Science.gov

Sample records for event-related fmri investigation

  1. Material-dependent and material-independent selection processes in the frontal and parietal lobes: an event-related fMRI investigation of response competition

    NASA Technical Reports Server (NTRS)

    Hazeltine, Eliot; Bunge, Silvia A.; Scanlon, Michael D.; Gabrieli, John D E.

    2003-01-01

    The present study used the flanker task [Percept. Psychophys. 16 (1974) 143] to identify neural structures that support response selection processes, and to determine which of these structures respond differently depending on the type of stimulus material associated with the response. Participants performed two versions of the flanker task while undergoing event-related functional magnetic resonance imaging (fMRI). Both versions of the task required participants to respond to a central stimulus regardless of the responses associated with simultaneously presented flanking stimuli, but one used colored circle stimuli and the other used letter stimuli. Competition-related activation was identified by comparing Incongruent trials, in which the flanker stimuli indicated a different response than the central stimulus, to Neutral stimuli, in which the flanker stimuli indicated no response. A region within the right inferior frontal gyrus exhibited significantly more competition-related activation for the color stimuli, whereas regions within the middle frontal gyri of both hemispheres exhibited more competition-related activation for the letter stimuli. The border of the right middle frontal and inferior frontal gyri and the anterior cingulate cortex (ACC) were significantly activated by competition for both types of stimulus materials. Posterior foci demonstrated a similar pattern: left inferior parietal cortex showed greater competition-related activation for the letters, whereas right parietal cortex was significantly activated by competition for both materials. These findings indicate that the resolution of response competition invokes both material-dependent and material-independent processes.

  2. Overt sentence production in event-related fMRI.

    PubMed

    Haller, Sven; Radue, E W; Erb, Michael; Grodd, Wolfgang; Kircher, Tilo

    2005-01-01

    The use of syntactic structures on a sentence level is a unique human ability. Functional imaging studies have usually investigated syntax comprehension. However, language production may be performed by different neuronal resources. We have investigated syntax generation on a sentence level with functional magnetic resonance imaging (fMRI). BOLD contrast was measured while subjects articulated utterances aloud. In the active condition 'sentence generation' (SG), subjects had to produce subject verb object (SVO) sentences (e.g. "The child throws the ball") according to syntactically incomplete stimuli (e.g. "throw ball child") presented visually. In the control condition 'word reading' (WR), subjects had to read identical stimuli without completing the syntactic structure, while in a second control condition 'sentence reading' (SR), subjects had to read complete sentences. The semantic meaning of all expressions was obvious despite the syntactically incomplete structure in conditions SG and WR. In both contrasts, SG minus WR and SG minus SR, activation was mainly present in the left inferior frontal (BA 44/45) and medial frontal (BA 6) gyri, the superior parietal lobule (BA 7) and the right insula (BA 13). A region of interest analysis revealed significantly stronger left-dominant activation in BA 45 compared to BA 44. Our data illustrates the crucial involvement of the left BA 45 in syntactic encoding and is in line with more recent imaging and brain lesion data on syntax processing on a sentence level, emphasizing the involvement of a distributed left and right hemispheric network in syntax generation. PMID:15721193

  3. Decreased Parahippocampal Activity in Associative Priming: Evidence from an Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Yang, Jiongjiong; Meckingler, Axel; Xu, Mingwei; Zhao, Yanbing; Weng, Xuchu

    2008-01-01

    In recent years, there has been intense debate on the neural basis of associative priming, particularly on the role of the medial temporal lobe (MTL) in retrieving associative information without awareness. In this study, event-related fMRI was used while healthy subjects performed a perceptual identification task on briefly presented unrelated…

  4. Event-Related fMRI of Category Learning: Differences in Classification and Feedback Networks

    ERIC Educational Resources Information Center

    Little, Deborah M.; Shin, Silvia S.; Sisco, Shannon M.; Thulborn, Keith R.

    2006-01-01

    Eighteen healthy young adults underwent event-related (ER) functional magnetic resonance imaging (fMRI) of the brain while performing a visual category learning task. The specific category learning task required subjects to extract the rules that guide classification of quasi-random patterns of dots into categories. Following each classification…

  5. Racial distinction of the unknown facial identity recognition mechanism by event-related fMRI.

    PubMed

    Kim, Jeong Seok; Yoon, Hyo Woon; Kim, Bum Soo; Jeun, Sin Soo; Jung, So Lyung; Choe, Bo Young

    2006-04-24

    A body of evidence exists indicating that the function of the fusiform area of the face is selectively involved in the perception of faces, and in particular, in perceiving racial differences. In the present study, we investigated the neural substrates of the face-selective region (the fusiform face area, FFA) in the ventral occipital-temporal cortex and examined their role in case of same-racial face recognition by employing event-related fMRI. Twelve healthy subjects (Oriental-Koreans) performed the familiarity judgment tasks while they were being presented with familiar and unknown faces of Oriental-Koreans and Caucasian-Americans. The results indicate that there are significant differences in perceiving unfamiliar faces between Oriental-Koreans and Caucasian-Americans in the FFA, whereas no significant difference was found between familiar Oriental-Korean and Caucasian-American faces in the same area. This suggests that an effect of same-race superiority exists when the perceived identity is only unfamiliar. The neural responses to Oriental-Koreans versus Caucasian-Americans in Oriental-Korean subjects likely reflect cultural evaluations of social groups as modified by individual experience.

  6. Temporal filtering of event-related fMRI data using cross-validation.

    PubMed

    Ngan, S C; LaConte, S M; Hu, X

    2000-06-01

    To circumvent the problem of low signal-to-noise ratio (SNR) in event-related fMRI data, the fMRI experiment is typically designed to consist of repeated presentations of the stimulus and measurements of the response, allowing for subsequent averaging of the resulting data. Due to factors such as time limitation, subject motion, habituation, and fatigue, practical constraints on the number of repetitions exist. Thus, filtering is commonly applied to further improve the SNR of the averaged data. Here, a time-varying filter based on theoretical work by Nowak is employed. This filter operates under the stationary wavelet transform framework and is demonstrated to lead to good estimates of the true signals in simulated data. The utility of the filter is also shown using experimental data obtained with a visual-motor paradigm.

  7. Evaluation of mixed effects in event-related fMRI studies: impact of first-level design and filtering.

    PubMed

    Bianciardi, M; Cerasa, A; Patria, F; Hagberg, G E

    2004-07-01

    With the introduction of event-related designs in fMRI, it has become crucial to optimize design efficiency and temporal filtering to detect activations at the 1st level with high sensitivity. We investigate the relevance of these issues for fMRI population studies, that is, 2nd-level analysis, for a set of event-related fMRI (er-fMRI) designs with different 1st-level efficiencies, adopting three distinct 1st-level filtering strategies as implemented in SPM99, SPM2, and FSL3.0. By theory, experiments, and simulations using physiological fMRI noise, we show that both design and filtering impact the outcome of the statistical analysis, not only at the 1st but also at the 2nd level. There are several reasons behind this finding. First, sensitivity is affected by both design and filtering, since the scan-to-scan variance, that is the fixed effect, is not negligible with respect to the between-subject variance, that is the random effect, in er-fMRI population studies. The impact of the fixed effects error on the sensitivity of the mixed effects analysis can be mitigated by an optimal choice of er-fMRI design and filtering. Moreover, the accuracy of the 1st- and 2nd-level parameter estimates also depend on design and filtering; especially, we show that inaccuracies caused by the presence of residual noise autocorrelations can be constrained by designs that have hemodynamic responses with a Gaussian distribution. In conclusion, designs with both good efficiency and decorrelating properties, for example, such as the geometric or Latin square probability distributions, combined with the "whitening" filters of SPM2 and FSL3.0, give the best result, both for 1st- and 2nd-level analysis of er-fMRI studies.

  8. Extended unified SEM approach for modeling event-related fMRI data.

    PubMed

    Gates, Kathleen M; Molenaar, Peter C M; Hillary, Frank G; Slobounov, Semyon

    2011-01-15

    There has been increasing emphasis in fMRI research on the examination of how regions covary in a distributed neural network. Event-related data designs present a unique challenge to modeling how couplings among regions change in the presence of experimental manipulations. The present paper presents the extended unified SEM (euSEM), a novel approach for acquiring effective connectivity maps with event-related data. The euSEM adds to the unified SEM, which models both lagged and contemporaneous effects, by estimating the direct effects that experimental manipulations have on blood-oxygen-level dependent activity as well as the modulating effects the manipulations have on couplings among regions. Monte Carlos simulations included in this paper offer support for the model's ability to recover covariance patterns used to estimate data. Next, we apply the model to empirical data to demonstrate feasibility. Finally, the results of the empirical data are compared to those found using dynamic causal modeling. The euSEM provides a flexible approach for modeling event-related data as it may be employed in an exploratory, partially exploratory, or entirely confirmatory manner.

  9. Event-Related fMRI Studies of Episodic Encoding and Retrieval: Meta-Analyses Using Activation Likelihood Estimation

    ERIC Educational Resources Information Center

    Spaniol, Julia; Davidson, Patrick S. R.; Kim, Alice S. N.; Han, Hua; Moscovitch, Morris; Grady, Cheryl L.

    2009-01-01

    The recent surge in event-related fMRI studies of episodic memory has generated a wealth of information about the neural correlates of encoding and retrieval processes. However, interpretation of individual studies is hampered by methodological differences, and by the fact that sample sizes are typically small. We submitted results from studies of…

  10. Neural correlates of conceptual object priming in young and older adults: An event-related fMRI study

    PubMed Central

    Ballesteros, Soledad; Bischof, Gérard N.; Goh, Joshua O.; Park, Denise C.

    2012-01-01

    In this event-related fMRI study, we investigated age-related differences in brain activity associated with conceptual repetition priming in young and older adults. Participants performed a speeded “living/non-living” classification task with three repetitions of familiar objects. Both young and older adults showed a similar magnitude of behavioral priming to repeated objects and evidencing repetition-related activation reductions in fusiform gyrus, superior occipital, middle and inferior temporal cortex, as well as inferior frontal and insula regions. The neural priming effect in young adults was extensive and continued through both the second and third stimulus repetitions, whereas neural priming in older adults was markedly attenuated and reached floor at the second repetition. In young adults, greater neural priming in multiple brain regions correlated with greater behavioral facilitation whereas in older adults, only activation reduction in the left inferior frontal correlated with faster behavioral responses. These findings provide evidence for altered neural priming in older adults despite preserved behavioral priming, and suggest the possibility that age-invariant behavioral priming is observed as a result of more sustained neural processing of stimuli in older adults which may be a form of compensatory neural activity. PMID:23102512

  11. Enhanced Olfactory Sensory Perception of Threat in Anxiety: An Event-Related fMRI Study

    PubMed Central

    Krusemark, Elizabeth A.; Li, Wen

    2012-01-01

    The current conceptualization of threat processing in anxiety emphasizes emotional hyper-reactivity, which mediates various debilitating symptoms and derangements in anxiety disorders. Here, we investigated olfactory sensory perception of threat as an alternative causal mechanism of anxiety. Combining an event-related functional magnetic resonance imaging paradigm with an olfactory discrimination task, we examined how anxiety modulates basic perception of olfactory threats at behavioral and neural levels. In spite of subthreshold presentation of negative and neutral odors, a positive systematic association emerged between negative odor discrimination accuracy and anxiety levels. In parallel, the right olfactory primary (piriform) cortex indicated augmented response to subthreshold negative (vs. neutral) odors as a function of individual differences in anxiety. Using a psychophysiological interaction analysis, we further demonstrated amplified functional connectivity between the piriform cortex and emotion-related regions (amygdala and hippocampus) in response to negative odor, particularly in anxiety. Finally, anxiety also intensified skin conductance response to negative (vs. neutral) odor, indicative of potentiated emotional arousal to subliminal olfactory threat in anxiety. Together, these findings elucidate exaggerated processing of olfactory threat in anxiety across behavioral, autonomic physiological, and neural domains. Critically, our data emphasized anxiety-related hyper-sensitivity of the primary olfactory cortex and basic olfactory perception in response to threat, highlighting neurosensory mechanisms that may underlie the deleterious symptoms of anxiety. PMID:22866182

  12. Brain Correlates of Phasic Autonomic Response to Acupuncture Stimulation: An Event-Related fMRI Study

    PubMed Central

    Napadow, Vitaly; Lee, Jeungchan; Kim, Jieun; Cina, Stephen; Maeda, Yumi; Barbieri, Riccardo; Harris, Richard E.; Kettner, Norman; Park, Kyungmo

    2013-01-01

    Autonomic nervous system (ANS) response to acupuncture has been investigated by multiple studies; however, the brain circuitry underlying this response is not well understood. We applied event-related fMRI (er-fMRI) in conjunction with ANS recording (heart rate, HR; skin conductance response, SCR). Brief manual acupuncture stimuli were delivered at acupoints ST36 and SP9, while sham stimuli were delivered at control location, SH1. Acupuncture produced activation in S2, insula, and mid-cingulate cortex, and deactivation in default mode network (DMN) areas. On average, HR deceleration (HR–) and SCR were noted following both real and sham acupuncture, though magnitude of response was greater following real acupuncture and inter-subject magnitude of response correlated with evoked sensation intensity. Acupuncture events with strong SCR also produced greater anterior insula activation than without SCR. Moreover, acupuncture at SP9, which produced greater SCR, also produced stronger sharp pain sensation, and greater anterior insula activation. Conversely, acupuncture-induced HR– was associated with greater DMN deactivation. Between-event correlation demonstrated that this association was strongest for ST36, which also produced more robust HR–. In fact, DMN deactivation was significantly more pronounced across acupuncture stimuli producing HR–, versus those events characterized by acceleration (HR+). Thus, differential brain response underlying acupuncture stimuli may be related to differential autonomic outflows and may result from heterogeneity in evoked sensations. Our er-fMRI approach suggests that ANS response to acupuncture, consistent with previously characterized orienting and startle/defense responses, arises from activity within distinct subregions of the more general brain circuitry responding to acupuncture stimuli. PMID:22504841

  13. Analysis of speech-related variance in rapid event-related fMRI using a time-aware acquisition system.

    PubMed

    Mehta, S; Grabowski, T J; Razavi, M; Eaton, B; Bolinger, L

    2006-02-15

    Speech production introduces signal changes in fMRI data that can mimic or mask the task-induced BOLD response. Rapid event-related designs with variable ISIs address these concerns by minimizing the correlation of task and speech-related signal changes without sacrificing efficiency; however, the increase in residual variance due to speech still decreases statistical power and must be explicitly addressed primarily through post-processing techniques. We investigated the timing, magnitude, and location of speech-related variance in an overt picture naming fMRI study with a rapid event-related design, using a data acquisition system that time-stamped image acquisitions, speech, and a pneumatic belt signal on the same clock. Using a spectral subtraction algorithm to remove scanner gradient noise from recorded speech, we related the timing of speech, stimulus presentation, chest wall movement, and image acquisition. We explored the relationship of an extended speech event time course and respiration on signal variance by performing a series of voxelwise regression analyses. Our results demonstrate that these effects are spatially heterogeneous, but their anatomic locations converge across subjects. Affected locations included basal areas (orbitofrontal, mesial temporal, brainstem), areas adjacent to CSF spaces, and lateral frontal areas. If left unmodeled, speech-related variance can result in regional detection bias that affects some areas critically implicated in language function. The results establish the feasibility of detecting and mitigating speech-related variance in rapid event-related fMRI experiments with single word utterances. They further demonstrate the utility of precise timing information about speech and respiration for this purpose. PMID:16412665

  14. In vivo evaluation of the effect of stimulus distribution on FIR statistical efficiency in event-related fMRI.

    PubMed

    Jansma, J Martijn; de Zwart, Jacco A; van Gelderen, Peter; Duyn, Jeff H; Drevets, Wayne C; Furey, Maura L

    2013-05-15

    Technical developments in MRI have improved signal to noise, allowing use of analysis methods such as Finite impulse response (FIR) of rapid event related functional MRI (er-fMRI). FIR is one of the most informative analysis methods as it determines onset and full shape of the hemodynamic response function (HRF) without any a priori assumptions. FIR is however vulnerable to multicollinearity, which is directly related to the distribution of stimuli over time. Efficiency can be optimized by simplifying a design, and restricting stimuli distribution to specific sequences, while more design flexibility necessarily reduces efficiency. However, the actual effect of efficiency on fMRI results has never been tested in vivo. Thus, it is currently difficult to make an informed choice between protocol flexibility and statistical efficiency. The main goal of this study was to assign concrete fMRI signal to noise values to the abstract scale of FIR statistical efficiency. Ten subjects repeated a perception task with five random and m-sequence based protocol, with varying but, according to literature, acceptable levels of multicollinearity. Results indicated substantial differences in signal standard deviation, while the level was a function of multicollinearity. Experiment protocols varied up to 55.4% in standard deviation. Results confirm that quality of fMRI in an FIR analysis can significantly and substantially vary with statistical efficiency. Our in vivo measurements can be used to aid in making an informed decision between freedom in protocol design and statistical efficiency.

  15. A mixed L2 norm regularized HRF estimation method for rapid event-related fMRI experiments.

    PubMed

    Lei, Yu; Tong, Li; Yan, Bin

    2013-01-01

    Brain state decoding or "mind reading" via multivoxel pattern analysis (MVPA) has become a popular focus of functional magnetic resonance imaging (fMRI) studies. In brain decoding, stimulus presentation rate is increased as fast as possible to collect many training samples and obtain an effective and reliable classifier or computational model. However, for extremely rapid event-related experiments, the blood-oxygen-level-dependent (BOLD) signals evoked by adjacent trials are heavily overlapped in the time domain. Thus, identifying trial-specific BOLD responses is difficult. In addition, voxel-specific hemodynamic response function (HRF), which is useful in MVPA, should be used in estimation to decrease the loss of weak information across voxels and obtain fine-grained spatial information. Regularization methods have been widely used to increase the efficiency of HRF estimates. In this study, we propose a regularization framework called mixed L2 norm regularization. This framework involves Tikhonov regularization and an additional L2 norm regularization term to calculate reliable HRF estimates. This technique improves the accuracy of HRF estimates and significantly increases the classification accuracy of the brain decoding task when applied to a rapid event-related four-category object classification experiment. At last, some essential issues such as the impact of low-frequency fluctuation (LFF) and the influence of smoothing are discussed for rapid event-related experiments.

  16. Is Broca's Area Involved in the Processing of Passive Sentences? An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Yokoyama, Satoru; Watanabe, Jobu; Iwata, Kazuki; Ikuta, Naho; Haji, Tomoki; Usui, Nobuo; Taira, Masato; Miyamoto, Tadao; Nakamura, Wataru; Sato, Shigeru; Horie, Kaoru; Kawashima, Ryuta

    2007-01-01

    We used functional magnetic resonance imaging (fMRI) to investigate whether activation in Broca's area is greater during the processing of passive versus active sentences in the brains of healthy subjects. Twenty Japanese native speakers performed a visual sentence comprehension task in which they were asked to read a visually presented sentence…

  17. How Brooding Minds Inhibit Negative Material: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Vanderhasselt, Marie-Anne; Baeken, Chris; Van Schuerbeek, Peter; Luypaert, Rob; De Mey, Johan; De Raedt, Rudi

    2013-01-01

    Depressive brooding--a passive ruminative focus on one's problems, negative mood and their consequences--is a thinking style that places individuals at a greater risk to develop future psychopathology. In this study, we investigated whether inter-individual differences in depressive brooding are related to neural differences underlying the…

  18. Single trial classification for the categories of perceived emotional facial expressions: an event-related fMRI study

    NASA Astrophysics Data System (ADS)

    Song, Sutao; Huang, Yuxia; Long, Zhiying; Zhang, Jiacai; Chen, Gongxiang; Wang, Shuqing

    2016-03-01

    Recently, several studies have successfully applied multivariate pattern analysis methods to predict the categories of emotions. These studies are mainly focused on self-experienced emotions, such as the emotional states elicited by music or movie. In fact, most of our social interactions involve perception of emotional information from the expressions of other people, and it is an important basic skill for humans to recognize the emotional facial expressions of other people in a short time. In this study, we aimed to determine the discriminability of perceived emotional facial expressions. In a rapid event-related fMRI design, subjects were instructed to classify four categories of facial expressions (happy, disgust, angry and neutral) by pressing different buttons, and each facial expression stimulus lasted for 2s. All participants performed 5 fMRI runs. One multivariate pattern analysis method, support vector machine was trained to predict the categories of facial expressions. For feature selection, ninety masks defined from anatomical automatic labeling (AAL) atlas were firstly generated and each were treated as the input of the classifier; then, the most stable AAL areas were selected according to prediction accuracies, and comprised the final feature sets. Results showed that: for the 6 pair-wise classification conditions, the accuracy, sensitivity and specificity were all above chance prediction, among which, happy vs. neutral , angry vs. disgust achieved the lowest results. These results suggested that specific neural signatures of perceived emotional facial expressions may exist, and happy vs. neutral, angry vs. disgust might be more similar in information representation in the brain.

  19. Connectivity of the Primate Superior Colliculus Mapped by Concurrent Microstimulation and Event-Related fMRI

    PubMed Central

    Field, Courtney B.; Johnston, Kevin; Gati, Joseph S.; Menon, Ravi S.; Everling, Stefan

    2008-01-01

    Background Neuroanatomical studies investigating the connectivity of brain areas have heretofore employed procedures in which chemical or viral tracers are injected into an area of interest, and connected areas are subsequently identified using histological techniques. Such experiments require the sacrifice of the animals and do not allow for subsequent electrophysiological studies in the same subjects, rendering a direct investigation of the functional properties of anatomically identified areas impossible. Methodology/Principal Findings Here, we used a combination of microstimulation and fMRI in an anesthetized monkey preparation to study the connectivity of the superior colliculus (SC). Microstimulation of the SC resulted in changes in the blood oxygenation level-dependent (BOLD) signals in the SC and in several cortical and subcortical areas consistent with the known connectivity of the SC in primates. Conclusions/Significance These findings demonstrates that the concurrent use of microstimulation and fMRI can be used to identify brain networks for further electrophysiological or fMRI investigation. PMID:19079541

  20. Effects of Aversive Stimuli on Prospective Memory. An Event-Related fMRI Study

    PubMed Central

    Rea, Massimiliano; Kullmann, Stephanie; Veit, Ralf; Casile, Antonino; Braun, Christoph; Belardinelli, Marta Olivetti; Birbaumer, Niels; Caria, Andrea

    2011-01-01

    Prospective memory (PM) describes the ability to execute a previously planned action at the appropriate point in time. Although behavioral studies clearly showed that prospective memory performance is affected by the emotional significance attributed to the intended action, no study so far investigated the brain mechanisms subserving the modulatory effect of emotional salience on PM performance. The general aim of the present study was to explore brain regions involved in prospective memory processes when PM cues are associated with emotional stimuli. In particular, based on the hypothesised critical role of the prefrontal cortex in prospective memory in the presence of emotionally salient stimuli, we expected a stronger involvement of aPFC when the retrieval and execution of the intended action is cued by an aversive stimulus. To this aim BOLD responses of PM trials cued by aversive facial expressions were compared to PM trials cued by neutral facial expressions. Whole brain analysis showed that PM task cued by aversive stimuli is differentially associated with activity in the right lateral prefrontal area (BA 10) and in the left caudate nucleus. Moreover a temporal shift between the response of the caudate nucleus that preceded that of aPFC was observed. These findings suggest that the caudate nucleus might provide an early analysis of the affective properties of the stimuli, whereas the anterior lateral prefrontal cortex (BA10) would be involved in a slower and more deliberative analysis to guide goal-directed behaviour. PMID:22022589

  1. Language control and lexical competition in bilinguals: an event-related FMRI study.

    PubMed

    Abutalebi, Jubin; Annoni, Jean-Marie; Zimine, Ivan; Pegna, Alan J; Seghier, Mohamed L; Lee-Jahnke, Hannelore; Lazeyras, François; Cappa, Stefano F; Khateb, Asaid

    2008-07-01

    Language selection (or control) refers to the cognitive mechanism that controls which language to use at a given moment and context. It allows bilinguals to selectively communicate in one target language while minimizing the interferences from the nontarget language. Previous studies have suggested the participation in language control of different brain areas. However, the question remains whether the selection of one language among others relies on a language-specific neural module or general executive regions that also allow switching between different competing behavioral responses including the switching between various linguistic registers. In this functional magnetic resonance imaging study, we investigated the neural correlates of language selection processes in German-French bilingual subjects during picture naming in different monolingual and bilingual selection contexts. We show that naming in the first language in the bilingual context (compared with monolingual contexts) increased activation in the left caudate and anterior cingulate cortex. Furthermore, the activation of these areas is even more extended when the subjects are using a second weaker language. These findings show that language control processes engaged in contexts during which both languages must remain active recruit the left caudate and the anterior cingulate cortex (ACC) in a manner that can be distinguished from areas engaged in intralanguage task switching.

  2. Fast joint detection-estimation of evoked brain activity in event-related FMRI using a variational approach

    PubMed Central

    Chaari, Lotfi; Vincent, Thomas; Forbes, Florence; Dojat, Michel; Ciuciu, Philippe

    2013-01-01

    In standard within-subject analyses of event-related fMRI data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based Joint Detection-Estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a Variational Expectation-Maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model mis-specification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery. PMID:23096056

  3. Healthy brooders employ more attentional resources when disengaging from the negative: an event-related fMRI study.

    PubMed

    Vanderhasselt, Marie-Anne; Kühn, Simone; De Raedt, Rudi

    2011-06-01

    Depressive brooding is considered a maladaptive ruminative-thinking style that has been shown to be highly correlated with major depression. The present study in healthy participants employed event-related fMRI to uncover the neural underpinnings of emotional disengagement as it relates to depressive brooding. Thirty-four healthy, never depressed individuals performed an emotional go/no-go task with a rapid presentation of emotional faces. We focused on the contrast of inhibiting sad (happy/no-go) versus inhibiting happy (sad/no-go) information. This contrast allowed us to assess possible difficulties in disengaging from emotionally negative, as compared with emotionally positive, faces. At the behavioral level, only in high brooders were higher self-reported brooding scores correlated with more errors when sad information was inhibited, relative to happy information. At the neural level, across all participants, brooding scores were positively correlated with activity in the right dorsolateral prefrontal cortex (DLPFC; BA 46), implying that high brooders show higher DLPFC involvement when successfully disengaging from a series of negative stimuli. These results may suggest that healthy individuals who report a high brooding thinking style need to recruit more attentional control in order to disengage successfully from negative information, in a way that may be related to emotion regulation strategies. These mechanisms might protect them from developing depressive symptoms.

  4. Emotional and temporal aspects of situation model processing during text comprehension: an event-related fMRI study.

    PubMed

    Ferstl, Evelyn C; Rinck, Mike; von Cramon, D Yves

    2005-05-01

    Language comprehension in everyday life requires the continuous integration of prior discourse context and general world knowledge with the current utterance or sentence. In the neurolinguistic literature, these so-called situation model building processes have been ascribed to the prefrontal cortex or to the right hemisphere. In this study, we use whole-head event-related fMRI to directly map the neural correlates of narrative comprehension in context. While being scanned using a spin-echo sequence, 20 participants listened to 32 short stories, half of which contained globally inconsistent information. The inconsistencies concerned either temporal or chronological information or the emotional status of the protagonist. Hearing an inconsistent word elicited activation in the right anterior temporal lobe. The comparison of different information aspects revealed activation in the left precuneus and a bilateral frontoparietal network for chronological information. Emotional information elicited activation in the ventromedial prefrontal cortex and the extended amygdaloid complex. In addition, the integration of inconsistent emotional information engaged the dorsal frontomedial cortex (Brodmann's area 8/9), whereas the integration of inconsistent temporal information required the lateral prefrontal cortex bilaterally. These results indicate that listening to stories can elicit activation reflecting content-specific processes. Furthermore, updating of the situation model is not a unitary process but it also depends on the particular requirements of the text. The right hemisphere contributes to language processing in context, but equally important are the left medial and bilateral prefrontal cortices. PMID:15904540

  5. Event-related fMRI of inhibitory control in the Predominantly Inattentive and Combined Subtypes of AD/HD

    PubMed Central

    Solanto, Mary V.; Schulz, Kurt P.; Fan, Jin; Tang, Cheuk Y.; Newcorn, Jeffrey H.

    2008-01-01

    Background and Purpose To examine the neurophysiological basis for the pronounced differences in hyperactivity and impulsiveness that distinguish the Predominantly Inattentive type of Attention-Deficit/Hyperactivity Disorder (ADHD-PI) from the combined type of the disorder (ADHD-C). Methods Event-related brain responses to a go/no-go test of inhibitory control were measured with functional magnetic resonance imaging (fMRI) in 11 children with ADHD-C and nine children with ADHD-PI, aged 7 to 13 years, who were matched for age, sex, and intelligence. Results There were no significant group differences in task performance. Children with ADHD-C and ADHD-PI activated overlapping regions of right inferior frontal gyrus, right superior temporal lobe, and left inferior parietal lobe during inhibitory control. However, the magnitude of the activation in the temporal and parietal regions, as well as in the bilateral middle frontal gyrus, was greater in children with ADHD-PI than those with ADHD-C. Conversely, children with ADHD-C activated bilateral medial occipital lobe to a greater extent than children with ADHD-PI. Conclusions The results provide preliminary evidence that phenotypic differences between the ADHD-C and ADHD-PI subtypes are associated with differential activation of regions that have previously been implicated in the pathophysiology of ADHD and are thought to mediate executive and attentional processes. PMID:19594667

  6. Error-related processing following severe traumatic brain injury: An event-related functional magnetic resonance imaging (fMRI) study

    PubMed Central

    Sozda, Christopher N.; Larson, Michael J.; Kaufman, David A.S.; Schmalfuss, Ilona M.; Perlstein, William M.

    2011-01-01

    Continuous monitoring of one’s performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. PMID:21756946

  7. Functionally integrated neural processing of linguistic and talker information: An event-related fMRI and ERP study.

    PubMed

    Zhang, Caicai; Pugh, Kenneth R; Mencl, W Einar; Molfese, Peter J; Frost, Stephen J; Magnuson, James S; Peng, Gang; Wang, William S-Y

    2016-01-01

    Speech signals contain information of both linguistic content and a talker's voice. Conventionally, linguistic and talker processing are thought to be mediated by distinct neural systems in the left and right hemispheres respectively, but there is growing evidence that linguistic and talker processing interact in many ways. Previous studies suggest that talker-related vocal tract changes are processed integrally with phonetic changes in the bilateral posterior superior temporal gyrus/superior temporal sulcus (STG/STS), because the vocal tract parameter influences the perception of phonetic information. It is yet unclear whether the bilateral STG is also activated by the integral processing of another parameter - pitch, which influences the perception of lexical tone information and is related to talker differences in tone languages. In this study, we conducted separate functional magnetic resonance imaging (fMRI) and event-related potential (ERP) experiments to examine the spatial and temporal loci of interactions of lexical tone and talker-related pitch processing in Cantonese. We found that the STG was activated bilaterally during the processing of talker changes when listeners attended to lexical tone changes in the stimuli and during the processing of lexical tone changes when listeners attended to talker changes, suggesting that lexical tone and talker processing are functionally integrated in the bilateral STG. It extends the previous study, providing evidence for a general neural mechanism of integral phonetic and talker processing in the bilateral STG. The ERP results show interactions of lexical tone and talker processing 500-800ms after auditory word onset (a simultaneous posterior P3b and a frontal negativity). Moreover, there is some asymmetry in the interaction, such that unattended talker changes affect linguistic processing more than vice versa, which may be related to the ambiguity that talker changes cause in speech perception and/or attention bias

  8. Functionally integrated neural processing of linguistic and talker information: An event-related fMRI and ERP study.

    PubMed

    Zhang, Caicai; Pugh, Kenneth R; Mencl, W Einar; Molfese, Peter J; Frost, Stephen J; Magnuson, James S; Peng, Gang; Wang, William S-Y

    2016-01-01

    Speech signals contain information of both linguistic content and a talker's voice. Conventionally, linguistic and talker processing are thought to be mediated by distinct neural systems in the left and right hemispheres respectively, but there is growing evidence that linguistic and talker processing interact in many ways. Previous studies suggest that talker-related vocal tract changes are processed integrally with phonetic changes in the bilateral posterior superior temporal gyrus/superior temporal sulcus (STG/STS), because the vocal tract parameter influences the perception of phonetic information. It is yet unclear whether the bilateral STG is also activated by the integral processing of another parameter - pitch, which influences the perception of lexical tone information and is related to talker differences in tone languages. In this study, we conducted separate functional magnetic resonance imaging (fMRI) and event-related potential (ERP) experiments to examine the spatial and temporal loci of interactions of lexical tone and talker-related pitch processing in Cantonese. We found that the STG was activated bilaterally during the processing of talker changes when listeners attended to lexical tone changes in the stimuli and during the processing of lexical tone changes when listeners attended to talker changes, suggesting that lexical tone and talker processing are functionally integrated in the bilateral STG. It extends the previous study, providing evidence for a general neural mechanism of integral phonetic and talker processing in the bilateral STG. The ERP results show interactions of lexical tone and talker processing 500-800ms after auditory word onset (a simultaneous posterior P3b and a frontal negativity). Moreover, there is some asymmetry in the interaction, such that unattended talker changes affect linguistic processing more than vice versa, which may be related to the ambiguity that talker changes cause in speech perception and/or attention bias

  9. Medial temporal lobe activity for recognition of recent and remote famous names: an event-related fMRI study.

    PubMed

    Douville, Kelli; Woodard, John L; Seidenberg, Michael; Miller, Sarah K; Leveroni, Catherine L; Nielson, Kristy A; Franczak, Malgorzata; Antuono, Piero; Rao, Stephen M

    2005-01-01

    Previous neuroimaging studies examining recognition of famous faces have identified activation of an extensive bilateral neural network [Gorno Tempini, M. L., Price, C. J., Josephs, O., Vandenberghe, R., Cappa, S. F., Kapur, N. et al. (1998). The neural systems sustaining face and proper-name processing. Brain, 121, 2103-2118], including the medial temporal lobe (MTL) and specifically the hippocampal complex [Haist, F., Bowden, G. J., & Mao, H. (2001). Consolidation of human memory over decades revealed by functional magnetic resonance imaging. Nature Neuroscience, 4, 1139-1145; Leveroni, C. L., Seidenberg, M., Mayer, A. R., Mead, L. A., Binder, J. R., & Rao, S. M. (2000). Neural systems underlying the recognition of familiar and newly learned faces. Journal of Neuroscience, 20, 878-886]. One model of hippocampal functioning in autobiographical, episodic memory retrieval argues that the hippocampal complex remains active in retrieval tasks regardless of time or age of memory (multiple trace theory, MTT), whereas another proposal posits that the hippocampal complex plays a time-limited role in retrieval of autobiographical memories. The current event-related fMRI study focused on the medial temporal lobe and its response to recognition judgments of famous names from two distinct time epochs (1990s and 1950s) in 15 right-handed healthy older adults (mean age=70 years). A pilot study with an independent sample of young and older subjects ensured that the stimuli were representative of a recent and remote time period. Increased MR signal activity was observed on a bilateral basis for both the hippocampus and parahippocampal gyrus (PHG) during recognition of familiar names from both the recent and remote time periods when compared to non-famous names. However, the impulse response functions in the right hippocampus and right PHG demonstrated a differential response to stimuli from different time epochs, with the 1990s names showing the greatest MR signal intensity

  10. The functional organization of trial-related activity in lexical processing after early left hemispheric brain lesions: An event-related fMRI study

    PubMed Central

    Fair, Damien A.; Choi, Alexander H.; Dosenbach, Yannic B.L.; Coalson, Rebecca S.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2009-01-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we use an event-related design, which allowed us to isolate trial related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single-subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries. PMID:19819000

  11. Re-Evaluating Dissociations between Implicit and Explicit Category Learning: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Gureckis, Todd M.; James, Thomas W.; Nosofsky, Robert M.

    2011-01-01

    Recent fMRI studies have found that distinct neural systems may mediate perceptual category learning under implicit and explicit learning conditions. In these previous studies, however, different stimulus-encoding processes may have been associated with implicit versus explicit learning. The present design was aimed at decoupling the influence of…

  12. An event-related fMRI study of self-paced alphabetically ordered writing of single letters.

    PubMed

    Rektor, I; Rektorová, I; Mikl, M; Brázdil, M; Krupa, P

    2006-08-01

    The spatial location of activation for writing individual letters and for writing simple dots was studied using event-related functional MRI. Ten healthy right-handed subjects were scanned while performing two different protocols with self-paced repetitive movement. In the first protocol with self-paced dot writing, we observed significant activation in regions known to participate in motor control: contralateral to the movement in the primary sensorimotor and supramarginal cortices, the supplementary motor area (SMA) with the underlying cingulate, in the thalamus and, to a lesser extent, in the ipsilateral inferior parietal and occipital cortices. In the second protocol, we investigated an elemental writing feature--writing single letters. We observed statistically significant changes in the premotor, sensorimotor and supramarginal cortices, the SMA and the thalamus with left predominance, and in the bilateral premotor and inferior/superior parietal cortices. The parietal region that was active during the writing of single letters spanned the border between the parietal superior and inferior lobuli Brodmann area (BA 2, 40), deep in the intraparietal sulcus, with a surprising right-sided dominance. The direct comparison of the results of the two protocols was not significant with a confidence level of P<0.05 corrected for whole brain volume. Thus, the ROI approach was used, and we tried to find significant differences within the two predefined regions of interest (ROI) (BA 7, BA 37). The differences were found with a confidence level of P<0.05 corrected for the volume of these predicted areas. The ROI were located in the posterior parts of hemispheres, in the ventral and in the dorsal visual pathway. The right-sided posterior cortices may play a role in the elemental mechanisms of writing. It is possible that activation of this region is linked with the spatial dimension of the writing.

  13. Quantifying learning-dependent changes in the brain: Single-trial multivoxel pattern analysis requires slow event-related fMRI.

    PubMed

    Visser, Renée M; de Haan, Michelle I C; Beemsterboer, Tinka; Haver, Pia; Kindt, Merel; Scholte, H Steven

    2016-08-01

    Single-trial analysis is particularly useful for assessing cognitive processes that are intrinsically dynamic, such as learning. Studying these processes with fMRI is problematic, as the low signal-to-noise ratio of fMRI requires the averaging over multiple trials, obscuring trial-by-trial changes in neural activation. The superior sensitivity of multivoxel pattern analysis over univariate analyses has opened up new possibilities for single-trial analysis, but this may require different fMRI designs. Here, we measured fMRI and pupil dilation responses during discriminant aversive conditioning, to assess associative learning in a trial-by-trial manner. The impact of design choices was examined by varying trial spacing and trial order in a series of five experiments (total n = 66), while keeping stimulus duration constant (4.5 s). Our outcome measure was the change in similarity between neural response patterns related to two consecutive presentations of the same stimulus (within-stimulus) and between patterns related to pairs of different stimuli (between-stimulus) that shared a specific outcome (electric stimulation vs. no consequence). This trial-by-trial similarity analysis revealed clear single-trial learning curves in conditions with intermediate (8.1-12.6 s) and long (16.5-18.4 s) intervals, with effects being strongest in designs with long intervals and counterbalanced stimulus presentation. No learning curves were observed in designs with shorter intervals (1.6-6.1 s), indicating that rapid event-related designs-at present, the most common designs in fMRI research-are not suited for single-trial pattern analysis. These findings emphasize the importance of deciding on the type of analysis prior to data collection.

  14. BOLD signal change and contrast reversing frequency: an event-related fMRI study in human primary visual cortex.

    PubMed

    Sun, Pei; Guo, Jianfei; Guo, Shichun; Chen, Jingyi; He, Le; Fu, Shimin

    2014-01-01

    It is believed that human primary visual cortex (V1) increases activity with increasing temporal frequency of a visual stimulus. Two kinds of visual stimulus were used in the previous studies, one is patterned-flash stimulus with a fixed onset period and an increasing average luminance with the increase of temporal frequency, the other is contrast reversing flickering checkerboard or grating with a constant average luminance across different temporal frequencies. That hemodynamic responses change as a function of reversal frequency of contrast reversing checkerboard is at odds with neurophysiological studies in animals and neuroimaging studies in humans. In the present study, we addressed the relationship between reversal frequency of contrast reversing checkerboard and hemodynamic response in human V1 using an event-related experimental paradigm and found that the transient characteristics of blood oxygenation level dependent response in human V1 depended very little on the reversal frequency of a contrast reversing checkerboard.

  15. Pain and non-pain processing during hypnosis: a thulium-YAG event-related fMRI study.

    PubMed

    Vanhaudenhuyse, A; Boly, M; Balteau, E; Schnakers, C; Moonen, G; Luxen, A; Lamy, M; Degueldre, C; Brichant, J F; Maquet, P; Laureys, S; Faymonville, M E

    2009-09-01

    The neural mechanisms underlying the antinociceptive effects of hypnosis still remain unclear. Using a parametric single-trial thulium-YAG laser fMRI paradigm, we assessed changes in brain activation and connectivity related to the hypnotic state as compared to normal wakefulness in 13 healthy volunteers. Behaviorally, a difference in subjective ratings was found between normal wakefulness and hypnotic state for both non-painful and painful intensity-matched stimuli applied to the left hand. In normal wakefulness, non-painful range stimuli activated brainstem, contralateral primary somatosensory (S1) and bilateral insular cortices. Painful stimuli activated additional areas encompassing thalamus, bilateral striatum, anterior cingulate (ACC), premotor and dorsolateral prefrontal cortices. In hypnosis, intensity-matched stimuli in both the non-painful and painful range failed to elicit any cerebral activation. The interaction analysis identified that contralateral thalamus, bilateral striatum and ACC activated more in normal wakefulness compared to hypnosis during painful versus non-painful stimulation. Finally, we demonstrated hypnosis-related increases in functional connectivity between S1 and distant anterior insular and prefrontal cortices, possibly reflecting top-down modulation. PMID:19460446

  16. Common neural systems associated with the recognition of famous faces and names: an event-related fMRI study.

    PubMed

    Nielson, Kristy A; Seidenberg, Michael; Woodard, John L; Durgerian, Sally; Zhang, Qi; Gross, William L; Gander, Amelia; Guidotti, Leslie M; Antuono, Piero; Rao, Stephen M

    2010-04-01

    Person recognition can be accomplished through several modalities (face, name, voice). Lesion, neurophysiology and neuroimaging studies have been conducted in an attempt to determine the similarities and differences in the neural networks associated with person identity via different modality inputs. The current study used event-related functional-MRI in 17 healthy participants to directly compare activation in response to randomly presented famous and non-famous names and faces (25 stimuli in each of the four categories). Findings indicated distinct areas of activation that differed for faces and names in regions typically associated with pre-semantic perceptual processes. In contrast, overlapping brain regions were activated in areas associated with the retrieval of biographical knowledge and associated social affective features. Specifically, activation for famous faces was primarily right lateralized and famous names were left-lateralized. However, for both stimuli, similar areas of bilateral activity were observed in the early phases of perceptual processing. Activation for fame, irrespective of stimulus modality, activated an extensive left hemisphere network, with bilateral activity observed in the hippocampi, posterior cingulate, and middle temporal gyri. Findings are discussed within the framework of recent proposals concerning the neural network of person identification. PMID:20167415

  17. Event-Related Fmri Evidence of Frontotemporal Involvement in Aberrant Response Inhibition and Task Switching in Attention-Deficit/hyperactivity Disorder.

    ERIC Educational Resources Information Center

    Tamm, Leanne; Menon, Vinod; Ringel, Jessica; Reiss, Allan L.

    2004-01-01

    Objective: Response inhibition deficits are characteristic of individuals with attention-deficit/hyperactivity disorder (ADHD). Previous functional magnetic resonance imaging (fMRI) studies investigating the neural correlates of this dysfunction have used block designs, making it difficult to disentangle activation differences specifically related…

  18. The Temporal Lobes Differentiate between the Voices of Famous and Unknown People: An Event-Related fMRI Study on Speaker Recognition

    PubMed Central

    Bethmann, Anja; Scheich, Henning; Brechmann, André

    2012-01-01

    It is widely accepted that the perception of human voices is supported by neural structures located along the superior temporal sulci. However, there is an ongoing discussion to what extent the activations found in fMRI studies are evoked by the vocal features themselves or are the result of phonetic processing. To show that the temporal lobes are indeed engaged in voice processing, short utterances spoken by famous and unknown people were presented to healthy young participants whose task it was to identify the familiar speakers. In two event-related fMRI experiments, the temporal lobes were found to differentiate between familiar and unfamiliar voices such that named voices elicited higher BOLD signal intensities than unfamiliar voices. Yet, the temporal cortices did not only discriminate between familiar and unfamiliar voices. Experiment 2, which required overtly spoken responses and allowed to distinguish between four familiarity grades, revealed that there was a fine-grained differentiation between all of these familiarity levels with higher familiarity being associated with larger BOLD signal amplitudes. Finally, we observed a gradual response change such that the BOLD signal differences between unfamiliar and highly familiar voices increased with the distance of an area from the transverse temporal gyri, especially towards the anterior temporal cortex and the middle temporal gyri. Therefore, the results suggest that (the anterior and non-superior portions of) the temporal lobes participate in voice-specific processing independent from phonetic components also involved in spoken speech material. PMID:23112826

  19. Interference and facilitation in overt speech production investigated with event-related potentials.

    PubMed

    Hirschfeld, Gerrit; Jansma, Bernadette; Bölte, Jens; Zwitserlood, Pienie

    2008-08-01

    We report an event-related potential study investigating the neural basis of interference and facilitation in the picture-word interference paradigm with immediate overt naming. We used the high temporal resolution of the electrophysiological response to dissociate general and specific interference processes, by comparing unrelated word distractors to nonlinguistic (a row of Xs), surface feature denoting, and category member distractors. Our results first indicate that the increased naming latencies for linguistic relative to nonlinguistic distractors are because of general conflict-monitoring processes, associated with early event-related potential effects (120-220 ms) and increased activity in the anterior cingulate cortex. Next, distractors specifying a surface feature of the picture seem to facilitate its identification within the same time window, which involves widespread networks. Finally, nonlinguistic and surface feature distractors also reduced the N400 amplitude, relative to unrelated word distractors. Taken together our results support the view that several distinct processes give rise to the reaction time results often observed in picture naming. PMID:18628670

  20. View-independent coding of face identity in frontal and temporal cortices is modulated by familiarity: an event-related fMRI study.

    PubMed

    Pourtois, Gilles; Schwartz, Sophie; Seghier, Mohamed L; Lazeyras, François; Vuilleumier, Patrik

    2005-02-15

    Face recognition is a unique visual skill enabling us to recognize a large number of person identities, despite many differences in the visual image from one exposure to another due to changes in viewpoint, illumination, or simply passage of time. Previous familiarity with a face may facilitate recognition when visual changes are important. Using event-related fMRI in 13 healthy observers, we studied the brain systems involved in extracting face identity independent of modifications in visual appearance during a repetition priming paradigm in which two different photographs of the same face (either famous or unfamiliar) were repeated at varying delays. We found that functionally defined face-selective areas in the lateral fusiform cortex showed no repetition effects for faces across changes in image views, irrespective of pre-existing familiarity, suggesting that face representations formed in this region do not generalize across different visual images, even for well-known faces. Repetition of different but easily recognizable views of an unfamiliar face produced selective repetition decreases in a medial portion of the right fusiform gyrus, whereas distinct views of a famous face produced repetition decreases in left middle temporal and left inferior frontal cortex selectively, but no decreases in fusiform cortex. These findings reveal that different views of the same familiar face may not be integrated within a single representation at initial perceptual stages subserved by the fusiform face areas, but rather involve later processing stages where more abstract identity information is accessed. PMID:15670699

  1. The Role of the Left Inferior Frontal Gyrus in Implicit Semantic Competition and Selection: An Event-Related fMRI Study

    PubMed Central

    Grindrod, Christopher M.; Bilenko, Natalia Y.; Myers, Emily B.; Blumstein, Sheila E.

    2008-01-01

    Recent research suggests that the left inferior frontal gyrus (LIFG) plays a role in selecting semantic information from among competing alternatives. A key question remains as to whether the LIFG is engaged by the selection of semantic information only or by increased semantic competition in and of itself, especially when such competition is implicit in nature. Ambiguous words presented in a lexical context provide a means of examining whether the LIFG is recruited under conditions when contextual cues constrain selection to only the meaning appropriate to the context (e.g., coin-mint-money) or under conditions of increased competition when contextual cues do not allow for the resolution to a particular meaning (e.g., candy-mint-money). In this event-related fMRI study, an implicit task was used in which subjects made lexical (i.e., word/nonword) decisions on the third stimulus of auditorily-presented triplets in conditions where the lexical context either promoted resolution toward a particular ambiguous word meaning or enhanced the competition among ambiguous word meanings. LIFG activation was observed when the context allowed for the resolution of competition and hence the selection of one meaning (e.g., coin-mint-money) but failed to emerge when competition between the meanings of an ambiguous word was unresolved by the context (e.g., candy-mint-money). In the latter case, there was a pattern of reduced activation in frontal, temporal and parietal areas. These findings demonstrate that selection or resolution of competition as opposed to increased semantic competition alone engages the LIFG. Moreover, they extend previous work in showing that the LIFG is recruited even in cases where the selection of meaning takes place implicitly. PMID:18656462

  2. The role of the left inferior frontal gyrus in implicit semantic competition and selection: An event-related fMRI study.

    PubMed

    Grindrod, Christopher M; Bilenko, Natalia Y; Myers, Emily B; Blumstein, Sheila E

    2008-09-10

    Recent research suggests that the left inferior frontal gyrus (LIFG) plays a role in selecting semantic information from among competing alternatives. A key question remains as to whether the LIFG is engaged by the selection of semantic information only or by increased semantic competition in and of itself, especially when such competition is implicit in nature. Ambiguous words presented in a lexical context provide a means of examining whether the LIFG is recruited under conditions when contextual cues constrain selection to only the meaning appropriate to the context (e.g., coin-mint-money) or under conditions of increased competition when contextual cues do not allow for the resolution to a particular meaning (e.g., candy-mint-money). In this event-related fMRI study, an implicit task was used in which subjects made lexical (i.e., word/nonword) decisions on the third stimulus of auditorily presented triplets in conditions where the lexical context either promoted resolution toward a particular ambiguous word meaning or enhanced the competition among ambiguous word meanings. LIFG activation was observed when the context allowed for the resolution of competition and hence the selection of one meaning (e.g., coin-mint-money) but failed to emerge when competition between the meanings of an ambiguous word was unresolved by the context (e.g., candy-mint-money). In the latter case, there was a pattern of reduced activation in frontal, temporal and parietal areas. These findings demonstrate that selection or resolution of competition as opposed to increased semantic competition alone engages the LIFG. Moreover, they extend previous work in showing that the LIFG is recruited even in cases where the selection of meaning takes place implicitly. PMID:18656462

  3. Effect of trial-to-trial variability on optimal event-related fMRI design: Implications for Beta-series correlation and multi-voxel pattern analysis

    PubMed Central

    Abdulrahman, Hunar; Henson, Richard N.

    2016-01-01

    Functional magnetic resonance imaging (fMRI) studies typically employ rapid, event-related designs for behavioral reasons and for reasons associated with statistical efficiency. Efficiency is calculated from the precision of the parameters (Betas) estimated from a General Linear Model (GLM) in which trial onsets are convolved with a Hemodynamic Response Function (HRF). However, previous calculations of efficiency have ignored likely variability in the neural response from trial to trial, for example due to attentional fluctuations, or different stimuli across trials. Here we compare three GLMs in their efficiency for estimating average and individual Betas across trials as a function of trial variability, scan noise and Stimulus Onset Asynchrony (SOA): “Least Squares All” (LSA), “Least Squares Separate” (LSS) and “Least Squares Unitary” (LSU). Estimation of responses to individual trials in particular is important for both functional connectivity using “Beta-series correlation” and “multi-voxel pattern analysis” (MVPA). Our simulations show that the ratio of trial-to-trial variability to scan noise impacts both the optimal SOA and optimal GLM, especially for short SOAs < 5 s: LSA is better when this ratio is high, whereas LSS and LSU are better when the ratio is low. For MVPA, the consistency across voxels of trial variability and of scan noise is also critical. These findings not only have important implications for design of experiments using Beta-series regression and MVPA, but also statistical parametric mapping studies that seek only efficient estimation of the mean response across trials. PMID:26549299

  4. Dissociable roles of the bilateral anterior temporal lobe in face-name associations: an event-related fMRI study.

    PubMed

    Tsukiura, Takashi; Mochizuki-Kawai, Hiroko; Fujii, Toshikatsu

    2006-04-01

    Previous studies have suggested the importance of bilateral anterior temporal regions in face-name associations, but there is little evidence concerning their precise role. In this fMRI study, we investigated the effects of person-related semantics (PS) and repeated learning (R) on activations in these regions during the retrieval of face-name associations. For encoding stimuli, we prepared four lists of faces. To control the factor of PS, people's and occupation names were attached to the faces in lists A and B, whereas only people's names were attached to the faces in lists C and D. To control the factor of R, the stimuli in lists A and C were learned twice, whereas the stimuli in lists B and D were learned seven times during encoding before fMRI. During fMRI after the encoding, subjects participated in the retrieval task of people's names from faces or in the retrieval task of faces from people's names. The left anterior temporal lobe was significantly activated during the retrieval of people's names from faces encoded with, compared to without, PS; whereas the right anterior temporal lobe was activated during the retrieval of people's faces from names, compared to without, this encoding. Also, activation of the left (but not the right) anterior temporal lobe was significantly reduced after R of face-name associations. These findings suggest that the three components of faces, names, and PS may be mutually mediated by the bilateral anterior temporal lobe, whose activity may be dynamically changed by the level of consolidation of face-name associations.

  5. An Event-Related Potential Investigation of Fear Generalization and Intolerance of Uncertainty.

    PubMed

    Nelson, Brady D; Weinberg, Anna; Pawluk, Joe; Gawlowska, Magda; Proudfit, Greg H

    2015-09-01

    Fear generalization is a key process in the development and maintenance of anxiety disorders. Psychobiological investigations of fear generalization have predominantly focused on defensive system activation (e.g., startle reflex), and it is unclear whether aberrant attentional processing contributes to fear generalization. The late positive potential (LPP) is an event-related potential component that indexes sustained attention and elaborative processing of motivationally salient information, and is larger in response to arousing compared to nonarousing stimuli. In the present study 48 participants completed a fear generalization paradigm using electric shocks. The LPP and retrospective risk ratings of shock likelihood were measured in response to the conditioned stimulus (CS+) and multiple generalization stimuli (GS) that varied in perceptual similarity to the CS+. In addition, intolerance of uncertainty (IU) was examined in relation to fear generalization. The LPP was enhanced for the CS+relative to the GS, but the GS did not differ from one another. Thus, overall the LPP did not reflect fear generalization. However, the LPP to the GS differed as a function of IU, such that high Prospective IU was associated with an attenuated LPP to the GS, and this was independent of trait anxiety. Risk ratings tracked fear generalization irrespective of IU. We discuss the potential influence of IU and attentional processing on fear generalization. Overall, the present study supports the LPP as a useful tool for examining individual differences in fear generalization.

  6. Different Anaphoric Expressions Are Investigated by Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Streb, Judith; Hennighausen, Erwin; Rosler, Frank

    2004-01-01

    Event-related potentials were recorded to substantiate the claim of a distinct psycholinguistic status of (a) pronouns vs. proper names and (b) ellipses vs. proper names. In two studies 41 students read sentences in which the number of intervening words between the anaphor and its antecedent was either small or large. Comparing the far with the…

  7. Implicit and Explicit Measures of Sensitivity to Violations in Second Language Grammar: An Event-Related Potential Investigation

    ERIC Educational Resources Information Center

    Tokowicz, Natasha; MacWhinney, Brian

    2005-01-01

    We used event-related brain potentials (ERPs) to investigate the contributions of explicit and implicit processes during second language (L2) sentence comprehension. We used a L2 grammaticality judgment task (GJT) to test 20 native English speakers enrolled in the first four semesters of Spanish while recording both accuracy and ERP data. Because…

  8. An Event-Related Potential (ERP) Investigation of Filler-Gap Processing in Native and Second Language Speakers

    ERIC Educational Resources Information Center

    Dallas, Andrea; DeDe, Gayle; Nicol, Janet

    2013-01-01

    The current study employed a neuro-imaging technique, Event-Related Potentials (ERP), to investigate real-time processing of sentences containing filler-gap dependencies by late-learning speakers of English as a second language (L2) with a Chinese native language background. An individual differences approach was also taken to examine the role of…

  9. Is family special to the brain? An event-related fMRI study of familiar, familial, and self-face recognition.

    PubMed

    Platek, Steven M; Kemp, Shelly M

    2009-02-01

    The face-processing network has evolved to respond differentially to different classes of faces depending on their relevance to the perceiver. For example, self-, familiar, and unknown faces are associated with activation in different neural substrates. Family should represent a special class of face stimuli that is of high relevance to individuals, because incorrect assignment of kinship can have dire consequences (e.g., incest, cuckoldry). Therefore evolution should have favored redundant mechanisms for detection of kin. We used fMRI to investigate the neural substrates associated with viewing faces of kin compared to other classes of faces (e.g., self-face, familiar face, and unknown face), and to examine the degree to which self-facial resemblance activated similar neural substrates. Contrasting kin faces with unknown faces activated substrates associated with self-face recognition, while comparing kin faces to friend faces activated posterior cingulate and cuneus. Similar posterior medial substrates were recruited when contrasting self-resembling faces with morphed faces of kin, suggesting these regions potentially represent computational processing about facial familiarity and identity. On the other hand, discrimination of self-resembling faces from familiar morphs activated anterior medial substrates (anterior cingulate cortex, ACC, medial prefrontal cortex, MPFC). These findings, and a region of interest (ROI) analysis, highlight the role of the extended face-processing network for discrimination of kin from familiar non-kin members of one's social group based on self-referent phenotypic cues.

  10. Single-subject fMRI mapping at 7 T of the representation of fingertips in S1: a comparison of event-related and phase-encoding designs.

    PubMed

    Besle, Julien; Sánchez-Panchuelo, Rosa-Maria; Bowtell, Richard; Francis, Susan; Schluppeck, Denis

    2013-05-01

    A desirable goal of functional MRI (fMRI), both clinically and for basic research, is to produce detailed maps of cortical function in individual subjects. Single-subject mapping of the somatotopic hand representation in the human primary somatosensory cortex (S1) has been performed using both phase-encoding and block/event-related designs. Here, we review the theoretical strengths and limits of each method and empirically compare high-resolution (1.5 mm isotropic) somatotopic maps obtained using fMRI at ultrahigh magnetic field (7 T) with phase-encoding and event-related designs in six subjects in response to vibrotactile stimulation of the five fingertips. Results show that the phase-encoding design is more efficient than the event-related design for mapping fingertip-specific responses and in particular allows us to describe a new additional somatotopic representation of fingertips on the precentral gyrus. However, with sufficient data, both designs yield very similar fingertip-specific maps in S1, which confirms that the assumption of local representational continuity underlying phase-encoding designs is largely valid at the level of the fingertips in S1. In addition, it is shown that the event-related design allows the mapping of overlapping cortical representations that are difficult to estimate using the phase-encoding design. The event-related data show a complex pattern of overlapping cortical representations for different fingertips within S1 and demonstrate that regions of S1 responding to several adjacent fingertips can incorrectly be identified as responding preferentially to one fingertip in the phase-encoding data.

  11. Single-subject fMRI mapping at 7 T of the representation of fingertips in S1: a comparison of event-related and phase-encoding designs

    PubMed Central

    Sánchez-Panchuelo, Rosa-Maria; Bowtell, Richard; Francis, Susan; Schluppeck, Denis

    2013-01-01

    A desirable goal of functional MRI (fMRI), both clinically and for basic research, is to produce detailed maps of cortical function in individual subjects. Single-subject mapping of the somatotopic hand representation in the human primary somatosensory cortex (S1) has been performed using both phase-encoding and block/event-related designs. Here, we review the theoretical strengths and limits of each method and empirically compare high-resolution (1.5 mm isotropic) somatotopic maps obtained using fMRI at ultrahigh magnetic field (7 T) with phase-encoding and event-related designs in six subjects in response to vibrotactile stimulation of the five fingertips. Results show that the phase-encoding design is more efficient than the event-related design for mapping fingertip-specific responses and in particular allows us to describe a new additional somatotopic representation of fingertips on the precentral gyrus. However, with sufficient data, both designs yield very similar fingertip-specific maps in S1, which confirms that the assumption of local representational continuity underlying phase-encoding designs is largely valid at the level of the fingertips in S1. In addition, it is shown that the event-related design allows the mapping of overlapping cortical representations that are difficult to estimate using the phase-encoding design. The event-related data show a complex pattern of overlapping cortical representations for different fingertips within S1 and demonstrate that regions of S1 responding to several adjacent fingertips can incorrectly be identified as responding preferentially to one fingertip in the phase-encoding data. PMID:23427300

  12. Event-Related Brain Potential Investigation of Preparation for Speech Production in Late Bilinguals

    PubMed Central

    Wu, Yan Jing; Thierry, Guillaume

    2011-01-01

    It has been debated how bilinguals select the intended language and prevent interference from the unintended language when speaking. Here, we studied the nature of the mental representations accessed by late fluent bilinguals during a rhyming judgment task relying on covert speech production. We recorded event-related brain potentials in Chinese–English bilinguals and monolingual speakers of English while they indicated whether the names of pictures presented on a screen rhymed.  Whether bilingual participants focussed on rhyming selectively in English or Chinese, we found a significant priming effect of language-specific sound repetition. Surprisingly, however, sound repetitions in Chinese elicited significant priming effects even when the rhyming task was performed in English. This cross-language priming effect was delayed by ∼200  ms as compared to the within-language effect and was asymmetric, since there was no priming effect of sound repetitions in English when participants were asked to make rhyming judgments in Chinese. These results demonstrate that second language production hinders, but does not seal off, activation of the first language, whereas native language production appears immune to competition from the second language. PMID:21687468

  13. Modulation of cognitive control levels via manipulation of saccade trial-type probability assessed with event-related BOLD fMRI.

    PubMed

    Pierce, Jordan E; McDowell, Jennifer E

    2016-02-01

    Cognitive control supports flexible behavior adapted to meet current goals and can be modeled through investigation of saccade tasks with varying cognitive demands. Basic prosaccades (rapid glances toward a newly appearing stimulus) are supported by neural circuitry, including occipital and posterior parietal cortex, frontal and supplementary eye fields, and basal ganglia. These trials can be contrasted with complex antisaccades (glances toward the mirror image location of a stimulus), which are characterized by greater functional magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) signal in the aforementioned regions and recruitment of additional regions such as dorsolateral prefrontal cortex. The current study manipulated the cognitive demands of these saccade tasks by presenting three rapid event-related runs of mixed saccades with a varying probability of antisaccade vs. prosaccade trials (25, 50, or 75%). Behavioral results showed an effect of trial-type probability on reaction time, with slower responses in runs with a high antisaccade probability. Imaging results exhibited an effect of probability in bilateral pre- and postcentral gyrus, bilateral superior temporal gyrus, and medial frontal gyrus. Additionally, the interaction between saccade trial type and probability revealed a strong probability effect for prosaccade trials, showing a linear increase in activation parallel to antisaccade probability in bilateral temporal/occipital, posterior parietal, medial frontal, and lateral prefrontal cortex. In contrast, antisaccade trials showed elevated activation across all runs. Overall, this study demonstrated that improbable performance of a typically simple prosaccade task led to augmented BOLD signal to support changing cognitive control demands, resulting in activation levels similar to the more complex antisaccade task.

  14. Effects of Additional Tasks on Language Perception: An Event-Related Brain Potential Investigation

    ERIC Educational Resources Information Center

    Hohlfeld, Annette; Sangals, Jorg; Sommer, Werner

    2004-01-01

    The authors investigated effects of task and overlapping processing load on semantic processing. In 3 experiments the brain potential component N400 was elicited by synonymous and nonsynonymous spoken noun pairs that were to be classified according to semantic relatedness. The time course of the N=400 component to the nouns was delayed, and its…

  15. Individual differences in auditory sentence comprehension in children: An exploratory event-related functional magnetic resonance imaging investigation.

    PubMed

    Yeatman, Jason D; Ben-Shachar, Michal; Glover, Gary H; Feldman, Heidi M

    2010-08-01

    The purpose of this study was to explore changes in activation of the cortical network that serves auditory sentence comprehension in children in response to increasing demands of complex sentences. A further goal is to study how individual differences in children's receptive language abilities are associated with such changes in cortical responses. Fourteen children, 10-16 years old, participated in an event-related functional magnetic resonance imaging experiment using a cross modal sentence-picture verification paradigm. We manipulated sentence difficulty and length in a 2x2 factorial design. Task-related activation covered large regions of the left and right superior temporal cortex, inferior parietal lobe, precuneous, cingulate, middle frontal gyrus and precentral gyrus. Sentence difficulty, independent of length, led to increased activation in the left temporal-parietal junction and right superior temporal gyrus. Changes in activation in frontal regions positively correlated with age-standardized receptive vocabulary scores and negatively correlated with reaction time on a receptive grammar test outside the scanner. Thus, individual differences in language skills were associated with changes in the network in response to changing task demands. These preliminary findings in a small sample of typically developing children suggest that the investigation of individual differences may prove useful in elucidating the underlying neural mechanisms of language disorders in children.

  16. Detecting pop-out targets in contexts of varying homogeneity: investigating homogeneity coding with event-related brain potentials (ERPs).

    PubMed

    Schubö, Anna; Wykowska, Agnieszka; Müller, Hermann J

    2007-03-23

    Searching for a target among many distracting context elements might be an easy or a demanding task. Duncan and Humphreys (Duncan, J., Humphreys, G.W., 1989. Visual search and stimulus similarity. Psychol. Rev. 96, 433-458) showed that not only the target itself plays a role in the difficulty of target detection. Similarity among context elements and dissimilarity of target and context are two main factors also affecting search efficiency. Moreover, many studies have shown that search becomes particularly efficient with large set sizes and perfectly homogeneous context elements, presumably due to grouping processes involved in target-context segmentation. Especially N2p amplitude has been found to be modulated by the number of context elements and their homogeneity. The aim of the present study was to investigate the influence of context elements of different heterogeneities on search performance using event-related brain potentials (ERPs). Results showed that contexts with perfectly homogeneous elements were indeed special: they were most efficient in visual search and elicited a large N2p differential amplitude effect. Increasing context heterogeneity led to a decrease in search performance and a reduction in N2p differential amplitude. Reducing the number of context elements led to a marked performance decrease for random heterogeneous contexts but not for grouped heterogeneous contexts. Behavioral and N2p results delivered evidence (a) in favor of specific processing modes operating on different spatial scales (b) for the existence of homogeneity coding postulated by Duncan and Humphreys.

  17. Some Alternatives? Event-Related Potential Investigation of Literal and Pragmatic Interpretations of Some Presented in Isolation

    PubMed Central

    Barbet, Cécile; Thierry, Guillaume

    2016-01-01

    In sentence verification tasks involving under-informative statements such as Some elephants are mammals, some adults appear more tolerant to pragmatic violations than others. The underlying causes of such inter-individual variability remain however essentially unknown. Here, we investigated inter-individual variation in adults deriving the scalar inference “not all” triggered by the quantifier some. We first assessed the individual intolerance to pragmatic violations in adult participants presented with under-informative some-statements (e.g., Some infants are young). We then recorded event-related brain potentials in the same participants using an oddball paradigm where an ambiguous deviant word some presented in isolation had to be taken either as a match (in its literal interpretation “at least some”) or as a mismatch (in its pragmatic interpretation “some but not all”) and where an unambiguous deviant target word all was featured as control. Mean amplitude modulation of the classic P3b provided a measure of the ease with which participants considered some and all as deviants within each experimental block. We found that intolerance to pragmatic violations was associated with a reduction in the magnitude of the P3b effect elicited by the target some when it was to be considered a literal match. Furthermore, we failed to replicate a straightforward literal interpretation facilitation effect in our experiment which offers a control for task demands. We propose that the derivation of scalar inferences also relies on general, but flexible, mismatch resolution processes. PMID:27746751

  18. Integral calculus problem solving: an fMRI investigation.

    PubMed

    Krueger, Frank; Spampinato, Maria Vittoria; Pardini, Matteo; Pajevic, Sinisa; Wood, Jacqueline N; Weiss, George H; Landgraf, Steffen; Grafman, Jordan

    2008-07-16

    Only a subset of adults acquires specific advanced mathematical skills, such as integral calculus. The representation of more sophisticated mathematical concepts probably evolved from basic number systems; however its neuroanatomical basis is still unknown. Using fMRI, we investigated the neural basis of integral calculus while healthy participants were engaged in an integration verification task. Solving integrals activated a left-lateralized cortical network including the horizontal intraparietal sulcus, posterior superior parietal lobe, posterior cingulate gyrus, and dorsolateral prefrontal cortex. Our results indicate that solving of more abstract and sophisticated mathematical facts, such as calculus integrals, elicits a pattern of brain activation similar to the cortical network engaged in basic numeric comparison, quantity manipulation, and arithmetic problem solving. PMID:18596607

  19. Integral calculus problem solving: an fMRI investigation.

    PubMed

    Krueger, Frank; Spampinato, Maria Vittoria; Pardini, Matteo; Pajevic, Sinisa; Wood, Jacqueline N; Weiss, George H; Landgraf, Steffen; Grafman, Jordan

    2008-07-16

    Only a subset of adults acquires specific advanced mathematical skills, such as integral calculus. The representation of more sophisticated mathematical concepts probably evolved from basic number systems; however its neuroanatomical basis is still unknown. Using fMRI, we investigated the neural basis of integral calculus while healthy participants were engaged in an integration verification task. Solving integrals activated a left-lateralized cortical network including the horizontal intraparietal sulcus, posterior superior parietal lobe, posterior cingulate gyrus, and dorsolateral prefrontal cortex. Our results indicate that solving of more abstract and sophisticated mathematical facts, such as calculus integrals, elicits a pattern of brain activation similar to the cortical network engaged in basic numeric comparison, quantity manipulation, and arithmetic problem solving.

  20. An Event-Related Potential Investigation of the Effects of Age on Alerting, Orienting, and Executive Function

    PubMed Central

    Kaufman, David A. S.; Sozda, Christopher N.; Dotson, Vonetta M.; Perlstein, William M.

    2016-01-01

    The present study compared young and older adults on behavioral and neural correlates of three attentional networks (alerting, orienting, and executive control). Nineteen young and 16 older neurologically-healthy adults completed the Attention Network Test (ANT) while behavioral data (reaction time and error rates) and 64-channel event-related potentials (ERPs) were acquired. Significant age-related RT differences were observed across all three networks; however, after controlling for generalized slowing, only the alerting network remained significantly reduced in older compared with young adults. ERP data revealed that alerting cues led to enhanced posterior N1 responses for subsequent attentional targets in young adults, but this effect was weakened in older adults. As a result, it appears that older adults did not benefit fully from alerting cues, and their lack of subsequent attentional enhancements may compromise their ability to be as responsive and flexible as their younger counterparts. N1 alerting deficits were associated with several key neuropsychological tests of attention that were difficult for older adults. Orienting and executive attention networks were largely similar between groups. Taken together, older adults demonstrated behavioral and neural alterations in alerting, however, they appeared to compensate for this reduction, as they did not significantly differ in their abilities to use spatially informative cues to aid performance (e.g., orienting), or successfully resolve response conflict (e.g., executive control). These results have important implications for understanding the mechanisms of age-related changes in attentional networks. PMID:27242511

  1. How mood challenges emotional memory formation: an fMRI investigation.

    PubMed

    Fitzgerald, Daniel A; Arnold, Jennifer F; Becker, Eni S; Speckens, Anne E M; Rinck, Mike; Rijpkema, Mark; Fernández, Guillén; Tendolkar, Indira

    2011-06-01

    Experimental mood manipulations and functional magnetic resonance imaging (fMRI) provide a unique opportunity for examining the neural correlates of mood-congruent memory formation. While prior studies in mood-disorder patients point to the medial temporal lobe in the genesis of mood-congruent memory (MCM) bias, the interaction between mood and emotional memory formation has not been investigated in healthy participants. In particular it remains unclear how regulatory structures in the pre-frontal cortex may be involved in mediating this phenomenon. In this study, event-related fMRI was performed on 20 healthy participants using a full-factorial, within-subjects repeated-measures design to examine how happy and sad moods impact memory for valenced stimuli (positive, negative and neutral words). Main effects of mood, stimulus valence and memory were examined as was activity related to successful memory formation during congruent and in-congruent moods. Behavioral results confirm an MCM bias while imaging results show amygdala and hippocampal engagement in a global mood and successful recall, respectively. MCM formation was characterized by increased activity during mood-congruent encoding of negative words in the orbito-frontal cortex (OFC) and for mood-incongruent processing of negative words in medial- and inferior-frontal gyri (MFG/IFG). These findings indicate that different pre-frontal regions facilitate mood-congruent and incongruent encoding of successfully recalled negative words at the time of learning, with OFC enhancing congruency and the left IFG and MFG helping overcome semantic incongruities between mood and stimulus valence.

  2. An fMRI investigation of syllable sequence production.

    PubMed

    Bohland, Jason W; Guenther, Frank H

    2006-08-15

    Fluent speech comprises sequences that are composed from a finite alphabet of learned words, syllables, and phonemes. The sequencing of discrete motor behaviors has received much attention in the motor control literature, but relatively little has been focused directly on speech production. In this paper, we investigate the cortical and subcortical regions involved in organizing and enacting sequences of simple speech sounds. Sparse event-triggered functional magnetic resonance imaging (fMRI) was used to measure responses to preparation and overt production of non-lexical three-syllable utterances, parameterized by two factors: syllable complexity and sequence complexity. The comparison of overt production trials to preparation only trials revealed a network related to the initiation of a speech plan, control of the articulators, and to hearing one's own voice. This network included the primary motor and somatosensory cortices, auditory cortical areas, supplementary motor area (SMA), the precentral gyrus of the insula, and portions of the thalamus, basal ganglia, and cerebellum. Additional stimulus complexity led to increased engagement of the basic speech network and recruitment of additional areas known to be involved in sequencing non-speech motor acts. In particular, the left hemisphere inferior frontal sulcus and posterior parietal cortex, and bilateral regions at the junction of the anterior insula and frontal operculum, the SMA and pre-SMA, the basal ganglia, anterior thalamus, and the cerebellum showed increased activity for more complex stimuli. We hypothesize mechanistic roles for the extended speech production network in the organization and execution of sequences of speech sounds.

  3. The neural substrates of mindfulness: an fMRI investigation.

    PubMed

    Ives-Deliperi, Victoria L; Solms, Mark; Meintjes, Ernesta M

    2011-01-01

    "Mindfulness" is a capacity for heightened present-moment awareness that we all possess to a greater or lesser extent. Enhancing this capacity through training has been shown to alleviate stress and promote physical and mental well-being. As a consequence, interest in mindfulness is growing and so is the need to better understand it. This study employed functional magnetic resonance imaging (fMRI) to identify the brain regions involved in state mindfulness and to shed light on its mechanisms of action. Significant signal decreases were observed during mindfulness meditation in midline cortical structures associated with interoception, including bilateral anterior insula, left ventral anterior cingulate cortex, right medial prefrontal cortex, and bilateral precuneus. Significant signal increase was noted in the right posterior cingulate cortex. These findings lend support to the theory that mindfulness achieves its positive outcomes through a process of disidentification.

  4. Investigating the impact of parental status and depression symptoms on the early perceptual coding of infant faces: an event-related potential study.

    PubMed

    Noll, Laura K; Mayes, Linda C; Rutherford, Helena J V

    2012-01-01

    Infant faces are highly salient social stimuli that appear to elicit intuitive parenting behaviors in healthy adult women. Behavioral and observational studies indicate that this effect may be modulated by experiences of reproduction, caregiving, and psychiatric symptomatology that affect normative attention and reward processing of infant cues. However, relatively little is known about the neural correlates of these effects. Using the event-related potential (ERP) technique, this study investigated the impact of parental status (mother, non-mother) and depression symptoms on early visual processing of infant faces in a community sample of adult women. Specifically, the P1 and N170 ERP components elicited in response to infant face stimuli were examined. While characteristics of the N170 were not modulated by parental status, a statistically significant positive correlation was observed between depression symptom severity and N170 amplitude. This relationship was not observed for the P1. These results suggest that depression symptoms may modulate early neurophysiological responsiveness to infant cues, even at sub-clinical levels. PMID:22435403

  5. Auditory Verb Perception Recruits Motor Systems in the Developing Brain: An fMRI Investigation

    ERIC Educational Resources Information Center

    James, Karin Harman; Maouene, Josita

    2009-01-01

    This study investigated neural activation patterns during verb processing in children, using fMRI (functional Magnetic Resonance Imaging). Preschool children (aged 4-6) passively listened to lists of verbs and adjectives while neural activation was measured. Findings indicated that verbs were processed differently than adjectives, as the verbs…

  6. Beta event-related desynchronization as an index of individual differences in processing human facial expression: further investigations of autistic traits in typically developing adults

    PubMed Central

    Cooper, Nicholas R.; Simpson, Andrew; Till, Amy; Simmons, Kelly; Puzzo, Ignazio

    2013-01-01

    The human mirror neuron system (hMNS) has been associated with various forms of social cognition and affective processing including vicarious experience. It has also been proposed that a faulty hMNS may underlie some of the deficits seen in the autism spectrum disorders (ASDs). In the present study we set out to investigate whether emotional facial expressions could modulate a putative EEG index of hMNS activation (mu suppression) and if so, would this differ according to the individual level of autistic traits [high versus low Autism Spectrum Quotient (AQ) score]. Participants were presented with 3 s films of actors opening and closing their hands (classic hMNS mu-suppression protocol) while simultaneously wearing happy, angry, or neutral expressions. Mu-suppression was measured in the alpha and low beta bands. The low AQ group displayed greater low beta event-related desynchronization (ERD) to both angry and neutral expressions. The high AQ group displayed greater low beta ERD to angry than to happy expressions. There was also significantly more low beta ERD to happy faces for the low than for the high AQ group. In conclusion, an interesting interaction between AQ group and emotional expression revealed that hMNS activation can be modulated by emotional facial expressions and that this is differentiated according to individual differences in the level of autistic traits. The EEG index of hMNS activation (mu suppression) seems to be a sensitive measure of the variability in facial processing in typically developing individuals with high and low self-reported traits of autism. PMID:23630489

  7. The perception of dynamic and static facial expressions of happiness and disgust investigated by ERPs and fMRI constrained source analysis.

    PubMed

    Trautmann-Lengsfeld, Sina Alexa; Domínguez-Borràs, Judith; Escera, Carles; Herrmann, Manfred; Fehr, Thorsten

    2013-01-01

    A recent functional magnetic resonance imaging (fMRI) study by our group demonstrated that dynamic emotional faces are more accurately recognized and evoked more widespread patterns of hemodynamic brain responses than static emotional faces. Based on this experimental design, the present study aimed at investigating the spatio-temporal processing of static and dynamic emotional facial expressions in 19 healthy women by means of multi-channel electroencephalography (EEG), event-related potentials (ERP) and fMRI-constrained regional source analyses. ERP analysis showed an increased amplitude of the LPP (late posterior positivity) over centro-parietal regions for static facial expressions of disgust compared to neutral faces. In addition, the LPP was more widespread and temporally prolonged for dynamic compared to static faces of disgust and happiness. fMRI constrained source analysis on static emotional face stimuli indicated the spatio-temporal modulation of predominantly posterior regional brain activation related to the visual processing stream for both emotional valences when compared to the neutral condition in the fusiform gyrus. The spatio-temporal processing of dynamic stimuli yielded enhanced source activity for emotional compared to neutral conditions in temporal (e.g., fusiform gyrus), and frontal regions (e.g., ventromedial prefrontal cortex, medial and inferior frontal cortex) in early and again in later time windows. The present data support the view that dynamic facial displays trigger more information reflected in complex neural networks, in particular because of their changing features potentially triggering sustained activation related to a continuing evaluation of those faces. A combined fMRI and EEG approach thus provides an advanced insight to the spatio-temporal characteristics of emotional face processing, by also revealing additional neural generators, not identifiable by the only use of an fMRI approach.

  8. The Dynamics of Deductive Reasoning: An fMRI Investigation

    ERIC Educational Resources Information Center

    Rodriguez-Moreno, Diana; Hirsch, Joy

    2009-01-01

    Although the basis for deductive reasoning has been a traditional focus of philosophical discussion, the neural correlates and mechanisms that underlie deductive reasoning have only recently become the focus of scientific investigation. In syllogistic deductive reasoning information presented in two related sequential premises leads to a…

  9. Processing counterfactual and hypothetical conditionals: an fMRI investigation.

    PubMed

    Kulakova, Eugenia; Aichhorn, Markus; Schurz, Matthias; Kronbichler, Martin; Perner, Josef

    2013-05-15

    Counterfactual thinking is ubiquitous in everyday life and an important aspect of cognition and emotion. Although counterfactual thought has been argued to differ from processing factual or hypothetical information, imaging data which elucidate these differences on a neural level are still scarce. We investigated the neural correlates of processing counterfactual sentences under visual and aural presentation. We compared conditionals in subjunctive mood which explicitly contradicted previously presented facts (i.e. counterfactuals) to conditionals framed in indicative mood which did not contradict factual world knowledge and thus conveyed a hypothetical supposition. Our results show activation in right occipital cortex (cuneus) and right basal ganglia (caudate nucleus) during counterfactual sentence processing. Importantly the occipital activation is not only present under visual presentation but also with purely auditory stimulus presentation, precluding a visual processing artifact. Thus our results can be interpreted as reflecting the fact that counterfactual conditionals pragmatically imply the relevance of keeping in mind both factual and supposed information whereas the hypothetical conditionals imply that real world information is irrelevant for processing the conditional and can be omitted. The need to sustain representations of factual and suppositional events during counterfactual sentence processing requires increased mental imagery and integration efforts. Our findings are compatible with predictions based on mental model theory. PMID:23380169

  10. Spatial embedding of fMRI for investigating local coupling in human brain

    NASA Astrophysics Data System (ADS)

    Deshpande, Gopikrishna; LaConte, Stephen M.; Peltier, Scott; Hu, Xiaoping

    2005-04-01

    In this paper, we have investigated local spatial couplings in the human brain by applying nonlinear dynamical techniques on fMRI data. We have recorded BOLD-contrast echo-planar fMRI data along with high-resolution T1-weighted anatomical images from the resting brain of healthy human subjects and performed physiological correction on the functional data. The corrected data from resting subjects is spatially embedded into its phase space and the largest Lyapunov exponent of the resulting attractor is calculated and whole slice maps are obtained. In addition, we segment the high-resolution anatomical image and obtain a down sampled mask corresponding to gray and white matter, which is used to obtain mean indices of the exponents for both the tissues separately. The results show the existence of local couplings, its tissue specificity (more local coupling in gray matter than white matter) and dependence on the size of the neighborhood (larger the neighborhood, lesser the coupling). We believe that these techniques capture the information of a nonlinear and evolving system like the brain that may not be evident from static linear methods. The results show that there is evidence of spatio-temporal chaos in the brain, which is a significant finding hitherto not reported in literature to the best of our knowledge. We try to interpret our results from healthy resting subjects based on our knowledge of the native low frequency fluctuations in the resting brain and obtain a better understanding of the local spatial behavior of fMRI. This exploratory study has demonstrated the utility of nonlinear dynamical techniques like spatial embedding in analyzing fMRI data to gain meaningful insights into the working of human brain.

  11. Impact of language proficiency and orthographic transparency on bilingual word reading: an fMRI investigation.

    PubMed

    Meschyan, Gayane; Hernandez, Arturo E

    2006-02-15

    The purpose of the present functional magnetic resonance imaging (fMRI) investigation was to examine how language proficiency and orthographic transparency (letter-sound mapping consistency) modulate neural activity during bilingual single word reading. Spanish-English bilingual participants, more fluent in their second language (L2; English) than their native language (L1; Spanish), were asked to read words in the two languages. Behavioral results showed that participants were significantly slower in reading words in their less proficient language (Spanish) than in their more proficient language (English). fMRI results also revealed that reading words in the less proficient language yielded greater activity in the articulatory motor system, consisting of supplementary motor area/cingulate, insula, and putamen. Together, the behavioral and fMRI results suggest that the less practiced, hence less proficient, language requires greater articulatory motor effort, which results in slower reading rates. Moreover, we found that orthographic transparency also played a neuromodulatory role. More transparent Spanish words yielded greater activity in superior temporal gyrus (STG; BA 22), a region implicated in phonological processing, and orthographically opaque English words yielded greater activity in visual processing and word recoding regions, such as the occipito-parietal border and inferior parietal lobe (IPL; BA 40). Overall, our fMRI results suggest that the articulatory motor system is more plastic, hence, more amenable to change because of greater exposure to the L2. By contrast, we propose that our orthography effect is less plastic, hence, less influenced by frequency of exposure to a language system.

  12. Investigating the neural mechanisms of aware and unaware fear memory with FMRI.

    PubMed

    Knight, David C; Wood, Kimberly H

    2011-10-06

    Pavlovian fear conditioning is often used in combination with functional magnetic resonance imaging (fMRI) in humans to investigate the neural substrates of associative learning. In these studies, it is important to provide behavioral evidence of conditioning to verify that differences in brain activity are learning-related and correlated with human behavior. Fear conditioning studies often monitor autonomic responses (e.g. skin conductance response; SCR) as an index of learning and memory. In addition, other behavioral measures can provide valuable information about the learning process and/or other cognitive functions that influence conditioning. For example, the impact unconditioned stimulus (UCS) expectancies have on the expression of the conditioned response (CR) and unconditioned response (UCR) has been a topic of interest in several recent studies. SCR and UCS expectancy measures have recently been used in conjunction with fMRI to investigate the neural substrates of aware and unaware fear learning and memory processes. Although these cognitive processes can be evaluated to some degree following the conditioning session, post-conditioning assessments cannot measure expectations on a trial-to-trial basis and are susceptible to interference and forgetting, as well as other factors that may distort results. Monitoring autonomic and behavioral responses simultaneously with fMRI provides a mechanism by which the neural substrates that mediate complex relationships between cognitive processes and behavioral/autonomic responses can be assessed. However, monitoring autonomic and behavioral responses in the MRI environment poses a number of practical problems. Specifically, 1) standard behavioral and physiological monitoring equipment is constructed of ferrous material that cannot be safely used near the MRI scanner, 2) when this equipment is placed outside of the MRI scanning chamber, the cables projecting to the subject can carry RF noise that produces artifacts in

  13. Mindfulness training for adolescents: A neurodevelopmental perspective on investigating modifications in attention and emotion regulation using event-related brain potentials.

    PubMed

    Sanger, Kevanne Louise; Dorjee, Dusana

    2015-09-01

    Mindfulness training is increasingly being introduced in schools, yet studies examining its impact on the developing brain have been scarce. A neurodevelopmental perspective on mindfulness has been advocated as a powerful tool to enhance our understanding of underlying neurocognitive changes that have implications for developmental well-being research and the implementation of mindfulness in education. To stimulate more research in the developmental cognitive neuroscience of mindfulness, this article outlines possible indexes of mindfulness-based change in adolescence, with a focus on event-related brain potential (ERP) markers. We provide methodological recommendations for future studies and offer examples of research paradigms. We also discuss how mindfulness practice could impact on the development of prefrontal brain structures and enhance attention control and emotion regulation skills in adolescents, impacting in turn on their self-regulation and coping skills. We highlight advantages of the ERP methodology in neurodevelopmental research of mindfulness. It is proposed that research using established experimental tasks targeting ERP components such as the contingent negative variability, N200, error-related negativity and error positivity, P300, and late positive potential could elucidate developmentally salient shifts in the neural plasticity of the adolescent brain induced by mindfulness practice.

  14. Distinct neural correlates for pragmatic and semantic meaning processing: an event-related potential investigation of scalar implicature processing using picture-sentence verification.

    PubMed

    Politzer-Ahles, Stephen; Fiorentino, Robert; Jiang, Xiaoming; Zhou, Xiaolin

    2013-01-15

    The present study examines the brain-level representation and composition of meaning in scalar quantifiers (e.g., some), which have both a semantic meaning (at least one) and a pragmatic meaning (not all). We adopted a picture-sentence verification design to examine event-related potential (ERP) effects of reading infelicitous quantifiers for which the semantic meaning was correct with respect to the context but the pragmatic meaning was not, compared to quantifiers for which the semantic meaning was inconsistent with the context and no additional pragmatic meaning is available. In the first experiment, only pragmatically inconsistent quantifiers, not semantically inconsistent quantifiers, elicited a sustained posterior negative component. This late negativity contrasts with the N400 effect typically elicited by nouns that are incongruent with their context, suggesting that the recognition of scalar implicature errors elicits a qualitatively different ERP signature than the recognition of lexico-semantic errors. We hypothesize that the sustained negativity reflects cancellation of the pragmatic inference and retrieval of the semantic meaning. In our second experiment, we found that the process of re-interpreting the quantifier was independent from lexico-semantic processing: the N400 elicited by lexico-semantic violations was not modulated by the presence of a pragmatic inconsistency. These findings suggest that inferential pragmatic aspects of meaning are processed using different mechanisms than lexical or combinatorial semantic aspects of meaning, that inferential pragmatic meaning can be realized rapidly, and that the computation of meaning involves continuous negotiation between different aspects of meaning.

  15. Taking one’s time in feeling other-race pain: an event-related potential investigation on the time-course of cross-racial empathy

    PubMed Central

    Meconi, Federica; Castelli, Luigi; Dell’Acqua, Roberto

    2014-01-01

    Using the event-related potential (ERP) approach, we tracked the time-course of white participants’ empathic reactions to white (own-race) and black (other-race) faces displayed in a painful condition (i.e. with a needle penetrating the skin) and in a nonpainful condition (i.e. with Q-tip touching the skin). In a 280–340 ms time-window, neural responses to the pain of own-race individuals under needle penetration conditions were amplified relative to neural responses to the pain of other-race individuals displayed under analogous conditions. This ERP reaction to pain, whose source was localized in the inferior frontal gyrus, correlated with the empathic concern ratings of the Interpersonal Reactivity Index questionnaire. In a 400–750 ms time-window, the difference between neural reactions to the pain of own-race individuals, localized in the middle frontal gyrus and other-race individuals, localized in the temporoparietal junction was reduced to nil. These findings support a functional, neural and temporal distinction between two sequential processing stages underlying empathy, namely, a race-biased stage of pain sharing/mirroring followed by a race-unbiased stage of cognitive evaluation of pain. PMID:23314008

  16. Distinct neural correlates for pragmatic and semantic meaning processing: an event-related potential investigation of scalar implicature processing using picture-sentence verification.

    PubMed

    Politzer-Ahles, Stephen; Fiorentino, Robert; Jiang, Xiaoming; Zhou, Xiaolin

    2013-01-15

    The present study examines the brain-level representation and composition of meaning in scalar quantifiers (e.g., some), which have both a semantic meaning (at least one) and a pragmatic meaning (not all). We adopted a picture-sentence verification design to examine event-related potential (ERP) effects of reading infelicitous quantifiers for which the semantic meaning was correct with respect to the context but the pragmatic meaning was not, compared to quantifiers for which the semantic meaning was inconsistent with the context and no additional pragmatic meaning is available. In the first experiment, only pragmatically inconsistent quantifiers, not semantically inconsistent quantifiers, elicited a sustained posterior negative component. This late negativity contrasts with the N400 effect typically elicited by nouns that are incongruent with their context, suggesting that the recognition of scalar implicature errors elicits a qualitatively different ERP signature than the recognition of lexico-semantic errors. We hypothesize that the sustained negativity reflects cancellation of the pragmatic inference and retrieval of the semantic meaning. In our second experiment, we found that the process of re-interpreting the quantifier was independent from lexico-semantic processing: the N400 elicited by lexico-semantic violations was not modulated by the presence of a pragmatic inconsistency. These findings suggest that inferential pragmatic aspects of meaning are processed using different mechanisms than lexical or combinatorial semantic aspects of meaning, that inferential pragmatic meaning can be realized rapidly, and that the computation of meaning involves continuous negotiation between different aspects of meaning. PMID:23103410

  17. Material specific lateralization of medial temporal lobe function: An fMRI investigation.

    PubMed

    Dalton, Marshall A; Hornberger, Michael; Piguet, Olivier

    2016-03-01

    The theory of material specific lateralization of memory function posits that left and right MTL regions are asymmetrically involved in mnemonic processing of verbal and nonverbal material respectively. Lesion and functional imaging (fMRI) studies provide robust evidence for a left MTL asymmetry in the verbal memory domain. Evidence for a right MTL/nonverbal asymmetry is not as robust. A handful of fMRI studies have investigated this issue but have generally utilised nonverbal stimuli which are amenable to semantic elaboration. This fMRI study aimed to investigate the neural correlates of recognition memory processing in 20 healthy young adults (mean age = 26 years) for verbal stimuli and nonverbal stimuli that were specifically designed to minimize verbalisation. Analyses revealed that the neural correlates of recognition memory processing for verbal and nonverbal stimuli were differentiable and asymmetrically recruited the left and right MTL respectively. The right perirhinal cortex and hippocampus were preferentially involved in successful recognition memory of items devoid of semantic information. In contrast, the left anterior hippocampus was preferentially involved in successful recognition memory of stimuli which contained semantic meaning. These results suggest that the left MTL is preferentially involved in mnemonic processing of verbal/semantic information. In contrast, the right MTL is preferentially involved in visual/non-semantic mnemonic processing. We propose that during development, the left MTL becomes specialised for verbal mnemonic processing due to its proximity with left lateralised cortical language processing areas while visual/non-semantic mnemonic processing gets 'crowded out' to become predominantly, but not completely, the domain of the right MTL.

  18. Investigating Inhibitory Control in Children with Epilepsy: An fMRI Study

    PubMed Central

    Triplett, Regina L.; Velanova, Katerina; Luna, Beatriz; Padmanabhan, Aarthi; Gaillard, William D.; Asato, Miya R.

    2014-01-01

    SUMMARY Objective Deficits in executive function are increasingly noted in children with epilepsy and have been associated with poor academic and psychosocial outcomes. Impaired inhibitory control contributes to executive dysfunction in children with epilepsy; however, its neuroanatomic basis has not yet been investigated. We used functional Magnetic Resonance Imaging (fMRI) to probe the integrity of activation in brain regions underlying inhibitory control in children with epilepsy. Methods This cross-sectional study consisted of 34 children aged 8 to 17 years: 17 with well-controlled epilepsy and 17 age-and sex-matched controls. Participants performed the antisaccade (AS) task, representative of inhibitory control, during fMRI scanning. We compared AS performance during neutral and reward task conditions and evaluated task-related blood-oxygen level dependent (BOLD) activation. Results Children with epilepsy demonstrated impaired AS performance compared to controls during both neutral (non-reward) and reward trials, but exhibited significant task improvement during reward trials. Post-hoc analysis revealed that younger patients made more errors than older patients and all controls. fMRI results showed preserved activation in task-relevant regions in patients and controls, with the exception of increased activation in the left posterior cingulate gyrus in patients specifically with generalized epilepsy across neutral and reward trials. Significance Despite impaired inhibitory control, children with epilepsy accessed typical neural pathways as did their peers without epilepsy. Children with epilepsy showed improved behavioral performance in response to the reward condition, suggesting potential benefits of the use of incentives in cognitive remediation. PMID:25223606

  19. Diffusion modulation of the fMRI signal: early investigations on the origin of the BOLD signal.

    PubMed

    Song, Allen W

    2012-08-15

    The early 1990s was a very special period for functional MRI (fMRI). Many original concepts were formed during that period which helped set up the foundations for modern neuroimaging development. I was fortunate to be in graduate school at the time. I was even more fortunate to be enrolled in one of the pioneer groups in fMRI at the Medical College of Wisconsin, and witnessed some of the early fMRI experiments taking place in the lab. Under the daily influence and steady guidance by the extraordinarily talented researchers there, I also began my own work on the contrast mechanisms of fMRI. In particular, I was developing diffusion weighted strategies to investigate the origin of the functional signal using blood oxygenation level dependent (BOLD) contrast. Our results, that there was significant BOLD signal in large veins and their vicinities at low field strengths (e.g. 1.5T), played an immediate role in moving fMRI applications to higher fields (3T and above) where small vessels (e.g. capillaries) contribute more significantly to improve the neuronal specificity of the BOLD signal. This manuscript gathers some of my own recollections concerning this particular development.

  20. An fMRI investigation of the impact of interracial contact on executive function.

    PubMed

    Richeson, Jennifer A; Baird, Abigail A; Gordon, Heather L; Heatherton, Todd F; Wyland, Carrie L; Trawalter, Sophie; Shelton, J Nicole

    2003-12-01

    We investigated whether individual differences in racial bias among white participants predict the recruitment, and potential depletion, of executive attentional resources during contact with black individuals. White individuals completed an unobtrusive measure of racial bias, then interacted with a black individual, and finally completed an ostensibly unrelated Stroop color-naming test. In a separate functional magnetic resonance imaging (fMRI) session, subjects were presented with unfamiliar black male faces, and the activity of brain regions thought to be critical to executive control was assessed. We found that racial bias predicted activity in right dorsolateral prefrontal cortex (DLPFC) in response to black faces. Furthermore, activity in this region predicted Stroop interference after an actual interracial interaction, and it statistically mediated the relation between racial bias and Stroop interference. These results are consistent with a resource depletion account of the temporary executive dysfunction seen in racially biased individuals after interracial contact.

  1. Neural correlates of different types of deception: an fMRI investigation.

    PubMed

    Ganis, G; Kosslyn, S M; Stose, S; Thompson, W L; Yurgelun-Todd, D A

    2003-08-01

    Deception is a complex cognitive activity, and different types of lies could arise from different neural systems. We investigated this possibility by first classifying lies according to two dimensions, whether they fit into a coherent story and whether they were previously memorized. fMRI revealed that well-rehearsed lies that fit into a coherent story elicit more activation in right anterior frontal cortices than spontaneous lies that do not fit into a story, whereas the opposite pattern occurs in the anterior cingulate and in posterior visual cortex. Furthermore, both types of lies elicited more activation than telling the truth in anterior prefrontal cortices (bilaterally), the parahippocampal gyrus (bilaterally), the right precuneus, and the left cerebellum. At least in part, distinct neural networks support different types of deception.

  2. An fMRI investigation of the impact of withdrawal on regional brain activity during nicotine anticipation

    PubMed Central

    Gloria, Rebecca; Angelos, Lisa; Schaefer, Hillary S.; Davis, James M.; Majeskie, Matthew; Richmond, Burke S.; Curtin, John J.; Davidson, Richard J.; Baker, Timothy B.

    2009-01-01

    Previous research indicates that drug motivational systems are instantiated in structures that process information related to incentive, motivational drive, memorial, motor/habit, craving, and cognitive control processing. The present research tests the hypothesis that activity in such systems will be powerfully affected by the combination of drug anticipation and drug withdrawal. Event-related fMRI was used to examine activation in response to a pre-infusion warning cue in two experimental sessions that manipulated withdrawal status. Significant cue-induced effects were seen in the caudate, ventral anterior nucleus of the thalamus, the insula, subcallosal gyrus, nucleus accumbens, and anterior cingulate. These results suggest that withdrawal and nicotine anticipation produce (1) different motor preparatory and inhibitory response processing and (2) different craving related processing. PMID:19490513

  3. The effects of musical training on movement pre-programming and re-programming abilities: an event-related potential investigation.

    PubMed

    Anatürk, Melis; Jentzsch, Ines

    2015-03-01

    Two response precuing experiments were conducted to investigate effects of musical skill level on the ability to pre- and re-programme simple movements. Participants successfully used advance information to prepare forthcoming responses and showed response slowing when precue information was invalid rather than valid. This slowing was, however, only observed for partially invalid but not fully invalid precues. Musicians were generally faster than non-musicians, but no group differences in the efficiency of movement pre-programming or re-programming were observed. Interestingly, only musicians exhibited a significant foreperiod lateralized readiness potential (LRP) when response hand was pre-specified or full advance information was provided. These LRP findings suggest increased effector-specific motor preparation in musicians than non-musicians. However, here the levels of effector-specific preparation did not predict preparatory advantages observed in behaviour. In sum, combining the response precuing and ERP paradigms serves a valuable tool to examine influences of musical training on movement pre- or re-programming processes.

  4. Neuroimaging measures of error-processing: Extracting reliable signals from event-related potentials and functional magnetic resonance imaging.

    PubMed

    Steele, Vaughn R; Anderson, Nathaniel E; Claus, Eric D; Bernat, Edward M; Rao, Vikram; Assaf, Michal; Pearlson, Godfrey D; Calhoun, Vince D; Kiehl, Kent A

    2016-05-15

    Error-related brain activity has become an increasingly important focus of cognitive neuroscience research utilizing both event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI). Given the significant time and resources required to collect these data, it is important for researchers to plan their experiments such that stable estimates of error-related processes can be achieved efficiently. Reliability of error-related brain measures will vary as a function of the number of error trials and the number of participants included in the averages. Unfortunately, systematic investigations of the number of events and participants required to achieve stability in error-related processing are sparse, and none have addressed variability in sample size. Our goal here is to provide data compiled from a large sample of healthy participants (n=180) performing a Go/NoGo task, resampled iteratively to demonstrate the relative stability of measures of error-related brain activity given a range of sample sizes and event numbers included in the averages. We examine ERP measures of error-related negativity (ERN/Ne) and error positivity (Pe), as well as event-related fMRI measures locked to False Alarms. We find that achieving stable estimates of ERP measures required four to six error trials and approximately 30 participants; fMRI measures required six to eight trials and approximately 40 participants. Fewer trials and participants were required for measures where additional data reduction techniques (i.e., principal component analysis and independent component analysis) were implemented. Ranges of reliability statistics for various sample sizes and numbers of trials are provided. We intend this to be a useful resource for those planning or evaluating ERP or fMRI investigations with tasks designed to measure error-processing.

  5. Functional topography of the corpus callosum investigated by DTI and fMRI

    PubMed Central

    Fabri, Mara; Pierpaoli, Chiara; Barbaresi, Paolo; Polonara, Gabriele

    2014-01-01

    This short review examines the most recent functional studies of the topographic organization of the human corpus callosum, the main interhemispheric commissure. After a brief description of its anatomy, development, microstructure, and function, it examines and discusses the latest findings obtained using diffusion tensor imaging (DTI) and tractography (DTT) and functional magnetic resonance imaging (fMRI), three recently developed imaging techniques that have significantly expanded and refined our knowledge of the commissure. While DTI and DTT have been providing insights into its microstructure, integrity and level of myelination, fMRI has been the key technique in documenting the activation of white matter fibers, particularly in the corpus callosum. By combining DTT and fMRI it has been possible to describe the trajectory of the callosal fibers interconnecting the primary olfactory, gustatory, motor, somatic sensory, auditory and visual cortices at sites where the activation elicited by peripheral stimulation was detected by fMRI. These studies have demonstrated the presence of callosal fiber tracts that cross the commissure at the level of the genu, body, and splenium, at sites showing fMRI activation. Altogether such findings lend further support to the notion that the corpus callosum displays a functional topographic organization that can be explored with fMRI. PMID:25550994

  6. [Event-related functional magnetic resonance imaging of cerebral pain processing].

    PubMed

    Meyer, H; Kleinböhl, D; Baudendistel, K; Bock, M; Trojan, J; Rabuffetti-Lehle, M; Hölzl, R; Schad, L R

    2001-01-01

    Neurofunctional magnetic resonance imaging (fMRI) offers the possibility to map cerebral activity non-invasively. The development of event-related techniques during the past years allows to study brain processes with high spatial and temporal resolution. Based on these techniques, EPI- and FLASH sequences were developed in this study, to investigate cerebral processing of experimental thermal pain stimulation. Phasic and tonic stimulation paradigms were developed with an MR-compatible contact thermode. Functional mapping of pain-relevant areas was performed with these paradigms, as well as a specification of the temporal characteristics of the activation. Further, a randomized paradigm with several stimulus intensities could differentiate graded functional responses, dependent on stimulus intensity in specific "regions-of-interest". In this design, randomizing the stimulus order reduced habituation effects, while continuous subjective magnitude estimation of the stimuli kept attention of subjects maximal. PMID:11487860

  7. An fMRI investigation of responses to peer rejection in adolescents with autism spectrum disorders

    PubMed Central

    Masten, Carrie L.; Colich, Natalie L.; Rudie, Jeffrey D.; Bookheimer, Susan Y.; Eisenberger, Naomi I.; Dapretto, Mirella

    2011-01-01

    Peer rejection is particularly pervasive among adolescents with autism spectrum disorders (ASD). However, how adolescents with ASD differ from typically developing adolescents in their responses to peer rejection is poorly understood. The goal of the current investigation was to examine neural responses to peer exclusion among adolescents with ASD compared to typically developing adolescents. Nineteen adolescents with ASD and 17 typically developing controls underwent fMRI as they were ostensibly excluded by peers during an online game called Cyberball. Afterwards, participants reported their distress about the exclusion. Compared to typically developing adolescents, those with ASD displayed less activity in regions previously linked with the distressing aspect of peer exclusion, including the subgenual anterior cingulate and anterior insula, as well as less activity in regions previously linked with the regulation of distress responses during peer exclusion, including the ventrolateral prefrontal cortex and ventral striatum. Interestingly, however, both groups self-reported equivalent levels of distress. This suggests that adolescents with ASD may engage in differential processing of social experiences at the neural level, but be equally aware of, and concerned about, peer rejection. Overall, these findings contribute new insights about how this population may differentially experience negative social events in their daily lives. PMID:22318914

  8. Semantic association investigated with fMRI and independent component analysis

    PubMed Central

    Kim, Kwang Ki; Karunanayaka, Prasanna; Privitera, Michael D.; Holland, Scott K.; Szaflarski, Jerzy P.

    2010-01-01

    Semantic association, an essential element of human language, enables discourse and inference. Neuroimaging studies have revealed localization and lateralization of semantic circuitry making substantial contributions to cognitive neuroscience. However, due to methodological limitations, these investigations have only identified individual functional components rather than capturing the behavior of the entire network. To overcome these limitations, we have implemented group independent component analysis (ICA) to investigate the cognitive modules used by healthy adults performing fMRI semantic decision task. When compared to the results of a standard GLM analysis, ICA detected several additional brain regions subserving semantic decision. Eight task-related group ICA maps were identified including left inferior frontal gyrus (BA44/45), middle posterior temporal gyrus (BA39/22), angular gyrus/inferior parietal lobule (BA39/40), posterior cingulate (BA30), bilateral lingual gyrus (BA18/23), inferior frontal gyrus (L>R, BA47), hippocampus with parahippocampal gyrus (L>R, BA35/36) and anterior cingulate (BA32/24). While most of the components were represented bilaterally, we found a single, highly left-lateralized component that included the inferior frontal gyrus and the medial and superior temporal gyri, the angular and supramarginal gyri and the inferior parietal cortex. The presence of these spatially independent ICA components implies functional connectivity and can be equated with their modularity. These results are analyzed and presented in the framework of a biologically plausible theoretical model in preparation for similar analyses in patients with right- or left-hemispheric epilepsies. PMID:21296027

  9. fMRI investigation of unexpected somatosensory feedback perturbation during speech

    PubMed Central

    Golfinopoulos, Elisa; Tourville, Jason A.; Bohland, Jason W.; Ghosh, Satrajit S.; Nieto-Castanon, Alfonso; Guenther, Frank H.

    2011-01-01

    Somatosensory feedback plays a critical role in the coordination of articulator movements for speech production. In response to unexpected resistance to lip or jaw movements during speech, fluent speakers can use the difference between the somatosensory expectations of a speech sound and the actual somatosensory feedback to adjust the trajectories of functionally relevant but unimpeded articulators. In an effort to investigate the neural substrates underlying the somatosensory feedback control of speech, we used an event-related sparse sampling functional magnetic resonance imaging paradigm and a novel pneumatic device that unpredictably blocked subjects’ jaw movements. In comparison to speech, perturbed speech, in which jaw perturbation prompted the generation of compensatory speech motor commands, demonstrated increased effects in bilateral ventral motor cortex, right-lateralized anterior supramarginal gyrus, inferior frontal gyrus pars triangularis and ventral premotor cortex, and bilateral inferior posterior cerebellum (lobule VIII). Structural equation modeling revealed a significant increased influence from left anterior supramarginal gyrus to right anterior supramarginal gyrus and from left anterior supramarginal gyrus to right ventral premotor cortex as well as a significant increased reciprocal influence between right ventral premotor cortex and right ventral motor cortex and right anterior supramarginal gyrus and right inferior frontal gyrus pars triangularis for perturbed speech relative to speech. These results suggest that bilateral anterior supramarginal gyrus, right inferior frontal gyrus pars triangularis, right ventral premotor and motor cortices are functionally coupled and influence speech motor output when somatosensory feedback is unexpectedly perturbed during speech production. PMID:21195191

  10. MEG measurement of event-related brain activity evoked by emotional prosody recognition.

    PubMed

    Yagura, H; Tonoike, M; Yamaguchi, M; Nakagawa, S; Sutani, K; Ogino, S

    2004-11-30

    Cortical areas involved in processing of emotional prosody (EP) in spoken language, such as joy or sadness, have been found in functional magnetic resonance imaging (fMRI) studies bilaterally or dominantly in the right frontal or temporal lobes. In this study, we investigated spatiotemporal patterns of cortical activity related to EP processing using magnetoencephalography (MEG). In this experiment, a joyful face (JF) or a sad face (SF) was displayed after voices which had emotional features of joy (joy prosody: JP) or sadness (sad prosody: SP) were presented. Subjects were requested to judge whether emotional features of the voice and the face were identical or not. MEG signals evoked by emotional voices were measured and significant differences of cortical activities associated with processing of emotional feature were observed between the right and left hemisphere during the latency of 100-150 ms that includes the N1m component. Our study suggests that MEG is a useful method, in addition to fMRI and event-related scalp potentials (ERP) for studying non-invasively EP processing in the human brain.

  11. Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM.

    PubMed

    Wang, Yanlu; Li, Tie-Qiang

    2015-01-01

    Different machine learning algorithms have recently been used for assisting automated classification of independent component analysis (ICA) results from resting-state fMRI data. The success of this approach relies on identification of artifact components and meaningful functional networks. A limiting factor of ICA is the uncertainty of the number of independent components (NIC). We aim to develop a framework based on support vector machines (SVM) and optimized feature-selection for automated classification of independent components (ICs) and use the framework to investigate the effects of input NIC on the ICA results. Seven different resting-state fMRI datasets were studied. 18 features were devised by mimicking the empirical criteria for manual evaluation. The five most significant (p < 0.01) features were identified by general linear modeling and used to generate a classification model for the framework. This feature-optimized classification of ICs with SVM (FOCIS) framework was used to classify both group and single subject ICA results. The classification results obtained using FOCIS and previously published FSL-FIX were compared against manually evaluated results. On average the false negative rate in identifying artifact contaminated ICs for FOCIS and FSL-FIX were 98.27 and 92.34%, respectively. The number of artifact and functional network components increased almost linearly with the input NIC. Through tracking, we demonstrate that incrementing NIC affects most ICs when NIC < 33, whereas only a few limited ICs are affected by direct splitting when NIC is incremented beyond NIC > 40. For a given IC, its changes with increasing NIC are individually specific irrespective whether the component is a potential resting-state functional network or an artifact component. Using FOCIS, we investigated experimentally the ICA dimensionality of resting-state fMRI datasets and found that the input NIC can critically affect the ICA results of resting-state fMRI data.

  12. Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM

    PubMed Central

    Wang, Yanlu; Li, Tie-Qiang

    2015-01-01

    Different machine learning algorithms have recently been used for assisting automated classification of independent component analysis (ICA) results from resting-state fMRI data. The success of this approach relies on identification of artifact components and meaningful functional networks. A limiting factor of ICA is the uncertainty of the number of independent components (NIC). We aim to develop a framework based on support vector machines (SVM) and optimized feature-selection for automated classification of independent components (ICs) and use the framework to investigate the effects of input NIC on the ICA results. Seven different resting-state fMRI datasets were studied. 18 features were devised by mimicking the empirical criteria for manual evaluation. The five most significant (p < 0.01) features were identified by general linear modeling and used to generate a classification model for the framework. This feature-optimized classification of ICs with SVM (FOCIS) framework was used to classify both group and single subject ICA results. The classification results obtained using FOCIS and previously published FSL-FIX were compared against manually evaluated results. On average the false negative rate in identifying artifact contaminated ICs for FOCIS and FSL-FIX were 98.27 and 92.34%, respectively. The number of artifact and functional network components increased almost linearly with the input NIC. Through tracking, we demonstrate that incrementing NIC affects most ICs when NIC < 33, whereas only a few limited ICs are affected by direct splitting when NIC is incremented beyond NIC > 40. For a given IC, its changes with increasing NIC are individually specific irrespective whether the component is a potential resting-state functional network or an artifact component. Using FOCIS, we investigated experimentally the ICA dimensionality of resting-state fMRI datasets and found that the input NIC can critically affect the ICA results of resting-state fMRI data. PMID

  13. An fMRI Investigation of the Neural Correlates Underlying the Processing of Novel Metaphoric Expressions

    ERIC Educational Resources Information Center

    Mashal, N.; Faust, M.; Hendler, T.; Jung-Beeman, M.

    2007-01-01

    The neural networks associated with processing related pairs of words forming literal, novel, and conventional metaphorical expressions and unrelated pairs of words were studied in a group of 15 normal adults using fMRI. Subjects read the four types of linguistic expressions and decided which relation exists between the two words (metaphoric,…

  14. Differences in Processing of Taxonomic and Sequential Relations in Semantic Memory: An fMRI Investigation

    ERIC Educational Resources Information Center

    Kuchinke, Lars; van der Meer, Elke; Krueger, Frank

    2009-01-01

    Conceptual knowledge of our world is represented in semantic memory in terms of concepts and semantic relations between concepts. We used functional magnetic resonance imaging (fMRI) to examine the cortical regions underlying the processing of sequential and taxonomic relations. Participants were presented verbal cues and performed three tasks:…

  15. Brain correlates of discourse processing: an fMRI investigation of irony and conventional metaphor comprehension.

    PubMed

    Eviatar, Zohar; Just, Marcel Adam

    2006-01-01

    Higher levels of discourse processing evoke patterns of cognition and brain activation that extend beyond the literal comprehension of sentences. We used fMRI to examine brain activation patterns while 16 healthy participants read brief three-sentence stories that concluded with either a literal, metaphoric, or ironic sentence. The fMRI images acquired during the reading of the critical sentence revealed a selective response of the brain to the two types of nonliteral utterances. Metaphoric utterances resulted in significantly higher levels of activation in the left inferior frontal gyrus and in bilateral inferior temporal cortex than the literal and ironic utterances. Ironic statements resulted in significantly higher activation levels than literal statements in the right superior and middle temporal gyri, with metaphoric statements resulting in intermediate levels in these regions. The findings show differential hemispheric sensitivity to these aspects of figurative language, and are relevant to models of the functional cortical architecture of language processing in connected discourse.

  16. Brain correlates of discourse processing: An fMRI investigation of irony and conventional metaphor comprehension

    PubMed Central

    Eviatar, Zohar; Just, Marcel Adam

    2006-01-01

    Higher levels of discourse processing evoke patterns of cognition and brain activation that extend beyond the literal comprehension of sentences. We used fMRI to examine brain activation patterns while 16 healthy participants read brief three-sentence stories that concluded with either a literal, metaphoric, or ironic sentence. The fMRI images acquired during the reading of the critical sentence revealed a selective response of the brain to the two types of nonliteral utterances. Metaphoric utterances resulted in significantly higher levels of activation in the left inferior frontal gyrus and in bilateral inferior temporal cortex than the literal and ironic utterances. Ironic statements resulted in significantly higher activation levels than literal statements in the right superior and middle temporal gyri, with metaphoric statements resulting in intermediate levels in these regions. The findings show differential hemispheric sensitivity to these aspects of figurative language, and are relevant to models of the functional cortical architecture of language processing in connected discourse. PMID:16806316

  17. Reciprocal Benefits of Mass-Univariate and Multivariate Modeling in Brain Mapping: Applications to Event-Related Functional MRI, H2 15O-, and FDG-PET

    PubMed Central

    Habeck, Christian G.

    2006-01-01

    In brain mapping studies of sensory, cognitive, and motor operations, specific waveforms of dynamic neural activity are predicted based on theoretical models of human information processing. For example in event-related functional MRI (fMRI), the general linear model (GLM) is employed in mass-univariate analyses to identify the regions whose dynamic activity closely matches the expected waveforms. By comparison multivariate analyses based on PCA or ICA provide greater flexibility in detecting spatiotemporal properties of experimental data that may strongly support alternative neuroscientific explanations. We investigated conjoint multivariate and mass-univariate analyses that combine the capabilities to (1) verify activation of neural machinery we already understand and (2) discover reliable signatures of new neural machinery. We examined combinations of GLM and PCA that recover latent neural signals (waveforms and footprints) with greater accuracy than either method alone. Comparative results are illustrated with analyses of real fMRI data, adding to Monte Carlo simulation support. PMID:23165047

  18. Novelty and target processing during an auditory novelty oddball: a simultaneous event-related potential and functional magnetic resonance imaging study.

    PubMed

    Strobel, Alexander; Debener, Stefan; Sorger, Bettina; Peters, Judith C; Kranczioch, Cornelia; Hoechstetter, Karsten; Engel, Andreas K; Brocke, Burkhard; Goebel, Rainer

    2008-04-01

    Recent evidence suggests that both spatiotemporally distinct and overlapping brain regions are involved in bottom-up- and top-down-driven attentional processing. However, existing studies are based on a variety of different approaches, including electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), raising the question of how EEG and fMRI findings in this field are related to each other. The present study aimed at disentangling common from specific regions underlying bottom-up novelty-processing and top-down target-processing. Simultaneous EEG and fMRI recordings were employed to investigate how fMRI-identified brain regions contribute to event-related potential (ERP) signatures of novelty- and target-processing. Fourteen subjects performed a modified novelty oddball task in which either rare tones or novel sounds served as targets in different blocks, allowing us to separate novelty-related from mere distractor-related effects. ERP signatures of novelty- and target-processing could be identified, confirming previous research based on recordings outside the scanner. fMRI analyses revealed that, despite considerable overlap of regions activated during novelty- and target-processing, bilateral superior temporal and right inferior frontal areas showed pronounced activation related to novelty-processing. fMRI-informed ERP dipole seeding was used to integrate both signals. The source modeling results further implicated temporal and inferior frontal sources in novelty-processing. Target-related fMRI activation on the other hand was confirmed in a network comprising distributed frontoparietal regions as well as bilateral caudate nucleus and cerebellum. Most regions identified by fMRI showed a contribution to target-related ERP signatures. This pattern of findings underscores the potential of simultaneous EEG/fMRI recordings for the spatiotemporal characterization of target- and novelty-processing.

  19. Investigating brain response to music: a comparison of different fMRI acquisition schemes.

    PubMed

    Mueller, Karsten; Mildner, Toralf; Fritz, Thomas; Lepsien, Jöran; Schwarzbauer, Christian; Schroeter, Matthias L; Möller, Harald E

    2011-01-01

    Functional magnetic resonance imaging (fMRI) in auditory experiments is a challenge, because the scanning procedure produces considerable noise that can interfere with the auditory paradigm. The noise might either mask the auditory material presented, or interfere with stimuli designed to evoke emotions because it sounds loud and rather unpleasant. Therefore, scanning paradigms that allow interleaved auditory stimulation and image acquisition appear to be advantageous. The sparse temporal sampling (STS) technique uses a very long repetition time in order to achieve a stimulus presentation in the absence of scanner noise. Although only relatively few volumes are acquired for the resulting data sets, there have been recent studies where this method has furthered remarkable results. A new development is the interleaved silent steady state (ISSS) technique. Compared with STS, this method is capable of acquiring several volumes in the time frame between the auditory trials (while the magnetization is kept in a steady state during stimulus presentation). In order to draw conclusions about the optimum fMRI procedure with auditory stimulation, different echo-planar imaging (EPI) acquisition schemes were compared: Continuous scanning, STS, and ISSS. The total acquisition time of each sequence was adjusted to about 12.5 min. The results indicate that the ISSS approach exhibits the highest sensitivity in detecting subtle activity in sub-cortical brain regions.

  20. Investigating virtual reality navigation in amnestic mild cognitive impairment using fMRI.

    PubMed

    Migo, E M; O'Daly, O; Mitterschiffthaler, M; Antonova, E; Dawson, G R; Dourish, C T; Craig, K J; Simmons, A; Wilcock, G K; McCulloch, E; Jackson, S H D; Kopelman, M D; Williams, S C R; Morris, R G

    2016-01-01

    Spatial navigation requires a well-established network of brain regions, including the hippocampus, caudate nucleus, and retrosplenial cortex. Amnestic Mild Cognitive Impairment (aMCI) is a condition with predominantly memory impairment, conferring a high predictive risk factor for dementia. aMCI is associated with hippocampal atrophy and subtle deficits in spatial navigation. We present the first use of a functional Magnetic Resonance Imaging (fMRI) navigation task in aMCI, using a virtual reality analog of the Radial Arm Maze. Compared with controls, aMCI patients showed reduced activity in the hippocampus bilaterally, retrosplenial cortex, and left dorsolateral prefrontal cortex. Reduced activation in key areas for successful navigation, as well as additional regions, was found alongside relatively normal task performance. Results also revealed increased activity in the right dorsolateral prefrontal cortex in aMCI patients, which may reflect compensation for reduced activations elsewhere. These data support suggestions that fMRI spatial navigation tasks may be useful for staging of progression in MCI.

  1. Investigating virtual reality navigation in amnestic mild cognitive impairment using fMRI.

    PubMed

    Migo, E M; O'Daly, O; Mitterschiffthaler, M; Antonova, E; Dawson, G R; Dourish, C T; Craig, K J; Simmons, A; Wilcock, G K; McCulloch, E; Jackson, S H D; Kopelman, M D; Williams, S C R; Morris, R G

    2016-01-01

    Spatial navigation requires a well-established network of brain regions, including the hippocampus, caudate nucleus, and retrosplenial cortex. Amnestic Mild Cognitive Impairment (aMCI) is a condition with predominantly memory impairment, conferring a high predictive risk factor for dementia. aMCI is associated with hippocampal atrophy and subtle deficits in spatial navigation. We present the first use of a functional Magnetic Resonance Imaging (fMRI) navigation task in aMCI, using a virtual reality analog of the Radial Arm Maze. Compared with controls, aMCI patients showed reduced activity in the hippocampus bilaterally, retrosplenial cortex, and left dorsolateral prefrontal cortex. Reduced activation in key areas for successful navigation, as well as additional regions, was found alongside relatively normal task performance. Results also revealed increased activity in the right dorsolateral prefrontal cortex in aMCI patients, which may reflect compensation for reduced activations elsewhere. These data support suggestions that fMRI spatial navigation tasks may be useful for staging of progression in MCI. PMID:26234803

  2. Describing response-event relations: Babel revisited

    PubMed Central

    Lattal, Kennon A.; Poling, Alan D.

    1981-01-01

    The terms used to describe the relations among the three components of contingencies of reinforcement and punishment include many with multiple meanings and imprecise denotation. In particular, usage of the term “contingency” and its variants and acceptance of unsubstantiated functional, rather than procedural, descriptions of response-event relations are especially troublesome in the behavior analysis literature. Clarity seems best served by restricting the term “contingency” to its generic usage and by utilizing procedural descriptions of response-event relations. PMID:22478546

  3. Effects of personal space intrusion in affective contexts: an fMRI investigation with women suffering from borderline personality disorder

    PubMed Central

    Wabnegger, Albert; Schöngassner, Florian; Leutgeb, Verena

    2015-01-01

    The amygdala and the parietal cortex play a key role in the neural representation of personal space. Although the concept of personal space is clinically very relevant for borderline personality disorder (BPD), especially in affective contexts, it has not been investigated thus far with functional magnetic resonance imaging (fMRI). In this fMRI study, 25 female BPD patients and 25 healthy women were exposed to photos of angry, disgusted and neutral facial expressions. All stimuli were once shown as still photos, and once were zoomed-in in order to simulate intrusion into one’s own personal space. Approaching faces generally provoked activation of the amygdala and the somatosensory cortex. BPD patients showed an increased activation within both regions, but only toward approaching disgusted faces. Their amygdala activation in this specific condition positively correlated with self-disgust scores. Moreover, the clinical group indicated an enhanced personal distance preference, which was associated with parietal activation. The present study revealed altered personal space processing of BPD patients, especially in situations that relate to social contexts involving disgust. Future studies should focus on the temporal stability of personal space processing during the natural course of BPD as well as during therapy. PMID:25809402

  4. Effects of personal space intrusion in affective contexts: an fMRI investigation with women suffering from borderline personality disorder.

    PubMed

    Schienle, Anne; Wabnegger, Albert; Schöngassner, Florian; Leutgeb, Verena

    2015-10-01

    The amygdala and the parietal cortex play a key role in the neural representation of personal space. Although the concept of personal space is clinically very relevant for borderline personality disorder (BPD), especially in affective contexts, it has not been investigated thus far with functional magnetic resonance imaging (fMRI). In this fMRI study, 25 female BPD patients and 25 healthy women were exposed to photos of angry, disgusted and neutral facial expressions. All stimuli were once shown as still photos, and once were zoomed-in in order to simulate intrusion into one's own personal space. Approaching faces generally provoked activation of the amygdala and the somatosensory cortex. BPD patients showed an increased activation within both regions, but only toward approaching disgusted faces. Their amygdala activation in this specific condition positively correlated with self-disgust scores. Moreover, the clinical group indicated an enhanced personal distance preference, which was associated with parietal activation. The present study revealed altered personal space processing of BPD patients, especially in situations that relate to social contexts involving disgust. Future studies should focus on the temporal stability of personal space processing during the natural course of BPD as well as during therapy.

  5. Event-Related Brain Potential Correlates of Emotional Face Processing

    ERIC Educational Resources Information Center

    Eimer, Martin; Holmes, Amanda

    2007-01-01

    Results from recent event-related brain potential (ERP) studies investigating brain processes involved in the detection and analysis of emotional facial expression are reviewed. In all experiments, emotional faces were found to trigger an increased ERP positivity relative to neutral faces. The onset of this emotional expression effect was…

  6. Who caused the pain? An fMRI investigation of empathy and intentionality in children.

    PubMed

    Decety, Jean; Michalska, Kalina J; Akitsuki, Yuko

    2008-09-01

    When we attend to other people in pain, the neural circuits underpinning the processing of first-hand experience of pain are activated in the observer. This basic somatic sensorimotor resonance plays a critical role in the primitive building block of empathy and moral reasoning that relies on the sharing of others' distress. However, the full-blown capacity of human empathy is more sophisticated than the mere simulation of the target's affective state. Indeed, empathy is about both sharing and understanding the emotional state of others in relation to oneself. In this functional magnetic resonance imaging (fMRI) study, 17 typically developing children (range 7-12 yr) were scanned while presented with short animated visual stimuli depicting painful and non-painful situations. These situations involved either a person whose pain was accidentally caused or a person whose pain was intentionally inflicted by another individual. After scanning, children rated how painful these situations appeared. Consistent with previous fMRI studies of pain empathy with adults, the perception of other people in pain in children was associated with increased hemodynamic activity in the neural circuits involved in the processing of first-hand experience of pain, including the insula, somatosensory cortex, anterior midcingulate cortex, periaqueductal gray, and supplementary motor area. Interestingly, when watching another person inflicting pain onto another, regions that are consistently engaged in representing social interaction and moral behavior (the temporo-parietal junction, the paracingulate, orbital medial frontal cortices, amygdala) were additionally recruited, and increased their connectivity with the fronto-parietal attention network. These results are important to set the standard for future studies with children who exhibit social cognitive disorders (e.g., antisocial personality disorder, conduct disorder) and are often deficient in experiencing empathy or guilt.

  7. A Haptic Interface Based on Potential Mechanical Energy to Investigate Human Motor Control using fMRI.

    PubMed

    Dovat, L; Gassert, R; Chapuis, D; Ganesh, G; Burdet, E; Bleuler, H

    2005-01-01

    This paper describes a mechanical interface to use in conjunction with fMRI, in order to infer the brain mechanisms of human motor learning. Innovative mechanical concepts based on gravity and elastic forces were used to generate typical stable and unstable dynamic interactions at the hand during multijoint arm movements. Two designs were retained and implemented from MR compatible materials. The first uses a spring constrained between two specially designed surfaces and the other a capstan to transform the force induced by a groove carved on a shaft. These two degree-of-freedom mechanical interfaces have been constructed and tested. The use of a capstan mechanism was found to be limited by excessive friction, however, the method using a machined surface provides a simple and effective interface to investigate human motor control.

  8. Stretched, jumped, and fell: an fMRI investigation of reflexive verbs and other intransitives.

    PubMed

    Shetreet, Einat; Friedmann, Naama

    2012-04-15

    This study used fMRI to inform a debate between two theories concerning the representation of reflexive verbs. Reflexives are verbs that denote an action that the subject applies on herself (e.g., The woman stretched). These verbs are derived by a lexical operation that creates a reflexive from its transitive counterpart. Theories differ with respect to which thematic role is reduced by the lexical operation: the agent or the theme, and, consequently, whether the construction of sentences with reflexives in subject-verb order includes movement of the object to the subject position. To test this, we compared reflexive verbs with unaccusative verbs (e.g., The woman fell), and with unergative verbs (e.g., The woman jumped). Unaccusatives are derived by reduction of the role of the agent, and thus SV sentences with unaccusatives include movement to subject position. Unergatives do not undergo lexical operations and do not involve movement in SV sentences. The reflexives behaved like unergatives, and differently from unaccusatives: the activation pattern of unaccusatives compared with reflexives showed similar cortical pattern to that of unaccusatives compared with unergatives, with activations in the left inferior frontal gyrus and the left middle temporal gyrus (MTG). Comparing reflexives and unergatives revealed activation in the right MTG. These results indicate that reflexives differ from unaccusatives in their derivation. That is, reflexives do not involve the reduction of the agent of the parallel transitive, and hence no syntactic movement is involved in sentences in which the subject precedes the reflexive verb.

  9. The neural bases of cooperation and competition: an fMRI investigation

    PubMed Central

    Decety, Jean; Jackson, Philip L.; Sommerville, Jessica A.; Chaminade, Thierry; Meltzoff, Andrew N.

    2013-01-01

    Cooperation and competition are two basic modes of social cognition that necessitate monitoring of both one’s own and others’ actions, as well as adopting a specific mental set. In this fMRI, study individuals played a specially designed computer game, according to a set of predefined rules, either in cooperation with or in competition against another person. The hemodynamic response during these conditions was contrasted to that of the same subjects playing the game independently. Both cooperation and competition stances resulted in activation of a common frontoparietal network subserving executive functions, as well as the anterior insula, involved in autonomic arousal. Moreover, distinct regions were found to be selectively associated with cooperation and competition, notably the orbitofrontal cortex in the former and the inferior parietal and medial prefrontal cortices in the latter. This pattern reflects the different mental frameworks implicated in being cooperative versus competitive with another person. In accordance with evidence from evolutionary psychology as well as from developmental psychology, we argue that cooperation is a socially rewarding process and is associated with specific left medial orbitofrontal cortex involvement. PMID:15488424

  10. An fMRI investigation of the effects of culture on evaluations of stigmatized individuals.

    PubMed

    Krendl, Anne C

    2016-01-01

    Certain groups (e.g., women, older adults, and the economically disadvantaged) are universally stigmatized. Numerous studies, however, have identified cross-cultural differences in the attitudes expressed toward stigmatized groups. These differences may potentially be due to existing cross-cultural dissimilarities in social status for some groups. The current study used fMRI to examine whether Chinese and Caucasian-American participants engage the same cognitive and affective mechanisms when perceiving stigmatized individuals with similarly low social status in both cultures (homeless individuals), but different cognitive and/or affective processes when evaluating stigmatized individuals whose status differs across cultures (older adults). Using a social neuroscience approach can provide unique insight into this question because the neural regions involved in cognitive and affective evaluations of stigmatized individuals have been well characterized. Results revealed that Chinese participants and Caucasian-American participants engaged similar patterns of negative affective processing associated with disgust (left anterior insula) when evaluating homeless individuals. Moreover, self-reported negative explicit attitudes toward homeless individuals were associated with increased activity in the insula. However, Chinese participants and Caucasian-American participants engaged increased activity in neural regions associated with status (ventral striatum) when they evaluated older adults. Moreover, self-reported attitudes toward older adults and ventral striatal activity were correlated with the extent to which participants reported being affiliated with their respective cultural traditions. PMID:26302670

  11. An FMRI investigation of attributing negative social treatment to racial discrimination.

    PubMed

    Masten, Carrie L; Telzer, Eva H; Eisenberger, Naomi I

    2011-05-01

    We used fMRI to examine the neural responses that occur during experiences of perceived racial discrimination. Previous neuroimaging studies have focused exclusively on the processes underlying racial bias from the perpetrator's perspective and have yet to examine the processes that occur when individuals are being discriminated against. To extend this work, we examined the neural correlates associated with attributing negative social treatment to racial discrimination to explore the cognitive and affective processes that occur as discrimination is being experienced. To do this, we scanned Black participants while they were ostensibly excluded by Whites and then measured distress levels and race-based attributions for exclusion. In response to being socially excluded by Whites, Black participants who appeared to be more distressed showed greater social pain-related neural activity and reduced emotion regulatory neural activity. In addition, those who attributed exclusion to racial discrimination displayed less social pain-related and more emotion regulatory neural activity. The potential negative impact that frequent negative social treatment and discrimination-related distress regulation might have on individuals' long-term mental and physical health is discussed. PMID:20521861

  12. Overcoming interference: an fMRI investigation of pattern separation in the medial temporal lobe.

    PubMed

    Kirwan, C Brock; Stark, Craig E L

    2007-09-01

    The medial temporal lobe (MTL) supports the formation and retrieval of long-term declarative memories, or memories for facts and everyday events. One challenge posed for this type of memory stems from the highly overlapping nature of common episodes. Within cognitive psychology, it is widely accepted that interference between information learned at different times is a major limitation on memory. In spite of several decades of intense research in the fields of interference theory and the neurobiological underpinnings of declarative memory, there is little direct evidence bearing on how the MTL resolves this interference to form accurate memories of everyday facts and events. Computational models of MTL function have proposed a mechanism in which the MTL, specifically the hippocampus, performs pattern separation, whereby overlapping representations are made less similar. However, there is little evidence bearing on how this process is carried out in the intact human MTL. Using high-resolution fMRI, we conducted a set of experiments that taxed behavioral pattern separation by using highly similar, interfering stimuli in a modified continuous recognition task. Regions within the parahippocampal gyrus demonstrated activity consistent with a "recall to reject" strategy. In contrast and critical to performing the task, activity within the hippocampus distinguished between correctly identified true stimulus repetitions, correctly rejected presentations of similar lure stimuli, and false alarms to similar lures. These data support the computational models' assertion that the hippocampus plays a key role in pattern separation. PMID:17848502

  13. An FMRI investigation of spontaneous mental state inference for moral judgment.

    PubMed

    Young, Liane; Saxe, Rebecca

    2009-07-01

    Human moral judgment depends critically on "theory of mind," the capacity to represent the mental states of agents. Recent studies suggest that the right TPJ (RTPJ) and, to lesser extent, the left TPJ (LTPJ), the precuneus (PC), and the medial pFC (MPFC) are robustly recruited when participants read explicit statements of an agent's beliefs and then judge the moral status of the agent's action. Real-world interactions, by contrast, often require social partners to infer each other's mental states. The current study uses fMRI to probe the role of these brain regions in supporting spontaneous mental state inference in the service of moral judgment. Participants read descriptions of a protagonist's action and then either (i) "moral" facts about the action's effect on another person or (ii) "nonmoral" facts about the situation. The RTPJ, PC, and MPFC were recruited selectively for moral over nonmoral facts, suggesting that processing moral stimuli elicits spontaneous mental state inference. In a second experiment, participants read the same scenarios, but explicit statements of belief preceded the facts: Protagonists believed their actions would cause harm or not. The response in the RTPJ, PC, and LTPJ was again higher for moral facts but also distinguished between neutral and negative outcomes. Together, the results illuminate two aspects of theory of mind in moral judgment: (1) spontaneous belief inference and (2) stimulus-driven belief integration. PMID:18823250

  14. Differences in global and local level information processing in autism: an fMRI investigation

    PubMed Central

    Gadgil, Milind; Peterson, Eric; Tregellas, Jason; Hepburn, Susan; Rojas, Donald

    2013-01-01

    People with autism spectrum disorders (ASD) have atypical visual perception of global and local information. Previous neuroimaging studies have examined the functional anatomy of locally-directed attention during visual processing in ASD, but few have examined differences in both globally-and locally-directed attention. We performed functional magnetic resonance imaging (fMRI) in 17 adults with ASD and 16 typically developing (TD) subjects to examine the neurobiology of both global- and local- level information processing in ASD using an abstract hierarchical design task. TD subjects showed no regions of increased brain activation relative to subjects with ASD using whole brain analysis. Subjects with ASD exhibited greater activation in right superior frontal gyrus during locally directed attention. During globally directed attention, the ASD group showed greater right lateral occipital activation. Additionally, subjects with ASD showed less deactivation in medial prefrontal cortex (part of the default mode network) in the globally directed attention condition. Our findings help elucidate networks of brain activation related to atyipcal global and local feature processing in ASD. PMID:23768913

  15. An fMRI investigation of expectation violation in magic tricks.

    PubMed

    Danek, Amory H; Öllinger, Michael; Fraps, Thomas; Grothe, Benedikt; Flanagin, Virginia L

    2015-01-01

    Magic tricks violate the expected causal relationships that form an implicit belief system about what is possible in the world around us. Observing a magic effect seemingly invalidates our implicit assumptions about what action causes which outcome. We aimed at identifying the neural correlates of such expectation violations by contrasting 24 video clips of magic tricks with 24 control clips in which the expected action-outcome relationship is upheld. Using fMRI, we measured the brain activity of 25 normal volunteers while they watched the clips in the scanner. Additionally, we measured the professional magician who had performed the magic tricks under the assumption that, in contrast to naïve observers, the magician himself would not perceive his own magic tricks as an expectation violation. As the main effect of magic - control clips in the normal sample, we found higher activity for magic in the head of the caudate nucleus (CN) bilaterally, the left inferior frontal gyrus and the left anterior insula. As expected, the magician's brain activity substantially differed from these results, with mainly parietal areas (supramarginal gyrus bilaterally) activated, supporting our hypothesis that he did not experience any expectation violation. These findings are in accordance with previous research that has implicated the head of the CN in processing changes in the contingency between action and outcome, even in the absence of reward or feedback.

  16. An fMRI investigation of expectation violation in magic tricks

    PubMed Central

    Danek, Amory H.; Öllinger, Michael; Fraps, Thomas; Grothe, Benedikt; Flanagin, Virginia L.

    2015-01-01

    Magic tricks violate the expected causal relationships that form an implicit belief system about what is possible in the world around us. Observing a magic effect seemingly invalidates our implicit assumptions about what action causes which outcome. We aimed at identifying the neural correlates of such expectation violations by contrasting 24 video clips of magic tricks with 24 control clips in which the expected action-outcome relationship is upheld. Using fMRI, we measured the brain activity of 25 normal volunteers while they watched the clips in the scanner. Additionally, we measured the professional magician who had performed the magic tricks under the assumption that, in contrast to naïve observers, the magician himself would not perceive his own magic tricks as an expectation violation. As the main effect of magic – control clips in the normal sample, we found higher activity for magic in the head of the caudate nucleus (CN) bilaterally, the left inferior frontal gyrus and the left anterior insula. As expected, the magician’s brain activity substantially differed from these results, with mainly parietal areas (supramarginal gyrus bilaterally) activated, supporting our hypothesis that he did not experience any expectation violation. These findings are in accordance with previous research that has implicated the head of the CN in processing changes in the contingency between action and outcome, even in the absence of reward or feedback. PMID:25699001

  17. An fMRI investigation of the cultural specificity of music memory

    PubMed Central

    Morrison, Steven J.; Stambaugh, Laura A.; Beken, Münir; Richards, Todd L.; Johnson, Clark

    2010-01-01

    This study explored the role of culture in shaping music perception and memory. We tested the hypothesis that listeners demonstrate different patterns of activation associated with music processing—particularly right frontal cortex—when encoding and retrieving culturally familiar and unfamiliar stimuli, with the latter evoking broader activation consistent with more complex memory tasks. Subjects (n = 16) were right-handed adults born and raised in the USA (n = 8) or Turkey (n = 8) with minimal music training. Using fMRI procedures, we scanned subjects during two tasks: (i) listening to novel musical examples from their own culture and an unfamiliar culture and (ii) identifying which among a series of brief excerpts were taken from the longer examples. Both groups were more successful remembering music of their home culture. We found greater activation for culturally unfamiliar music listening in the left cerebellar region, right angular gyrus, posterior precuneus and right middle frontal area extending into the inferior frontal cortex. Subjects demonstrated greater activation in the cingulate gyrus and right lingual gyrus when engaged in recall of culturally unfamiliar music. This study provides evidence for the influence of culture on music perception and memory performance at both a behavioral and neurological level. PMID:20035018

  18. An fMRI investigation of the effects of culture on evaluations of stigmatized individuals.

    PubMed

    Krendl, Anne C

    2016-01-01

    Certain groups (e.g., women, older adults, and the economically disadvantaged) are universally stigmatized. Numerous studies, however, have identified cross-cultural differences in the attitudes expressed toward stigmatized groups. These differences may potentially be due to existing cross-cultural dissimilarities in social status for some groups. The current study used fMRI to examine whether Chinese and Caucasian-American participants engage the same cognitive and affective mechanisms when perceiving stigmatized individuals with similarly low social status in both cultures (homeless individuals), but different cognitive and/or affective processes when evaluating stigmatized individuals whose status differs across cultures (older adults). Using a social neuroscience approach can provide unique insight into this question because the neural regions involved in cognitive and affective evaluations of stigmatized individuals have been well characterized. Results revealed that Chinese participants and Caucasian-American participants engaged similar patterns of negative affective processing associated with disgust (left anterior insula) when evaluating homeless individuals. Moreover, self-reported negative explicit attitudes toward homeless individuals were associated with increased activity in the insula. However, Chinese participants and Caucasian-American participants engaged increased activity in neural regions associated with status (ventral striatum) when they evaluated older adults. Moreover, self-reported attitudes toward older adults and ventral striatal activity were correlated with the extent to which participants reported being affiliated with their respective cultural traditions.

  19. An fMRI investigation of the cultural specificity of music memory.

    PubMed

    Demorest, Steven M; Morrison, Steven J; Stambaugh, Laura A; Beken, Münir; Richards, Todd L; Johnson, Clark

    2010-06-01

    This study explored the role of culture in shaping music perception and memory. We tested the hypothesis that listeners demonstrate different patterns of activation associated with music processing-particularly right frontal cortex-when encoding and retrieving culturally familiar and unfamiliar stimuli, with the latter evoking broader activation consistent with more complex memory tasks. Subjects (n = 16) were right-handed adults born and raised in the USA (n = 8) or Turkey (n = 8) with minimal music training. Using fMRI procedures, we scanned subjects during two tasks: (i) listening to novel musical examples from their own culture and an unfamiliar culture and (ii) identifying which among a series of brief excerpts were taken from the longer examples. Both groups were more successful remembering music of their home culture. We found greater activation for culturally unfamiliar music listening in the left cerebellar region, right angular gyrus, posterior precuneus and right middle frontal area extending into the inferior frontal cortex. Subjects demonstrated greater activation in the cingulate gyrus and right lingual gyrus when engaged in recall of culturally unfamiliar music. This study provides evidence for the influence of culture on music perception and memory performance at both a behavioral and neurological level.

  20. Bi-Directional Tuning of Amygdala Sensitivity in Combat Veterans Investigated with fMRI

    PubMed Central

    Brashers-Krug, Tom; Jorge, Ricardo

    2015-01-01

    Objectives Combat stress can be followed by persistent emotional consequences. It is thought that these emotional consequences are caused in part by increased amygdala reactivity. It is also thought that amygdala hyper-reactivity results from decreased inhibition from portions of the anterior cingulate cortex (ACC) in which activity is negatively correlated with activity in the amygdala. However, experimental support for these proposals has been inconsistent. Methods We showed movies of combat and civilian scenes during a functional magnetic resonance imaging (fMRI) session to 50 veterans of recent combat. We collected skin conductance responses (SCRs) as measures of emotional arousal. We examined the relation of blood oxygenation-level dependent (BOLD) signal in the amygdala and ACC to symptom measures and to SCRs. Results Emotional arousal, as measured with SCR, was greater during the combat movie than during the civilian movie and did not depend on symptom severity. As expected, amygdala signal during the less-arousing movie increased with increasing symptom severity. Surprisingly, during the more-arousing movie amygdala signal decreased with increasing symptom severity. These differences led to the unexpected result that amygdala signal in highly symptomatic subjects was lower during the more-arousing movie than during the less-arousing movie. Also unexpectedly, we found no significant inverse correlation between any portions of the amygdala and ACC. Rather, signal throughout more than 80% of the ACC showed a strong positive correlation with signal throughout more than 90% of the amygdala. Conclusions Amygdala reactivity can be tuned bi-directionally, either up or down, in the same person depending on the stimulus and the degree of post-traumatic symptoms. The exclusively positive correlations in BOLD activity between the amygdala and ACC contrast with findings that have been cited as evidence for inhibitory control of the amygdala by the ACC. The

  1. fMRI investigation of visual change detection in adults with autism.

    PubMed

    Clery, H; Andersson, F; Bonnet-Brilhault, F; Philippe, A; Wicker, B; Gomot, M

    2013-01-01

    People with autism spectrum disorders (ASD) may show unusual reactions to unexpected changes that appear in their environment. Although several studies have highlighted atypical auditory change processing in ASD, little is known in this disorder about the brain processes involved in visual automatic change detection. The present fMRI study was designed to localize brain activity elicited by unexpected visual changing stimuli in adults with ASD compared to controls. Twelve patients with ASD and 17 healthy adults participated in the experiment in which subjects were presented with a visual oddball sequence while performing a concurrent target detection task. Combined results across participants highlight the involvement of both occipital (BA 18/19) and frontal (BA 6/8) regions during visual change detection. However, adults with ASD display greater activity in the bilateral occipital cortex and in the anterior cingulate cortex (ACC) associated with smaller activation in the superior and middle frontal gyri than controls. A psychophysiological interaction (PPI) analysis was performed with ACC as the seed region and revealed greater functionally connectivity to sensory regions in ASD than in controls, but less connectivity to prefrontal and orbito-frontal cortices. Thus, compared to controls, larger sensory activation associated with reduced frontal activation was seen in ASD during automatic visual change detection. Atypical psychophysiological interactions between frontal and occipital regions were also found, congruent with the idea of atypical connectivity between these regions in ASD. The atypical involvement of the ACC in visual change detection can be related to abnormalities previously observed in the auditory modality, thus supporting the hypothesis of an altered general mechanism of change detection in patients with ASD that would underlie their unusual reaction to change.

  2. Identifying brain systems for gaze orienting during reading: fMRI investigation of the Landolt paradigm

    PubMed Central

    Hillen, Rebekka; Günther, Thomas; Kohlen, Claudia; Eckers, Cornelia; van Ermingen-Marbach, Muna; Sass, Katharina; Scharke, Wolfgang; Vollmar, Josefine; Radach, Ralph; Heim, Stefan

    2013-01-01

    The Landolt reading paradigm was created in order to dissociate effects of eye movements and attention from lexical, syntactic, and sub-lexical processing. While previous eye-tracking and behavioral findings support the usefulness of the paradigm, it remains to be shown that the paradigm actually relies on the brain networks for occulomotor control and attention, but not on systems for lexical/syntactic/orthographic processing. Here, 20 healthy volunteers underwent fMRI scanning while reading sentences (with syntax) or unconnected lists of written stimuli (no syntax) consisting of words (with semantics) or pseudowords (no semantics). In an additional “Landolt reading” condition, all letters were replaced by closed circles, which should be scanned for targets (Landolt's rings) in a reading-like fashion from left to right. A conjunction analysis of all five conditions revealed the visual scanning network which involved bilateral visual cortex, premotor cortex, and superior parietal cortex, but which did not include regions for semantics, syntax, or orthography. Contrasting the Landolt reading condition with all other regions revealed additional involvement of the right superior parietal cortex (areas 7A/7P/7PC) and postcentral gyrus (area 2) involved in deliberate gaze shifting. These neuroimaging findings demonstrate for the first time that the linguistic and orthographic brain network can be dissociated from a pure gaze-orienting network with the Landolt paradigm. Consequently, the Landolt paradigm may provide novel insights into the contributions of linguistic and non-linguistic factors on reading failure e.g., in developmental dyslexia. PMID:23908615

  3. fMRI investigation of visual change detection in adults with autism☆

    PubMed Central

    Clery, H.; Andersson, F.; Bonnet-Brilhault, F.; Philippe, A.; Wicker, B.; Gomot, M.

    2013-01-01

    People with autism spectrum disorders (ASD) may show unusual reactions to unexpected changes that appear in their environment. Although several studies have highlighted atypical auditory change processing in ASD, little is known in this disorder about the brain processes involved in visual automatic change detection. The present fMRI study was designed to localize brain activity elicited by unexpected visual changing stimuli in adults with ASD compared to controls. Twelve patients with ASD and 17 healthy adults participated in the experiment in which subjects were presented with a visual oddball sequence while performing a concurrent target detection task. Combined results across participants highlight the involvement of both occipital (BA 18/19) and frontal (BA 6/8) regions during visual change detection. However, adults with ASD display greater activity in the bilateral occipital cortex and in the anterior cingulate cortex (ACC) associated with smaller activation in the superior and middle frontal gyri than controls. A psychophysiological interaction (PPI) analysis was performed with ACC as the seed region and revealed greater functionally connectivity to sensory regions in ASD than in controls, but less connectivity to prefrontal and orbito-frontal cortices. Thus, compared to controls, larger sensory activation associated with reduced frontal activation was seen in ASD during automatic visual change detection. Atypical psychophysiological interactions between frontal and occipital regions were also found, congruent with the idea of atypical connectivity between these regions in ASD. The atypical involvement of the ACC in visual change detection can be related to abnormalities previously observed in the auditory modality, thus supporting the hypothesis of an altered general mechanism of change detection in patients with ASD that would underlie their unusual reaction to change. PMID:24179785

  4. Stop-signal response inhibition in schizophrenia: behavioural, event-related potential and functional neuroimaging data.

    PubMed

    Hughes, Matthew Edward; Fulham, William Ross; Johnston, Patrick James; Michie, Patricia Therese

    2012-01-01

    Inhibitory control deficits are well documented in schizophrenia, supported by impairment in an established measure of response inhibition, the stop-signal reaction time (SSRT). We investigated the neural basis of this impairment by comparing schizophrenia patients and controls matched for age, sex and education on behavioural, functional magnetic resonance imaging (fMRI) and event-related potential (ERP) indices of stop-signal task performance. Compared to controls, patients exhibited slower SSRT and reduced right inferior frontal gyrus (rIFG) activation, but rIFG activation correlated with SSRT in both groups. Go stimulus and stop-signal ERP components (N1/P3) were smaller in patients, but the peak latencies of stop-signal N1 and P3 were also delayed in patients, indicating impairment early in stop-signal processing. Additionally, response-locked lateralised readiness potentials indicated response preparation was prolonged in patients. An inability to engage rIFG may predicate slowed inhibition in patients, however multiple spatiotemporal irregularities in the networks underpinning stop-signal task performance may contribute to this deficit. PMID:22027085

  5. The intention to conceal activates the right prefrontal cortex: an event-related potential study.

    PubMed

    Matsuda, Izumi; Nittono, Hiroshi

    2015-03-01

    Recent studies on deception have shown that a late positive potential (LPP), a component of event-related brain potentials, is elicited when a participant wishes to conceal recognition of the eliciting stimulus. The LPP occurs about 500 ms after stimulus onset and has an occipital scalp distribution with concurrent negativity at frontal sites. The present study investigated the cortical sources of the LPP associated with the intention to conceal. Standardized low-resolution electromagnetic tomography analysis was applied on previously published concealment-related LPP data (Matsuda, Nittono, and Ogawa, 2013, N=30). The cortical sources of the LPP were estimated in the right middle frontal gyrus and the right inferior frontal gyrus, which fits well with the findings of fMRI studies. Previous research suggests that activities in the middle frontal gyrus and the right inferior frontal gyrus are associated with cognitive control and that greater relative right than left frontal activities are associated with withdrawal motivation. On the basis of these findings, it is concluded that the LPP may reflect cognitive control with withdrawal motivation that is recruited by the participants' goal of concealing their recognition and avoiding disclosure. A positive potential at occipital sites can be a sign of the activation in the prefrontal cortex.

  6. Improved detection of event-related functional MRI signals using probability functions.

    PubMed

    Hagberg, G E; Zito, G; Patria, F; Sanes, J N

    2001-11-01

    Selecting an optimal event distribution for experimental use in event-related fMRI studies can require the generation of large numbers of event sequences with characteristics hard to control. The use of known probability distributions offers the possibility to control event timing and constrain the search space for finding optimal event sequences. We investigated different probability distributions in terms of response estimation (estimation efficiency), detectability (detection power, parameter estimation efficiency, sensitivity to true positives), and false-positive activation. Numerous simulated event sequences were generated selecting interevent intervals (IEI) from the uniform, uniform permuted, Latin square, exponential, binomial, Poisson, chi(2), geometric, and bimodal probability distributions and fixed IEI. Event sequences from the bimodal distribution, like block designs, had the best performance for detection and the poorest for estimation, while high estimation and detectability occurred for the long-decay exponential distribution. The uniform distribution also yielded high estimation efficiency, but probability functions with a long tail toward higher IEI, such as the geometric and the chi(2) distributions, had superior detectability. The distributions with the best detection performance also had a relatively high incidence of false positives, in contrast to the ordered distributions (Latin square and uniform permuted). The predictions of improved sensitivities for distributions with long tails were confirmed with empirical data. Moreover, the Latin square design yielded detection of activated voxels similar to the chi(2) distribution. These results indicate that high detection and suitable behavioral designs have compatibility for application of functional MRI methods to experiments requiring complex designs.

  7. Neural Dynamics Underlying Event-Related Potentials

    NASA Technical Reports Server (NTRS)

    Shah, Ankoor S.; Bressler, Steven L.; Knuth, Kevin H.; Ding, Ming-Zhou; Mehta, Ashesh D.; Ulbert, Istvan; Schroeder, Charles E.

    2003-01-01

    There are two opposing hypotheses about the brain mechanisms underlying sensory event-related potentials (ERPs). One holds that sensory ERPs are generated by phase resetting of ongoing electroencephalographic (EEG) activity, and the other that they result from signal averaging of stimulus-evoked neural responses. We tested several contrasting predictions of these hypotheses by direct intracortical analysis of neural activity in monkeys. Our findings clearly demonstrate evoked response contributions to the sensory ERP in the monkey, and they suggest the likelihood that a mixed (Evoked/Phase Resetting) model may account for the generation of scalp ERPs in humans.

  8. Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses.

    PubMed

    Mumford, Jeanette A; Turner, Benjamin O; Ashby, F Gregory; Poldrack, Russell A

    2012-02-01

    Use of multivoxel pattern analysis (MVPA) to predict the cognitive state of a subject during task performance has become a popular focus of fMRI studies. The input to these analyses consists of activation patterns corresponding to different tasks or stimulus types. These activation patterns are fairly straightforward to calculate for blocked trials or slow event-related designs, but for rapid event-related designs the evoked BOLD signal for adjacent trials will overlap in time, complicating the identification of signal unique to specific trials. Rapid event-related designs are often preferred because they allow for more stimuli to be presented and subjects tend to be more focused on the task, and thus it would be beneficial to be able to use these types of designs in MVPA analyses. The present work compares 8 different models for estimating trial-by-trial activation patterns for a range of rapid event-related designs varying by interstimulus interval and signal-to-noise ratio. The most effective approach obtains each trial's estimate through a general linear model including a regressor for that trial as well as another regressor for all other trials. Through the analysis of both simulated and real data we have found that this model shows some improvement over the standard approaches for obtaining activation patterns. The resulting trial-by-trial estimates are more representative of the true activation magnitudes, leading to a boost in classification accuracy in fast event-related designs with higher signal-to-noise. This provides the potential for fMRI studies that allow simultaneous optimization of both univariate and MVPA approaches.

  9. Sex-Related Hemispheric Lateralization of Amygdala Function in Emotionally Influenced Memory: An fMRI Investigation

    PubMed Central

    Cahill, Larry; Uncapher, Melina; Kilpatrick, Lisa; Alkire, Mike T.; Turner, Jessica

    2004-01-01

    The amygdala appears necessary for enhanced long-term memory associated with emotionally arousing events. Recent brain imaging investigations support this view and indicate a sex-related hemispheric lateralization exists in the amygdala relationship to memory for emotional material. This study confirms and further explores this finding. Healthy men and women underwent functional Magnetic Resonance Imaging (fMRI) while viewing a series of standardized slides that were rated by the subjects as ranging from emotionally neutral to highly arousing. Two weeks later, memory for the slides was assessed in an incidental recognition test. The results demonstrate a significantly stronger relationship in men than in women between activity of the right hemisphere amygdala and memory for those slides judged as arousing, and a significantly stronger relationship in women than in men between activity of the left hemisphere amygdala and memory for arousing slides. An ANOVA confirmed a significant interaction between sex and hemisphere regarding amygdala function in memory. These results provide the strongest evidence to date of a sex-related hemispheric lateralization of amygdala function in memory for emotional material. Furthermore, they underscore the view that investigations of neural mechanisms underlying emotionally influenced memory must anticipate, and begin to account for, the apparently substantial influence of sex. PMID:15169855

  10. Under-reactive but easily distracted: An fMRI investigation of attentional capture in autism spectrum disorder.

    PubMed

    Keehn, Brandon; Nair, Aarti; Lincoln, Alan J; Townsend, Jeanne; Müller, Ralph-Axel

    2016-02-01

    For individuals with autism spectrum disorder (ASD), salient behaviorally-relevant information often fails to capture attention, while subtle behaviorally-irrelevant details commonly induce a state of distraction. The present study used functional magnetic resonance imaging (fMRI) to investigate the neurocognitive networks underlying attentional capture in sixteen high-functioning children and adolescents with ASD and twenty-one typically developing (TD) individuals. Participants completed a rapid serial visual presentation paradigm designed to investigate activation of attentional networks to behaviorally-relevant targets and contingent attention capture by task-irrelevant distractors. In individuals with ASD, target stimuli failed to trigger bottom-up activation of the ventral attentional network and the cerebellum. Additionally, the ASD group showed no differences in behavior or occipital activation associated with contingent attentional capture. Rather, results suggest that to-be-ignored distractors that shared either task-relevant or irrelevant features captured attention in ASD. Results indicate that individuals with ASD may be under-reactive to behaviorally-relevant stimuli, unable to filter irrelevant information, and that both top-down and bottom-up attention networks function atypically in ASD. Lastly, deficits in target-related processing were associated with autism symptomatology, providing further support for the hypothesis that non-social attentional processes and their neurofunctional underpinnings may play a significant role in the development of sociocommunicative impairments in ASD. PMID:26708773

  11. P 300 EVENT RELATED POTENTIAL IN DEPRESSION

    PubMed Central

    Singh, R.; Shukla, R.; Dalal, P.K.; Sinha, P.K.; Trivedi, J.K.

    2000-01-01

    P300 component of the event related potential (ERP) provides one neurophysiological index of cognitive dysfunction in depression. Forty subjects fulfilling DSM-III criteria for depression were compared to 40 age and sex matched normal controls. The P300 was recorded using the auditory odd-ball paradigm. Depressives had a significantly prolonged P300 latency and reduced P300 amplitude as compared to the controls. The P300 latency showed a significant positive correlation with age of the patient and severity of depression while P300 amplitude showed a significant negative correlation with age. The clinical subcategory of depression, duration of illness and sex did not show any relationship with P300 abnormality. Twelve out of 40 depressives (30%) had an abnormal P300. The mean Hamilton Rating Scale for Depression (HRSD) score was significantly high in those with an abnormal P300. PMID:21407978

  12. The good, the bad, and the ugly: an fMRI investigation of the functional anatomic correlates of stigma.

    PubMed

    Krendl, Anne C; Macrae, C Neil; Kelley, William M; Fugelsang, Jonathan A; Heatherton, Todd F

    2006-01-01

    Social interactions require fast and efficient person perception, which is best achieved through the process of categorization. However, this process can produce pernicious outcomes, particularly in the case of stigma. This study used fMRI to investigate the neural correlates involved in forming both explicit ("Do you like or dislike this person?") and implicit ("Is this a male or female?") judgments of people possessing well-established stigmatized conditions (obesity, facial piercings, transsexuality, and unattractiveness), as well as normal controls. Participants also made post-scan disgust ratings on all the faces that they viewed during imaging. These ratings were subsequently examined (modeled linearly) in a parametric analysis. Regions of interest that emerged include areas previously demonstrated to respond to aversive and disgust-inducing material (amygdala and insula), as well as regions strongly associated with inhibition and control (anterior cingulate and lateral prefrontal cortex). Further, greater differences in activation were observed in the implicit condition for both the amygdala and prefrontal cortical regions in response to the most negatively perceived faces. Specifically, as subcortical responses (e.g., amygdala) increased, cortical responses (e.g., lateral PFC and anterior cingulate) also increased, indicating the possibility of inhibitory processing. These findings help elucidate the neural underpinnings of stigma.

  13. Brain functions after sports-related concussion: insights from event-related potentials and functional MRI.

    PubMed

    Gosselin, Nadia; Saluja, Rajeet Singh; Chen, Jen-Kai; Bottari, Carolina; Johnston, Karen; Ptito, Alain

    2010-10-01

    The high incidence of concussions in contact sports and their impact on brain functions are a major cause for concern. To improve our understanding of brain functioning after sports-related concussion, advanced functional assessment techniques, namely event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI), have been recently used in research studies. Contrary to neuropsychological tests that measure verbal and/or motor responses, ERPs and fMRI assess the neural activities associated with cognitive/behavioral demands, and thus provide access to better comprehension of brain functioning. In fact, ERPs have excellent temporal resolution, and fMRI identifies the involved structures during a task. This article describes ERP and fMRI techniques and reviews the results obtained with these tools in sports-related concussion. Although these techniques are not yet readily available, they offer a unique clinical approach, particularly for complex cases (ie, athletes with multiple concussions, chronic symptoms) and objective measures that provide valuable information to guide management and return-to-play decision making.

  14. The Event-Related Low-Frequency Activity of Highly and Average Intelligent Children

    ERIC Educational Resources Information Center

    Liu, Tongran; Shi, Jiannong; Zhao, Daheng; Yang, Jie

    2008-01-01

    Using time-frequency analysis techniques to investigate the event-related low-frequency (delta: 0.5-4 Hz; theta: 4-8 Hz) activity of auditory event-related potentials (ERPs) data of highly and average intelligent children, 18 intellectually gifted children, and 18 intellectually average children participated the present study. Present findings…

  15. An fMRI Investigation of Covertly and Overtly Produced Mono- And Multisyllabic Words

    ERIC Educational Resources Information Center

    Shuster, Linda I.; Lemieux, Susan K.

    2005-01-01

    Studies suggest that the left insula may play an important role in speech motor programming. We used functional magnetic resonance imaging to investigate the role of the left insula in the production of monosyllabic or multisyllabic words during overt and covert speech conditions. The left insula did not show a BOLD response for multisyllabic…

  16. The Effect of Sublexical and Lexical Frequency on Speech Production: An fMRI Investigation

    ERIC Educational Resources Information Center

    Shuster, Linda I.

    2009-01-01

    There is no consensus regarding the fundamental phonetic units that underlie speech production. There is, however, general agreement that the frequency of occurrence of these units is a significant factor. Investigators often use the effects of manipulating frequency to support the importance of particular units. Studies of pseudoword production…

  17. Superior digit memory of abacus experts: an event-related functional MRI study.

    PubMed

    Tanaka, Satoshi; Michimata, Chikashi; Kaminaga, Tatsuro; Honda, Manabu; Sadato, Norihiro

    2002-12-01

    Abacus experts exhibit superior short-term memory for digits, but the underlying neurophysiological mechanism remains unknown. Using event-related fMRI, we examined the brain activity of abacus experts and non-experts during the memory retention period of a delayed match-to-sample task using digits as stimuli. In controls, activity was greater in cortical areas related to verbal working memory, including Broca's area. In contrast, in experts, activity was greater in cortical areas related to visuo-spatial working memory, including the bilateral superior frontal sulcus and superior parietal lobule. This provides neurophysiological evidence that abacus experts utilize a visuo-spatial representation for digit memory.

  18. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions

    PubMed Central

    Luijten, Maartje; Machielsen, Marise W.J.; Veltman, Dick J.; Hester, Robert; de Haan, Lieuwe; Franken, Ingmar H.A.

    2014-01-01

    Background Several current theories emphasize the role of cognitive control in addiction. The present review evaluates neural deficits in the domains of inhibitory control and error processing in individuals with substance dependence and in those showing excessive addiction-like behaviours. The combined evaluation of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) findings in the present review offers unique information on neural deficits in addicted individuals. Methods We selected 19 ERP and 22 fMRI studies using stop-signal, go/no-go or Flanker paradigms based on a search of PubMed and Embase. Results The most consistent findings in addicted individuals relative to healthy controls were lower N2, error-related negativity and error positivity amplitudes as well as hypoactivation in the anterior cingulate cortex (ACC), inferior frontal gyrus and dorsolateral prefrontal cortex. These neural deficits, however, were not always associated with impaired task performance. With regard to behavioural addictions, some evidence has been found for similar neural deficits; however, studies are scarce and results are not yet conclusive. Differences among the major classes of substances of abuse were identified and involve stronger neural responses to errors in individuals with alcohol dependence versus weaker neural responses to errors in other substance-dependent populations. Limitations Task design and analysis techniques vary across studies, thereby reducing comparability among studies and the potential of clinical use of these measures. Conclusion Current addiction theories were supported by identifying consistent abnormalities in prefrontal brain function in individuals with addiction. An integrative model is proposed, suggesting that neural deficits in the dorsal ACC may constitute a hallmark neurocognitive deficit underlying addictive behaviours, such as loss of control. PMID:24359877

  19. Event-related brain potentials - Comparison between children and adults

    NASA Technical Reports Server (NTRS)

    Courchesne, E.

    1977-01-01

    The reported investigation shows that nontarget stimuli which are infrequently presented and deviate from the background elicit Nc and Pc waves in children. The same stimuli elicit P3 waves in adults. The scalp distribution of P3 waves in adults appears to vary with the ease of stimulus recognition or the degree of stimulus novelty. However, the Nc and Pc distributions in children do not seem to vary with these factors. The differences between children and adults in event-related potentials suggest corresponding differences in the mode of processing employed by each when rare, deviant stimuli are encountered

  20. Default distrust? An fMRI investigation of the neural development of trust and cooperation

    PubMed Central

    Gromann, Paula M.; Giampietro, Vincent; Shergill, Sukhi S.; Krabbendam, Lydia

    2014-01-01

    The tendency to trust and to cooperate increases from adolescence to adulthood. This social development has been associated with improved mentalizing and age-related changes in brain function. Thus far, there is limited imaging data investigating these associations. We used two trust games with a trustworthy and an unfair partner to explore the brain mechanisms underlying trust and cooperation in subjects ranging from adolescence to mid-adulthood. Increasing age was associated with higher trust at the onset of social interactions, increased levels of trust during interactions with a trustworthy partner and a stronger decline in trust during interactions with an unfair partner. Our findings demonstrate a behavioural shift towards higher trust and an age-related increase in the sensitivity to others’ negative social signals. Increased brain activation in mentalizing regions, i.e. temporo-parietal junction, posterior cingulate and precuneus, supported the behavioural change. Additionally, age was associated with reduced activation in the reward-related orbitofrontal cortex and caudate nucleus during interactions with a trustworthy partner, possibly reflecting stronger expectations of trustworthiness. During unfair interactions, age-related increases in anterior cingulate activation, an area implicated in conflict monitoring, may mirror the necessity to inhibit pro-social tendencies in the face of the partner’s actual levels of cooperation. PMID:23202661

  1. Default distrust? An fMRI investigation of the neural development of trust and cooperation.

    PubMed

    Fett, Anne-Kathrin J; Gromann, Paula M; Giampietro, Vincent; Shergill, Sukhi S; Krabbendam, Lydia

    2014-04-01

    The tendency to trust and to cooperate increases from adolescence to adulthood. This social development has been associated with improved mentalizing and age-related changes in brain function. Thus far, there is limited imaging data investigating these associations. We used two trust games with a trustworthy and an unfair partner to explore the brain mechanisms underlying trust and cooperation in subjects ranging from adolescence to mid-adulthood. Increasing age was associated with higher trust at the onset of social interactions, increased levels of trust during interactions with a trustworthy partner and a stronger decline in trust during interactions with an unfair partner. Our findings demonstrate a behavioural shift towards higher trust and an age-related increase in the sensitivity to others' negative social signals. Increased brain activation in mentalizing regions, i.e. temporo-parietal junction, posterior cingulate and precuneus, supported the behavioural change. Additionally, age was associated with reduced activation in the reward-related orbitofrontal cortex and caudate nucleus during interactions with a trustworthy partner, possibly reflecting stronger expectations of trustworthiness. During unfair interactions, age-related increases in anterior cingulate activation, an area implicated in conflict monitoring, may mirror the necessity to inhibit pro-social tendencies in the face of the partner's actual levels of cooperation. PMID:23202661

  2. The role of arousal in the spontaneous regulation of emotions in healthy aging: a fMRI investigation

    PubMed Central

    Dolcos, Sanda; Katsumi, Yuta; Dixon, Roger A.

    2014-01-01

    Despite ample support for enhanced affective well-being and emotional stability in healthy aging, the role of potentially important dimensions, such as the emotional arousal, has not been systematically investigated in neuroimaging studies. In addition, the few behavioral studies that examined effects of arousal have produced inconsistent findings. The present study manipulated the arousal of pictorial stimuli to test the hypothesis that preserved emotional functioning in aging is modulated by the level of arousal, and to identify the associated neural correlates. Young and older healthy participants were presented with negative and neutral pictures, which they rated for emotional content, while fMRI data were recorded. There were three main novel findings regarding the neural mechanisms underlying the processing of negative pictures with different levels of arousal in young and older adults. First, the common engagement of the right amygdala in young and older adults was driven by high arousing negative stimuli. Second, complementing an age-related reduction in the subjective ratings for low arousing negative pictures, there were opposing patterns of activity in the rostral/ventral anterior cingulate cortex (ACC) and the amygdala, which showed increased vs. decreased responses, respectively, to low arousing negative pictures. Third, increased spontaneous activity in the ventral ACC/ventromedial prefrontal cortex (vmPFC) in older adults was linked to reduced ratings for low arousing negative pictures. Overall, these findings advance our understanding of the neural correlates underlying processing of negative emotions with different levels of arousal in the context of enhanced emotional functioning in healthy aging. Notably, the results support the idea that older adults have emotion regulation networks chronically activated, in the absence of explicit induction of the goal to regulate emotions, and that this effect is specific to low arousing negative emotions

  3. Visual, Auditory, and Cross Modal Sensory Processing in Adults with Autism: An EEG Power and BOLD fMRI Investigation.

    PubMed

    Hames, Elizabeth' C; Murphy, Brandi; Rajmohan, Ravi; Anderson, Ronald C; Baker, Mary; Zupancic, Stephen; O'Boyle, Michael; Richman, David

    2016-01-01

    Electroencephalography (EEG) and blood oxygen level dependent functional magnetic resonance imagining (BOLD fMRI) assessed the neurocorrelates of sensory processing of visual and auditory stimuli in 11 adults with autism (ASD) and 10 neurotypical (NT) controls between the ages of 20-28. We hypothesized that ASD performance on combined audiovisual trials would be less accurate with observable decreased EEG power across frontal, temporal, and occipital channels and decreased BOLD fMRI activity in these same regions; reflecting deficits in key sensory processing areas. Analysis focused on EEG power, BOLD fMRI, and accuracy. Lower EEG beta power and lower left auditory cortex fMRI activity were seen in ASD compared to NT when they were presented with auditory stimuli as demonstrated by contrasting the activity from the second presentation of an auditory stimulus in an all auditory block vs. the second presentation of a visual stimulus in an all visual block (AA2-VV2).We conclude that in ASD, combined audiovisual processing is more similar than unimodal processing to NTs. PMID:27148020

  4. The Neurotopography of Written Word Production: An fMRI Investigation of the Distribution of Sensitivity to Length and Frequency

    ERIC Educational Resources Information Center

    Rapp, Brenda; Dufor, Olivier

    2011-01-01

    This research is directed at charting the neurotopography of the component processes of the spelling system by using fMRI to identify the neural substrates that are sensitive to the factors of lexical frequency and word length. In spelling, word frequency effects index orthographic long-term memory whereas length effects, as measured by the number…

  5. Visual, Auditory, and Cross Modal Sensory Processing in Adults with Autism: An EEG Power and BOLD fMRI Investigation

    PubMed Central

    Hames, Elizabeth’ C.; Murphy, Brandi; Rajmohan, Ravi; Anderson, Ronald C.; Baker, Mary; Zupancic, Stephen; O’Boyle, Michael; Richman, David

    2016-01-01

    Electroencephalography (EEG) and blood oxygen level dependent functional magnetic resonance imagining (BOLD fMRI) assessed the neurocorrelates of sensory processing of visual and auditory stimuli in 11 adults with autism (ASD) and 10 neurotypical (NT) controls between the ages of 20–28. We hypothesized that ASD performance on combined audiovisual trials would be less accurate with observable decreased EEG power across frontal, temporal, and occipital channels and decreased BOLD fMRI activity in these same regions; reflecting deficits in key sensory processing areas. Analysis focused on EEG power, BOLD fMRI, and accuracy. Lower EEG beta power and lower left auditory cortex fMRI activity were seen in ASD compared to NT when they were presented with auditory stimuli as demonstrated by contrasting the activity from the second presentation of an auditory stimulus in an all auditory block vs. the second presentation of a visual stimulus in an all visual block (AA2-VV2).We conclude that in ASD, combined audiovisual processing is more similar than unimodal processing to NTs. PMID:27148020

  6. Free Language Selection in the Bilingual Brain: An Event-Related fMRI Study

    PubMed Central

    Zhang, Yong; Wang, Tao; Huang, Peiyu; Li, Dan; Qiu, Jiang; Shen, Tong; Xie, Peng

    2015-01-01

    Bilingual speakers may select between two languages either on demand (forced language selection) or on their own volition (free language selection). However, the neural substrates underlying free and forced language selection may differ. While the neural substrates underlying forced language selection have been well-explored with language switching paradigms, those underlying free language selection have remained unclear. Using a modified digit-naming switching paradigm, we addressed the neural substrates underlying free language selection by contrasting free language switching with forced language switching. For a digit-pair trial, Chinese-English bilinguals named each digit in Chinese or English either on demand under forced language selection condition or on their own volition under free language selection condition. The results revealed activation in the frontoparietal regions that mediate volition of language selection. Furthermore, a comparison of free and forced language switching demonstrated differences in the patterns of brain activation. Additionally, free language switching showed reduced switching costs as compared to forced language switching. These findings suggest differences between the mechanism(s) underlying free and forced language switching. As such, the current study suggests interactivity between control of volition and control of language switching in free language selection, providing insights into a model of bilingual language control. PMID:26177885

  7. Free Language Selection in the Bilingual Brain: An Event-Related fMRI Study.

    PubMed

    Zhang, Yong; Wang, Tao; Huang, Peiyu; Li, Dan; Qiu, Jiang; Shen, Tong; Xie, Peng

    2015-01-01

    Bilingual speakers may select between two languages either on demand (forced language selection) or on their own volition (free language selection). However, the neural substrates underlying free and forced language selection may differ. While the neural substrates underlying forced language selection have been well-explored with language switching paradigms, those underlying free language selection have remained unclear. Using a modified digit-naming switching paradigm, we addressed the neural substrates underlying free language selection by contrasting free language switching with forced language switching. For a digit-pair trial, Chinese-English bilinguals named each digit in Chinese or English either on demand under forced language selection condition or on their own volition under free language selection condition. The results revealed activation in the frontoparietal regions that mediate volition of language selection. Furthermore, a comparison of free and forced language switching demonstrated differences in the patterns of brain activation. Additionally, free language switching showed reduced switching costs as compared to forced language switching. These findings suggest differences between the mechanism(s) underlying free and forced language switching. As such, the current study suggests interactivity between control of volition and control of language switching in free language selection, providing insights into a model of bilingual language control.

  8. fMRI adaptation revisited.

    PubMed

    Larsson, Jonas; Solomon, Samuel G; Kohn, Adam

    2016-07-01

    Adaptation has been widely used in functional magnetic imaging (fMRI) studies to infer neuronal response properties in human cortex. fMRI adaptation has been criticized because of the complex relationship between fMRI adaptation effects and the multiple neuronal effects that could underlie them. Many of the longstanding concerns about fMRI adaptation have received empirical support from neurophysiological studies over the last decade. We review these studies here, and also consider neuroimaging studies that have investigated how fMRI adaptation effects are influenced by high-level perceptual processes. The results of these studies further emphasize the need to interpret fMRI adaptation results with caution, but they also provide helpful guidance for more accurate interpretation and better experimental design. In addition, we argue that rather than being used as a proxy for measurements of neuronal stimulus selectivity, fMRI adaptation may be most useful for studying population-level adaptation effects across cortical processing hierarchies.

  9. Encoding and retrieval in human medial temporal lobes: an empirical investigation using functional magnetic resonance imaging (fMRI).

    PubMed

    Dolan, R J; Fletcher, P F

    1999-01-01

    The precise functional role of the hippocampus in human episodic memory is an unresolved question though it has recently been suggested that distinct medial temporal lobe (MTL) regions are involved in encoding and retrieval operations respectively. For example, a recent meta-analysis of positron emission tomography (PET) literature has suggested a rostral-caudal functional division in the medial temporal lobes (MTL), with rostral MTL mediating encoding and caudal MTL retrieval operations. However, a review of the combined PET and fMRI literature, reported in the present issue, while noting systematic discrepancies between PET and fMRI, reaches a conclusion that posterior MTL is involved in encoding. Here we present fMRI data, from a modified artificial grammar learning paradigm, that examines two questions concerning the functional role of the hippocampus, and related MTL structures in episodic memory. Firstly, we test a hypothesis that anterior hippocampus is activated during encoding and that this response is greater for novel items. Secondly, we test whether increasing familiarity with stimulus material is associated with a posterior MTL neural response. Our empirical findings support both hypotheses in that we demonstrate a left anterior hippocampal response sensitive to encoding demands and a posterior parahippocampal response sensitive to retrieval demands. Furthermore, we show that both anterior and posterior hippocampal responses are modulated to the degree to which stimuli can be assimilated into a meaningful rule-based framework.

  10. An event-related analysis of P300 by simultaneous EEG/fMRI

    NASA Astrophysics Data System (ADS)

    Wang, Li-qun; Wang, Mingshi; Mizuhara, Hiroaki

    2006-09-01

    In this study, P300 that induced by visual stimuli was examined with simultaneous EEG/fMRI. For the purpose of combine the best temporary resolution with the best special resolution together to estimate the brain function, event-related analysis contributed to this methodological trial. A 64 channel MRT-compatible MR EEG amplifier (BrainAmp: made of Brain Production GmbH, Gennany) was used in the measurement simultaneously with fMRI scanning. The reference channel is between Fz, Cz and Pz. Sampling rate of raw EEG was 5 kHz, and the MRT noise reduction was performed. EEG recording synchronized with MRI scan by our original stimulus system, and an oddball paradigm (four-oriented Landolt Ring presentation) was performed in the official manner. After P300 segmentation, the timing of P300 was exported to event-related analysis of fMRI data with SPM99 software. In single subject study, the significant activations appear in the left superior frontal, Broca's area and on both sides of the parietal lobule when P300 occurred. It is suggest that P300 may be an integration carried out by top-down signal from frontal to the parietal lobule, which regulates an Attention-Logical Judgment process. Compared with other current methods, the event related analysis by simultaneous EEG/IMRI is excellent in the point that can describe the cognitive process with reality unifying further temporary and spatial information. It is expected that examination and demonstration of the obtained result will supply with the promotion of this powerful methods.

  11. Common and Segregated Neural Substrates for Automatic Conceptual and Affective Priming as Revealed by Event-Related Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Liu, Hongyan; Hu, Zhiguo; Peng, Danling; Yang, Yanhui; Li, Kuncheng

    2010-01-01

    The brain activity associated with automatic semantic priming has been extensively studied. Thus far there has been no prior study that directly contrasts the neural mechanisms of semantic and affective priming. The present study employed event-related fMRI to examine the common and distinct neural bases underlying conceptual and affective priming…

  12. When memory meets beauty: Insights from event-related potentials.

    PubMed

    Marzi, T; Viggiano, M P

    2010-05-01

    Facial attractiveness plays a key role in human social and affective behavior. To study the time course of the neural processing of attractiveness and its influence on recognition memory we investigated the event-related potentials (ERPs) elicited in an old/new recognition task in response to faces with a neutral expression that, at encoding, were rated for their attractiveness. Highly attractive faces elicited a specific early positive-going component on frontal sites; in addition, with respect to less attractive faces, they elicited larger later components related to structural encoding and recognition memory. All in all, our results show that facial attractiveness, independently from facial expression, modulates face processing throughout all stages from encoding to retrieval.

  13. When memory meets beauty: Insights from event-related potentials.

    PubMed

    Marzi, T; Viggiano, M P

    2010-05-01

    Facial attractiveness plays a key role in human social and affective behavior. To study the time course of the neural processing of attractiveness and its influence on recognition memory we investigated the event-related potentials (ERPs) elicited in an old/new recognition task in response to faces with a neutral expression that, at encoding, were rated for their attractiveness. Highly attractive faces elicited a specific early positive-going component on frontal sites; in addition, with respect to less attractive faces, they elicited larger later components related to structural encoding and recognition memory. All in all, our results show that facial attractiveness, independently from facial expression, modulates face processing throughout all stages from encoding to retrieval. PMID:20109520

  14. Brain oxygenation responses to an autonomic challenge: a quantitative fMRI investigation of the Valsalva manoeuvre.

    PubMed

    Bohr, Iwo; McDonald, Claire; He, Jiabao; Kerr, Simon; Newton, Julia L; Blamire, Andrew M

    2015-10-01

    In late age, the autonomic nervous system (ANS) has diminished ability to maintain physiological homeostasis in the brain in response to challenges such as to systemic blood pressure changes caused by standing. We devised an fMRI experiment aiming to map the cerebral effects of an ANS challenge (Valsalva manoeuvre (VM)). We used dual-echo fMRI to measure the effective transverse relaxation rate (R2*, which is inversely proportional to brain tissue oxygenation levels) in 45 elderly subjects (median age 80 years old, total range 75-89) during performance of the VM. In addition, we collected fluid-attenuated inversion recovery (FLAIR) data from which we quantified white matter hyperintensity (WMH) volumes. We conducted voxelwise analysis of the dynamic changes in R2* during the VM to determine the distribution of oxygenation changes due to the autonomic stressor. In white matter, we observed significant decreases in oxygenation levels. These effects were predominantly located in posterior white matter and to a lesser degree in the right anterior brain, both concentrated around the border zones (watersheds) between cerebral perfusion territories. These areas are known to be particularly vulnerable to hypoxia and are prone to formation of white matter hyperintensities. Although we observed overlap between localisation of WMH and triggered deoxygenation on the group level, we did not find significant association between these independent variables using subjectwise statistics. This could suggest other than recurrent transient hypoxia mechanisms causing/contributing to the formation of WMH.

  15. fMRI investigation of response inhibition, emotion, impulsivity, and clinical high-risk behavior in adolescents

    PubMed Central

    Brown, Matthew R. G.; Benoit, James R. A.; Juhás, Michal; Dametto, Ericson; Tse, Tiffanie T.; MacKay, Marnie; Sen, Bhaskar; Carroll, Alan M.; Hodlevskyy, Oleksandr; Silverstone, Peter H.; Dolcos, Florin; Dursun, Serdar M.; Greenshaw, Andrew J.

    2015-01-01

    High-risk behavior in adolescents is associated with injury, mental health problems, and poor outcomes in later life. Improved understanding of the neurobiology of high-risk behavior and impulsivity shows promise for informing clinical treatment and prevention as well as policy to better address high-risk behavior. We recruited 21 adolescents (age 14–17) with a wide range of high-risk behavior tendencies, including medically high-risk participants recruited from psychiatric clinics. Risk tendencies were assessed using the Adolescent Risk Behavior Screen (ARBS). ARBS risk scores correlated highly (0.78) with impulsivity scores from the Barratt Impulsivity scale (BIS). Participants underwent 4.7 Tesla functional magnetic resonance imaging (fMRI) while performing an emotional Go/NoGo task. This task presented an aversive or neutral distractor image simultaneously with each Go or NoGo stimulus. Risk behavior and impulsivity tendencies exhibited similar but not identical associations with fMRI activation patterns in prefrontal brain regions. We interpret these results as reflecting differences in response inhibition, emotional stimulus processing, and emotion regulation in relation to participant risk behavior tendencies and impulsivity levels. The results are consistent with high impulsivity playing an important role in determining high risk tendencies in this sample containing clinically high-risk adolescents. PMID:26483645

  16. Neural correlates of experienced moral emotion: an fMRI investigation of emotion in response to prejudice feedback.

    PubMed

    Fourie, Melike M; Thomas, Kevin G F; Amodio, David M; Warton, Christopher M R; Meintjes, Ernesta M

    2014-01-01

    Guilt, shame, and embarrassment are quintessential moral emotions with important regulatory functions for the individual and society. Moral emotions are, however, difficult to study with neuroimaging methods because their elicitation is more intricate than that of basic emotions. Here, using functional MRI (fMRI), we employed a novel social prejudice paradigm to examine specific brain regions associated with real-time moral emotion, focusing on guilt and related moral-negative emotions. The paradigm induced intense moral-negative emotion (primarily guilt) in 22 low-prejudice individuals through preprogrammed feedback indicating implicit prejudice against Black and disabled people. fMRI data indicated that this experience of moral-negative emotion was associated with increased activity in anterior paralimbic structures, including the anterior cingulate cortex (ACC) and anterior insula, in addition to areas associated with mentalizing, including the dorsomedial prefrontal cortex, posterior cingulate cortex, and precuneus. Of significance was prominent conflict-related activity in the supragenual ACC, which is consistent with theories proposing an association between acute guilt and behavioral inhibition. Finally, a significant negative association between self-reported guilt and neural activity in the pregenual ACC suggested a role of self-regulatory processes in response to moral-negative affect. These findings are consistent with the multifaceted self-regulatory functions of moral-negative emotions in social behavior.

  17. Neuromarkers of fatigue and cognitive complaints following chemotherapy for breast cancer: a prospective fMRI investigation.

    PubMed

    Askren, Mary K; Jung, Misook; Berman, Marc G; Zhang, Min; Therrien, Barbara; Peltier, Scott; Ossher, Lynn; Hayes, Daniel F; Reuter-Lorenz, Patricia A; Cimprich, Bernadine

    2014-09-01

    The aim of this study is to use functional magnetic resonance imaging (fMRI) to prospectively examine pre-treatment predictors of post-treatment fatigue and cognitive dysfunction in women treated with adjuvant chemotherapy for breast cancer. Fatigue and cognitive dysfunction often co-occur in women treated for breast cancer. We hypothesized that pre-treatment factors, unrelated to chemotherapy per se, might increase vulnerability to post-treatment fatigue and cognitive dysfunction. Patients treated with (n = 28) or without chemotherapy (n = 37) and healthy controls (n = 32) were scanned coincident with pre- and one-month post-chemotherapy during a verbal working memory task (VWMT) and assessed for fatigue, worry, and cognitive dysfunction. fMRI activity measures in the frontoparietal executive network were used in multiple linear regression to predict post-treatment fatigue and cognitive function. The chemotherapy group reported greater pre-treatment fatigue than controls and showed compromised neural response, characterized by higher spatial variance in executive network activity, than the non-chemotherapy group. Also, the chemotherapy group reported greater post-treatment fatigue than the other groups. Linear regression indicated that pre-treatment spatial variance in executive network activation predicted post-treatment fatigue severity and cognitive complaints, while treatment group, age, hemoglobin, worry, and mean executive network activity levels did not predict these outcomes. Pre-treatment neural inefficiency (indexed by high spatial variance) in the executive network, which supports attention and working memory, was a better predictor of post-treatment cognitive and fatigue complaints than exposure to chemotherapy per se. This executive network compromise could be a pre-treatment neuromarker of risk, indicating patients most likely to benefit from early intervention for fatigue and cognitive dysfunction. PMID:25138546

  18. Investigating effective brain connectivity from fMRI data: past findings and current issues with reference to Granger causality analysis.

    PubMed

    Deshpande, Gopikrishna; Hu, Xiaoping

    2012-01-01

    Interactions between brain regions have been recognized as a critical ingredient required to understand brain function. Two modes of interactions have held prominence-synchronization and causal influence. Efforts to ascertain causal influence from functional magnetic resonance imaging (fMRI) data have relied primarily on confirmatory model-driven approaches, such as dynamic causal modeling and structural equation modeling, and exploratory data-driven approaches such as Granger causality analysis. A slew of recent articles have focused on the relative merits and caveats of these approaches. The relevant studies can be classified into simulations, theoretical developments, and experimental results. In the first part of this review, we will consider each of these themes and critically evaluate their arguments, with regard to Granger causality analysis. Specifically, we argue that simulations are bounded by the assumptions and simplifications made by the simulator, and hence must be regarded only as a guide to experimental design and should not be viewed as the final word. On the theoretical front, we reason that each of the improvements to existing, yet disparate, methods brings them closer to each other with the hope of eventually leading to a unified framework specifically designed for fMRI. We then review latest experimental results that demonstrate the utility and validity of Granger causality analysis under certain experimental conditions. In the second part, we will consider current issues in causal connectivity analysis-hemodynamic variability, sampling, instantaneous versus causal relationship, and task versus resting states. We highlight some of our own work regarding these issues showing the effect of hemodynamic variability and sampling on Granger causality. Further, we discuss recent techniques such as the cubature Kalman filtering, which can perform blind deconvolution of the hemodynamic response robustly well, and hence enabling wider application of

  19. Investigating Effective Brain Connectivity from fMRI Data: Past Findings and Current Issues with Reference to Granger Causality Analysis

    PubMed Central

    2012-01-01

    Abstract Interactions between brain regions have been recognized as a critical ingredient required to understand brain function. Two modes of interactions have held prominence—synchronization and causal influence. Efforts to ascertain causal influence from functional magnetic resonance imaging (fMRI) data have relied primarily on confirmatory model-driven approaches, such as dynamic causal modeling and structural equation modeling, and exploratory data-driven approaches such as Granger causality analysis. A slew of recent articles have focused on the relative merits and caveats of these approaches. The relevant studies can be classified into simulations, theoretical developments, and experimental results. In the first part of this review, we will consider each of these themes and critically evaluate their arguments, with regard to Granger causality analysis. Specifically, we argue that simulations are bounded by the assumptions and simplifications made by the simulator, and hence must be regarded only as a guide to experimental design and should not be viewed as the final word. On the theoretical front, we reason that each of the improvements to existing, yet disparate, methods brings them closer to each other with the hope of eventually leading to a unified framework specifically designed for fMRI. We then review latest experimental results that demonstrate the utility and validity of Granger causality analysis under certain experimental conditions. In the second part, we will consider current issues in causal connectivity analysis—hemodynamic variability, sampling, instantaneous versus causal relationship, and task versus resting states. We highlight some of our own work regarding these issues showing the effect of hemodynamic variability and sampling on Granger causality. Further, we discuss recent techniques such as the cubature Kalman filtering, which can perform blind deconvolution of the hemodynamic response robustly well, and hence enabling wider

  20. Stability of auditory event-related potentials in coma research.

    PubMed

    Schorr, Barbara; Schlee, Winfried; Arndt, Marion; Lulé, Dorothée; Kolassa, Iris-Tatjana; Lopez-Rolon, Alex; Lopez-Rolon, Alexander; Bender, Andreas

    2015-02-01

    Patients with unresponsive wakefulness syndrome (UWS) or in minimally conscious state (MCS) after brain injury show significant fluctuations in their behavioural abilities over time. As the importance of event-related potentials (ERPs) in the detection of traces of consciousness increases, we investigated the retest reliability of ERPs with repeated tests at four different time points. Twelve healthy controls and 12 inpatients (8 UWS, 4 MCS; 6 traumatic, 6 non-traumatic) were tested twice a day (morning, afternoon) for 2 days with an auditory oddball task. ERPs were recorded with a 256-channel-EEG system, and correlated with behavioural test scores in the Coma Recovery Scale-revised (CRS-R). The number of identifiable P300 responses varied between zero and four in both groups. Reliabilities varied between Krippendorff's α = 0.43 for within-day comparison, and α = 0.25 for between-day comparison in the patient group. Retest reliability was strong for the CRS-R scores for all comparisons (α = 0.83-0.95). The stability of auditory information processing in patients with disorders of consciousness is the basis for other, even more demanding tasks and cognitive potentials. The relatively low ERP-retest reliability suggests that it is necessary to perform repeated tests, especially when probing for consciousness with ERPs. A single negative ERP test result may be mistaken for proof that a UWS patient truly is unresponsive.

  1. Multiple Component Event-Related Potential (mcERP) Estimation

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Clanton, S. T.; Shah, A. S.; Truccolo, W. A.; Ding, M.; Bressler, S. L.; Trejo, L. J.; Schroeder, C. E.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We show how model-based estimation of the neural sources responsible for transient neuroelectric signals can be improved by the analysis of single trial data. Previously, we showed that a multiple component event-related potential (mcERP) algorithm can extract the responses of individual sources from recordings of a mixture of multiple, possibly interacting, neural ensembles. McERP also estimated single-trial amplitudes and onset latencies, thus allowing more accurate estimation of ongoing neural activity during an experimental trial. The mcERP algorithm is related to informax independent component analysis (ICA); however, the underlying signal model is more physiologically realistic in that a component is modeled as a stereotypic waveshape varying both in amplitude and onset latency from trial to trial. The result is a model that reflects quantities of interest to the neuroscientist. Here we demonstrate that the mcERP algorithm provides more accurate results than more traditional methods such as factor analysis and the more recent ICA. Whereas factor analysis assumes the sources are orthogonal and ICA assumes the sources are statistically independent, the mcERP algorithm makes no such assumptions thus allowing investigators to examine interactions among components by estimating the properties of single-trial responses.

  2. Agency attribution: event-related potentials and outcome monitoring.

    PubMed

    Bednark, Jeffery G; Franz, Elizabeth A

    2014-04-01

    Knowledge about the effects of our actions is an underlying feature of voluntary behavior. Given the importance of identifying the outcomes of our actions, it has been proposed that the sensory outcomes of self-made actions are inherently different from those of externally caused outcomes. Thus, the outcomes of self-made actions are likely to be more motivationally significant for an agent. We used event-related potentials to investigate the relationship between the perceived motivational significance of an outcome and the attribution of agency in the presence of others. In our experiment, we assessed agency attribution in the presence of another agent by varying the degree of contiguity between participants' self-made actions and the sensory outcome. Specifically, we assessed the feedback correct-related positivity (fCRP) and the novelty P3 measures of an outcome's motivational significance and unexpectedness, respectively. Results revealed that both the fCRP and participants' agency attributions were significantly influenced by action-outcome contiguity. However, when action-outcome contiguity was ambiguous, novelty P3 amplitude was a reliable indicator of agency attribution. Prior agency attributions were also found to influence attribution in trials with ambiguous and low action-outcome contiguity. Participants' use of multiple cues to determine agency is consistent with the cue integration theory of agency. In addition to these novel findings, this study supports growing evidence suggesting that reinforcement processes play a significant role in the sense of agency. PMID:24504195

  3. Agency attribution: event-related potentials and outcome monitoring.

    PubMed

    Bednark, Jeffery G; Franz, Elizabeth A

    2014-04-01

    Knowledge about the effects of our actions is an underlying feature of voluntary behavior. Given the importance of identifying the outcomes of our actions, it has been proposed that the sensory outcomes of self-made actions are inherently different from those of externally caused outcomes. Thus, the outcomes of self-made actions are likely to be more motivationally significant for an agent. We used event-related potentials to investigate the relationship between the perceived motivational significance of an outcome and the attribution of agency in the presence of others. In our experiment, we assessed agency attribution in the presence of another agent by varying the degree of contiguity between participants' self-made actions and the sensory outcome. Specifically, we assessed the feedback correct-related positivity (fCRP) and the novelty P3 measures of an outcome's motivational significance and unexpectedness, respectively. Results revealed that both the fCRP and participants' agency attributions were significantly influenced by action-outcome contiguity. However, when action-outcome contiguity was ambiguous, novelty P3 amplitude was a reliable indicator of agency attribution. Prior agency attributions were also found to influence attribution in trials with ambiguous and low action-outcome contiguity. Participants' use of multiple cues to determine agency is consistent with the cue integration theory of agency. In addition to these novel findings, this study supports growing evidence suggesting that reinforcement processes play a significant role in the sense of agency.

  4. Bootstrap analysis of the single subject with event related potentials.

    PubMed

    Oruç, Ipek; Krigolson, Olav; Dalrymple, Kirsten; Nagamatsu, Lindsay S; Handy, Todd C; Barton, Jason J S

    2011-07-01

    Neural correlates of cognitive states in event-related potentials (ERPs) serve as markers for related cerebral processes. Although these are usually evaluated in subject groups, the ability to evaluate such markers statistically in single subjects is essential for case studies in neuropsychology. Here we investigated the use of a simple test based on nonparametric bootstrap confidence intervals for this purpose, by evaluating three different ERP phenomena: the face-selectivity of the N170, error-related negativity, and the P3 component in a Posner cueing paradigm. In each case, we compare single-subject analysis with statistical significance determined using bootstrap to conventional group analysis using analysis of variance (ANOVA). We found that the proportion of subjects who show a significant effect at the individual level based on bootstrap varied, being greatest for the N170 and least for the P3. Furthermore, it correlated with significance at the group level. We conclude that the bootstrap methodology can be a viable option for interpreting single-case ERP amplitude effects in the right setting, probably with well-defined stereotyped peaks that show robust differences at the group level, which may be more characteristic of early sensory components than late cognitive effects.

  5. Schizophrenia symptom and functional correlates of anterior cingulate cortex activation to emotion stimuli: An fMRI investigation.

    PubMed

    Nelson, Brady D; Bjorkquist, Olivia A; Olsen, Emily K; Herbener, Ellen S

    2015-12-30

    Schizophrenia is a chronic mental illness characterized by distinct positive and negative symptoms and functional impairment. The anterior cingulate cortex (ACC) is a region of the brain's limbic system that is hypoactive during emotion processing in schizophrenia. Recent evidence suggests the hypoactive ACC in schizophrenia is due to negative (and not positive) symptoms. However, this finding has not been replicated and the functional significance of this relationship remains unclear. The present study examined the association between positive and negative symptoms, ACC activation to emotional images, and functional outcome in schizophrenia. Specifically, 16 schizophrenia/schizoaffective disorder (SZ/SZAF) and 15 control (CON) participants underwent an fMRI scan while completing an emotional picture-rating task. SZ/SZAF participants also completed clinician-rated measures of positive and negative symptoms and functional abilities. SZ/SZAF participants with high negative symptoms had reduced ACC activation to pleasant images relative to those with low negative symptoms and CON, who did not differ. Furthermore, amongst all SZ/SZAF participants poorer social functioning was associated with decreased ACC activation to pleasant images. Finally, ACC activation partially mediated the relationship between negative symptoms and social dysfunction. These results provide evidence of the functional significance of the relationship between negative symptoms and ACC dysfunction in schizophrenia. PMID:26596521

  6. Schizophrenia symptom and functional correlates of anterior cingulate cortex activation to emotion stimuli: An fMRI investigation.

    PubMed

    Nelson, Brady D; Bjorkquist, Olivia A; Olsen, Emily K; Herbener, Ellen S

    2015-12-30

    Schizophrenia is a chronic mental illness characterized by distinct positive and negative symptoms and functional impairment. The anterior cingulate cortex (ACC) is a region of the brain's limbic system that is hypoactive during emotion processing in schizophrenia. Recent evidence suggests the hypoactive ACC in schizophrenia is due to negative (and not positive) symptoms. However, this finding has not been replicated and the functional significance of this relationship remains unclear. The present study examined the association between positive and negative symptoms, ACC activation to emotional images, and functional outcome in schizophrenia. Specifically, 16 schizophrenia/schizoaffective disorder (SZ/SZAF) and 15 control (CON) participants underwent an fMRI scan while completing an emotional picture-rating task. SZ/SZAF participants also completed clinician-rated measures of positive and negative symptoms and functional abilities. SZ/SZAF participants with high negative symptoms had reduced ACC activation to pleasant images relative to those with low negative symptoms and CON, who did not differ. Furthermore, amongst all SZ/SZAF participants poorer social functioning was associated with decreased ACC activation to pleasant images. Finally, ACC activation partially mediated the relationship between negative symptoms and social dysfunction. These results provide evidence of the functional significance of the relationship between negative symptoms and ACC dysfunction in schizophrenia.

  7. The Effects of Brief Behavioral Activation Therapy for Depression on Cognitive Control in Affective Contexts: an fMRI investigation

    PubMed Central

    Dichter, Gabriel S.; Felder, Jennifer N.; Smoski, Moria J.

    2010-01-01

    Background Unipolar major depressive disorder (MDD) is characterized by impaired cognitive control in affective contexts, but the potential for psychotherapy to affect the neural correlates of these functions has not been evaluated. Method Twelve adults with and 15 adults without MDD participated in two identical functional magnetic resonance imaging (fMRI) scans that utilized a task requiring cognitive control in both sad and neutral contexts. Between scans, MDD outpatients received Behavioral Activation Therapy for Depression, a psychotherapy modality designed to increase engagement with positive stimuli and reduce avoidance behaviors. Results Seventy-five percent of adults with MDD were treatment responders, achieving post-treatment Hamilton Rating Scale for Depression score of six or below. Consistent with predictions, psychotherapy resulted in decreased activation in response to cognitive control stimuli presented within a sad context in prefrontal structures, including the paracingulate gyrus, the right orbital frontal cortex, and the right frontal pole. Furthermore, the magnitude of pretreatment activation in the paracingulate gyrus cluster responsive to psychotherapy predicted the magnitude of depressive symptom change after psychotherapy. Limitations Replication with larger samples is needed, as are follow-up studies that involve placebo control groups, wait-list control groups, and alternative forms of antidepressant intervention. Conclusions Behavioral Activation Therapy for Depression improves depressive symptoms and concomitantly influences brain systems mediating cognitive control in affective contexts. PMID:20421135

  8. Investigation of decision-making under uncertainty in healthy subjects: a multi-centric fMRI study.

    PubMed

    Krug, A; Cabanis, M; Pyka, M; Pauly, K; Walter, H; Landsberg, M; Shah, N Jon; Winterer, G; Wölwer, W; Musso, F; Müller, B W; Wiedemann, G; Herrlich, J; Schnell, K; Vogeley, K; Schilbach, L; Langohr, K; Rapp, A; Klingberg, S; Kircher, T

    2014-03-15

    Decision-making is an everyday routine that entails several subprocesses. Decisions under uncertainty occur when either prior information is incomplete or the outcomes of the decision are unclear. The aim of the present study was to disentangle the neural correlates of information gathering as well as reaching a decision and to explore effects of uncertainty acceptance or avoidance in a large sample of healthy subjects. Sixty-four healthy volunteers performed a decision-making under uncertainty task in a multi-center approach while BOLD signal was measured with fMRI. Subjects either had to indicate via button press from which of two bottles red or blue balls were drawn (decision-making under uncertainty condition), or they had to indicate whether 8 red balls had been presented (baseline condition). During the information gathering phase (contrasted against the counting phase) a widespread network was found encompassing (pre-)frontal, inferior temporal and inferior parietal cortices. Reaching a decision was correlated with activations in the medial frontal cortex as well as the posterior cingulate and the precuneus. Effects of uncertainty acceptance were found within a network comprising of the superior frontal cortex as well as the insula and precuneus while uncertainty avoidance was correlated with activations in the right middle frontal cortex. The results depict two distinct networks for information gathering and the indication of having made a decision. While information-gathering networks are modulated by uncertainty avoidance and - acceptance, underlying networks of the decision itself are independent of these factors.

  9. The neurotopography of written word production: an fMRI investigation of the distribution of sensitivity to length and frequency.

    PubMed

    Rapp, Brenda; Dufor, Olivier

    2011-12-01

    This research is directed at charting the neurotopography of the component processes of the spelling system by using fMRI to identify the neural substrates that are sensitive to the factors of lexical frequency and word length. In spelling, word frequency effects index orthographic long-term memory whereas length effects, as measured by the number of letters, index orthographic working memory (grapheme buffering). Using the task of spelling to dictation in the scanner, we found a highly differentiated neural distribution of sensitivity to the factors of length and lexical frequency, with areas exhibiting sensitivity to length but not frequency and vice versa. In addition, a direct comparison with the results of a previous study [Rapp, B., & Lipka, K. The literate brain: The relationship between spelling and reading. Journal of Cognitive Neuroscience, 23, 1180-1197, 2011] that used a very different spelling task yielded a converging pattern of findings regarding the neural substrates of the central components of spelling. Also, with regard to relationship between reading and spelling, we replicated previous functional neuroimaging studies that have shown overlapping regions of activation in the left posterior inferior frontal gyrus and midfusiform gyrus for word reading and spelling.

  10. fMRI investigation of sentence comprehension by eye and by ear: modality fingerprints on cognitive processes.

    PubMed

    Michael, E B; Keller, T A; Carpenter, P A; Just, M A

    2001-08-01

    The neural substrate underlying reading vs. listening comprehension of sentences was compared using fMRI. One way in which this issue was addressed was by comparing the patterns of activation particularly in cortical association areas that classically are implicated in language processing. The precise locations of the activation differed between the two modalities. In the left inferior frontal gyrus (Broca's area), the activation associated with listening was more anterior and inferior than the activation associated with reading, suggesting more semantic processing during listening comprehension. In the left posterior superior and middle temporal region (roughly, Wernicke's area), the activation for listening was closer to primary auditory cortex (more anterior and somewhat more lateral) than the activation for reading. In several regions, the activation was much more left lateralized for reading than for listening. In addition to differences in the location of the activation, there were also differences in the total amount of activation in the two modalities in several regions. A second way in which the modality comparison was addressed was by examining how the neural systems responded to comprehension workload in the two modalities by systematically varying the structural complexity of the sentences to be processed. Here, the distribution of the workload increase associated with the processing of additional structural complexity was very similar across the two input modalities. The results suggest a number of subtle differences in the cognitive processing underlying listening vs. reading comprehension.

  11. An fMRI investigation of the fronto-striatal learning system in women who exhibit eating disorder behaviors.

    PubMed

    Celone, Kim A; Thompson-Brenner, Heather; Ross, Robert S; Pratt, Elizabeth M; Stern, Chantal E

    2011-06-01

    In the present study, we sought to examine whether the fronto-striatal learning system, which has been implicated in bulimia nervosa, would demonstrate altered BOLD activity during probabilistic category learning in women who met subthreshold criteria for bulimia nervosa (Sub-BN). Sub-BN, which falls within the clinical category of Eating Disorder Not Otherwise Specified (EDNOS), is comprised of individuals who demonstrate recurrent binge eating, efforts to minimize their caloric intake and caloric retention, and elevated levels of concern about shape, weight, and/or eating, but just fail to meet the diagnostic threshold for bulimia nervosa (BN). fMRI data were collected from eighteen women with subthreshold-BN (Sub-BN) and nineteen healthy control women group-matched for age, education and body mass index (MC) during the weather prediction task. Sub-BN participants demonstrated increased caudate nucleus and dorsolateral prefrontal cortex (DLPFC) activation during the learning of probabilistic categories. Though the two subject groups did not differ in behavioral performance, over the course of learning, Sub-BN participants showed a dynamic pattern of brain activity differences when compared to matched control participants. Regions implicated in episodic memory, including the medial temporal lobe (MTL), retrosplenial cortex, middle frontal gyrus, and anterior and posterior cingulate cortex showed decreased activity in the Sub-BN participants compared to MCs during early learning which was followed by increased involvement of the DLPFC during later learning. These findings demonstrate that women with Sub-BN demonstrate differences in fronto-striatal learning system activity, as well as a distinct functional pattern between fronto-striatal and MTL learning systems during the course of implicit probabilistic category learning.

  12. Impaired target detection in schizophrenia and the ventral attentional network: Findings from a joint event-related potential-functional MRI analysis.

    PubMed

    Wynn, Jonathan K; Jimenez, Amy M; Roach, Brian J; Korb, Alexander; Lee, Junghee; Horan, William P; Ford, Judith M; Green, Michael F

    2015-01-01

    Schizophrenia patients have abnormal neural responses to salient, infrequent events. We integrated event-related potentials (ERP) and fMRI to examine the contributions of the ventral (salience) and dorsal (sustained) attention networks to this dysfunctional neural activation. Twenty-one schizophrenia patients and 22 healthy controls were assessed in separate sessions with ERP and fMRI during a visual oddball task. Visual P100, N100, and P300 ERP waveforms and fMRI activation were assessed. A joint independent components analysis (jICA) on the ERP and fMRI data were conducted. Patients exhibited reduced P300, but not P100 or N100, amplitudes to targets and reduced fMRI neural activation in both dorsal and ventral attentional networks compared with controls. However, the jICA revealed that the P300 was linked specifically to activation in the ventral (salience) network, including anterior cingulate, anterior insula, and temporal parietal junction, with patients exhibiting significantly lower activation. The P100 and N100 were linked to activation in the dorsal (sustained) network, with no group differences in level of activation. This joint analysis approach revealed the nature of target detection deficits that were not discernable by either imaging methodology alone, highlighting the utility of a multimodal fMRI and ERP approach to understand attentional network deficits in schizophrenia. PMID:26448909

  13. Impaired target detection in schizophrenia and the ventral attentional network: Findings from a joint event-related potential–functional MRI analysis

    PubMed Central

    Wynn, Jonathan K.; Jimenez, Amy M.; Roach, Brian J.; Korb, Alexander; Lee, Junghee; Horan, William P.; Ford, Judith M.; Green, Michael F.

    2015-01-01

    Schizophrenia patients have abnormal neural responses to salient, infrequent events. We integrated event-related potentials (ERP) and fMRI to examine the contributions of the ventral (salience) and dorsal (sustained) attention networks to this dysfunctional neural activation. Twenty-one schizophrenia patients and 22 healthy controls were assessed in separate sessions with ERP and fMRI during a visual oddball task. Visual P100, N100, and P300 ERP waveforms and fMRI activation were assessed. A joint independent components analysis (jICA) on the ERP and fMRI data were conducted. Patients exhibited reduced P300, but not P100 or N100, amplitudes to targets and reduced fMRI neural activation in both dorsal and ventral attentional networks compared with controls. However, the jICA revealed that the P300 was linked specifically to activation in the ventral (salience) network, including anterior cingulate, anterior insula, and temporal parietal junction, with patients exhibiting significantly lower activation. The P100 and N100 were linked to activation in the dorsal (sustained) network, with no group differences in level of activation. This joint analysis approach revealed the nature of target detection deficits that were not discernable by either imaging methodology alone, highlighting the utility of a multimodal fMRI and ERP approach to understand attentional network deficits in schizophrenia. PMID:26448909

  14. An inverse relation between event-related and time-frequency violation responses in sentence processing.

    PubMed

    Davidson, D J; Indefrey, P

    2007-07-16

    The relationship between semantic and grammatical processing in sentence comprehension was investigated by examining event-related potential (ERP) and event-related power changes in response to semantic and grammatical violations. Sentences with semantic, phrase structure, or number violations and matched controls were presented serially (1.25 words/s) to 20 participants while EEG was recorded. Semantic violations were associated with an N400 effect and a theta band increase in power, while grammatical violations were associated with a P600 effect and an alpha/beta band decrease in power. A quartile analysis showed that for both types of violations, larger average violation effects were associated with lower relative amplitudes of oscillatory activity, implying an inverse relation between ERP amplitude and event-related power magnitude change in sentence processing.

  15. From prosodic structure to acoustic saliency: A fMRI investigation of speech rate, clarity, and emphasis

    NASA Astrophysics Data System (ADS)

    Golfinopoulos, Elisa

    Acoustic variability in fluent speech can arise at many stages in speech production planning and execution. For example, at the phonological encoding stage, the grouping of phonemes into syllables determines which segments are coarticulated and, by consequence, segment-level acoustic variation. Likewise phonetic encoding, which determines the spatiotemporal extent of articulatory gestures, will affect the acoustic detail of segments. Functional magnetic resonance imaging (fMRI) was used to measure brain activity of fluent adult speakers in four speaking conditions: fast, normal, clear, and emphatic (or stressed) speech. These speech manner changes typically result in acoustic variations that do not change the lexical or semantic identity of productions but do affect the acoustic saliency of phonemes, syllables and/or words. Acoustic responses recorded inside the scanner were assessed quantitatively using eight acoustic measures and sentence duration was used as a covariate of non-interest in the neuroimaging analysis. Compared to normal speech, emphatic speech was characterized acoustically by a greater difference between stressed and unstressed vowels in intensity, duration, and fundamental frequency, and neurally by increased activity in right middle premotor cortex and supplementary motor area, and bilateral primary sensorimotor cortex. These findings are consistent with right-lateralized motor planning of prosodic variation in emphatic speech. Clear speech involved an increase in average vowel and sentence durations and average vowel spacing, along with increased activity in left middle premotor cortex and bilateral primary sensorimotor cortex. These findings are consistent with an increased reliance on feedforward control, resulting in hyper-articulation, under clear as compared to normal speech. Fast speech was characterized acoustically by reduced sentence duration and average vowel spacing, and neurally by increased activity in left anterior frontal

  16. Iconic Meaning in Music: An Event-Related Potential Study.

    PubMed

    Cai, Liman; Huang, Ping; Luo, Qiuling; Huang, Hong; Mo, Lei

    2015-01-01

    Although there has been extensive research on the processing of the emotional meaning of music, little is known about other aspects of listeners' experience of music. The present study investigated the neural correlates of the iconic meaning of music. Event-related potentials (ERP) were recorded while a group of 20 music majors and a group of 20 non-music majors performed a lexical decision task in the context of implicit musical iconic meaning priming. ERP analysis revealed a significant N400 effect of congruency in time window 260-510 ms following the onset of the target word only in the group of music majors. Time-course analysis using 50 ms windows indicated significant N400 effects both within the time window 410-460 ms and 460-510 ms for music majors, whereas only a partial N400 effect during time window 410-460 ms was observed for non-music majors. There was also a trend for the N400 effects in the music major group to be stronger than those in the non-major group in the sub-windows of 310-360 ms and 410-460 ms. Especially in the sub-window of 410-460 ms, the topographical map of the difference waveforms between congruent and incongruent conditions revealed different N400 distribution between groups; the effect was concentrated in bilateral frontal areas for music majors, but in central-parietal areas for non-music majors. These results imply probable neural mechanism differences underlying automatic iconic meaning priming of music. Our findings suggest that processing of the iconic meaning of music can be accomplished automatically and that musical training may facilitate the understanding of the iconic meaning of music.

  17. Iconic Meaning in Music: An Event-Related Potential Study

    PubMed Central

    Luo, Qiuling; Huang, Hong; Mo, Lei

    2015-01-01

    Although there has been extensive research on the processing of the emotional meaning of music, little is known about other aspects of listeners’ experience of music. The present study investigated the neural correlates of the iconic meaning of music. Event-related potentials (ERP) were recorded while a group of 20 music majors and a group of 20 non-music majors performed a lexical decision task in the context of implicit musical iconic meaning priming. ERP analysis revealed a significant N400 effect of congruency in time window 260-510 ms following the onset of the target word only in the group of music majors. Time-course analysis using 50 ms windows indicated significant N400 effects both within the time window 410-460 ms and 460-510 ms for music majors, whereas only a partial N400 effect during time window 410-460 ms was observed for non-music majors. There was also a trend for the N400 effects in the music major group to be stronger than those in the non-major group in the sub-windows of 310-360ms and 410-460ms. Especially in the sub-window of 410-460 ms, the topographical map of the difference waveforms between congruent and incongruent conditions revealed different N400 distribution between groups; the effect was concentrated in bilateral frontal areas for music majors, but in central-parietal areas for non-music majors. These results imply probable neural mechanism differences underlying automatic iconic meaning priming of music. Our findings suggest that processing of the iconic meaning of music can be accomplished automatically and that musical training may facilitate the understanding of the iconic meaning of music. PMID:26161561

  18. Iconic Meaning in Music: An Event-Related Potential Study.

    PubMed

    Cai, Liman; Huang, Ping; Luo, Qiuling; Huang, Hong; Mo, Lei

    2015-01-01

    Although there has been extensive research on the processing of the emotional meaning of music, little is known about other aspects of listeners' experience of music. The present study investigated the neural correlates of the iconic meaning of music. Event-related potentials (ERP) were recorded while a group of 20 music majors and a group of 20 non-music majors performed a lexical decision task in the context of implicit musical iconic meaning priming. ERP analysis revealed a significant N400 effect of congruency in time window 260-510 ms following the onset of the target word only in the group of music majors. Time-course analysis using 50 ms windows indicated significant N400 effects both within the time window 410-460 ms and 460-510 ms for music majors, whereas only a partial N400 effect during time window 410-460 ms was observed for non-music majors. There was also a trend for the N400 effects in the music major group to be stronger than those in the non-major group in the sub-windows of 310-360 ms and 410-460 ms. Especially in the sub-window of 410-460 ms, the topographical map of the difference waveforms between congruent and incongruent conditions revealed different N400 distribution between groups; the effect was concentrated in bilateral frontal areas for music majors, but in central-parietal areas for non-music majors. These results imply probable neural mechanism differences underlying automatic iconic meaning priming of music. Our findings suggest that processing of the iconic meaning of music can be accomplished automatically and that musical training may facilitate the understanding of the iconic meaning of music. PMID:26161561

  19. Evaluating Models of Object-Decision Priming: Evidence from Event-Related Potential Repetition Effects

    ERIC Educational Resources Information Center

    Soldan, Anja; Mangels, Jennifer A.; Cooper, Lynn A.

    2006-01-01

    This study was designed to differentiate between structural description and bias accounts of performance in the possible/impossible object-decision test. Two event-related potential (ERP) studies examined how the visual system processes structurally possible and impossible objects. Specifically, the authors investigated the effects of object…

  20. Developmental Changes in Memory Encoding: Insights from Event-Related Potentials

    ERIC Educational Resources Information Center

    Rollins, Leslie; Riggins, Tracy

    2013-01-01

    The aim of the present study was to investigate developmental changes in encoding processes between 6-year-old children and adults using event-related potentials (ERPs). Although episodic memory ("EM") effects have been reported in both children and adults at retrieval and subsequent memory effects have been established in adults, no…

  1. Event Related Potentials in the Understanding of Autism Spectrum Disorders: An Analytical Review

    ERIC Educational Resources Information Center

    Jeste, Shafali S.; Nelson, Charles A., III

    2009-01-01

    In this paper we critically review the literature on the use of event related potentials (ERPs) to elucidate the neural sources of the core deficits in autism. We review auditory and visual ERP studies, and then review the use of ERPs in the investigation of executive function. We conclude that, in autism, impairments likely exist in both low and…

  2. Gender Differences in Memory Processing: Evidence from Event-Related Potentials to Faces

    ERIC Educational Resources Information Center

    Guillem, F.; Mograss, M.

    2005-01-01

    This study investigated gender differences on memory processing using event-related potentials (ERPs). Behavioral data and ERPs were recorded in 16 males and 10 females during a recognition memory task for faces. The behavioral data results showed that females performed better than males. Gender differences on ERPs were evidenced over anterior…

  3. Similar Neural Correlates for Language and Sequential Learning: Evidence from Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Christiansen, Morten H.; Conway, Christopher M.; Onnis, Luca

    2012-01-01

    We used event-related potentials (ERPs) to investigate the time course and distribution of brain activity while adults performed (1) a sequential learning task involving complex structured sequences and (2) a language processing task. The same positive ERP deflection, the P600 effect, typically linked to difficult or ungrammatical syntactic…

  4. Cognitive Association Formation in Episodic Memory: Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Kim, Alice S. N.; Vallesi, Antonino; Picton, Terence W.; Tulving, Endel

    2009-01-01

    The present study focused on the processes underlying cognitive association formation by investigating subsequent memory effects. Event-related potentials were recorded as participants studied pairs of words, presented one word at a time, for later recall. The findings showed that a frontal-positive late wave (LW), which occurred 1-1.6 s after the…

  5. An Event-Related Potentials Study of Mental Rotation in Identifying Chemical Structural Formulas

    ERIC Educational Resources Information Center

    Huang, Chin-Fei; Liu, Chia-Ju

    2012-01-01

    The purpose of this study was to investigate how mental rotation strategies affect the identification of chemical structural formulas. This study conducted event-related potentials (ERPs) experiments. In addition to the data collected in the ERPs, a Chemical Structure Conceptual Questionnaire and interviews were also admin-istered for data…

  6. Atypical Brain Responses to Reward Cues in Autism as Revealed by Event-Related Potentials

    ERIC Educational Resources Information Center

    Kohls, Gregor; Peltzer, Judith; Schulte-Ruther, Martin; Kamp-Becker, Inge; Remschmidt, Helmut; Herpertz-Dahlmann, Beate; Konrad, Kerstin

    2011-01-01

    Social motivation deficit theories suggest that children with autism do not properly anticipate and appreciate the pleasure of social stimuli. In this study, we investigated event-related brain potentials evoked by cues that triggered social versus monetary reward anticipation in children with autism. Children with autism showed attenuated P3…

  7. Developmental Changes in Error Monitoring: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Wiersema, Jan R.; van der Meere, Jacob J.; Roeyers, Herbert

    2007-01-01

    The aim of the study was to investigate the developmental trajectory of error monitoring. For this purpose, children (age 7-8), young adolescents (age 13-14) and adults (age 23-24) performed a Go/No-Go task and were compared on overt reaction time (RT) performance and on event-related potentials (ERPs), thought to reflect error detection…

  8. Early Processing of Emotional Faces in Children with Autism: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Batty, Magali; Meaux, Emilie; Wittemeyer, Kerstin; Roge, Bernadette; Taylor, Margot J.

    2011-01-01

    Social deficits are one of the most striking manifestations of autism spectrum disorders (ASDs). Among these social deficits, the recognition and understanding of emotional facial expressions has been widely reported to be affected in ASDs. We investigated emotional face processing in children with and without autism using event-related potentials…

  9. (De-)Accentuation and the Processing of Information Status: Evidence from Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Baumann, Stefan; Schumacher, Petra B.

    2012-01-01

    The paper reports on a perception experiment in German that investigated the neuro-cognitive processing of information structural concepts and their prosodic marking using event-related brain potentials (ERPs). Experimental conditions controlled the information status (given vs. new) of referring and non-referring target expressions (nouns vs.…

  10. Pitch Processing in Tonal-Language-Speaking Children with Autism: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Yu, Luodi; Fan, Yuebo; Deng, Zhizhou; Huang, Dan; Wang, Suiping; Zhang, Yang

    2015-01-01

    The present study investigated pitch processing in Mandarin-speaking children with autism using event-related potential measures. Two experiments were designed to test how acoustic, phonetic and semantic properties of the stimuli contributed to the neural responses for pitch change detection and involuntary attentional orienting. In comparison…

  11. Event-Related Potentials and the Stroop Effect

    PubMed Central

    Sahinoglu, Babur; Dogan, Gamze

    2016-01-01

    In this manuscript, the researches on the Event-Related Potentials (ERP) elicited by the standard Stroop effect were reviewed. For the sake of clarity, only the parts of the manuscripts that reported the standard Stroop effect - ERPs relation were taken into consideration. PMID:27026765

  12. Event-Related Potentials and the Stroop Effect.

    PubMed

    Sahinoglu, Babur; Dogan, Gamze

    2016-02-01

    In this manuscript, the researches on the Event-Related Potentials (ERP) elicited by the standard Stroop effect were reviewed. For the sake of clarity, only the parts of the manuscripts that reported the standard Stroop effect - ERPs relation were taken into consideration.

  13. Event-Related Potentials and the Stroop Effect.

    PubMed

    Sahinoglu, Babur; Dogan, Gamze

    2016-02-01

    In this manuscript, the researches on the Event-Related Potentials (ERP) elicited by the standard Stroop effect were reviewed. For the sake of clarity, only the parts of the manuscripts that reported the standard Stroop effect - ERPs relation were taken into consideration. PMID:27026765

  14. Detection of the brain response during a cognitive task using perfusion-based event-related functional MRI.

    PubMed

    Yee, S H; Liu, H L; Hou, J; Pu, Y; Fox, P T; Gao, J H

    2000-08-01

    Event-related (ER) fMRI has evoked great interest due to the ability to depict the dynamic features of human brain function during various cognitive tasks. Thus far, all cognitive ER-fMRI studies have been based on blood oxygenation level-dependent (BOLD) contrast techniques. Compared with BOLD-based fMRI techniques, perfusion-based fMRI is able to localize the region of neuronal activity more accurately. This report demonstrates, for the first time, the detection of the brain response to a cognitive task using high temporal resolution perfusion-based ER-fMRI. An English verb generation task was used in this study. Results show that perfusion-based ER-fMRI accurately depicts the activation in Broca's area. Average changes in regional relative cerebral blood flow reached a maximum value of 30.7% at approximately 6.5 s after the start of stimulation and returned to 10% of the maximum value at approximately 12.8 s. Our results show that perfusion-based ER-fMRI is a useful tool for cognitive neuroscience studies, providing comparable temporal resolution and better localization of brain function than BOLD ER-fMRI. PMID:10943717

  15. Localization of event-related activity by SAM(erf).

    PubMed

    Robinson, S E

    2004-01-01

    Synthetic aperture magnetometry (SAM) has been used to image source power or source signal-to-noise ratio from MEG. However, the locations of maximal event-related oscillatory activity (or changes from resting state) do not necessarily coincide with those sites that are phase-locked to external events (i.e., localized by dipole fit to the averaged evoked response). Since an estimate of the source time-series may also be obtained by applying the beamformer coefficients to the MEG signal, one can image event-related activity by mapping some function reflecting the reliability of the averaged source waveform at each location. We have devised a new analysis method, SAM(erf), for obtaining a functional image of event-related brain activity and revealing the corresponding waveforms for activated sites. The mapping function used is the ratio of RMS amplitude of the averaged source waveform to that of the +/- average waveform, for a selected time window. This function is computed at each coordinate on a three-dimensional grid in the head. In addition to the SAM(erf) functional image, the averaged source waveforms for each local maximum in the image can be computed and displayed. This procedure can reveal multiple locations and waveforms at sites in the brain engaged in event-related activities. When this method is applied to evoked response studies, phase-locked activity can sometimes be found in areas distant from primary sensory cortex. Given the sensitivity of this functional imaging method to areas outside primary sensory cortex, it has the potential for detecting subtle changes in brain activity in health and disease. PMID:16012649

  16. Effects of galvanic vestibular stimulation on event related potentials

    PubMed Central

    Lee, Jeong-Woo; Park, Woong-Sik; Yoon, Se-Won

    2016-01-01

    [Purpose] The purpose of this study was to examine the effects of galvanic vestibular stimulation on event-related potentials. [Subjects and Methods] Forty normal female adult subjects were randomly distributed to a galvanic vestibular stimulation application group (20 subjects) and sham group (20 subjects). For galvanic vestibular stimulation application, a positive electrode was applied to the right mastoid process, and a negative electrode was applied to the left mastoid process; simulation was applied for 10 minutes. A test was conducted on the N100 and P300 components of the event-related potentials before and after galvanic vestibular stimulation. [Results] The N100 latency showed statistically significant differences in interaction effects between time and group in the F3, F4, Fz, and Pz areas. The P300 latency showed the same results in the Fp1 and Fp2 areas, the N100 amplitude showed the same results in the Fp2, Fz, and Pz areas; and the P300 amplitude showed the same results in the Pz area. [Conclusion] These results suggest that galvanic vestibular stimulation may play a positive role in the N100 and P300 components of the event-related potentials of the cerebral cortex related to decision-making in matching words with images. PMID:27799703

  17. An fMRI investigation of analogical mapping in metaphor comprehension: the influence of context and individual cognitive capacities on processing demands.

    PubMed

    Prat, Chantel S; Mason, Robert A; Just, Marcel Adam

    2012-03-01

    This study used fMRI to investigate the neural correlates of analogical mapping during metaphor comprehension, with a focus on dynamic configuration of neural networks with changing processing demands and individual abilities. Participants with varying vocabulary sizes and working memory capacities read 3-sentence passages ending in nominal critical utterances of the form "X is a Y." Processing demands were manipulated by varying preceding contexts. Three figurative conditions manipulated difficulty by varying the extent to which preceding contexts mentioned relevant semantic features for relating the vehicle and topic of the critical utterance to one another. In the easy condition, supporting information was mentioned. In the neutral condition, no relevant information was mentioned. In the most difficult condition, opposite features were mentioned, resulting in an ironic interpretation of the critical utterance. A fourth, literal condition included context that supported a literal interpretation of the critical utterance. Activation in lateral and medial frontal regions increased with increasing contextual difficulty. Lower vocabulary readers also had greater activation across conditions in the right inferior frontal gyrus. In addition, volumetric analyses showed increased right temporo-parietal junction and superior medial frontal activation for all figurative conditions over the literal condition. The results from this experiment imply that the cortical regions are dynamically recruited in language comprehension as a function of the processing demands of a task. Individual differences in cognitive capacities were also associated with differences in recruitment and modulation of working memory and executive function regions, highlighting the overlapping computations in metaphor comprehension and general thinking and reasoning.

  18. Modulations in oscillatory activity with amplitude asymmetry can produce cognitively relevant event-related responses

    PubMed Central

    van Dijk, Hanneke; van der Werf, Jurrian; Mazaheri, Ali; Medendorp, W. Pieter; Jensen, Ole

    2009-01-01

    Event-related responses and oscillatory activity are typically regarded as manifestations of different neural processes. Recent work has nevertheless revealed a mechanism by which slow event-related responses are created as a direct consequence of modulations in brain oscillations with nonsinusoidal properties. It remains unknown if this mechanism applies to cognitively relevant event-related responses. Here, we investigated whether sustained event-related fields (ERFs) measured during working memory maintenance can be explained by modulations in oscillatory power. In particular, we focused on contralateral delayed activity (CDA) typically observed in working memory tasks in which hemifield specific attention is manipulated. Using magnetoencephalography, we observed sustained posterior ERFs following the presentation of the memory target. These ERFs were systematically lateralized with respect to the hemisphere in which the target was presented. A strikingly similar pattern emerged for modulations in alpha (9–13 Hz) power. The alpha power and ERF lateralization were strongly correlated over subjects. Based on a mechanistic argument pertaining to the nonsinusoidal properties of the alpha activity, we conclude that the ERFs modulated by working memory are likely to be directly produced by the modulations in oscillatory alpha activity. Given that posterior alpha activity typically reflects disengagement, we conclude that the CDA is not attributable to an additive process reflecting memory maintenance per se but, rather, is a consequence of how attentional resources are allocated. PMID:20080773

  19. Multi-channel linear descriptors for event-related EEG collected in brain computer interface

    NASA Astrophysics Data System (ADS)

    Pei, Xiao-mei; Zheng, Chong-xun; Xu, Jin; Bin, Guang-yu; Wang, Hong-wu

    2006-03-01

    By three multi-channel linear descriptors, i.e. spatial complexity (Ω), field power (Σ) and frequency of field changes (Φ), event-related EEG data within 8-30 Hz were investigated during imagination of left or right hand movement. Studies on the event-related EEG data indicate that a two-channel version of Ω, Σ and Φ could reflect the antagonistic ERD/ERS patterns over contralateral and ipsilateral areas and also characterize different phases of the changing brain states in the event-related paradigm. Based on the selective two-channel linear descriptors, the left and right hand motor imagery tasks are classified to obtain satisfactory results, which testify the validity of the three linear descriptors Ω, Σ and Φ for characterizing event-related EEG. The preliminary results show that Ω, Σ together with Φ have good separability for left and right hand motor imagery tasks, which could be considered for classification of two classes of EEG patterns in the application of brain computer interfaces.

  20. Event-related potentials and event-related oscillations during identity and facial emotional processing in schizophrenia.

    PubMed

    Ramos-Loyo, Julieta; González-Garrido, Andrés A; Sánchez-Loyo, Luis Miguel; Medina, Virginia; Basar-Eroglu, Canan

    2009-01-01

    Impairments in emotional recognition have been consistently reported in schizophrenic patients. The main aim of the present study was to evaluate time-sequenced responses in ERPs and event-related oscillations during emotional recognition of happiness and fear compared to facial identity recognition in schizophrenic patients (SCH) versus healthy controls (CON). Ten paranoid SCH and ten CON subjects performed three oddball paradigm tasks, evaluating face identity recognition and facial emotional recognition of happiness and fear. Event-related potentials and event-related theta and alpha oscillations were obtained for each task. N170 and P2 components appeared with higher amplitude in SCH than in CON at the occipital locations. An early prefrontally distributed P3a component was observed while doing the identity task with lower amplitude in SCH than in CON. Comparatively, P3b amplitude was lower in SCH than in CON over parietal leads in the identity and happiness tasks. Additionally, theta oscillations showed significantly lower RMS values in SCH between 250 and 500 ms post-stimuli in frontal and central regions. On the other hand, the grand-averaged alpha oscillations demonstrated higher RMS values in the occipital leads in SCH compared to CON and the opposite over the frontal regions. Results are interpreted in the framework of a functional disruption in the distributed neuronal networks involved both in facial identity and emotional recognition in schizophrenics as indexed by the brain oscillatory activity and related ERP components. PMID:18727940

  1. Interaction of Phonological Awareness and "Magnocellular" Processing during Normal and Dyslexic Reading: Behavioural and fMRI Investigations

    ERIC Educational Resources Information Center

    Heim, Stefan; Grande, Marion; Pape-Neumann, Julia; van Ermingen, Muna; Meffert, Elisabeth; Grabowska, Anna; Huber, Walter; Amunts, Katrin

    2010-01-01

    We investigated whether phonological deficits are a consequence of magnocellular processing deficits in dyslexic and control children. In Experiment 1, children were tested for reading ability, phonological awareness, visuo-magnocellular motion perception, and attention shifting (sometimes considered as magnocellular function). A two-step cluster…

  2. Spatio-Temporal Information Analysis of Event-Related BOLD Responses

    PubMed Central

    Alpert, Galit Fuhrmann; Handwerker, Dan; Sun, Felice T.; D’Esposito, Mark; Knight, Robert T.

    2009-01-01

    A new approach for analysis of event related fMRI (BOLD) signals is proposed. The technique is based on measures from information theory and is used both for spatial localization of task related activity, as well as for extracting temporal information regarding the task dependent propagation of activation across different brain regions. This approach enables whole brain visualization of voxels (areas) most involved in coding of a specific task condition, the time at which they are most informative about the condition, as well as their average amplitude at that preferred time. The approach does not require prior assumptions about the shape of the hemodynamic response function (HRF), nor about linear relations between BOLD response and presented stimuli (or task conditions). We show that relative delays between different brain regions can also be computed without prior knowledge of the experimental design, suggesting a general method that could be applied for analysis of differential time delays that occur during natural, uncontrolled conditions. Here we analyze BOLD signals recorded during performance of a motor learning task. We show that during motor learning, the BOLD response of unimodal motor cortical areas precedes the response in higher-order multimodal association areas, including posterior parietal cortex. Brain areas found to be associated with reduced activity during motor learning, predominantly in prefrontal brain regions, are informative about the task typically at significantly later times. PMID:17188515

  3. Event-related potentials reveal early activation of body part representations in action concept comprehension.

    PubMed

    Lu, Aitao; Liu, Jing; Zhang, John X

    2012-03-01

    With tasks involving action concept comprehension, many fMRI studies have reported brain activations in sensori-motor regions specific to effectors of the referent action. There is relatively less evidence whether such activations reflect early semantic access or late conceptual re-processing. Here we recorded event-related potentials when participants recognized noun-verb pairs. For Congruent pairs, the verb was the one most commonly associated with the noun (e.g., football-kick). Compared with a control condition, verbs in Congruent pairs showed priming effects in the time windows of 100-150 ms and 210-260 ms. Such activation seems to be specific to body part but not other aspects of the action as similar priming effect was also found when the noun and verb involved different actions though sharing the same body part (e.g., football-jump), documenting for the first time the early activation of body part representations in action concept comprehension. PMID:22306088

  4. Event-related potentials reveal early activation of body part representations in action concept comprehension.

    PubMed

    Lu, Aitao; Liu, Jing; Zhang, John X

    2012-03-01

    With tasks involving action concept comprehension, many fMRI studies have reported brain activations in sensori-motor regions specific to effectors of the referent action. There is relatively less evidence whether such activations reflect early semantic access or late conceptual re-processing. Here we recorded event-related potentials when participants recognized noun-verb pairs. For Congruent pairs, the verb was the one most commonly associated with the noun (e.g., football-kick). Compared with a control condition, verbs in Congruent pairs showed priming effects in the time windows of 100-150 ms and 210-260 ms. Such activation seems to be specific to body part but not other aspects of the action as similar priming effect was also found when the noun and verb involved different actions though sharing the same body part (e.g., football-jump), documenting for the first time the early activation of body part representations in action concept comprehension.

  5. Spatial-temporal modelling of fMRI data through spatially regularized mixture of hidden process models.

    PubMed

    Shen, Yuan; Mayhew, Stephen D; Kourtzi, Zoe; Tiňo, Peter

    2014-01-01

    Previous work investigated a range of spatio-temporal constraints for fMRI data analysis to provide robust detection of neural activation. We present a mixture-based method for the spatio-temporal modelling of fMRI data. This approach assumes that fMRI time series are generated by a probabilistic superposition of a small set of spatio-temporal prototypes (mixture components). Each prototype comprises a temporal model that explains fMRI signals on a single voxel and the model's "region of influence" through a spatial prior over the voxel space. As the key ingredient of our temporal model, the Hidden Process Model (HPM) framework proposed in Hutchinson et al. (2009) is adopted to infer the overlapping cognitive processes triggered by stimuli. Unlike the original HPM framework, we use a parametric model of Haemodynamic Response Function (HRF) so that biological constraints are naturally incorporated in the HRF estimation. The spatial priors are defined in terms of a parameterised distribution. Thus, the total number of parameters in the model does not depend on the number of voxels. The resulting model provides a conceptually principled and computationally efficient approach to identify spatio-temporal patterns of neural activation from fMRI data, in contrast to most conventional approaches in the literature focusing on the detection of spatial patterns. We first verify the proposed model in a controlled experimental setting using synthetic data. The model is further validated on real fMRI data obtained from a rapid event-related visual recognition experiment (Mayhew et al., 2012). Our model enables us to evaluate in a principled manner the variability of neural activations within individual regions of interest (ROIs). The results strongly suggest that, compared with occipitotemporal regions, the frontal ones are less homogeneous, requiring two HPM prototypes per region. Despite the rapid event-related experimental design, the model is capable of disentangling the

  6. Spatial–temporal modelling of fMRI data through spatially regularized mixture of hidden process models

    PubMed Central

    Shen, Yuan; Mayhew, Stephen D.; Kourtzi, Zoe; Tiňo, Peter

    2014-01-01

    Previous work investigated a range of spatio-temporal constraints for fMRI data analysis to provide robust detection of neural activation. We present a mixture-based method for the spatio-temporal modelling of fMRI data. This approach assumes that fMRI time series are generated by a probabilistic superposition of a small set of spatio-temporal prototypes (mixture components). Each prototype comprises a temporal model that explains fMRI signals on a single voxel and the model's “region of influence” through a spatial prior over the voxel space. As the key ingredient of our temporal model, the Hidden Process Model (HPM) framework proposed in Hutchinson et al. (2009) is adopted to infer the overlapping cognitive processes triggered by stimuli. Unlike the original HPM framework, we use a parametric model of Haemodynamic Response Function (HRF) so that biological constraints are naturally incorporated in the HRF estimation. The spatial priors are defined in terms of a parameterised distribution. Thus, the total number of parameters in the model does not depend on the number of voxels. The resulting model provides a conceptually principled and computationally efficient approach to identify spatio-temporal patterns of neural activation from fMRI data, in contrast to most conventional approaches in the literature focusing on the detection of spatial patterns. We first verify the proposed model in a controlled experimental setting using synthetic data. The model is further validated on real fMRI data obtained from a rapid event-related visual recognition experiment (Mayhew et al., 2012). Our model enables us to evaluate in a principled manner the variability of neural activations within individual regions of interest (ROIs). The results strongly suggest that, compared with occipitotemporal regions, the frontal ones are less homogeneous, requiring two HPM prototypes per region. Despite the rapid event-related experimental design, the model is capable of disentangling the

  7. The effect of jogging on P300 event related potentials.

    PubMed

    Nakamura, Y; Nishimoto, K; Akamatu, M; Takahashi, M; Maruyama, A

    1999-03-01

    Physical exercise has beneficial effects not only on cardiovascular system and fat metabolism, may also directly effect the cognitive process. We studied the effect of physical exercise on cognitive processes by measuring the P300 event related-potential (ERP) after jogging. Seven well-trained joggers were enrolled in this study and the P300 potentials using auditory oddball paradigm. ERPs were measured before and after 30 minutes of jogging. The amplitude of the P300 significantly increased after jogging compared to values recorded before jogging. These findings suggest that jogging has the effect of facilitating cognitive processes involved in generation of the P300.

  8. Movement-related event-related desynchronization in neuropsychiatric disorders.

    PubMed

    Leocani, Letizia; Comi, Giancarlo

    2006-01-01

    The analysis of event-related desynchronization (ERD) and event-related synchronization (ERS) provides information on the dynamics of cortical activation during cognitive and motor tasks and has been applied in a variety of neurological and psychiatric disorders. In this chapter, we focus on studies concerning movement-related activity, which showed changes in amount, topography, or time course in relation to not only involvement of the motor system--such as Parkinson's disease (PD), dystonia, and stroke affecting the sensorimotor (SM) pathways--but also physiological aging, degenerative dementia, obsessive-compulsive disorder (OCD), and fatigue associated with multiple sclerosis (MS). In these disorders, the extent of abnormality in the pattern of ERD/ERS is related to the severity of the underlying pathology. Moreover in MS, a correlation with the severity of brain tissue has been found. While there is consistency in changes related to ipokinetic disorders, mainly consisting of delayed appearance of ERD to movement preparation, changes occurring in other brain disorders need to be replicated or raise doubts on the specificity of changes across different diseases. Further studies are needed in order to validate the usefulness of this methodology in the assessment of the single patient for diagnosis and monitoring of the natural course of the disease and of treatment efficacy. PMID:17071242

  9. What's Unique about Unique Entities? An fMRI Investigation of the Semantics of Famous Faces and Landmarks

    PubMed Central

    Olson, Ingrid R.

    2012-01-01

    Famous people and artifacts are referred to as “unique entities” (UEs) due to the unique nature of the knowledge we have about them. Past imaging and lesion experiments have indicated that the anterior temporal lobes (ATLs) as having a special role in the processing of UEs. It has remained unclear which attributes of UEs were responsible for the observed effects in imaging experiments. In this study, we investigated what factors of UEs influence brain activity. In a training paradigm, we systematically varied the uniqueness of semantic associations, the presence/absence of a proper name, and the number of semantic associations to determine factors modulating activity in regions subserving the processing of UEs. We found that a conjunction of unique semantic information and proper names modulated activity within a section of the left ATL. Overall, the processing of UEs involved a wider left-hemispheric cortical network. Within these regions, brain activity was significantly affected by the unique semantic attributes especially in the presence of a proper name, but we could not find evidence for an effect of the number of semantic associations. Findings are discussed in regard to current models of ATL function, the neurophysiology of semantics, and social cognitive processing. PMID:22021913

  10. What's unique about unique entities? An fMRI investigation of the semantics of famous faces and landmarks.

    PubMed

    Ross, Lars A; Olson, Ingrid R

    2012-09-01

    Famous people and artifacts are referred to as "unique entities" (UEs) due to the unique nature of the knowledge we have about them. Past imaging and lesion experiments have indicated that the anterior temporal lobes (ATLs) as having a special role in the processing of UEs. It has remained unclear which attributes of UEs were responsible for the observed effects in imaging experiments. In this study, we investigated what factors of UEs influence brain activity. In a training paradigm, we systematically varied the uniqueness of semantic associations, the presence/absence of a proper name, and the number of semantic associations to determine factors modulating activity in regions subserving the processing of UEs. We found that a conjunction of unique semantic information and proper names modulated activity within a section of the left ATL. Overall, the processing of UEs involved a wider left-hemispheric cortical network. Within these regions, brain activity was significantly affected by the unique semantic attributes especially in the presence of a proper name, but we could not find evidence for an effect of the number of semantic associations. Findings are discussed in regard to current models of ATL function, the neurophysiology of semantics, and social cognitive processing.

  11. An fMRI Investigation of Analogical Mapping in Metaphor Comprehension: The Influence of Context and Individual Cognitive Capacities on Processing Demands

    PubMed Central

    Prat, Chantel S.; Mason, Robert A.; Just, Marcel Adam

    2014-01-01

    This study used fMRI to investigate the neural correlates of analogical mapping during metaphor comprehension, with a focus on dynamic configuration of neural networks with changing processing demands and individual abilities. Participants with varying vocabulary sizes and working memory capacities read 3-sentence passages ending in nominal critical utterances of the form “X is a Y.” Processing demands were manipulated by varying preceding contexts. Three figurative conditions manipulated difficulty by varying the extent to which preceding contexts mentioned relevant semantic features for relating the vehicle and topic of the critical utterance to one another. In the easy condition, supporting information was mentioned. In the neutral condition, no relevant information was mentioned. In the most difficult condition, opposite features were mentioned, resulting in an ironic interpretation of the critical utterance. A fourth, literal condition included context that supported a literal interpretation of the critical utterance. Activation in lateral and medial frontal regions increased with increasing contextual difficulty. Lower vocabulary readers also had greater activation across conditions in the right inferior frontal gyrus. In addition, volumetric analyses showed increased right temporo-parietal junction and superior medial frontal activation for all figurative conditions over the literal condition. The results from this experiment imply that the cortical regions are dynamically recruited in language comprehension as a function of the processing demands of a task. Individual differences in cognitive capacities were also associated with differences in recruitment and modulation of working memory and executive function regions, highlighting the overlapping computations in metaphor comprehension and general thinking and reasoning. PMID:22122242

  12. Effects of handedness on olfactory event-related potentials in a simple olfactory task.

    PubMed

    Gottschlich, Marie; Hummel, Thomas

    2015-06-01

    The purpose of the present study was to re-investigate the influence of handedness on simple olfactory tasks to further clarify the role of handedness in chemical senses. Similar to language and other sensory systems, effects of handedness should be expected. Young, healthy subjects participated in this study, including 24 left-handers and 24 right-handers, with no indication of any major nasal or health problems. The two groups did not differ in terms of sex and age (14 women and 10 men in each group). They had a mean age of 24.0 years. Olfactory event-related potentials were recorded after left or right olfactory stimulation with the rose-like odor phenyl ethyl alcohol (PEA) or the smell of rotten eggs (hydrogen sulfide, H2S). Results suggested that handedness has no major influence on amplitude or latency of olfactory event-related potentials when it comes to simple olfactory tasks.

  13. [Unconscious Acoustical Stimuli Effects on Event-related Potentials in Humans].

    PubMed

    Kopeikina, E A; Choroshich, V V; Aleksandrov, A Y; Ivanova, V Y

    2015-01-01

    Unconscious perception essentially affects human behavior. The main results in this area obtained in experiments with visual stimuli. However, the acoustical stimuli play not less important role in behavior. The main idea of this paper is the electroencephalographic investigation of unconscious acoustical stimulation effects on electro-physiological activity of the brain. For this purpose, the event-related potentials were acquired under unconscious stimulus priming paradigm. The one syllable, three letter length, Russian words and pseudo-words with single letter substitution were used as primes and targets. As a result, we find out that repetition and alternative priming similarly affects the event-related potential's component with 200 ms latency after target application in frontal parietal and temporal areas. Under alternative priming the direction of potential amplitude modification nearby 400 ms was altered for word and semi-word targets. Alternative priming reliably increase ERP's amplitude in 400 ms locality with pseudo-word targets and decrease it under word targets. Taking into account, that all participants were unable to distinguish the applied prime stimuli, we can assume that the event-related potential changes evoked by unconscious perception of acoustical stimuli. The ERP amplitude dynamics revealed in current investigation demonstrate the opportunity of subliminal acoustical stimuli to modulate the electrical activity evoked by verbal acoustical stimulation. PMID:26237945

  14. Syntactic processing with aging: an event-related potential study.

    PubMed

    Kemmer, Laura; Coulson, Seana; De Ochoa, Esmeralda; Kutas, Marta

    2004-05-01

    To assess age-related changes in simple syntactic processing with normal aging, event-related brain potentials (ERPs) elicited by grammatical number violations as individuals read sentences for comprehension were analyzed. Violations were found to elicit a P600 of equal amplitude and latency regardless of an individual's age. Instead, advancing age was associated with a change in the scalp distribution of the P600 effect, being less asymmetric and more frontal (though still with a parietal maximum) in older than younger adults. Our results thus show that the brain's response to simple syntactic violations, unlike those reported for simple binary categorizations and simple semantic violations, is neither slowed nor diminished in amplitude by age. At the same time, the brain's processing of these grammatical number violations did engage at least somewhat different brain regions as a function of age, suggesting a qualitative change rather than any simple quantitative change in speed of processing.

  15. Retinotopic mapping of visual event-related potentials.

    PubMed

    Capilla, Almudena; Melcón, María; Kessel, Dominique; Calderón, Rosbén; Pazo-Álvarez, Paula; Carretié, Luis

    2016-07-01

    Visual stimulation is frequently employed in electroencephalographic (EEG) research. However, despite its widespread use, no studies have thoroughly evaluated how the morphology of the visual event-related potentials (ERPs) varies according to the spatial location of stimuli. Hence, the purpose of this study was to perform a detailed retinotopic mapping of visual ERPs. We recorded EEG activity while participants were visually stimulated with 60 pattern-reversing checkerboards placed at different polar angles and eccentricities. Our results show five pattern-reversal ERP components. C1 and C2 components inverted polarity between the upper and lower hemifields. P1 and N1 showed higher amplitudes and shorter latencies to stimuli located in the contralateral lower quadrant. In contrast, P2 amplitude was enhanced and its latency was reduced by stimuli presented in the periphery of the upper hemifield. The retinotopic maps presented here could serve as a guide for selecting optimal visuo-spatial locations in future ERP studies.

  16. Event-Related Potentials and Emotion Processing in Child Psychopathology

    PubMed Central

    Chronaki, Georgia

    2016-01-01

    In recent years there has been increasing interest in the neural mechanisms underlying altered emotional processes in children and adolescents with psychopathology. This review provides a brief overview of the most up-to-date findings in the field of event-related potentials (ERPs) to facial and vocal emotional expressions in the most common child psychopathological conditions. In regards to externalizing behavior (i.e., ADHD, CD), ERP studies show enhanced early components to anger, reflecting enhanced sensory processing, followed by reductions in later components to anger, reflecting reduced cognitive-evaluative processing. In regards to internalizing behavior, research supports models of increased processing of threat stimuli especially at later more elaborate and effortful stages. Finally, in autism spectrum disorders abnormalities have been observed at early visual-perceptual stages of processing. An affective neuroscience framework for understanding child psychopathology can be valuable in elucidating underlying mechanisms and inform preventive intervention. PMID:27199803

  17. Event-Related Potentials and Emotion Processing in Child Psychopathology.

    PubMed

    Chronaki, Georgia

    2016-01-01

    In recent years there has been increasing interest in the neural mechanisms underlying altered emotional processes in children and adolescents with psychopathology. This review provides a brief overview of the most up-to-date findings in the field of event-related potentials (ERPs) to facial and vocal emotional expressions in the most common child psychopathological conditions. In regards to externalizing behavior (i.e., ADHD, CD), ERP studies show enhanced early components to anger, reflecting enhanced sensory processing, followed by reductions in later components to anger, reflecting reduced cognitive-evaluative processing. In regards to internalizing behavior, research supports models of increased processing of threat stimuli especially at later more elaborate and effortful stages. Finally, in autism spectrum disorders abnormalities have been observed at early visual-perceptual stages of processing. An affective neuroscience framework for understanding child psychopathology can be valuable in elucidating underlying mechanisms and inform preventive intervention. PMID:27199803

  18. FMRI in Epilepsy

    NASA Astrophysics Data System (ADS)

    de Araújo, Dráulio B.; Araújo, David; Rosset, Sara; Wichert-Ana, Lauro; Baffa, Oswaldo; Ceiki Sakamoto, Américo; Pereira Leite, João; Santos, Antônio Carlos

    2004-09-01

    Localization of eloquent areas is of utmost importance in neurosurgical planning, especially in epilepsy surgery. Mass, destructive, or developmental lesions may distort brain anatomy. Functional MRI (fMRI) can localize eloquent areas despite these distortions and provide useful information for the planning of tailored resections. This paper deals with the major issues concerning the use of fMRI in epilepsy surgery, including its limitations. We present results derived from the clinical experience of the Epilepsy Surgery Center at Ribeirão Preto School of Medicine, where typical finger tapping and language fMRI paradigms were applied to 40 patients being considered for resective epilepsy surgery around eloquent cortex. Our results confirmed that although fMRI may not be used as a single tool for surgical planning, in conjunction with other methods it is useful in reducing the surgical time, it improves lesion resection, and prevents functional deficits.

  19. Probabilistic delay differential equation modeling of event-related potentials.

    PubMed

    Ostwald, Dirk; Starke, Ludger

    2016-08-01

    "Dynamic causal models" (DCMs) are a promising approach in the analysis of functional neuroimaging data due to their biophysical interpretability and their consolidation of functional-segregative and functional-integrative propositions. In this theoretical note we are concerned with the DCM framework for electroencephalographically recorded event-related potentials (ERP-DCM). Intuitively, ERP-DCM combines deterministic dynamical neural mass models with dipole-based EEG forward models to describe the event-related scalp potential time-series over the entire electrode space. Since its inception, ERP-DCM has been successfully employed to capture the neural underpinnings of a wide range of neurocognitive phenomena. However, in spite of its empirical popularity, the technical literature on ERP-DCM remains somewhat patchy. A number of previous communications have detailed certain aspects of the approach, but no unified and coherent documentation exists. With this technical note, we aim to close this gap and to increase the technical accessibility of ERP-DCM. Specifically, this note makes the following novel contributions: firstly, we provide a unified and coherent review of the mathematical machinery of the latent and forward models constituting ERP-DCM by formulating the approach as a probabilistic latent delay differential equation model. Secondly, we emphasize the probabilistic nature of the model and its variational Bayesian inversion scheme by explicitly deriving the variational free energy function in terms of both the likelihood expectation and variance parameters. Thirdly, we detail and validate the estimation of the model with a special focus on the explicit form of the variational free energy function and introduce a conventional nonlinear optimization scheme for its maximization. Finally, we identify and discuss a number of computational issues which may be addressed in the future development of the approach.

  20. Episodic memory in former professional football players with a history of concussion: an event-related functional neuroimaging study.

    PubMed

    Ford, Jaclyn H; Giovanello, Kelly S; Guskiewicz, Kevin M

    2013-10-15

    Previous research has demonstrated that sport-related concussions can have short-term effects on cognitive processes, but the long-term consequences are less understood and warrant more research. This study was the first to use event-related functional magnetic resonance imaging (fMRI) to examine long-term differences in neural activity during memory tasks in former athletes who have sustained multiple sport-related concussions. In an event-related fMRI study, former football players reporting multiple sport-related concussions (i.e., three or more) were compared with players who reported fewer than three concussions during a memory paradigm examining item memory (i.e., memory for the particular elements of an event) and relational memory (i.e., memory for the relationships between elements). Behaviorally, we observed that concussion history did not significantly affect behavioral performance, because persons in the low and high concussion groups had equivalent performance on both memory tasks, and in addition, that concussion history was not associated with any behavioral memory measures. Despite demonstrating equivalent behavioral performance, the two groups of former players demonstrated different neural recruitment patterns during relational memory retrieval, suggesting that multiple concussions may be associated with functional inefficiencies in the relational memory network. In addition, the number of previous concussions significantly correlated with functional activity in a number of brain regions, including the medial temporal lobe and inferior parietal lobe. Our results provide important insights in understanding the long-term functional consequences of sustaining multiple sports-related concussions.

  1. Common Neural Systems Associated with the Recognition of Famous Faces and Names: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Nielson, Kristy A.; Seidenberg, Michael; Woodard, John L.; Durgerian, Sally; Zhang, Qi; Gross, William L.; Gander, Amelia; Guidotti, Leslie M.; Antuono, Piero; Rao, Stephen M.

    2010-01-01

    Person recognition can be accomplished through several modalities (face, name, voice). Lesion, neurophysiology and neuroimaging studies have been conducted in an attempt to determine the similarities and differences in the neural networks associated with person identity via different modality inputs. The current study used event-related…

  2. Analysis and visualization of single-trial event-related potentials

    NASA Technical Reports Server (NTRS)

    Jung, T. P.; Makeig, S.; Westerfield, M.; Townsend, J.; Courchesne, E.; Sejnowski, T. J.

    2001-01-01

    In this study, a linear decomposition technique, independent component analysis (ICA), is applied to single-trial multichannel EEG data from event-related potential (ERP) experiments. Spatial filters derived by ICA blindly separate the input data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain sources. Both the data and their decomposition are displayed using a new visualization tool, the "ERP image," that can clearly characterize single-trial variations in the amplitudes and latencies of evoked responses, particularly when sorted by a relevant behavioral or physiological variable. These tools were used to analyze data from a visual selective attention experiment on 28 control subjects plus 22 neurological patients whose EEG records were heavily contaminated with blink and other eye-movement artifacts. Results show that ICA can separate artifactual, stimulus-locked, response-locked, and non-event-related background EEG activities into separate components, a taxonomy not obtained from conventional signal averaging approaches. This method allows: (1) removal of pervasive artifacts of all types from single-trial EEG records, (2) identification and segregation of stimulus- and response-locked EEG components, (3) examination of differences in single-trial responses, and (4) separation of temporally distinct but spatially overlapping EEG oscillatory activities with distinct relationships to task events. The proposed methods also allow the interaction between ERPs and the ongoing EEG to be investigated directly. We studied the between-subject component stability of ICA decomposition of single-trial EEG epochs by clustering components with similar scalp maps and activation power spectra. Components accounting for blinks, eye movements, temporal muscle activity, event-related potentials, and event-modulated alpha activities were largely replicated across subjects. Applying ICA and ERP image

  3. Analysis and visualization of single-trial event-related potentials.

    PubMed

    Jung, T P; Makeig, S; Westerfield, M; Townsend, J; Courchesne, E; Sejnowski, T J

    2001-11-01

    In this study, a linear decomposition technique, independent component analysis (ICA), is applied to single-trial multichannel EEG data from event-related potential (ERP) experiments. Spatial filters derived by ICA blindly separate the input data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain sources. Both the data and their decomposition are displayed using a new visualization tool, the "ERP image," that can clearly characterize single-trial variations in the amplitudes and latencies of evoked responses, particularly when sorted by a relevant behavioral or physiological variable. These tools were used to analyze data from a visual selective attention experiment on 28 control subjects plus 22 neurological patients whose EEG records were heavily contaminated with blink and other eye-movement artifacts. Results show that ICA can separate artifactual, stimulus-locked, response-locked, and non-event-related background EEG activities into separate components, a taxonomy not obtained from conventional signal averaging approaches. This method allows: (1) removal of pervasive artifacts of all types from single-trial EEG records, (2) identification and segregation of stimulus- and response-locked EEG components, (3) examination of differences in single-trial responses, and (4) separation of temporally distinct but spatially overlapping EEG oscillatory activities with distinct relationships to task events. The proposed methods also allow the interaction between ERPs and the ongoing EEG to be investigated directly. We studied the between-subject component stability of ICA decomposition of single-trial EEG epochs by clustering components with similar scalp maps and activation power spectra. Components accounting for blinks, eye movements, temporal muscle activity, event-related potentials, and event-modulated alpha activities were largely replicated across subjects. Applying ICA and ERP image

  4. Gender differences in the processing of standard emotional visual stimuli: integrating ERP and fMRI results

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Tian, Jie; Wang, Xiaoxiang; Hu, Jin

    2005-04-01

    The comprehensive understanding of human emotion processing needs consideration both in the spatial distribution and the temporal sequencing of neural activity. The aim of our work is to identify brain regions involved in emotional recognition as well as to follow the time sequence in the millisecond-range resolution. The effect of activation upon visual stimuli in different gender by International Affective Picture System (IAPS) has been examined. Hemodynamic and electrophysiological responses were measured in the same subjects. Both fMRI and ERP study were employed in an event-related study. fMRI have been obtained with 3.0 T Siemens Magnetom whole-body MRI scanner. 128-channel ERP data were recorded using an EGI system. ERP is sensitive to millisecond changes in mental activity, but the source localization and timing is limited by the ill-posed 'inversed' problem. We try to investigate the ERP source reconstruction problem in this study using fMRI constraint. We chose ICA as a pre-processing step of ERP source reconstruction to exclude the artifacts and provide a prior estimate of the number of dipoles. The results indicate that male and female show differences in neural mechanism during emotion visual stimuli.

  5. Single-trial discrimination for integrating simultaneous EEG and fMRI: Identifying cortical areas contributing to trial-to-trial variability in the auditory oddball task

    PubMed Central

    Goldman, Robin I; Wei, Cheng-Yu; Philiastides, Marios G.; Gerson, Adam D.; Friedman, David; Brown, Truman R.; Sajda, Paul

    2009-01-01

    The auditory oddball task is a well-studied stimulus paradigm used to investigate the neural correlates of simple target detection. It elicits several classic event-related potentials (ERPs), the most prominent being the P300 which is seen as a neural correlate of subjects' detection of rare (target) stimuli. Though trial-averaging is typically used to identify and characterize such ERPs, their latency and amplitude can vary on a trial-to-trial basis reflecting variability in the underlying neural information processing. Here we simultaneously recorded EEG and fMRI during an auditory oddball task and identified cortical areas correlated with the trial-to-trial variability of task-discriminating EEG components. Unique to our approach is a linear multivariate method for identifying task-discriminating components within specific stimulus- or response- locked time windows. We find fMRI activations indicative of distinct processes that contribute to the single-trial variability during target detection. These regions are different from those found using standard, including trial-averaged, regressors. Of particular note is strong activation of the lateral occipital complex (LOC). The LOC was not seen when using traditional event-related regressors. Though LOC is typically associated with visual/spatial attention, its activation in an auditory oddball task, where attention can wax and wane from trial-to-trial, indicates it may be part of a more general attention network involved in allocating resources for target detection and decision making. Our results show that trial-to-trial variability in EEG components, acquired simultaneously with fMRI, can yield task-relevant BOLD activations that are otherwise unobservable using traditional fMRI analysis. PMID:19345734

  6. Study Design in fMRI: Basic Principles

    ERIC Educational Resources Information Center

    Amaro, Edson, Jr.; Barker, Gareth J.

    2006-01-01

    There is a wide range of functional magnetic resonance imaging (fMRI) study designs available for the neuroscientist who wants to investigate cognition. In this manuscript we review some aspects of fMRI study design, including cognitive comparison strategies (factorial, parametric designs), and stimulus presentation possibilities (block,…

  7. Lying about Facial Recognition: An fMRI Study

    ERIC Educational Resources Information Center

    Bhatt, S.; Mbwana, J.; Adeyemo, A.; Sawyer, A.; Hailu, A.; VanMeter, J.

    2009-01-01

    Novel deception detection techniques have been in creation for centuries. Functional magnetic resonance imaging (fMRI) is a neuroscience technology that non-invasively measures brain activity associated with behavior and cognition. A number of investigators have explored the utilization and efficiency of fMRI in deception detection. In this study,…

  8. Cholinergic modulation of event-related oscillations (ERO).

    PubMed

    Sanchez-Alavez, Manuel; Robledo, Patricia; Wills, Derek N; Havstad, James; Ehlers, Cindy L

    2014-04-22

    The cholinergic system in the brain modulates patterns of activity involved in general arousal, attention processing, memory and consciousness. In the present study we determined the effects of selective cholinergic lesions of the medial septum area (MS) or nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs). A time-frequency based representation was used to determine ERO energy, phase synchronization across trials, recorded within a structure (phase lock index, PLI), and phase synchronization across trials, recorded between brain structures (phase difference lock index, PDLI), in the frontal cortex (Fctx), dorsal hippocampus (DHPC) and central amygdala (Amyg). Lesions in MS produced: (1) decreases in ERO energy in delta, theta, alpha, beta and gamma frequencies in Amyg, (2) reductions in gamma ERO energy and PLI in Fctx, (3) decreases in PDLI between the Fctx-Amyg in the theta, alpha, beta and gamma frequencies, and (4) decreases in PDLI between the DHPC-Amyg and Fctx-DHPC in the theta frequency bands. Lesions in NBM resulted in: (1) increased ERO energy in delta and theta frequency bands in Fctx, (2) reduced gamma ERO energy in Fctx and Amyg, (3) reductions in PLI in the theta, beta and gamma frequency ranges in Fctx, (4) reductions in gamma PLI in DHPC and (5) reduced beta PLI in Amyg. These studies suggest that the MS cholinergic system can alter phase synchronization between brain areas whereas the NBM cholinergic system modifies phase synchronization/phase resetting within a brain area. PMID:24594019

  9. Analysis of event-related potentials (ERP) by damped sinusoids.

    PubMed

    Demiralp, T; Ademoglu, A; Istefanopulos, Y; Gülçür, H O

    1998-06-01

    Several researchers propose that event-related potentials (ERPs) can be explained by a superposition of transient oscillations at certain frequency bands in response to external or internal events. The transient nature of the ERP is more suitable to be modelled as a sum of damped sinusoids. These damped sinusoids can be completely characterized by four sets of parameters, namely the amplitude, the damping coefficient, the phase and the frequency. The Prony method is used to estimate these parameters. In this study, the long-latency auditory-evoked potentials (AEP) and the auditory oddball responses (P300) of 10 healthy subjects are analysed by this method. It is shown that the original waveforms can be reconstructed by summing a small number of damped sinusoids. This allows for a parsimonious representation of the ERPs. Furthermore, the method shows that the oddball target responses contain higher amplitude, slower delta and slower damped theta components than those of the AEPs. With this technique, we show that the differentiation of sensory and cognitive potentials are not inherent in their overall frequency content but in their frequency components at certain bands.

  10. Event-related desynchronization evoked by auditory stimuli.

    PubMed

    Krause, C M; Lang, H A; Laine, M; Helle, S I; Kuusisto, M J; Pörn, B

    1994-01-01

    Event-Related Desynchronization (ERD) and Synchronization (ERS) of several EEG alpha frequencies was studied in 19 subjects during the presentation of linguistic and/or melodic auditory stimuli. The stimulus length was 1300 msec (+/-100 msec) and the interstimulus interval was 2000 msec. A significant ERD was found during auditory stimulation in the 8-10 Hz and 10-12 Hz alpha frequency bands, and there were also significant differences in the spatiotemporal pattern of the ERD between these frequency bands. Significant ERD was elicited also in the 10-11 and 11-12 Hz frequency bands by auditory stimulation. There were no significant differences between these one-hertz frequency bands. The subjects were assigned to two analysis groups according to their individual alpha peak frequency (10-11 or 11-12 Hz) at rest. The ERD in these groups reached statistical significance and there were significant differences between the groups. The ERD of the two groups differed significantly also when their EEG data was studied in the 10-12 Hz frequency band. The results from this study show that ERD is not modality-specific, i.e., it can be elicited also by auditory stimuli. Moreover, they indicate that it is important to control over interindividual variation in the EEG when studying the ERD phenomenon.

  11. Cholinergic modulation of event-related oscillations (ERO)

    PubMed Central

    Sanchez-Alavez, Manuel; Robledo, Patricia; Wills, Derek N.; Havstad, James; Ehlers, Cindy L.

    2014-01-01

    The cholinergic system in the brain modulates patterns of activity involved in general arousal, attention processing, memory and consciousness. In the present study we determined the effects of selective cholinergic lesions of the medial septum area (MS) or nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs). A time–frequency based representation was used to determine ERO energy, phase synchronization across trials, recorded within a structure (phase lock index, PLI), and phase synchronization across trials, recorded between brain structures (phase difference lock index, PDLI), in the frontal cortex (Fctx), dorsal hippocampus (DHPC) and central amygdala (Amyg). Lesions in MS produced: (1) decreases in ERO energy in delta, theta, alpha, beta and gamma frequencies in Amyg, (2) reductions in gamma ERO energy and PLI in Fctx, (3) decreases in PDLI between the Fctx–Amyg in the theta, alpha, beta and gamma frequencies, and (4) decreases in PDLI between the DHPC–Amyg and Fctx–DHPC in the theta frequency bands. Lesions in NBM resulted in: (1) increased ERO energy in delta and theta frequency bands in Fctx, (2) reduced gamma ERO energy in Fctx and Amyg, (3) reductions in PLI in the theta, beta and gamma frequency ranges in Fctx, (4) reductions in gamma PLI in DHPC and (5) reduced beta PLI in Amyg. These studies suggest that the MS cholinergic system can alter phase synchronization between brain areas whereas the NBM cholinergic system modifies phase synchronization/phase resetting within a brain area. PMID:24594019

  12. Social Comparison Manifests in Event-related Potentials

    PubMed Central

    Luo, Yi; Feng, Chunliang; Wu, Tingting; Broster, Lucas S.; Cai, Huajian; Gu, Ruolei; Luo, Yue-jia

    2015-01-01

    Social comparison, a widespread phenomenon in human society, has been found to affect outcome evaluation. The need to belong to a social group may result in distinct neural responses to diverse social comparison outcomes. To extend previous studies by examining how social comparison with hierarchical characteristics is temporally processed, electroencephalography responses were recorded in the current study. Participants played a lottery game with two pseudo-players simultaneously and received both their own and the other two players’ outcomes. Results of three event-related potential components, including the P2, the feedback-related negativity (FRN), and the late positive component (LPC), indicate that social comparison manifests in three stages. First, outcomes indicating a different performance from others elicited a larger P2 than evenness. Second, the FRN showed hierarchical sensitivity to social comparison outcomes. This effect manifested asymmetrically. Finally, large difference between the participant’s outcome and the other two players’ evoked a larger LPC than the medium difference and the even condition. We suggest that during social comparison, people detect if there is any difference between self and others, and then evaluate the information of this difference hierarchically, and finally interpret the situations in which oneself deviates from the group as most motivationally salient. PMID:26183734

  13. Event-Related Oscillations in Alcoholism Research: A Review

    PubMed Central

    Pandey, Ashwini K; Kamarajan, Chella; Rangaswamy, Madhavi; Porjesz, Bernice

    2013-01-01

    Alcohol dependence is characterized as a multi-factorial disorder caused by a complex interaction between genetic and environmental liabilities across development. A variety of neurocognitive deficits/dysfunctions involving impairments in different brain regions and/or neural circuitries have been associated with chronic alcoholism, as well as with a predisposition to develop alcoholism. Several neurobiological and neurobehavioral approaches and methods of analyses have been used to understand the nature of these neurocognitive impairments/deficits in alcoholism. In the present review, we have examined relatively novel methods of analyses of the brain signals that are collectively referred to as event-related oscillations (EROs) and show promise to further our understanding of human brain dynamics while performing various tasks. These new measures of dynamic brain processes have exquisite temporal resolution and allow the study of neural networks underlying responses to sensory and cognitive events, thus providing a closer link to the physiology underlying them. Here, we have reviewed EROs in the study of alcoholism, their usefulness in understanding dynamical brain functions/dysfunctions associated with alcoholism as well as their utility as effective endophenotypes to identify and understand genes associated with both brain oscillations and alcoholism. PMID:24273686

  14. Event-related potentials during an emotional Stroop task.

    PubMed

    Thomas, Susan J; Johnstone, Stuart J; Gonsalvez, Craig J

    2007-03-01

    Emotional Stroop tasks have gained wide interest in scientific literature in the last two decades. Although no direct measure of attention is employed, these studies infer the presence of preferential processing of threatening information based on reaction time (RT) impairment in a competing task. Because event-related potential (ERP) measures are sensitive to both the extent (amplitude) and speed (latency) of cerebral processing, they are valuable tools with which to examine more directly the claim that threatening stimuli are associated with enhanced attention. Twenty-two students rated a pool of words to identify those that were personally disturbing. Two word types (threat and neutral) were then compared in two tasks (color relevant, in which the color ink of words was identified, and word relevant in which words were classified as threatening or not). No emotional Stroop effect was observed in terms of longer RTs to identify the colors of threat words. ERP results provided valuable information about threat processing which was not observed with behavioral measures. Threat content was associated with larger P2 amplitude in the right than left hemisphere, and larger P3 amplitude, across tasks. The results indicate strong evidence for enhanced processing of threat-related stimuli in healthy individuals. It is concluded that ERPs are a sensitive measure of processes underlying emotional Stroop performance, which can be used to elucidate attentional biases in healthy and clinical populations.

  15. Event-Related Oscillations in Alcoholism Research: A Review.

    PubMed

    Pandey, Ashwini K; Kamarajan, Chella; Rangaswamy, Madhavi; Porjesz, Bernice

    2012-01-12

    Alcohol dependence is characterized as a multi-factorial disorder caused by a complex interaction between genetic and environmental liabilities across development. A variety of neurocognitive deficits/dysfunctions involving impairments in different brain regions and/or neural circuitries have been associated with chronic alcoholism, as well as with a predisposition to develop alcoholism. Several neurobiological and neurobehavioral approaches and methods of analyses have been used to understand the nature of these neurocognitive impairments/deficits in alcoholism. In the present review, we have examined relatively novel methods of analyses of the brain signals that are collectively referred to as event-related oscillations (EROs) and show promise to further our understanding of human brain dynamics while performing various tasks. These new measures of dynamic brain processes have exquisite temporal resolution and allow the study of neural networks underlying responses to sensory and cognitive events, thus providing a closer link to the physiology underlying them. Here, we have reviewed EROs in the study of alcoholism, their usefulness in understanding dynamical brain functions/dysfunctions associated with alcoholism as well as their utility as effective endophenotypes to identify and understand genes associated with both brain oscillations and alcoholism.

  16. What event-related potentials (ERPs) bring to social neuroscience?

    PubMed

    Ibanez, Agustin; Melloni, Margherita; Huepe, David; Helgiu, Elena; Rivera-Rei, Alvaro; Canales-Johnson, Andrés; Baker, Phil; Moya, Alvaro

    2012-01-01

    Social cognitive neuroscience is a recent interdisciplinary field that studies the neural basis of the social mind. Event-related potentials (ERPs) provide precise information about the time dynamics of the brain. In this study, we assess the role of ERPs in cognitive neuroscience, particularly in the emerging area of social neuroscience. First, we briefly introduce the technique of ERPs. Subsequently, we describe several ERP components (P1, N1, N170, vertex positive potential, early posterior negativity, N2, P2, P3, N400, N400-like, late positive complex, late positive potential, P600, error-related negativity, feedback error-related negativity, contingent negative variation, readiness potential, lateralized readiness potential, motor potential, re-afferent potential) that assess perceptual, cognitive, and motor processing. Then, we introduce ERP studies in social neuroscience on contextual effects on speech, emotional processing, empathy, and decision making. We provide an outline of ERPs' relevance and applications in the field of social cognitive neuroscience. We also introduce important methodological issues that extend classical ERP research, such as intracranial recordings (iERP) and source location in dense arrays and simultaneous functional magnetic resonance imaging recordings. Further, this review discusses possible caveats of the ERP question assessment on neuroanatomical areas, biophysical origin, and methodological problems, and their relevance to explanatory pluralism and multilevel, contextual, and situated approaches to social neuroscience.

  17. Is event-related desynchronization a biomarker representing corticospinal excitability?

    PubMed

    Takemi, Mitsuaki; Masakado, Yoshihisa; Liu, Meigen; Ushiba, Junichi

    2013-01-01

    Brain computer interfaces (BCIs) using event-related desynchronization (ERD) of the electroencephalogram (EEG), which is believed to represent increased activation of the sensorimotor cortex, have attracted attention as tools for rehabilitation of upper limb motor functions in hemiplegic stroke patients. However, it remains unclear whether the corticospinal excitability is actually correlated with ERD. The purpose of this study was to assess the association between the ERD magnitude and the excitability of primary motor cortex (M1) and spinal motoneurons. M1 excitability was tested by motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) using transcranial magnetic stimulation, and spinal motoneuronal excitability was tested by F-waves using peripheral nerve stimulation. Results showed that large ERD during motor imagery was associated with significantly increased F-wave persistence and reduced SICI, but no significant changes in ICF and the response average of F-wave amplitudes. Our findings suggest that ERD magnitude during motor imagery represents the instantaneous excitability of both M1 and spinal motoneurons. This study provides electrophysiological evidence that ERD-based BCI with motor imagery task increases corticospinal excitability as changes accompanying actual movements.

  18. Event-related potential alterations in fragile X syndrome

    PubMed Central

    Knoth, Inga S.; Lippé, Sarah

    2012-01-01

    Fragile X Syndrome (FXS) is the most common form of X-linked intellectual disability (ID), associated with a wide range of cognitive and behavioral impairments. FXS is caused by a trinucleotide repeat expansion in the FMR1 gene located on the X-chromosome. FMR1 is expected to prevent the expression of the “fragile X mental retardation protein (FMRP)”, which results in altered structural and functional development of the synapse, including a loss of synaptic plasticity. This review aims to unveil the contribution of electrophysiological signal studies for the understanding of the information processing impairments in FXS patients. We discuss relevant event-related potential (ERP) studies conducted with full mutation FXS patients and clinical populations sharing symptoms with FXS in a developmental perspective. Specific deviances found in FXS ERP profiles are described. Alterations are reported in N1, P2, Mismatch Negativity (MMN), N2, and P3 components in FXS compared to healthy controls. Particularly, deviances in N1 and P2 amplitude seem to be specific to FXS. The presented results suggest a cascade of impaired information processes that are in line with symptoms and anatomical findings in FXS. PMID:23015788

  19. Social Comparison Manifests in Event-related Potentials.

    PubMed

    Luo, Yi; Feng, Chunliang; Wu, Tingting; Broster, Lucas S; Cai, Huajian; Gu, Ruolei; Luo, Yue-jia

    2015-01-01

    Social comparison, a widespread phenomenon in human society, has been found to affect outcome evaluation. The need to belong to a social group may result in distinct neural responses to diverse social comparison outcomes. To extend previous studies by examining how social comparison with hierarchical characteristics is temporally processed, electroencephalography responses were recorded in the current study. Participants played a lottery game with two pseudo-players simultaneously and received both their own and the other two players' outcomes. Results of three event-related potential components, including the P2, the feedback-related negativity (FRN), and the late positive component (LPC), indicate that social comparison manifests in three stages. First, outcomes indicating a different performance from others elicited a larger P2 than evenness. Second, the FRN showed hierarchical sensitivity to social comparison outcomes. This effect manifested asymmetrically. Finally, large difference between the participant's outcome and the other two players' evoked a larger LPC than the medium difference and the even condition. We suggest that during social comparison, people detect if there is any difference between self and others, and then evaluate the information of this difference hierarchically, and finally interpret the situations in which oneself deviates from the group as most motivationally salient. PMID:26183734

  20. Bilingual language control: an event-related brain potential study.

    PubMed

    Christoffels, Ingrid K; Firk, Christine; Schiller, Niels O

    2007-05-25

    This study addressed how bilingual speakers switch between their first and second language when speaking. Event-related brain potentials (ERPs) and naming latencies were measured while unbalanced German (L1)-Dutch (L2) speakers performed a picture-naming task. Participants named pictures either in their L1 or in their L2 (blocked language conditions), or participants switched between their first and second language unpredictably (mixed language condition). Furthermore, form similarity between translation equivalents (cognate status) was manipulated. A cognate facilitation effect was found for L1 and L2 indicating phonological activation of the non-response language in blocked and mixed language conditions. The ERP data also revealed small but reliable effects of cognate status. Language switching resulted in equal switching costs for both languages and was associated with a modulation in the ERP waveforms (time windows 275-375 ms and 375-475 ms). Mixed language context affected especially the L1, both in ERPs and in latencies, which became slower in L1 than L2. It is suggested that sustained and transient components of language control should be distinguished. Results are discussed in relation to current theories of bilingual language processing.

  1. Auditory event-related potentials in poor readers.

    PubMed

    Bernal, J; Harmony, T; Rodríguez, M; Reyes, A; Yáñez, G; Fernández, T; Galán, L; Silva, J; Fernández- Bouzas, A; Rodríguez, H; Guerrero, V; Marosi, E

    2000-04-01

    Although poor readers (PR) are considered the major group among reading-disabled children, there are not event-related potentials (ERP) studies reported of PR on the subject. In this study, attentional and memory processes were studied in an auditory oddball task in PR and normal controls. ERP to auditory stimuli were recorded in 19 leads of the 10/20 system, using linked earlobes as references, in 20 normal children (10 female) and 20 PR (10 female) of the same age (10-12 years old). Two pure tones (1000 and 3000 Hz) were used in an oddball paradigm. No significant differences were observed in the amplitudes and latencies of N100 between the groups. However, N200 to frequent stimuli and P200 to both frequent and infrequent stimuli were of higher amplitude in poor readers than in normal children. There were no differences between groups in the latency and amplitude of P300. The results suggest that PR use more attentional resources in the components occurring before P300 to both frequent and infrequent stimuli than the normal children, and this finding is particularly marked for PR girls.

  2. Communication of ALS Patients by Detecting Event-Related Potential

    NASA Astrophysics Data System (ADS)

    Kanou, Naoyuki; Sakuma, Kenji; Nakashima, Kenji

    Amyotrophic Lateral Sclerosis(ALS) patients are unable to successfully communicate their desires, although their mental capacity is the same as non-affected persons. Therefore, the authors put emphasis on Event-Related Potential(ERP) which elicits the highest outcome for the target visual and hearing stimuli. P300 is one component of ERP. It is positive potential that is elicited when the subject focuses attention on stimuli that appears infrequently. In this paper, the authors focused on P200 and N200 components, in addition to P300, for their great improvement in the rate of correct judgment in the target word-specific experiment. Hence the authors propose the algorithm that specifies target words by detecting these three components. Ten healthy subjects and ALS patient underwent the experiment in which a target word out of five words, was specified by this algorithm. The rates of correct judgment in nine of ten healthy subjects were more than 90.0%. The highest rate was 99.7%. The highest rate of ALS patient was 100.0%. Through these results, the authors found the possibility that ALS patients could communicate with surrounding persons by detecting ERP(P200, N200 and P300) as their desire.

  3. Simultaneous EEG-fMRI in patients with Unverricht-Lundborg disease: event-related desynchronization/synchronization and hemodynamic response analysis.

    PubMed

    Visani, Elisa; Minati, Ludovico; Canafoglia, Laura; Gilioli, Isabella; Salvatoni, Lucia; Varotto, Giulia; Fazio, Patrik; Aquino, Domenico; Bruzzone, Maria Grazia; Franceschetti, Silvana; Panzica, Ferruccio

    2010-01-01

    We performed simultaneous acquisition of EEG-fMRI in seven patients with Unverricht-Lundborg disease (ULD) and in six healthy controls using self-paced finger extension as a motor task. The event-related desynchronization/synchronization (ERD/ERS) analysis showed a greater and more diffuse alpha desynchronization in central regions and a strongly reduced post-movement beta-ERS in patients compared with controls, suggesting a significant dysfunction of the mechanisms regulating active movement and movement end. The event-related hemodynamic response obtained from fMRI showed delayed BOLD peak latency in the contralateral primary motor area suggesting a less efficient activity of the neuronal populations driving fine movements, which are specifically impaired in ULD. PMID:20111730

  4. Altered Dynamics of the fMRI Response to Faces in Individuals with Autism

    ERIC Educational Resources Information Center

    Kleinhans, Natalia M.; Richards, Todd; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth

    2016-01-01

    Abnormal fMRI habituation in autism spectrum disorders (ASDs) has been proposed as a critical component in social impairment. This study investigated habituation to fearful faces and houses in ASD and whether fMRI measures of brain activity discriminate between ASD and typically developing (TD) controls. Two identical fMRI runs presenting masked…

  5. Cue reactivity in smokers: an event-related potential study.

    PubMed

    Bloom, Erika Litvin; Potts, Geoffrey F; Evans, David E; Drobes, David J

    2013-11-01

    Drugs-of-abuse may increase the salience of drug cues by sensitizing the dopaminergic (DA) system (Robinson and Berridge, 1993), leading to differential attention to smoking stimuli. Event-related potentials (ERPs) have been used to assess attention to smoking cues but not using an ERP component associated with DA-mediated salience evaluation. In this study the DA-related P2a and the P3, were compared in smokers (N = 21) and non-smokers (N = 21) during an attention selection cue exposure task including both cigarette and neutral images. We predicted that both the P2a and P3 would be larger to targets than non-targets, but larger to non-target cigarette images than non-target neutral images only in the smokers, reflecting smokers' evaluation of smoking stimuli as relevant even when they were not targets. Results indicated that smokers showed behavioral cue reactivity, with more false alarms to cigarette images (responding to cigarette images when they were not targets) than non-smokers; however, both smokers and non-smokers had a larger P2a and P3 to cigarette images. Thus, while smokers showed behavioral evidence of differential salience evaluation of the cigarette images, this group difference was not reflected in differential brain activity. These findings may reflect characteristics of the ERPs (both ERP components were smaller in the smokers), the smoking sample (they were not more impulsive, i.e. reward sensitive, than the non-smokers, in contrast to prior studies) and the design (all participants were aware that the aim of the study was related to smoking). PMID:23958866

  6. Cue Reactivity in Smokers: An Event-Related Potential Study

    PubMed Central

    Bloom, Erika Litvin; Potts, Geoffrey F.; Evans, David E.; Drobes, David J.

    2013-01-01

    Drugs-of-abuse may increase the salience of drug cues by sensitizing the dopaminergic (DA) system (Robinson & Berridge, 1993), leading to differential attention to smoking stimuli. Event-related potentials (ERPs) have been used to assess attention to smoking cues but not using an ERP component associated with DA-mediated salience evaluation. In this study the DA-related P2a and the P3, were compared in smokers (N=21) and non-smokers (N=21) during an attention selection cue exposure task including both cigarette and neutral images. We predicted that both the P2a and P3 would be larger to targets than non-targets, but larger to non-target cigarette images than non-target neutral images only in the smokers, reflecting smokers’ evaluation of smoking stimuli as relevant even when they were not targets. Results indicated that smokers showed behavioral cue reactivity, with more false alarms to cigarette images (responding to cigarette images when they were not targets) than non-smokers; however, both smokers and non-smokers had a larger P2a and P3 to cigarette images. Thus, while smokers showed behavioral evidence of differential salience evaluation of the cigarette images, this group difference was not reflected in differential brain activity. These findings may reflect characteristics of the ERPs (both ERP components were smaller in the smokers), the smoking sample (they were not more impulsive, i.e. reward sensitive, than the non-smokers, in contrast to prior studies) and the design (all participants were aware that the aim of the study was related to smoking). PMID:23958866

  7. Molecular fMRI

    PubMed Central

    Bartelle, Benjamin B.; Barandov, Ali

    2016-01-01

    Comprehensive analysis of brain function depends on understanding the dynamics of diverse neural signaling processes over large tissue volumes in intact animals and humans. Most existing approaches to measuring brain signaling suffer from limited tissue penetration, poor resolution, or lack of specificity for well-defined neural events. Here we discuss a new brain activity mapping method that overcomes some of these problems by combining MRI with contrast agents sensitive to neural signaling. The goal of this “molecular fMRI” approach is to permit noninvasive whole-brain neuroimaging with specificity and resolution approaching current optical neuroimaging methods. In this article, we describe the context and need for molecular fMRI as well as the state of the technology today. We explain how major types of MRI probes work and how they can be sensitized to neurobiological processes, such as neurotransmitter release, calcium signaling, and gene expression changes. We comment both on past work in the field and on challenges and promising avenues for future development. SIGNIFICANCE STATEMENT Brain researchers currently have a choice between measuring neural activity using cellular-level recording techniques, such as electrophysiology and optical imaging, or whole-brain imaging methods, such as fMRI. Cellular level methods are precise but only address a small portion of mammalian brains; on the other hand, whole-brain neuroimaging techniques provide very little specificity for neural pathways or signaling components of interest. The molecular fMRI techniques we discuss have particular potential to combine the specificity of cellular-level measurements with the noninvasive whole-brain coverage of fMRI. On the other hand, molecular fMRI is only just getting off the ground. This article aims to offer a snapshot of the status and future prospects for development of molecular fMRI techniques. PMID:27076413

  8. Resting-state FMRI confounds and cleanup

    PubMed Central

    Murphy, Kevin; Birn, Rasmus M.; Bandettini, Peter A.

    2013-01-01

    The goal of resting-state functional magnetic resonance imaging (FMRI) is to investigate the brain’s functional connections by using the temporal similarity between blood oxygenation level dependent (BOLD) signals in different regions of the brain “at rest” as an indicator of synchronous neural activity. Since this measure relies on the temporal correlation of FMRI signal changes between different parts of the brain, any non-neural activity-related process that affects the signals will influence the measure of functional connectivity, yielding spurious results. To understand the sources of these resting-state FMRI confounds, this article describes the origins of the BOLD signal in terms of MR physics and cerebral physiology. Potential confounds arising from motion, cardiac and respiratory cycles, arterial CO2 concentration, blood pressure/cerebral autoregulation, and vasomotion are discussed. Two classes of techniques to remove confounds from resting-state BOLD time series are reviewed: 1) those utilising external recordings of physiology and 2) data-based cleanup methods that only use the resting-state FMRI data itself. Further methods that remove noise from functional connectivity measures at a group level are also discussed. For successful interpretation of resting-state FMRI comparisons and results, noise cleanup is an often over-looked but essential step in the analysis pipeline. PMID:23571418

  9. Neurovascular coupling in normal aging: A combined optical, ERP and fMRI study

    PubMed Central

    Fabiani, Monica; Gordon, Brian A.; Maclin, Edward L.; Pearson, Melanie A.; Brumback-Peltz, Carrie R.; Low, Kathy A.; McAuley, Edward; Sutton, Bradley P.; Kramer, Arthur F.; Gratton, Gabriele

    2013-01-01

    Brain aging is characterized by changes in both hemodynamic and neuronal responses, which may be influenced by the cardiorespiratory fitness of the individual. To investigate the relationship between neuronal and hemodynamic changes, we studied the brain activity elicited by visual stimulation (checkerboard reversals at different frequencies) in younger adults and in older adults varying in physical fitness. Four functional brain measures were used to compare neuronal and hemodynamic responses obtained from BA17: two reflecting neuronal activity (the event-related optical signal, EROS, and the C1 response of the ERP), and two reflecting functional hemodynamic changes (functional magnetic resonance imaging, fMRI, and near-infrared spectroscopy, NIRS). The results indicated that both younger and older adults exhibited a quadratic relationship between neuronal and hemodynamic effects, with reduced increases of the hemodynamic response at high levels of neuronal activity. Although older adults showed reduced activation, similar neurovascular coupling functions were observed in the two age groups when fMRI and deoxy-hemoglobin measures were used. However, the coupling between oxy-and deoxy-hemoglobin changes decreased with age and increased with increasing fitness. These data indicate that departures from linearity in neurovascular coupling may be present when using hemodynamic measures to study neuronal function. PMID:23664952

  10. Event-related theta synchronization predicts deficit in facial affect recognition in schizophrenia.

    PubMed

    Csukly, Gábor; Stefanics, Gábor; Komlósi, Sarolta; Czigler, István; Czobor, Pál

    2014-02-01

    Growing evidence suggests that abnormalities in the synchronized oscillatory activity of neurons in schizophrenia may lead to impaired neural activation and temporal coding and thus lead to neurocognitive dysfunctions, such as deficits in facial affect recognition. To gain an insight into the neurobiological processes linked to facial affect recognition, we investigated both induced and evoked oscillatory activity by calculating the Event Related Spectral Perturbation (ERSP) and the Inter Trial Coherence (ITC) during facial affect recognition. Fearful and neutral faces as well as nonface patches were presented to 24 patients with schizophrenia and 24 matched healthy controls while EEG was recorded. The participants' task was to recognize facial expressions. Because previous findings with healthy controls showed that facial feature decoding was associated primarily with oscillatory activity in the theta band, we analyzed ERSP and ITC in this frequency band in the time interval of 140-200 ms, which corresponds to the N170 component. Event-related theta activity and phase-locking to facial expressions, but not to nonface patches, predicted emotion recognition performance in both controls and patients. Event-related changes in theta amplitude and phase-locking were found to be significantly weaker in patients compared with healthy controls, which is in line with previous investigations showing decreased neural synchronization in the low frequency bands in patients with schizophrenia. Neural synchrony is thought to underlie distributed information processing. Our results indicate a less effective functioning in the recognition process of facial features, which may contribute to a less effective social cognition in schizophrenia.

  11. [Event-related potentials and performance errors during falling asleep].

    PubMed

    Dorokhov, V B; Verbitskaia, Iu S; Lavrova, T P

    2009-01-01

    Sound is the most adequate external stimulus for studying information processes in the brain during falling asleep and at different sleep stages. Common procedure of analysis of the event-related potentials (ERPs) averaged for a group of subjects has some drawbacks because of the ERP interindividual variability. Therefore in our work, we determined parameters of the auditory ERP components selectively summed up for individual subjects in different series of a psychomotor test with their subsequent group analysis. Search for the ERP parameters which would allow us to quantitatively estimate brain functional states during performance errors associated with a decrease in the level of wakefulness and falling asleep was the aim of our work. The ERPs were recorded in healthy volunteers (n = 41) in the evening from eight EEG derivations (F3, F4, C3, C4, P3, P4, O1, O2) in reference to a linked mastoid electrode. The analysis was performed in 14 subjects with a sufficient number of falling asleep episodes. A monotonous psychomotor test was performed in a supine position with the eyes closed. The test consisted of two alternating series: calculation of sound stimuli from 1 up to 10 with simultaneous pressing the button and calculation from 1 up to 5 without pressing the button and so on. Computer-generated sound stimuli (50-ms pulses with the frequency of 1000 Hz, 60 dB HL) were presented binaurally through earphones with interstimulus intervals in 2.4-2.7 s. Comparison of the ERP parameters (latency and amplitude of components N1, P2, N, and P3) during correct and erroneous performance of the psychomotor test showed that a decrease in the level of wakefulness caused a statistically significant increase in the amplitude of components of vertex complex N1-P2-N2 in series without pressing the button. The greatest changes in the ERPs in different series of the psychomotor test were observed for component N2 (latency 330-360 ms), which has the common origin with the EEG theta

  12. Combining self-organizing mapping and supervised affinity propagation clustering approach to investigate functional brain networks involved in motor imagery and execution with fMRI measurements

    PubMed Central

    Zhang, Jiang; Liu, Qi; Chen, Huafu; Yuan, Zhen; Huang, Jin; Deng, Lihua; Lu, Fengmei; Zhang, Junpeng; Wang, Yuqing; Wang, Mingwen; Chen, Liangyin

    2015-01-01

    Clustering analysis methods have been widely applied to identifying the functional brain networks of a multitask paradigm. However, the previously used clustering analysis techniques are computationally expensive and thus impractical for clinical applications. In this study a novel method, called SOM-SAPC that combines self-organizing mapping (SOM) and supervised affinity propagation clustering (SAPC), is proposed and implemented to identify the motor execution (ME) and motor imagery (MI) networks. In SOM-SAPC, SOM was first performed to process fMRI data and SAPC is further utilized for clustering the patterns of functional networks. As a result, SOM-SAPC is able to significantly reduce the computational cost for brain network analysis. Simulation and clinical tests involving ME and MI were conducted based on SOM-SAPC, and the analysis results indicated that functional brain networks were clearly identified with different response patterns and reduced computational cost. In particular, three activation clusters were clearly revealed, which include parts of the visual, ME and MI functional networks. These findings validated that SOM-SAPC is an effective and robust method to analyze the fMRI data with multitasks. PMID:26236217

  13. Combining self-organizing mapping and supervised affinity propagation clustering approach to investigate functional brain networks involved in motor imagery and execution with fMRI measurements.

    PubMed

    Zhang, Jiang; Liu, Qi; Chen, Huafu; Yuan, Zhen; Huang, Jin; Deng, Lihua; Lu, Fengmei; Zhang, Junpeng; Wang, Yuqing; Wang, Mingwen; Chen, Liangyin

    2015-01-01

    Clustering analysis methods have been widely applied to identifying the functional brain networks of a multitask paradigm. However, the previously used clustering analysis techniques are computationally expensive and thus impractical for clinical applications. In this study a novel method, called SOM-SAPC that combines self-organizing mapping (SOM) and supervised affinity propagation clustering (SAPC), is proposed and implemented to identify the motor execution (ME) and motor imagery (MI) networks. In SOM-SAPC, SOM was first performed to process fMRI data and SAPC is further utilized for clustering the patterns of functional networks. As a result, SOM-SAPC is able to significantly reduce the computational cost for brain network analysis. Simulation and clinical tests involving ME and MI were conducted based on SOM-SAPC, and the analysis results indicated that functional brain networks were clearly identified with different response patterns and reduced computational cost. In particular, three activation clusters were clearly revealed, which include parts of the visual, ME and MI functional networks. These findings validated that SOM-SAPC is an effective and robust method to analyze the fMRI data with multitasks. PMID:26236217

  14. Enhanced Development of Auditory Change Detection in Musically Trained School-Aged Children: A Longitudinal Event-Related Potential Study

    ERIC Educational Resources Information Center

    Putkinen, Vesa; Tervaniemi, Mari; Saarikivi, Katri; Ojala, Pauliina; Huotilainen, Minna

    2014-01-01

    Adult musicians show superior auditory discrimination skills when compared to non-musicians. The enhanced auditory skills of musicians are reflected in the augmented amplitudes of their auditory event-related potential (ERP) responses. In the current study, we investigated longitudinally the development of auditory discrimination skills in…

  15. Right Hemisphere Sensitivity to Word- and Sentence-Level Context: Evidence From Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Coulson, Seana; Federmeier, Kara D.; Van Petten, Cyma; Kutas, Marta

    2005-01-01

    Researchers using lateralized stimuli have suggested that the left hemisphere is sensitive to sentence-level context, whereas the right hemisphere (RH) primarily processes word-level meaning. The authors investigated this message-blind RH model by measuring associative priming with event-related brain potentials (ERPs). For word pairs in…

  16. Individual Differences in Nonverbal Number Discrimination Correlate with Event-Related Potentials and Measures of Probabilistic Reasoning

    ERIC Educational Resources Information Center

    Paulsen, David J.; Woldorff, Marty G.; Brannon, Elizabeth M.

    2010-01-01

    The current study investigated the neural activity patterns associated with numerical sensitivity in adults. Event-related potentials (ERPs) were recorded while adults observed sequentially presented display arrays (S1 and S2) of non-symbolic numerical stimuli (dots) and made same/different judgments of these stimuli by pressing a button only when…

  17. Pre-Attentive Mental Processing of Music Expectation: Event-Related Potentials of a Partially Violating and Resolving Paradigm

    ERIC Educational Resources Information Center

    Pei, Yu-Cheng; Chen, Chia-Ling; Chung, Chia-Ying; Chou, Shi-Wei; Wong, Alice M. K.; Tang, Simon F. T.

    2004-01-01

    Auditory event-related potentials (ERPs) were investigated in an oddball paradigm to verify electrophysiological evidence of music expectation, which is a key component of artistic presentation. The non-target condition consisted of four-chord harmonic chord sequences, while the target condition was manifested by a partially violating third chord…

  18. Hemispheric Differences in the Time-Course of Semantic Priming Processes: Evidence from Event-Related Potentials (ERPs)

    ERIC Educational Resources Information Center

    Bouaffre, Sarah; Faita-Ainseba, Frederique

    2007-01-01

    To investigate hemispheric differences in the timing of word priming, the modulation of event-related potentials by semantic word relationships was examined in each cerebral hemisphere. Primes and targets, either categorically (silk-wool) or associatively (needle-sewing) related, were presented to the left or right visual field in a go/no-go…

  19. Hemodynamic Nonlinearities Affect BOLD fMRI Response Timing and Amplitude

    PubMed Central

    de Zwart, Jacco A; van Gelderen, Peter; Jansma, J Martijn; Fukunaga, Masaki; Bianciardi, Marta; Duyn, Jeff H

    2009-01-01

    The interpretation of functional Magnetic Resonance Imaging (fMRI) studies based on Blood Oxygen-Level Dependent (BOLD) contrast generally relies on the assumption of a linear relationship between evoked neuronal activity and fMRI response. While nonlinearities in this relationship have been suggested by a number of studies, it remains unclear to what extent they relate to the neurovascular response and are therefore inherent to BOLD-fMRI. Full characterization of potential vascular nonlinearities is required for accurate inferences about the neuronal system under study. To investigate the extent of vascular nonlinearities, evoked activity was studied in humans with BOLD-fMRI (n=28) and Magnetoencephalography (MEG) (n=5). Brief (600-800 ms) rapidly repeated (1 Hz) visual stimuli were delivered using a stimulation paradigm that minimized neuronal nonlinearities. Nevertheless, BOLD-fMRI experiments showed substantial remaining nonlinearities. The smallest stimulus separation (200-400 ms) resulted in significant response broadening (15-20% amplitude decrease; 10-12% latency increase; 6-14% duration increase) with respect to a linear prediction. The substantial slowing and widening of the response in the presence of preceding stimuli suggests a vascular rather than neuronal origin to the observed non-linearity. This was confirmed by the MEG data, which showed no significant neuro-electric nonlinear interactions between stimuli as little as 200 ms apart. The presence of substantial vascular nonlinearities has important implications for rapid event-related studies by fMRI and other imaging modalities that infer neuronal activity from hemodynamic parameters. PMID:19520175

  20. Syntactic and semantic processing of Chinese middle sentences: evidence from event-related potentials.

    PubMed

    Zeng, Tao; Mao, Wen; Lu, Qing

    2016-05-25

    Scalp-recorded event-related potentials are known to be sensitive to particular aspects of sentence processing. The N400 component is widely recognized as an effect closely related to lexical-semantic processing. The absence of an N400 effect in participants performing tasks in Indo-European languages has been considered evidence that failed syntactic category processing appears to block lexical-semantic integration and that syntactic structure building is a prerequisite of semantic analysis. An event-related potential experiment was designed to investigate whether such syntactic primacy can be considered to apply equally to Chinese sentence processing. Besides correct middles, sentences with either single semantic or single syntactic violation as well as double syntactic and semantic anomaly were used in the present research. Results showed that both purely semantic and combined violation induced a broad negativity in the time window 300-500 ms, indicating the independence of lexical-semantic integration. These findings provided solid evidence that lexical-semantic parsing plays a crucial role in Chinese sentence comprehension.

  1. High-speed gas sensor for chemosensory event-related potentials or magnetic fields.

    PubMed

    Toda, H; Saito, S; Yamada, H; Kobayakawa, T

    2006-04-15

    The observation of odor and air exchange with high temporal accuracy is necessary to obtain strict chemosensory event-related potentials (CSERPs) or magnetic fields, as proposed by Evans et al. [Evans W, Kobal G, Lorig T, Prah J. Suggestions for collection and reporting of chemosensory (olfactory) event-related potentials. Chem Senses, 1993; 18: 751- 6]. No suitable method for real time observation of gas stimuli, however, has been available until now. We have developed a technique to measure accurately gas molecule concentrations with a high temporal resolution. We determined that attenuation of sound amplitude varies in a manner dependent on the average molecular weight through which the sound wave passes. Based on this principle, we have designed a high-speed gas concentration sensor utilizing ultrasound. We investigated the practical potential of this sensor using a chemosensory stimulator (olfactometer); we succeeded in observing rapid gas exchange between air and nitrogen with a 2 kHz sampling rate. The signal/noise ratio of the stimulus was greater than 42 dB. In a 20 min experiment we determined that, for this olfactometer, the gas onset latency was 79 ms and the rise time was 16 ms. No significant artifact to magnetic fields was observed, even when the sensor was situated near a whole head magnetoencephalography (MEG) system. These results indicate that this sensor could be used for the observation of odor and air exchange, as well as, for real time monitoring of odor stimuli during actual experiments with a participant. PMID:16257056

  2. Early event-related brain potentials that reflect interest for content information in the media.

    PubMed

    Adachi, Shinobu; Morikawa, Koji; Nittono, Hiroshi

    2012-03-28

    This study investigated the relationship between event-related brain potentials (ERPs) to abridged content information in the media and the subsequent decisions to view the full content. Student volunteers participated in a task that simulated information selection on the basis of the content information. Screenshots of television clips and headlines of news articles on the Web were used as content information for the image condition and the headline condition, respectively. Following presentation of a stimulus containing content information, participants decided whether or not they would view the full content by pressing a select or a reject button. When the select button was pressed, participants were presented with a television clip or a news article. When the reject button was pressed, participants continued on to the next trial, without viewing further. In comparison with rejected stimuli, selected stimuli elicited a larger negative component, with a peak latency of ∼250 ms. The increase in the negative component was independent of the type of visual stimulus. These results suggest that interest toward content information is reflected in early-stage event-related brain potential responses. PMID:22336875

  3. Depression-Related Brain Connectivity Analyzed by EEG Event-Related Phase Synchrony Measure

    PubMed Central

    Li, Yuezhi; Kang, Cheng; Qu, Xingda; Zhou, Yunfei; Wang, Wuyi; Hu, Yong

    2016-01-01

    This study is to examine changes of functional connectivity in patients with depressive disorder using synchronous brain activity. Event-related potentials (ERPs) were acquired during a visual oddball task in 14 patients with depressive disorder and 19 healthy controls. Electroencephalogram (EEG) recordings were analyzed using event-related phase coherence (ERPCOH) to obtain the functional network. Alteration of the phase synchronization index (PSI) of the functional network was investigated. Patients with depression showed a decreased number of significant electrode pairs in delta phase synchronization, and an increased number of significant electrode pairs in theta, alpha and beta phase synchronization, compared with controls. Patients with depression showed lower target-dependent PSI increment in the frontal-parietal/temporal/occipital electrode pairs in delta-phase synchronization than healthy participants. However, patients with depression showed higher target-dependent PSI increments in theta band in the prefrontal/frontal and frontal-temporal electrode pairs, higher PSI increments in alpha band in the prefrontal pairs and higher increments of beta PSI in the central and right frontal-parietal pairs than controls. It implied that the decrease in delta PSI activity in major depression may indicate impairment of the connection between the frontal and parietal/temporal/occipital regions. The increase in theta, alpha and beta PSI in the frontal/prefrontal sites might reflect the compensatory mechanism to maintain normal cognitive performance. These findings may provide a foundation for a new approach to evaluate the effectiveness of therapeutic strategies for depression. PMID:27725797

  4. Synthetic event-related potentials: a computational bridge between neurolinguistic models and experiments.

    PubMed

    Barrès, Victor; Simons, Arthur; Arbib, Michael

    2013-01-01

    Our previous work developed Synthetic Brain Imaging to link neural and schema network models of cognition and behavior to PET and fMRI studies of brain function. We here extend this approach to Synthetic Event-Related Potentials (Synthetic ERP). Although the method is of general applicability, we focus on ERP correlates of language processing in the human brain. The method has two components: Phase 1: To generate cortical electro-magnetic source activity from neural or schema network models; and Phase 2: To generate known neurolinguistic ERP data (ERP scalp voltage topographies and waveforms) from putative cortical source distributions and activities within a realistic anatomical model of the human brain and head. To illustrate the challenges of Phase 2 of the methodology, spatiotemporal information from Friederici's 2002 model of auditory language comprehension was used to define cortical regions and time courses of activation for implementation within a forward model of ERP data. The cortical regions from the 2002 model were modeled using atlas-based masks overlaid on the MNI high definition single subject cortical mesh. The electromagnetic contribution of each region was modeled using current dipoles whose position and orientation were constrained by the cortical geometry. In linking neural network computation via EEG forward modeling to empirical results in neurolinguistics, we emphasize the need for neural network models to link their architecture to geometrically sound models of the cortical surface, and the need for conceptual models to refine and adopt brain-atlas based approaches to allow precise brain anchoring of their modules. The detailed analysis of Phase 2 sets the stage for a brief introduction to Phase 1 of the program, including the case for a schema-theoretic approach to language production and perception presented in detail elsewhere. Unlike Dynamic Causal Modeling (DCM) and Bojak's mean field model, Synthetic ERP builds on models of networks

  5. fMRI paradigm designing and post-processing tools

    PubMed Central

    James, Jija S; Rajesh, PG; Chandran, Anuvitha VS; Kesavadas, Chandrasekharan

    2014-01-01

    In this article, we first review some aspects of functional magnetic resonance imaging (fMRI) paradigm designing for major cognitive functions by using stimulus delivery systems like Cogent, E-Prime, Presentation, etc., along with their technical aspects. We also review the stimulus presentation possibilities (block, event-related) for visual or auditory paradigms and their advantage in both clinical and research setting. The second part mainly focus on various fMRI data post-processing tools such as Statistical Parametric Mapping (SPM) and Brain Voyager, and discuss the particulars of various preprocessing steps involved (realignment, co-registration, normalization, smoothing) in these software and also the statistical analysis principles of General Linear Modeling for final interpretation of a functional activation result. PMID:24851001

  6. Fractals properties of EEG during event-related desynchronization of motor imagery.

    PubMed

    Nguyen, Ngoc Quang; Truong, Quang Dang Khoa; Kondo, Toshiyuki

    2015-01-01

    Chaos and fractal dimension are emerging modalities for the research of electroencephalogram (EEG) signal processing. The capability of measuring non-linear characteristics of the fractal dimension enables new methodologies to identify distinct brain activities. Recent studies on the topic focus on utilizing various types of fractals as features in order to design better brain state classification system. However, we have little insight about the EEG signals projected in fractal dimension. In this paper, we investigate the relationship between the non-linear characteristics of ongoing EEG signals and event-related desynchronization (ERD) during motor imagery. We observed a considerable synchronization between ERD and fractal dimension. This finding suggests further usage of chaos and fractal theory in investigating brain activities. PMID:26737207

  7. Fractals properties of EEG during event-related desynchronization of motor imagery.

    PubMed

    Nguyen, Ngoc Quang; Truong, Quang Dang Khoa; Kondo, Toshiyuki

    2015-01-01

    Chaos and fractal dimension are emerging modalities for the research of electroencephalogram (EEG) signal processing. The capability of measuring non-linear characteristics of the fractal dimension enables new methodologies to identify distinct brain activities. Recent studies on the topic focus on utilizing various types of fractals as features in order to design better brain state classification system. However, we have little insight about the EEG signals projected in fractal dimension. In this paper, we investigate the relationship between the non-linear characteristics of ongoing EEG signals and event-related desynchronization (ERD) during motor imagery. We observed a considerable synchronization between ERD and fractal dimension. This finding suggests further usage of chaos and fractal theory in investigating brain activities.

  8. Event-related changes of the prefrontal cortex oxygen delivery and metabolism during driving measured by hyperspectral fNIRS.

    PubMed

    Nosrati, Reyhaneh; Vesely, Kristin; Schweizer, Tom A; Toronov, Vladislav

    2016-04-01

    Recent technological advancements in optical spectroscopy allow for the construction of hyperspectral (broadband) portable tissue oximeters. In a series of our recent papers we have shown that hyperspectral NIRS (hNIRS) has similar or better capabilities in the absolute tissue oximetry as frequency-domain NIRS, and that hNIRS is also very efficient in measuring temporal changes in tissue hemoglobin concentration and oxygenation. In this paper, we extend the application of hNIRS to the measurement of event-related hemodynamic and metabolic functional cerebral responses during simulated driving. In order to check if hNIRS can detect event-related changes in the brain, we measured the concentration changes of oxygenated (HbO2) and deoxygenated (HHb) hemoglobin and of the oxidized state of cytochrome c oxidase, on the right and left prefrontal cortices (PFC) simultaneously during simulated driving on sixteen healthy right-handed participants (aged between 22-32). We used our in-house hNIRS system based on a portable spectrometer with cooled CCD detector and a driving simulator with a fully functional steering wheel and foot pedals. Each participant performed different driving tasks and participants were distracted during some driving conditions by asking general knowledge true/false questions. Our findings suggest that more complex driving tasks (non-distracted) deactivate PFC while distractions during driving significantly activate PFC, which is in agreement with previous fMRI results. Also, we found the changes in the redox state of the cytochrome C oxidase to be very consistent with those in the concentrations of HbO2 and HHb. Overall our findings suggest that in addition to the suitability of absolute tissue oximetry, hyperspectral NIRS may also offer advantages in functional brain imaging. In particular, it can be used to measure the metabolic functional brain activity during actual driving. PMID:27446658

  9. Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Jasdzewski, G.; Strangman, G.; Wagner, J.; Kwong, K. K.; Poldrack, R. A.; Boas, D. A.; Sutton, J. P. (Principal Investigator)

    2003-01-01

    Several current brain imaging techniques rest on the assumption of a tight coupling between neural activity and hemodynamic response. The nature of this neurovascular coupling, however, is not completely understood. There is some evidence for a decoupling of these processes at the onset of neural activity, which manifests itself as a momentary increase in the relative concentration of deoxyhemoglobin (HbR). The existence of this early component of the hemodynamic response function, however, is controversial, as it is inconsistently found. Near infrared spectroscopy (NIRS) allows quantification of levels of oxyhemoglobin (HbO(2)) and HbR during task performance in humans. We acquired NIRS data during performance of simple motor and visual tasks, using rapid-presentation event-related paradigms. Our results demonstrate that rapid, event-related NIRS can provide robust estimates of the hemodynamic response without artifacts due to low-frequency signal components, unlike data from blocked designs. In both the motor and visual data the onset of the increase in HbO(2) occurs before HbR decreases, and there is a poststimulus undershoot. Our results also show that total blood volume (HbT) drops before HbO(2) and undershoots baseline, raising a new issue for neurovascular models. We did not find early deoxygenation in the motor data using physiologically plausible values for the differential pathlength factor, but did find one in the visual data. We suggest that this difference, which is consistent with functional magnetic resonance imaging (fMRI) data, may be attributable to different capillary transit times in these cortices.

  10. Event-related changes of the prefrontal cortex oxygen delivery and metabolism during driving measured by hyperspectral fNIRS

    PubMed Central

    Nosrati, Reyhaneh; Vesely, Kristin; Schweizer, Tom A.; Toronov, Vladislav

    2016-01-01

    Recent technological advancements in optical spectroscopy allow for the construction of hyperspectral (broadband) portable tissue oximeters. In a series of our recent papers we have shown that hyperspectral NIRS (hNIRS) has similar or better capabilities in the absolute tissue oximetry as frequency-domain NIRS, and that hNIRS is also very efficient in measuring temporal changes in tissue hemoglobin concentration and oxygenation. In this paper, we extend the application of hNIRS to the measurement of event-related hemodynamic and metabolic functional cerebral responses during simulated driving. In order to check if hNIRS can detect event-related changes in the brain, we measured the concentration changes of oxygenated (HbO2) and deoxygenated (HHb) hemoglobin and of the oxidized state of cytochrome c oxidase, on the right and left prefrontal cortices (PFC) simultaneously during simulated driving on sixteen healthy right-handed participants (aged between 22–32). We used our in-house hNIRS system based on a portable spectrometer with cooled CCD detector and a driving simulator with a fully functional steering wheel and foot pedals. Each participant performed different driving tasks and participants were distracted during some driving conditions by asking general knowledge true/false questions. Our findings suggest that more complex driving tasks (non-distracted) deactivate PFC while distractions during driving significantly activate PFC, which is in agreement with previous fMRI results. Also, we found the changes in the redox state of the cytochrome C oxidase to be very consistent with those in the concentrations of HbO2 and HHb. Overall our findings suggest that in addition to the suitability of absolute tissue oximetry, hyperspectral NIRS may also offer advantages in functional brain imaging. In particular, it can be used to measure the metabolic functional brain activity during actual driving. PMID:27446658

  11. Transient and sustained BOLD signal time courses affect the detection of emotion-related brain activation in fMRI.

    PubMed

    Paret, Christian; Kluetsch, Rosemarie; Ruf, Matthias; Demirakca, Traute; Kalisch, Raffael; Schmahl, Christian; Ende, Gabriele

    2014-12-01

    A tremendous amount of effort has been dedicated to unravel the functional neuroanatomy of the processing and regulation of emotion, resulting in a well-described picture of limbic, para-limbic and prefrontal regions involved. Studies applying functional magnetic resonance imaging (fMRI) often use the block-wise presentation of stimuli with affective content, and conventionally model brain activation as a function of stimulus or task duration. However, there is increasing evidence that regional brain responses may not always translate to task duration and rather show stimulus onset-related transient time courses. We assume that brain regions showing transient responses cannot be detected in block designs using a conventional fMRI analysis approach. At the same time, the probability of detecting these regions with conventional analyses may be increased when shorter stimulus timing or a more intense stimulation during a block is used. In a within-subject fMRI study, we presented aversive pictures to 20 healthy subjects and investigated the effect of experimental design (i.e. event-related and block design) on the detection of brain activation in limbic and para-limbic regions of interest of emotion processing. In addition to conventional modeling of sustained activation during blocks of stimulus presentation, we included a second response function into the general linear model (GLM), suited to detect transient time courses at block onset. In the conventional analysis, several regions like the amygdala, thalamus and periaqueductal gray were activated irrespective of design. However, we found a positive BOLD response in the anterior insula (AI) in event-related but not in block-design analyses. GLM analyses suggest that this difference may result from a transient response pattern which cannot be captured by the conventional fMRI analysis approach. Our results indicate that regions with a transient response profile like the AI can be missed in block designs if analyses

  12. Language comprehension in the bilingual brain: fMRI and ERP support for psycholinguistic models.

    PubMed

    van Heuven, Walter J B; Dijkstra, Ton

    2010-09-01

    In this paper, we review issues in bilingual language comprehension in the light of functional magnetic resonance imaging (fMRI) and event-related brain potential (ERP) data. Next, we consider to what extent neuroimaging data are compatible with assumptions and characteristics of available psycholinguistic models of bilingual word processing, in particular the BIA+ model. We argue that this model provides a theoretical framework that is useful for interpreting both the spatial brain activation patterns observed with fMRI and the temporal brain wave patterns of ERP studies. Finally, we demonstrate that neuroimaging data stimulate the specification of hitherto only globally described components of functional psycholinguistic models.

  13. P300 component of event-related potentials in persons with asperger disorder.

    PubMed

    Iwanami, Akira; Okajima, Yuka; Ota, Haruhisa; Tani, Masayuki; Yamada, Takashi; Yamagata, Bun; Hashimoto, Ryuichiro; Kanai, Chieko; Takashio, Osamu; Inamoto, Atsuko; Ono, Taisei; Takayama, Yukiko; Kato, Nobumasa

    2014-10-01

    In the present study, we investigated auditory event-related potentials in adults with Asperger disorder and normal controls using an auditory oddball task and a novelty oddball task. Task performance and the latencies of P300 evoked by both target and novel stimuli in the two tasks did not differ between the two groups. Analysis of variance revealed that there was a significant interaction effect between group and electrode site on the mean amplitude of the P300 evoked by novel stimuli, which indicated that there was an altered distribution of the P300 in persons with Asperger disorder. In contrast, there was no significant interaction effect on the mean P300 amplitude elicited by target stimuli. Considering that P300 comprises two main subcomponents, frontal-central-dominant P3a and parietal-dominant P3b, our results suggested that persons with Asperger disorder have enhanced amplitude of P3a, which indicated activated prefrontal function in this task.

  14. The time course of implicit processing of erotic pictures: an event-related potential study.

    PubMed

    Feng, Chunliang; Wang, Lili; Wang, Naiyi; Gu, Ruolei; Luo, Yue-Jia

    2012-12-13

    The current study investigated the time course of the implicit processing of erotic stimuli using event-related potentials (ERPs). ERPs elicited by erotic pictures were compared with those by three other types of pictures: non-erotic positive, negative, and neutral pictures. We observed that erotic pictures evoked enhanced neural responses compared with other pictures at both early (P2/N2) and late (P3/positive slow wave) temporal stages. These results suggested that erotic pictures selectively captured individuals' attention at early stages and evoked deeper processing at late stages. More importantly, the amplitudes of P2, N2, and P3 only discriminated between erotic and non-erotic (i.e., positive, neutral, and negative) pictures. That is, no difference was revealed among non-erotic pictures, although these pictures differed in both valence and arousal. Thus, our results suggest that the erotic picture processing is beyond the valence and arousal.

  15. An event-related potentials study on the attention function of posttraumatic stress disorder

    PubMed Central

    Cui, Hong; Liu, Xiaohui; Chen, Guoliang; Shan, Moshui; Jia, Yanyan

    2015-01-01

    Objective: In order to examine the functional defects and attentional bias in post-traumatic stress disorder (PTSD) patients, event-related potentials (ERP) of attention was investigated. Methods: Three groups of emotion pictures, positive, negative (or violent) and neutral, were viewed by 19 PTSD patients and 15 normal controls. Each picture had a frame, and participants reacted to the color of the frame by clicking buttons. Electroencephalogram (EEG) and behavior data were recorded. Peak latencies and amplitudes of P2 were measured. Results: For the three groups of pictures, PTSD patients had longer reaction time than the controls. Significant difference was found between PTSD patients and controls in response to violent, positive and neutral pictures. PMID:26379882

  16. Early age-related changes in episodic memory retrieval as revealed by event-related potentials.

    PubMed

    Guillaume, Cécile; Clochon, Patrice; Denise, Pierre; Rauchs, Géraldine; Guillery-Girard, Bérengère; Eustache, Francis; Desgranges, Béatrice

    2009-01-28

    Familiarity is better preserved than recollection in ageing. The age at which changes first occur and the slope of the subsequent decline, however, remain unclear. In this study, we investigated changes in episodic memory, by using event-related potentials (ERPs) in young (m=24), middle-aged (m=58) and older (m=70) adults. Although behavioural performance did not change before the age of 65 years, changes in ERP correlates were already present in the middle-aged adults. The ERP correlates of recollection and monitoring processes were the first to be affected by ageing, with a linear decrease as age increased. Conversely, the ERP correlate of familiarity remained unchanged, at least up to the age of 65 years. These results suggest a differential time course for the age effects on episodic retrieval. PMID:19104457

  17. Information structure influences depth of syntactic processing: event-related potential evidence for the Chomsky illusion.

    PubMed

    Wang, Lin; Bastiaansen, Marcel; Yang, Yufang; Hagoort, Peter

    2012-01-01

    Information structure facilitates communication between interlocutors by highlighting relevant information. It has previously been shown that information structure modulates the depth of semantic processing. Here we used event-related potentials to investigate whether information structure can modulate the depth of syntactic processing. In question-answer pairs, subtle (number agreement) or salient (phrase structure) syntactic violations were placed either in focus or out of focus through information structure marking. P600 effects to these violations reflect the depth of syntactic processing. For subtle violations, a P600 effect was observed in the focus condition, but not in the non-focus condition. For salient violations, comparable P600 effects were found in both conditions. These results indicate that information structure can modulate the depth of syntactic processing, but that this effect depends on the salience of the information. When subtle violations are not in focus, they are processed less elaborately. We label this phenomenon the Chomsky illusion.

  18. Negativity bias of the self across time: an event-related potentials study.

    PubMed

    Luo, Yangmei; Huang, Xiting; Chen, Youguo; Jackson, Todd; Wei, Dongtao

    2010-05-14

    To investigate the neural basis of self-evaluation across time as a function of emotional valence, event-related potentials were recorded among participants instructed to make self-reference judgments when evaluating their past, present and future selves. Results showed that, when evaluating present and past selves, negative words elicited a more positive ERP deflection in the time window between 650ms and 800ms (LPC) relative to positive words. However, when evaluating the future selves, there was no significant difference on the amplitude of the LPC evoked by negative versus positive words. Findings provided evidence for the effect of emotional valence on the self across time at a neurophysiological level and identified the time course of negative bias in the temporal self. More specifically, people were inclined to be relatively less negative and optimistic about their future self but had mixed emotions about past and present selves.

  19. Integrating the Meaning of Person Names into Discourse Context: An Event-Related Potential Study

    PubMed Central

    Wang, Lin; Yang, Yufang

    2013-01-01

    The meaning of person names is determined by their associated information. This study used event related potentials to investigate the time course of integrating the newly constructed meaning of person names into discourse context. The meaning of person names was built by two-sentence descriptions of the names. Then we manipulated the congruence of person names relative to discourse context in a way that the meaning of person names either matched or did not match the previous context. ERPs elicited by the names were compared between the congruent and the incongruent conditions. We found that the incongruent names elicited a larger N400 as well as a larger P600 compared to the congruent names. The results suggest that the meaning of unknown names can be effectively constructed from short linguistic descriptions and that the established meaning can be rapidly retrieved and integrated into contexts. PMID:24349462

  20. Primary task event-related potentials related to different aspects of information processing

    NASA Technical Reports Server (NTRS)

    Munson, Robert C.; Horst, Richard L.; Mahaffey, David L.

    1988-01-01

    The results of two studies which investigated the relationships between cognitive processing and components of transient event-related potentials (ERPs) are presented in a task in which mental workload was manipulated. The task involved the monitoring of an array of discrete readouts for values that went out of bounds, and was somewhat analogous to tasks performed in cockpits. The ERPs elicited by the changing readouts varied with the number of readouts being monitored, the number of monitored readouts that were close to going out of bounds, and whether or not the change took a monitored readout out of bounds. Moreover, different regions of the waveform differentially reflected these effects. The results confirm the sensitivity of scalp-recorded ERPs to the cognitive processes affected by mental workload and suggest the possibility of extracting useful ERP indices of primary task performance in a wide range of man-machine settings.

  1. Early somatosensory event-related potentials reveal attentional bias for internal stimuli in social anxiety.

    PubMed

    Kanai, Yoshihiro; Nittono, Hiroshi; Kubo, Kenta; Sasaki-Aoki, Shoko; Iwanaga, Makoto

    2012-03-01

    The present study used event-related brain potentials (ERPs) to investigate allocation of attentional resources to internal and external stimuli in individuals with social anxiety. High and low socially anxious individuals were presented with depictions of various facial expressions or household objects, followed by an internal (vibration presented to the finger) or external probe (the letter "E"). Participants were told that the vibration signals physiological changes and were asked to detect both probes. High socially anxious individuals showed larger front-central N140 amplitudes in response to vibratory internal probes as compared to non-anxious controls. ERPs elicited by picture stimuli and external probes and reaction times in response to both probe types did not differ between high and low social anxiety individuals. Early somatosensory ERPs reveal an attentional bias for internal stimuli that does not appear in overt behavior. PMID:22285128

  2. Effects of Grammaticality and Morphological Complexity on the P600 Event-Related Potential Component

    PubMed Central

    Wampler, Emma K.; Valentine, Geoffrey D.; Osterhout, Lee

    2015-01-01

    We investigated interactions between morphological complexity and grammaticality on electrophysiological markers of grammatical processing during reading. Our goal was to determine whether morphological complexity and stimulus grammaticality have independent or additive effects on the P600 event-related potential component. Participants read sentences that were either well-formed or grammatically ill-formed, in which the critical word was either morphologically simple or complex. Results revealed no effects of complexity for well-formed stimuli, but the P600 amplitude was significantly larger for morphologically complex ungrammatical stimuli than for morphologically simple ungrammatical stimuli. These findings suggest that some previous work may have inadequately characterized factors related to reanalysis during morphosyntactic processing. Our results show that morphological complexity by itself does not elicit P600 effects. However, in ungrammatical circumstances, overt morphology provides a more robust and reliable cue to morphosyntactic relationships than null affixation. PMID:26488893

  3. Conveying the concept of movement in music: An event-related brain potential study.

    PubMed

    Zhou, Linshu; Jiang, Cunmei; Wu, Yingying; Yang, Yufang

    2015-10-01

    This study on event-related brain potential investigated whether music can convey the concept of movement. Using a semantic priming paradigm, natural musical excerpts were presented to non-musicians, followed by semantically congruent or incongruent pictures that depicted objects either in motion or at rest. The priming effects were tested in object decision and implicit recognition tasks to distinguish the effects of automatic conceptual activation from response competition. Results showed that in both tasks, pictures that were incongruent to preceding musical excerpts elicited larger N400 than congruent pictures, suggesting that music can prime the representations of movement concepts. Results of the multiple regression analysis showed that movement expression could be well predicted by specific acoustic and musical features, indicating the associations between music per se and the processing of iconic musical meaning. PMID:26254996

  4. Conveying the concept of movement in music: An event-related brain potential study.

    PubMed

    Zhou, Linshu; Jiang, Cunmei; Wu, Yingying; Yang, Yufang

    2015-10-01

    This study on event-related brain potential investigated whether music can convey the concept of movement. Using a semantic priming paradigm, natural musical excerpts were presented to non-musicians, followed by semantically congruent or incongruent pictures that depicted objects either in motion or at rest. The priming effects were tested in object decision and implicit recognition tasks to distinguish the effects of automatic conceptual activation from response competition. Results showed that in both tasks, pictures that were incongruent to preceding musical excerpts elicited larger N400 than congruent pictures, suggesting that music can prime the representations of movement concepts. Results of the multiple regression analysis showed that movement expression could be well predicted by specific acoustic and musical features, indicating the associations between music per se and the processing of iconic musical meaning.

  5. Bilingualism and increased attention to speech: Evidence from event-related potentials.

    PubMed

    Kuipers, Jan Rouke; Thierry, Guillaume

    2015-10-01

    A number of studies have shown that from an early age, bilinguals outperform their monolingual peers on executive control tasks. We previously found that bilingual children and adults also display greater attention to unexpected language switches within speech. Here, we investigated the effect of a bilingual upbringing on speech perception in one language. We recorded monolingual and bilingual toddlers' event-related potentials (ERPs) to spoken words preceded by pictures. Words matching the picture prime elicited an early frontal positivity in bilingual participants only, whereas later ERP amplitudes associated with semantic processing did not differ between groups. These results add to the growing body of evidence that bilingualism increases overall attention during speech perception whilst semantic integration is unaffected.

  6. FMRI repetition suppression for voices is modulated by stimulus expectations.

    PubMed

    Andics, Attila; Gál, Viktor; Vicsi, Klára; Rudas, Gábor; Vidnyánszky, Zoltán

    2013-04-01

    According to predictive coding models of sensory processing, stimulus expectations have a profound effect on sensory cortical responses. This was supported by experimental results, showing that fMRI repetition suppression (fMRI RS) for face stimuli is strongly modulated by the probability of stimulus repetitions throughout the visual cortical processing hierarchy. To test whether processing of voices is also affected by stimulus expectations, here we investigated the effect of repetition probability on fMRI RS in voice-selective cortical areas. Changing ('alt') and identical ('rep') voice stimulus pairs were presented to the listeners in blocks, with a varying probability of alt and rep trials across blocks. We found auditory fMRI RS in the nonprimary voice-selective cortical regions, including the bilateral posterior STS, the right anterior STG and the right IFC, as well as in the IPL. Importantly, fMRI RS effects in all of these areas were strongly modulated by the probability of stimulus repetition: auditory fMRI RS was reduced or not present in blocks with low repetition probability. Our results revealed that auditory fMRI RS in higher-level voice-selective cortical regions is modulated by repetition probabilities and thus suggest that in audition, similarly to the visual modality, processing of sensory information is shaped by stimulus expectation processes. PMID:23268783

  7. The influence of emotional distraction on verbal working memory: an fMRI investigation comparing individuals with schizophrenia and healthy adults.

    PubMed

    Diaz, Michele T; He, George; Gadde, Syam; Bellion, Carolyn; Belger, Aysenil; Voyvodic, James T; McCarthy, Gregory

    2011-09-01

    The ability to maintain information over short periods of time (i.e., working memory) is critically important in a variety of cognitive functions including language, planning, and decision-making. Recent functional Magnetic Resonance Imaging (fMRI) research with healthy adults has shown that brain activations evoked during the delay interval of working memory tasks can be reduced by the presentation of distracting emotional events, suggesting that emotional events may take working-memory processes momentarily offline. Both executive function and emotional processing are disrupted in schizophrenia, and here we sought to elucidate the effect of emotional distraction upon brain activity in schizophrenic and healthy adults performing a verbal working memory task. During the delay period between the memoranda and memory probe items, emotional and neutral distractors differentially influenced brain activity in these groups. In healthy adults, the hemodynamic response from posterior cingulate, orbital frontal cortex, and the parietal lobe strongly differentiated emotional from neutral distractors. In striking contrast, schizophrenic adults showed no significant differences in brain activation when processing emotional and neutral distractors. Moreover, the influence of emotional distractors extended into the memory probe period in healthy, but not schizophrenic, adults. The results suggest that although emotional items are highly salient for healthy adults, emotional items are no more distracting than neutral ones to individuals with schizophrenia.

  8. Research of personal decision process using event-related potentials

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng

    2011-10-01

    To gain insights into the neural basis of such adaptive decision-making processes, we investigated the nature of learning process in humans playing a competitive game with binary choices, using a matching pennies game. As in reinforcement learning, the subject's choice during a competitive game was biased by its choice and reward history, as well as by the strategies of its opponent. Analyses of ERP data focused on the feedback-related negativity (FRN), we found that the magnitude of ERPs after losing to the computer opponent predicted whether subjects would change decision behavior on the subsequent trial. These findings provide novel evidence that humans engage a reinforcement learning process to adjust representations of competing decision options.

  9. Event-related potential N270 correlates of brand extension.

    PubMed

    Ma, Qingguo; Wang, Xiaoyi; Dai, Shenyi; Shu, Liangchao

    2007-07-01

    The aim of this study is to investigate the neural mechanism of extending a brand in a specific product category to other product categories. Facing two sequential stimuli in pairs consisting of beverage brand names (stimulus 1) and product names (stimulus 2) in other categories, 16 participants were asked to indicate the suitability of extending the brand in stimulus 1 to the product category in stimulus 2. These stimulus pairs were divided into four conditions depending on the product category in stimulus 2: beverage, snack, clothing, and household appliance. A negative component, N270, was recorded for each condition on the participants' scalps,whereas the maximum amplitude was observed at the frontal area. Greater N270 amplitude was observed when participants were presented with stronger conflict between the brand product category (stimulus 1) and the extension category (stimulus 2). It suggests that N270 can be evoked not only by a conflict of physical attributes (different shapes of words of brand and product names) but also by that of lexical content. From the marketing perspective, N270 can be potentially used as a reference measure in brand-extension attempts. PMID:17558290

  10. Infant Auditory Processing and Event-related Brain Oscillations

    PubMed Central

    Musacchia, Gabriella; Ortiz-Mantilla, Silvia; Realpe-Bonilla, Teresa; Roesler, Cynthia P.; Benasich, April A.

    2015-01-01

    Rapid auditory processing and acoustic change detection abilities play a critical role in allowing human infants to efficiently process the fine spectral and temporal changes that are characteristic of human language. These abilities lay the foundation for effective language acquisition; allowing infants to hone in on the sounds of their native language. Invasive procedures in animals and scalp-recorded potentials from human adults suggest that simultaneous, rhythmic activity (oscillations) between and within brain regions are fundamental to sensory development; determining the resolution with which incoming stimuli are parsed. At this time, little is known about oscillatory dynamics in human infant development. However, animal neurophysiology and adult EEG data provide the basis for a strong hypothesis that rapid auditory processing in infants is mediated by oscillatory synchrony in discrete frequency bands. In order to investigate this, 128-channel, high-density EEG responses of 4-month old infants to frequency change in tone pairs, presented in two rate conditions (Rapid: 70 msec ISI and Control: 300 msec ISI) were examined. To determine the frequency band and magnitude of activity, auditory evoked response averages were first co-registered with age-appropriate brain templates. Next, the principal components of the response were identified and localized using a two-dipole model of brain activity. Single-trial analysis of oscillatory power showed a robust index of frequency change processing in bursts of Theta band (3 - 8 Hz) activity in both right and left auditory cortices, with left activation more prominent in the Rapid condition. These methods have produced data that are not only some of the first reported evoked oscillations analyses in infants, but are also, importantly, the product of a well-established method of recording and analyzing clean, meticulously collected, infant EEG and ERPs. In this article, we describe our method for infant EEG net

  11. Use of Event-Related Potentials to Identify Language and Reading Skills

    ERIC Educational Resources Information Center

    Molfese, Victoria J.; Molfese, Dennis L.; Beswick, Jennifer L.; Jacobi-Vessels, Jill; Molfese, Peter J.; Molnar, Andrew E.; Wagner, Mary C.; Haines, Brittany L.

    2008-01-01

    The extent to which oral language and emergent literacy skills are influenced by event-related potential measures of phonological processing was examined. Results revealed that event-related potential responses identify differences in letter naming but not receptive language skills.

  12. Age, Intelligence, and Event-Related Brain Potentials during Late Childhood: A Longitudinal Study.

    ERIC Educational Resources Information Center

    Stauder, Johannes E. A.; van der Molen, Maurits W.; Molenaar, Peter C. M.

    2003-01-01

    Studied the relationship between event-related brain activity, age, and intelligence using a visual oddball task presented to girls at 9, 10, and 11 years of age. Findings for 26 girls suggest a qualitative shift in the relation between event-related brain activity and intelligence between 9 and 10 years of age. (SLD)

  13. Connectivity-based parcellation increases network detection sensitivity in resting state fMRI: An investigation into the cingulate cortex in autism.

    PubMed

    Balsters, Joshua H; Mantini, Dante; Apps, Matthew A J; Eickhoff, Simon B; Wenderoth, Nicole

    2016-01-01

    Although resting state fMRI (RS-fMRI) is increasingly used to generate biomarkers of psychiatric illnesses, analytical choices such as seed size and placement can lead to variable findings. Seed placement especially impacts on RS-fMRI studies of Autism Spectrum Disorder (ASD), because individuals with ASD are known to possess more variable network topographies. Here, we present a novel pipeline for analysing RS-fMRI in ASD using the cingulate cortex as an exemplar anatomical region of interest. Rather than using seeds based on previous literature, or gross morphology, we used a combination of structural information, task-independent (RS-fMRI) and task-dependent functional connectivity (Meta-Analytic Connectivity Modeling) to partition the cingulate cortex into six subregions with unique connectivity fingerprints and diverse behavioural profiles. This parcellation was consistent between groups and highly replicable across individuals (up to 93% detection) suggesting that the organisation of cortico-cingulo connections is highly similar between groups. However, our results showed an age-related increase in connectivity between the anterior middle cingulate cortex and right lateral prefrontal cortex in ASD, whilst this connectivity decreased in controls. There was also a Group × Grey Matter (GM) interaction, showing increased connectivity between the anterior cingulate cortex and the rectal gyrus in concert with increasing rectal gyrus GM in controls. By comparing our approach to previously established methods we revealed that our approach improves network detection in both groups, and that the ability to detect group differences using 4 mm radius spheres varies greatly with seed placement. Using our multi-modal approach we find disrupted cortico-cingulo circuits that, based on task-dependent information, may contribute to ASD deficits in attention and social interaction. Moreover, we highlight how more sensitive approaches to RS-fMRI are crucial for establishing

  14. Decreasing Ventromedial Prefrontal Cortex Activity During Sequential Risk-Taking: An fMRI Investigation of the Balloon Analog Risk Task

    PubMed Central

    Schonberg, Tom; Fox, Craig R.; Mumford, Jeanette A.; Congdon, Eliza; Trepel, Christopher; Poldrack, Russell A.

    2012-01-01

    Functional imaging studies examining the neural correlates of risk have mainly relied on paradigms involving exposure to simple chance gambles and an economic definition of risk as variance in the probability distribution over possible outcomes. However, there is little evidence that choices made during gambling tasks predict naturalistic risk-taking behaviors such as drug use, extreme sports, or even equity investing. To better understand the neural basis of naturalistic risk-taking, we scanned participants using fMRI while they completed the Balloon Analog Risk Task, an experimental measure that includes an active decision/choice component and that has been found to correlate with a number of naturalistic risk-taking behaviors. In the task, as in many naturalistic settings, escalating risk-taking occurs under uncertainty and might be experienced either as the accumulation of greater potential rewards, or as exposure to increasing possible losses (and decreasing expected value). We found that areas previously linked to risk and risk-taking (bilateral anterior insula, anterior cingulate cortex, and right dorsolateral prefrontal cortex) were activated as participants continued to inflate balloons. Interestingly, we found that ventromedial prefrontal cortex (vmPFC) activity decreased as participants further expanded balloons. In light of previous findings implicating the vmPFC in value calculation, this result suggests that escalating risk-taking in the task might be perceived as exposure to increasing possible losses (and decreasing expected value) rather than the increasing potential total reward relative to the starting point of the trial. A better understanding of how neural activity changes with risk-taking behavior in the task offers insight into the potential neural mechanisms driving naturalistic risk-taking. PMID:22675289

  15. Connectivity-based parcellation increases network detection sensitivity in resting state fMRI: An investigation into the cingulate cortex in autism

    PubMed Central

    Balsters, Joshua H.; Mantini, Dante; Apps, Matthew A.J.; Eickhoff, Simon B.; Wenderoth, Nicole

    2016-01-01

    Although resting state fMRI (RS-fMRI) is increasingly used to generate biomarkers of psychiatric illnesses, analytical choices such as seed size and placement can lead to variable findings. Seed placement especially impacts on RS-fMRI studies of Autism Spectrum Disorder (ASD), because individuals with ASD are known to possess more variable network topographies. Here, we present a novel pipeline for analysing RS-fMRI in ASD using the cingulate cortex as an exemplar anatomical region of interest. Rather than using seeds based on previous literature, or gross morphology, we used a combination of structural information, task-independent (RS-fMRI) and task-dependent functional connectivity (Meta-Analytic Connectivity Modeling) to partition the cingulate cortex into six subregions with unique connectivity fingerprints and diverse behavioural profiles. This parcellation was consistent between groups and highly replicable across individuals (up to 93% detection) suggesting that the organisation of cortico-cingulo connections is highly similar between groups. However, our results showed an age-related increase in connectivity between the anterior middle cingulate cortex and right lateral prefrontal cortex in ASD, whilst this connectivity decreased in controls. There was also a Group × Grey Matter (GM) interaction, showing increased connectivity between the anterior cingulate cortex and the rectal gyrus in concert with increasing rectal gyrus GM in controls. By comparing our approach to previously established methods we revealed that our approach improves network detection in both groups, and that the ability to detect group differences using 4 mm radius spheres varies greatly with seed placement. Using our multi-modal approach we find disrupted cortico-cingulo circuits that, based on task-dependent information, may contribute to ASD deficits in attention and social interaction. Moreover, we highlight how more sensitive approaches to RS-fMRI are crucial for establishing

  16. Interoception in insula subregions as a possible state marker for depression—an exploratory fMRI study investigating healthy, depressed and remitted participants

    PubMed Central

    Wiebking, Christine; de Greck, Moritz; Duncan, Niall W.; Tempelmann, Claus; Bajbouj, Malek; Northoff, Georg

    2015-01-01

    Background: Interoceptive awareness (iA), the awareness of stimuli originating inside the body, plays an important role in human emotions and psychopathology. The insula is particularly involved in neural processes underlying iA. However, iA-related neural activity in the insula during the acute state of major depressive disorder (MDD) and in remission from depression has not been explored. Methods: A well-established fMRI paradigm for studying (iA; heartbeat counting) and exteroceptive awareness (eA; tone counting) was used. Study participants formed three independent groups: patients suffering from MDD, patients in remission from MDD or healthy controls. Task-induced neural activity in three functional subdivisions of the insula was compared between these groups. Results: Depressed participants showed neural hypo-responses during iA in anterior insula regions, as compared to both healthy and remitted participants. The right dorsal anterior insula showed the strongest response to iA across all participant groups. In depressed participants there was no differentiation between different stimuli types in this region (i.e., between iA, eA and noTask). Healthy and remitted participants in contrast showed clear activity differences. Conclusions: This is the first study comparing iA and eA-related activity in the insula in depressed participants to that in healthy and remitted individuals. The preliminary results suggest that these groups differ in there being hypo-responses across insula regions in the depressed participants, whilst non-psychiatric participants and patients in remission from MDD show the same neural activity during iA in insula subregions implying a possible state marker for MDD. The lack of activity differences between different stimulus types in the depressed group may account for their symptoms of altered external and internal focus. PMID:25914633

  17. A brief history of people and events related to atomic weapons testing in the Marshall Islands.

    PubMed

    Simon, S L

    1997-07-01

    The events related to nuclear testing in the Marshall Islands began at the end of WWII when the U.S. began an initiative to determine the effect of nuclear weapons on naval vessels and on the performance of military personnel. The first tests took place in 1946 even though the area known as Micronesia was not entrusted to the U.S. by the United Nations until 1947. Beginning with the first relocation of the Bikini people to Rongerik Atoll in 1946, the saga of the Marshall Islands involvement in the atomic age began. Although the testing program was limited to the years 1946 through 1958, many of the consequences and events related to the testing program continued over the decades since. That story is still ongoing with programs currently underway to attempt to resettle previously displaced communities, remediate contaminated islands, and to settle claims of damages to individuals and communities. The history of the years subsequent to 1958 are a mixed chronicle of a few original scientific investigations aimed at understanding the coral atoll environment, continued surveillance of the acutely exposed Marshallese, some efforts at cleanup and remediation, numerous monitoring programs and many studies repeated either for credibility purposes, to satisfy international demands or because the changing state of knowledge of radiation protection has necessitated us to rethink earlier beliefs and conclusions about late health effects and social consequences. The objective of this paper is to briefly note many of the historical and political events, scientific studies, persons and publications from 1946 to the present that relate to atomic weapons testing in the Marshall Islands.

  18. Event-related desynchronization/synchronization during discrimination task conditions in patients with Parkinson's disease.

    PubMed

    Dushanova, Juliana; Philipova, Dolja; Nikolova, Gloria

    2009-09-01

    Parkinson's disease is a neurodegenerative disorder with symptoms, which include movement disturbances and changes of cognitive information processing. The aim of the present study was to investigate the functional relationships between oscillatory electroencephalographic (EEG) dominant components with event-related desynchronization/synchronization (ERD/ERS) method for idiopathic non-demented Parkinson's patients (PP) and control subjects (CS) during auditory discrimination tasks within two post-stimulus intervals of 0-250 and 250-600 ms. When comparing the CS and PP during the first post-stimulus period, we found delta- and theta-ERS significantly pronounced in CS for both tone types (low--800, high--1,000 Hz) with the following exceptions: at Fz, PP displayed higher delta-ERS, while at C3' theta-ERD in response to a high tone. Alpha-ERS was found in PP in response to either tone at all electrodes and mainly alpha-ERD in CS. In the second post-stimulus interval, the significant differences between the groups were: (i) delta-ERS in CS and delta-ERD in PP in response to the low tone and (ii) delta-ERS for both groups in answer to the high tone, more prominent in CS at Cz and Pz, except for delta-ERD in PP at C3'. For both groups, we detected predominantly theta-ERD and alpha-ERD following both tone types within this second interval. PP showed more expressed theta-ERD at Fz and parietal theta-ERS. Alpha-ERD was significantly higher in CS, while frontal alpha-ERD was more prominent in the PP in response to both tones. The data obtained showed specific functional differences of event-related oscillatory activity in cognitive and sensory-motor information processing between the PP and CS. PMID:19291392

  19. The dysfunction of face processing in patients with internet addiction disorders: an event-related potential study.

    PubMed

    Zhang, Fan; Zhao, Lun

    2016-10-19

    To investigate face processing in patients with internet addiction disorders (IAD), an event-related brain potential experiment was conducted in IAD patients and healthy age-matched controls in which participants were instructed to classify each stimulus (face vs. nonface object) as quickly and accurately as possible. Although we did not find a significant difference in the performance between two groups, both the N110 and the P2 components in response to faces were larger in the IAD group than in the control group, whereas the N170 to faces decreased in the IAD group than in the control group. In addition, the source analysis of event-related potential components showed different generators between two groups. These data indicated that there was a dysfunction of face processing in IAD patients and the underlying mechanism of processing faces could be different from healthy individuals. PMID:27563738

  20. The dysfunction of face processing in patients with internet addiction disorders: an event-related potential study.

    PubMed

    Zhang, Fan; Zhao, Lun

    2016-10-19

    To investigate face processing in patients with internet addiction disorders (IAD), an event-related brain potential experiment was conducted in IAD patients and healthy age-matched controls in which participants were instructed to classify each stimulus (face vs. nonface object) as quickly and accurately as possible. Although we did not find a significant difference in the performance between two groups, both the N110 and the P2 components in response to faces were larger in the IAD group than in the control group, whereas the N170 to faces decreased in the IAD group than in the control group. In addition, the source analysis of event-related potential components showed different generators between two groups. These data indicated that there was a dysfunction of face processing in IAD patients and the underlying mechanism of processing faces could be different from healthy individuals.

  1. Performance monitoring in autism spectrum disorders: A systematic literature review of event-related potential studies.

    PubMed

    Hüpen, Philippa; Groen, Yvonne; Gaastra, Geraldina F; Tucha, Lara; Tucha, Oliver

    2016-04-01

    Autism spectrum disorder (ASD) is marked by impairments in social-emotional situations, executive functioning, and behavioral regulation. These symptoms may be related to deficits in performance monitoring, i.e., the ability to observe and evaluate one's own behavior and performance which is necessary for the regulation of future behavior. The present literature review investigated electroencephalic correlates of performance monitoring in ASD. Event-related potentials (ERPs) considered in this review included internal performance monitoring components (error-related negativity, error positivity), external performance monitoring components (feedback-related negativity, feedback-P3), and observational performance monitoring components (observer error-related negativity, observer feedback-related negativity). The majority of studies point to reduced internal performance monitoring in ASD. External performance monitoring in reward-processing paradigms, where rewards are independent of performance, seems to be intact in ASD. So far, no studies have investigated the observer error-related negativity in ASD. Available data on the observer feedback-related negativity are inconclusive, since only two studies with differential study results investigated this construct in ASD. In general, results suggest that individuals with ASD have problems with internal performance monitoring and with learning from external, abstract feedback. In contrast, the processing of external, concrete feedback seems to be largely intact in ASD.

  2. Emotional processing and psychopathic traits in male college students: An event-related potential study.

    PubMed

    Medina, Amy L; Kirilko, Elvira; Grose-Fifer, Jillian

    2016-08-01

    Emotional processing deficits are often considered a hallmark of psychopathy. However, there are relatively few studies that have investigated how the late positive potential (LPP) elicited by both positive and negative emotional stimuli is modulated by psychopathic traits, especially in undergraduates. Attentional deficits have also been posited to be associated with emotional blunting in psychopathy, consequently, results from previous studies may have been influenced by task demands. Therefore, we investigated the relationship between the neural correlates of emotional processing and psychopathic traits by measuring event-related potentials (ERPs) during a task with a relatively low cognitive load. A group of male undergraduates were classified as having either high or low levels of psychopathic traits according to their total scores on the Psychopathic Personality Inventory - Revised (PPI-R). A subgroup of these participants then passively viewed complex emotional and neutral images from the International Affective Picture System (IAPS) while their EEGs were recorded. As hypothesized, in general the late LPP elicited by emotional pictures was found to be significantly reduced for participants with high Total PPI-R scores relative to those with low scores, especially for pictures that were rated as less emotionally arousing. Our data suggest that male undergraduates with high, but subclinical levels of psychopathic traits did not maintain continued higher-order processing of affective information, especially when it was perceived to be less arousing in nature. PMID:27302151

  3. An Event-Related Potential Study of Social Information Processing in Adolescents.

    PubMed

    diFilipo, Danielle; Grose-Fifer, Jillian

    2016-01-01

    Increased social awareness is a hallmark of adolescence. The primary aim of this event-related potential study was to investigate whether adolescents, in comparison to adults, would show relatively enhanced early neural processing of complex pictures containing socially-relevant information. A secondary aim was to investigate whether there are also gender and age differences in the ways adolescents and adults process social and nonsocial information. We recorded EEGs from 12-17 year-olds and 25-37 year-olds (N = 59) while they viewed pleasant pictures from the International Affective Picture System. We found age-related amplitude differences in the N1 and the LPP, and gender-related differences in the N2 region for socially-relevant stimuli. Social pictures (featuring mostly young children and adults) elicited larger N1s than nonsocial stimuli in adolescents, but not adults, whereas larger LPPs to social stimuli were seen in adults, but not adolescents. Furthermore, in general, males (regardless of age) showed larger N2s to nonsocial than to social images, but females did not. Our results imply that compared to adults, adolescents show relatively greater initial orientation toward social than toward nonsocial stimuli. PMID:27192210

  4. Temporal Lobe Impairment in West Syndrome: Event-Related Potential Evidence

    PubMed Central

    Werner, Klaus; Fosi, Tangunu; Boyd, Stewart G; Baldeweg, Torsten; Scott, Rod C; Neville, Brian G

    2015-01-01

    Objective This study investigates auditory processing in infants with West syndrome (WS) using event-related potentials (ERPs). Methods ERPs were measured in 25 infants with mainly symptomatic WS (age range = 3–10 months) and 26 healthy term infants (age range = 3–9 months) using an auditory novelty oddball paradigm. The ERP recordings were made during wakefulness and repeated in stage II sleep. Results The obligatory components (P150, N250, P350) and novelty response components (P300, Nc) were recordable during both sleep and wakefulness in patients and controls. All ERP latencies decreased with age in controls but not in the WS group (age × group interaction, F = 22.3, p < 0.0001). These ERP latency alterations were not affected by pharmacological treatment for WS. Interpretation This study demonstrated a persistently altered ERP signature in patients with a recent history of infantile spasms. The prolongation of auditory obligatory and novelty ERPs in WS patients indicates a severe failure of temporal lobe maturation during infancy. It remains to be investigated whether this predicts long-term cognitive impairments characteristic for this epileptic encephalopathy. PMID:25363285

  5. An Event-Related Potential Study of Social Information Processing in Adolescents

    PubMed Central

    diFilipo, Danielle; Grose-Fifer, Jillian

    2016-01-01

    Increased social awareness is a hallmark of adolescence. The primary aim of this event-related potential study was to investigate whether adolescents, in comparison to adults, would show relatively enhanced early neural processing of complex pictures containing socially-relevant information. A secondary aim was to investigate whether there are also gender and age differences in the ways adolescents and adults process social and nonsocial information. We recorded EEGs from 12–17 year-olds and 25–37 year-olds (N = 59) while they viewed pleasant pictures from the International Affective Picture System. We found age-related amplitude differences in the N1 and the LPP, and gender-related differences in the N2 region for socially-relevant stimuli. Social pictures (featuring mostly young children and adults) elicited larger N1s than nonsocial stimuli in adolescents, but not adults, whereas larger LPPs to social stimuli were seen in adults, but not adolescents. Furthermore, in general, males (regardless of age) showed larger N2s to nonsocial than to social images, but females did not. Our results imply that compared to adults, adolescents show relatively greater initial orientation toward social than toward nonsocial stimuli. PMID:27192210

  6. Coupling Between Neuronal Firing, Field Potentials, and fMRI in Human Auditory Cortex

    NASA Astrophysics Data System (ADS)

    Mukamel, Roy; Gelbard, Hagar; Arieli, Amos; Hasson, Uri; Fried, Itzhak; Malach, Rafael

    2005-08-01

    Functional magnetic resonance imaging (fMRI) is an important tool for investigating human brain function, but the relationship between the hemodynamically based fMRI signals in the human brain and the underlying neuronal activity is unclear. We recorded single unit activity and local field potentials in auditory cortex of two neurosurgical patients and compared them with the fMRI signals of 11 healthy subjects during presentation of an identical movie segment. The predicted fMRI signals derived from single units and the measured fMRI signals from auditory cortex showed a highly significant correlation (r = 0.75, P < 10-47). Thus, fMRI signals can provide a reliable measure of the firing rate of human cortical neurons.

  7. Reprint of: fMRI studies of successful emotional memory encoding: a quantitative meta-analysis.

    PubMed

    Murty, Vishnu P; Ritchey, Maureen; Adcock, R Alison; LaBar, Kevin S

    2011-03-01

    Over the past decade, fMRI techniques have been increasingly used to interrogate the neural correlates of successful emotional memory encoding. These investigations have typically aimed to either characterize the contributions of the amygdala and medial temporal lobe (MTL) memory system, replicating results in animals, or delineate the neural correlates of specific behavioral phenomena. It has remained difficult, however, to synthesize these findings into a systems neuroscience account of how networks across the whole-brain support the enhancing effects of emotion on memory encoding. To this end, the present study employed a meta-analytic approach using activation likelihood estimates to assess the anatomical specificity and reliability of event-related fMRI activations related to successful memory encoding for emotional versus neutral information. The meta-analysis revealed consistent clusters within bilateral amygdala, anterior hippocampus, anterior and posterior parahippocampal gyrus, the ventral visual stream, left lateral prefrontal cortex and right ventral parietal cortex. The results within the amygdala and MTL support a wealth of findings from the animal literature linking these regions to arousal-mediated memory effects. The consistency of findings in cortical targets, including the visual, prefrontal, and parietal cortices, underscores the importance of generating hypotheses regarding their participation in emotional memory formation. In particular, we propose that the amygdala interacts with these structures to promote enhancements in perceptual processing, semantic elaboration, and attention, which serve to benefit subsequent memory for emotional material. These findings may motivate future research on emotional modulation of widespread neural systems and the implications of this modulation for cognition.

  8. fMRI studies of successful emotional memory encoding: A quantitative meta-analysis.

    PubMed

    Murty, Vishnu P; Ritchey, Maureen; Adcock, R Alison; LaBar, Kevin S

    2010-10-01

    Over the past decade, fMRI techniques have been increasingly used to interrogate the neural correlates of successful emotional memory encoding. These investigations have typically aimed to either characterize the contributions of the amygdala and medial temporal lobe (MTL) memory system, replicating results in animals, or delineate the neural correlates of specific behavioral phenomena. It has remained difficult, however, to synthesize these findings into a systems neuroscience account of how networks across the whole-brain support the enhancing effects of emotion on memory encoding. To this end, the present study employed a meta-analytic approach using activation likelihood estimates to assess the anatomical specificity and reliability of event-related fMRI activations related to successful memory encoding for emotional versus neutral information. The meta-analysis revealed consistent clusters within bilateral amygdala, anterior hippocampus, anterior and posterior parahippocampal gyrus, the ventral visual stream, left lateral prefrontal cortex and right ventral parietal cortex. The results within the amygdala and MTL support a wealth of findings from the animal literature linking these regions to arousal-mediated memory effects. The consistency of findings in cortical targets, including the visual, prefrontal, and parietal cortices, underscores the importance of generating hypotheses regarding their participation in emotional memory formation. In particular, we propose that the amygdala interacts with these structures to promote enhancements in perceptual processing, semantic elaboration, and attention, which serve to benefit subsequent memory for emotional material. These findings may motivate future research on emotional modulation of widespread neural systems and the implications of this modulation for cognition.

  9. The neural correlates of volitional attention: A combined fMRI and ERP study.

    PubMed

    Bengson, Jesse J; Kelley, Todd A; Mangun, George R

    2015-07-01

    Studies of visual-spatial attention typically use instructional cues to direct attention to a relevant location, but in everyday vision, attention is often focused volitionally, in the absence of external signals. Although investigations of cued attention comprise hundreds of behavioral and physiological studies, remarkably few studies of voluntary attention have addressed the challenging question of how spatial attention is initiated and controlled in the absence of external instructions, which we refer to as willed attention. To explore this question, we employed a trial-by-trial spatial attention task using electroencephalography and functional magnetic resonance imaging (fMRI). The fMRI results reveal a unique network of brain regions for willed attention that includes the anterior cingulate cortex, left middle frontal gyrus (MFG), and the left and right anterior insula (AI). We also observed two event-related potentials (ERPs) associated with willed attention; one with a frontal distribution occurring 250-350 ms postdecision cue onset (EWAC: Early Willed Attention Component), and another occurring between 400 and 800 ms postdecision-cue onset (WAC: Willed Attention Component). In addition, each ERP component uniquely correlated across subjects with different willed attention-specific sites of BOLD activation. The EWAC was correlated with the willed attention-specific left AI and left MFG activations and the later WAC was correlated only with left AI. These results offer a comprehensive and novel view of the electrophysiological and anatomical profile of willed attention and further illustrate the relationship between scalp-recorded ERPs and the BOLD response.

  10. Performance Monitoring Is Altered in Adult ADHD: A Familial Event-Related Potential Investigation

    ERIC Educational Resources Information Center

    McLoughlin, Grainne; Albrecht, Bjoern; Banaschewski, Tobias; Rothenberger, Aribert; Brandeis, Daniel; Asherson, Philip; Kuntsi, Jonna

    2009-01-01

    Background: Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder that starts in childhood and frequently persists in adults. Electrophysiological studies in children with ADHD provide evidence for abnormal performance monitoring processes and familial association of these processes with ADHD. It is not yet known…

  11. Do Children with Autism "Switch Off" to Speech Sounds? An Investigation Using Event-Related Potentials

    ERIC Educational Resources Information Center

    Whitehouse, Andrew J. O.; Bishop, Dorothy V. M.

    2008-01-01

    Autism is a disorder characterized by a core impairment in social behaviour. A prominent component of this social deficit is poor orienting to speech. It is unclear whether this deficit involves an impairment in allocating attention to speech sounds, or a sensory impairment in processing phonetic information. In this study, event-related…

  12. A step into the anarchist’s mind: examining political attitudes and ideology through event-related brain potentials

    PubMed Central

    Van Hiel, Alain; Pattyn, Sven; Onraet, Emma; Severens, Els

    2012-01-01

    The present study investigates patterns of event-related brain potentials following the presentation of attitudinal stimuli among political moderates (N = 12) and anarchists (N = 11). We used a modified oddball paradigm to investigate the evaluative inconsistency effect elicited by stimuli embedded in a sequence of contextual stimuli with an opposite valence. Increased late positive potentials (LPPs) of extreme political attitudes were observed. Moreover, this LPP enhancement was larger among anarchists than among moderates, indicating that an extreme political attitude of a moderate differs from an extreme political attitude of an anarchist. The discussion elaborates on the meaning of attitude extremity for moderates and extremists. PMID:21421734

  13. Different sensitivity of pain-related chemosensory potentials evoked by stimulation with CO2, tooth pulp event-related potentials, and acoustic event-related potentials to the tranquilizer diazepam.

    PubMed

    Thürauf, N; Ditterich, W; Kobal, G

    1994-12-01

    1. The aim of this study was to investigate the sensitivity of pain-related potentials used in experimental pain models to the non-specific effects of the tranquilizer diazepam. Pain-related potentials were recorded after painful stimulation of the nasal mucosa with CO2 and after painful stimulation of the tooth pulp. Acoustically evoked potentials were measured in order to compare their sensitivity to the tranquilizer diazepam with the sensitivity of the pain-related potentials. 2. Twenty volunteers participated in this randomised, double-blind, three-fold crossover study. Measurements were obtained before and 20 min after the administration of the drug. Event-related potentials were recorded after painful stimulation of the nasal mucosa with CO2 (two stimulus intensities: 60% v/v and 70% v/v CO2), after painful stimulation of the tooth pulp (two stimulus intensities: 2.2 x and 3.3 x detection threshold), and after non-painful acoustical stimulation of the right ear. The subjects rated the perceived intensity of the painful stimuli by means of a visual analogue scale. In addition the spontaneous EEG was analysed in the frequency domain and the vigilance of the subjects was assessed in a tracking task. 3. Diazepam reduced significantly the amplitudes of the event-related potentials after painful stimulation of the tooth pulp and after acoustical stimulation. In contrast only a small, statistically non-significant reduction could be found after painful stimulation with CO2. The pain ratings of the painful stimuli were not affected by diazepam. Diazepam reduced the performance of the tracking task. A decrease of arousal could be found in the alpha 2-range, whereas in the beta 2 and the theta-range the power density increased under diazepam. 4. We demonstrated that event-related potentials after painful stimulation of the nasal mucosa with CO2 are less affected by the nonspecific effects of the tranquilizer diazepam than event-related potentials after painful

  14. Event-related potential correlates of the expectancy violation effect during emotional prosody processing.

    PubMed

    Chen, Xuhai; Zhao, Lun; Jiang, Aishi; Yang, Yufang

    2011-03-01

    The present study investigated the expectancy violation effects evoked by deviation in sentential emotional prosody (EP), and their association with the deviation patterns. Event-related potentials (ERPs) were recorded for mismatching EPs with different patterns of deviation and for matching control EPs while subjects performed emotional congruousness judgment in Experiment 1 and visual probe detection tasks in Experiment 2. In the control experiment, EPs and acoustically matched non-emotional materials were presented and ERPs were recorded while participants judged the sound intensity congruousness. It was found that an early negativity, whose peak latency varied with deviation pattern, was elicited by mismatching EPs relative to matching ones, irrespective of task-relevance. A late positivity was specifically induced by mismatching EPs, and was modulated by both deviation pattern and task-relevance. Moreover, these effects cannot be simply attributed to the change in non-emotional acoustic properties. These findings suggest that the brain detects the EP deviation rapidly, and then integrates it with context for comprehension, during which the emotionality plays a role of speeding up the perception and enhancing vigilance.

  15. An Event-Related Potential Study on the Effects of Cannabis on Emotion Processing.

    PubMed

    Troup, Lucy J; Bastidas, Stephanie; Nguyen, Maia T; Andrzejewski, Jeremy A; Bowers, Matthew; Nomi, Jason S

    2016-01-01

    The effect of cannabis on emotional processing was investigated using event-related potential paradigms (ERPs). ERPs associated with emotional processing of cannabis users, and non-using controls, were recorded and compared during an implicit and explicit emotional expression recognition and empathy task. Comparisons in P3 component mean amplitudes were made between cannabis users and controls. Results showed a significant decrease in the P3 amplitude in cannabis users compared to controls. Specifically, cannabis users showed reduced P3 amplitudes for implicit compared to explicit processing over centro-parietal sites which reversed, and was enhanced, at fronto-central sites. Cannabis users also showed a decreased P3 to happy faces, with an increase to angry faces, compared to controls. These effects appear to increase with those participants that self-reported the highest levels of cannabis consumption. Those cannabis users with the greatest consumption rates showed the largest P3 deficits for explicit processing and negative emotions. These data suggest that there is a complex relationship between cannabis consumption and emotion processing that appears to be modulated by attention. PMID:26926868

  16. [Topography of the Event-Related Brain Responses during Discrimination of Auditory Motion in Humans].

    PubMed

    Shestopalova, L B; Petropavlovskaia, E A; Vaitulevich, S Ph; Nikitin, N I

    2015-01-01

    The present study investigates the hemispheric asymmetry of auditory event-related potentials (ERPs) and mismatch negativity (MMN) during passive discrimination of the moving sound stimuli presented according to the oddball paradigm. The sound movement to the left/right from the head midline was produced by linear changes of the interaural time delay (ITD). It was found that the right-hemispheric N1 and P2 responses were more prominent than the left-hemispheric ones, especially in the fronto-lateral region. On the contrary, N250 and MMN responses demonstrated contralateral dominance in the fronto-lateral and fronto-medial regions. Direction of sound motion had no significant effect on the ERP or MMN topography. The right-hemispheric asymmetry of N1 increased with sound velocity. Maximal asymmetry of P2 was obtained with short stimulus trajectories. The contralateral bias of N250 and MMN increased with the spatial difference between standard and deviant stimuli. The results showed different type of hemispheric asymmetry for the early and late ERP components which could reflect the activity of distinct neural populations involved in the sensory and cognitive processing of the auditory input. PMID:26860001

  17. Event-related potentials show taste and risk effects on food evaluation.

    PubMed

    Ma, Qingguo; Wang, Cuicui; Wu, Yifan; Wang, Xiaoyi

    2014-07-01

    Tastes and claims about unhealthy food are important factors that affect consumption. This study investigated the correlation of the event-related potential (ERP) of the evaluation of processing of food information with the task of positive judgment. Given the information on possible diseases that arise with food consumption, sweet-tasting food elicited more conflict than salty food, and this conflict was reflected by a negative ERP component at 250-500 ms (N400). Moreover, the late positive wave at 500-800 ms that was evoked by presentation of food with the names of chronic diseases that could arise from the consumption of such food was larger than that evoked when acute diseases were presented. Sweet-tasting food caused a more intense conflict with disease-related risk than salty food, and chronic diseases aroused a stronger emotional fear than acute diseases. These findings provide new insights into the N400 component and the neurocognitive processes of evaluating food combined with taste and risk information.

  18. Neural responses to cartoon facial attractiveness: An event-related potential study.

    PubMed

    Lu, Yingjun; Wang, Jingmei; Wang, Ling; Wang, Junli; Qin, Jinliang

    2014-06-01

    Animation creates a vivid, virtual world and expands the scope of human imagination. In this study, we investigated the time-courses of brain responses related to the evaluation of the attractiveness of cartoon faces using the event-related potential (ERP) technique. The results demonstrated that N170 amplitude was higher for attractive than for unattractive cartoon faces in males, while the opposite was found in females. Facial attractiveness notably modulated the late positive component (LPC), which might reflect the task-related process of aesthetic appraisal of beauty. The mean LPC amplitude in males was significantly higher for attractive cartoon faces than for unattractive faces, while the LPC amplitude in females did not significantly differ between attractive and unattractive cartoon faces. Moreover, the paint mode (computer graphics, gouache, and stick figure) modulated the early encoding of facial structures and the late evaluative process. The early modulation effect by paint mode may be related to the spatial frequency of the pictures. The processing speed and intensity in females were both higher than those in males. In conclusion, our study, for the first time, reported ERP modulation based on the assessment of cartoon facial attractiveness, suggesting the facilitated selection of attractiveness information at the early stage, and that the attentional enhancement of attractive faces at the late stage only exists in males. This suggests that men's brains are hard-wired to be sensitive to facial beauty, even in cartoons.

  19. An Event-Related Potential Study on the Effects of Cannabis on Emotion Processing.

    PubMed

    Troup, Lucy J; Bastidas, Stephanie; Nguyen, Maia T; Andrzejewski, Jeremy A; Bowers, Matthew; Nomi, Jason S

    2016-01-01

    The effect of cannabis on emotional processing was investigated using event-related potential paradigms (ERPs). ERPs associated with emotional processing of cannabis users, and non-using controls, were recorded and compared during an implicit and explicit emotional expression recognition and empathy task. Comparisons in P3 component mean amplitudes were made between cannabis users and controls. Results showed a significant decrease in the P3 amplitude in cannabis users compared to controls. Specifically, cannabis users showed reduced P3 amplitudes for implicit compared to explicit processing over centro-parietal sites which reversed, and was enhanced, at fronto-central sites. Cannabis users also showed a decreased P3 to happy faces, with an increase to angry faces, compared to controls. These effects appear to increase with those participants that self-reported the highest levels of cannabis consumption. Those cannabis users with the greatest consumption rates showed the largest P3 deficits for explicit processing and negative emotions. These data suggest that there is a complex relationship between cannabis consumption and emotion processing that appears to be modulated by attention.

  20. Event-related potential correlates of long-term memory for briefly presented faces.

    PubMed

    Joyce, Carrie A; Kutas, Marta

    2005-05-01

    Electrophysiological studies have investigated the nature of face recognition in a variety of paradigms; some have contrasted famous and novel faces in explicit memory paradigms, others have repeated faces to examine implicit memory/priming. If the general finding that implicit memory can last for up to several months also holds for novel faces, a reliable measure of it could have practical application for eyewitness testimony, given that explicit measures of eyewitness memory have at times proven fallible. The current study aimed to determine whether indirect behavioral and electrophysiological measures might yield reliable estimates of face memory over longer intervals than have typically been obtained with priming manipulations. Participants were shown 192 faces and then tested for recognition at four test delays ranging from immediately up to 1 week later. Three event-related brain potential components (e.g., N250r, N400f, and LPC) varied with memory measures although only the N250r varied regardless of explicit recognition, that is, with both repetition and recognition. PMID:15904542

  1. The processing course of conflicts in third-party punishment: An event-related potential study.

    PubMed

    Qu, Lulu; Dou, Wei; You, Cheng; Qu, Chen

    2014-09-01

    In social decision-making games, uninvolved third parties usually severely punish norm violators, even though the punishment is costly for them. For this irrational behavior, the conflict caused by punishment satisfaction and monetary loss is obvious. In the present study, 18 participants observed a Dictator Game and were asked about their willingness to incur some cost to change the offers by reducing the dictator's money. A response-locked event-related potential (ERP) component, the error negativity or error-related negativity (Ne/ERN), which is evoked by error or conflict, was analyzed to investigate whether a trade-off between irrational punishment and rational private benefit occurred in the brain responses of third parties. We examined the effect of the choice type ("to change the offer" or "not to change the offer") and levels of unfairness (90:10 and 70:30) on Ne/ERN amplitudes. The results indicated that there was an ERN effect for unfair offers as Ne/ERN amplitudes were more negative for not to change the offer choices than for to change the offer choices, which suggested that participants encountered more conflict when they did not change unfair offers. Furthermore, it was implied that altruistic punishment, rather than rational utilitarianism, might be the prepotent tendency for humans that is involved in the early stage of decision-making. PMID:26271939

  2. The processing of morphological structure information in Chinese coordinative compounds: an event-related potential study.

    PubMed

    Chung, Kevin K H; Tong, Xiuhong; Liu, Phil D; McBride-Chang, Catherine; Meng, Xiangzhi

    2010-09-17

    The aim of this study was to investigate the morphological structure processing of Chinese compounds at short SOAs of 57ms. Event-related potentials were recorded while 16 Hong Kong Chinese university students were instructed to make visual lexical decisions in a decision-making task involving Chinese compound words. Only words in the category of the coordinative compounding structure were included in the present study. In this compounding structure, both morphemes comprising the compound word are of equal importance, similar to the phrase "in-and-out" in English, where neither "in" nor "out" can be considered the head or modifier in the compound; both morphemes are of equal weight in communicating meaning. While the classic N400 semantic priming effect was replicated at this short SOA, an earlier P250 component, suggested to reflect semantic memory network activation during semantic information processing, was also obtained. The morphological structure effect was only found in the P250 component, suggesting that morphological structure may automatically influence the semantic information processing during Chinese compound word processing. PMID:20627093

  3. The role of event-related brain potentials in assessing central auditory processing.

    PubMed

    Alain, Claude; Tremblay, Kelly

    2007-01-01

    The perception of complex acoustic signals such as speech and music depends on the interaction between peripheral and central auditory processing. As information travels from the cochlea to primary and associative auditory cortices, the incoming sound is subjected to increasingly more detailed and refined analysis. These various levels of analyses are thought to include low-level automatic processes that detect, discriminate and group sounds that are similar in physical attributes such as frequency, intensity, and location as well as higher-level schema-driven processes that reflect listeners' experience and knowledge of the auditory environment. In this review, we describe studies that have used event-related brain potentials in investigating the processing of complex acoustic signals (e.g., speech, music). In particular, we examine the role of hearing loss on the neural representation of sound and how cognitive factors and learning can help compensate for perceptual difficulties. The notion of auditory scene analysis is used as a conceptual framework for interpreting and studying the perception of sound. PMID:18236645

  4. Neural Basis of Intrinsic Motivation: Evidence from Event-Related Potentials

    PubMed Central

    Jin, Jia; Yu, Liping; Ma, Qingguo

    2015-01-01

    Human intrinsic motivation is of great importance in human behavior. However, although researchers have focused on this topic for decades, its neural basis was still unclear. The current study employed event-related potentials to investigate the neural disparity between an interesting stop-watch (SW) task and a boring watch-stop task (WS) to understand the neural mechanisms of intrinsic motivation. Our data showed that, in the cue priming stage, the cue of the SW task elicited smaller N2 amplitude than that of the WS task. Furthermore, in the outcome feedback stage, the outcome of the SW task induced smaller FRN amplitude and larger P300 amplitude than that of the WS task. These results suggested that human intrinsic motivation did exist and that it can be detected at the neural level. Furthermore, intrinsic motivation could be quantitatively indexed by the amplitude of ERP components, such as N2, FRN, and P300, in the cue priming stage or feedback stage. Quantitative measurements would also be convenient for intrinsic motivation to be added as a candidate social factor in the construction of a machine learning model. PMID:26491430

  5. Mathematical anxiety effects on simple arithmetic processing efficiency: an event-related potential study.

    PubMed

    Suárez-Pellicioni, M; Núñez-Peña, M I; Colomé, A

    2013-12-01

    This study uses event-related brain potentials to investigate the difficulties that high math anxious individuals face when processing dramatically incorrect solutions to simple arithmetical problems. To this end, thirteen high math-anxious (HMA) and thirteen low math-anxious (LMA) individuals were presented with simple addition problems in a verification task. The proposed solution could be correct, incorrect but very close to the correct one (small-split), or dramatically incorrect (large-split). The two groups did not differ in mathematical ability or trait anxiety. We reproduced previous results for flawed scores suggesting HMA difficulties in processing large-split solutions. Moreover, large-split solutions elicited a late positive component (P600/P3b) which was more enhanced and delayed in the HMA group. Our study proposes that the pattern of flawed scores found by previous studies (and that we replicate) has to do with HMA individuals'difficulties in inhibiting an extended processing of irrelevant information (large-split solutions).

  6. Estimation of single event-related potentials utilizing the Prony method.

    PubMed

    Hansson, M; Gänsler, T; Salomonsson, G

    1996-10-01

    This paper deals with estimation of the waveform of a single event-related potential, sERP. An additive noise model is used for the measured signal and the SNR of the disturbed sERP is approximately 0 dB. The sERP is described by a series expansion where the basis functions are damped sinusoids. The fundamental basis function is estimated by the least squares Prony method, derived for colored noise. The performance of the Prony method for different forms of the power density spectrum of the noise is investigated. A white noise approximation can be used at a low signal-to-noise (SNR). The basis functions change slowly but the waveform of the sERP may vary from one stimulus to another, thus we average a small number of correlation functions in order to increase the SNR. The method is evaluated by using measurements from four subjects and the results confirm the variability of the sERP.

  7. Age difference in numeral recognition and calculation: an event-related potential study.

    PubMed

    Xuan, Dong; Wang, Suhong; Yang, Yilin; Meng, Ping; Xu, Feng; Yang, Wen; Sheng, Wei; Yang, Yuxia

    2007-01-01

    In this study, we investigated the age difference in numeral recognition and calculation in one group of school-aged children (n = 38) and one of undergraduate students (n = 26) using the event-related potential (ERP) methods. Consistent with previous reports, the age difference was significant in behavioral results. Both numeral recognition and calculation elicited a negativity peaking at about 170-280 ms (N2) and a positivity peaking at 200-470 ms (pSW) in raw ERPs, and a difference potential (dN3) between 360 and 450 ms. The difference between the two age groups indicated that more attention resources were devoted to arithmetical tasks in school-aged children, and that school-aged children and undergraduate students appear to use different strategies to solve arithmetical problems. The analysis of frontal negativity suggested that numeral recognition and mental calculation impose greater load on working memory and executive function in schoolchildren than in undergraduate students. The topography data determined that the parietal regions were responsible for arithmetical function in humans, and there was an age-related difference in the area of cerebral activation. PMID:17364561

  8. An Event-Related Potential Study on the Effects of Cannabis on Emotion Processing

    PubMed Central

    Troup, Lucy J.; Bastidas, Stephanie; Nguyen, Maia T.; Andrzejewski, Jeremy A.; Bowers, Matthew; Nomi, Jason S.

    2016-01-01

    The effect of cannabis on emotional processing was investigated using event-related potential paradigms (ERPs). ERPs associated with emotional processing of cannabis users, and non-using controls, were recorded and compared during an implicit and explicit emotional expression recognition and empathy task. Comparisons in P3 component mean amplitudes were made between cannabis users and controls. Results showed a significant decrease in the P3 amplitude in cannabis users compared to controls. Specifically, cannabis users showed reduced P3 amplitudes for implicit compared to explicit processing over centro-parietal sites which reversed, and was enhanced, at fronto-central sites. Cannabis users also showed a decreased P3 to happy faces, with an increase to angry faces, compared to controls. These effects appear to increase with those participants that self-reported the highest levels of cannabis consumption. Those cannabis users with the greatest consumption rates showed the largest P3 deficits for explicit processing and negative emotions. These data suggest that there is a complex relationship between cannabis consumption and emotion processing that appears to be modulated by attention. PMID:26926868

  9. How Distance Affects Semantic Integration in Discourse: Evidence from Event-Related Potentials

    PubMed Central

    Yang, Xiaohong; Chen, Shuang; Chen, Xuhai; Yang, Yufang

    2015-01-01

    Event-related potentials were used to investigate whether semantic integration in discourse is influenced by the number of intervening sentences between the endpoints of integration. Readers read discourses in which the last sentence contained a critical word that was either congruent or incongruent with the information introduced in the first sentence. Furthermore, for the short discourses, the first and last sentence were intervened by only one sentence while for the long discourses, they were intervened by three sentences. We found that the incongruent words elicited an N400 effect for both the short and long discourses. However, a P600 effect was only observed for the long discourses, but not for the short ones. These results suggest that although readers can successfully integrate upcoming words into the existing discourse representation, the effort required for this integration process is modulated by the number of intervening sentences. Thus, discourse distance as measured by the number of intervening sentences should be taken as an important factor for semantic integration in discourse. PMID:26569606

  10. Neurophysiological evidence for the country-of-origin effect: an event-related potential study.

    PubMed

    Min, Byoung-Kyong; Cho, Kwangsu; Sung, Jungyeon; Cho, Erin

    2014-03-01

    Consumers often rely on observable cues that hint at the hidden quality of a product. The aim of this study was to investigate brain activities associated with the country-of-origin (COO) effect and consumer evaluation of a product design. Electroencephalogram recordings were used to observe event-related brain potentials associated with the COO effect and design evaluation. We found that the frontocentral N90 and parieto-occipital P220 amplitudes are involved in forming preference to design, whereas the COO effect is processed in the centroparietal P500 amplitude. We also found a significant interaction effect between COO and design preference with regard to reaction times. Specifically, participants tended to spend more time making a preference decision when they did not like the product design made in a country with a favorable COO. These results imply that the two cognitive processes, evaluation of COO and formation of design preference, are activated independently at an early stage. It also suggests that these two processes interact with each other toward the end of the decision phase. Together, the results of this study provide neuropsychological evidence supporting a significant role of COO in the formation of design preference. Future studies are required to further delve into other neurophysiological activities associated with the COO effect. PMID:24518230

  11. (De-)accentuation and the process of information status: evidence from event-related brain potentials.

    PubMed

    Baumann, Stefan; Schumacher, Petra B

    2012-09-01

    The paper reports on a perception experiment in German that investigated the neuro-cognitive processing of information structural concepts and their prosodic marking using event-related brain potentials (ERPs). Experimental conditions controlled the information status (given vs. new) of referring and non-referring target expressions (nouns vs. adjectives) and were elicited via context sentences, which did not - unlike most previous ERP studies in the field--trigger an explicit focus expectation. Target utterances displayed prosodic realizations of the critical words which differed in accent position and accent type. Electrophysiological results showed an effect of information status, maximally distributed over posterior sites, displaying a biphasic N400--Late Positivity pattern for new information. We claim that this pattern reflects increased processing demands associated with new information, with the N400 indicating enhanced costs from linking information with the previous discourse and the Late Positivity indicating the listener's effort to update his/her discourse model. The prosodic manipulation registered more pronounced effects over anterior regions and revealed an enhanced negativity followed by a Late Positivity for deaccentuation, probably also reflecting costs from discourse linking and updating respectively. The data further lend indirect support for the idea that givenness applies not only to referents but also to non-referential expressions ('lexical givenness'). PMID:23094319

  12. Human recognition memory and conflict control: An event-related potential study.

    PubMed

    Liu, T; Liu, X; Xiao, T; Shi, J

    2016-01-28

    The relationship between recognition memory and cognitive control is an important research topic. The current study investigated how conflict control influences an individual's emotional memory. During the encoding phase, participants were required to judge the affective valence of a Chinese Chengyu word (either positive or negative) in a modified Simon paradigm and to remember the word. Half of the words were presented in the congruent condition and the other half were displayed in the incongruent condition. During the retrieval phase, participants were instructed to make an 'old/new judgment' and decide whether the word had been presented previously. Electrophysiological responses were recorded using the event-related potential (ERP) technique. The behavioral results of retrieval processes showed that participants remembered more positive than negative words when they were encoded in the congruent condition. The electrophysiological results revealed that the retrieval of words encoded in the incongruent condition elicited less negative frontal negativity (FN) and early posterior negativity (EPN) amplitudes than those encoded in the congruent condition. The retrieval of words encoded in the incongruent condition induced greater late positive complex (LPC) amplitudes, relative to those encoded in the congruent condition on the left hemisphere. It was also observed that the recognition of positive words induced faster LPC responses than negative words when they were encoded in the incongruent condition. The present electrophysiological study illustrates that emotional memory processes may be affected by conflict control. PMID:26633266

  13. Recognizing dynamic facial expressions of emotion: Specificity and intensity effects in event-related brain potentials.

    PubMed

    Recio, Guillermo; Schacht, Annekathrin; Sommer, Werner

    2014-02-01

    Emotional facial expressions usually arise dynamically from a neutral expression. Yet, most previous research focused on static images. The present study investigated basic aspects of processing dynamic facial expressions. In two experiments, we presented short videos of facial expressions of six basic emotions and non-emotional facial movements emerging at variable and fixed rise times, attaining different intensity levels. In event-related brain potentials (ERP), effects of emotion but also for non-emotional movements appeared as early posterior negativity (EPN) between 200 and 350ms, suggesting an overall facilitation of early visual encoding for all facial movements. These EPN effects were emotion-unspecific. In contrast, relative to happiness and neutral expressions, negative emotional expressions elicited larger late positive ERP components (LPCs), indicating a more elaborate processing. Both EPN and LPC amplitudes increased with expression intensity. Effects of emotion and intensity were additive, indicating that intensity (understood as the degree of motion) increases the impact of emotional expressions but not its quality. These processes can be driven by all basic emotions, and there is little emotion-specificity even when statistical power is considerable (N (Experiment 2)=102). PMID:24361701

  14. Event-related potentials associated with performance monitoring in non-human primates.

    PubMed

    Phillips, Jessica M; Everling, Stefan

    2014-08-15

    The abilities to monitor performance outcomes and, when appropriate, impose strategic adjustments in behavior, are core features of the intact human cognitive control system. Errors committed in choice reaction time tasks are typically followed by two scalp potentials, the error negativity (Ne) and error positivity (Pe). These components are considered physiological signatures of the performance monitoring system. Several theories have been proposed to account for these error-related potentials and their functional and behavioral significance. These ideas were inspired by empirical data in humans and other mammalian species, and supported by the results of experiments in which performance monitoring, in humans and computational models, was investigated. However, an appropriate animal model is required to rigorously test the predictions that arise from these theories. Here, using a variant of the anti-saccade task, we demonstrate that event-related signals recorded from macaque monkeys, following errors in choice, resemble the human Ne and Pe. These components were modulated by cognitive variables, namely the degree of cognitive control associated with the applied rule, which implies the existence of hierarchical error processing systems in monkeys, and the degree of response control associated with the saccade. Error-related potential amplitudes were also correlated with remedial action, in a rule-dependent manner. These results demonstrate that error-related potentials in macaque monkeys and human subjects show important similarities, thus supporting the use of the macaque monkey as an animal model for the neurophysiological study of performance monitoring, and potentially, post-error adjustments.

  15. Aesthetic appreciation of poetry correlates with ease of processing in event-related potentials.

    PubMed

    Obermeier, Christian; Kotz, Sonja A; Jessen, Sarah; Raettig, Tim; von Koppenfels, Martin; Menninghaus, Winfried

    2016-04-01

    Rhetorical theory suggests that rhythmic and metrical features of language substantially contribute to persuading, moving, and pleasing an audience. A potential explanation of these effects is offered by "cognitive fluency theory," which stipulates that recurring patterns (e.g., meter) enhance perceptual fluency and can lead to greater aesthetic appreciation. In this article, we explore these two assertions by investigating the effects of meter and rhyme in the reception of poetry by means of event-related brain potentials (ERPs). Participants listened to four versions of lyrical stanzas that varied in terms of meter and rhyme, and rated the stanzas for rhythmicity and aesthetic liking. The behavioral and ERP results were in accord with enhanced liking and rhythmicity ratings for metered and rhyming stanzas. The metered and rhyming stanzas elicited smaller N400/P600 ERP responses than their nonmetered, nonrhyming, or nonmetered and nonrhyming counterparts. In addition, the N400 and P600 effects for the lyrical stanzas correlated with aesthetic liking effects (metered-nonmetered), implying that modulation of the N400 and P600 has a direct bearing on the aesthetic appreciation of lyrical stanzas. We suggest that these effects are indicative of perceptual-fluency-enhanced aesthetic liking, as postulated by cognitive fluency theory. PMID:26697879

  16. Exploring the Neurodevelopment of Visual Statistical Learning Using Event-Related Brain Potentials

    PubMed Central

    Jost, Ethan; Conway, Christopher M.; Purdy, John D.; Walk, Anne M.; Hendricks, Michelle A.

    2014-01-01

    Implicit statistical learning (ISL) allows for the learning of environmental patterns and is thought to be important for many aspects of perception, cognition, and language development. However, very little is known about the development of the underlying neural mechanisms that support ISL. To explore the neurodevelopment of ISL, we investigated the event-related potential (ERP) correlates of learning in adults, older children (aged 9-12), and younger children (aged 6-9) using a novel predictor-target paradigm. In this task, which was a modification of the standard oddball paradigm, participants were instructed to view a serial input stream of visual stimuli and to respond with a button press when a particular target appeared. Unbeknownst to the participants, covert statistical probabilities were embedded in the task such that the target was predicted to varying degrees by different predictor stimuli. The results were similar across all three age groups: a P300 component that was elicited by the high predictor stimulus after sufficient exposure to the statistical probabilities. These neurophysiological findings provide evidence for developmental invariance in ISL, with adult-like competence reached by at least age 6. PMID:25475992

  17. Short-term effects of prosocial video games on aggression: an event-related potential study

    PubMed Central

    Liu, Yanling; Teng, Zhaojun; Lan, Haiying; Zhang, Xin; Yao, Dezhong

    2015-01-01

    Previous research has shown that exposure to violent video games increases aggression, whereas exposure to prosocial video games can reduce aggressive behavior. However, little is known about the neural correlates of these behavioral effects. This work is the first to investigate the electrophysiological features of the relationship between playing a prosocial video game and inhibition of aggressive behavior. Forty-nine subjects played either a prosocial or a neutral video game for 20 min, then participated in an event-related potential (ERP) experiment based on an oddball paradigm and designed to test electrophysiological responses to prosocial and violent words. Finally, subjects completed a competitive reaction time task (CRTT) which based on Taylor's Aggression Paradigm and contains reaction time and noise intensity chosen as a measure of aggressive behavior. The results show that the prosocial video game group (compared to the neutral video game group) displayed smaller P300 amplitudes, were more accurate in distinguishing violent words, and were less aggressive as evaluated by the CRTT of noise intensity chosen. A mediation analysis shows that the P300 amplitude evoked by violent words partially mediates the relationship between type of video game and subsequent aggressive behavior. The results support theories based on the General Learning Model. We provide converging behavioral and neural evidence that exposure to prosocial media may reduce aggression. PMID:26257620

  18. Effects of emotional intensity under perceptual load: An event-related potentials (ERPs) study.

    PubMed

    Müller-Bardorff, Miriam; Schulz, Claudia; Peterburs, Jutta; Bruchmann, Maximilian; Mothes-Lasch, Martin; Miltner, Wolfgang; Straube, Thomas

    2016-05-01

    Effects of emotional intensity and valence on visual event-related potentials (ERPs) are still poorly understood, in particular in the context of limited attentional resources. In the present EEG study, we investigated the effect of emotional intensity of different emotional facial expressions on P1, N170, early posterior negativity (EPN) and late positive potential (LPP) while varying the amount of available attentional resources. A new stimulus set comprising 90 full color pictures of neutral, happy (low, high intensity), and angry (low, high intensity) expressions was developed. These facial expressions were presented centrally, superimposed by two horizontal bars, and participants engaged in a focal bars task. Availability of attentional resources was varied in two conditions by manipulating the difficulty of the focal bars task (low vs. high perceptual load). Our findings demonstrate intensity and valence effects of task-irrelevant facial expressions on early (N170) and intermediate processing stages (EPN). In addition, task-related effects of perceptual load evolved at intermediate processing stages and were full blown in the time window of LPP. In line with limited resource accounts, valence effects on N170 and EPN were reduced under high perceptual load. Interestingly, apart from this valence by load interaction no further interactions between stimulus and task-driven factors were obtained: Effects of emotional intensity were not modulated by the perceptual load of the focal bars task, indicating that emotional intensity was processed even though attentional resources were heavily restricted. PMID:26995785

  19. Distributed Patterns of Event-Related Potentials Predict Subsequent Ratings of Abstract Stimulus Attributes

    PubMed Central

    Bode, Stefan; Bennett, Daniel; Stahl, Jutta; Murawski, Carsten

    2014-01-01

    Exposure to pleasant and rewarding visual stimuli can bias people's choices towards either immediate or delayed gratification. We hypothesised that this phenomenon might be based on carry-over effects from a fast, unconscious assessment of the abstract ‘time reference’ of a stimuli, i.e. how the stimulus relates to one's personal understanding and connotation of time. Here we investigated whether participants' post-experiment ratings of task-irrelevant, positive background visual stimuli for the dimensions ‘arousal’ (used as a control condition) and ‘time reference’ were related to differences in single-channel event-related potentials (ERPs) and whether they could be predicted from spatio-temporal patterns of ERPs. Participants performed a demanding foreground choice-reaction task while on each trial one task-irrelevant image (depicting objects, people and scenes) was presented in the background. Conventional ERP analyses as well as multivariate support vector regression (SVR) analyses were conducted to predict participants' subsequent ratings. We found that only SVR allowed both ‘arousal’ and ‘time reference’ ratings to be predicted during the first 200 ms post-stimulus. This demonstrates an early, automatic semantic stimulus analysis, which might be related to the high relevance of ‘time reference’ to everyday decision-making and preference formation. PMID:25271850

  20. Neurophysiological evidence for the country-of-origin effect: an event-related potential study

    PubMed Central

    Cho, Kwangsu; Sung, Jungyeon; Cho, Erin

    2014-01-01

    Consumers often rely on observable cues that hint at the hidden quality of a product. The aim of this study was to investigate brain activities associated with the country-of-origin (COO) effect and consumer evaluation of a product design. Electroencephalogram recordings were used to observe event-related brain potentials associated with the COO effect and design evaluation. We found that the frontocentral N90 and parieto-occipital P220 amplitudes are involved in forming preference to design, whereas the COO effect is processed in the centroparietal P500 amplitude. We also found a significant interaction effect between COO and design preference with regard to reaction times. Specifically, participants tended to spend more time making a preference decision when they did not like the product design made in a country with a favorable COO. These results imply that the two cognitive processes, evaluation of COO and formation of design preference, are activated independently at an early stage. It also suggests that these two processes interact with each other toward the end of the decision phase. Together, the results of this study provide neuropsychological evidence supporting a significant role of COO in the formation of design preference. Future studies are required to further delve into other neurophysiological activities associated with the COO effect. PMID:24518230

  1. Event-related potentials during word mapping to object shape predict toddlers' vocabulary size

    PubMed Central

    Borgström, Kristina; Torkildsen, Janne von Koss; Lindgren, Magnus

    2015-01-01

    What role does attention to different object properties play in early vocabulary development? This longitudinal study using event-related potentials in combination with behavioral measures investigated 20- and 24-month-olds' (n = 38; n = 34; overlapping n = 24) ability to use object shape and object part information in word-object mapping. The N400 component was used to measure semantic priming by images containing shape or detail information. At 20 months, the N400 to words primed by object shape varied in topography and amplitude depending on vocabulary size, and these differences predicted productive vocabulary size at 24 months. At 24 months, when most of the children had vocabularies of several hundred words, the relation between vocabulary size and the N400 effect in a shape context was weaker. Detached object parts did not function as word primes regardless of age or vocabulary size, although the part-objects were identified behaviorally. The behavioral measure, however, also showed relatively poor recognition of the part-objects compared to the shape-objects. These three findings provide new support for the link between shape recognition and early vocabulary development. PMID:25762957

  2. Cortical dynamics of semantic processing during sentence comprehension: evidence from event-related optical signals.

    PubMed

    Huang, Jian; Wang, Suiping; Jia, Shiwei; Mo, Deyuan; Chen, Hsuan-Chih

    2013-01-01

    Using the event-related optical signal (EROS) technique, this study investigated the dynamics of semantic brain activation during sentence comprehension. Participants read sentences constituent-by-constituent and made a semantic judgment at the end of each sentence. The EROSs were recorded simultaneously with ERPs and time-locked to expected or unexpected sentence-final target words. The unexpected words evoked a larger N400 and a late positivity than the expected ones. Critically, the EROS results revealed activations first in the left posterior middle temporal gyrus (LpMTG) between 128 and 192 ms, then in the left anterior inferior frontal gyrus (LaIFG), the left middle frontal gyrus (LMFG), and the LpMTG in the N400 time window, and finally in the left posterior inferior frontal gyrus (LpIFG) between 832 and 864 ms. Also, expected words elicited greater activation than unexpected words in the left anterior temporal lobe (LATL) between 192 and 256 ms. These results suggest that the early lexical-semantic retrieval reflected by the LpMTG activation is followed by two different semantic integration processes: a relatively rapid and transient integration in the LATL and a relatively slow but enduring integration in the LaIFG/LMFG and the LpMTG. The late activation in the LpIFG, however, may reflect cognitive control.

  3. Short-term effects of prosocial video games on aggression: an event-related potential study.

    PubMed

    Liu, Yanling; Teng, Zhaojun; Lan, Haiying; Zhang, Xin; Yao, Dezhong

    2015-01-01

    Previous research has shown that exposure to violent video games increases aggression, whereas exposure to prosocial video games can reduce aggressive behavior. However, little is known about the neural correlates of these behavioral effects. This work is the first to investigate the electrophysiological features of the relationship between playing a prosocial video game and inhibition of aggressive behavior. Forty-nine subjects played either a prosocial or a neutral video game for 20 min, then participated in an event-related potential (ERP) experiment based on an oddball paradigm and designed to test electrophysiological responses to prosocial and violent words. Finally, subjects completed a competitive reaction time task (CRTT) which based on Taylor's Aggression Paradigm and contains reaction time and noise intensity chosen as a measure of aggressive behavior. The results show that the prosocial video game group (compared to the neutral video game group) displayed smaller P300 amplitudes, were more accurate in distinguishing violent words, and were less aggressive as evaluated by the CRTT of noise intensity chosen. A mediation analysis shows that the P300 amplitude evoked by violent words partially mediates the relationship between type of video game and subsequent aggressive behavior. The results support theories based on the General Learning Model. We provide converging behavioral and neural evidence that exposure to prosocial media may reduce aggression. PMID:26257620

  4. Neural correlates of abstract rule learning: an event-related potential study.

    PubMed

    Sun, Fang; Hoshi-Shiba, Reiko; Abla, Dilshat; Okanoya, Kazuo

    2012-09-01

    Abstract rule learning is a fundamental aspect of human cognition, and is essential for language acquisition. However, despite its importance, the neural mechanisms underlying abstract rule learning are still largely unclear. In this study, we investigated the neural correlates of abstract rule learning by recording auditory event-related potentials (ERPs). Participants were first presented with artificial three-syllable sequences containing ABA or ABB abstract rules for learning. They were then tested on sequences of novel syllables following the ABA or ABB abstract rules, half of which were inconsistent with the rule previously learned. Grand-averaged ERPs revealed significant decreases in positivity at 200-260ms in response to consistent sequences during the earlier session of the test phase, and increased negativity at around 400ms in response to inconsistent sequences in the later session. The potentials exhibited a left anterior-dominant distribution. The appearance of the N400-like negativity in the later session suggests that temporal ERP changes occurred with the abstract rule learning process, and that the N400-like negativity is associated with the acquisition of abstract rules.

  5. Evidence for implicit self-positivity bias: an event-related brain potential study.

    PubMed

    Chen, Yun; Zhong, Yiping; Zhou, Haibo; Zhang, Shanming; Tan, Qianbao; Fan, Wei

    2014-03-01

    We investigated the processing of self-related information under the prime paradigm using event-related potentials (ERPs) to provide evidence for implicit self-positivity bias in Chinese individuals. Reaction times and ERPs were recorded when participants made positive/negative emotional judgments to personality-trait adjectives about themselves or others. Faster responses occurred to self-related positive adjectives and other-related negative adjectives, indicating implicit self-positivity bias at the behavioral level. ERPs showed an interaction between prime and emotion at the P300 amplitude, with larger P300 amplitudes for words within the self-positivity bias, indicating that self-related information occupied more attentional resources. Larger N400 amplitudes elicited by words that were inconsistent with the self-positivity bias, suggesting that accessing non-self-relevant information is more difficult than self-relevant information. Thus, P300 and N400 could be used as neuro-indexes of the implicit self-positivity bias.

  6. Human recognition memory and conflict control: An event-related potential study.

    PubMed

    Liu, T; Liu, X; Xiao, T; Shi, J

    2016-01-28

    The relationship between recognition memory and cognitive control is an important research topic. The current study investigated how conflict control influences an individual's emotional memory. During the encoding phase, participants were required to judge the affective valence of a Chinese Chengyu word (either positive or negative) in a modified Simon paradigm and to remember the word. Half of the words were presented in the congruent condition and the other half were displayed in the incongruent condition. During the retrieval phase, participants were instructed to make an 'old/new judgment' and decide whether the word had been presented previously. Electrophysiological responses were recorded using the event-related potential (ERP) technique. The behavioral results of retrieval processes showed that participants remembered more positive than negative words when they were encoded in the congruent condition. The electrophysiological results revealed that the retrieval of words encoded in the incongruent condition elicited less negative frontal negativity (FN) and early posterior negativity (EPN) amplitudes than those encoded in the congruent condition. The retrieval of words encoded in the incongruent condition induced greater late positive complex (LPC) amplitudes, relative to those encoded in the congruent condition on the left hemisphere. It was also observed that the recognition of positive words induced faster LPC responses than negative words when they were encoded in the incongruent condition. The present electrophysiological study illustrates that emotional memory processes may be affected by conflict control.

  7. Perspective taking modulates positivity bias in self-appraisals: behavioral and event-related potential evidence.

    PubMed

    Zhou, Aibao; Li, Shifeng; Herbert, Cornelia; Xia, Ruixue; Xu, Kepeng; Xu, Qiongying; Zhu, Jing; Ren, Deyun

    2013-01-01

    Previous studies have reported that when people self-reflect--they typically judge the self as more positive (or less negative) compared to others on a range of dimensions (such as health, social skills, or achievement). In the present study, we investigated whether viewing the self through the eyes of other people reduces this egocentric (self-centered) bias. Event-related brain potentials (ERPs) were examined in 17 subjects who performed judgments of adjectives in positive or negative valences from either self-perspective or other-perspective. Reaction times revealed an interaction between the factors perspective and emotional valence. Faster responses occurred after positive words in the self-perspective condition. A similar interaction was observed in the ERP waveforms in the time range of the N400 component: smaller N400 amplitudes were elicited by positive stimuli compared to negative stimuli in the self-perspective condition, but not in the other-perspective condition. Similarly, a reversed pattern was found in the late positive component (LPC) at 415-815 ms. The present study suggests that shifts in perspectives between self and others can change self-appraisal, which in turn reduces egocentric biases of the self. On a neural level, this modulation may be associated with an increase in self-monitoring processes. PMID:23802122

  8. Neurophysiological evidence for the country-of-origin effect: an event-related potential study.

    PubMed

    Min, Byoung-Kyong; Cho, Kwangsu; Sung, Jungyeon; Cho, Erin

    2014-03-01

    Consumers often rely on observable cues that hint at the hidden quality of a product. The aim of this study was to investigate brain activities associated with the country-of-origin (COO) effect and consumer evaluation of a product design. Electroencephalogram recordings were used to observe event-related brain potentials associated with the COO effect and design evaluation. We found that the frontocentral N90 and parieto-occipital P220 amplitudes are involved in forming preference to design, whereas the COO effect is processed in the centroparietal P500 amplitude. We also found a significant interaction effect between COO and design preference with regard to reaction times. Specifically, participants tended to spend more time making a preference decision when they did not like the product design made in a country with a favorable COO. These results imply that the two cognitive processes, evaluation of COO and formation of design preference, are activated independently at an early stage. It also suggests that these two processes interact with each other toward the end of the decision phase. Together, the results of this study provide neuropsychological evidence supporting a significant role of COO in the formation of design preference. Future studies are required to further delve into other neurophysiological activities associated with the COO effect.

  9. Effects of emotional intensity under perceptual load: An event-related potentials (ERPs) study.

    PubMed

    Müller-Bardorff, Miriam; Schulz, Claudia; Peterburs, Jutta; Bruchmann, Maximilian; Mothes-Lasch, Martin; Miltner, Wolfgang; Straube, Thomas

    2016-05-01

    Effects of emotional intensity and valence on visual event-related potentials (ERPs) are still poorly understood, in particular in the context of limited attentional resources. In the present EEG study, we investigated the effect of emotional intensity of different emotional facial expressions on P1, N170, early posterior negativity (EPN) and late positive potential (LPP) while varying the amount of available attentional resources. A new stimulus set comprising 90 full color pictures of neutral, happy (low, high intensity), and angry (low, high intensity) expressions was developed. These facial expressions were presented centrally, superimposed by two horizontal bars, and participants engaged in a focal bars task. Availability of attentional resources was varied in two conditions by manipulating the difficulty of the focal bars task (low vs. high perceptual load). Our findings demonstrate intensity and valence effects of task-irrelevant facial expressions on early (N170) and intermediate processing stages (EPN). In addition, task-related effects of perceptual load evolved at intermediate processing stages and were full blown in the time window of LPP. In line with limited resource accounts, valence effects on N170 and EPN were reduced under high perceptual load. Interestingly, apart from this valence by load interaction no further interactions between stimulus and task-driven factors were obtained: Effects of emotional intensity were not modulated by the perceptual load of the focal bars task, indicating that emotional intensity was processed even though attentional resources were heavily restricted.

  10. Detecting concealed information using feedback related event-related brain potentials.

    PubMed

    Sai, Liyang; Lin, Xiaohong; Hu, Xiaoqing; Fu, Genyue

    2014-10-01

    Employing an event-related potential (ERP)-based concealed information test (CIT), the present study investigated (1) the neurocognitive processes when people received feedbacks regarding their deceptive/truthful responses and (2) whether such feedback-related ERP activities can be used to detect concealed information above and beyond the recognition-related P300. During the CIT, participants were presented with rare, meaningful probes (their own names) embedded within a series of frequent yet meaningless irrelevants (others' names). Participants were instructed to deny their recognition of the probes. Critically, following participants' responses, they were provided with feedbacks regarding whether they succeeded or failed in the CIT. Replicating previous ERP-based CITs, we found a larger P300 elicited by probe compared to irrelevant. Regarding feedback-related ERPs, a temporospatial Principle Component Analyses found two ERP components that were not only sensitive to feedback manipulations but also can discriminate probe from irrelevant: an earlier, central-distributed positivity that was elicited by "success" feedbacks peaked around 219ms; and a later, right central-distributed positivity that was also elicited by "success" feedbacks, peaked around 400ms. Importantly, the feedback ERPs were not correlated with P300 that was elicited by probe/irrelevant, suggesting that these two ERPs reflect independent processes underlying memory concealment. These findings illustrate the feasibility and promise of using feedback-related ERPs to detect concealed memory and thus deception. PMID:25058495

  11. How Distance Affects Semantic Integration in Discourse: Evidence from Event-Related Potentials.

    PubMed

    Yang, Xiaohong; Chen, Shuang; Chen, Xuhai; Yang, Yufang

    2015-01-01

    Event-related potentials were used to investigate whether semantic integration in discourse is influenced by the number of intervening sentences between the endpoints of integration. Readers read discourses in which the last sentence contained a critical word that was either congruent or incongruent with the information introduced in the first sentence. Furthermore, for the short discourses, the first and last sentence were intervened by only one sentence while for the long discourses, they were intervened by three sentences. We found that the incongruent words elicited an N400 effect for both the short and long discourses. However, a P600 effect was only observed for the long discourses, but not for the short ones. These results suggest that although readers can successfully integrate upcoming words into the existing discourse representation, the effort required for this integration process is modulated by the number of intervening sentences. Thus, discourse distance as measured by the number of intervening sentences should be taken as an important factor for semantic integration in discourse.

  12. Distraction in a visual multi-deviant paradigm: behavioral and event-related potential effects.

    PubMed

    Grimm, Sabine; Bendixen, Alexandra; Deouell, Leon Y; Schröger, Erich

    2009-06-01

    The present study aimed at investigating visual distraction in a serial, multi-deviant oddball paradigm with deviant stimuli occurring regularly (every third trial), having a larger overall probability (1/3), and low dimension-specific probability (1/9). Participants performed a categorization task (odd/even) on centrally presented digits. Task-irrelevant geometrical forms were presented concurrently in the left and right periphery of the target. These forms were green triangles that, in every third trial, contained a deviancy either in location, color, or shape at the left or right peripheral position. Behavioral performance and event-related potentials (ERPs) were measured during the multi-deviant blocks and during corresponding control blocks to compensate for physical differences. Results revealed prolonged reaction times for the categorization task in trials containing a deviant feature relative to the respective control condition. Furthermore, two negative shifts were observed in the ERPs for deviant compared to control stimuli, the early one at the ascending part of the N1 component, and the later one at the onset latency of the N2 component. Deviant displays violating a sequential regularity on one of the dimensions thus elicit respective posterior ERP components of change detection and a deterioration in task performance even when they occur as frequently as in every third trial of a sequence. In analogy to findings in audition, these results reveal the importance of regularity processing and its immediate consequences for adaptive behavior also in vision.

  13. Short-term effects of prosocial video games on aggression: an event-related potential study.

    PubMed

    Liu, Yanling; Teng, Zhaojun; Lan, Haiying; Zhang, Xin; Yao, Dezhong

    2015-01-01

    Previous research has shown that exposure to violent video games increases aggression, whereas exposure to prosocial video games can reduce aggressive behavior. However, little is known about the neural correlates of these behavioral effects. This work is the first to investigate the electrophysiological features of the relationship between playing a prosocial video game and inhibition of aggressive behavior. Forty-nine subjects played either a prosocial or a neutral video game for 20 min, then participated in an event-related potential (ERP) experiment based on an oddball paradigm and designed to test electrophysiological responses to prosocial and violent words. Finally, subjects completed a competitive reaction time task (CRTT) which based on Taylor's Aggression Paradigm and contains reaction time and noise intensity chosen as a measure of aggressive behavior. The results show that the prosocial video game group (compared to the neutral video game group) displayed smaller P300 amplitudes, were more accurate in distinguishing violent words, and were less aggressive as evaluated by the CRTT of noise intensity chosen. A mediation analysis shows that the P300 amplitude evoked by violent words partially mediates the relationship between type of video game and subsequent aggressive behavior. The results support theories based on the General Learning Model. We provide converging behavioral and neural evidence that exposure to prosocial media may reduce aggression.

  14. Post-Decision Wagering Affects Metacognitive Awareness of Emotional Stimuli: An Event Related Potential Study

    PubMed Central

    Wierzchoń, Michał; Wronka, Eligiusz; Paulewicz, Borysław; Szczepanowski, Remigiusz

    2016-01-01

    The present research investigated metacognitive awareness of emotional stimuli and its psychophysiological correlates. We used a backward masking task presenting participants with fearful or neutral faces. We asked participants for face discrimination and then probed their metacognitive awareness with confidence rating (CR) and post-decision wagering (PDW) scales. We also analysed psychophysiological correlates of awareness with event-related potential (ERP) components: P1, N170, early posterior negativity (EPN), and P3. We have not observed any differences between PDW and CR conditions in the emotion identification task. However, the "aware" ratings were associated with increased accuracy performance. This effect was more pronounced in PDW, especially for fearful faces, suggesting that emotional stimuli awareness may be enhanced by monetary incentives. EEG analysis showed larger N170, EPN and P3 amplitudes in aware compared to unaware trials. It also appeared that both EPN and P3 ERP components were more pronounced in the PDW condition, especially when emotional faces were presented. Taken together, our ERP findings suggest that metacognitive awareness of emotional stimuli depends on the effectiveness of both early and late visual information processing. Our study also indicates that awareness of emotional stimuli can be enhanced by the motivation induced by wagering. PMID:27490816

  15. Neural Basis of Intrinsic Motivation: Evidence from Event-Related Potentials.

    PubMed

    Jin, Jia; Yu, Liping; Ma, Qingguo

    2015-01-01

    Human intrinsic motivation is of great importance in human behavior. However, although researchers have focused on this topic for decades, its neural basis was still unclear. The current study employed event-related potentials to investigate the neural disparity between an interesting stop-watch (SW) task and a boring watch-stop task (WS) to understand the neural mechanisms of intrinsic motivation. Our data showed that, in the cue priming stage, the cue of the SW task elicited smaller N2 amplitude than that of the WS task. Furthermore, in the outcome feedback stage, the outcome of the SW task induced smaller FRN amplitude and larger P300 amplitude than that of the WS task. These results suggested that human intrinsic motivation did exist and that it can be detected at the neural level. Furthermore, intrinsic motivation could be quantitatively indexed by the amplitude of ERP components, such as N2, FRN, and P300, in the cue priming stage or feedback stage. Quantitative measurements would also be convenient for intrinsic motivation to be added as a candidate social factor in the construction of a machine learning model. PMID:26491430

  16. Endogenous language control in Chinese-English switching: an event-related potentials study.

    PubMed

    Jin, Zhen-Lan; Zhang, Jin-Xiang; Li, Ling

    2014-06-01

    The neural basis of language switching, especially endogenous language control, remains largely unclear. We used a cue-stimulus paradigm and measured behavioral indices and scalp event-related potentials to investigate the endogenous control of switching between Chinese and English. In the experiment, unbalanced Chinese (L1) - English (L2) speakers named pictures in L1 or L2 according to an auditory cue presented 700 ms (cue-stimulus interval) before the picture onset. The reaction time (RT) was longer in the switch condition and the switch cost (difference of RTs between switch and repeat conditions) of L1 (L2→L1) was greater than L2 (L1→L2). P2 component elicited by the cue onset showed the neural switch cost of L1 at the frontocentral regions, with a leftward distribution, but not the switch cost of L2. The greater switch cost of L1 in behavioral responses and neural activity suggests that the frontocentral areas play an important role in endogenous language control, and switching back to the native language might require more endogenous control.

  17. Event-related potential correlates of language change detection in bilingual toddlers.

    PubMed

    Kuipers, Jan Rouke; Thierry, Guillaume

    2012-01-01

    Children raised in a bilingual environment are faced with the daunting task of learning to extract meaning from language input that can differ between caregivers but, depending on the social context, also within caregivers. Here, we investigated monolingual and bilingual toddlers' brain responses to an unexpected language change. We presented 2-3 year old children with picture-word pairs and occasionally changed the language of the spoken word while recording event-related potentials (ERPs). In line with previous results obtained in adults, bilingual children differentiated between the languages of input faster than their monolingual peers, i.e., within 200 ms of spoken word onset, a time range previously associated with lexical access. However, while adult bilinguals displayed a late stimulus re-evaluation ERP response to a language change, no such modulation was found in bilingual toddlers. These results suggest that although bilingual individuals are sensitive to phonemic language cues already from an early age, language awareness and language monitoring mechanisms probably develop later in life.

  18. Post-Decision Wagering Affects Metacognitive Awareness of Emotional Stimuli: An Event Related Potential Study.

    PubMed

    Wierzchoń, Michał; Wronka, Eligiusz; Paulewicz, Borysław; Szczepanowski, Remigiusz

    2016-01-01

    The present research investigated metacognitive awareness of emotional stimuli and its psychophysiological correlates. We used a backward masking task presenting participants with fearful or neutral faces. We asked participants for face discrimination and then probed their metacognitive awareness with confidence rating (CR) and post-decision wagering (PDW) scales. We also analysed psychophysiological correlates of awareness with event-related potential (ERP) components: P1, N170, early posterior negativity (EPN), and P3. We have not observed any differences between PDW and CR conditions in the emotion identification task. However, the "aware" ratings were associated with increased accuracy performance. This effect was more pronounced in PDW, especially for fearful faces, suggesting that emotional stimuli awareness may be enhanced by monetary incentives. EEG analysis showed larger N170, EPN and P3 amplitudes in aware compared to unaware trials. It also appeared that both EPN and P3 ERP components were more pronounced in the PDW condition, especially when emotional faces were presented. Taken together, our ERP findings suggest that metacognitive awareness of emotional stimuli depends on the effectiveness of both early and late visual information processing. Our study also indicates that awareness of emotional stimuli can be enhanced by the motivation induced by wagering. PMID:27490816

  19. Pharmacodynamic modelling of placebo and buprenorphine effects on event-related potentials in experimental pain.

    PubMed

    Juul, Rasmus V; Foster, David J R; Upton, Richard N; Andresen, Trine; Graversen, Carina; Drewes, Asbjørn M; Christrup, Lona L; Kreilgaard, Mads

    2014-10-01

    The purpose of the study was to investigate placebo and buprenorphine effects on event-related potentials (ERPs) in experimental pain and the potential benefit of population pharmacodynamic modelling in data analysis. Nineteen healthy volunteers received transdermal placebo and buprenorphine in a cross-over study. Drug plasma concentrations and ERPs after electrical stimulation at the median nerve with intensity adjusted to pain detection threshold were recorded until 144 hrs after administration. Placebo and concentration-effect models were fitted to data using non-linear mixed-effects modelling implemented in NONMEM (V7.2.0.). Pharmacodynamic models were developed to adequately describe both placebo and buprenorphine ERP data. Models predicted significant placebo effects, but did not predict significant effects related to buprenorphine concentration. Models revealed that ERPs varied both between subjects and between study occasions. ERPs were found to be reproducible within subjects and occasions as population variance was found to be eight times higher than the unexplained variances. Between-subject variance accounted for more than 75% of the population variance. In conclusion, pharmacodynamic modelling was successfully implemented to allow for placebo and variability correction in ERP of experimental pain. Improved outcome of ERP studies can be expected if variation between subjects and study occasions can be identified and described.

  20. Event-related potentials during word mapping to object shape predict toddlers' vocabulary size.

    PubMed

    Borgström, Kristina; Torkildsen, Janne von Koss; Lindgren, Magnus

    2015-01-01

    What role does attention to different object properties play in early vocabulary development? This longitudinal study using event-related potentials in combination with behavioral measures investigated 20- and 24-month-olds' (n = 38; n = 34; overlapping n = 24) ability to use object shape and object part information in word-object mapping. The N400 component was used to measure semantic priming by images containing shape or detail information. At 20 months, the N400 to words primed by object shape varied in topography and amplitude depending on vocabulary size, and these differences predicted productive vocabulary size at 24 months. At 24 months, when most of the children had vocabularies of several hundred words, the relation between vocabulary size and the N400 effect in a shape context was weaker. Detached object parts did not function as word primes regardless of age or vocabulary size, although the part-objects were identified behaviorally. The behavioral measure, however, also showed relatively poor recognition of the part-objects compared to the shape-objects. These three findings provide new support for the link between shape recognition and early vocabulary development.

  1. Event-related power modulations of brain activity preceding visually guided saccades.

    PubMed

    Brignani, Debora; Maioli, Claudio; Maria Rossini, Paolo; Miniussi, Carlo

    2007-03-01

    To analyze the characteristics of the event-related desynchronization (ERD) and synchronization (ERS) of cortical rhythms during the preparation and execution of a lateralized eye movement, EEG was recorded in normal subjects during a visually guided task. Alpha and beta bands were investigated in three temporal intervals: a sensory period, a delay period and a saccade preparation period time locked with saccade onset. Modulations of ERD/ERS power, coupled with the task, reached the largest amplitudes over the frontal and parieto-occipital regions. Differences of oscillatory activity in the alpha bands revealed an intriguing pattern of asymmetry in parieto-occipital areas. Rightward saccades induced a larger desynchronization with respect to the leftward saccades in the left hemisphere, but not in the right. If representative, these findings are congruent to the established right-hemisphere dominance of the brain areas that direct attention. Moreover differences between the two alpha types emerged in the frontal areas before and during the saccade preparation periods, indicative of differential engagement of these areas depending on the task demands. In conclusion, the present approach shows that planning eye movements is linked with covert orienting of spatial attention and may supply a useful method for studying eye movements and selective attention-related processes. PMID:17196943

  2. Cognitive control mechanisms revealed by ERP and fMRI: evidence from repeated task-switching.

    PubMed

    Swainson, R; Cunnington, R; Jackson, G M; Rorden, C; Peters, A M; Morris, P G; Jackson, S R

    2003-08-15

    We investigated the extent to which a common neural mechanism is involved in task set-switching and response withholding, factors that are frequently confounded in task-switching and go/no-go paradigms. Subjects' brain activity was measured using event-related electrical potentials (ERPs) and event-related functional MRI (fMRI) neuroimaging in separate studies using the same cognitive paradigm. Subjects made compatible left/right keypress responses to left/right arrow stimuli of 1000 msec duration; they switched every two trials between responding at stimulus onset (GO task-green arrows) and stimulus offset (WAIT task-red arrows). With-holding an immediate response (WAIT vs. GO) elicited an enhancement of the frontal N2 ERP and lateral PFC activation of the right hemisphere, both previously associated with the "no-go" response, but only on switch trials. Task-switching (switch vs. nonswitch) was associated with frontal N2 amplification and right hemisphere ventrolateral PFC activation, but only for the WAIT task. The anterior cingulate cortex (ACC) was the only brain region to be activated for both types of task switch, but this activation was located more rostrally for the WAIT than for the GO switch trials. We conclude that the frontal N2 ERP and lateral PFC activation are not markers for withholding an immediate response or switching tasks per se, but are associated with switching into a response-suppression mode. Different regions within the ACC may be involved in two processes integral to task-switching: processing response conflict (rostral ACC) and overcoming prior response suppression (caudal ACC).

  3. Functional Brain Activation Differences in Stuttering Identified with a Rapid fMRI Sequence

    ERIC Educational Resources Information Center

    Loucks, Torrey; Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.

    2011-01-01

    The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech…

  4. Task-Dependent Semantic Interference in Language Production: An fMRI Study

    ERIC Educational Resources Information Center

    Spalek, Katharina; Thompson-Schill, Sharon L.

    2008-01-01

    We used fMRI to investigate competition during language production in two word production tasks: object naming and color naming of achromatic line drawings. Generally, fMRI activation was higher for color naming. The line drawings were followed by a word (the distractor word) that referred to either the object, a related object, or an unrelated…

  5. Characterizing Response to Elemental Unit of Acoustic Imaging Noise: An fMRI Study

    PubMed Central

    Luh, Wen-Ming; Talavage, Thomas M.

    2010-01-01

    Acoustic imaging noise produced during functional magnetic resonance imaging (fMRI) studies can hinder auditory fMRI research analysis by altering the properties of the acquired time-series data. Acoustic imaging noise can be especially confounding when estimating the time course of the hemodynamic response (HDR) in auditory event-related fMRI (fMRI) experiments. This study is motivated by the desire to establish a baseline function that can serve not only as a comparison to other quantities of acoustic imaging noise for determining how detrimental is one's experimental noise, but also as a foundation for a model that compensates for the response to acoustic imaging noise. Therefore, the amplitude and spatial extent of the HDR to the elemental unit of acoustic imaging noise (i.e., a single ping) associated with echoplanar acquisition were characterized and modeled. Results from this fMRI study at 1.5 T indicate that the group-averaged HDR in left and right auditory cortex to acoustic imaging noise (duration of 46 ms) has an estimated peak magnitude of 0.29% (right) to 0.48% (left) signal change from baseline, peaks between 3 and 5 s after stimulus presentation, and returns to baseline and remains within the noise range approximately 8 s after stimulus presentation. PMID:19304477

  6. Voluntary Explicit versus Involuntary Conceptual Memory Are Associated with Dissociable fMRI Responses in Hippocampus, Amygdala, and Parietal Cortex for Emotional and Neutral Word Pairs

    ERIC Educational Resources Information Center

    Ramponi, Cristina; Barnard, Philip J.; Kherif, Ferath; Henson, Richard N.

    2011-01-01

    Although functional neuroimaging studies have supported the distinction between explicit and implicit forms of memory, few have matched explicit and implicit tests closely, and most of these tested perceptual rather than conceptual implicit memory. We compared event-related fMRI responses during an intentional test, in which a group of…

  7. Event-related functional magnetic resonance imaging: modelling, inference and optimization.

    PubMed Central

    Josephs, O; Henson, R N

    1999-01-01

    Event-related functional magnetic resonance imaging is a recent and popular technique for detecting haemodynamic responses to brief stimuli or events. However, the design of event-related experiments requires careful consideration of numerous issues of measurement, modelling and inference. Here we review these issues, with particular emphasis on the use of basis functions within a general linear modelling framework to model and make inferences about the haemodynamic response. With these models in mind, we then consider how the properties of functional magnetic resonance imaging data determine the optimal experimental design for a specific hypothesis, in terms of stimulus ordering and interstimulus interval. Finally, we illustrate various event-related models with examples from recent studies. PMID:10466147

  8. Optimized design and analysis of sparse-sampling FMRI experiments.

    PubMed

    Perrachione, Tyler K; Ghosh, Satrajit S

    2013-01-01

    Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase

  9. The influence of event-related knowledge on verb-argument processing in aphasia

    PubMed Central

    Dickey, Michael Walsh; Warren, Tessa

    2014-01-01

    Event-related conceptual knowledge outside the language system rapidly affects verb-argument processing in unimpaired adults (McRae & Matsuki, 2009). Some have argued that verb-argument processing is in fact reducible to the activation of such event-related knowledge. However, data favoring this conclusion have come primarily from college-aged healthy adults, for whom both linguistic and conceptual semantic processing is fast and automatic. This study examined the influence of event-related knowledge on verb-argument processing among adults with aphasia (n=8) and older unimpaired controls (n=60), in two self-paced reading studies. Participants read sentences containing a plausible verb-argument combination (Mary used a knife to chop the large carrots before dinner), a combination that violated event-related world knowledge (Mary used some bleach to clean the large carrots before dinner), or a combination that violated the verb’s selectional restrictions (Mary used a pump to inflate the large carrots before dinner). The participants with aphasia naturally split into two groups: Group 1 (n=4) had conceptual-semantic impairments (evidenced by poor performance on tasks like Pyramids & Palm Trees) but reasonably intact language processing (higher Western Aphasia Battery Aphasia Quotients), while Group 2 (n=4) had intact conceptual semantics but poorer language processing. Older unimpaired controls and aphasic Group 1 showed rapid on-line disruption for sentences with selectional-restriction violations (SRVs) and event-related knowledge violations, and also showed SRV-specific penalties in sentence-final acceptability judgments (Experiment 1) and comprehension questions (Experiment 2). In contrast, Group 2 showed very few reliable differences across conditions in either on-line or off-line measures. This difference between aphasic groups suggests that verb-related information and event-related knowledge may be dissociated in aphasia. Furthermore, it suggests that

  10. [Dynamics of Brain Activity during Voluntary Movement: fMRI Study].

    PubMed

    Sedov, A S; Devetiarov, D A; Semenova, U N; Zavyalova, V V; Ushakov, V L; Medvednik, R S; Ublinsky, M V; Akhadov, T A; Semenova, N A

    2015-01-01

    The use of event-related fMRI makes it possible to investigate spatio-temporal dynamics of cortical and subcortical human brain structures activity during voluntary movement performance in response to presentation of relevant verbal stimuli. The results of the study showed that voluntary movement was associated with higher contralateral brain activation in a number of areas: primary motor and somatosensory cortex, premotor cortex, supplementary motor area and insula with adjacent regions. Ipsilateral activation of the cerebellum also was observed. It should be emphasized that contralateral strio-pallidal complex and ventral thalamus showed significant response to motor tasks. Similarly, the dynamics of cortex and deep brain structures activation involving in the phasic and tonic components of voluntary movement was uncovered. We showed, in particular, the noticeable difference in brain activation between the right and left hand movement performance. The obtained results enable to enhance understanding of the role of deep brain structures in voluntary movement organization in human and motor control system as a whole. PMID:26601503

  11. Neural substrates of figurative language during natural speech perception: an fMRI study

    PubMed Central

    Nagels, Arne; Kauschke, Christina; Schrauf, Judith; Whitney, Carin; Straube, Benjamin; Kircher, Tilo

    2013-01-01

    Many figurative expressions are fully conventionalized in everyday speech. Regarding the neural basis of figurative language processing, research has predominantly focused on metaphoric expressions in minimal semantic context. It remains unclear in how far metaphoric expressions during continuous text comprehension activate similar neural networks as isolated metaphors. We therefore investigated the processing of similes (figurative language, e.g., “He smokes like a chimney!”) occurring in a short story. Sixteen healthy, male, native German speakers listened to similes that came about naturally in a short story, while blood-oxygenation-level-dependent (BOLD) responses were measured with functional magnetic resonance imaging (fMRI). For the event-related analysis, similes were contrasted with non-figurative control sentences (CS). The stimuli differed with respect to figurativeness, while they were matched for frequency of words, number of syllables, plausibility, and comprehensibility. Similes contrasted with CS resulted in enhanced BOLD responses in the left inferior (IFG) and adjacent middle frontal gyrus. Concrete CS as compared to similes activated the bilateral middle temporal gyri as well as the right precuneus and the left middle frontal gyrus (LMFG). Activation of the left IFG for similes in a short story is consistent with results on single sentence metaphor processing. The findings strengthen the importance of the left inferior frontal region in the processing of abstract figurative speech during continuous, ecologically-valid speech comprehension; the processing of concrete semantic contents goes along with a down-regulation of bilateral temporal regions. PMID:24065897

  12. Event-related potential correlates of the serial position effect in short-term memory.

    PubMed

    Patterson, J V; Pratt, H; Starr, A

    1991-06-01

    Event-related potential (ERP) correlates of the serial position effect in short-term memory were investigated using a memory scanning task. Nine normal young adults (18-39 years) indicated whether a probe item was a member of a previously presented 5-item memory set by pressing 1 of 2 reaction-time buttons. Three types of stimuli were used: verbal digits presented both auditorily and visually, and musical notes presented auditorily. The ERPs to the probes were separately averaged according to the serial position of the probe (1, 2, 3, 4 or 5) in the memory set. The ERPs to the memory set items in positions 1, 3 and 5 also were separately averaged. Both baseline-to-peak and average amplitudes of a late positive parietal potential to the probes were larger to probe items presented in the last position in the memory set than to probes presented in the middle positions (2, 3 and 4), showing a significant recency effect, but only for auditory digits. Reaction time reflected significant recency effects for both auditory digits and notes, but not for visual digits. Response accuracy (percent correct) showed a significant recency effect only for notes. For each stimulus type, both the baseline-to-peak and average amplitudes of a late frontal component to the memory set items became more negative (in the case of the visual digits, less positive) in the third and last serial position of the memory set compared to the first. These findings provide electrophysiological evidence of serial position effects in short-term memory, which, during memory scanning, are dependent on stimulus modality (auditory, visual) and type (verbal, non-verbal).

  13. Event-Related Potential Study of Executive Dysfunctions in a Speeded Reaction Task in Cocaine Addiction

    PubMed Central

    Sokhadze, Estate; Stewart, Christopher; Hollifield, Michael; Tasman, Allan

    2009-01-01

    This study used a flanker task with NoGo elements to investigate frontal executive function deficits in 19 cocaine abusers. The executive functions of interest in this study were cortical inhibition or ability to withhold motor response, the ability to select an appropriate response among several competing ones, the ability to inhibit inappropriate responses, and the ability to detect error and exercise corrective control. These processes were evaluated with specific frontal and parietal event-related potentials (ERP) registered during performance on this speeded reaction time task with conflicting motor response demands. Specifically we used behavioral response measures, stimulus-locked anterior (frontal N200, N450) ERP markers of conflict detection, response inhibition (NoGo-N2 and NoGo-P3), and response-locked error-related negativity (ERN) that represent different time points of signal classification, motor response conflict detection, response inhibition, and error monitoring processes. The results revealed that the higher-level executive motor control attributed to the prefrontal cortex is hypoactive in cocaine abusers, and therefore is incapable to effectively resolve response conflicts arising between the competing motor response alternatives. It was also demonstrated that the mesial frontal structures, such as the anterior cingulate cortex, implicated in motor response conflict detection and error monitoring functions were also compromised in addicts. It is reasonable to propose that a ‘hypofunctional’ prefrontal and midfrontal processing results in a diminished ability to effectively override strong habitual automated response tendencies controlled by the lower-level neural mechanisms triggered by the external stimuli. The results propose a neurobiological basis for the understanding why cocaine abusers are facing difficulties in controlling their drug-seeking and drug-taking behaviors, and why their drug-related habitual behavior is so vulnerable to

  14. Reward Promotes Self-Face Processing: An Event-Related Potential Study

    PubMed Central

    Zhan, Youlong; Chen, Jie; Xiao, Xiao; Li, Jin; Yang, Zilu; Fan, Wei; Zhong, Yiping

    2016-01-01

    The present study adopted a reward-priming paradigm to investigate whether and how monetary reward cues affected self-face processing. Event-related potentials were recorded during judgments of head orientation of target faces (self, friend, and stranger), with performance associated with a monetary reward. The results showed self-faces elicited larger N2 mean amplitudes than other-faces, and mean N2 amplitudes increased after monetary reward as compared with no reward cue. Moreover, an interaction effect between cue type and face type was observed for the P3 component, suggesting that both self-faces and friend-faces elicited larger P3 mean amplitudes than stranger-faces after no reward cue, with no significant difference between self-faces and friend-faces under this condition. However, self-faces elicited larger P3 mean amplitudes than friend-faces when monetary reward cues were provided. Interestingly, the enhancement of reward on friend-faces processing was observed at late positive potentials (LPP; 450–600 ms), suggesting that the LPP difference between friend-faces and stranger-faces was enhanced with monetary reward cues. Thus, we found that the enhancement effect of reward on self-relevant processing occurred at the later stages, but not at the early stage. These findings suggest that the activation of the reward expectations can enhance self-face processing, yielding a robust and sustained modulation over their overlapped brain areas where reward and self-relevant processing mechanisms may operate together. PMID:27242637

  15. Cognitive impairment correlates to low auditory event-related potential amplitudes in type 1 diabetes.

    PubMed

    Cooray, Gerald K; Maurex, Liselotte; Brismar, Tom

    2008-08-01

    Type 1 diabetes may be associated with a mild decline in cognitive function and mostly in mental speed. In order to study the pathophysiology of this, we have investigated auditory event-related potentials (AERP) and their relation to cognitive function in diabetes patients. AERP was recorded in patients with type 1 diabetes (n=119) and in a healthy control group (n=61). AERP was obtained with an odd-ball and a two-stimulus paradigm. Cognitive function was evaluated in 10 domains in the patients. Patients had normal N100 latency, but a highly significant decrease in auditory N100 amplitude (p<10(-6)), which correlated with a decrease in psychomotor speed but not with function in other domains. Psychomotor speed also correlated with P300 amplitude, although P300 amplitude was only slightly decreased in the patients. Even stronger correlations were found with the parietal N100-P300 peak-to-peak amplitude, which correlated both to psychomotor speed (rho=0.61, p<10(-7)) and processing speed (p<0.005). P300 latency was increased in patients, and this correlated to low global cognitive score and older age. We conclude that the decline in psychomotor speed in type 1 diabetes is associated with a highly significant decrease in the auditory N100 peak amplitude. This association and the relatively small abnormality in P300 latency is quite different from those generally found in dementia, and suggest that the underlying defect is located in the brain stem or the white matter. Presumably small conduction defects in ascending fibers can distort the firing synchrony necessary for signal generation in the cortex. PMID:18650025

  16. Extending or creating a new brand: evidence from a study on event-related potentials.

    PubMed

    Jin, Jia; Wang, Cuicui; Yu, Liping; Ma, Qingguo

    2015-07-01

    Brand strategy is a critical problem in new product promotion. In relation to this, producers typically have two main options, namely, brand extension and new brand creation. The current study investigated the neural basis of evaluating these brand strategies at the brain level by using event-related potentials. The experiment used a word-pair paradigm, in which the first word was either a famous beverage brand name or a newly created brand, and the second word was a product name from one of the two product categories (beverage or household appliance). Therefore, four conditions existed as follows: a famous beverage brand paired with a beverage product (BB) or with a household appliance (BH) and a newly created brand paired with a beverage product (NB) or with a household appliance (NH). Behavioral results showed that brand extension obtained a higher acceptance rate than new brand creation under the beverage product category; however, a lower acceptance rate was observed under the household appliance category. Moreover, at the brain level, BB elicited lower N400 mean amplitude than the new brand product NB, whereas BH led to higher N400 amplitude than the new brand product NH. These results showed that the likelihood of accepting a product depended on the association between the brand name and product name, and that the N400 could serve as an index of brand strategy evaluation. In addition, this study also confirmed that brand extension is not always the best brand strategy; an inappropriate extension sometimes performed worse than the creation of a new brand.

  17. Examining Event-Related Potential (ERP) Correlates of Decision Bias in Recognition Memory Judgments

    PubMed Central

    Hill, Holger; Windmann, Sabine

    2014-01-01

    Memory judgments can be based on accurate memory information or on decision bias (the tendency to report that an event is part of episodic memory when one is in fact unsure). Event related potentials (ERP) correlates are important research tools for elucidating the dynamics underlying memory judgments but so far have been established only for investigations of accurate old/new discrimination. To identify the ERP correlates of bias, and observe how these interact with ERP correlates of memory, we conducted three experiments that manipulated decision bias within participants via instructions during recognition memory tests while their ERPs were recorded. In Experiment 1, the bias manipulation was performed between blocks of trials (automatized bias) and compared to trial-by-trial shifts of bias in accord with an external cue (flexibly controlled bias). In Experiment 2, the bias manipulation was performed at two different levels of accurate old/new discrimination as the memory strength of old (studied) items was varied. In Experiment 3, the bias manipulation was added to another, bottom-up driven manipulation of bias induced via familiarity. In the first two Experiments, and in the low familiarity condition of Experiment 3, we found evidence of an early frontocentral ERP component at 320 ms poststimulus (the FN320) that was sensitive to the manipulation of bias via instruction, with more negative amplitudes indexing more liberal bias. By contrast, later during the trial (500–700 ms poststimulus), bias effects interacted with old/new effects across all three experiments. Results suggest that the decision criterion is typically activated early during recognition memory trials, and is integrated with retrieved memory signals and task-specific processing demands later during the trial. More generally, the findings demonstrate how ERPs can help to specify the dynamics of recognition memory processes under top-down and bottom-up controlled retrieval conditions. PMID

  18. Effects of Sound Frequency on Audiovisual Integration: An Event-Related Potential Study.

    PubMed

    Yang, Weiping; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Ren, Yanna; Takahashi, Satoshi; Wu, Jinglong

    2015-01-01

    A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190-210 ms, for 1 kHz stimuli from 170-200 ms, for 2.5 kHz stimuli from 140-200 ms, 5 kHz stimuli from 100-200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300-340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies.

  19. Proficiency Differences in Syntactic Processing of Monolingual Native Speakers Indexed by Event-related Potentials

    PubMed Central

    Pakulak, Eric; Neville, Helen J.

    2010-01-01

    While anecdotally there appear to be differences in the way native speakers use and comprehend their native language, most empirical investigations of language processing study university students and none have studied differences in language proficiency which may be independent of resource limitations such as working memory span. We examined differences in language proficiency in adult monolingual native speakers of English using an event-related potential (ERP) paradigm. ERPs were recorded to insertion phrase structure violations in naturally spoken English sentences. Participants recruited from a wide spectrum of society were given standardized measures of English language proficiency, and two complementary ERP analyses were performed. In between-groups analyses, participants were divided, based on standardized proficiency scores, into Lower Proficiency (LP) and Higher Proficiency (HP) groups. Compared to LP participants, HP participants showed an early anterior negativity that was more focal, both spatially and temporally, and a larger and more widely distributed positivity (P600) to violations. In correlational analyses, we utilized a wide spectrum of proficiency scores to examine the degree to which individual proficiency scores correlated with individual neural responses to syntactic violations in regions and time windows identified in the between-group analyses. This approach also employed partial correlation analyses to control for possible confounding variables. These analyses provided evidence for the effects of proficiency that converged with the between-groups analyses. These results suggest that adult monolingual native speakers of English who vary in language proficiency differ in the recruitment of syntactic processes that are hypothesized to be at least in part automatic as well as of those thought to be more controlled. These results also suggest that in order to fully characterize neural organization for language in native speakers it is

  20. Does cigarette smoking relieve stress? Evidence from the event-related potential (ERP).

    PubMed

    Choi, Damee; Ota, Shotaro; Watanuki, Shigeki

    2015-12-01

    Previous studies have reported a paradox that cigarette smoking reduces stress psychologically; however, it increases the arousal level physiologically. To examine this issue, our study aimed to investigate whether cigarette smoking relieves stress by measuring the late positive potential (LPP), a component of the event-related potential (ERP). In Experiment 1, participants first watched emotionally neutral images; second, they received a break; and finally, they watched emotionally neutral images again. In the break, they smoked a cigarette (smoking condition) or simply rested without smoking (non-smoking condition). The procedure of Experiment 2 was the same as that of Experiment 1, except that the participants watched unpleasant images as stress stimuli before the break. In Experiment 1, the LPP decreased from before to after the break in the smoking condition, but not in the non-smoking condition, suggesting that smoking cigarettes in the neutral state reduces the arousal level. In Experiment 2, the LPP for 400-600 ms decreased from before to after the break, both in the smoking and non-smoking conditions; however, the LPP for 200-400 ms decreased from before to after the break only in the smoking condition. This suggests the possibility that cigarette smoking in the unpleasant state may facilitate a decrease in the arousal level faster than with non-smoking. In both Experiments 1 and 2, the subjective rating results also suggested that cigarette smoking decreased anxiety. Taken together, both the physiological (LPP) and the psychological responses from our study suggest that cigarette smoking perhaps relieves stress.

  1. Mind wandering and retrieval from episodic memory: a pilot event-related potential study.

    PubMed

    Riby, Leigh Martin; Smallwood, Jonathan; Gunn, Valerie P

    2008-06-01

    The present study investigated the effects of mind wandering (task-unrelated thought) on the subcomponents of episodic memory as reflected by event-related potentials (ERPs). Specifically, individual differences in the pattern of ERP episodic 'old/new' effects (left-parietal, right-frontal and central-negativity effects) were examined across groups of participants experiencing either high or low frequencies of task-unrelated thought during encoding. Twenty participants studied lists of words and line drawings in one of two contexts (red versus green coloured boxes). At test, participants discriminated between target (old words or line drawings presented in one colour) and nontargets (old items from the other colour and new items). On completion of the memory task, participants completed the 'thinking' component of the Dundee Stress State Questionnaire to provide a retrospective measure of task-unrelated thought. Behavioural data indicated that irrespective of the presence of task-unrelated thought, participants were able to complete the memory task equally well. However, an analysis of ERPs across High and Low task-unrelated thought groups revealed differences in retrieval strategy. Those individuals with infrequent episodes of task-unrelated thought at study used a 'pure' recollection strategy (left-parietal effect only). Conversely, those participants experiencing frequent episodes of task-unrelated thought were unable to recollect the stimuli with ease, as indexed by a diminished parietal effect. As a consequence, these participants employed additional strategic processes for task completion, as indexed by an elevated amplitude of central negativity effects. These data are consistent with the decoupling hypothesis of mind wandering which suggests impaired recollection when attention becomes directed away from the task.

  2. Auditory stream segregation using bandpass noises: evidence from event-related potentials.

    PubMed

    Nie, Yingjiu; Zhang, Yang; Nelson, Peggy B

    2014-01-01

    The current study measured neural responses to investigate auditory stream segregation of noise stimuli with or without clear spectral contrast. Sequences of alternating A and B noise bursts were presented to elicit stream segregation in normal-hearing listeners. The successive B bursts in each sequence maintained an equal amount of temporal separation with manipulations introduced on the last stimulus. The last B burst was either delayed for 50% of the sequences or not delayed for the other 50%. The A bursts were jittered in between every two adjacent B bursts. To study the effects of spectral separation on streaming, the A and B bursts were further manipulated by using either bandpass-filtered noises widely spaced in center frequency or broadband noises. Event-related potentials (ERPs) to the last B bursts were analyzed to compare the neural responses to the delay vs. no-delay trials in both passive and attentive listening conditions. In the passive listening condition, a trend for a possible late mismatch negativity (MMN) or late discriminative negativity (LDN) response was observed only when the A and B bursts were spectrally separate, suggesting that spectral separation in the A and B burst sequences could be conducive to stream segregation at the pre-attentive level. In the attentive condition, a P300 response was consistently elicited regardless of whether there was spectral separation between the A and B bursts, indicating the facilitative role of voluntary attention in stream segregation. The results suggest that reliable ERP measures can be used as indirect indicators for auditory stream segregation in conditions of weak spectral contrast. These findings have important implications for cochlear implant (CI) studies-as spectral information available through a CI device or simulation is substantially degraded, it may require more attention to achieve stream segregation. PMID:25309306

  3. Anticipation of electric shocks modulates low beta power and event-related fields during memory encoding.

    PubMed

    Bauch, Eva M; Bunzeck, Nico

    2015-09-01

    In humans, the temporal and oscillatory dynamics of pain anticipation and its effects on long-term memory are largely unknown. Here, we investigated this open question by using a previously established behavioral paradigm in combination with magnetoencephalography (MEG). Healthy human subjects encoded a series of scene images, which was combined with cues predicting an aversive electric shock with different probabilities (0.2, 0.5 or 0.8). After encoding, memory for the studied images was tested using a remember/know recognition task. Behaviorally, pain anticipation did not modulate recollection-based recognition memory per se, but interacted with the perceived unpleasantness of the electric shock [visual analogue scale rating from 1 (not unpleasant) to 10 (highly unpleasant)]. More precisely, the relationship between pain anticipation and recollection followed an inverted u-shaped function the more unpleasant the shocks were rated by a subject. At the physiological level, this quadratic effect was mimicked in the event-related magnetic fields associated with successful memory formation ('DM-effect') ∼450ms after image onset at left frontal sensors. Importantly, across all subjects, shock anticipation modulated oscillatory power in the low beta frequency range (13-20Hz) in a linear fashion at left temporal sensors. Taken together, our findings indicate that beta oscillations provide a generic mechanism underlying pain anticipation; the effect on subsequent long-term memory, on the other hand, is much more variable and depends on the level of individual pain perception. As such, our findings give new and important insights into how aversive motivational states can drive memory formation.

  4. Distinct Features of Auditory Steady-State Responses as Compared to Transient Event-Related Potentials

    PubMed Central

    Zhang, Li; Peng, Weiwei; Zhang, Zhiguo; Hu, Li

    2013-01-01

    Transient event-related potentials (ERPs) and steady-state responses (SSRs) have been popularly employed to investigate the function of the human brain, but their relationship still remains a matter of debate. Some researchers believed that SSRs could be explained by the linear summation of successive transient ERPs (superposition hypothesis), while others believed that SSRs were the result of the entrainment of a neural rhythm driven by the periodic repetition of a sensory stimulus (oscillatory entrainment hypothesis). In the present study, taking auditory modality as an example, we aimed to clarify the distinct features of SSRs, evoked by the 40-Hz and 60-Hz periodic auditory stimulation, as compared to transient ERPs, evoked by a single click. We observed that (1) SSRs were mainly generated by phase synchronization, while late latency responses (LLRs) in transient ERPs were mainly generated by power enhancement; (2) scalp topographies of LLRs in transient ERPs were markedly different from those of SSRs; (3) the powers of both 40-Hz and 60-Hz SSRs were significantly correlated, while they were not significantly correlated with the N1 power in transient ERPs; (4) whereas SSRs were dominantly modulated by stimulus intensity, middle latency responses (MLRs) were not significantly modulated by both stimulus intensity and subjective loudness judgment, and LLRs were significantly modulated by subjective loudness judgment even within the same stimulus intensity. All these findings indicated that high-frequency SSRs were different from both MLRs and LLRs in transient ERPs, thus supporting the possibility of oscillatory entrainment hypothesis to the generation of SSRs. Therefore, SSRs could be used to explore distinct neural responses as compared to transient ERPs, and help us reveal novel and reliable neural mechanisms of the human brain. PMID:23874901

  5. Who Are the True Fans? Evidence from an Event-Related Potential Study

    PubMed Central

    Ma, Qingguo; Jin, Jia; Yuan, Ruixian; Zhang, Wuke

    2015-01-01

    Fans of celebrities commonly exist in modern society. Researchers from social science have been concerned with this problem for years. Furthermore, such researchers have attempted to measure people’s involvement with celebrities in various ways. However, no study measured the degree of addiction to a specific celebrity at the neurological level. Therefore, the current study employed visually evoked event related potentials (ERPs) to examine people’s attitude toward celebrities by comparing different brain activities of fans and non-fans when they were shown a set of photos. These photos include a specific celebrity, a familiar person, a stranger and a butterfly. Furthermore, to examine the validity of the detected neural index, we also investigated the correlation between brain activity and the score of the Celebrity Attitude Scale (CAS), which was a questionnaire used to explore people’s attitude toward celebrities at behavioral level. Two groups of subjects were asked to complete an implicit task, i.e., to press a button when a picture of a butterfly appeared. Results revealed that fans showed significant positive N2 and P300 deflection when viewing the photos of their favorite celebrity, whereas in the non-fan group, the subjects only showed larger P300 amplitude as a response to the celebrity’s photos. Furthermore, a positive correlation between P300 amplitude elicited by the stimuli of a celebrity face and CAS scores was also observed. These findings indicated fan attitude to a specific celebrity can also be observed at the neurological level and suggested the potential utility of using ERP component as an index of fandom involvement. PMID:26057891

  6. Who Are the True Fans? Evidence from an Event-Related Potential Study.

    PubMed

    Ma, Qingguo; Jin, Jia; Yuan, Ruixian; Zhang, Wuke

    2015-01-01

    Fans of celebrities commonly exist in modern society. Researchers from social science have been concerned with this problem for years. Furthermore, such researchers have attempted to measure people's involvement with celebrities in various ways. However, no study measured the degree of addiction to a specific celebrity at the neurological level. Therefore, the current study employed visually evoked event related potentials (ERPs) to examine people's attitude toward celebrities by comparing different brain activities of fans and non-fans when they were shown a set of photos. These photos include a specific celebrity, a familiar person, a stranger and a butterfly. Furthermore, to examine the validity of the detected neural index, we also investigated the correlation between brain activity and the score of the Celebrity Attitude Scale (CAS), which was a questionnaire used to explore people's attitude toward celebrities at behavioral level. Two groups of subjects were asked to complete an implicit task, i.e., to press a button when a picture of a butterfly appeared. Results revealed that fans showed significant positive N2 and P300 deflection when viewing the photos of their favorite celebrity, whereas in the non-fan group, the subjects only showed larger P300 amplitude as a response to the celebrity's photos. Furthermore, a positive correlation between P300 amplitude elicited by the stimuli of a celebrity face and CAS scores was also observed. These findings indicated fan attitude to a specific celebrity can also be observed at the neurological level and suggested the potential utility of using ERP component as an index of fandom involvement.

  7. Attention bias in earthquake-exposed survivors: an event-related potential study.

    PubMed

    Zhang, Yan; Kong, Fanchang; Han, Li; Najam Ul Hasan, Abbasi; Chen, Hong

    2014-12-01

    The Chinese Wenchuan earthquake, which happened on the 28th of May in 2008, may leave deep invisible scars in individuals. China has a large number of children and adolescents, who tend to be most vulnerable because they are in an early stage of human development and possible post-traumatic psychological distress may have a life-long consequence. Trauma survivors without post-traumatic stress disorder (PTSD) have received little attention in previous studies, especially in event-related potential (ERP) studies. We compared the attention bias to threat stimuli between the earthquake-exposed group and the control group in a masked version of the dot probe task. The target probe presented at the same space location consistent with earthquake-related words was the congruent trial, while in the space location of neutral words was the incongruent trial. Thirteen earthquake-exposed middle school students without PTSD and 13 matched controls were included in this investigation. The earthquake-exposed group showed significantly faster RTs to congruent trials than to incongruent trials. The earthquake-exposed group produced significantly shorter C1 and P1 latencies and larger C1, P1 and P2 amplitudes than the control group. In particular, enhanced P1 amplitude to threat stimuli was observed in the earthquake-exposed group. These findings are in agreement with the prediction that earthquake-exposed survivors have an attention bias to threat stimuli. The traumatic event had a much greater effect on earthquake-exposed survivors even if they showed no PTSD symptoms than individuals in the controls. These results will provide neurobiological evidences for effective intervention and prevention to post-traumatic mental problems.

  8. Effects of Sound Frequency on Audiovisual Integration: An Event-Related Potential Study.

    PubMed

    Yang, Weiping; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Ren, Yanna; Takahashi, Satoshi; Wu, Jinglong

    2015-01-01

    A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190-210 ms, for 1 kHz stimuli from 170-200 ms, for 2.5 kHz stimuli from 140-200 ms, 5 kHz stimuli from 100-200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300-340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies. PMID:26384256

  9. Error processing and response inhibition in excessive computer game players: an event-related potential study.

    PubMed

    Littel, Marianne; van den Berg, Ivo; Luijten, Maartje; van Rooij, Antonius J; Keemink, Lianne; Franken, Ingmar H A

    2012-09-01

    Excessive computer gaming has recently been proposed as a possible pathological illness. However, research on this topic is still in its infancy and underlying neurobiological mechanisms have not yet been identified. The determination of underlying mechanisms of excessive gaming might be useful for the identification of those at risk, a better understanding of the behavior and the development of interventions. Excessive gaming has been often compared with pathological gambling and substance use disorder. Both disorders are characterized by high levels of impulsivity, which incorporates deficits in error processing and response inhibition. The present study aimed to investigate error processing and response inhibition in excessive gamers and controls using a Go/NoGo paradigm combined with event-related potential recordings. Results indicated that excessive gamers show reduced error-related negativity amplitudes in response to incorrect trials relative to correct trials, implying poor error processing in this population. Furthermore, excessive gamers display higher levels of self-reported impulsivity as well as more impulsive responding as reflected by less behavioral inhibition on the Go/NoGo task. The present study indicates that excessive gaming partly parallels impulse control and substance use disorders regarding impulsivity measured on the self-reported, behavioral and electrophysiological level. Although the present study does not allow drawing firm conclusions on causality, it might be that trait impulsivity, poor error processing and diminished behavioral response inhibition underlie the excessive gaming patterns observed in certain individuals. They might be less sensitive to negative consequences of gaming and therefore continue their behavior despite adverse consequences.

  10. Strategic retrieval and retrieval orientation in reality monitoring studied by event-related potentials (ERPs).

    PubMed

    Rosburg, Timm; Johansson, Mikael; Mecklinger, Axel

    2013-02-01

    Reality monitoring requires the differentiation between perceived and imagined events or between our own actions and the actions of others. The role of control processes in reality monitoring is yet not fully understood. In the current event-related potential (ERP) study, we investigated such control processes in the form of retrieval orientation and strategic retrieval of nontarget information. At study, complete or incomplete object words were presented in sentences. Participants had to identify the words as the subject of the sentence (perceive condition) or had to complete them upon presentation of a word fragment (self-generate condition). The participants' memory accuracy was better for generated items than for perceived items, as tested in a subsequent memory exclusion task. Comparison of ERPs to new items between the two test conditions (i.e. assessing retrieval orientation) showed more positive ERPs when generated object names were targeted. Retrieval orientation also modulated the early midfrontal old/new effect: Items of the self-generate condition elicited this effect irrespective of their target/nontarget status, while in response to the less well remembered items of the perceive condition it was only found when these items were defined as targets. Target retrieval (as reflected in the left-parietal old/new effect) occurred in both test conditions, but nontarget retrieval was observed only for generated items (when perceived items were targeted). Current findings indicate that retrieval orientation can modulate familiarity-related processes. The selective occurrence of nontarget retrieval for generated items corroborates the concept that the ease with which nontarget information can be accessed promotes nontarget retrieval.

  11. Fluid Intelligence and Automatic Neural Processes in Facial Expression Perception: An Event-Related Potential Study.

    PubMed

    Liu, Tongran; Xiao, Tong; Li, Xiaoyan; Shi, Jiannong

    2015-01-01

    The relationship between human fluid intelligence and social-emotional abilities has been a topic of considerable interest. The current study investigated whether adolescents with different intellectual levels had different automatic neural processing of facial expressions. Two groups of adolescent males were enrolled: a high IQ group and an average IQ group. Age and parental socioeconomic status were matched between the two groups. Participants counted the numbers of the central cross changes while paired facial expressions were presented bilaterally in an oddball paradigm. There were two experimental conditions: a happy condition, in which neutral expressions were standard stimuli (p = 0.8) and happy expressions were deviant stimuli (p = 0.2), and a fearful condition, in which neutral expressions were standard stimuli (p = 0.8) and fearful expressions were deviant stimuli (p = 0.2). Participants were required to concentrate on the primary task of counting the central cross changes and to ignore the expressions to ensure that facial expression processing was automatic. Event-related potentials (ERPs) were obtained during the tasks. The visual mismatch negativity (vMMN) components were analyzed to index the automatic neural processing of facial expressions. For the early vMMN (50-130 ms), the high IQ group showed more negative vMMN amplitudes than the average IQ group in the happy condition. For the late vMMN (320-450 ms), the high IQ group had greater vMMN responses than the average IQ group over frontal and occipito-temporal areas in the fearful condition, and the average IQ group evoked larger vMMN amplitudes than the high IQ group over occipito-temporal areas in the happy condition. The present study elucidated the close relationships between fluid intelligence and pre-attentive change detection on social-emotional information. PMID:26375031

  12. Disturbances of Agency and Ownership in Schizophrenia: An Auditory Verbal Event Related Potentials Study.

    PubMed

    Bühler, Tim; Kindler, Jochen; Schneider, Rahel C; Strik, Werner; Dierks, Thomas; Hubl, Daniela; Koenig, Thomas

    2016-09-01

    A 'sense of self' is essentially the ability to distinguish between self-generated and external stimuli. It consists of at least two very basic senses: a sense of agency and a sense of ownership. Disturbances seem to provide a basic deficit in many psychiatric diseases. The aim of our study was to manipulate those qualities separately in 28 patients with schizophrenia (14 auditory hallucinators and 14 non-hallucinators) and 28 healthy controls (HC) and to investigate the effects on the topographies and the power of the event-related potential (ERP). We performed a 76-channel EEG while the participants performed the task as in our previous paper. We computed ERPs and difference maps for the conditions and compared the amount of agency and ownership between the HC and the patients. Furthermore, we compared the global field power and the topographies of these effects. Our data showed effects of agency and ownership in the healthy controls and the hallucinator group and to a lesser degree in the non-hallucinator group. We found a reduction of the N100 during the presence of agency, and a bilateral temporal negativity related to the presence of ownership. For the agency effects, we found significant differences between HC and the patients. Contrary to the expectations, our findings were more pronounced in non-hallucinators, suggesting a more profoundly disturbed sense of agency compared to hallucinators. A contemporary increase of global field power in both patient groups indicates a compensatory recruitment of other mechanisms not normally associated with the processing of agency and ownership. PMID:27209172

  13. Event-related potentials elicited by pre-attentive emotional changes in temporal context.

    PubMed

    Fujimura, Tomomi; Okanoya, Kazuo

    2013-01-01

    The ability to detect emotional change in the environment is essential for adaptive behavior. The current study investigated whether event-related potentials (ERPs) can reflect emotional change in a visual sequence. To assess pre-attentive processing, we examined visual mismatch negativity (vMMN): the negative potentials elicited by a deviant (infrequent) stimulus embedded in a sequence of standard (frequent) stimuli. Participants in two experiments pre-attentively viewed visual sequences of Japanese kanji with different emotional connotations while ERPs were recorded. The visual sequence in Experiment 1 consisted of neutral standards and two types of emotional deviants with a strong and weak intensity. Although the results indicated that strongly emotional deviants elicited more occipital negativity than neutral standards, it was unclear whether these negativities were derived from emotional deviation in the sequence or from the emotional significance of the deviants themselves. In Experiment 2, the two identical emotional deviants were presented against different emotional standards. One type of deviants was emotionally incongruent with the standard and the other type of deviants was emotionally congruent with the standard. The results indicated that occipital negativities elicited by deviants resulted from perceptual changes in a visual sequence at a latency of 100-200 ms and from emotional changes at latencies of 200-260 ms. Contrary to the results of the ERP experiment, reaction times to deviants showed no effect of emotional context; negative stimuli were consistently detected more rapidly than were positive stimuli. Taken together, the results suggest that brain signals can reflect emotional change in a temporal context. PMID:23671693

  14. Who Are the True Fans? Evidence from an Event-Related Potential Study.

    PubMed

    Ma, Qingguo; Jin, Jia; Yuan, Ruixian; Zhang, Wuke

    2015-01-01

    Fans of celebrities commonly exist in modern society. Researchers from social science have been concerned with this problem for years. Furthermore, such researchers have attempted to measure people's involvement with celebrities in various ways. However, no study measured the degree of addiction to a specific celebrity at the neurological level. Therefore, the current study employed visually evoked event related potentials (ERPs) to examine people's attitude toward celebrities by comparing different brain activities of fans and non-fans when they were shown a set of photos. These photos include a specific celebrity, a familiar person, a stranger and a butterfly. Furthermore, to examine the validity of the detected neural index, we also investigated the correlation between brain activity and the score of the Celebrity Attitude Scale (CAS), which was a questionnaire used to explore people's attitude toward celebrities at behavioral level. Two groups of subjects were asked to complete an implicit task, i.e., to press a button when a picture of a butterfly appeared. Results revealed that fans showed significant positive N2 and P300 deflection when viewing the photos of their favorite celebrity, whereas in the non-fan group, the subjects only showed larger P300 amplitude as a response to the celebrity's photos. Furthermore, a positive correlation between P300 amplitude elicited by the stimuli of a celebrity face and CAS scores was also observed. These findings indicated fan attitude to a specific celebrity can also be observed at the neurological level and suggested the potential utility of using ERP component as an index of fandom involvement. PMID:26057891

  15. Identification of a novel dynamic red blindness in human by event-related brain potentials.

    PubMed

    Zhang, Jiahua; Kong, Weijia; Yang, Zhongle

    2010-12-01

    Dynamic color is an important carrier that takes information in some special occupations. However, up to the present, there are no available and objective tests to evaluate dynamic color processing. To investigate the characteristics of dynamic color processing, we adopted two patterns of visual stimulus called "onset-offset" which reflected static color stimuli and "sustained moving" without abrupt mode which reflected dynamic color stimuli to evoke event-related brain potentials (ERPs) in primary color amblyopia patients (abnormal group) and subjects with normal color recognition ability (normal group). ERPs were recorded by Neuroscan system. The results showed that in the normal group, ERPs in response to the dynamic red stimulus showed frontal positive amplitudes with a latency of about 180 ms, a negative peak at about 240 ms and a peak latency of the late positive potential (LPP) in a time window between 290 and 580 ms. In the abnormal group, ERPs in response to the dynamic red stimulus were fully lost and characterized by vanished amplitudes between 0 and 800 ms. No significant difference was noted in ERPs in response to the dynamic green and blue stimulus between the two groups (P>0.05). ERPs of the two groups in response to the static red, green and blue stimulus were not much different, showing a transient negative peak at about 170 ms and a peak latency of LPP in a time window between 350 and 650 ms. Our results first revealed that some subjects who were not identified as color blindness under static color recognition could not completely apperceive a sort of dynamic red stimulus by ERPs, which was called "dynamic red blindness". Furthermore, these results also indicated that low-frequency ERPs induced by "sustained moving" may be a good and new method to test dynamic color perception competence.

  16. Event-Related Potential Effects of Object Repetition Depend on Attention and Part-Whole Configuration

    PubMed Central

    Gosling, Angela; Thoma, Volker; de Fockert, Jan W.; Richardson-Klavehn, Alan

    2016-01-01

    The effects of spatial attention and part-whole configuration on recognition of repeated objects were investigated with behavioral and event-related potential (ERP) measures. Short-term repetition effects were measured for probe objects as a function of whether a preceding prime object was shown as an intact image or coarsely scrambled (split into two halves) and whether or not it had been attended during the prime display. In line with previous behavioral experiments, priming effects were observed from both intact and split primes for attended objects, but only from intact (repeated same-view) objects when they were unattended. These behavioral results were reflected in ERP waveforms at occipital–temporal locations as more negative-going deflections for repeated items in the time window between 220 and 300 ms after probe onset (N250r). Attended intact images showed generally more enhanced repetition effects than split ones. Unattended images showed repetition effects only when presented in an intact configuration, and this finding was limited to the right-hemisphere electrodes. Repetition effects in earlier (before 200 ms) time windows were limited to attended conditions at occipito-temporal sites during the N1, a component linked to the encoding of object structure, while repetition effects at central locations during the same time window (P150) were found for attended and unattended probes but only when repeated in the same intact configuration. The data indicate that view-generalization is mediated by a combination of analytic (part-based) representations and automatic view-dependent representations. PMID:27721749

  17. Using event related potentials to identify a user's behavioural intention aroused by product form design.

    PubMed

    Ding, Yi; Guo, Fu; Zhang, Xuefeng; Qu, Qingxing; Liu, Weilin

    2016-07-01

    The capacity of product form to arouse user's behavioural intention plays a decisive role in further user experience, even in purchase decision, while traditional methods rarely give a fully understanding of user experience evoked by product form, especially the feeling of anticipated use of product. Behavioural intention aroused by product form designs has not yet been investigated electrophysiologically. Hence event related potentials (ERPs) were applied to explore the process of behavioural intention when users browsed different smart phone form designs with brand and price not taken into account for mainly studying the brain activity evoked by variety of product forms. Smart phone pictures with different anticipated user experience were displayed with equiprobability randomly. Participants were asked to click the left mouse button when certain picture gave them a feeling of behavioural intention to interact with. The brain signal of each participant was recorded by Curry 7.0. The results show that pictures with an ability to arouse participants' behavioural intention for further experience can evoke enhanced N300 and LPPs (late positive potentials) in central-parietal, parietal and occipital regions. The scalp topography shows that central-parietal, parietal and occipital regions are more activated. The results indicate that the discrepancy of ERPs can reflect the neural activities of behavioural intention formed or not. Moreover, amplitude of ERPs occurred in corresponding brain areas can be used to measure user experience. The exploring of neural correlated with behavioural intention provide an accurate measurement method of user's perception and help marketers to know which product can arouse users' behavioural intention, maybe taken as an evaluating indicator of product design. PMID:26995041

  18. Automatic Temporal Expectancy: A High-Density Event-Related Potential Study

    PubMed Central

    Mento, Giovanni; Tarantino, Vincenza; Sarlo, Michela; Bisiacchi, Patrizia Silvia

    2013-01-01

    How we compute time is not fully understood. Questions include whether an automatic brain mechanism is engaged in temporally regular environmental structure in order to anticipate events, and whether this can be dissociated from task-related processes, including response preparation, selection and execution. To investigate these issues, a passive temporal oddball task requiring neither time-based motor response nor explicit decision was specifically designed and delivered to participants during high-density, event-related potentials recording. Participants were presented with pairs of audiovisual stimuli (S1 and S2) interspersed with an Inter-Stimulus Interval (ISI) that was manipulated according to an oddball probabilistic distribution. In the standard condition (70% of trials), the ISI lasted 1,500 ms, while in the two alternative, deviant conditions (15% each), it lasted 2,500 and 3,000 ms. The passive over-exposition to the standard ISI drove participants to automatically and progressively create an implicit temporal expectation of S2 onset, reflected by the time course of the Contingent Negative Variation response, which always peaked in correspondence to the point of S2 maximum expectation and afterwards inverted in polarity towards the baseline. Brain source analysis of S1- and ISI-related ERP activity revealed activation of sensorial cortical areas and the supplementary motor area (SMA), respectively. In particular, since the SMA time course synchronised with standard ISI, we suggest that this area is the major cortical generator of the temporal CNV reflecting an automatic, action-independent mechanism underlying temporal expectancy. PMID:23650537

  19. Using concurrent EEG and fMRI to probe the state of the brain in schizophrenia.

    PubMed

    Ford, Judith M; Roach, Brian J; Palzes, Vanessa A; Mathalon, Daniel H

    2016-01-01

    Perceptional abnormalities in schizophrenia are associated with hallucinations and delusions, but also with negative symptoms and poor functional outcome. Perception can be studied using EEG-derived event related potentials (ERPs). Because of their excellent temporal resolution, ERPs have been used to ask when perception is affected by schizophrenia. Because of its excellent spatial resolution, functional magnetic resonance imaging (fMRI) has been used to ask where in the brain these effects are seen. We acquired EEG and fMRI data simultaneously to explore when and where auditory perception is affected by schizophrenia. Thirty schizophrenia (SZ) patients and 23 healthy comparison subjects (HC) listened to 1000 Hz tones occurring about every second. We used joint independent components analysis (jICA) to combine EEG-based event-related potential (ERP) and fMRI responses to tones. Five ERP-fMRI joint independent components (JIC) were extracted. The "N100" JIC had temporal weights during N100 (peaking at 100 ms post-tone onset) and fMRI spatial weights in superior and middle temporal gyri (STG/MTG); however, it did not differ between groups. The "P200" JIC had temporal weights during P200 and positive fMRI spatial weights in STG/MTG and frontal areas, and negative spatial weights in the nodes of the default mode network (DMN) and visual cortex. Groups differed on the "P200" JIC: SZ had smaller "P200" JIC, especially those with more severe avolition/apathy. This is consistent with negative symptoms being related to perceptual deficits, and suggests patients with avolition/apathy may allocate too few resources to processing external auditory events and too many to processing internal events. PMID:27622140

  20. Resting-state fMRI confounds and cleanup.

    PubMed

    Murphy, Kevin; Birn, Rasmus M; Bandettini, Peter A

    2013-10-15

    The goal of resting-state functional magnetic resonance imaging (fMRI) is to investigate the brain's functional connections by using the temporal similarity between blood oxygenation level dependent (BOLD) signals in different regions of the brain "at rest" as an indicator of synchronous neural activity. Since this measure relies on the temporal correlation of fMRI signal changes between different parts of the brain, any non-neural activity-related process that affects the signals will influence the measure of functional connectivity, yielding spurious results. To understand the sources of these resting-state fMRI confounds, this article describes the origins of the BOLD signal in terms of MR physics and cerebral physiology. Potential confounds arising from motion, cardiac and respiratory cycles, arterial CO₂ concentration, blood pressure/cerebral autoregulation, and vasomotion are discussed. Two classes of techniques to remove confounds from resting-state BOLD time series are reviewed: 1) those utilising external recordings of physiology and 2) data-based cleanup methods that only use the resting-state fMRI data itself. Further methods that remove noise from functional connectivity measures at a group level are also discussed. For successful interpretation of resting-state fMRI comparisons and results, noise cleanup is an often over-looked but essential step in the analysis pipeline.

  1. Visual Attention to Global and Local Stimulus Properties in 6-Month-Old Infants: Individual Differences and Event-Related Potentials

    ERIC Educational Resources Information Center

    Guy, Maggie W.; Reynolds, Greg D.; Zhang, Dantong

    2013-01-01

    Event-related potentials (ERPs) were utilized in an investigation of 21 six-month-olds' attention to and processing of global and local properties of hierarchical patterns. Overall, infants demonstrated an advantage for processing the overall configuration (i.e., global properties) of local features of hierarchical patterns; however,…

  2. The Phonotactic Influence on the Perception of a Consonant Cluster /pt/ by Native English and Native Polish Listeners: A Behavioral and Event Related Potential (ERP) Study

    ERIC Educational Resources Information Center

    Wagner, Monica; Shafer, Valerie L.; Martin, Brett; Steinschneider, Mitchell

    2012-01-01

    The effect of exposure to the contextual features of the /pt/ cluster was investigated in native-English and native-Polish listeners using behavioral and event-related potential (ERP) methodology. Both groups experience the /pt/ cluster in their languages, but only the Polish group experiences the cluster in the context of word onset examined in…

  3. Effects of breast milk and milk formula on synthesized speech sound-induced event-related potentials at 3 and 6 months of age

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of breast milk and milk formula supplemented with docosahexaenoic acid and arachidonic acid on speech processing were investigated by recording event-related potentials (ERPs) to synthesized /pa/ and /ba/ (oddball paradigm, 80%:20%) at 3 and 6 months of age. Behavioral assessment was also ob...

  4. How Children Process Over-Regularizations: Evidence from Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Clahsen, Harald; Luck, Monika; Hahne, Anja

    2007-01-01

    This study examines the mental processes involved in children's on-line recognition of inflected word forms using event-related potentials (ERPs). Sixty children in three age groups (20 six- to seven-year-olds, 20 eight- to nine-year-olds, 20 eleven- to twelve-year-olds) and 23 adults (tested in a previous study) listened to sentences containing…

  5. The Influence of Contour Fragmentation on Recognition Memory: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Brodeur, Mathieu B.; Debruille, J. Bruno; Renoult, Louis; Prevost, Marie; Dionne-Dostie, Emmanuelle; Buchy, Lisa; Lepage, Martin

    2011-01-01

    The present study was carried out to examine how the event-related potentials to fragmentation predict recognition success. Stimuli were abstract meaningless figures that were either complete or fragmented to various extents but still recoverable. Stimuli were first encoded as part of a symmetry discrimination task. In a subsequent recognition…

  6. Do U Txt? Event-Related Potentials to Semantic Anomalies in Standard and Texted English

    ERIC Educational Resources Information Center

    Berger, Natalie I.; Coch, Donna

    2010-01-01

    Texted English is a hybrid, technology-based language derived from standard English modified to facilitate ease of communication via instant and text messaging. We compared semantic processing of texted and standard English sentences by recording event-related potentials in a classic semantic incongruity paradigm designed to elicit an N400 effect.…

  7. Conceptual Integration of Arithmetic Operations with Real-World Knowledge: Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Guthormsen, Amy M.; Fisher, Kristie J.; Bassok, Miriam; Osterhout, Lee; DeWolf, Melissa; Holyoak, Keith J.

    2016-01-01

    Research on language processing has shown that the disruption of conceptual integration gives rise to specific patterns of event-related brain potentials (ERPs)--N400 and P600 effects. Here, we report similar ERP effects when adults performed cross-domain conceptual integration of analogous semantic and mathematical relations. In a problem-solving…

  8. Perception of Long-Distance Coarticulation: An Event-Related Potential and Behavioral Study

    ERIC Educational Resources Information Center

    Grosvald, Michael; Corina, David

    2012-01-01

    In this study we explore listeners' sensitivity to vowel to vowel (VV) coarticulation, using both event-related potential (ERP) and behavioral methodologies. The stimuli used were vowels "colored" by the coarticulatory influence of other vowels across one, three or five intervening segments. The paradigm used in the ERP portion of the study was…

  9. Use of Event-Related Potentials in the Study of Typical and Atypical Development

    ERIC Educational Resources Information Center

    Nelson, Charles A., III; McCleery, Joseph P.

    2008-01-01

    Event-related potential is a kind of neuroimaging tool which can be used in the study of neurodevelopment. Two areas of atypical development, children diagnosed with autism and children experiencing early psychosocial neglect, have benefited from ERPs. The physiological basis of ERPs and the constraints on their applications are also discussed.

  10. Contingent Attentional Capture by Top-Down Control Settings: Converging Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Lien, Mei-Ching; Ruthruff, Eric; Goodin, Zachary; Remington, Roger W.

    2008-01-01

    Theories of attentional control are divided over whether the capture of spatial attention depends primarily on stimulus salience or is contingent on attentional control settings induced by task demands. The authors addressed this issue using the N2-posterior-contralateral (N2pc) effect, a component of the event-related brain potential thought to…

  11. Mental Rotation of Mirrored Letters: Evidence from Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Nunez-Pena, M. Isabel; Aznar-Casanova, J. Antonio

    2009-01-01

    Event-related brain potentials (ERPs) were recorded while participants (n=13) were presented with mirrored and normal letters at different orientations and were asked to make mirror-normal letter discriminations. As it has been suggested that a mental rotation out of the plane might be necessary to decide on mirrored letters, we wanted to…

  12. Dissociation of Event-Related Potentials Indexing Arousal and Semantic Cohesion During Emotional Word Encoding

    ERIC Educational Resources Information Center

    Dillon, Daniel G.; Cooper, Julie J.; Grent-'t-Jong, Tineke; Woldorff, Marty G.; LaBar, Kevin S.

    2006-01-01

    Event-related potential (ERP) studies have shown that emotional stimuli elicit greater amplitude late positive-polarity potentials (LPPs) than neutral stimuli. This effect has been attributed to arousal, but emotional stimuli are also more semantically coherent than uncategorized neutral stimuli. ERPs were recorded during encoding of positive,…

  13. Localizing Cortical Sources of Event-Related Potentials in Infants' Covert Orienting

    ERIC Educational Resources Information Center

    Richards, John E.

    2005-01-01

    This study used cortical source analysis to locate potential cortical sources of event-related potentials (ERPs) during covert orienting in infants aged 14 and 20 weeks. The infants were tested in a spatial cueing procedure. The reaction time to localize the target showed response facilitation for valid trials relative to invalid or neutral…

  14. Does Discourse Congruence Influence Spoken Language Comprehension before Lexical Association? Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Boudewyn, Megan A.; Gordon, Peter C.; Long, Debra; Polse, Lara; Swaab, Tamara Y.

    2012-01-01

    The goal of this study was to examine how lexical association and discourse congruence affect the time course of processing incoming words in spoken discourse. In an event-related potential (ERP) norming study, we presented prime-target pairs in the absence of a sentence context to obtain a baseline measure of lexical priming. We observed a…

  15. Temporal Dynamics of Late Second Language Acquisition: Evidence from Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Steinhauer, Karsten; White, Erin J.; Drury, John E.

    2009-01-01

    The ways in which age of acquisition (AoA) may affect (morpho)syntax in second language acquisition (SLA) are discussed. We suggest that event-related brain potentials (ERPs) provide an appropriate online measure to test some such effects. ERP findings of the past decade are reviewed with a focus on recent and ongoing research. It is concluded…

  16. Anaphoric Reference to Quantified Antecedents: An Event-Related Brain Potential Study

    ERIC Educational Resources Information Center

    Filik, Ruth; Leuthold, Hartmut; Moxey, Linda M.; Sanford, Anthony J.

    2011-01-01

    We report an event-related brain potential (ERP) study examining how readers process sentences containing anaphoric reference to quantified antecedents. Previous studies indicate that positive (e.g. "many") and negative (e.g. "not many") quantifiers cause readers to focus on different sets of entities. For example in "Many of the fans attended the…

  17. P3 Event-Related Potentials and Childhood Maltreatment in Successful and Unsuccessful Psychopaths

    ERIC Educational Resources Information Center

    Gao, Yu; Raine, Adrian; Schug, Robert A.

    2011-01-01

    Although P3 event-related potential abnormalities have been found in psychopathic individuals, it is unknown whether successful (uncaught) psychopaths and unsuccessful (caught) psychopaths show similar deficits. In this study, P3 amplitude and latency were assessed from a community sample of 121 male adults using an auditory three-stimulus oddball…

  18. Electrophysiological (Event-Related Potentials) Indices of Cognitive Processing in Autistic Learners.

    ERIC Educational Resources Information Center

    Shibley, Ralph, Jr.; And Others

    Event-related Potentials (ERPs) were recorded to both auditory and visual stimuli from the scalps of nine autistic males and nine normal controls (all Ss between 12 and 22 years of age) to examine the differences in information processing strategies. Ss were tested on three different tasks: an auditory missing stimulus paradigm, a visual color…

  19. 12 CFR 620.17 - Special notice provisions for events related to minimum permanent capital.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 7 2014-01-01 2014-01-01 false Special notice provisions for events related to... SYSTEM DISCLOSURE TO SHAREHOLDERS Notice to Shareholders § 620.17 Special notice provisions for events... any event(s) that may have significantly contributed to the institution's noncompliance with...

  20. Event-Related Potential Indicators of Text Integration across Sentence Boundaries

    ERIC Educational Resources Information Center

    Yang, Chin Lung; Perfetti, Charles A.; Schmalhofer, Franz

    2007-01-01

    An event-related potentials (ERPs) study examined word-to-text integration processes across sentence boundaries. In a two-sentence passage, the accessibility of a referent for the first content word of the second sentence (the target word) was varied by the wording of the first sentence in one of the following ways: lexically (explicitly using…

  1. Event-Related EEG Oscillations to Semantically Unrelated Words in Normal and Learning Disabled Children

    ERIC Educational Resources Information Center

    Fernandez, Thalia; Harmony, Thalia; Mendoza, Omar; Lopez-Alanis, Paula; Marroquin, Jose Luis; Otero, Gloria; Ricardo-Garcell, Josefina

    2012-01-01

    Learning disabilities (LD) are one of the most frequent problems for elementary school-aged children. In this paper, event-related EEG oscillations to semantically related and unrelated pairs of words were studied in a group of 18 children with LD not otherwise specified (LD-NOS) and in 16 children with normal academic achievement. We propose that…

  2. Predicting Reading Growth with Event-Related Potentials: Thinking Differently about Indexing "Responsiveness"

    ERIC Educational Resources Information Center

    Lemons, Christopher J.; Key, Alexandra P. F.; Fuchs, Douglas; Yoder, Paul J.; Fuchs, Lynn S.; Compton, Donald L.; Williams, Susan M.; Bouton, Bobette

    2010-01-01

    The purpose of this study was to determine if event-related potential (ERP) data collected during three reading-related tasks (Letter Sound Matching, Nonword Rhyming, and Nonword Reading) could be used to predict short-term reading growth on a curriculum-based measure of word identification fluency over 19 weeks in a sample of 29 first-grade…

  3. EEGIFT: Group Independent Component Analysis for Event-Related EEG Data

    PubMed Central

    Eichele, Tom; Rachakonda, Srinivas; Brakedal, Brage; Eikeland, Rune; Calhoun, Vince D.

    2011-01-01

    Independent component analysis (ICA) is a powerful method for source separation and has been used for decomposition of EEG, MRI, and concurrent EEG-fMRI data. ICA is not naturally suited to draw group inferences since it is a non-trivial problem to identify and order components across individuals. One solution to this problem is to create aggregate data containing observations from all subjects, estimate a single set of components and then back-reconstruct this in the individual data. Here, we describe such a group-level temporal ICA model for event related EEG. When used for EEG time series analysis, the accuracy of component detection and back-reconstruction with a group model is dependent on the degree of intra- and interindividual time and phase-locking of event related EEG processes. We illustrate this dependency in a group analysis of hybrid data consisting of three simulated event-related sources with varying degrees of latency jitter and variable topographies. Reconstruction accuracy was tested for temporal jitter 1, 2 and 3 times the FWHM of the sources for a number of algorithms. The results indicate that group ICA is adequate for decomposition of single trials with physiological jitter, and reconstructs event related sources with high accuracy. PMID:21747835

  4. Pitch Discrimination without Awareness in Congenital Amusia: Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Moreau, Patricia; Jolicoeur, Pierre; Peretz, Isabelle

    2013-01-01

    Congenital amusia is a lifelong disorder characterized by a difficulty in perceiving and producing music despite normal intelligence and hearing. Behavioral data have indicated that it originates from a deficit in fine-grained pitch discrimination, and is expressed by the absence of a P3b event-related brain response for pitch differences smaller…

  5. Attentional Mechanisms in Sports via Brain-Electrical Event-Related Potentials

    ERIC Educational Resources Information Center

    Hack, Johannes; Memmert, Daniel; Rup, Andre

    2009-01-01

    In this study, we examined attention processes in complex, sport-specific decision-making tasks without interdependencies from anticipation. Psychophysiological and performance data recorded from advanced and intermediate level basketball referees were compared. Event-related potentials obtained while judging game situations in foul recognition…

  6. Two Languages, One Developing Brain: Event-Related Potentials to Words in Bilingual Toddlers

    ERIC Educational Resources Information Center

    Conboy, Barbara T.; Mills, Debra L.

    2006-01-01

    Infant bilingualism offers a unique opportunity to study the relative effects of language experience and maturation on brain development, with each child serving as his or her own control. Event-related potentials (ERPs) to words were examined in 19- to 22-month-old English-Spanish bilingual toddlers. The children's dominant vs. nondominant…

  7. Children's Performance on Pseudoword Repetition Depends on Auditory Trace Quality: Evidence from Event-Related Potentials.

    ERIC Educational Resources Information Center

    Ceponiene, Rita; Service, Elisabet; Kurjenluoma, Sanna; Cheour, Marie; Naatanen, Risto

    1999-01-01

    Compared the mismatch-negativity (MMN) component of auditory event-related brain potentials to explore the relationship between phonological short-term memory and auditory-sensory processing in 7- to 9-year olds scoring the highest and lowest on a pseudoword repetition test. Found that high and low repeaters differed in MMN amplitude to speech…

  8. Reasoning with Linear Orders: Differential Parietal Cortex Activation in Sub-Clinical Depression. An fMRI Investigation in Sub-Clinical Depression and Controls

    PubMed Central

    Hinton, Elanor C.; Wise, Richard G.; Singh, Krish D.; von Hecker, Ulrich

    2015-01-01

    The capacity to learn new information and manipulate it for efficient retrieval has long been studied through reasoning paradigms, which also has applicability to the study of social behavior. Humans can learn about the linear order within groups using reasoning, and the success of such reasoning may vary according to affective state, such as depression. We investigated the neural basis of these latter findings using functional neuroimaging. Using BDI-II criteria, 14 non-depressed (ND) and 12 mildly depressed volunteers took part in a linear-order reasoning task during functional magnetic resonance imaging. The hippocampus, parietal, and prefrontal cortices were activated during the task, in accordance with previous studies. In the learning phase and in the test phase, greater activation of the parietal cortex was found in the depressed group, which may be a compensatory mechanism in order to reach the same behavioral performance as the ND group, or evidence for a different reasoning strategy in the depressed group. PMID:25646078

  9. A novel image analysis method based on Bayesian segmentation for event-related functional MRI

    NASA Astrophysics Data System (ADS)

    Huang, Lejian; Comer, Mary L.; Talavage, Thomas M.

    2008-02-01

    This paper presents the application of the expectation-maximization/maximization of the posterior marginals (EM/MPM) algorithm to signal detection for functional MRI (fMRI). On basis of assumptions for fMRI 3-D image data, a novel analysis method is proposed and applied to synthetic data and human brain data. Synthetic data analysis is conducted using two statistical noise models (white and autoregressive of order 1) and, for low contrast-to-noise ratio (CNR) data, reveals better sensitivity and specificity for the new method than for the traditional General Linear Model (GLM) approach. When applied to human brain data, functional activation regions are found to be consistent with those obtained using the GLM approach.

  10. Longitudinal fMRI analysis: A review of methods

    PubMed Central

    Skup, Martha

    2010-01-01

    Functional magnetic resonance imaging (fMRI) investigations of a longitudinal nature, where participants are scanned repeatedly over time and imaging data are obtained at more than one time-point, are essential to understanding functional changes and development in healthy and pathological brains. The main objective of this paper is to provide a brief summary of common longitudinal analysis approaches, develop an overview of fMRI by introducing how such data manifest, and explore the statistical challenges that arise at the intersection of these two techniques. PMID:21691445

  11. Longitudinal fMRI analysis: A review of methods

    PubMed Central

    Skup, Martha

    2011-01-01

    Functional magnetic resonance imaging (fMRI) investigations of a longitudinal nature, where participants are scanned repeatedly over time and imaging data are obtained at more than one time-point, are essential to understanding functional changes and development in healthy and pathological brains. The main objective of this paper is to provide a brief summary of common longitudinal analysis approaches, develop an overview of fMRI by introducing how such data manifest, and explore the statistical challenges that arise at the intersection of these two techniques. PMID:22655113

  12. Using fMRI to Test Models of Complex Cognition

    ERIC Educational Resources Information Center

    Anderson, John R.; Carter, Cameron S.; Fincham, Jon M.; Qin, Yulin; Ravizza, Susan M.; Rosenberg-Lee, Miriam

    2008-01-01

    This article investigates the potential of fMRI to test assumptions about different components in models of complex cognitive tasks. If the components of a model can be associated with specific brain regions, one can make predictions for the temporal course of the BOLD response in these regions. An event-locked procedure is described for dealing…

  13. Biological Computation Indexes of Brain Oscillations in Unattended Facial Expression Processing Based on Event-Related Synchronization/Desynchronization

    PubMed Central

    Ma, Lin; Li, Haifeng; Zhao, Lun; Bo, Hongjian; Wang, Xunda

    2016-01-01

    Estimation of human emotions from Electroencephalogram (EEG) signals plays a vital role in affective Brain Computer Interface (BCI). The present study investigated the different event-related synchronization (ERS) and event-related desynchronization (ERD) of typical brain oscillations in processing Facial Expressions under nonattentional condition. The results show that the lower-frequency bands are mainly used to update Facial Expressions and distinguish the deviant stimuli from the standard ones, whereas the higher-frequency bands are relevant to automatically processing different Facial Expressions. Accordingly, we set up the relations between each brain oscillation and processing unattended Facial Expressions by the measures of ERD and ERS. This research first reveals the contributions of each frequency band for comprehension of Facial Expressions in preattentive stage. It also evidences that participants have emotional experience under nonattentional condition. Therefore, the user's emotional state under nonattentional condition can be recognized in real time by the ERD/ERS computation indexes of different frequency bands of brain oscillations, which can be used in affective BCI to provide the user with more natural and friendly ways. PMID:27471545

  14. Ageing affects event-related potentials and brain oscillations: a behavioral and electrophysiological study using a haptic recognition memory task.

    PubMed

    Sebastián, Manuel; Reales, José M; Ballesteros, Soledad

    2011-12-01

    In this electrophysiological study, we investigated the effects of ageing on recognition memory for three-dimensional (3D) familiar objects presented to touch in a continuous paradigm. To examine changes in event-related potentials (ERPs) and brain oscillations, we recorded the EEGs of healthy groups of young (n=14; mean age=32.3 years) and older adults (n=14; mean age=65.1). Both age groups exhibited similar accuracy and exploration times when making old-new judgments. Young and older participants showed a marginally significant ERP old/new effect widely distributed over the scalp between 550-750 ms. In addition, the elders showed lower amplitude than younger participants within 1200-1500 ms. There were age-related differences in brain oscillations as measured by event-related spectral perturbation (ERSP). Older adults showed greater alpha and beta power reductions than young participants, suggesting the recruitment of additional neural resources. In contrast, the two age groups showed a reliable old/new effect in the theta band that temporarily overlapped the ERP old/new effect. The present results suggest that despite similar behavioral performance, the young and older adults recruited different neural resources to perform a haptic recognition task. PMID:22027172

  15. Biological Computation Indexes of Brain Oscillations in Unattended Facial Expression Processing Based on Event-Related Synchronization/Desynchronization.

    PubMed

    Yu, Bo; Ma, Lin; Li, Haifeng; Zhao, Lun; Bo, Hongjian; Wang, Xunda

    2016-01-01

    Estimation of human emotions from Electroencephalogram (EEG) signals plays a vital role in affective Brain Computer Interface (BCI). The present study investigated the different event-related synchronization (ERS) and event-related desynchronization (ERD) of typical brain oscillations in processing Facial Expressions under nonattentional condition. The results show that the lower-frequency bands are mainly used to update Facial Expressions and distinguish the deviant stimuli from the standard ones, whereas the higher-frequency bands are relevant to automatically processing different Facial Expressions. Accordingly, we set up the relations between each brain oscillation and processing unattended Facial Expressions by the measures of ERD and ERS. This research first reveals the contributions of each frequency band for comprehension of Facial Expressions in preattentive stage. It also evidences that participants have emotional experience under nonattentional condition. Therefore, the user's emotional state under nonattentional condition can be recognized in real time by the ERD/ERS computation indexes of different frequency bands of brain oscillations, which can be used in affective BCI to provide the user with more natural and friendly ways.

  16. Assessment of language dominance by event-related oscillatory changes in an auditory language task: magnetoencephalography study.

    PubMed

    Lee, Seo-Young; Kim, June Sic; Chung, Chun Kee; Lee, Sang Kun; Kim, Won Sup

    2010-08-01

    The authors investigated the oscillatory changes induced by auditory language task to assess hemispheric dominance of language. Magnetoencephalography studies were conducted during word listening in 6 normal right-handed volunteers and 13 epilepsy patients who underwent Wada test. We carried out a time-frequency analysis of event-related desynchronization (ERD)/event-related synchronization (ERS) and intertrial coherence. We localized ERD/ERS on each subject's magnetic resonance images using beamformer. We compared ERD/ERS values between the left and right side of regions of interest in inferior frontal and superior temporal areas. We assessed the target frequency range that correlated best with the Wada test results. In all normal subjects, gamma ERD was lateralized to the left side in both the inferior frontal and superior temporal areas. In epilepsy patients, the concordance rate of gamma ERD and the Wada test results was 76.9% for the inferior frontal area and 69.2% for the superior temporal area. Gamma ERD can be considered as an indicator of language function, although it was not sufficient to replace the Wada test in the evaluation of epilepsy patients. The gamma ERD value of the inferior frontal area was more reliable for the assessment of language dominance compared with that obtained in the superior temporal area. PMID:20634707

  17. Biological Computation Indexes of Brain Oscillations in Unattended Facial Expression Processing Based on Event-Related Synchronization/Desynchronization.

    PubMed

    Yu, Bo; Ma, Lin; Li, Haifeng; Zhao, Lun; Bo, Hongjian; Wang, Xunda

    2016-01-01

    Estimation of human emotions from Electroencephalogram (EEG) signals plays a vital role in affective Brain Computer Interface (BCI). The present study investigated the different event-related synchronization (ERS) and event-related desynchronization (ERD) of typical brain oscillations in processing Facial Expressions under nonattentional condition. The results show that the lower-frequency bands are mainly used to update Facial Expressions and distinguish the deviant stimuli from the standard ones, whereas the higher-frequency bands are relevant to automatically processing different Facial Expressions. Accordingly, we set up the relations between each brain oscillation and processing unattended Facial Expressions by the measures of ERD and ERS. This research first reveals the contributions of each frequency band for comprehension of Facial Expressions in preattentive stage. It also evidences that participants have emotional experience under nonattentional condition. Therefore, the user's emotional state under nonattentional condition can be recognized in real time by the ERD/ERS computation indexes of different frequency bands of brain oscillations, which can be used in affective BCI to provide the user with more natural and friendly ways. PMID:27471545

  18. Distinct pattern of P3a event-related potential in borderline personality disorder.

    PubMed

    Meares, Russell; Melkonian, Dmitriy; Gordon, Evian; Williams, Leanne

    2005-02-28

    P3a and P3b event-related brain potentials to auditory stimuli were recorded for 17 unmedicated patients with borderline personality disorder, 17 matched healthy controls and 100 healthy control participants spanning five decades. Using high-resolution fragmentary decomposition for single-trial event-related potential analysis, distinctive disturbances in P3a in borderline personality disorder patients were found: abnormally enhanced amplitude, failure to habituate and a loss of temporal locking with P3b. Normative age dependencies from 100 controls suggest that natural age-related decline in P3a amplitude is reduced in borderline personality disorder patients and is likely to indicate failure of frontal maturation. On the basis of the theories of Hughlings Jackson, this conceptualization of borderline personality disorder is consistent with an aetiological model of borderline personality disorder. PMID:15706238

  19. Nonhuman primate event-related potentials indexing covert shifts of attention.

    PubMed

    Woodman, Geoffrey F; Kang, Min-Suk; Rossi, Andrew F; Schall, Jeffrey D

    2007-09-18

    A half-century's worth of research has established the existence of numerous event-related potential components measuring different cognitive operations in humans including the selection of stimuli by covert attention mechanisms. Surprisingly, it is unknown whether nonhuman primates exhibit homologous electrophysiological signatures of selective visual processing while viewing complex scenes. We used an electrophysiological technique with macaque monkeys analogous to procedures for recording scalp event-related potentials from humans and found that monkeys exhibit short-latency visual components sensitive to sensory processing demands and lateralizations related to shifting of covert attention similar to the human N2pc component. These findings begin to bridge the gap between the disparate literatures by using electrophysiological measurements to study the deployment of visual attention in the brains of humans and nonhuman primates.

  20. The Functional Organization of Trial-Related Activity in Lexical Processing after Early Left Hemispheric Brain Lesions: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Fair, Damien A.; Choi, Alexander H.; Dosenbach, Yannic B. L.; Coalson, Rebecca S.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2010-01-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In…

  1. On the Processing of Semantic Aspects of Experience in the Anterior Medial Temporal Lobe: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Meyer, Patric; Mecklinger, Axel; Friederici, Angela D.

    2010-01-01

    Recognition memory based on familiarity judgments is a form of declarative memory that has been repeatedly associated with the anterior medial temporal lobe. It has been argued that this region sustains familiarity-based recognition not only by retrieving item-specific information but also by coding for those semantic aspects of an event that…

  2. Subclinical alexithymia modulates early audio-visual perceptive and attentional event-related potentials

    PubMed Central

    Delle-Vigne, Dyna; Kornreich, Charles; Verbanck, Paul; Campanella, Salvatore

    2014-01-01

    Introduction: Previous studies have highlighted the advantage of using audio–visual oddball tasks (instead of unimodal ones) in order to electrophysiologically index subclinical behavioral differences. Since alexithymia is highly prevalent in the general population, we investigated whether the use of various bimodal tasks could elicit emotional effects in low- vs. high-alexithymic scorers. Methods: Fifty students (33 females and 17 males) were split into groups based on low and high scores on the Toronto Alexithymia Scale (TAS-20). During event-related potential (ERP) recordings, they were exposed to three kinds of audio–visual oddball tasks: neutral-AVN—(geometrical forms and bips), animal-AVA—(dog and cock with their respective shouts), or emotional-AVE—(faces and voices) stimuli. In each condition, participants were asked to quickly detect deviant events occurring amongst a train of repeated and frequent matching stimuli (e.g., push a button when a sad face–voice pair appeared amongst a train of neutral face–voice pairs). P100, N100, and P300 components were analyzed: P100 refers to visual perceptive and attentional processing, N100 to auditory ones, and the P300 relates to response-related stages, involving memory processes. Results: High-alexithymic scorers presented a particular pattern of results when processing the emotional stimulations, reflected in early ERP components by increased P100 and N100 amplitudes in the emotional oddball tasks [P100: F(2, 48) = 20,319, p < 0.001; N100: F(2, 96) = 8,807, p = 0.001] as compared to the animal or neutral ones. Indeed, regarding the P100, subjects exhibited a higher amplitude in the AVE condition (8.717 μV), which was significantly different from that observed during the AVN condition (4.382 μV, p < 0.001). For the N100, the highest amplitude was found in the AVE condition (−4.035 μV) and the lowest was observed in the AVN condition (−2.687 μV, p = 0.003). However, no effect was found on the

  3. Neurocognitive impairment of mental rotation in major depressive disorder: evidence from event-related brain potentials.

    PubMed

    Chen, Jiu; Ma, Wentao; Zhang, Yan; Yang, Lai-Qi; Zhang, Zhijun; Wu, Xingqu; Deng, Zihe

    2014-08-01

    Mental rotation performance may be used as an index of mental slowing or bradyphrenia and may reflect speed of motor preparation. Previous studies suggest that major depressive disorder (MDD) presents correlates of impaired behavioral performance for mental rotation and psychomotor disturbance. Very little is known about the electrophysiological mechanism underlying this deficit. The present study was the first to investigate the event-related brain potential (ERP) correlates of mental rotation and their mental slowing or bradyphrenia in MDD. ERPs were recorded while we tested 25 MDD patients and 26 healthy controls by evaluating the performance of MDD patients on hand and letter rotation tasks at different orientations, and their 400-to-600-msec time window was measured and analyzed for latencies and peak amplitudes over the electrodes. First, individuals with MDD were slower and made more errors in mentally rotating hands and letters than healthy controls did, and individuals with MDD exhibited a greater difference in response times and errors than controls did between hands and letters. Second, the mean peak amplitude was significantly lower and the mean latency was significantly longer in the 400-to-600-msec time window at the parietal site in the hand tasks in MDD patients than in controls, but this was not seen in the letter task, with only lower mean peak amplitude. MDD patients present the absence of a typical mental rotation function for the amplitude of the rotation-related negativity in the hand and letter tasks. Third, the scalp activity maps in MDD patients exhibited the absence of activation in the left parietal site for the mental rotation of hands, as shown in healthy participants. In contrast, their brain activation for the letter task was similar to those of healthy participants. These data suggest that mental imagery of hands and letters relies on different cognitive and neural mechanisms and indicate that the left posterior parietal lobe is a

  4. BOLD correlations to force in precision grip: an event-related study.

    PubMed

    Sulzer, James S; Chib, Vikram S; Hepp-Reymond, Marie-Claude; Kollias, Spyros; Gassert, Roger

    2011-01-01

    The introduction of functional neuroimaging has resulted in a profusion of knowledge on various topics, including how blood oxygenation level dependent (BOLD) signal in the brain is related to force. To date, studies that have explicitly examined this relationship have used block designs. To gain a better understanding of the networks involved in human motor control, analyses sensitive to temporal relationships, such as Granger Causality or Dynamic Causal Modeling, require event-related designs. Therefore the goal of this experiment was to examine whether similar or even better relationships between BOLD and force during precision grip could be determined with an event-related design. Five healthy subjects exerted forces at 10%, 20% and 30% of maximum voluntary force, along with an observation condition. We report that the BOLD signal was linearly correlated with precision grip force in primary sensorimotor cortex and cerebellum, showing slightly better correlations than previous work. The results provide a clearer picture regarding the sensitivity of BOLD signal to force and show that event-related designs can be more appropriate than block designs in motor tasks.

  5. Simultaneous functional near-infrared brain imaging and event-related potential studies of Stroop effect

    NASA Astrophysics Data System (ADS)

    Zhai, Jiahuan; Li, Ting; Zhang, Zhongxing; Gong, Hui

    2009-02-01

    Functional near-infrared brain imaging (fNIRI) and event-related potential (ERP) were used simultaneous to detect the prefrontal cortex (PFC) which is considered to execute cognitive control of the subjects while performing the Chinese characters color-word matching Stroop task with event-related design. The fNIRI instrument is a portable system operating at three wavelengths (735nm & 805nm &850nm) with continuous-wave. The event-related potentials were acquired by Neuroscan system. The locations of optodes corresponding to the electrodes were defined four areas symmetrically. In nine native Chinese-speaking fit volunteers, fNIRI measured the hemodynamic parameters (involving oxy-/deoxy- hemoglobin) changes when the characteristic waveforms (N500/P600) were recorded by ERP. The interference effect was obvious as a longer reaction time for incongruent than congruent and neutral stimulus. The responses of hemodynamic and electrophysiology were also stronger during incongruent compared to congruent and neutral trials, and these results are similar to those obtained with fNIRI or ERP separately. There are high correlations, even linear relationship, in the two kinds of signals. In conclusion, the multi-modality approach combining of fNIRI and ERP is feasible and could obtain more cognitive function information with hemodynamic and electrophysiology signals. It also provides a perspective to prove the neurovascular coupling mechanism.

  6. First steps in using machine learning on fMRI data to predict intrusive memories of traumatic film footage.

    PubMed

    Clark, Ian A; Niehaus, Katherine E; Duff, Eugene P; Di Simplicio, Martina C; Clifford, Gari D; Smith, Stephen M; Mackay, Clare E; Woolrich, Mark W; Holmes, Emily A

    2014-11-01

    After psychological trauma, why do some only some parts of the traumatic event return as intrusive memories while others do not? Intrusive memories are key to cognitive behavioural treatment for post-traumatic stress disorder, and an aetiological understanding is warranted. We present here analyses using multivariate pattern analysis (MVPA) and a machine learning classifier to investigate whether peri-traumatic brain activation was able to predict later intrusive memories (i.e. before they had happened). To provide a methodological basis for understanding the context of the current results, we first show how functional magnetic resonance imaging (fMRI) during an experimental analogue of trauma (a trauma film) via a prospective event-related design was able to capture an individual's later intrusive memories. Results showed widespread increases in brain activation at encoding when viewing a scene in the scanner that would later return as an intrusive memory in the real world. These fMRI results were replicated in a second study. While traditional mass univariate regression analysis highlighted an association between brain processing and symptomatology, this is not the same as prediction. Using MVPA and a machine learning classifier, it was possible to predict later intrusive memories across participants with 68% accuracy, and within a participant with 97% accuracy; i.e. the classifier could identify out of multiple scenes those that would later return as an intrusive memory. We also report here brain networks key in intrusive memory prediction. MVPA opens the possibility of decoding brain activity to reconstruct idiosyncratic cognitive events with relevance to understanding and predicting mental health symptoms. PMID:25151915

  7. First steps in using machine learning on fMRI data to predict intrusive memories of traumatic film footage.

    PubMed

    Clark, Ian A; Niehaus, Katherine E; Duff, Eugene P; Di Simplicio, Martina C; Clifford, Gari D; Smith, Stephen M; Mackay, Clare E; Woolrich, Mark W; Holmes, Emily A

    2014-11-01

    After psychological trauma, why do some only some parts of the traumatic event return as intrusive memories while others do not? Intrusive memories are key to cognitive behavioural treatment for post-traumatic stress disorder, and an aetiological understanding is warranted. We present here analyses using multivariate pattern analysis (MVPA) and a machine learning classifier to investigate whether peri-traumatic brain activation was able to predict later intrusive memories (i.e. before they had happened). To provide a methodological basis for understanding the context of the current results, we first show how functional magnetic resonance imaging (fMRI) during an experimental analogue of trauma (a trauma film) via a prospective event-related design was able to capture an individual's later intrusive memories. Results showed widespread increases in brain activation at encoding when viewing a scene in the scanner that would later return as an intrusive memory in the real world. These fMRI results were replicated in a second study. While traditional mass univariate regression analysis highlighted an association between brain processing and symptomatology, this is not the same as prediction. Using MVPA and a machine learning classifier, it was possible to predict later intrusive memories across participants with 68% accuracy, and within a participant with 97% accuracy; i.e. the classifier could identify out of multiple scenes those that would later return as an intrusive memory. We also report here brain networks key in intrusive memory prediction. MVPA opens the possibility of decoding brain activity to reconstruct idiosyncratic cognitive events with relevance to understanding and predicting mental health symptoms.

  8. First steps in using machine learning on fMRI data to predict intrusive memories of traumatic film footage

    PubMed Central

    Clark, Ian A.; Niehaus, Katherine E.; Duff, Eugene P.; Di Simplicio, Martina C.; Clifford, Gari D.; Smith, Stephen M.; Mackay, Clare E.; Woolrich, Mark W.; Holmes, Emily A.

    2014-01-01

    After psychological trauma, why do some only some parts of the traumatic event return as intrusive memories while others do not? Intrusive memories are key to cognitive behavioural treatment for post-traumatic stress disorder, and an aetiological understanding is warranted. We present here analyses using multivariate pattern analysis (MVPA) and a machine learning classifier to investigate whether peri-traumatic brain activation was able to predict later intrusive memories (i.e. before they had happened). To provide a methodological basis for understanding the context of the current results, we first show how functional magnetic resonance imaging (fMRI) during an experimental analogue of trauma (a trauma film) via a prospective event-related design was able to capture an individual's later intrusive memories. Results showed widespread increases in brain activation at encoding when viewing a scene in the scanner that would later return as an intrusive memory in the real world. These fMRI results were replicated in a second study. While traditional mass univariate regression analysis highlighted an association between brain processing and symptomatology, this is not the same as prediction. Using MVPA and a machine learning classifier, it was possible to predict later intrusive memories across participants with 68% accuracy, and within a participant with 97% accuracy; i.e. the classifier could identify out of multiple scenes those that would later return as an intrusive memory. We also report here brain networks key in intrusive memory prediction. MVPA opens the possibility of decoding brain activity to reconstruct idiosyncratic cognitive events with relevance to understanding and predicting mental health symptoms. PMID:25151915

  9. Dynamic EEG-informed fMRI modeling of the pain matrix using 20-ms root mean square segments.

    PubMed

    Brinkmeyer, Juergen; Mobascher, Arian; Warbrick, Tracy; Musso, Francesco; Wittsack, Hans-Jörg; Saleh, Andreas; Schnitzler, Alfons; Winterer, Georg

    2010-11-01

    Previous studies on the spatio-temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial recordings point towards a high degree of parallelism, e.g. parallel instead of sequential activation of primary and secondary somatosensory areas or simultaneous activation of somatosensory areas and the mid-cingulate cortex. However, because of the inverse problem, EEG and MEG provide only limited spatial resolution and certainty about the generators of cortical pain-induced electromagnetic activity, especially when multiple sources are simultaneously active. On the other hand, intracranial recordings are invasive and do not provide whole-brain coverage. In this study, we thought to investigate the spatio-temporal dynamics of cortical pain processing in 10 healthy subjects using simultaneous EEG/functional magnetic resonance imaging (fMRI). Voltages of 20 ms segments of the EEG root mean square (a global, largely reference-free measure of event-related EEG activity) in a time window 0-400 ms poststimulus were used to model trial-to-trial fluctuations in the fMRI blood oxygen level dependent (BOLD) signal. EEG-derived regressors explained additional variance in the BOLD signal from 140 ms poststimulus onward. According to this analysis, the contralateral parietal operculum was the first cortical area to become activated upon painful laser stimulation. The activation pattern in BOLD analyses informed by subsequent EEG-time windows suggests largely parallel signal processing in the bilateral operculo-insular and mid-cingulate cortices. In that regard, our data are in line with previous reports. However, the approach presented here is noninvasive and bypasses the inverse problem using only temporal information from the EEG.

  10. The development of print tuning in children with dyslexia: evidence from longitudinal ERP data supported by fMRI.

    PubMed

    Maurer, Urs; Schulz, Enrico; Brem, Silvia; der Mark, Sanne van; Bucher, Kerstin; Martin, Ernst; Brandeis, Daniel

    2011-08-01

    A consistent finding in functional brain imaging studies of reading with dyslexia is reduced inferior occipito-temporal activation linked to deviant processing of visual word forms. Time-sensitive event-related potentials (ERP) further revealed reduced inferior occipito-temporal N1 tuning for print in dyslexic 2nd graders suggesting the reduction affects fast processing and the initial development of dyslexia. Here, we followed up the same groups with ERP recordings and investigated how fast print tuning deficits in dyslexia develop from 2nd to 5th grade. Using functional magnetic resonance imaging (fMRI), we further characterized spatial aspects of print tuning in the 5th grade. The robust N1 tuning deficit for print in the dyslexic 2nd graders had largely disappeared by grade 5 consistent with a developmental delay. Reduced word-specific activation in dyslexic 5th grader's fMRI data occurred bilaterally in middle temporal regions and in the left posterior superior sulcus. Although no group differences in inferior occipito-temporal regions appeared in the whole brain analysis, a region of interest analysis of the Visual Word Form Area revealed that control children showed a more lateralized word-specific activation pattern than the children with dyslexia. The results suggest that while impaired N1 tuning for print plays a major role for dyslexia at the beginning of learning to read, other aspects of visual word form processing in the same region remain impaired in dyslexic children after several years of reading practice. Overall, neural deficits associated with dyslexia appear to be plastic and to change throughout development and reading acquisition.

  11. Estimating the Single-Trial Characteristics of Event-Related Responses: Evaluation of the MCERP Algorithm

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Shah, A. S.; Truccolo, W. A.; Ding, M.; Bressler, S. L.; Schroeder, C. E.; Korsmey, Dave (Technical Monitor)

    2002-01-01

    Single-trial event-related responses collected during the course of an experiment are typically averaged before analysis resulting in a rather crude picture of event-related brain dynamics. It has been quite clear for some time that these responses exhibit trial-to-trial variability: however, the computational techniques necessary to deal with such responses in noisy conditions have not been available. To this end we have developed the multiple-component, event-related potential model (mcERP), which assumes that the each event-related response consists of a sum of multiple evoked components each described by a stereotypical waveshape. These waveshapes are allowed to vary in amplitude and onset latency from trial to trial, which allows us to capture, to first-order, the trial-dependent variations in event-related brain dynamics. We have constructed many sets of synthetic data designed to simulate intracortical recordings from a 15 channel, linear-array multielectrode implanted acutely in V1 of an awake-behaving macaque undergoing visual stimulation with a red light flash. This synthetic data was used to characterize the performance of the mcERP algorithm. First we quantified the degree to which such trial-to-trial variability aids in the identification of multiple components, and we demonstrate that amplitude variability is a more important factor in component separation than latency variability. Second, we quantified the behavior of the algorithm under two distinct signal-to-noise ratio (SNR) conditions: Gaussian noise independently present in each channel, and highly correlated (1/f distributed), far-field noise presented identically in each channel of the array. The mcERP algorithm was found to be robust to noise accurately identifying all component waveshapes and their associated single-trial characteristics down to SNR levels of -20dB for Gaussian noise and -7dB for 1/f far-field noise. Comparisons of the performance of this algorithm with factor analysis (FA

  12. Midbrain volume predicts fMRI and ERP measures of reward reactivity.

    PubMed

    Carlson, Joshua M; Foti, Dan; Harmon-Jones, Eddie; Proudfit, Greg H

    2015-01-01

    Ventral striatal activation measured with functional magnetic resonance imaging (fMRI) and feedback negativity amplitude measured with event-related potentials (ERPs) are each enhanced during reward processing. Recent research has found that these two neural measures of reward processing are also related to one another, such that increases in ventral striatal activity are accompanied by increases in the amplitude of the feedback negativity. Although there is a long history of research implicating the midbrain dopamine system in reward processing, there has been little research into the possibility that structural variability in the midbrain may be linked to functional variability in reward reactivity. Here, we used structural MRI to measure midbrain volumes in addition to fMRI and ERP measures of functional neural reactivity to rewards in a simple gambling task. The results suggest that as midbrain volumes increase, fMRI reward reactivity in the ventral striatum and medial prefrontal cortex also increases. A similar relationship exists between midbrain structure and the amplitude of the feedback negativity; further, this relationship is mediated specifically by activity in the ventral striatum. These data demonstrate convergence between neuroanatomical, hemodynamic, and electrophysiological measures. Thus, structural variability in the midbrain relates to variability in fMRI and ERP measures of functional reward reactivity, which may play a critical role in reward-related psychopathologies and the treatment of these disorders.

  13. Early detection of cognitive impairment in patients with obstructive sleep apnea syndrome: an event-related potential study.

    PubMed

    Zhang, Xi; Wang, Yuping; Li, Shunwei; Huang, Xizhen; Cui, Lili

    2002-06-01

    Event-related potentials (ERPs) were recorded to visual stimuli in a task that required matching the shape and serial position of the probes against previously memorized items. The effects of hypoxia on ERP were investigated in 24 patients with obstructive sleep apnea syndrome (OSAS) and a matched control group. N2b-late positive-going (LPC) components were elicited by probes that identically matched the memorized items (no-conflict condition). In contrast, N270-LPC and N270-N430-LPC components were elicited by probes having low-conflict and high-conflict with the memory set. Conflict ERP effect decreased in mild, while both no-conflict and conflict ERP effects decreased in amplitude in severe OSAS patients. Conflict ERPs associated with processing of conflicting information are more vulnerable than no-conflict ERPs to hypoxic cerebral damage.

  14. Using Event-Related Brain Potentials to Assess Perceptibility: The Case of French Speakers and English [h

    PubMed Central

    Mah, Jennifer; Goad, Heather; Steinhauer, Karsten

    2016-01-01

    French speaking learners of English encounter persistent difficulty acquiring English [h], thus confusing words like eat and heat in both production and perception. We assess the hypothesis that the acoustic properties of [h] may render detection of this segment in the speech stream insufficiently reliable for second language acquisition. We use the mismatch negativity (MMN) in event-related potentials to investigate [h] perception in French speaking learners of English and native English controls, comparing both linguistic and non-linguistic conditions in an unattended oddball paradigm. Unlike native speakers, French learners of English elicit an MMN response only in the non-linguistic condition. Our results provide neurobiological evidence against the hypothesis that French speakers’ difficulties with [h] are acoustically based. They instead suggest that the problem is in constructing an appropriate phonological representation for [h] in the interlanguage grammar. PMID:27757086

  15. A Beautiful Day in the Neighborhood: An Event-Related Potential Study of Lexical Relationships and Prediction in Context

    PubMed Central

    Laszlo, Sarah; Federmeier, Kara D.

    2009-01-01

    Two related questions critical to understanding the predictive processes that come online during sentence comprehension are 1) what information is included in the representation created through prediction and 2) at what functional stage does top-down, predicted information begin to affect bottom-up word processing? We investigated these questions by recording event-related potentials (ERPs) as participants read sentences that ended with expected words or with unexpected items (words, pseudowords, or illegal strings) that were either orthographically unrelated to the expected word or were one of its orthographic neighbors. The data show that, regardless of lexical status, attempts at semantic access (N400) for orthographic neighbors of expected words is facilitated relative to the processing of orthographically unrelated items. Our findings support a view of sentence processing wherein orthographically organized information is brought online by prediction and interacts with input prior to any filter on lexical status. PMID:20161064

  16. Conflict monitoring and resolution: are two languages better than one? Evidence from reaction time and event-related brain potentials.

    PubMed

    Kousaie, Shanna; Phillips, Natalie A

    2012-03-29

    An advantage for bilingual relative to monolingual young adults has been found for cognitive control tasks, although this finding is not consistent in the literature. The present investigation further examined this advantage using three tasks previously found to be sensitive to the effect. Furthermore, both behavioral and event-related brain potential (ERP) measures were included. Monolingual (n=25) and highly proficient bilingual (n=26) young adults completed a Stroop, Simon, and Eriksen flanker task while electrophysiological recording took place. Behaviorally there were no language group differences on any of the tasks. The ERP measures demonstrated differences between monolinguals and bilinguals with respect to conflict monitoring, resource allocation, stimulus categorization, and error-processing; however, these differences were not consistent across tasks. Given the similar behavioral performance across the groups the observed differences in brain responses may not represent an advantage for bilinguals. The results are discussed with respect to previous findings.

  17. Non-target language processing in Chinese-English bilinguals: a study of event-related potential.

    PubMed

    Li, Li; Fan, Meng; Sun, Bing; Wang, Ruiming; Mo, Lei; Zhang, John Xuexin

    2012-06-01

    The event-related brain potential (ERP) technique was used to investigate the neural mechanism of non-target language processing in Chinese-English bilinguals. Participants were presented with a mixed list of Chinese and English words and required to make conceptual decisions for words in one language and ignore words in the other non-target language. Regardless of whether the nontarget word was in Chinese or English, the ERPs they elicited were modulated by word frequency, suggesting that their meaning had been accessed. The N400 peak was delayed in the English as the non-target language condition, probably because participants were less proficient in English. The results suggest that the non-target language can be processed during conceptual tasks with participants' proficiency in this language being a critical factor.

  18. Neurophysiological correlates of response inhibition predict relapse in detoxified alcoholic patients: some preliminary evidence from event-related potentials

    PubMed Central

    Petit, Géraldine; Cimochowska, Agnieszka; Kornreich, Charles; Hanak, Catherine; Verbanck, Paul; Campanella, Salvatore

    2014-01-01

    Background Alcohol dependence is a chronic relapsing disease. The impairment of response inhibition and alcohol-cue reactivity are the main cognitive mechanisms that trigger relapse. Despite the interaction suggested between the two processes, they have long been investigated as two different lines of research. The present study aimed to investigate the interaction between response inhibition and alcohol-cue reactivity and their potential link with relapse. Materials and methods Event-related potentials were recorded during a variant of a “go/no-go” task. Frequent and rare stimuli (to be inhibited) were superimposed on neutral, nonalcohol-related, and alcohol-related contexts. The task was administered following a 3-week detoxification course. Relapse outcome was measured after 3 months, using self-reported abstinence. There were 27 controls (seven females) and 27 patients (seven females), among whom 13 relapsed during the 3-month follow-up period. The no-go N2, no-go P3, and the “difference” wave (P3d) were examined with the aim of linking neural correlates of response inhibition on alcohol-related contexts to the observed relapse rate. Results Results showed that 1) at the behavioral level, alcohol-dependent patients made significantly more commission errors than controls (P<0.001), independently of context; 2) through the subtraction no-go P3 minus go P3, this inhibition deficit was neurophysiologically indexed in patients with greater P3d amplitudes (P=0.034); and 3) within the patient group, increased P3d amplitude enabled us to differentiate between future relapsers and nonrelapsers (P=0.026). Conclusion Our findings suggest that recently detoxified alcoholics are characterized by poorer response-inhibition skills that demand greater neural resources. We propose that event-related potentials can be used in conjunction with behavioral data to predict relapse; this would identify patients that need a higher level of neural resources when suppressing a

  19. Contagious yawning and the frontal lobe: An fMRI study

    PubMed Central

    Nahab, FB; Hattori, N; Saad, ZS; Hallett, M

    2010-01-01

    We conducted a slow event-related fMRI experiment with naïve subjects’ passively viewing yawn and various other control videos along with correlative behavioral testing. Specifically associated with the viewing of the contagious yawn was an area of activation in the ventromedial prefrontal cortex. These findings suggest a role for the prefrontal cortex in the processing of contagious yawning, while demonstrating a unique automaticity in the processing of contagious motor programs which take place independently of mirror neuron networks. PMID:18937281

  20. Contagious Yawning and the Frontal Lobe: An fMRI Study

    PubMed Central

    Nahab, Fatta B.; Hattori, Noriaki; Saad, Ziad S.; Hallett, Mark

    2014-01-01

    We conducted a slow event-related fMRI experiment with naïve subjects’ passively viewing yawn and various other control videos along with correlative behavioral testing. Specifically associated with the viewing of the contagious yawn was an area of activation in the ventromedial prefrontal cortex. These findings suggest a role for the prefrontal cortex in the processing of contagious yawning, while demonstrating a unique automaticity in the processing of contagious motor programs which take place independently of mirror neuron networks. PMID:20357471

  1. Coping with Trial-to-Trial Variability of Event Related Signals: A Bayesian Inference Approach

    NASA Technical Reports Server (NTRS)

    Ding, Mingzhou; Chen, Youghong; Knuth, Kevin H.; Bressler, Steven L.; Schroeder, Charles E.

    2005-01-01

    In electro-neurophysiology, single-trial brain responses to a sensory stimulus or a motor act are commonly assumed to result from the linear superposition of a stereotypic event-related signal (e.g. the event-related potential or ERP) that is invariant across trials and some ongoing brain activity often referred to as noise. To extract the signal, one performs an ensemble average of the brain responses over many identical trials to attenuate the noise. To date, h s simple signal-plus-noise (SPN) model has been the dominant approach in cognitive neuroscience. Mounting empirical evidence has shown that the assumptions underlying this model may be overly simplistic. More realistic models have been proposed that account for the trial-to-trial variability of the event-related signal as well as the possibility of multiple differentially varying components within a given ERP waveform. The variable-signal-plus-noise (VSPN) model, which has been demonstrated to provide the foundation for separation and characterization of multiple differentially varying components, has the potential to provide a rich source of information for questions related to neural functions that complement the SPN model. Thus, being able to estimate the amplitude and latency of each ERP component on a trial-by-trial basis provides a critical link between the perceived benefits of the VSPN model and its many concrete applications. In this paper we describe a Bayesian approach to deal with this issue and the resulting strategy is referred to as the differentially Variable Component Analysis (dVCA). We compare the performance of dVCA on simulated data with Independent Component Analysis (ICA) and analyze neurobiological recordings from monkeys performing cognitive tasks.

  2. Neuroethics and fMRI: mapping a fledgling relationship.

    PubMed

    Garnett, Alex; Whiteley, Louise; Piwowar, Heather; Rasmussen, Edie; Illes, Judy

    2011-01-01

    Human functional magnetic resonance imaging (fMRI) informs the understanding of the neural basis of mental function and is a key domain of ethical enquiry. It raises questions about the practice and implications of research, and reflexively informs ethics through the empirical investigation of moral judgments. It is at the centre of debate surrounding the importance of neuroscience findings for concepts such as personhood and free will, and the extent of their practical consequences. Here, we map the landscape of fMRI and neuroethics, using citation analysis to uncover salient topics. We find that this landscape is sparsely populated: despite previous calls for debate, there are few articles that discuss both fMRI and ethical, legal, or social implications (ELSI), and even fewer direct citations between the two literatures. Recognizing that practical barriers exist to integrating ELSI discussion into the research literature, we argue nonetheless that the ethical challenges of fMRI, and controversy over its conceptual and practical implications, make this essential. PMID:21526115

  3. Multivoxel Pattern Analysis for fMRI Data: A Review

    PubMed Central

    Takerkart, Sylvain; Regragui, Fakhita; Boussaoud, Driss; Brovelli, Andrea

    2012-01-01

    Functional magnetic resonance imaging (fMRI) exploits blood-oxygen-level-dependent (BOLD) contrasts to map neural activity associated with a variety of brain functions including sensory processing, motor control, and cognitive and emotional functions. The general linear model (GLM) approach is used to reveal task-related brain areas by searching for linear correlations between the fMRI time course and a reference model. One of the limitations of the GLM approach is the assumption that the covariance across neighbouring voxels is not informative about the cognitive function under examination. Multivoxel pattern analysis (MVPA) represents a promising technique that is currently exploited to investigate the information contained in distributed patterns of neural activity to infer the functional role of brain areas and networks. MVPA is considered as a supervised classification problem where a classifier attempts to capture the relationships between spatial pattern of fMRI activity and experimental conditions. In this paper , we review MVPA and describe the mathematical basis of the classification algorithms used for decoding fMRI signals, such as support vector machines (SVMs). In addition, we describe the workflow of processing steps required for MVPA such as feature selection, dimensionality reduction, cross-validation, and classifier performance estimation based on receiver operating characteristic (ROC) curves. PMID:23401720

  4. Stereotype activation is unintentional: Behavioural and event-related potenials evidence.

    PubMed

    Wang, Pei; Yang, Ya-Ping; Tan, Chen-Hao; Zhao, Xiang-Xia; Liu, Yong-He; Lin, Chong-De

    2016-04-01

    In this study, a priming Stroop paradigm was used to determine whether stereotype activation is unintentional. Priming conditions (priming/no-priming) and the relationship between priming and target (consistent/inconsistent/no-relation) were the independent variables; accuracy, reaction time and N400 amplitude were used as dependent variables. The reaction time revealed that stereotype activation is, to some extent, unintentional. Furthermore, the event-related potenial (ERP) results showed that N400 amplitude was larger for inconsistent conditions than for consistent conditions. This result supported the notion that stereotype activation is an unintentional and automatic process.

  5. Addressing misallocation of variance in principal components analysis of event-related potentials.

    PubMed

    Dien, J

    1998-01-01

    Interpretation of evoked response potentials is complicated by the extensive superposition of multiple electrical events. The most common approach to disentangling these features is principal components analysis (PCA). Critics have demonstrated a number of caveats that complicate interpretation, notably misallocation of variance and latency jitter. This paper describes some further caveats to PCA as well as using simulations to evaluate three potential methods for addressing them: parallel analysis, oblique rotations, and spatial PCA. An improved simulation model is introduced for examining these issues. It is concluded that PCA is an essential statistical tool for event-related potential analysis, but only if applied appropriately.

  6. Evaluating the event-related synchronization and desynchronization by means of a statistical frequency test.

    PubMed

    Miranda de Sá, Antonio Mauricio F L; Infantosi, Antonio Fernando C; Lazarev, Vladimir V

    2007-01-01

    In the present work, a commonly used index for evaluating the Event-Related Synchronization and Desynchronization (ERS/ERD) in the EEG was expressed as a function of the Spectral F-Test (SFT), which is a statistical test for assessing if two sample spectra are from populations with identical theoretical spectra. The sampling distribution of SFT has been derived, allowing hence ERS/ERD to be evaluated under a statistical basis. An example of the technique was also provided in the EEG signals from 10 normal subjects during intermittent photic stimulation.

  7. Sensory preconditioning, the Espinet effect, and Heider's balance theory: note on animal reasoning of event relations.

    PubMed

    Nakajima, Sadahiko

    2005-06-01

    Sensory preconditioning and the Espinet effect illustrate that animals can reason about event relations. In sensory preconditioning, a combination of positive A-B and B-C relations yields a positive A-C relation. In the Espinet effect, a combination of a negative A-B relation and a positive B-C relation yields a negative A-C relation. Using analogies of Heider's balance theory of human attitudes, we predict that nonhuman animals would also infer a positive A-C relation from negative A-B and B-C relations.

  8. Cortical localization of cognitive function by regression of performance on event-related potentials

    NASA Technical Reports Server (NTRS)

    Montgomery, R. W.; Montgomery, L. D.; Guisado, R.

    1992-01-01

    This paper demonstrates a new method of mapping cortical localization of cognitive function, using electroencephalographic data. Cross-subject regression analyses are used to identify cortical sites and post-stimulus latencies where there is a high correlation between subjects' performance and their cognitive event-related potential amplitude. The procedure was tested using a mental arithmetic task and was found to identify essentially the same cortical regions that have been associated with such tasks on the basis of research with patients suffering localized cortical lesions. Thus, it appears to offer an inexpensive, noninvasive tool for exploring the dynamics of localization in neurologically normal subjects.

  9. Cellular Origins of Auditory Event-Related Potential Deficits in Rett Syndrome

    PubMed Central

    Goffin, Darren; Brodkin, Edward S.; Blendy, Julie A.; Siegel, Steve J.; Zhou, Zhaolan

    2014-01-01

    Dysfunction in sensory information processing is a hallmark of many neurological disorders including autism spectrum disorders (ASDs), schizophrenia and Rett syndrome (RTT)1. Using mouse models of RTT, a monogenic disorder caused by mutations in MECP22, we demonstrate that the large scale loss of MeCP2 from forebrain GABAergic interneurons leads to deficits in auditory event-related potentials (ERPs) and seizure manifestation; but the restoration of MeCP2 in specific classes of interneurons ameliorates these deficits. PMID:24777420

  10. Use of Event-Related Potentials in the Study of Typical and Atypical Development

    PubMed Central

    Nelson, Charles A; McCleery, Joseph P.

    2009-01-01

    A variety of neuroimaging tools are now available for use in studying neurodevelopment. In this paper we focus our attention on one such tool – the event-related potential (ERP). We begin by providing an overview of what ERPs are, their physiological basis, how they are recorded, and some constraints on their use. We then provide an abbreviated glossary of ERP components; that is, what processes are reflected in ERPs. We conclude by summarizing two areas of atypical development that have benefited from this method: children experiencing early psychosocial neglect, and children diagnosed with autism. We conclude by offering recommendations for future research. PMID:18827722

  11. [Advances in Event-related Potential and Its Forensic Application Value].

    PubMed

    Guan, Nan-si; Liu, Ji-hui; Zhang, Xin-yuan; Wang, Wan; Tan, Ja-ning; Peng, Bo

    2015-04-01

    The event-related potential (ERP) is considered as one of the most effective methods to study and analyze objectively human mental activity based on nerve electrophysiology. At present, ERP is not only used in the study of lie detection, but also in the clinical medicine for the cognitive assessment on patients with cerebrovascular disease, dementia or traumatic brain injury and auxiliary diagnosis of mental illness. With the further development of ERP detection technology, it would have a wider application prospect in the field of forensic medicine. PMID:26245094

  12. Event-related potential evidence for parallel activation of two languages in bilingual speech production.

    PubMed

    Guo, Taomei; Peng, Danling

    2006-11-27

    The cross-language identity effect refers to the benefit of processing a translation distractor in the cross-language picture-word interference task. The first event-related-potential evidence for this effect was obtained in a picture-naming priming task using Chinese-English bilinguals of languages with distinct scripts. The results indicated that parallel activation of both languages is a universal phenomenon in bilingual speech production. Furthermore, the present study revealed that the temporal course and magnitude of activation of the nontarget language during target language production was modulated by the relative proficiency in the two languages.

  13. Neural Correlates of Temporal Auditory Processing in Developmental Dyslexia during German Vowel Length Discrimination: An fMRI Study

    ERIC Educational Resources Information Center

    Steinbrink, Claudia; Groth, Katarina; Lachmann, Thomas; Riecker, Axel

    2012-01-01

    This fMRI study investigated phonological vs. auditory temporal processing in developmental dyslexia by means of a German vowel length discrimination paradigm (Groth, Lachmann, Riecker, Muthmann, & Steinbrink, 2011). Behavioral and fMRI data were collected from dyslexics and controls while performing same-different judgments of vowel duration in…

  14. Across Languages, Space, and Time: A Review of the Role of Cross-Language Similarity in L2 (Morpho)Syntactic Processing as Revealed by fMRI and ERP Methods

    ERIC Educational Resources Information Center

    Tolentino, Leida C.; Tokowicz, Natasha

    2011-01-01

    This review examines whether similarity between the first language (L1) and second language (L2) influences the (morpho)syntactic processing of the L2, using both neural location and temporal processing information. Results from functional magnetic resonance imaging (fMRI) and event-related potential (ERP) studies show that nonnative speakers can…

  15. The impacts of racial group membership on people's distributive justice: an event-related potential study.

    PubMed

    Wang, Yan; Tang, Yi-Yuan; Deng, Yuqin

    2014-04-16

    How individuals and societies distribute benefits has long been studied by psychologists and sociologists. Previous work has highlighted the importance of social identity on people's justice concerns. However, it is not entirely clear how racial in-group/out-group relationship affects the brain activity in distributive justice. In this study, event-related potentials were recorded while participants made their decisions about donation allocation. Behavioral results showed that racial in-group factor affected participants' decisions on justice consideration. Participants were more likely to make relatively equity decisions when racial in-group factor was congruent with equity compared with the corresponding incongruent condition. Moreover, this incongruent condition took longer response times than congruent condition. Meanwhile, less equity decisions were made when efficiency was larger in the opposite side to equity than it was equal between the two options. Scalp event-related potential analyses revealed that greater P300 and late positive potential amplitudes were elicited by the incongruent condition compared with the congruent condition. These findings suggest that the decision-making of distributive justice could be modulated by racial group membership, and greater attentional resources or cognitive efforts are required when racial in-group factor and equity conflict with each other.

  16. Social exclusion modulates event-related frontal theta and tracks ostracism distress in children.

    PubMed

    van Noordt, Stefon J R; White, Lars O; Wu, Jia; Mayes, Linda C; Crowley, Michael J

    2015-09-01

    Social exclusion is a potent elicitor of distress. Previous studies have shown that medial frontal theta oscillations are modulated by the experience of social exclusion. Using the Cyberball paradigm, we examined event-related dynamics of theta power in the EEG at medial frontal sites while children aged 8-12 years were exposed to conditions of fair play and social exclusion. Using an event-related design, we found that medial frontal theta oscillations (4-8Hz) increase during both early (i.e., 200-400ms) and late (i.e., 400-800ms) processing of rejection events during social exclusion relative to perceptually identical "not my turn" events during inclusion. Importantly, we show that only for the later time window (400-800ms) slow-wave theta power tracks self-reported ostracism distress. Specifically, greater theta power at medial frontal sites to "rejection" events predicted higher levels of ostracism distress. Alpha and beta oscillations for rejection events were unrelated to ostracism distress at either 200-400ms or 400-800ms time windows. Our findings extend previous studies by showing that medial frontal theta oscillations for rejection events are a neural signature of social exclusion, linked to experienced distress in middle childhood.

  17. Time-frequency analysis of event-related potentials: a brief tutorial.

    PubMed

    Herrmann, Christoph S; Rach, Stefan; Vosskuhl, Johannes; Strüber, Daniel

    2014-07-01

    Event-related potentials (ERPs) reflect cognitive processes and are usually analyzed in the so-called time domain. Additional information on cognitive functions can be assessed when analyzing ERPs in the frequency domain and treating them as event-related oscillations (EROs). This procedure results in frequency spectra but lacks information about the temporal dynamics of EROs. Here, we describe a method-called time-frequency analysis-that allows analyzing both the frequency of an ERO and its evolution over time. In a brief tutorial, the reader will learn how to use wavelet analysis in order to compute time-frequency transforms of ERP data. Basic steps as well as potential artifacts are described. Rather than in terms of formulas, descriptions are in textual form (written text) with numerous figures illustrating the topics. Recommendations on how to present frequency and time-frequency data in journal articles are provided. Finally, we briefly review studies that have applied time-frequency analysis to mismatch negativity paradigms. The deviant stimulus of such a paradigm evokes an ERO in the theta frequency band that is stronger than for the standard stimulus. Conversely, the standard stimulus evokes a stronger gamma-band response than does the deviant. This is interpreted in the context of the so-called match-and-utilization model. PMID:24194116

  18. Event-related frontal alpha asymmetries: electrophysiological correlates of approach motivation.

    PubMed

    Schöne, Benjamin; Schomberg, Jessica; Gruber, Thomas; Quirin, Markus

    2016-02-01

    Over the last decades, frontal alpha asymmetries observed during resting state periods of several minutes have been used as a marker of affective-motivational states. To date, there is no evidence that alpha asymmetries can be observed in response to brief affective-motivational stimuli, as typically presented in event-related designs. As we argue, frontal alpha asymmetry might indeed be elicited by brief events if they are salient enough. In an event-related design, we used erotic pictures, i.e., highly salient incentives to elicit approach motivation, and contrasted them with pictures of dressed attractive women. As expected, we found significant alpha asymmetries for erotic pictures as compared to control pictures. Our findings suggest that the highly reactive reward system can lead to immediate, phasic changes in frontal alpha asymmetries. We discuss the findings with respect to the notion that high salience of erotic pictures derives from their potential of satisfying an individuals' need by mere visual inspection, which is not the case for pictures showing other types of motivational stimuli such as food. PMID:26537961

  19. Event-related EEG desynchronization and synchronization during an auditory memory task.

    PubMed

    Krause, C M; Lang, A H; Laine, M; Kuusisto, M; Pörn, B

    1996-04-01

    Event-related desynchronization (ERD) and synchronization (ERS) of the lower (8-10 Hz) and upper (10-12 Hz) alpha bands of background EEG were studied in 10 subjects during an auditory memory scanning paradigm. Each experimental trial started with the presentation of a visual warning signal, after which an auditory 4-vowel memory set was presented for memorization. Thereafter the probe, a fifth vowel, was presented and identified by the subject as belonging or not belonging to the memorized set. In 50% of the cases, the probe was among the previously presented memory set. The presentation of the memory set elicited a significant ERS in the both alpha frequency bands. In contrast, the presentation of the probe elicited a significant bilateral ERD in both alpha frequency bands studied. The results suggest that the ERD phenomenon is closely associated with higher cortical processes such as memory functions rather than with auditory stimulus processing per se. Event-related desynchronization provides a potentially valuable tool for studying cortical activity during cognitive processing in the auditory stimulus modality.

  20. Social exclusion modulates event-related frontal theta and tracks ostracism distress in children

    PubMed Central

    van Noordt, Stefon J.R.; White, Lars O.; Wu, Jia; Mayes, Linda C.; Crowley, Michael J.

    2015-01-01

    Social exclusion is a potent elicitor of distress. Previous studies have shown that medial frontal theta oscillations are modulated by the experience of social exclusion. Using the Cyberball paradigm, we examined event-related dynamics of theta power in the EEG at medial frontal sites while children aged 8–12 years were exposed to conditions of fair play and social exclusion. Using an event-related design, we found that medial frontal theta oscillations (4–8 Hz) increase during both early (i.e., 200–400 ms) and late (i.e., 400–800 ms) processing of rejection events during social exclusion relative to perceptually identical “not my turn” events during inclusion. Importantly, we show that only for the later time window (400–800 ms) slow-wave theta power tracks self-reported ostracism distress. Specifically, greater theta power at medial frontal sites to “rejection” events predicted higher levels of ostracism distress. Alpha and beta oscillations for rejection events were unrelated to ostracism distress at either 200–400 ms or 400–800 ms time windows. Our findings extend previous studies by showing that medial frontal theta oscillations for rejection events are a neural signature of social exclusion, linked to experienced distress in middle childhood. PMID:26048623

  1. The impacts of racial group membership on people's distributive justice: an event-related potential study.

    PubMed

    Wang, Yan; Tang, Yi-Yuan; Deng, Yuqin

    2014-04-16

    How individuals and societies distribute benefits has long been studied by psychologists and sociologists. Previous work has highlighted the importance of social identity on people's justice concerns. However, it is not entirely clear how racial in-group/out-group relationship affects the brain activity in distributive justice. In this study, event-related potentials were recorded while participants made their decisions about donation allocation. Behavioral results showed that racial in-group factor affected participants' decisions on justice consideration. Participants were more likely to make relatively equity decisions when racial in-group factor was congruent with equity compared with the corresponding incongruent condition. Moreover, this incongruent condition took longer response times than congruent condition. Meanwhile, less equity decisions were made when efficiency was larger in the opposite side to equity than it was equal between the two options. Scalp event-related potential analyses revealed that greater P300 and late positive potential amplitudes were elicited by the incongruent condition compared with the congruent condition. These findings suggest that the decision-making of distributive justice could be modulated by racial group membership, and greater attentional resources or cognitive efforts are required when racial in-group factor and equity conflict with each other. PMID:24394904

  2. Influence of negative emotion on the framing effect: evidence from event-related potentials.

    PubMed

    Ma, Qingguo; Pei, Guanxiong; Wang, Kai

    2015-04-15

    The framing effect is the phenomenon in which different descriptions of an identical problem can result in different choices. The influence of negative emotions on the framing effect and its neurocognitive basis are important issues, especially in the domain of saving lives, which is essential and highly risky. In each trial of our experiment, the emotion stimulus is presented to the participants, followed by the decision-making stimulus, which comprises certain and risky options with the same expected value. Each pair of options is positively or negatively framed. The behavioral results indicate a significant interactive effect between negative emotion and frame; thus, the risk preference under the positive frame can be enhanced by negative emotions, whereas this finding is not true under the negative frame. The event-related potential analysis indicates that choosing certain options under the positive frame with negative emotion priming generates smaller P2 and P3 amplitudes and a larger N2 amplitude than with neutral emotion priming. The event-related potential findings indicate that individuals can detect risk faster and experience more conflict and increased decision difficulty if they choose certain options under the positive frame with negative priming compared with neutral priming. PMID:25714423

  3. Event-related desynchronization and synchronization quantification in motor-related EEG by Kolmogorov entropy

    NASA Astrophysics Data System (ADS)

    Gao, Lin; Wang, Jue; Chen, Longwei

    2013-06-01

    Objective. Various approaches have been applied for the quantification of event-related desynchronization/synchronization (ERD/ERS) in EEG/MEG data analysis, but most of them are based on band power analysis. In this paper, we sought a novel method using a nonlinear measurement to quantify the ERD/ERS time course of motor-related EEG. Approach. We applied Kolmogorov entropy to quantify the ERD/ERS time course of motor-related EEG in relation to hand movement imagination and execution for the first time. To further test the validity of the Kolmogorov entropy measure, we tested it on five human subjects for feature extraction to classify the left and right hand motor tasks. Main results. The results show that the relative increase and decrease of Kolmogorov entropy indicates the ERD and ERS respectively. An average classification accuracy of 87.3% was obtained for five subjects. Significance. The results prove that Kolmogorov entropy can effectively quantify the dynamic process of event-related EEG, and it also provides a novel method of classifying motor imagery tasks from scalp EEG by Kolmogorov entropy measurement with promising classification accuracy.

  4. Compressed Sensing for fMRI: Feasibility Study on the Acceleration of Non-EPI fMRI at 9.4T

    PubMed Central

    Han, Paul Kyu; Park, Sung-Hong; Kim, Seong-Gi; Ye, Jong Chul

    2015-01-01

    Conventional functional magnetic resonance imaging (fMRI) technique known as gradient-recalled echo (GRE) echo-planar imaging (EPI) is sensitive to image distortion and degradation caused by local magnetic field inhomogeneity at high magnetic fields. Non-EPI sequences such as spoiled gradient echo and balanced steady-state free precession (bSSFP) have been proposed as an alternative high-resolution fMRI technique; however, the temporal resolution of these sequences is lower than the typically used GRE-EPI fMRI. One potential approach to improve the temporal resolution is to use compressed sensing (CS). In this study, we tested the feasibility of k-t FOCUSS—one of the high performance CS algorithms for dynamic MRI—for non-EPI fMRI at 9.4T using the model of rat somatosensory stimulation. To optimize the performance of CS reconstruction, different sampling patterns and k-t FOCUSS variations were investigated. Experimental results show that an optimized k-t FOCUSS algorithm with acceleration by a factor of 4 works well for non-EPI fMRI at high field under various statistical criteria, which confirms that a combination of CS and a non-EPI sequence may be a good solution for high-resolution fMRI at high fields. PMID:26413503

  5. The effects of orientation and attention during surround suppression of small image features: A 7 Tesla fMRI study.

    PubMed

    Schallmo, Michael-Paul; Grant, Andrea N; Burton, Philip C; Olman, Cheryl A

    2016-08-01

    Although V1 responses are driven primarily by elements within a neuron's receptive field, which subtends about 1° visual angle in parafoveal regions, previous work has shown that localized fMRI responses to visual elements reflect not only local feature encoding but also long-range pattern attributes. However, separating the response to an image feature from the response to the surrounding stimulus and studying the interactions between these two responses demands both spatial precision and signal independence, which may be challenging to attain with fMRI. The present study used 7 Tesla fMRI with 1.2-mm resolution to measure the interactions between small sinusoidal grating patches (targets) at 3° eccentricity and surrounds of various sizes and orientations to test the conditions under which localized, context-dependent fMRI responses could be predicted from either psychophysical or electrophysiological data. Targets were presented at 8%, 16%, and 32% contrast while manipulating (a) spatial extent of parallel (strongly suppressive) or orthogonal (weakly suppressive) surrounds, (b) locus of attention, (c) stimulus onset asynchrony between target and surround, and (d) blocked versus event-related design. In all experiments, the V1 fMRI signal was lower when target stimuli were flanked by parallel versus orthogonal context. Attention amplified fMRI responses to all stimuli but did not show a selective effect on central target responses or a measurable effect on orientation-dependent surround suppression. Suppression of the V1 fMRI response by parallel surrounds was stronger than predicted from psychophysics but showed a better match to previous electrophysiological reports.

  6. The effects of orientation and attention during surround suppression of small image features: A 7 Tesla fMRI study.

    PubMed

    Schallmo, Michael-Paul; Grant, Andrea N; Burton, Philip C; Olman, Cheryl A

    2016-08-01

    Although V1 responses are driven primarily by elements within a neuron's receptive field, which subtends about 1° visual angle in parafoveal regions, previous work has shown that localized fMRI responses to visual elements reflect not only local feature encoding but also long-range pattern attributes. However, separating the response to an image feature from the response to the surrounding stimulus and studying the interactions between these two responses demands both spatial precision and signal independence, which may be challenging to attain with fMRI. The present study used 7 Tesla fMRI with 1.2-mm resolution to measure the interactions between small sinusoidal grating patches (targets) at 3° eccentricity and surrounds of various sizes and orientations to test the conditions under which localized, context-dependent fMRI responses could be predicted from either psychophysical or electrophysiological data. Targets were presented at 8%, 16%, and 32% contrast while manipulating (a) spatial extent of parallel (strongly suppressive) or orthogonal (weakly suppressive) surrounds, (b) locus of attention, (c) stimulus onset asynchrony between target and surround, and (d) blocked versus event-related design. In all experiments, the V1 fMRI signal was lower when target stimuli were flanked by parallel versus orthogonal context. Attention amplified fMRI responses to all stimuli but did not show a selective effect on central target responses or a measurable effect on orientation-dependent surround suppression. Suppression of the V1 fMRI response by parallel surrounds was stronger than predicted from psychophysics but showed a better match to previous electrophysiological reports. PMID:27565016

  7. The effects of orientation and attention during surround suppression of small image features: A 7 Tesla fMRI study

    PubMed Central

    Schallmo, Michael-Paul; Grant, Andrea N.; Burton, Philip C.; Olman, Cheryl A.

    2016-01-01

    Although V1 responses are driven primarily by elements within a neuron's receptive field, which subtends about 1° visual angle in parafoveal regions, previous work has shown that localized fMRI responses to visual elements reflect not only local feature encoding but also long-range pattern attributes. However, separating the response to an image feature from the response to the surrounding stimulus and studying the interactions between these two responses demands both spatial precision and signal independence, which may be challenging to attain with fMRI. The present study used 7 Tesla fMRI with 1.2-mm resolution to measure the interactions between small sinusoidal grating patches (targets) at 3° eccentricity and surrounds of various sizes and orientations to test the conditions under which localized, context-dependent fMRI responses could be predicted from either psychophysical or electrophysiological data. Targets were presented at 8%, 16%, and 32% contrast while manipulating (a) spatial extent of parallel (strongly suppressive) or orthogonal (weakly suppressive) surrounds, (b) locus of attention, (c) stimulus onset asynchrony between target and surround, and (d) blocked versus event-related design. In all experiments, the V1 fMRI signal was lower when target stimuli were flanked by parallel versus orthogonal context. Attention amplified fMRI responses to all stimuli but did not show a selective effect on central target responses or a measurable effect on orientation-dependent surround suppression. Suppression of the V1 fMRI response by parallel surrounds was stronger than predicted from psychophysics but showed a better match to previous electrophysiological reports. PMID:27565016

  8. Evaluating cognitive models of visual word recognition using fMRI: Effects of lexical and sublexical variables.

    PubMed

    Protopapas, Athanassios; Orfanidou, Eleni; Taylor, J S H; Karavasilis, Efstratios; Kapnoula, Efthymia C; Panagiotaropoulou, Georgia; Velonakis, Georgios; Poulou, Loukia S; Smyrnis, Nikolaos; Kelekis, Dimitrios

    2016-03-01

    In this study predictions of the dual-route cascaded (DRC) model of word reading were tested using fMRI. Specifically, patterns of co-localization were investigated: (a) between pseudoword length effects and a pseudowords vs. fixation contrast, to reveal the sublexical grapho-phonemic conversion (GPC) system; and (b) between word frequency effects and a words vs. pseudowords contrast, to reveal the orthographic and phonological lexicon. Forty four native speakers of Greek were scanned at 3T in an event-related lexical decision task with three event types: (a) 150 words in which frequency, length, bigram and syllable frequency, neighborhood, and orthographic consistency were decorrelated; (b) 150 matched pseudowords; and (c) fixation. Whole-brain analysis failed to reveal the predicted co-localizations. Further analysis with participant-specific regions of interest defined within masks from the group contrasts revealed length effects in left inferior parietal cortex and frequency effects in the left middle temporal gyrus. These findings could be interpreted as partially consistent with the existence of the GPC system and phonological lexicon of the model, respectively. However, there was no evidence in support of an orthographic lexicon, weakening overall support for the model. The results are discussed with respect to the prospect of using neuroimaging in cognitive model evaluation. PMID:26806289

  9. The critical relationship between the timing of stimulus presentation and data acquisition in blocked designs with fMRI.

    PubMed

    Price, C J; Veltman, D J; Ashburner, J; Josephs, O; Friston, K J

    1999-07-01

    This paper concerns the experimental design and statistical models employed by fMRI activation studies which block presentation of linguistic stimuli. In particular, we note that the relationship between the timing of stimulus presentation and data acquisition can have a substantial impact on the ability to detect activations in critical language areas, even when the stimuli are presented in blocks. Using a blocked word rhyming paradigm and repeated investigations on a single subject, activation was observed in Broca's area (left inferior frontal cortex) and Wernicke's area (left posterior temporoparietal cortex) when (i) the timing of data acquisition was distributed throughout the peristimulus time and (ii) an event-related analysis was used to model the phasic nature of the hemodynamic response within each block of repeated word stimuli. In contrast, when the timing of data acquisition relative to stimulus presentation was fixed, activation was detected in Broca's area but not consistently in Wernicke's area. Our results indicate that phasic responses to stimuli occur even in a blocked design and that the sampling and proper modeling of these responses can have profound effects on their detection. Specifically, distributed sampling over peristimulus time is essential in order to detect small activations particularly when they are transient. These findings are likely to generalize to the detection of transient signals in any cognitive paradigm.

  10. Similarity of fMRI activity patterns in left perirhinal cortex reflects semantic similarity between words.

    PubMed

    Bruffaerts, Rose; Dupont, Patrick; Peeters, Ronald; De Deyne, Simon; Storms, Gerrit; Vandenberghe, Rik

    2013-11-20

    How verbal and nonverbal visuoperceptual input connects to semantic knowledge is a core question in visual and cognitive neuroscience, with significant clinical ramifications. In an event-related functional magnetic resonance imaging (fMRI) experiment we determined how cosine similarity between fMRI response patterns to concrete words and pictures reflects semantic clustering and semantic distances between the represented entities within a single category. Semantic clustering and semantic distances between 24 animate entities were derived from a concept-feature matrix based on feature generation by >1000 subjects. In the main fMRI study, 19 human subjects performed a property verification task with written words and pictures and a low-level control task. The univariate contrast between the semantic and the control task yielded extensive bilateral occipitotemporal activation from posterior cingulate to anteromedial temporal cortex. Entities belonging to a same semantic cluster elicited more similar fMRI activity patterns in left occipitotemporal cortex. When words and pictures were analyzed separately, the effect reached significance only for words. The semantic similarity effect for words was localized to left perirhinal cortex. According to a representational similarity analysis of left perirhinal responses, semantic distances between entities correlated inversely with cosine similarities between fMRI response patterns to written words. An independent replication study in 16 novel subjects confirmed these novel findings. Semantic similarity is reflected by similarity of functional topography at a fine-grained level in left perirhinal cortex. The word specificity excludes perceptually driven confounds as an explanation and is likely to be task dependent.

  11. Combining EEG Microstates with fMRI Structural Features for Modeling Brain Activity.

    PubMed

    Michalopoulos, Kostas; Bourbakis, Nikolaos

    2015-12-01

    Combining information from Electroencephalography (EEG) and Functional Magnetic Resonance Imaging (fMRI) has been a topic of increased interest recently. The main advantage of the EEG is its high temporal resolution, in the scale of milliseconds, while the main advantage of fMRI is the detection of functional activity with good spatial resolution. The advantages of each modality seem to complement each other, providing better insight in the neuronal activity of the brain. The main goal of combining information from both modalities is to increase the spatial and the temporal localization of the underlying neuronal activity captured by each modality. This paper presents a novel technique based on the combination of these two modalities (EEG, fMRI) that allow a better representation and understanding of brain activities in time. EEG is modeled as a sequence of topographies, based on the notion of microstates. Hidden Markov Models (HMMs) were used to model the temporal evolution of the topography of the average Event Related Potential (ERP). For each model the Fisher score of the sequence is calculated by taking the gradient of the trained model parameters. The Fisher score describes how this sequence deviates from the learned HMM. Canonical Partial Least Squares (CPLS) were used to decompose the two datasets and fuse the EEG and fMRI features. In order to test the effectiveness of this method, the results of this methodology were compared with the results of CPLS using the average ERP signal of a single channel. The presented methodology was able to derive components that co-vary between EEG and fMRI and present significant differences between the two tasks.

  12. Combining EEG Microstates with fMRI Structural Features for Modeling Brain Activity.

    PubMed

    Michalopoulos, Kostas; Bourbakis, Nikolaos

    2015-12-01

    Combining information from Electroencephalography (EEG) and Functional Magnetic Resonance Imaging (fMRI) has been a topic of increased interest recently. The main advantage of the EEG is its high temporal resolution, in the scale of milliseconds, while the main advantage of fMRI is the detection of functional activity with good spatial resolution. The advantages of each modality seem to complement each other, providing better insight in the neuronal activity of the brain. The main goal of combining information from both modalities is to increase the spatial and the temporal localization of the underlying neuronal activity captured by each modality. This paper presents a novel technique based on the combination of these two modalities (EEG, fMRI) that allow a better representation and understanding of brain activities in time. EEG is modeled as a sequence of topographies, based on the notion of microstates. Hidden Markov Models (HMMs) were used to model the temporal evolution of the topography of the average Event Related Potential (ERP). For each model the Fisher score of the sequence is calculated by taking the gradient of the trained model parameters. The Fisher score describes how this sequence deviates from the learned HMM. Canonical Partial Least Squares (CPLS) were used to decompose the two datasets and fuse the EEG and fMRI features. In order to test the effectiveness of this method, the results of this methodology were compared with the results of CPLS using the average ERP signal of a single channel. The presented methodology was able to derive components that co-vary between EEG and fMRI and present significant differences between the two tasks. PMID:26584584

  13. An event-related potential study of the impact of institutional rearing on face recognition.

    PubMed

    Parker, Susan W; Nelson, Charles A

    2005-01-01

    Event-related potentials (ERPs) were recorded to brief images of caregivers' and strangers' faces for 72 institutionalized children (IG), ages 7-32 months, and compared with ERPs from 33 children, ages 8-32 months, who had never been institutionalized. All children resided in Bucharest, Romania. Prominent differences in four ERP components were observed: early negative (N170), early positive (P250), midlatency negative (Nc), and positive slow wave (PSW). For all but the P250, the amplitude of these components was larger in the never institutionalized group than the institutionalized group; this pattern was reversed for the P250. Typical effects of the Nc (amplitude greater to stranger vs. caregiver) were observed in both groups; in contrast, the IG group showed an atypical pattern in the PSW. These findings are discussed in the context of the role of experience in influencing the neural circuitry putatively involved in recognizing familiar and novel faces. PMID:16262985

  14. Event-related potentials show online influence of lexical biases on prosodic processing.

    PubMed

    Itzhak, Inbal; Pauker, Efrat; Drury, John E; Baum, Shari R; Steinhauer, Karsten

    2010-01-01

    This event-related potential study examined how the human brain integrates (i) structural preferences, (ii) lexical biases, and (iii) prosodic information when listeners encounter ambiguous 'garden path' sentences. Data showed that in the absence of overt prosodic boundaries, verb-intrinsic transitivity biases influence parsing preferences (late closure) online, resulting in a larger P600 garden path effect for transitive than intransitive verbs. Surprisingly, this lexical effect was mediated by prosodic processing, a closure positive shift brain response was elicited in total absence of acoustic boundary markers for transitively biased sentences only. Our results suggest early interactive integration of hierarchically organized processes rather than purely independent effects of lexical and prosodic information. As a primacy of prosody would predict, overt speech boundaries overrode both structural preferences and transitivity biases.

  15. Cortical topography of event-related potentials to winning and losing in a video tennis game.

    PubMed

    Ivanitsky, A M; Kurnitskaya, I V; Sobotka, S

    1986-07-01

    The event-related potentials (ERP) in frontal and posterior associative cortex in right and left hemispheres were studied in two different outcomes of a television tennis game. These outcomes were 'win' and 'loss' of the ball, the first serving as a model of positive, the second as a model of negative emotional reactions. The ERPs consisted of 4 waves: P300, N600, P800, N1000. The most characteristic interhemispheric difference for 'win' was an increase of N600 in the left posterior associative cortex, and for 'loss', a decrease of P800 in the right frontal area. Thus, the positive and negative emotional reactions have specific spatio-temporal cortical organizations. The topography of ERP related to positive and negative emotions was disturbed in depressive patients. The patients revealed a larger negativity of the right posterior associative cortex and the left frontal cortex waves both at winning and losing the ball. PMID:3733492

  16. Self-relevant beauty evaluation: Evidence from an event-related potentials study.

    PubMed

    Kong, Fanchang; Zhang, Yan; Tian, Yuan; Fan, Cuiying; Zhou, Zongkui

    2015-03-01

    This study examines the electrophysiological correlates of beauty evaluation when participants performed the self-reference task. About 13 (7 men, 6 women) undergraduates participated in the experiment using event-related potentials. Results showed that the response to self-relevant information was faster compared to other-relevant information and no significant differences for self-relevant relative to mother-relevant information were observed. Both physical and interior beauty words for self-relevant information showed an enhanced late positive component as compared to other-relevant information. Physical beauty for self-relevant information yielded a larger late positive component in contrast to mother-relevant information but not for interior beauty. This study indicates that beauty is specific to the person who judges it though an individual and one's mother may hold similar views of interior beauty. PMID:25519777

  17. Event-related potential study of attention capture by affective sounds.

    PubMed

    Thierry, Guillaume; Roberts, Mark V

    2007-02-12

    Affective pictures trigger attentional responses in humans but very little is known about the processing of affective environmental sounds. Here, we used an oddball event-related potential paradigm to determine the saliency of unpleasant sounds presented among affectively neutral sounds. Participants performed a one-back task while listening to pseudo-randomized sound sequences comprising 70% neutral sounds, 15% unpleasant sounds of matched peak intensity, and 15% louder neutral sounds. Louder neutral sounds elicited a larger N1 component and a significant P3a variation with a central distribution. Unpleasant sounds did not affect early components but elicited a significant frontocentral P3a modulation. We conclude that affective environmental sounds spontaneously capture human attention but fail to modulate early perceptual processing when sound peak intensity is controlled.

  18. Self-relevant beauty evaluation: Evidence from an event-related potentials study.

    PubMed

    Kong, Fanchang; Zhang, Yan; Tian, Yuan; Fan, Cuiying; Zhou, Zongkui

    2015-03-01

    This study examines the electrophysiological correlates of beauty evaluation when participants performed the self-reference task. About 13 (7 men, 6 women) undergraduates participated in the experiment using event-related potentials. Results showed that the response to self-relevant information was faster compared to other-relevant information and no significant differences for self-relevant relative to mother-relevant information were observed. Both physical and interior beauty words for self-relevant information showed an enhanced late positive component as compared to other-relevant information. Physical beauty for self-relevant information yielded a larger late positive component in contrast to mother-relevant information but not for interior beauty. This study indicates that beauty is specific to the person who judges it though an individual and one's mother may hold similar views of interior beauty.

  19. Attentional mechanisms in sports via brain-electrical event-related potentials.

    PubMed

    Hack, Johannes; Memmert, Daniel; Rupp, Andre

    2009-12-01

    In this study, we examined attention processes in complex, sport-specific decision-making tasks without interdependencies from anticipation. Psychophysiological and performance data recorded from advanced and intermediate level basketball referees were compared. Event-related potentials obtained while judging game situations in foul recognition and a control task provided insight into focus of attention, selective attention, and processing strategy (top-down vs. bottom-up). Results showed task-specific effects for advanced referees in components influenced by attentional focus and selective attention. Experts also seemed to profit from superior top-down strategy and were able to evaluate the stimuli more rapidly. These findings are discussed in connection with current models in neurosciences and theories of referee research.

  20. Mental workload measurement: Event-related potentials and ratings of workload and fatigue

    NASA Technical Reports Server (NTRS)

    Biferno, M. A.

    1985-01-01

    Event-related potentials were elicited when a digitized word representing a pilot's call-sign was presented. This auditory probe was presented during 27 workload conditions in a 3x3x3 design where the following variables were manipulated: short-term load, tracking task difficulty, and time-on-task. Ratings of workload and fatigue were obtained between each trial of a 2.5-hour test. The data of each subject were analyzed individually to determine whether significant correlations existed between subjective ratings and ERP component measures. Results indicated that a significant number of subjects had positive correlations between: (1) ratings of workload and P300 amplitude, (2) ratings of workload and N400 amplitude, and (3) ratings of fatigue and P300 amplitude. These data are the first to show correlations between ratings of workload or fatigue and ERP components thereby reinforcing their validity as measures of mental workload and fatigue.