but not non-social (candy), rewards. Exploratory analyses revealed that this was unrelated to mentalizing ability. The P3 component reflects motivated attention to reward signals, suggesting attenuated motivation allocation specific to social incentives. The study extends prior findings of atypical reward anticipation in ASD, demonstrating that attenuated social reward responsiveness extends to autistic traits in the range of typical functioning. Results support the development of innovative paradigms for investigating social and non-social reward responsiveness. Insight into vulnerabilities in reward processing is critical for understanding social function in ASD. PMID:25752905

  10. The role of REM sleep in the processing of emotional memories: evidence from behavior and event-related potentials.

    PubMed

    Groch, S; Wilhelm, I; Diekelmann, S; Born, J

    2013-01-01

    Emotional memories are vividly remembered for the long-term. Rapid eye movement (REM) sleep has been repeatedly proposed to support the superior retention of emotional memories. However, its exact contribution and, specifically, whether its effect is mainly on the consolidation of the contents or the processing of the affective component of emotional memories is not clear. Here, we investigated the effects of sleep rich in slow wave sleep (SWS) or REM sleep on the consolidation of emotional pictures and the accompanying changes in affective tone, using event-related potentials (ERPs) together with subjective ratings of valence and arousal. Sixteen healthy, young men learned 50 negative and 50 neutral pictures before 3-h retention sleep intervals that were filled with either SWS-rich early or REM sleep-rich late nocturnal sleep. In accordance with our hypothesis, recognition was better for emotional pictures than neutral pictures after REM compared to SWS-rich sleep. This emotional enhancement after REM-rich sleep expressed itself in an increased late positive potential of the ERP over the frontal cortex 300-500 ms after stimulus onset for correctly classified old emotional pictures compared with new emotional and neutral pictures. Valence and arousal ratings of emotional pictures were not differentially affected by REM or SWS-rich sleep after learning. Our results corroborate that REM sleep contributes to the consolidation of emotional contents in memory, but suggest that the affective tone is preserved rather than reduced by the processing of emotional memories during REM sleep.

  11. Neural correlates of self-appraisals in the near and distant future: an event-related potential study.

    PubMed

    Luo, Yangmei; Jackson, Todd; Wang, Xiaogang; Huang, Xiting

    2013-01-01

    To investigate perceptual and neural correlates of future self-appraisals as a function of temporal distance, event-related potentials (ERPs) were recorded while participants (11 women, eight men) made judgments about the applicability of trait adjectives to their near future selves (i.e., one month from now) and their distant future selves (i.e., three years from now). Behavioral results indicated people used fewer positive adjectives, more negative adjectives, recalled more specific events coming to mind and felt more psychologically connected to the near future self than the distant future self. Electrophysiological results demonstrated that negative trait adjectives elicited more positive ERP deflections than did positive trait adjectives in the interval between 550 and 800 ms (late positive component) within the near future self condition. However, within the same interval, there were no significant differences between negative and positive traits adjectives in the distant future self condition. The results suggest that negative emotional processing in future self-appraisals is modulated by temporal distance, consistent with predictions of construal level theory.

  12. Cognitive and emotional conflicts of counter-conformity choice in purchasing books online: an event-related potentials study.

    PubMed

    Chen, Mingliang; Ma, Qingguo; Li, Minle; Lai, Hongxia; Wang, Xiaoyi; Shu, Liangchao

    2010-12-01

    Using event-related potentials (ERPs), this study investigated the neural substrates of the conflicts in counter-conformity choices in purchasing books online. For each trial, a participant decided whether to buy a book according to the title keyword, as well as the numbers of positive and negative reviews on the book. A participant's choice was termed conformity if she/he decided to buy the book under the condition of consistently positive reviews, or not to buy the book under the condition of consistently negative reviews, whereas the case was counter-conformity if a participant did the opposite. In the time window 300-600ms after the stimulus onset, a strong negative deflection of ERP (N500) was recorded when participants made counter-conformity choices. The topographic distribution of the N500 (N400-like) is not typical of the semantic N400. The N500 might be evoked by the cognitive and emotional conflicts faced by participants in counter-conformity choices. The present findings provide evidence that the N400 can be elicited by non-semantic conflicts.

  13. Uni- and crossmodal refractory period effects of event-related potentials provide insights into the development of multisensory processing

    PubMed Central

    Johannsen, Jessika; Röder, Brigitte

    2014-01-01

    To assess uni- and multisensory development in humans, uni- and crossmodal event-related potential (ERP) refractory period effects were investigated. Forty-one children from 4 to 12 years of age and 15 young adults performed a bimodal oddball task with frequent and rare visual and auditory stimuli presented with two different interstimulus intervals (ISIs). Amplitudes of the visual and auditory ERPs were modulated as a function of the age of the participants, the modality of the preceding stimulus (same vs. different) and the preceding ISI (1000 or 2000 ms). While unimodal refractory period effects were observed in all age groups, crossmodal refractory period effects differed among age groups. Early crossmodal interactions (<150 ms) existing in the youngest age group (4–6 years) disappeared, while later crossmodal interactions (>150 ms) emerged with a parietal topography in older children and adults. Our results are compatible with the intersensory differentiation and the multisensory perceptual narrowing approach of multisensory development. Moreover, our data suggest that uni- and multisensory development run in parallel with unimodal development leading. PMID:25120454

  14. Event-related brain potentials reveal the time-course of language change detection in early bilinguals.

    PubMed

    Kuipers, Jan-Rouke; Thierry, Guillaume

    2010-05-01

    Using event-related brain potentials, we investigated the temporal course of language change detection in proficient bilinguals as compared to matched controls. Welsh-English bilingual participants and English controls were presented with a variant of the oddball paradigm involving picture-word pairs. The language of the spoken word was manipulated such that English was the frequent stimulus (75%) and Welsh the infrequent stimulus (25%). We also manipulated semantic relatedness between pictures and words, such that only half of the pictures were followed by a word that corresponded with the identity of the picture. The P2 wave was significantly modulated by language in the bilingual group only, suggesting that this group detected a language change as early as 200 ms after word onset. Monolinguals also reliably detected the language change, but at a later stage of semantic integration (N400 range), since Welsh words were perceived as meaningless. The early detection of a language change in bilinguals triggered stimulus re-evaluation mechanisms reflected by a significant P600 modulation by Welsh words. Furthermore, compared to English unrelated words, English words matching the picture identity elicited significantly greater P2 amplitudes in the bilingual group only, suggesting that proficient bilinguals validate an incoming word against their expectation based on the context. Overall, highly proficient bilinguals appear to detect language changes very early on during speech perception and to consciously monitor language changes when they occur.

  15. Acute dopamine depletion with branched chain amino acids decreases auditory top-down event-related potentials in healthy subjects.

    PubMed

    Neuhaus, Andres H; Goldberg, Terry E; Hassoun, Youssef; Bates, John A; Nassauer, Katharine W; Sevy, Serge; Opgen-Rhein, Carolin; Malhotra, Anil K

    2009-06-01

    Cerebral dopamine homeostasis has been implicated in a wide range of cognitive processes and is of great pathophysiological importance in schizophrenia. A novel approach to study cognitive effects of dopamine is to deplete its cerebral levels with branched chain amino acids (BCAAs) that acutely lower dopamine precursor amino acid availability. Here, we studied the effects of acute dopamine depletion on early and late attentive cortical processing. Auditory event-related potential (ERP) components N2 and P3 were investigated using high-density electroencephalography in 22 healthy male subjects after receiving BCAAs or placebo in a randomized, double-blind, placebo-controlled crossover design. Total free serum prolactin was also determined as a surrogate marker of cerebral dopamine depletion. Acute dopamine depletion increased free plasma prolactin and significantly reduced prefrontal ERP components N2 and P3. Subcomponent analysis of N2 revealed a significant attenuation of early attentive N2b over prefrontal scalp sites. As a proof of concept, these results strongly suggest that BCAAs are acting on basic information processing. Dopaminergic neurotransmission seems to be involved in auditory top-down processing as indexed by prefrontal N2 and P3 reductions during dopamine depletion. In healthy subjects, intact early cortical top-down processing can be acutely dysregulated by ingestion of BCAAs. We discuss the potential impact of these findings on schizophrenia research.

  16. Acute dopamine depletion with branched chain amino acids decreases auditory top-down event-related potentials in healthy subjects

    PubMed Central

    Neuhaus, Andres H.; Goldberg, Terry E.; Hassoun, Youssef; Bates, John A.; Nassauer, Katharine W.; Sevy, Serge; Opgen-Rhein, Carolin; Malhotra, Anil K.

    2013-01-01

    Cerebral dopamine homeostasis has been implicated in a wide range of cognitive processes and is of great pathophysiological importance in schizophrenia. A novel approach to study cognitive effects of dopamine is to deplete its cerebral levels with branched chain amino acids (BCAAs) that acutely lower dopamine precursor amino acid availability. Here, we studied the effects of acute dopamine depletion on early and late attentive cortical processing. Auditory event-related potential (ERP) components N2 and P3 were investigated using high-density electroencephalography in 22 healthy male subjects after receiving BCAAs or placebo in a randomized, double-blind, placebo-controlled crossover design. Total free serum prolactin was also determined as a surrogate marker of cerebral dopamine depletion. Acute dopamine depletion increased free plasma prolactin and significantly reduced prefrontal ERP components N2 and P3. Subcomponent analysis of N2 revealed a significant attenuation of early attentive N2b over prefrontal scalp sites. As a proof of concept, these results strongly suggest that BCAAs are acting on basic information processing. Dopaminergic neurotransmission seems to be involved in auditory top-down processing as indexed by prefrontal N2 and P3 reductions during dopamine depletion. In healthy subjects, intact early cortical top-down processing can be acutely dysregulated by ingestion of BCAAs. We discuss the potential impact of these findings on schizophrenia research. PMID:19356906

  17. Low-Level Contrast Statistics of Natural Images Can Modulate the Frequency of Event-Related Potentials (ERP) in Humans.

    PubMed

    Ghodrati, Masoud; Ghodousi, Mahrad; Yoonessi, Ali

    2016-01-01

    Humans are fast and accurate in categorizing complex natural images. It is, however, unclear what features of visual information are exploited by brain to perceive the images with such speed and accuracy. It has been shown that low-level contrast statistics of natural scenes can explain the variance of amplitude of event-related potentials (ERP) in response to rapidly presented images. In this study, we investigated the effect of these statistics on frequency content of ERPs. We recorded ERPs from human subjects, while they viewed natural images each presented for 70 ms. Our results showed that Weibull contrast statistics, as a biologically plausible model, explained the variance of ERPs the best, compared to other image statistics that we assessed. Our time-frequency analysis revealed a significant correlation between these statistics and ERPs' power within theta frequency band (~3-7 Hz). This is interesting, as theta band is believed to be involved in context updating and semantic encoding. This correlation became significant at ~110 ms after stimulus onset, and peaked at 138 ms. Our results show that not only the amplitude but also the frequency of neural responses can be modulated with low-level contrast statistics of natural images and highlights their potential role in scene perception.

  18. Sequential modulations of poorer-strategy effects during strategy execution: an event-related potential study in arithmetic.

    PubMed

    Hinault, Thomas; Dufau, Stéphane; Lemaire, Patrick

    2014-11-01

    When participants accomplish cognitive tasks, they obtain poorer performance if asked to execute a poorer strategy than a better strategy on a given problem. These poorer-strategy effects are smaller following execution of a poorer strategy relative to following a better strategy. To investigate ERP correlates of sequential modulations of poorer-strategy effects, we asked participants (n=20) to accomplish a computational estimation task (i.e., provide approximate products to two-digit multiplication problems like 38×74). For each problem, they were cued to execute a better versus a poorer strategy. We found event-related potentials signatures of sequential modulations of poorer-strategy effects in two crucial windows (i.e., between 200 and 550 ms and between 850 and 1250 ms) associated with executive control mechanisms and allowing conflict monitoring between the better and the cued strategy. These results have important implications on theories of strategies as they suggest that sequential modulations of poorer-strategy effects involve earlier as well as later mechanisms of cognitive control during strategy execution.

  19. Motivation and semantic context aff