Sample records for event-related fmri investigation

  1. Investigating the enhancement of template-free activation detection of event-related fMRI data using wavelet shrinkage and figures of merit.

    PubMed

    Ngan, Shing-Chung; Hu, Xiaoping; Khong, Pek-Lan

    2011-03-01

    We propose a method for preprocessing event-related functional magnetic resonance imaging (fMRI) data that can lead to enhancement of template-free activation detection. The method is based on using a figure of merit to guide the wavelet shrinkage of a given fMRI data set. Several previous studies have demonstrated that in the root-mean-square error setting, wavelet shrinkage can improve the signal-to-noise ratio of fMRI time courses. However, preprocessing fMRI data in the root-mean-square error setting does not necessarily lead to enhancement of template-free activation detection. Motivated by this observation, in this paper, we move to the detection setting and investigate the possibility of using wavelet shrinkage to enhance template-free activation detection of fMRI data. The main ingredients of our method are (i) forward wavelet transform of the voxel time courses, (ii) shrinking the resulting wavelet coefficients as directed by an appropriate figure of merit, (iii) inverse wavelet transform of the shrunk data, and (iv) submitting these preprocessed time courses to a given activation detection algorithm. Two figures of merit are developed in the paper, and two other figures of merit adapted from the literature are described. Receiver-operating characteristic analyses with simulated fMRI data showed quantitative evidence that data preprocessing as guided by the figures of merit developed in the paper can yield improved detectability of the template-free measures. We also demonstrate the application of our methodology on an experimental fMRI data set. The proposed method is useful for enhancing template-free activation detection in event-related fMRI data. It is of significant interest to extend the present framework to produce comprehensive, adaptive and fully automated preprocessing of fMRI data optimally suited for subsequent data analysis steps. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. A METHOD FOR USING BLOCKED AND EVENT-RELATED FMRI DATA TO STUDY “RESTING STATE” FUNCTIONAL CONNECTIVITY

    PubMed Central

    Fair, Damien A.; Schlaggar, Bradley L.; Cohen B.A., Alexander L.; Miezin, Francis M.; Dosenbach, Nico U.F.; Wenger, Kristin K.; Fox, Michael D.; Snyder, Abraham Z.; Raichle, Marcus E.; Petersen, Steven E.

    2007-01-01

    Resting state functional connectivity MRI (fcMRI) has become a particularly useful tool for studying regional relationships in typical and atypical populations. Because many investigators have already obtained large datasets of task related fMRI, the ability to use this existing task data for resting state fcMRI is of considerable interest. Two classes of datasets could potentially be modified to emulate resting state data. These datasets include: 1) “interleaved” resting blocks from blocked or mixed blocked/event-related sets, and 2) residual timecourses from event-related sets that lack rest blocks. Using correlation analysis, we compared the functional connectivity of resting epochs taken from a mixed blocked/event-related design fMRI data set and the residuals derived from event-related data with standard continuous resting state data to determine which class of data can best emulate resting state data. We show that despite some differences, the functional connectivity for the interleaved resting periods taken from blocked designs is both qualitatively and quantitatively very similar to that of “continuous” resting state data. In contrast, despite being qualitatively similar to “continuous” resting state data, residuals derived from event-related design data had several distinct quantitative differences. These results suggest that the interleaved resting state data such as those taken from blocked or mixed blocked/event-related fMRI designs are well-suited for resting state functional connectivity analyses. Although using event-related data residuals for resting state functional connectivity may still be useful, results should be interpreted with care. PMID:17239622

  3. Error-related processing following severe traumatic brain injury: An event-related functional magnetic resonance imaging (fMRI) study

    PubMed Central

    Sozda, Christopher N.; Larson, Michael J.; Kaufman, David A.S.; Schmalfuss, Ilona M.; Perlstein, William M.

    2011-01-01

    Continuous monitoring of one’s performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. PMID:21756946

  4. Error-related processing following severe traumatic brain injury: an event-related functional magnetic resonance imaging (fMRI) study.

    PubMed

    Sozda, Christopher N; Larson, Michael J; Kaufman, David A S; Schmalfuss, Ilona M; Perlstein, William M

    2011-10-01

    Continuous monitoring of one's performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. A validation of event-related FMRI comparisons between users of cocaine, nicotine, or cannabis and control subjects.

    PubMed

    Murphy, Kevin; Dixon, Veronica; LaGrave, Kathleen; Kaufman, Jacqueline; Risinger, Robert; Bloom, Alan; Garavan, Hugh

    2006-07-01

    Noninvasive brain imaging techniques are a powerful tool for researching the effects of drug abuse on brain activation measures. However, because many drugs have direct vascular effects, the validity of techniques that depend on blood flow measures as a reflection of neuronal activity may be called into question. This may be of particular concern in event-related functional magnetic resonance imaging (fMRI), where current analytic techniques search for a specific shape in the hemodynamic response to neuronal activity. To investigate possible alterations in task-related activation as a result of drug abuse, fMRI scans were conducted on subjects in four groups as they performed a simple event-related finger-tapping task: users of cocaine, nicotine, or cannabis and control subjects. Activation measures, as determined by two different analytic methods, did not differ between the groups. A comparison between an intravenous saline and an intravenous cocaine condition in cocaine users found a similar null result. Further in-depth analyses of the shape of the hemodynamic responses in each group also showed no differences. This study demonstrates that drug groups may be compared with control subjects using event-related fMRI without the need for any post hoc procedures to correct for possible drug-induced cardiovascular alterations. Thus, fMRI activation differences reported between these drug groups can be more confidently interpreted as reflecting neuronal differences.

  6. A Stimulus-Locked Vector Autoregressive Model for Slow Event-Related fMRI Designs

    PubMed Central

    Siegle, Greg

    2009-01-01

    Summary Neuroscientists have become increasingly interested in exploring dynamic relationships among brain regions. Such a relationship, when directed from one region toward another, is denoted by “effective connectivity.” An fMRI experimental paradigm which is well-suited for examination of effective connectivity is the slow event-related design. This design presents stimuli at sufficient temporal spacing for determining within-trial trajectories of BOLD activation, allowing for the analysis of stimulus-locked temporal covariation of brain responses in multiple regions. This may be especially important for emotional stimuli processing, which can evolve over the course of several seconds, if not longer. However, while several methods have been devised for determining fMRI effective connectivity, few are adapted to event-related designs, which include non-stationary BOLD responses and multiple levels of nesting. We propose a model tailored for exploring effective connectivity of multiple brain regions in event-related fMRI designs - a semi-parametric adaptation of vector autoregressive (VAR) models, termed “stimulus-locked VAR” (SloVAR). Connectivity coefficients vary as a function of time relative to stimulus onset, are regularized via basis expansions, and vary randomly across subjects. SloVAR obtains flexible, data-driven estimates of effective connectivity and hence is useful for building connectivity models when prior information on dynamic regional relationships is sparse. Indices derived from the coefficient estimates can also be used to relate effective connectivity estimates to behavioral or clinical measures. We demonstrate the SloVAR model on a sample of clinically depressed and normal controls, showing that early but not late cortico-amygdala connectivity appears crucial to emotional control and early but not late cortico-cortico connectivity predicts depression severity in the depressed group, relationships that would have been missed in a more

  7. Event-Related fMRI of Category Learning: Differences in Classification and Feedback Networks

    ERIC Educational Resources Information Center

    Little, Deborah M.; Shin, Silvia S.; Sisco, Shannon M.; Thulborn, Keith R.

    2006-01-01

    Eighteen healthy young adults underwent event-related (ER) functional magnetic resonance imaging (fMRI) of the brain while performing a visual category learning task. The specific category learning task required subjects to extract the rules that guide classification of quasi-random patterns of dots into categories. Following each classification…

  8. Does erotic stimulus presentation design affect brain activation patterns? Event-related vs. blocked fMRI designs.

    PubMed

    Bühler, Mira; Vollstädt-Klein, Sabine; Klemen, Jane; Smolka, Michael N

    2008-07-22

    Existing brain imaging studies, investigating sexual arousal via the presentation of erotic pictures or film excerpts, have mainly used blocked designs with long stimulus presentation times. To clarify how experimental functional magnetic resonance imaging (fMRI) design affects stimulus-induced brain activity, we compared brief event-related presentation of erotic vs. neutral stimuli with blocked presentation in 10 male volunteers. Brain activation differed depending on design type in only 10% of the voxels showing task related brain activity. Differences between blocked and event-related stimulus presentation were found in occipitotemporal and temporal regions (Brodmann Area (BA) 19, 37, 48), parietal areas (BA 7, 40) and areas in the frontal lobe (BA 6, 44). Our results suggest that event-related designs might be a potential alternative when the core interest is the detection of networks associated with immediate processing of erotic stimuli.Additionally, blocked, compared to event-related, stimulus presentation allows the emergence and detection of non-specific secondary processes, such as sustained attention, motor imagery and inhibition of sexual arousal.

  9. Does erotic stimulus presentation design affect brain activation patterns? Event-related vs. blocked fMRI designs

    PubMed Central

    Bühler, Mira; Vollstädt-Klein, Sabine; Klemen, Jane; Smolka, Michael N

    2008-01-01

    Background Existing brain imaging studies, investigating sexual arousal via the presentation of erotic pictures or film excerpts, have mainly used blocked designs with long stimulus presentation times. Methods To clarify how experimental functional magnetic resonance imaging (fMRI) design affects stimulus-induced brain activity, we compared brief event-related presentation of erotic vs. neutral stimuli with blocked presentation in 10 male volunteers. Results Brain activation differed depending on design type in only 10% of the voxels showing task related brain activity. Differences between blocked and event-related stimulus presentation were found in occipitotemporal and temporal regions (Brodmann Area (BA) 19, 37, 48), parietal areas (BA 7, 40) and areas in the frontal lobe (BA 6, 44). Conclusion Our results suggest that event-related designs might be a potential alternative when the core interest is the detection of networks associated with immediate processing of erotic stimuli. Additionally, blocked, compared to event-related, stimulus presentation allows the emergence and detection of non-specific secondary processes, such as sustained attention, motor imagery and inhibition of sexual arousal. PMID:18647397

  10. Decreased Parahippocampal Activity in Associative Priming: Evidence from an Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Yang, Jiongjiong; Meckingler, Axel; Xu, Mingwei; Zhao, Yanbing; Weng, Xuchu

    2008-01-01

    In recent years, there has been intense debate on the neural basis of associative priming, particularly on the role of the medial temporal lobe (MTL) in retrieving associative information without awareness. In this study, event-related fMRI was used while healthy subjects performed a perceptual identification task on briefly presented unrelated…

  11. Social context and perceived agency affects empathy for pain: an event-related fMRI investigation.

    PubMed

    Akitsuki, Yuko; Decety, Jean

    2009-08-15

    Studying of the impact of social context on the perception of pain in others is important for understanding the role of intentionality in interpersonal sensitivity, empathy, and implicit moral reasoning. Here we used an event-related fMRI with pain and social context (i.e., the number of individuals in the stimuli) as the two factors to investigate how different social contexts and resulting perceived agency modulate the neural response to the perception of pain in others. Twenty-six healthy participants were scanned while presented with short dynamic visual stimuli depicting painful situations accidentally caused by or intentionally caused by another individual. The main effect of perception of pain was associated with signal increase in the aMCC, insula, somatosensory cortex, SMA and PAG. Importantly, perceiving the presence of another individual led to specific hemodynamic increase in regions involved in representing social interaction and emotion regulation including the temporoparietal junction, medial prefrontal cortex, inferior frontal gyrus, and orbitofrontal cortex. Furthermore, the functional connectivity pattern between the left amygdala and other brain areas was modulated by the perceived agency. Our study demonstrates that the social context in which pain occurs modulate the brain response to other's pain. This modulation may reflect successful adaptation to potential danger present in a social interaction. Our results contribute to a better understanding of the neural mechanisms underpinning implicit moral reasoning that concern actions that can harm other people.

  12. Neural correlates of the emotional Stroop task in panic disorder patients: an event-related fMRI study.

    PubMed

    Dresler, Thomas; Hindi Attar, Catherine; Spitzer, Carsten; Löwe, Bernd; Deckert, Jürgen; Büchel, Christian; Ehlis, Ann-Christine; Fallgatter, Andreas J

    2012-12-01

    Although being a standard tool to assess interference effects of disorder-specific words in clinical samples, the neural underpinnings of the emotional Stroop task are still not well understood and have hardly been investigated in experimental case-control studies. We therefore used functional magnetic resonance imaging (fMRI) to examine the attentional bias toward panic-related words in panic disorder (PD) patients and healthy controls. Twenty PD patients (with or without agoraphobia) and 23 healthy controls matched for age and gender performed an event-related emotional Stroop task with panic-related and neutral words while undergoing 3 Tesla fMRI. On the behavioral level, PD patients showed a significant emotional Stroop effect, i.e. color-naming of panic-related words was prolonged compared to neutral words. This effect was not observed in the control group. PD patients further differed from controls on the neural level in showing increased BOLD activity in the left inferior frontal gyrus in response to panic-related relative to neutral words. PD patients showed the expected attentional bias, i.e. an altered processing of disorder-specific stimuli. This emotional Stroop effect was paralleled by increased activation in the left prefrontal cortex which may indicate altered processing of emotional stimulus material. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Event-Related fMRI Studies of Episodic Encoding and Retrieval: Meta-Analyses Using Activation Likelihood Estimation

    ERIC Educational Resources Information Center

    Spaniol, Julia; Davidson, Patrick S. R.; Kim, Alice S. N.; Han, Hua; Moscovitch, Morris; Grady, Cheryl L.

    2009-01-01

    The recent surge in event-related fMRI studies of episodic memory has generated a wealth of information about the neural correlates of encoding and retrieval processes. However, interpretation of individual studies is hampered by methodological differences, and by the fact that sample sizes are typically small. We submitted results from studies of…

  14. Processing of Emotional Distraction is both Automatic and Modulated by Attention: Evidence from an Event-Related fMRI Investigation

    PubMed Central

    Shafer, A.T.; Matveychuk, D.; Penney, T.; O’Hare, A.J.; Stokes, J.; Dolcos, F.

    2015-01-01

    Traditionally, emotional stimuli have been thought to be automatically processed via a bottom-up automatic “capture of attention” mechanism. Recently, this view has been challenged by evidence that emotion processing depends on the availability of attentional resources. Although these two views are not mutually exclusive, direct evidence reconciling them is lacking. One limitation of previous investigations supporting the traditional or competing views is that they have not systematically investigated the impact of emotional charge of task-irrelevant distraction in conjunction with manipulations of attentional demands. Using event-related fMRI, we investigated the nature of emotion-cognition interactions in a perceptual discrimination task with emotional distraction, by manipulating both the emotional charge of the distracting information and the demands of the main task. Findings suggest that emotion processing is both automatic and modulated by attention, but emotion and attention were only found to interact when finer assessments of emotional charge (comparison of most vs. least emotional conditions) were considered along with an effective manipulation of processing load (high vs. low). The study also identified brain regions reflecting the detrimental impact of emotional distraction on performance as well as regions involved in helping with such distraction. Activity in the dorsomedial prefrontal cortex (PFC) and ventrolateral PFC was linked to a detrimental impact of emotional distraction, whereas the dorsal anterior cingulate cortex and lateral occiptal cortex were involved in helping with emotional distraction. These findings demonstrate that task-irrelevant emotion processing is subjective to both the emotional content of distraction and the level of attentional demand. PMID:22332805

  15. Using event-related fMRI to examine sustained attention processes and effects of APOE ε4 in young adults.

    PubMed

    Evans, Simon; Clarke, Devin; Dowell, Nicholas G; Tabet, Naji; King, Sarah L; Hutton, Samuel B; Rusted, Jennifer M

    2018-01-01

    In this study we investigated effects of the APOE ε4 allele (which confers an enhanced risk of poorer cognitive ageing, and Alzheimer's Disease) on sustained attention (vigilance) performance in young adults using the Rapid Visual Information Processing (RVIP) task and event-related fMRI. Previous fMRI work with this task has used block designs: this study is the first to image an extended (6-minute) RVIP task. Participants were 26 carriers of the APOE ε4 allele, and 26 non carriers (aged 18-28). Pupil diameter was measured throughout, as an index of cognitive effort. We compared activity to RVIP task hits to hits on a control task (with similar visual parameters and response requirements but no working memory load): this contrast showed activity in medial frontal, inferior and superior parietal, temporal and visual cortices, consistent with previous work, demonstrating that meaningful neural data can be extracted from the RVIP task over an extended interval and using an event-related design. Behavioural performance was not affected by genotype; however, a genotype by condition (experimental task/control task) interaction on pupil diameter suggested that ε4 carriers deployed more effort to the experimental compared to the control task. fMRI results showed a condition by genotype interaction in the right hippocampal formation: only ε4 carriers showed downregulation of this region to experimental task hits versus control task hits. Experimental task beta values were correlated against hit rate: parietal correlations were seen in ε4 carriers only, frontal correlations in non-carriers only. The data indicate that, in the absence of behavioural differences, young adult ε4 carriers already show a different linkage between functional brain activity and behaviour, as well as aberrant hippocampal recruitment patterns. This may have relevance for genotype differences in cognitive ageing trajectories.

  16. Brain Correlates of Phasic Autonomic Response to Acupuncture Stimulation: An Event-Related fMRI Study

    PubMed Central

    Napadow, Vitaly; Lee, Jeungchan; Kim, Jieun; Cina, Stephen; Maeda, Yumi; Barbieri, Riccardo; Harris, Richard E.; Kettner, Norman; Park, Kyungmo

    2013-01-01

    Autonomic nervous system (ANS) response to acupuncture has been investigated by multiple studies; however, the brain circuitry underlying this response is not well understood. We applied event-related fMRI (er-fMRI) in conjunction with ANS recording (heart rate, HR; skin conductance response, SCR). Brief manual acupuncture stimuli were delivered at acupoints ST36 and SP9, while sham stimuli were delivered at control location, SH1. Acupuncture produced activation in S2, insula, and mid-cingulate cortex, and deactivation in default mode network (DMN) areas. On average, HR deceleration (HR–) and SCR were noted following both real and sham acupuncture, though magnitude of response was greater following real acupuncture and inter-subject magnitude of response correlated with evoked sensation intensity. Acupuncture events with strong SCR also produced greater anterior insula activation than without SCR. Moreover, acupuncture at SP9, which produced greater SCR, also produced stronger sharp pain sensation, and greater anterior insula activation. Conversely, acupuncture-induced HR– was associated with greater DMN deactivation. Between-event correlation demonstrated that this association was strongest for ST36, which also produced more robust HR–. In fact, DMN deactivation was significantly more pronounced across acupuncture stimuli producing HR–, versus those events characterized by acceleration (HR+). Thus, differential brain response underlying acupuncture stimuli may be related to differential autonomic outflows and may result from heterogeneity in evoked sensations. Our er-fMRI approach suggests that ANS response to acupuncture, consistent with previously characterized orienting and startle/defense responses, arises from activity within distinct subregions of the more general brain circuitry responding to acupuncture stimuli. PMID:22504841

  17. When encoding yields remembering: insights from event-related neuroimaging.

    PubMed Central

    Wagner, A D; Koutstaal, W; Schacter, D L

    1999-01-01

    To understand human memory, it is important to determine why some experiences are remembered whereas others are forgotten. Until recently, insights into the neural bases of human memory encoding, the processes by which information is transformed into an enduring memory trace, have primarily been derived from neuropsychological studies of humans with select brain lesions. The advent of functional neuroimaging methods, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), has provided a new opportunity to gain additional understanding of how the brain supports memory formation. Importantly, the recent development of event-related fMRI methods now allows for examination of trial-by-trial differences in neural activity during encoding and of the consequences of these differences for later remembering. In this review, we consider the contributions of PET and fMRI studies to the understanding of memory encoding, placing a particular emphasis on recent event-related fMRI studies of the Dm effect: that is, differences in neural activity during encoding that are related to differences in subsequent memory. We then turn our attention to the rich literature on the Dm effect that has emerged from studies using event-related potentials (ERPs). It is hoped that the integration of findings from ERP studies, which offer higher temporal resolution, with those from event-related fMRI studies, which offer higher spatial resolution, will shed new light on when and why encoding yields subsequent remembering. PMID:10466153

  18. Left prefrontal cortex control of novel occurrences during recollection: a psychopharmacological study using scopolamine and event-related fMRI.

    PubMed

    Bozzali, M; MacPherson, S E; Dolan, R J; Shallice, T

    2006-10-15

    Recollection and familiarity represent two processes involved in episodic memory retrieval. We investigated how scopolamine (an antagonist of acetylcholine muscarinic receptors) influenced brain activity during memory retrieval, using a paradigm that separated recollection and familiarity. Eighteen healthy volunteers were recruited in a randomized, placebo-controlled, double-blind design using event-related fMRI. Participants were required to perform a verbal recognition memory task within the scanner, either under placebo or scopolamine conditions. Depending on the subcondition, participants were required to make a simple recognition decision (old/new items) or base their decision on more specific information related to prior experience (target/non-target/new items). We show a drug modulation in left prefrontal and perirhinal cortex during recollection. Such an effect was specifically driven by novelty and showed an inverse correlation with accuracy performance. Additionally, we show a direct correlation between drug-related signal change in left prefrontal and perirhinal cortices. We discuss the findings in terms of acetylcholine mediation of the familiarity/novelty signal through perirhinal cortex and the control of the relative signal strength through prefrontal cortex.

  19. In vivo evaluation of the effect of stimulus distribution on FIR statistical efficiency in event-related fMRI

    PubMed Central

    Jansma, J Martijn; de Zwart, Jacco A; van Gelderen, Peter; Duyn, Jeff H; Drevets, Wayne C; Furey, Maura L

    2013-01-01

    Technical developments in MRI have improved signal to noise, allowing use of analysis methods such as Finite impulse response (FIR) of rapid event related functional MRI (er-fMRI). FIR is one of the most informative analysis methods as it determines onset and full shape of the hemodynamic response function (HRF) without any a-priori assumptions. FIR is however vulnerable to multicollinearity, which is directly related to the distribution of stimuli over time. Efficiency can be optimized by simplifying a design, and restricting stimuli distribution to specific sequences, while more design flexibility necessarily reduces efficiency. However, the actual effect of efficiency on fMRI results has never been tested in vivo. Thus, it is currently difficult to make an informed choice between protocol flexibility and statistical efficiency. The main goal of this study was to assign concrete fMRI signal to noise values to the abstract scale of FIR statistical efficiency. Ten subjects repeated a perception task with five random and m-sequence based protocol, with varying but, according to literature, acceptable levels of multicollinearity. Results indicated substantial differences in signal standard deviation, while the level was a function of multicollinearity. Experiment protocols varied up to 55.4% in standard deviation. Results confirm that quality of fMRI in an FIR analysis can significantly and substantially vary with statistical efficiency. Our in vivo measurements can be used to aid in making an informed decision between freedom in protocol design and statistical efficiency. PMID:23473798

  20. In vivo evaluation of the effect of stimulus distribution on FIR statistical efficiency in event-related fMRI.

    PubMed

    Jansma, J Martijn; de Zwart, Jacco A; van Gelderen, Peter; Duyn, Jeff H; Drevets, Wayne C; Furey, Maura L

    2013-05-15

    Technical developments in MRI have improved signal to noise, allowing use of analysis methods such as Finite impulse response (FIR) of rapid event related functional MRI (er-fMRI). FIR is one of the most informative analysis methods as it determines onset and full shape of the hemodynamic response function (HRF) without any a priori assumptions. FIR is however vulnerable to multicollinearity, which is directly related to the distribution of stimuli over time. Efficiency can be optimized by simplifying a design, and restricting stimuli distribution to specific sequences, while more design flexibility necessarily reduces efficiency. However, the actual effect of efficiency on fMRI results has never been tested in vivo. Thus, it is currently difficult to make an informed choice between protocol flexibility and statistical efficiency. The main goal of this study was to assign concrete fMRI signal to noise values to the abstract scale of FIR statistical efficiency. Ten subjects repeated a perception task with five random and m-sequence based protocol, with varying but, according to literature, acceptable levels of multicollinearity. Results indicated substantial differences in signal standard deviation, while the level was a function of multicollinearity. Experiment protocols varied up to 55.4% in standard deviation. Results confirm that quality of fMRI in an FIR analysis can significantly and substantially vary with statistical efficiency. Our in vivo measurements can be used to aid in making an informed decision between freedom in protocol design and statistical efficiency. Published by Elsevier B.V.

  1. fMRI reliability: influences of task and experimental design.

    PubMed

    Bennett, Craig M; Miller, Michael B

    2013-12-01

    As scientists, it is imperative that we understand not only the power of our research tools to yield results, but also their ability to obtain similar results over time. This study is an investigation into how common decisions made during the design and analysis of a functional magnetic resonance imaging (fMRI) study can influence the reliability of the statistical results. To that end, we gathered back-to-back test-retest fMRI data during an experiment involving multiple cognitive tasks (episodic recognition and two-back working memory) and multiple fMRI experimental designs (block, event-related genetic sequence, and event-related m-sequence). Using these data, we were able to investigate the relative influences of task, design, statistical contrast (task vs. rest, target vs. nontarget), and statistical thresholding (unthresholded, thresholded) on fMRI reliability, as measured by the intraclass correlation (ICC) coefficient. We also utilized data from a second study to investigate test-retest reliability after an extended, six-month interval. We found that all of the factors above were statistically significant, but that they had varying levels of influence on the observed ICC values. We also found that these factors could interact, increasing or decreasing the relative reliability of certain Task × Design combinations. The results suggest that fMRI reliability is a complex construct whose value may be increased or decreased by specific combinations of factors.

  2. The functional organization of trial-related activity in lexical processing after early left hemispheric brain lesions: An event-related fMRI study

    PubMed Central

    Fair, Damien A.; Choi, Alexander H.; Dosenbach, Yannic B.L.; Coalson, Rebecca S.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2009-01-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we use an event-related design, which allowed us to isolate trial related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single-subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries. PMID:19819000

  3. The functional organization of trial-related activity in lexical processing after early left hemispheric brain lesions: An event-related fMRI study.

    PubMed

    Fair, Damien A; Choi, Alexander H; Dosenbach, Yannic B L; Coalson, Rebecca S; Miezin, Francis M; Petersen, Steven E; Schlaggar, Bradley L

    2010-08-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we used an event-related design, which allowed us to isolate trial-related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial-related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries. 2009 Elsevier Inc. All rights reserved.

  4. Material-dependent and material-independent selection processes in the frontal and parietal lobes: an event-related fMRI investigation of response competition

    NASA Technical Reports Server (NTRS)

    Hazeltine, Eliot; Bunge, Silvia A.; Scanlon, Michael D.; Gabrieli, John D E.

    2003-01-01

    The present study used the flanker task [Percept. Psychophys. 16 (1974) 143] to identify neural structures that support response selection processes, and to determine which of these structures respond differently depending on the type of stimulus material associated with the response. Participants performed two versions of the flanker task while undergoing event-related functional magnetic resonance imaging (fMRI). Both versions of the task required participants to respond to a central stimulus regardless of the responses associated with simultaneously presented flanking stimuli, but one used colored circle stimuli and the other used letter stimuli. Competition-related activation was identified by comparing Incongruent trials, in which the flanker stimuli indicated a different response than the central stimulus, to Neutral stimuli, in which the flanker stimuli indicated no response. A region within the right inferior frontal gyrus exhibited significantly more competition-related activation for the color stimuli, whereas regions within the middle frontal gyri of both hemispheres exhibited more competition-related activation for the letter stimuli. The border of the right middle frontal and inferior frontal gyri and the anterior cingulate cortex (ACC) were significantly activated by competition for both types of stimulus materials. Posterior foci demonstrated a similar pattern: left inferior parietal cortex showed greater competition-related activation for the letters, whereas right parietal cortex was significantly activated by competition for both materials. These findings indicate that the resolution of response competition invokes both material-dependent and material-independent processes.

  5. Audiovisual integration of emotional signals in voice and face: an event-related fMRI study.

    PubMed

    Kreifelts, Benjamin; Ethofer, Thomas; Grodd, Wolfgang; Erb, Michael; Wildgruber, Dirk

    2007-10-01

    In a natural environment, non-verbal emotional communication is multimodal (i.e. speech melody, facial expression) and multifaceted concerning the variety of expressed emotions. Understanding these communicative signals and integrating them into a common percept is paramount to successful social behaviour. While many previous studies have focused on the neurobiology of emotional communication in the auditory or visual modality alone, far less is known about multimodal integration of auditory and visual non-verbal emotional information. The present study investigated this process using event-related fMRI. Behavioural data revealed that audiovisual presentation of non-verbal emotional information resulted in a significant increase in correctly classified stimuli when compared with visual and auditory stimulation. This behavioural gain was paralleled by enhanced activation in bilateral posterior superior temporal gyrus (pSTG) and right thalamus, when contrasting audiovisual to auditory and visual conditions. Further, a characteristic of these brain regions, substantiating their role in the emotional integration process, is a linear relationship between the gain in classification accuracy and the strength of the BOLD response during the bimodal condition. Additionally, enhanced effective connectivity between audiovisual integration areas and associative auditory and visual cortices was observed during audiovisual stimulation, offering further insight into the neural process accomplishing multimodal integration. Finally, we were able to document an enhanced sensitivity of the putative integration sites to stimuli with emotional non-verbal content as compared to neutral stimuli.

  6. Early disrupted neurovascular coupling and changed event level hemodynamic response function in type 2 diabetes: an fMRI study.

    PubMed

    Duarte, João V; Pereira, João M S; Quendera, Bruno; Raimundo, Miguel; Moreno, Carolina; Gomes, Leonor; Carrilho, Francisco; Castelo-Branco, Miguel

    2015-10-01

    Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurophysiological impairment. Vascular pathophysiology may alter the blood flow regulation in cerebral microvasculature, affecting neurovascular coupling. Reduced fMRI signal can result from decreased neuronal activation or disrupted neurovascular coupling. The uncertainty about pathophysiological mechanisms (neurodegenerative, vascular, or both) underlying brain function impairments remains. In this cross-sectional study, we investigated if the hemodynamic response function (HRF) in lesion-free brains of patients is altered by measuring BOLD (Blood Oxygenation Level-Dependent) response to visual motion stimuli. We used a standard block design to examine the BOLD response and an event-related deconvolution approach. Importantly, the latter allowed for the first time to directly extract the true shape of HRF without any assumption and probe neurovascular coupling, using performance-matched stimuli. We discovered a change in HRF in early stages of diabetes. T2DM patients show significantly different fMRI response profiles. Our visual paradigm therefore demonstrated impaired neurovascular coupling in intact brain tissue. This implies that functional studies in T2DM require the definition of HRF, only achievable with deconvolution in event-related experiments. Further investigation of the mechanisms underlying impaired neurovascular coupling is needed to understand and potentially prevent the progression of brain function decrements in diabetes.

  7. How mood challenges emotional memory formation: an fMRI investigation.

    PubMed

    Fitzgerald, Daniel A; Arnold, Jennifer F; Becker, Eni S; Speckens, Anne E M; Rinck, Mike; Rijpkema, Mark; Fernández, Guillén; Tendolkar, Indira

    2011-06-01

    Experimental mood manipulations and functional magnetic resonance imaging (fMRI) provide a unique opportunity for examining the neural correlates of mood-congruent memory formation. While prior studies in mood-disorder patients point to the medial temporal lobe in the genesis of mood-congruent memory (MCM) bias, the interaction between mood and emotional memory formation has not been investigated in healthy participants. In particular it remains unclear how regulatory structures in the pre-frontal cortex may be involved in mediating this phenomenon. In this study, event-related fMRI was performed on 20 healthy participants using a full-factorial, within-subjects repeated-measures design to examine how happy and sad moods impact memory for valenced stimuli (positive, negative and neutral words). Main effects of mood, stimulus valence and memory were examined as was activity related to successful memory formation during congruent and in-congruent moods. Behavioral results confirm an MCM bias while imaging results show amygdala and hippocampal engagement in a global mood and successful recall, respectively. MCM formation was characterized by increased activity during mood-congruent encoding of negative words in the orbito-frontal cortex (OFC) and for mood-incongruent processing of negative words in medial- and inferior-frontal gyri (MFG/IFG). These findings indicate that different pre-frontal regions facilitate mood-congruent and incongruent encoding of successfully recalled negative words at the time of learning, with OFC enhancing congruency and the left IFG and MFG helping overcome semantic incongruities between mood and stimulus valence. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Neural Correlates of Opposing Effects of Emotional Distraction on Working Memory and Episodic Memory: An Event-Related fMRI Investigation

    PubMed Central

    Dolcos, Florin; Iordan, Alexandru D.; Kragel, James; Stokes, Jared; Campbell, Ryan; McCarthy, Gregory; Cabeza, Roberto

    2013-01-01

    A fundamental question in the emotional memory literature is why emotion enhances memory in some conditions but disrupts memory in other conditions. For example, separate studies have shown that emotional stimuli tend to be better remembered in long-term episodic memory (EM), whereas emotional distracters tend to impair working memory (WM) maintenance. The first goal of this study was to directly compare the neural correlates of EM enhancement (EME) and WM impairing (WMI) effects, and the second goal was to explore individual differences in these mechanisms. During event-related functional magnetic resonance imaging (fMRI), participants maintained faces in WM while being distracted by emotional or neutral pictures presented during the delay period. EM for the distracting pictures was tested after scanning and was used to identify successful encoding activity for the picture distracters. The first goal yielded two findings: (1) emotional pictures that disrupted face WM but enhanced subsequent EM were associated with increased amygdala (AMY) and hippocampal activity (ventral system) coupled with reduced dorsolateral PFC (dlPFC) activity (dorsal system); (2) trials in which emotion enhanced EM without disrupting WM were associated with increased ventrolateral PFC activity. The ventral-dorsal switch can explain EME and WMI, while the ventrolateral PFC effect suggests a coping mechanism. The second goal yielded two additional findings: (3) participants who were more susceptible to WMI showed greater amygdala increases and PFC reductions; (4) AMY activity increased and dlPFC activity decreased with measures of attentional impulsivity. Taken together, these results clarify the mechanisms linking the enhancing and impairing effects of emotion on memory, and provide insights into the role of individual differences in the impact of emotional distraction. PMID:23761770

  9. A task-related and resting state realistic fMRI simulator for fMRI data validation

    NASA Astrophysics Data System (ADS)

    Hill, Jason E.; Liu, Xiangyu; Nutter, Brian; Mitra, Sunanda

    2017-02-01

    After more than 25 years of published functional magnetic resonance imaging (fMRI) studies, careful scrutiny reveals that most of the reported results lack fully decisive validation. The complex nature of fMRI data generation and acquisition results in unavoidable uncertainties in the true estimation and interpretation of both task-related activation maps and resting state functional connectivity networks, despite the use of various statistical data analysis methodologies. The goal of developing the proposed STANCE (Spontaneous and Task-related Activation of Neuronally Correlated Events) simulator is to generate realistic task-related and/or resting-state 4D blood oxygenation level dependent (BOLD) signals, given the experimental paradigm and scan protocol, by using digital phantoms of twenty normal brains available from BrainWeb (http://brainweb.bic.mni.mcgill.ca/brainweb/). The proposed simulator will include estimated system and modelled physiological noise as well as motion to serve as a reference to measured brain activities. In its current form, STANCE is a MATLAB toolbox with command line functions serving as an open-source add-on to SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The STANCE simulator has been designed in a modular framework so that the hemodynamic response (HR) and various noise models can be iteratively improved to include evolving knowledge about such models.

  10. Developmental differences in the neural correlates of relational encoding and recall in children: An event-related fMRI study

    PubMed Central

    Güler, O. Evren; Thomas, Kathleen M.

    2012-01-01

    Despite vast knowledge on the behavioral processes mediating the development of episodic memory, little is known about the neural mechanisms underlying these changes. We used event-related fMRI to examine the neural correlates of both encoding and recall processes during an episodic memory task in two different groups of school age children (8–9 & 12–13 years). The memory task was composed of an encoding phase in which children were presented with a series of unrelated pictorial pairs, and a retrieval phase during which one of these items acted as a cue to prompt recall of the paired item. Age-related differences in activations were observed for both encoding and recall. Younger children recruited additional regions in the right dorsolateral prefrontal and right temporal cortex compared to older children during successful encoding of the pairs. During successful recall, older children recruited additional regions in the left ventrolateral prefrontal and left inferior parietal cortex compared to younger children. The results suggest that the prefrontal cortex contributes to not only the formation of memories but also access to them, and this contribution changes with development. The protracted development of the prefrontal cortex has implications for our understanding of the development of episodic memory. PMID:22884992

  11. Bringing memory fMRI to the clinic: comparison of seven memory fMRI protocols in temporal lobe epilepsy.

    PubMed

    Towgood, Karren; Barker, Gareth J; Caceres, Alejandro; Crum, William R; Elwes, Robert D C; Costafreda, Sergi G; Mehta, Mitul A; Morris, Robin G; von Oertzen, Tim J; Richardson, Mark P

    2015-04-01

    fMRI is increasingly implemented in the clinic to assess memory function. There are multiple approaches to memory fMRI, but limited data on advantages and reliability of different methods. Here, we compared effect size, activation lateralisation, and between-sessions reliability of seven memory fMRI protocols: Hometown Walking (block design), Scene encoding (block design and event-related design), Picture encoding (block and event-related), and Word encoding (block and event-related). All protocols were performed on three occasions in 16 patients with temporal lobe epilepsy (TLE). Group T-maps showed activity bilaterally in medial temporal lobe for all protocols. Using ANOVA, there was an interaction between hemisphere and seizure-onset lateralisation (P = 0.009) and between hemisphere, protocol and seizure-onset lateralisation (P = 0.002), showing that the distribution of memory-related activity between left and right temporal lobes differed between protocols and between patients with left-onset and right-onset seizures. Using voxelwise intraclass Correlation Coefficient, between-sessions reliability was best for Hometown and Scenes (block and event). The between-sessions spatial overlap of activated voxels was also greatest for Hometown and Scenes. Lateralisation of activity between hemispheres was most reliable for Scenes (block and event) and Words (event). Using receiver operating characteristic analysis to explore the ability of each fMRI protocol to classify patients as left-onset or right-onset TLE, only the Words (event) protocol achieved a significantly above-chance classification of patients at all three sessions. We conclude that Words (event) protocol shows the best combination of between-sessions reliability of the distribution of activity between hemispheres and reliable ability to distinguish between left-onset and right-onset patients. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  12. Single trial classification for the categories of perceived emotional facial expressions: an event-related fMRI study

    NASA Astrophysics Data System (ADS)

    Song, Sutao; Huang, Yuxia; Long, Zhiying; Zhang, Jiacai; Chen, Gongxiang; Wang, Shuqing

    2016-03-01

    Recently, several studies have successfully applied multivariate pattern analysis methods to predict the categories of emotions. These studies are mainly focused on self-experienced emotions, such as the emotional states elicited by music or movie. In fact, most of our social interactions involve perception of emotional information from the expressions of other people, and it is an important basic skill for humans to recognize the emotional facial expressions of other people in a short time. In this study, we aimed to determine the discriminability of perceived emotional facial expressions. In a rapid event-related fMRI design, subjects were instructed to classify four categories of facial expressions (happy, disgust, angry and neutral) by pressing different buttons, and each facial expression stimulus lasted for 2s. All participants performed 5 fMRI runs. One multivariate pattern analysis method, support vector machine was trained to predict the categories of facial expressions. For feature selection, ninety masks defined from anatomical automatic labeling (AAL) atlas were firstly generated and each were treated as the input of the classifier; then, the most stable AAL areas were selected according to prediction accuracies, and comprised the final feature sets. Results showed that: for the 6 pair-wise classification conditions, the accuracy, sensitivity and specificity were all above chance prediction, among which, happy vs. neutral , angry vs. disgust achieved the lowest results. These results suggested that specific neural signatures of perceived emotional facial expressions may exist, and happy vs. neutral, angry vs. disgust might be more similar in information representation in the brain.

  13. Is Broca's Area Involved in the Processing of Passive Sentences? An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Yokoyama, Satoru; Watanabe, Jobu; Iwata, Kazuki; Ikuta, Naho; Haji, Tomoki; Usui, Nobuo; Taira, Masato; Miyamoto, Tadao; Nakamura, Wataru; Sato, Shigeru; Horie, Kaoru; Kawashima, Ryuta

    2007-01-01

    We used functional magnetic resonance imaging (fMRI) to investigate whether activation in Broca's area is greater during the processing of passive versus active sentences in the brains of healthy subjects. Twenty Japanese native speakers performed a visual sentence comprehension task in which they were asked to read a visually presented sentence…

  14. Differences in Processing of Taxonomic and Sequential Relations in Semantic Memory: An fMRI Investigation

    ERIC Educational Resources Information Center

    Kuchinke, Lars; van der Meer, Elke; Krueger, Frank

    2009-01-01

    Conceptual knowledge of our world is represented in semantic memory in terms of concepts and semantic relations between concepts. We used functional magnetic resonance imaging (fMRI) to examine the cortical regions underlying the processing of sequential and taxonomic relations. Participants were presented verbal cues and performed three tasks:…

  15. Combining a semantic differential with fMRI to investigate brands as cultural symbols

    PubMed Central

    Rotte, Michael

    2010-01-01

    Traditionally, complex cultural symbols like brands are investigated with psychological approaches. Often this is done by using semantic differentials, in which participants are asked to rate a brand regarding different pairs of adjectives. Only recently, functional magnetic resonance imaging (fMRI) has been used to examine brands. In the current work we used fMRI in combination with a semantic differential to cross-validate both methods and to improve the characterization of the basic factors constituting the semantic space. To this end we presented pictures of brands while recording subject's brain activity during an fMRI experiment. Results of the semantic differential arranged the brands in a semantic space illustrating their relationships to other cultural symbols. FMRI results revealed activation of the medial prefrontal cortex for brands that loaded high on the factor ‘social competence’, suggesting an involvement of a cortical network associated with social cognitions. In contrast, brands closely related to the factor ‘potency’ showed decreased activity in the superior frontal gyri, possibly related to working memory during task performance. We discuss the results as a different engagement of the prefrontal cortex when perceiving brands as cultural symbols. PMID:20080877

  16. Healthy brooders employ more attentional resources when disengaging from the negative: an event-related fMRI study.

    PubMed

    Vanderhasselt, Marie-Anne; Kühn, Simone; De Raedt, Rudi

    2011-06-01

    Depressive brooding is considered a maladaptive ruminative-thinking style that has been shown to be highly correlated with major depression. The present study in healthy participants employed event-related fMRI to uncover the neural underpinnings of emotional disengagement as it relates to depressive brooding. Thirty-four healthy, never depressed individuals performed an emotional go/no-go task with a rapid presentation of emotional faces. We focused on the contrast of inhibiting sad (happy/no-go) versus inhibiting happy (sad/no-go) information. This contrast allowed us to assess possible difficulties in disengaging from emotionally negative, as compared with emotionally positive, faces. At the behavioral level, only in high brooders were higher self-reported brooding scores correlated with more errors when sad information was inhibited, relative to happy information. At the neural level, across all participants, brooding scores were positively correlated with activity in the right dorsolateral prefrontal cortex (DLPFC; BA 46), implying that high brooders show higher DLPFC involvement when successfully disengaging from a series of negative stimuli. These results may suggest that healthy individuals who report a high brooding thinking style need to recruit more attentional control in order to disengage successfully from negative information, in a way that may be related to emotion regulation strategies. These mechanisms might protect them from developing depressive symptoms.

  17. Neural mechanisms of planning: A computational analysis using event-related fMRI

    PubMed Central

    Fincham, Jon M.; Carter, Cameron S.; van Veen, Vincent; Stenger, V. Andrew; Anderson, John R.

    2002-01-01

    To investigate the neural mechanisms of planning, we used a novel adaptation of the Tower of Hanoi (TOH) task and event-related functional MRI. Participants were trained in applying a specific strategy to an isomorph of the five-disk TOH task. After training, participants solved novel problems during event-related functional MRI. A computational cognitive model of the task was used to generate a reference time series representing the expected blood oxygen level-dependent response in brain areas involved in the manipulation and planning of goals. This time series was used as one term within a general linear modeling framework to identify brain areas in which the time course of activity varied as a function of goal-processing events. Two distinct time courses of activation were identified, one in which activation varied parametrically with goal-processing operations, and the other in which activation became pronounced only during goal-processing intensive trials. Regions showing the parametric relationship comprised a frontoparietal system and include right dorsolateral prefrontal cortex [Brodmann's area (BA 9)], bilateral parietal (BA 40/7), and bilateral premotor (BA 6) areas. Regions preferentially engaged only during goal-intensive processing include left inferior frontal gyrus (BA 44). The implications of these results for the current model, as well as for our understanding of the neural mechanisms of planning and functional specialization of the prefrontal cortex, are discussed. PMID:11880658

  18. Event-related fMRI studies of false memory: An Activation Likelihood Estimation meta-analysis.

    PubMed

    Kurkela, Kyle A; Dennis, Nancy A

    2016-01-29

    Over the last two decades, a wealth of research in the domain of episodic memory has focused on understanding the neural correlates mediating false memories, or memories for events that never happened. While several recent qualitative reviews have attempted to synthesize this literature, methodological differences amongst the empirical studies and a focus on only a sub-set of the findings has limited broader conclusions regarding the neural mechanisms underlying false memories. The current study performed a voxel-wise quantitative meta-analysis using activation likelihood estimation to investigate commonalities within the functional magnetic resonance imaging (fMRI) literature studying false memory. The results were broken down by memory phase (encoding, retrieval), as well as sub-analyses looking at differences in baseline (hit, correct rejection), memoranda (verbal, semantic), and experimental paradigm (e.g., semantic relatedness and perceptual relatedness) within retrieval. Concordance maps identified significant overlap across studies for each analysis. Several regions were identified in the general false retrieval analysis as well as multiple sub-analyses, indicating their ubiquitous, yet critical role in false retrieval (medial superior frontal gyrus, left precentral gyrus, left inferior parietal cortex). Additionally, several regions showed baseline- and paradigm-specific effects (hit/perceptual relatedness: inferior and middle occipital gyrus; CRs: bilateral inferior parietal cortex, precuneus, left caudate). With respect to encoding, analyses showed common activity in the left middle temporal gyrus and anterior cingulate cortex. No analysis identified a common cluster of activation in the medial temporal lobe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Non-neural BOLD variability in block and event-related paradigms.

    PubMed

    Kannurpatti, Sridhar S; Motes, Michael A; Rypma, Bart; Biswal, Bharat B

    2011-01-01

    Block and event-related stimulus designs are typically used in fMRI studies depending on the importance of detection power or estimation efficiency. The extent of vascular contribution to variability in block and event-related fMRI-BOLD response is not known. With scaling, the extent of vascular variability in the fMRI-BOLD response during block and event-related design tasks was investigated. Blood oxygen level-dependent (BOLD) contrast data from healthy volunteers performing a block design motor task and an event-related memory task requiring performance of a motor response were analyzed from the regions of interest (ROIs) surrounding the primary and supplementary motor cortices. Average BOLD signal change was significantly larger during the block design compared to the event-related design. In each subject, BOLD signal change across voxels in the ROIs had higher variation during the block design task compared to the event-related design task. Scaling using the resting state fluctuation of amplitude (RSFA) and breath-hold (BH), which minimizes BOLD variation due to vascular origins, reduced the within-subject BOLD variability in every subject during both tasks but significantly reduced BOLD variability across subjects only during the block design task. The strong non-neural source of intra- and intersubject variability of BOLD response during the block design compared to event-related task indicates that study designs optimizing for statistical power through enhancement of the BOLD contrast (for, e.g., block design) can be affected by enhancement of non-neural sources of BOLD variability. Copyright © 2011. Published by Elsevier Inc.

  20. High density event-related potential data acquisition in cognitive neuroscience.

    PubMed

    Slotnick, Scott D

    2010-04-16

    Functional magnetic resonance imaging (fMRI) is currently the standard method of evaluating brain function in the field of Cognitive Neuroscience, in part because fMRI data acquisition and analysis techniques are readily available. Because fMRI has excellent spatial resolution but poor temporal resolution, this method can only be used to identify the spatial location of brain activity associated with a given cognitive process (and reveals virtually nothing about the time course of brain activity). By contrast, event-related potential (ERP) recording, a method that is used much less frequently than fMRI, has excellent temporal resolution and thus can track rapid temporal modulations in neural activity. Unfortunately, ERPs are under utilized in Cognitive Neuroscience because data acquisition techniques are not readily available and low density ERP recording has poor spatial resolution. In an effort to foster the increased use of ERPs in Cognitive Neuroscience, the present article details key techniques involved in high density ERP data acquisition. Critically, high density ERPs offer the promise of excellent temporal resolution and good spatial resolution (or excellent spatial resolution if coupled with fMRI), which is necessary to capture the spatial-temporal dynamics of human brain function.

  1. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.

    PubMed

    Melcher, Tobias; Gruber, Oliver

    2009-02-01

    In the current event-related functional magnetic resonance imaging (fMRI) study, we sought to trace back Stroop-interference to circumscribed properties of task-irrelevant word information - response-incompatibility, semantic incongruency and task-reference - that we conceive as conflict factors. Thereby, we particularly wanted to disentangle intermingled contributions of semantic conflict and response conflict to the overall Stroop-interference effect. To delineate neural substrates of single factors, we referred to the logics of cognitive subtraction and cognitive conjunction. Moreover, in a second step, we conducted correlation analyses to determine the relationship between neural activations and behavioral interference costs (i.e., conflict-related reaction time (RT) slowing) so as to further elucidate the functional role of the respective brain regions in conflict processing. Response-incompatibility was associated with activation in the left premotor cortex which can be interpreted as indicating motor competition or conflict, i.e., the presence of competing response tendencies. Accordingly, this activation was positively correlated with behavioral conflict costs. Semantic incongruency exhibited specific activation in the anterior cingulate cortex (ACC), the bilateral insula, and thalamus as well as in left somatosensory cortex. As supported by the consistent negative correlation with behavioral conflict costs, these activations most probably reflect strengthened control efforts to overcome interference and to ensure adequate task performance. Finally, task-reference elicited activation in the left temporo-polar cortex (TPC) and the right medial superior as well as in left rostroventral prefrontal cortex (rvPFC, sub-threshold activation). As strongly supported by prior studies' findings, this neural activation pattern may underlie residual semantic processing of the task-irrelevant word information.

  2. An Investigation of the Relationship Between fMRI and ERP Source Localized Measurements of Brain Activity during Face Processing

    PubMed Central

    Richards, Todd; Webb, Sara Jane; Murias, Michael; Merkle, Kristen; Kleinhans, Natalia M.; Johnson, L. Clark; Poliakov, Andrew; Aylward, Elizabeth; Dawson, Geraldine

    2013-01-01

    Brain activity patterns during face processing have been extensively explored with functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs). ERP source localization adds a spatial dimension to the ERP time series recordings, which allows for a more direct comparison and integration with fMRI findings. The goals for this study were (1) to compare the spatial descriptions of neuronal activity during face processing obtained with fMRI and ERP source localization using low-resolution electro-magnetic tomography (LORETA), and (2) to use the combined information from source localization and fMRI to explore how the temporal sequence of brain activity during face processing is summarized in fMRI activation maps. fMRI and high-density ERP data were acquired in separate sessions for 17 healthy adult males for a face and object processing task. LORETA statistical maps for the comparison of viewing faces and viewing houses were coregistered and compared to fMRI statistical maps for the same conditions. The spatial locations of face processing-sensitive activity measured by fMRI and LORETA were found to overlap in a number of areas including the bilateral fusiform gyri, the right superior, middle and inferior temporal gyri, and the bilateral precuneus. Both the fMRI and LORETA solutions additionally demon-strated activity in regions that did not overlap. fMRI and LORETA statistical maps of face processing-sensitive brain activity were found to converge spatially primarily at LORETA solution latencies that were within 18 ms of the N170 latency. The combination of data from these techniques suggested that electrical brain activity at the latency of the N170 is highly represented in fMRI statistical maps. PMID:19322649

  3. The Temporal Lobes Differentiate between the Voices of Famous and Unknown People: An Event-Related fMRI Study on Speaker Recognition

    PubMed Central

    Bethmann, Anja; Scheich, Henning; Brechmann, André

    2012-01-01

    It is widely accepted that the perception of human voices is supported by neural structures located along the superior temporal sulci. However, there is an ongoing discussion to what extent the activations found in fMRI studies are evoked by the vocal features themselves or are the result of phonetic processing. To show that the temporal lobes are indeed engaged in voice processing, short utterances spoken by famous and unknown people were presented to healthy young participants whose task it was to identify the familiar speakers. In two event-related fMRI experiments, the temporal lobes were found to differentiate between familiar and unfamiliar voices such that named voices elicited higher BOLD signal intensities than unfamiliar voices. Yet, the temporal cortices did not only discriminate between familiar and unfamiliar voices. Experiment 2, which required overtly spoken responses and allowed to distinguish between four familiarity grades, revealed that there was a fine-grained differentiation between all of these familiarity levels with higher familiarity being associated with larger BOLD signal amplitudes. Finally, we observed a gradual response change such that the BOLD signal differences between unfamiliar and highly familiar voices increased with the distance of an area from the transverse temporal gyri, especially towards the anterior temporal cortex and the middle temporal gyri. Therefore, the results suggest that (the anterior and non-superior portions of) the temporal lobes participate in voice-specific processing independent from phonetic components also involved in spoken speech material. PMID:23112826

  4. The Perception of Dynamic and Static Facial Expressions of Happiness and Disgust Investigated by ERPs and fMRI Constrained Source Analysis

    PubMed Central

    Trautmann-Lengsfeld, Sina Alexa; Domínguez-Borràs, Judith; Escera, Carles; Herrmann, Manfred; Fehr, Thorsten

    2013-01-01

    A recent functional magnetic resonance imaging (fMRI) study by our group demonstrated that dynamic emotional faces are more accurately recognized and evoked more widespread patterns of hemodynamic brain responses than static emotional faces. Based on this experimental design, the present study aimed at investigating the spatio-temporal processing of static and dynamic emotional facial expressions in 19 healthy women by means of multi-channel electroencephalography (EEG), event-related potentials (ERP) and fMRI-constrained regional source analyses. ERP analysis showed an increased amplitude of the LPP (late posterior positivity) over centro-parietal regions for static facial expressions of disgust compared to neutral faces. In addition, the LPP was more widespread and temporally prolonged for dynamic compared to static faces of disgust and happiness. fMRI constrained source analysis on static emotional face stimuli indicated the spatio-temporal modulation of predominantly posterior regional brain activation related to the visual processing stream for both emotional valences when compared to the neutral condition in the fusiform gyrus. The spatio-temporal processing of dynamic stimuli yielded enhanced source activity for emotional compared to neutral conditions in temporal (e.g., fusiform gyrus), and frontal regions (e.g., ventromedial prefrontal cortex, medial and inferior frontal cortex) in early and again in later time windows. The present data support the view that dynamic facial displays trigger more information reflected in complex neural networks, in particular because of their changing features potentially triggering sustained activation related to a continuing evaluation of those faces. A combined fMRI and EEG approach thus provides an advanced insight to the spatio-temporal characteristics of emotional face processing, by also revealing additional neural generators, not identifiable by the only use of an fMRI approach. PMID:23818974

  5. Abstract semantics in the motor system? - An event-related fMRI study on passive reading of semantic word categories carrying abstract emotional and mental meaning.

    PubMed

    Dreyer, Felix R; Pulvermüller, Friedemann

    2018-03-01

    Previous research showed that modality-preferential sensorimotor areas are relevant for processing concrete words used to speak about actions. However, whether modality-preferential areas also play a role for abstract words is still under debate. Whereas recent functional magnetic resonance imaging (fMRI) studies suggest an involvement of motor cortex in processing the meaning of abstract emotion words as, for example, 'love', other non-emotional abstract words, in particular 'mental words', such as 'thought' or 'logic', are believed to engage 'amodal' semantic systems only. In the present event-related fMRI experiment, subjects passively read abstract emotional and mental nouns along with concrete action related words. Contrary to expectation, the results indicate a specific involvement of face motor areas in the processing of mental nouns, resembling that seen for face related action words. This result was confirmed when subject-specific regions of interest (ROIs) defined by motor localizers were used. We conclude that a role of motor systems in semantic processing is not restricted to concrete words but extends to at least some abstract mental symbols previously thought to be entirely 'disembodied' and divorced from semantically related sensorimotor processing. Implications for neurocognitive theories of semantics and clinical applications will be highlighted, paying specific attention to the role of brain activations as indexes of cognitive processes and their relationships to 'causal' studies addressing lesion and transcranial magnetic stimulation (TMS) effects. Possible implications for clinical practice, in particular speech language therapy, are discussed in closing. Copyright © 2017. Published by Elsevier Ltd.

  6. Emotion Regulation Training for Treating Warfighters with Combat-Related PTSD using Real-Time fMRI and EEG-Assisted Neurofeedback

    DTIC Science & Technology

    2013-09-01

    for Treating Warfighters with Combat-Related PTSD Using Real-Time fMRI and EEG -Assisted Neurofeedback . PRINCIPAL INVESTIGATOR: Jerzy Bodurka...Treating Warfighters with Combat-Related PTSD Using Real-Time fMRI and EEG -Assisted Neurofeedback . 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1...rtfMRI-nf neurofeedback training with simultaneous EEG recordings, and a pre-, post-training clinical assessment battery to evaluate improvement on the

  7. Affective context interferes with cognitive control in unipolar depression: An fMRI investigation

    PubMed Central

    Dichter, Gabriel S.; Felder, Jennifer N.; Smoski, Moria J.

    2009-01-01

    Background Unipolar major depressive disorder (MDD) is characterized by aberrant amygdala responses to sad stimuli and poor cognitive control, but the interactive effects of these impairments are poorly understood. Aim To evaluate brain activation in MDD in response to cognitive control stimuli embedded within sad and neutral contexts. Method Fourteen adults with MDD and fifteen matched controls participated in a mixed block/event-related functional magnetic resonance imaging (fMRI) task that presented oddball target stimuli embedded within blocks of sad or neutral images. Results Target events activated similar prefrontal brain regions in both groups. However, responses to target events embedded within blocks of emotional images revealed a clear group dissociation. During neutral blocks, the control group demonstrated greater activation to targets in the midfrontal gyrus and anterior cingulate relative to the MDD group, replicating previous findings of prefrontal hypo-activation in MDD samples to cognitive control stimuli. However, during sad blocks, the MDD group demonstrated greater activation in a number of prefrontal regions, including the mid-, inferior, and orbito-frontal gyri and the anterior cingulate, suggesting that relatively more prefrontal brain activation was required to disengage from the sad images to respond to the target events. Limitations A larger sample size would have provided greater statistical power, and more standardized stimuli would have increased external validity. Conclusions This double dissociation of prefrontal responses to target events embedded within neutral and sad context suggests that MDD impacts not only responses to affective events, but extends to other cognitive processes carried out in the context of affective engagement. This implies that emotional reactivity to sad events in MDD may impact functioning more broadly than previously understood. PMID:18706701

  8. The neural implementation of task rule activation in the task-cuing paradigm: an event-related fMRI study.

    PubMed

    Shi, Yiquan; Zhou, Xiaolin; Müller, Hermann J; Schubert, Torsten

    2010-07-01

    To isolate the neural correlates for task rule activation from those related to general task preparation, the effect of a cue explicitly specifying the S-R correspondences (rule-cue) was contrasted with the effects of a cue specifying only the task to performed (task-cue). While the task-cue provides merely information about the type of task, the rule-cue is explicit about both the task type and the task rule (i.e., the set of S-R correspondences). The rule-cue was expected to activate the task rule more efficiently in the preparation period (prior to target presentation); by contrast, in the task-cue condition, part of the task rule activation was expected to be postponed into the task execution period (following the presentation of the target). In an event-related fMRI experiment, we found the right anterior and middle parts of the middle frontal and superior frontal gyri, the right inferior frontal junction, the pre-SMA, as well as the right superior and inferior parietal lobes to show larger activation elicited by the rule-cue than by the task-cue prior to target presentation. Conversely, the results revealed larger activations in these regions in the task-cue than in the rule-cue condition during the task execution period. In summary, this study identified some of the neural correlates of task rule activation and showed that these are a subset of the general task preparation network. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  9. Electrodermal Recording and fMRI to Inform Sensorimotor Recovery in Stroke Patients

    PubMed Central

    MacIntosh, Bradley J.; McIlroy, William E.; Mraz, Richard; Staines, W. Richard; Black, Sandra E.; Graham, Simon J.

    2016-01-01

    Background Functional magnetic resonance imaging (fMRI) appears to be useful for investigating motor recovery after stroke. Some of the potential confounders of brain activation studies, however, could be mitigated through complementary physiological monitoring. Objective To investigate a sensorimotor fMRI battery that included simultaneous measurement of electrodermal activity in subjects with hemiparetic stroke to provide a measure related to the sense of effort during motor performance. Methods Bilateral hand and ankle tasks were performed by 6 patients with stroke (2 subacute, 4 chronic) during imaging with blood oxygen level-dependent (BOLD) fMRI using an event-related design. BOLD percent changes, peak activation, and laterality index values were calculated in the sensorimotor cortex. Electrodermal recordings were made concurrently and used as a regressor. Results Sensorimotor BOLD time series and percent change values provided evidence of an intact motor network in each of these well-recovered patients. During tasks involving the hemiparetic limb, electrodermal activity changes were variable in amplitude, and electrodermal activity time-series data showed significant correlations with fMRI in 3 of 6 patients. No such correlations were observed for control tasks involving the unaffected lower limb. Conclusions Electrodermal activity activation maps implicated the contralesional over the ipsilesional hemisphere, supporting the notion that stroke patients may require higher order motor processing to perform simple tasks. Electrodermal activity recordings may be useful as a physiological marker of differences in effort required during movements of a subject’s hemiparetic compared with the unaffected limb during fMRI studies. PMID:18784267

  10. Decoding fMRI events in Sensorimotor Motor Network using Sparse Paradigm Free Mapping and Activation Likelihood Estimates

    PubMed Central

    Tan, Francisca M.; Caballero-Gaudes, César; Mullinger, Karen J.; Cho, Siu-Yeung; Zhang, Yaping; Dryden, Ian L.; Francis, Susan T.; Gowland, Penny A.

    2017-01-01

    Most fMRI studies map task-driven brain activity using a block or event-related paradigm. Sparse Paradigm Free Mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information; but relating the detected events to brain function remains a challenge. In this study, we developed a decoding method for SPFM using a coordinate-based meta-analysis method of Activation Likelihood Estimation (ALE). We defined meta-maps of statistically significant ALE values that correspond to types of events and calculated a summation overlap between the normalized meta-maps and SPFM maps. As a proof of concept, this framework was applied to relate SPFM-detected events in the Sensorimotor Network (SMN) to six motor function (left/right fingers, left/right toes, swallowing and eye blinks). We validated the framework using simultaneous Electromyography-fMRI experiments and motor tasks with short and long duration, and random inter-stimulus interval. The decoding scores were considerably lower for eye movements relative to other movement types tested. The average successful rate for short and long motor events was 77 ± 13% and 74 ± 16% respectively, excluding eye movements. We found good agreement between the decoding results and EMG for most events and subjects, with a range in sensitivity between 55 and 100%, excluding eye movements. The proposed method was then used to classify the movement types of spontaneous single-trial events in the SMN during resting state, which produced an average successful rate of 22 ± 12%. Finally, this paper discusses methodological implications and improvements to increase the decoding performance. PMID:28815863

  11. Frontolimbic dysfunction in response to facial emotion in borderline personality disorder: an event-related fMRI study

    PubMed Central

    Minzenberg, Michael J.; Fan, Jin; New, Antonia S.; Tang, Cheuk Y.; Siever, Larry J.

    2007-01-01

    Clinical hallmarks of borderline personality disorder (BPD) include social and emotional dysregulation. We tested a model of frontolimbic dysfunction in facial emotion processing in BPD. Groups of 12 unmedicated adults with BPD by DSM-IV and 12 demographically-matched healthy controls (HC) viewed facial expressions (Conditions) of neutral emotion, fear and anger, and made gender discriminations during rapid event-related functional magnetic resonance imaging (fMRI). Analysis of variance of Region of Interest signal change revealed a statistically significant effect of the Group-by-Region-by-Condition interaction. This was due to the BPD group exhibiting a significantly larger magnitude of deactivation (relative to HC) in the bilateral rostral/subgenual anterior cingulate cortex (ACC) to fear and in the left ACC to fear minus neutral; and significantly greater activation in the right amygdala to fear minus neutral. There were no significant between-group differences in ROI signal change in response to anger. In voxel-wise analyses constrained within these ROIs, the BPD group exhibited significant changes in the fear minus neutral contrast, with relatively less activation in the bilateral rostral/subgenual ACC, and greater activation in the right amygdala. In the anger minus neutral contrast this pattern was reversed, with the BPD group showing greater activation in the bilateral rostral/subgenual ACC and less activation in the bilateral amygdala. We conclude that adults with BPD exhibit changes in fronto-limbic activity in the processing of fear stimuli, with exaggerated amygdala response and impaired emotion-modulation of ACC activity. The neural substrates underlying processing of anger may also be altered. These changes may represent an expression of the volumetric and serotonergic deficits observed in these brain areas in BPD. PMID:17601709

  12. Functionally integrated neural processing of linguistic and talker information: An event-related fMRI and ERP study.

    PubMed

    Zhang, Caicai; Pugh, Kenneth R; Mencl, W Einar; Molfese, Peter J; Frost, Stephen J; Magnuson, James S; Peng, Gang; Wang, William S-Y

    2016-01-01

    Speech signals contain information of both linguistic content and a talker's voice. Conventionally, linguistic and talker processing are thought to be mediated by distinct neural systems in the left and right hemispheres respectively, but there is growing evidence that linguistic and talker processing interact in many ways. Previous studies suggest that talker-related vocal tract changes are processed integrally with phonetic changes in the bilateral posterior superior temporal gyrus/superior temporal sulcus (STG/STS), because the vocal tract parameter influences the perception of phonetic information. It is yet unclear whether the bilateral STG is also activated by the integral processing of another parameter - pitch, which influences the perception of lexical tone information and is related to talker differences in tone languages. In this study, we conducted separate functional magnetic resonance imaging (fMRI) and event-related potential (ERP) experiments to examine the spatial and temporal loci of interactions of lexical tone and talker-related pitch processing in Cantonese. We found that the STG was activated bilaterally during the processing of talker changes when listeners attended to lexical tone changes in the stimuli and during the processing of lexical tone changes when listeners attended to talker changes, suggesting that lexical tone and talker processing are functionally integrated in the bilateral STG. It extends the previous study, providing evidence for a general neural mechanism of integral phonetic and talker processing in the bilateral STG. The ERP results show interactions of lexical tone and talker processing 500-800ms after auditory word onset (a simultaneous posterior P3b and a frontal negativity). Moreover, there is some asymmetry in the interaction, such that unattended talker changes affect linguistic processing more than vice versa, which may be related to the ambiguity that talker changes cause in speech perception and/or attention bias

  13. Fronto-limbic dysfunction in response to facial emotion in borderline personality disorder: an event-related fMRI study.

    PubMed

    Minzenberg, Michael J; Fan, Jin; New, Antonia S; Tang, Cheuk Y; Siever, Larry J

    2007-08-15

    Clinical hallmarks of borderline personality disorder (BPD) include social and emotional dysregulation. We tested a model of fronto-limbic dysfunction in facial emotion processing in BPD. Groups of 12 unmedicated adults with BPD by DSM-IV and 12 demographically-matched healthy controls (HC) viewed facial expressions (Conditions) of neutral emotion, fear and anger, and made gender discriminations during rapid event-related functional magnetic resonance imaging (fMRI). Analysis of variance of Region of Interest signal change revealed a statistically significant effect of the Group-by-Region-by-Condition interaction. This was due to the BPD group exhibiting a significantly larger magnitude of deactivation (relative to HC) in the bilateral rostral/subgenual anterior cingulate cortex (ACC) to fear and in the left ACC to fear minus neutral; and significantly greater activation in the right amygdala to fear minus neutral. There were no significant between-group differences in ROI signal change in response to anger. In voxel-wise analyses constrained within these ROIs, the BPD group exhibited significant changes in the fear minus neutral contrast, with relatively less activation in the bilateral rostral/subgenual ACC, and greater activation in the right amygdala. In the anger minus neutral contrast this pattern was reversed, with the BPD group showing greater activation in the bilateral rostral/subgenual ACC and less activation in the bilateral amygdala. We conclude that adults with BPD exhibit changes in fronto-limbic activity in the processing of fear stimuli, with exaggerated amygdala response and impaired emotion-modulation of ACC activity. The neural substrates underlying processing of anger may also be altered. These changes may represent an expression of the volumetric and serotonergic deficits observed in these brain areas in BPD.

  14. Sex-Related Hemispheric Lateralization of Amygdala Function in Emotionally Influenced Memory: An fMRI Investigation

    ERIC Educational Resources Information Center

    Cahill, Larry; Uncapher, Melina; Kilpatrick, Lisa; Alkire, Mike T.; Turner, Jessica

    2004-01-01

    The amygdala appears necessary for enhanced long-term memory associated with emotionally arousing events. Recent brain imaging investigations support this view and indicate a sex-related hemispheric lateralization exists in the amygdala relationship to memory for emotional material. This study confirms and further explores this finding. Healthy…

  15. Functional feature embedded space mapping of fMRI data.

    PubMed

    Hu, Jin; Tian, Jie; Yang, Lei

    2006-01-01

    We have proposed a new method for fMRI data analysis which is called Functional Feature Embedded Space Mapping (FFESM). Our work mainly focuses on the experimental design with periodic stimuli which can be described by a number of Fourier coefficients in the frequency domain. A nonlinear dimension reduction technique Isomap is applied to the high dimensional features obtained from frequency domain of the fMRI data for the first time. Finally, the presence of activated time series is identified by the clustering method in which the information theoretic criterion of minimum description length (MDL) is used to estimate the number of clusters. The feasibility of our algorithm is demonstrated by real human experiments. Although we focus on analyzing periodic fMRI data, the approach can be extended to analyze non-periodic fMRI data (event-related fMRI) by replacing the Fourier analysis with a wavelet analysis.

  16. Neural Correlates of Direct Access Trading in a Real Stock Market: An fMRI Investigation.

    PubMed

    Raggetti, GianMario; Ceravolo, Maria G; Fattobene, Lucrezia; Di Dio, Cinzia

    2017-01-01

    Background: While financial decision making has been barely explored, no study has previously investigated the neural correlates of individual decisions made by professional traders involved in real stock market negotiations, using their own financial resources. Aim: We sought to detect how different brain areas are modulated by factors like age, expertise, psychological profile (speculative risk seeking or aversion) and, eventually, size and type (Buy/Sell) of stock negotiations, made through Direct Access Trading (DAT) platforms. Subjects and methods: Twenty male traders underwent fMRI while negotiating in the Italian stock market using their own preferred trading platform. Results: At least 20 decision events were collected during each fMRI session. Risk averse traders performed a lower number of financial transactions with respect to risk seekers, with a lower average economic value, but with a higher rate of filled proposals. Activations were observed in cortical and subcortical areas traditionally involved in decision processes, including the ventrolateral and dorsolateral prefrontal cortex (vlPFC, dlPFC), the posterior parietal cortex (PPC), the nucleus accumbens (NAcc), and dorsal striatum. Regression analysis indicated an important role of age in modulating activation of left NAcc, while traders' expertise was negatively related to activation of vlPFC. High value transactions were associated with a stronger activation of the right PPC when subjects' buy rather than sell. The success of the trading activity, based on a large number of filled transactions, was related with higher activation of vlPFC and dlPFC. Independent of chronological and professional age, traders differed in their attitude to DAT, with distinct brain activity profiles being detectable during fMRI sessions. Those subjects who described themselves as very self-confident, showed a lower or absent activation of both the caudate nucleus and the dlPFC, while more reflexive traders showed

  17. Neural Correlates of Direct Access Trading in a Real Stock Market: An fMRI Investigation

    PubMed Central

    Raggetti, GianMario; Ceravolo, Maria G.; Fattobene, Lucrezia; Di Dio, Cinzia

    2017-01-01

    Background: While financial decision making has been barely explored, no study has previously investigated the neural correlates of individual decisions made by professional traders involved in real stock market negotiations, using their own financial resources. Aim: We sought to detect how different brain areas are modulated by factors like age, expertise, psychological profile (speculative risk seeking or aversion) and, eventually, size and type (Buy/Sell) of stock negotiations, made through Direct Access Trading (DAT) platforms. Subjects and methods: Twenty male traders underwent fMRI while negotiating in the Italian stock market using their own preferred trading platform. Results: At least 20 decision events were collected during each fMRI session. Risk averse traders performed a lower number of financial transactions with respect to risk seekers, with a lower average economic value, but with a higher rate of filled proposals. Activations were observed in cortical and subcortical areas traditionally involved in decision processes, including the ventrolateral and dorsolateral prefrontal cortex (vlPFC, dlPFC), the posterior parietal cortex (PPC), the nucleus accumbens (NAcc), and dorsal striatum. Regression analysis indicated an important role of age in modulating activation of left NAcc, while traders' expertise was negatively related to activation of vlPFC. High value transactions were associated with a stronger activation of the right PPC when subjects' buy rather than sell. The success of the trading activity, based on a large number of filled transactions, was related with higher activation of vlPFC and dlPFC. Independent of chronological and professional age, traders differed in their attitude to DAT, with distinct brain activity profiles being detectable during fMRI sessions. Those subjects who described themselves as very self-confident, showed a lower or absent activation of both the caudate nucleus and the dlPFC, while more reflexive traders showed

  18. Decoding fMRI events in sensorimotor motor network using sparse paradigm free mapping and activation likelihood estimates.

    PubMed

    Tan, Francisca M; Caballero-Gaudes, César; Mullinger, Karen J; Cho, Siu-Yeung; Zhang, Yaping; Dryden, Ian L; Francis, Susan T; Gowland, Penny A

    2017-11-01

    Most functional MRI (fMRI) studies map task-driven brain activity using a block or event-related paradigm. Sparse paradigm free mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information, but relating the detected events to brain function remains a challenge. In this study, we developed a decoding method for SPFM using a coordinate-based meta-analysis method of activation likelihood estimation (ALE). We defined meta-maps of statistically significant ALE values that correspond to types of events and calculated a summation overlap between the normalized meta-maps and SPFM maps. As a proof of concept, this framework was applied to relate SPFM-detected events in the sensorimotor network (SMN) to six motor functions (left/right fingers, left/right toes, swallowing, and eye blinks). We validated the framework using simultaneous electromyography (EMG)-fMRI experiments and motor tasks with short and long duration, and random interstimulus interval. The decoding scores were considerably lower for eye movements relative to other movement types tested. The average successful rate for short and long motor events were 77 ± 13% and 74 ± 16%, respectively, excluding eye movements. We found good agreement between the decoding results and EMG for most events and subjects, with a range in sensitivity between 55% and 100%, excluding eye movements. The proposed method was then used to classify the movement types of spontaneous single-trial events in the SMN during resting state, which produced an average successful rate of 22 ± 12%. Finally, this article discusses methodological implications and improvements to increase the decoding performance. Hum Brain Mapp 38:5778-5794, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Investigating Inhibitory Control in Children with Epilepsy: An fMRI Study

    PubMed Central

    Triplett, Regina L.; Velanova, Katerina; Luna, Beatriz; Padmanabhan, Aarthi; Gaillard, William D.; Asato, Miya R.

    2014-01-01

    SUMMARY Objective Deficits in executive function are increasingly noted in children with epilepsy and have been associated with poor academic and psychosocial outcomes. Impaired inhibitory control contributes to executive dysfunction in children with epilepsy; however, its neuroanatomic basis has not yet been investigated. We used functional Magnetic Resonance Imaging (fMRI) to probe the integrity of activation in brain regions underlying inhibitory control in children with epilepsy. Methods This cross-sectional study consisted of 34 children aged 8 to 17 years: 17 with well-controlled epilepsy and 17 age-and sex-matched controls. Participants performed the antisaccade (AS) task, representative of inhibitory control, during fMRI scanning. We compared AS performance during neutral and reward task conditions and evaluated task-related blood-oxygen level dependent (BOLD) activation. Results Children with epilepsy demonstrated impaired AS performance compared to controls during both neutral (non-reward) and reward trials, but exhibited significant task improvement during reward trials. Post-hoc analysis revealed that younger patients made more errors than older patients and all controls. fMRI results showed preserved activation in task-relevant regions in patients and controls, with the exception of increased activation in the left posterior cingulate gyrus in patients specifically with generalized epilepsy across neutral and reward trials. Significance Despite impaired inhibitory control, children with epilepsy accessed typical neural pathways as did their peers without epilepsy. Children with epilepsy showed improved behavioral performance in response to the reward condition, suggesting potential benefits of the use of incentives in cognitive remediation. PMID:25223606

  20. Re-Evaluating Dissociations between Implicit and Explicit Category Learning: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Gureckis, Todd M.; James, Thomas W.; Nosofsky, Robert M.

    2011-01-01

    Recent fMRI studies have found that distinct neural systems may mediate perceptual category learning under implicit and explicit learning conditions. In these previous studies, however, different stimulus-encoding processes may have been associated with implicit versus explicit learning. The present design was aimed at decoupling the influence of…

  1. Effects of ageing and Alzheimer disease on haemodynamic response function: a challenge for event-related fMRI.

    PubMed

    Asemani, Davud; Morsheddost, Hassan; Shalchy, Mahsa Alizadeh

    2017-06-01

    Functional magnetic resonance imaging (fMRI) can generate brain images that show neuronal activity due to sensory, cognitive or motor tasks. Haemodynamic response function (HRF) may be considered as a biomarker to discriminate the Alzheimer disease (AD) from healthy ageing. As blood-oxygenation-level-dependent fMRI signal is much weak and noisy, particularly for the elderly subjects, a robust method is necessary for HRF estimation to efficiently differentiate the AD. After applying minimum description length wavelet as an extra denoising step, deconvolution algorithm is here employed for HRF estimation, substituting the averaging method used in the previous works. The HRF amplitude peaks are compared for three groups HRF of young, non-demented and demented elderly groups for both vision and motor regions. Prior works often reported significant differences in the HRF peak amplitude between the young and the elderly. The authors' experimentations show that the HRF peaks are not significantly different comparing the young adults with the elderly (either demented or non-demented). It is here demonstrated that the contradictory findings of the previous studies on the HRF peaks for the elderly compared with the young are originated from the noise contribution in fMRI data.

  2. Functional MRI in the Investigation of Blast-Related Traumatic Brain Injury

    PubMed Central

    Graner, John; Oakes, Terrence R.; French, Louis M.; Riedy, Gerard

    2012-01-01

    This review focuses on the application of functional magnetic resonance imaging (fMRI) to the investigation of blast-related traumatic brain injury (bTBI). Relatively little is known about the exact mechanisms of neurophysiological injury and pathological and functional sequelae of bTBI. Furthermore, in mild bTBI, standard anatomical imaging techniques (MRI and computed tomography) generally fail to show focal lesions and most of the symptoms present as subjective clinical functional deficits. Therefore, an objective test of brain functionality has great potential to aid in patient diagnosis and provide a sensitive measurement to monitor disease progression and treatment. The goal of this review is to highlight the relevant body of blast-related TBI literature and present suggestions and considerations in the development of fMRI studies for the investigation of bTBI. The review begins with a summary of recent bTBI publications followed by discussions of various elements of blast-related injury. Brief reviews of some fMRI techniques that focus on mental processes commonly disrupted by bTBI, including working memory, selective attention, and emotional processing, are presented in addition to a short review of resting state fMRI. Potential strengths and weaknesses of these approaches as regards bTBI are discussed. Finally, this review presents considerations that must be made when designing fMRI studies for bTBI populations, given the heterogeneous nature of bTBI and its high rate of comorbidity with other physical and psychological injuries. PMID:23460082

  3. Neural correlates of remembering/knowing famous people: an event-related fMRI study.

    PubMed

    Denkova, Ekaterina; Botzung, Anne; Manning, Lilianne

    2006-01-01

    It has been suggested that knowledge about some famous people depends on both a generic semantic component and an autobiographical component [Westmacott, R., & Moscovitch, M. (2003). The contribution of autobiographical significance to semantic memory. Memory and Cognition, 31, 761-774]. The neuropsychological studies of semantic dementia (SD) and Alzheimer disease (AD) demonstrated that the two aspects are very likely to be mediated by different brain structures, with the episodic component being highly dependent upon the integrity of the medial temporal lobe (MTL) [Westmacott, R., Black, S. E., Freedman, M., & Moscovitch, M. (2004). The contribution of autobiographical significance to semantic memory: Evidence from Alzheimer's disease, semantic dementia, and amnesia. Neuropsychologia, 42, 25-48]. Using an fMRI design in healthy participants, we aimed: (i) to investigate the pattern of brain activations sustaining the autobiographical and the semantic aspects of knowledge about famous persons. Moreover, (ii) we examined if the stimulus material (face/name) influences the lateralisation of the cerebral networks. Our findings suggested that different patterns of activation corresponded to the presence or absence of personal significance linked to semantic knowledge; MTL was engaged only in the former case. Although choice of stimulus material did not influence the hemispheric lateralisation in "classical" terms, it did play a role in engaging different cerebral regions.

  4. Task-related fMRI in hemiplegic cerebral palsy-A systematic review.

    PubMed

    Gaberova, Katerina; Pacheva, Iliyana; Ivanov, Ivan

    2018-04-27

    Functional magnetic resonance imaging (fMRI) is used widely to study reorganization after early brain injuries. Unilateral cerebral palsy (UCP) is an appealing model for studying brain plasticity by fMRI. To summarize the results of task-related fMRI studies in UCP in order to get better understanding of the mechanism of neuroplasticity of the developing brain and its reorganization potential and better translation of this knowledge to clinical practice. A systematic search was conducted on the PubMed database by keywords: "cerebral palsy", "congenital hemiparesis", "unilateral", "Magnetic resonance imaging" , "fMRI", "reorganization", and "plasticity" The exclusion criteria were as follows: case reports; reviews; studies exploring non-UCP patients; and studies with results of rehabilitation. We found 7 articles investigated sensory tasks; 9 studies-motor tasks; 12 studies-speech tasks. Ipsilesional reorganization is dominant in sensory tasks (in 74/77 patients), contralesional-in only 3/77. In motor tasks, bilateral activation is found in 64/83, only contralesional-in 11/83, and only ipsilesional-8/83. Speech perception is bilateral in 35/51, only or dominantly ipsilesional (left-sided) in 8/51, and dominantly contralesional (right-sided) in 8/51. Speech production is only or dominantly contralesional (right-sided) in 88/130, bilateral-26/130, and only or dominantly ipsilesional (left-sided)-in 16/130. The sensory system is the most "rigid" to reorganization probably due to absence of ipsilateral (contralesional) primary somatosensory representation. The motor system is more "flexible" due to ipsilateral (contralesional) motor pathways. The speech perception and production show greater flexibility resulting in more bilateral or contralateral activation. The models of reorganization are variable, depending on the development and function of each neural system and the extent and timing of the damage. The plasticity patterns may guide therapeutic intervention and

  5. Investigating the neural basis for functional and effective connectivity. Application to fMRI

    PubMed Central

    Horwitz, Barry; Warner, Brent; Fitzer, Julie; Tagamets, M.-A; Husain, Fatima T; Long, Theresa W

    2005-01-01

    Viewing cognitive functions as mediated by networks has begun to play a central role in interpreting neuroscientific data, and studies evaluating interregional functional and effective connectivity have become staples of the neuroimaging literature. The neurobiological substrates of functional and effective connectivity are, however, uncertain. We have constructed neurobiologically realistic models for visual and auditory object processing with multiple interconnected brain regions that perform delayed match-to-sample (DMS) tasks. We used these models to investigate how neurobiological parameters affect the interregional functional connectivity between functional magnetic resonance imaging (fMRI) time-series. Variability is included in the models as subject-to-subject differences in the strengths of anatomical connections, scan-to-scan changes in the level of attention, and trial-to-trial interactions with non-specific neurons processing noise stimuli. We find that time-series correlations between integrated synaptic activities between the anterior temporal and the prefrontal cortex were larger during the DMS task than during a control task. These results were less clear when the integrated synaptic activity was haemodynamically convolved to generate simulated fMRI activity. As the strength of the model anatomical connectivity between temporal and frontal cortex was weakened, so too was the strength of the corresponding functional connectivity. These results provide a partial validation for using fMRI functional connectivity to assess brain interregional relations. PMID:16087450

  6. Implicit structured sequence learning: an fMRI study of the structural mere-exposure effect

    PubMed Central

    Folia, Vasiliki; Petersson, Karl Magnus

    2014-01-01

    In this event-related fMRI study we investigated the effect of 5 days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the fMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference fMRI baseline measurement allowed us to conclude that these fMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs. PMID:24550865

  7. Implicit structured sequence learning: an fMRI study of the structural mere-exposure effect.

    PubMed

    Folia, Vasiliki; Petersson, Karl Magnus

    2014-01-01

    In this event-related fMRI study we investigated the effect of 5 days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the fMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference fMRI baseline measurement allowed us to conclude that these fMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs.

  8. Fixation-related FMRI analysis in the domain of reading research: using self-paced eye movements as markers for hemodynamic brain responses during visual letter string processing.

    PubMed

    Richlan, Fabio; Gagl, Benjamin; Hawelka, Stefan; Braun, Mario; Schurz, Matthias; Kronbichler, Martin; Hutzler, Florian

    2014-10-01

    The present study investigated the feasibility of using self-paced eye movements during reading (measured by an eye tracker) as markers for calculating hemodynamic brain responses measured by functional magnetic resonance imaging (fMRI). Specifically, we were interested in whether the fixation-related fMRI analysis approach was sensitive enough to detect activation differences between reading material (words and pseudowords) and nonreading material (line and unfamiliar Hebrew strings). Reliable reading-related activation was identified in left hemisphere superior temporal, middle temporal, and occipito-temporal regions including the visual word form area (VWFA). The results of the present study are encouraging insofar as fixation-related analysis could be used in future fMRI studies to clarify some of the inconsistent findings in the literature regarding the VWFA. Our study is the first step in investigating specific visual word recognition processes during self-paced natural sentence reading via simultaneous eye tracking and fMRI, thus aiming at an ecologically valid measurement of reading processes. We provided the proof of concept and methodological framework for the analysis of fixation-related fMRI activation in the domain of reading research. © The Author 2013. Published by Oxford University Press.

  9. Event-related fMRI studies of episodic encoding and retrieval: meta-analyses using activation likelihood estimation.

    PubMed

    Spaniol, Julia; Davidson, Patrick S R; Kim, Alice S N; Han, Hua; Moscovitch, Morris; Grady, Cheryl L

    2009-07-01

    The recent surge in event-related fMRI studies of episodic memory has generated a wealth of information about the neural correlates of encoding and retrieval processes. However, interpretation of individual studies is hampered by methodological differences, and by the fact that sample sizes are typically small. We submitted results from studies of episodic memory in healthy young adults, published between 1998 and 2007, to a voxel-wise quantitative meta-analysis using activation likelihood estimation [Laird, A. R., McMillan, K. M., Lancaster, J. L., Kochunov, P., Turkeltaub, P. E., & Pardo, J. V., et al. (2005). A comparison of label-based review and ALE meta-analysis in the stroop task. Human Brain Mapping, 25, 6-21]. We conducted separate meta-analyses for four contrasts of interest: episodic encoding success as measured in the subsequent-memory paradigm (subsequent Hit vs. Miss), episodic retrieval success (Hit vs. Correct Rejection), objective recollection (e.g., Source Hit vs. Item Hit), and subjective recollection (e.g., Remember vs. Know). Concordance maps revealed significant cross-study overlap for each contrast. In each case, the left hemisphere showed greater concordance than the right hemisphere. Both encoding and retrieval success were associated with activation in medial-temporal, prefrontal, and parietal regions. Left ventrolateral prefrontal cortex (PFC) and medial-temporal regions were more strongly involved in encoding, whereas left superior parietal and dorsolateral and anterior PFC regions were more strongly involved in retrieval. Objective recollection was associated with activation in multiple PFC regions, as well as multiple posterior parietal and medial-temporal areas, but not hippocampus. Subjective recollection, in contrast, showed left hippocampal involvement. In summary, these results identify broadly consistent activation patterns associated with episodic encoding and retrieval, and subjective and objective recollection, but also subtle

  10. Neural Correlates of Opposing Effects of Emotional Distraction on Perception and Episodic Memory: An Event-Related fMRI Investigation

    PubMed Central

    Shafer, Andrea T.; Dolcos, Florin

    2012-01-01

    A main question in emotion and memory literature concerns the relationship between the immediate impact of emotional distraction on perception and the long-term impact of emotion on memory. While previous research shows both automatic and resource-mediated mechanisms to be involved in initial emotion processing and memory, it remains unclear what the exact relationship between the immediate and long-term effects is, and how this relationship may change as a function of manipulations at perception favoring the engagement of either more automatic or mediated mechanisms. Using event-related functional magnetic resonance imaging, we varied the degree of resource availability for processing task-irrelevant emotional information, to determine how the initial (impairing) impact of emotional distraction related to the long-term (enhancing) impact of emotion on memory. Results showed that a direct relationship between emotional distraction and memory was dependent on automatic mechanisms, as this was found only under conditions of limited resource availability and engagement of amygdala (AMY)-hippocampal (HC) mechanisms to both impairing and enhancing effects. A hemispheric disassociation was also identified in AMY-HC, where while both sides were associated with emotional distraction and left AMY and anterior HC were linked to emotional memory, functional asymmetry was only identified in the posterior HC, with only the left side contributing to emotional memory. Finally, areas dissociating between the two opposing effects included the medial frontal, precentral, superior temporal, and middle occipital gyri (linked to emotional distraction), and the superior parietal cortex (linked to emotional memory). These findings demonstrate the relationship between emotional distraction and memory is context dependent and that specific brain regions may be more or less susceptible to the direction of emotional modulation (increased or decreased), depending on the task manipulation, and

  11. Multimodal integration of fMRI and EEG data for high spatial and temporal resolution analysis of brain networks

    PubMed Central

    Mantini, D.; Marzetti, L.; Corbetta, M.; Romani, G.L.; Del Gratta, C.

    2017-01-01

    Two major non-invasive brain mapping techniques, electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have complementary advantages with regard to their spatial and temporal resolution. We propose an approach based on the integration of EEG and fMRI, enabling the EEG temporal dynamics of information processing to be characterized within spatially well-defined fMRI large-scale networks. First, the fMRI data are decomposed into networks by means of spatial independent component analysis (sICA), and those associated with intrinsic activity and/or responding to task performance are selected using information from the related time-courses. Next, the EEG data over all sensors are averaged with respect to event timing, thus calculating event-related potentials (ERPs). The ERPs are subjected to temporal ICA (tICA), and the resulting components are localized with the weighted minimum norm (WMNLS) algorithm using the task-related fMRI networks as priors. Finally, the temporal contribution of each ERP component in the areas belonging to the fMRI large-scale networks is estimated. The proposed approach has been evaluated on visual target detection data. Our results confirm that two different components, commonly observed in EEG when presenting novel and salient stimuli respectively, are related to the neuronal activation in large-scale networks, operating at different latencies and associated with different functional processes. PMID:20052528

  12. Dynamic timecourse of typical childhood absence seizures: EEG, behavior and fMRI

    PubMed Central

    Bai, X; Vestal, M; Berman, R; Negishi, M; Spann, M; Vega, C; Desalvo, M; Novotny, EJ; Constable, RT; Blumenfeld, H

    2010-01-01

    Absence seizures are 5–10 second episodes of impaired consciousness accompanied by 3–4Hz generalized spike-and-wave discharge on electroencephalography (EEG). The timecourse of functional magnetic resonance imaging (fMRI) changes in absence seizures in relation to EEG and behavior is not known. We acquired simultaneous EEG-fMRI in 88 typical childhood absence seizures from 9 pediatric patients. We investigated behavior concurrently using a continuous performance task (CPT) or simpler repetitive tapping task (RTT). EEG time-frequency analysis revealed abrupt onset and end of 3–4 Hz spike-wave discharges with a mean duration of 6.6 s. Behavioral analysis also showed rapid onset and end of deficits associated with electrographic seizure start and end. In contrast, we observed small early fMRI increases in the orbital/medial frontal and medial/lateral parietal cortex >5s before seizure onset, followed by profound fMRI decreases continuing >20s after seizure end. This timecourse differed markedly from the hemodynamic response function (HRF) model used in conventional fMRI analysis, consisting of large increases beginning after electrical event onset, followed by small fMRI decreases. Other regions, such as the lateral frontal cortex, showed more balanced fMRI increases followed by approximately equal decreases. The thalamus showed delayed increases after seizure onset followed by small decreases, most closely resembling the HRF model. These findings reveal a complex and long lasting sequence of fMRI changes in absence seizures, which are not detectible by conventional HRF modeling in many regions. These results may be important mechanistically for seizure initiation and termination and may also contribute to changes in EEG and behavior. PMID:20427649

  13. Relational complexity modulates activity in the prefrontal cortex during numerical inductive reasoning: an fMRI study.

    PubMed

    Feng, Xiao; Peng, Li; Chang-Quan, Long; Yi, Lei; Hong, Li

    2014-09-01

    Most previous studies investigating relational reasoning have used visuo-spatial materials. This fMRI study aimed to determine how relational complexity affects brain activity during inductive reasoning, using numerical materials. Three numerical relational levels of the number series completion task were adopted for use: 0-relational (e.g., "23 23 23"), 1-relational ("32 30 28") and 2-relational ("12 13 15") problems. The fMRI results revealed that the bilateral dorsolateral prefrontal cortex (DLPFC) showed enhanced activity associated with relational complexity. Bilateral inferior parietal lobule (IPL) activity was greater during the 1- and 2-relational level problems than during the 0-relational level problems. In addition, the left fronto-polar cortex (FPC) showed selective activity during the 2-relational level problems. The bilateral DLPFC may be involved in the process of hypothesis generation, whereas the bilateral IPL may be sensitive to calculation demands. Moreover, the sensitivity of the left FPC to the multiple relational problems may be related to the integration of numerical relations. The present study extends our knowledge of the prefrontal activity pattern underlying numerical relational processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Item Memory, Context Memory and the Hippocampus: fMRI Evidence

    ERIC Educational Resources Information Center

    Rugg, Michael D.; Vilberg, Kaia L.; Mattson, Julia T.; Yu, Sarah S.; Johnson, Jeffrey D.; Suzuki, Maki

    2012-01-01

    Dual-process models of recognition memory distinguish between the retrieval of qualitative information about a prior event (recollection), and judgments of prior occurrence based on an acontextual sense of familiarity. fMRI studies investigating the neural correlates of memory encoding and retrieval conducted within the dual-process framework have…

  15. Application of artificial neural network to fMRI regression analysis.

    PubMed

    Misaki, Masaya; Miyauchi, Satoru

    2006-01-15

    We used an artificial neural network (ANN) to detect correlations between event sequences and fMRI (functional magnetic resonance imaging) signals. The layered feed-forward neural network, given a series of events as inputs and the fMRI signal as a supervised signal, performed a non-linear regression analysis. This type of ANN is capable of approximating any continuous function, and thus this analysis method can detect any fMRI signals that correlated with corresponding events. Because of the flexible nature of ANNs, fitting to autocorrelation noise is a problem in fMRI analyses. We avoided this problem by using cross-validation and an early stopping procedure. The results showed that the ANN could detect various responses with different time courses. The simulation analysis also indicated an additional advantage of ANN over non-parametric methods in detecting parametrically modulated responses, i.e., it can detect various types of parametric modulations without a priori assumptions. The ANN regression analysis is therefore beneficial for exploratory fMRI analyses in detecting continuous changes in responses modulated by changes in input values.

  16. Age-related differences in memory-encoding fMRI responses after accounting for decline in vascular reactivity

    PubMed Central

    Liu, Peiying; Hebrank, Andrew C.; Rodrigue, Karen M.; Kennedy, Kristen M.; Section, Jarren; Park, Denise C.; Lu, Hanzhang

    2013-01-01

    BOLD fMRI has provided a wealth of information about the aging brain. A common finding is that posterior regions of the brain manifest an age-related decrease in activation while the anterior regions show an age-related increase. Several neurocognitive models have been proposed to interpret these findings. However, one issue that has not been sufficiently considered to date is that the BOLD signal is based on vascular responses secondary to neural activity. Thus the above findings could be in part due to a vascular change, especially in view of the expected decline of vascular health with age. In the present study, we aim to examine age-related differences in memory-encoding fMRI response in the context of vascular aging. One hundred and thirty healthy subjects ranging from 20 to 89 years old underwent a scene-viewing fMRI task and, in the same session, cerebrovascular reactivity (CVR) was measured in each subject using a CO2-inhalation task. Without accounting for the influence of vascular changes, the task-activated fMRI signal showed the typical age-related decrease in visual cortex and medial temporal lobe (MTL), but manifested an increase in the right inferior frontal gyrus (IFG). In the same individuals, an age-related CVR reduction was observed in all of these regions. We then used a previously proposed normalization approach to calculate a CVR-corrected fMRI signal, which was defined as the uncorrected signal divided by CVR. Based on the CVR-corrected fMRI signal, an age-related increase is now seen in both the left and right side of IFG; and no brain regions showed a signal decrease with age. We additionally used a model-based approach to examine the fMRI data in the context of CVR, which again suggested an age-related change in the two frontal regions, but not in the visual and MTL regions. PMID:23624491

  17. Frontoparietal network involved in successful retrieval from episodic memory. Spatial and temporal analyses using fMRI and ERP.

    PubMed

    Iidaka, Tetsuya; Matsumoto, Atsushi; Nogawa, Junpei; Yamamoto, Yukiko; Sadato, Norihiro

    2006-09-01

    The neural basis for successful recognition of previously studied items, referred to as "retrieval success," has been investigated using either neuroimaging or brain potentials; however, few studies have used both modalities. Our study combined event-related functional magnetic resonance imaging (fMRI) and event-related potential (ERP) in separate groups of subjects. The neural responses were measured while the subjects performed an old/new recognition task with pictures that had been previously studied in either a deep- or shallow-encoding condition. The fMRI experiment showed that among the frontoparietal regions involved in retrieval success, the inferior frontal gyrus and intraparietal sulcus were crucial to conscious recollection because the activity of these regions was influenced by the depth of memory at encoding. The activity of the right parietal region in response to a repeated item was modulated by the repetition lag, indicating that this area would be critical to familiarity-based judgment. The results of structural equation modeling revealed that the functional connectivity among the regions in the left hemisphere was more significant than that in the right hemisphere. The results of the ERP experiment and independent component analysis paralleled those of the fMRI experiment and demonstrated that the repeated item produced an earlier peak than the hit item by approximately 50 ms.

  18. Integrating EEG and fMRI in epilepsy.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Bertoldo, Alessandra; Manganotti, Paolo; Fiaschi, Antonio; Toffolo, Gianna Maria

    2011-02-14

    Integrating electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) studies enables to non-invasively investigate human brain function and to find the direct correlation of these two important measures of brain activity. Presurgical evaluation of patients with epilepsy is one of the areas where EEG and fMRI integration has considerable clinical relevance for localizing the brain regions generating interictal epileptiform activity. The conventional analysis of EEG-fMRI data is based on the visual identification of the interictal epileptiform discharges (IEDs) on scalp EEG. The convolution of these EEG events, represented as stick functions, with a model of the fMRI response, i.e. the hemodynamic response function, provides the regressor for general linear model (GLM) analysis of fMRI data. However, the conventional analysis is not automatic and suffers of some subjectivity in IEDs classification. Here, we present an easy-to-use and automatic approach for combined EEG-fMRI analysis able to improve IEDs identification based on Independent Component Analysis and wavelet analysis. EEG signal due to IED is reconstructed and its wavelet power is used as a regressor in GLM. The method was validated on simulated data and then applied on real data set consisting of 2 normal subjects and 5 patients with partial epilepsy. In all continuous EEG-fMRI recording sessions a good quality EEG was obtained allowing the detection of spontaneous IEDs and the analysis of the related BOLD activation. The main clinical finding in EEG-fMRI studies of patients with partial epilepsy is that focal interictal slow-wave activity was invariably associated with increased focal BOLD responses in a spatially related brain area. Our study extends current knowledge on epileptic foci localization and confirms previous reports suggesting that BOLD activation associated with slow activity might have a role in localizing the epileptogenic region even in the absence of clear

  19. Modulation of thermal pain-related brain activity with virtual reality: evidence from fMRI.

    PubMed

    Hoffman, Hunter G; Richards, Todd L; Coda, Barbara; Bills, Aric R; Blough, David; Richards, Anne L; Sharar, Sam R

    2004-06-07

    This study investigated the neural correlates of virtual reality analgesia. Virtual reality significantly reduced subjective pain ratings (i.e. analgesia). Using fMRI, pain-related brain activity was measured for each participant during conditions of no virtual reality and during virtual reality (order randomized). As predicted, virtual reality significantly reduced pain-related brain activity in all five regions of interest; the anterior cingulate cortex, primary and secondary somatosensory cortex, insula, and thalamus (p<0.002, corrected). Results showed direct modulation of human brain pain responses by virtual reality distraction. Copyright 2004 Lippincott Williams and Wilkins

  20. P300 amplitude variation is related to ventral striatum BOLD response during gain and loss anticipation: an EEG and fMRI experiment.

    PubMed

    Pfabigan, Daniela M; Seidel, Eva-Maria; Sladky, Ronald; Hahn, Andreas; Paul, Katharina; Grahl, Arvina; Küblböck, Martin; Kraus, Christoph; Hummer, Allan; Kranz, Georg S; Windischberger, Christian; Lanzenberger, Rupert; Lamm, Claus

    2014-08-01

    The anticipation of favourable or unfavourable events is a key component in our daily life. However, the temporal dynamics of anticipation processes in relation to brain activation are still not fully understood. A modified version of the monetary incentive delay task was administered during separate functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) sessions in the same 25 participants to assess anticipatory processes with a multi-modal neuroimaging set-up. During fMRI, gain and loss anticipation were both associated with heightened activation in ventral striatum and reward-related areas. EEG revealed most pronounced P300 amplitudes for gain anticipation, whereas CNV amplitudes distinguished neutral from gain and loss anticipation. Importantly, P300, but not CNV amplitudes, were correlated to neural activation in the ventral striatum for both gain and loss anticipation. Larger P300 amplitudes indicated higher ventral striatum blood oxygen level dependent (BOLD) response. Early stimulus evaluation processes indexed by EEG seem to be positively related to higher activation levels in the ventral striatum, indexed by fMRI, which are usually associated with reward processing. The current results, however, point towards a more general motivational mechanism processing salient stimuli during anticipation. Copyright © 2014. Published by Elsevier Inc.

  1. Interference and facilitation in overt speech production investigated with event-related potentials.

    PubMed

    Hirschfeld, Gerrit; Jansma, Bernadette; Bölte, Jens; Zwitserlood, Pienie

    2008-08-06

    We report an event-related potential study investigating the neural basis of interference and facilitation in the picture-word interference paradigm with immediate overt naming. We used the high temporal resolution of the electrophysiological response to dissociate general and specific interference processes, by comparing unrelated word distractors to nonlinguistic (a row of Xs), surface feature denoting, and category member distractors. Our results first indicate that the increased naming latencies for linguistic relative to nonlinguistic distractors are because of general conflict-monitoring processes, associated with early event-related potential effects (120-220 ms) and increased activity in the anterior cingulate cortex. Next, distractors specifying a surface feature of the picture seem to facilitate its identification within the same time window, which involves widespread networks. Finally, nonlinguistic and surface feature distractors also reduced the N400 amplitude, relative to unrelated word distractors. Taken together our results support the view that several distinct processes give rise to the reaction time results often observed in picture naming.

  2. Disrupted Prefrontal Activity during Emotion Processing in Complicated Grief: an fMRI Investigation

    PubMed Central

    Arizmendi, Brian; Kaszniak, Alfred W.; O’Connor, Mary-Frances

    2015-01-01

    Complicated Grief, marked by a persistent and intrusive grief lasting beyond the expected period of adaptation, is associated with a relative inability to disengage from idiographic loss-relevant stimuli (O’Connor & Arizmendi, 2014). In other populations, functional magnetic resonance imaging (fMRI) studies investigating the neural networks associated with this bias consistently implicate the anterior cingulate cortex (ACC) during emotion regulation. In the present study, twenty-eight older adults were categorized into three groups based on grief severity: Complicated Grief (n=8), Non-Complicated Grief (n=9), and Nonbereaved, married controls (n=11). Using a block design, all participants completed 8 blocks (20 stimuli per block) of the ecStroop task during fMRI data acquisition. Differences in neural activity during grief-related (as opposed to neutral) stimuli across groups were examined. Those with Complicated Grief showed an absence of increased rostral ACC (rACC) and fronto-cortical recruitment relative to Nonbereaved controls. Activity in the orbitofrontal cortex (x=6, y=54, z=−10) was significantly elevated in the Non-Complicated Grief group when compared to Nonbereaved controls. Post hoc analysis evidenced activity in the dorsal ACC in the Complicated Grief and Nonbereaved groups late in the task. These findings, supported by behavioral data, suggest a relative inability to recruit the regions necessary for successful completion of this emotional task in those with Complicated Grief. This deficit was not observed in recruitment of the orbitofrontal cortex and the rACC during processing of idiographic semantic stimuli in Non-Complicated Grief. PMID:26434802

  3. Disrupted prefrontal activity during emotion processing in complicated grief: An fMRI investigation.

    PubMed

    Arizmendi, Brian; Kaszniak, Alfred W; O'Connor, Mary-Frances

    2016-01-01

    Complicated Grief, marked by a persistent and intrusive grief lasting beyond the expected period of adaptation, is associated with a relative inability to disengage from idiographic loss-relevant stimuli (O'Connor and Arizmendi, 2014). In other populations, functional magnetic resonance imaging (fMRI) studies investigating the neural networks associated with this bias consistently implicate the anterior cingulate cortex (ACC) during emotion regulation. In the present study, twenty-eight older adults were categorized into three groups based on grief severity: Complicated Grief (n=8), Non-Complicated Grief (n=9), and Nonbereaved, married controls (n=11). Using a block design, all participants completed 8 blocks (20 stimuli per block) of the ecStroop task during fMRI data acquisition. Differences in neural activity during grief-related (as opposed to neutral) stimuli across groups were examined. Those with Complicated Grief showed an absence of increased rostral ACC (rACC) and fronto-cortical recruitment relative to Nonbereaved controls. Activity in the orbitofrontal cortex (x=6, y=54, z=-10) was significantly elevated in the Non-Complicated Grief group when compared to Nonbereaved controls. Post hoc analysis evidenced activity in the dorsal ACC in the Complicated Grief and Nonbereaved groups late in the task. These findings, supported by behavioral data, suggest a relative inability to recruit the regions necessary for successful completion of this emotional task in those with Complicated Grief. This deficit was not observed in recruitment of the orbitofrontal cortex and the rACC during processing of idiographic semantic stimuli in Non-Complicated Grief. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. An investigation of fMRI time series stationarity during motor sequence learning foot tapping tasks.

    PubMed

    Muhei-aldin, Othman; VanSwearingen, Jessie; Karim, Helmet; Huppert, Theodore; Sparto, Patrick J; Erickson, Kirk I; Sejdić, Ervin

    2014-04-30

    Understanding complex brain networks using functional magnetic resonance imaging (fMRI) is of great interest to clinical and scientific communities. To utilize advanced analysis methods such as graph theory for these investigations, the stationarity of fMRI time series needs to be understood as it has important implications on the choice of appropriate approaches for the analysis of complex brain networks. In this paper, we investigated the stationarity of fMRI time series acquired from twelve healthy participants while they performed a motor (foot tapping sequence) learning task. Since prior studies have documented that learning is associated with systematic changes in brain activation, a sequence learning task is an optimal paradigm to assess the degree of non-stationarity in fMRI time-series in clinically relevant brain areas. We predicted that brain regions involved in a "learning network" would demonstrate non-stationarity and may violate assumptions associated with some advanced analysis approaches. Six blocks of learning, and six control blocks of a foot tapping sequence were performed in a fixed order. The reverse arrangement test was utilized to investigate the time series stationarity. Our analysis showed some non-stationary signals with a time varying first moment as a major source of non-stationarity. We also demonstrated a decreased number of non-stationarities in the third block as a result of priming and repetition. Most of the current literature does not examine stationarity prior to processing. The implication of our findings is that future investigations analyzing complex brain networks should utilize approaches robust to non-stationarities, as graph-theoretical approaches can be sensitive to non-stationarities present in data. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Event-related Potentials Reveal Age Differences in the Encoding and Recognition of Scenes

    PubMed Central

    Gutchess, Angela H.; Ieuji, Yoko; Federmeier, Kara D.

    2009-01-01

    The present study used event-related potentials (ERPs) to investigate how the encoding and recognition of complex scenes change with normal aging. Although functional magnetic resonance imaging (fMRI) studies have identified more drastic age impairments at encoding than at recognition, ERP studies accumulate more evidence for age differences at retrieval. However, stimulus type and paradigm differences across the two literatures have made direct comparisons difficult. Here, we collected young and elderly adults’ encoding- and recognition-phase ERPs using the same materials and paradigm as a previous fMRI study. Twenty young and 20 elderly adults incidentally encoded and then recognized photographs of outdoor scenes. During encoding, young adults showed a frontocentral subsequent memory effect, with high-confidence hits exhibiting greater positivity than misses. Elderly adults showed a similar subsequent memory effect, which, however, did not differ as a function of confidence. During recognition, young adults elicited a widespread old/new effect, and high-confidence hits were distinct from both low-confidence hits and false alarms. Elderly adults elicited a smaller and later old/new effect, which was unaffected by confidence, and hits and false alarms were indistinguishable in the waveforms. Consistent with prior ERP work, these results point to important age-related changes in recognition-phase brain activity, even when behavioral measures of memory and confidence pattern similarly across groups. We speculate that memory processes with different time signatures contribute to the apparent differences across encoding and retrieval stages, and across methods. PMID:17583986

  6. An empirical comparison of SPM preprocessing parameters to the analysis of fMRI data.

    PubMed

    Della-Maggiore, Valeria; Chau, Wilkin; Peres-Neto, Pedro R; McIntosh, Anthony R

    2002-09-01

    We present the results from two sets of Monte Carlo simulations aimed at evaluating the robustness of some preprocessing parameters of SPM99 for the analysis of functional magnetic resonance imaging (fMRI). Statistical robustness was estimated by implementing parametric and nonparametric simulation approaches based on the images obtained from an event-related fMRI experiment. Simulated datasets were tested for combinations of the following parameters: basis function, global scaling, low-pass filter, high-pass filter and autoregressive modeling of serial autocorrelation. Based on single-subject SPM analysis, we derived the following conclusions that may serve as a guide for initial analysis of fMRI data using SPM99: (1) The canonical hemodynamic response function is a more reliable basis function to model the fMRI time series than HRF with time derivative. (2) Global scaling should be avoided since it may significantly decrease the power depending on the experimental design. (3) The use of a high-pass filter may be beneficial for event-related designs with fixed interstimulus intervals. (4) When dealing with fMRI time series with short interstimulus intervals (<8 s), the use of first-order autoregressive model is recommended over a low-pass filter (HRF) because it reduces the risk of inferential bias while providing a relatively good power. For datasets with interstimulus intervals longer than 8 seconds, temporal smoothing is not recommended since it decreases power. While the generalizability of our results may be limited, the methods we employed can be easily implemented by other scientists to determine the best parameter combination to analyze their data.

  7. Episodic Memory in Former Professional Football Players with a History of Concussion: An Event-Related Functional Neuroimaging Study

    PubMed Central

    Giovanello, Kelly S.; Guskiewicz, Kevin M.

    2013-01-01

    Abstract Previous research has demonstrated that sport-related concussions can have short-term effects on cognitive processes, but the long-term consequences are less understood and warrant more research. This study was the first to use event-related functional magnetic resonance imaging (fMRI) to examine long-term differences in neural activity during memory tasks in former athletes who have sustained multiple sport-related concussions. In an event-related fMRI study, former football players reporting multiple sport-related concussions (i.e., three or more) were compared with players who reported fewer than three concussions during a memory paradigm examining item memory (i.e., memory for the particular elements of an event) and relational memory (i.e., memory for the relationships between elements). Behaviorally, we observed that concussion history did not significantly affect behavioral performance, because persons in the low and high concussion groups had equivalent performance on both memory tasks, and in addition, that concussion history was not associated with any behavioral memory measures. Despite demonstrating equivalent behavioral performance, the two groups of former players demonstrated different neural recruitment patterns during relational memory retrieval, suggesting that multiple concussions may be associated with functional inefficiencies in the relational memory network. In addition, the number of previous concussions significantly correlated with functional activity in a number of brain regions, including the medial temporal lobe and inferior parietal lobe. Our results provide important insights in understanding the long-term functional consequences of sustaining multiple sports-related concussions. PMID:23679098

  8. Episodic memory in former professional football players with a history of concussion: an event-related functional neuroimaging study.

    PubMed

    Ford, Jaclyn H; Giovanello, Kelly S; Guskiewicz, Kevin M

    2013-10-15

    Previous research has demonstrated that sport-related concussions can have short-term effects on cognitive processes, but the long-term consequences are less understood and warrant more research. This study was the first to use event-related functional magnetic resonance imaging (fMRI) to examine long-term differences in neural activity during memory tasks in former athletes who have sustained multiple sport-related concussions. In an event-related fMRI study, former football players reporting multiple sport-related concussions (i.e., three or more) were compared with players who reported fewer than three concussions during a memory paradigm examining item memory (i.e., memory for the particular elements of an event) and relational memory (i.e., memory for the relationships between elements). Behaviorally, we observed that concussion history did not significantly affect behavioral performance, because persons in the low and high concussion groups had equivalent performance on both memory tasks, and in addition, that concussion history was not associated with any behavioral memory measures. Despite demonstrating equivalent behavioral performance, the two groups of former players demonstrated different neural recruitment patterns during relational memory retrieval, suggesting that multiple concussions may be associated with functional inefficiencies in the relational memory network. In addition, the number of previous concussions significantly correlated with functional activity in a number of brain regions, including the medial temporal lobe and inferior parietal lobe. Our results provide important insights in understanding the long-term functional consequences of sustaining multiple sports-related concussions.

  9. Emotion Regulation Training for Treating Warfighters with Combat-Related PTSD Using Real-Time fMRI and EEG-Assisted Neurofeedback

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-12-1-0607 TITLE: "Emotion Regulation Training for Treating Warfighters with Combat-Related PTSD Using Real-Time fMRI and...Related PTSD Using Real-Time fMRI and EEG-Assisted Neurofeedback" 5a. CONTRACT NUMBER W81XWH-12-1-0607 5b. GRANT NUMBER PT110256 5c. PROGRAM ELEMENT...neurofeedback training protocol to evaluate FEA EEG-nf training feasibility in combat-related PTSD. 15. SUBJECT TERMS PTSD; amygdala; fMRI ; EEG

  10. Neural Correlates of Fixation Duration during Real-world Scene Viewing: Evidence from Fixation-related (FIRE) fMRI.

    PubMed

    Henderson, John M; Choi, Wonil

    2015-06-01

    During active scene perception, our eyes move from one location to another via saccadic eye movements, with the eyes fixating objects and scene elements for varying amounts of time. Much of the variability in fixation duration is accounted for by attentional, perceptual, and cognitive processes associated with scene analysis and comprehension. For this reason, current theories of active scene viewing attempt to account for the influence of attention and cognition on fixation duration. Yet almost nothing is known about the neurocognitive systems associated with variation in fixation duration during scene viewing. We addressed this topic using fixation-related fMRI, which involves coregistering high-resolution eye tracking and magnetic resonance scanning to conduct event-related fMRI analysis based on characteristics of eye movements. We observed that activation in visual and prefrontal executive control areas was positively correlated with fixation duration, whereas activation in ventral areas associated with scene encoding and medial superior frontal and paracentral regions associated with changing action plans was negatively correlated with fixation duration. The results suggest that fixation duration in scene viewing is controlled by cognitive processes associated with real-time scene analysis interacting with motor planning, consistent with current computational models of active vision for scene perception.

  11. fMRI paradigm designing and post-processing tools

    PubMed Central

    James, Jija S; Rajesh, PG; Chandran, Anuvitha VS; Kesavadas, Chandrasekharan

    2014-01-01

    In this article, we first review some aspects of functional magnetic resonance imaging (fMRI) paradigm designing for major cognitive functions by using stimulus delivery systems like Cogent, E-Prime, Presentation, etc., along with their technical aspects. We also review the stimulus presentation possibilities (block, event-related) for visual or auditory paradigms and their advantage in both clinical and research setting. The second part mainly focus on various fMRI data post-processing tools such as Statistical Parametric Mapping (SPM) and Brain Voyager, and discuss the particulars of various preprocessing steps involved (realignment, co-registration, normalization, smoothing) in these software and also the statistical analysis principles of General Linear Modeling for final interpretation of a functional activation result. PMID:24851001

  12. Neural substrates of smoking cue reactivity: A meta-analysis of fMRI studies

    PubMed Central

    Engelmann, Jeffrey M.; Versace, Francesco; Robinson, Jason D.; Minnix, Jennifer A.; Lam, Cho Y.; Cui, Yong; Brown, Victoria L.; Cinciripini, Paul M.

    2012-01-01

    Reactivity to smoking-related cues may be an important factor that precipitates relapse in smokers who are trying to quit. The neurobiology of smoking cue reactivity has been investigated in several fMRI studies. We combined the results of these studies using activation likelihood estimation, a meta-analytic technique for fMRI data. Results of the meta-analysis indicated that smoking cues reliably evoke larger fMRI responses than neutral cues in the extended visual system, precuneus, posterior cingulate gyrus, anterior cingulate gyrus, dorsal and medial prefrontal cortex, insula, and dorsal striatum. Subtraction meta-analyses revealed that parts of the extended visual system and dorsal prefrontal cortex are more reliably responsive to smoking cues in deprived smokers than in non-deprived smokers, and that short-duration cues presented in event-related designs produce larger responses in the extended visual system than long-duration cues presented in blocked designs. The areas that were found to be responsive to smoking cues agree with theories of the neurobiology of cue reactivity, with two exceptions. First, there was a reliable cue reactivity effect in the precuneus, which is not typically considered a brain region important to addiction. Second, we found no significant effect in the nucleus accumbens, an area that plays a critical role in addiction, but this effect may have been due to technical difficulties associated with measuring fMRI data in that region. The results of this meta-analysis suggest that the extended visual system should receive more attention in future studies of smoking cue reactivity. PMID:22206965

  13. Effects of trauma-related cues on pain processing in posttraumatic stress disorder: an fMRI investigation

    PubMed Central

    Mickleborough, Marla J.S.; Daniels, Judith K.; Coupland, Nicholas J.; Kao, Raymond; Williamson, Peter C.; Lanius, Ulrich F.; Hegadoren, Kathy; Schore, Allan; Densmore, Maria; Stevens, Todd; Lanius, Ruth A.

    2011-01-01

    Background Imaging studies of pain processing in primary psychiatric disorders are just emerging. This study explored the neural correlates of stress-induced analgesia in individuals with posttraumatic stress disorder (PTSD). It combined functional magnetic resonance imaging (fMRI) and the traumatic script-driven imagery symptom provocation paradigm to examine the effects of trauma-related cues on pain perception in individuals with PTSD. Methods The study included 17 patients with PTSD and 26 healthy, trauma-exposed controls. Participants received warm (nonpainful) or hot (painful) thermal stimuli after listening to a neutral or a traumatic script while they were undergoing an fMRI scan at a 4.0 T field strength. Results Between-group analyses revealed that after exposure to the traumatic scripts, the blood oxygen level–dependent (BOLD) signal during pain perception was greater in the PTSD group than the control group in the head of the caudate. In the PTSD group, strong positive correlations resulted between BOLD signal and symptom severity in a number of brain regions previously implicated in stress-induced analgesia, such as the thalamus and the head of the caudate nucleus. Trait dissociation as measured by the Dissociative Experiences Scale correlated negatively with the right amygdala and the left putamen. Limitations This study included heterogeneous traumatic experiences, a different proportion of military trauma in the PTSD versus the control group and medicated patients with PTSD. Conclusion These data indicate that in patients with PTSD trauma recall will lead in a state-dependent manner to greater activation in brain regions implicated in stress-induced analgesia. Correlational analyses lend support to cortical hyperinhibition of the amygdala as a function of dissociation. PMID:20964954

  14. Brain network segregation and integration during an epoch-related working memory fMRI experiment.

    PubMed

    Fransson, Peter; Schiffler, Björn C; Thompson, William Hedley

    2018-05-17

    The characterization of brain subnetwork segregation and integration has previously focused on changes that are detectable at the level of entire sessions or epochs of imaging data. In this study, we applied time-varying functional connectivity analysis together with temporal network theory to calculate point-by-point estimates in subnetwork segregation and integration during an epoch-based (2-back, 0-back, baseline) working memory fMRI experiment as well as during resting-state. This approach allowed us to follow task-related changes in subnetwork segregation and integration at a high temporal resolution. At a global level, the cognitively more taxing 2-back epochs elicited an overall stronger response of integration between subnetworks compared to the 0-back epochs. Moreover, the visual, sensorimotor and fronto-parietal subnetworks displayed characteristic and distinct temporal profiles of segregation and integration during the 0- and 2-back epochs. During the interspersed epochs of baseline, several subnetworks, including the visual, fronto-parietal, cingulo-opercular and dorsal attention subnetworks showed pronounced increases in segregation. Using a drift diffusion model we show that the response time for the 2-back trials are correlated with integration for the fronto-parietal subnetwork and correlated with segregation for the visual subnetwork. Our results elucidate the fast-evolving events with regard to subnetwork integration and segregation that occur in an epoch-related task fMRI experiment. Our findings suggest that minute changes in subnetwork integration are of importance for task performance. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Resting-state FMRI confounds and cleanup

    PubMed Central

    Murphy, Kevin; Birn, Rasmus M.; Bandettini, Peter A.

    2013-01-01

    The goal of resting-state functional magnetic resonance imaging (FMRI) is to investigate the brain’s functional connections by using the temporal similarity between blood oxygenation level dependent (BOLD) signals in different regions of the brain “at rest” as an indicator of synchronous neural activity. Since this measure relies on the temporal correlation of FMRI signal changes between different parts of the brain, any non-neural activity-related process that affects the signals will influence the measure of functional connectivity, yielding spurious results. To understand the sources of these resting-state FMRI confounds, this article describes the origins of the BOLD signal in terms of MR physics and cerebral physiology. Potential confounds arising from motion, cardiac and respiratory cycles, arterial CO2 concentration, blood pressure/cerebral autoregulation, and vasomotion are discussed. Two classes of techniques to remove confounds from resting-state BOLD time series are reviewed: 1) those utilising external recordings of physiology and 2) data-based cleanup methods that only use the resting-state FMRI data itself. Further methods that remove noise from functional connectivity measures at a group level are also discussed. For successful interpretation of resting-state FMRI comparisons and results, noise cleanup is an often over-looked but essential step in the analysis pipeline. PMID:23571418

  16. Whole-brain functional magnetic resonance imaging mapping of acute nociceptive responses induced by formalin in rats using atlas registration-based event-related analysis.

    PubMed

    Shih, Yen-Yu I; Chen, You-Yin; Chen, Chiao-Chi V; Chen, Jyh-Cheng; Chang, Chen; Jaw, Fu-Shan

    2008-06-01

    Nociceptive neuronal activation in subcortical regions has not been well investigated in functional magnetic resonance imaging (fMRI) studies. The present report aimed to use the blood oxygenation level-dependent (BOLD) fMRI technique to map nociceptive responses in both subcortical and cortical regions by employing a refined data processing method, the atlas registration-based event-related (ARBER) analysis technique. During fMRI acquisition, 5% formalin (50 mul) was injected into the left hindpaw to induce nociception. ARBER was then used to normalize the data among rats, and images were analyzed using automatic selection of the atlas-based region of interest. It was found that formalin-induced nociceptive processing increased BOLD signals in both cortical and subcortical regions. The cortical activation was distributed over the cingulate, motor, somatosensory, insular, and visual cortices, and the subcortical activation involved the caudate putamen, hippocampus, periaqueductal gray, superior colliculus, thalamus, and hypothalamus. With the aid of ARBER, the present study revealed a detailed activation pattern that possibly indicated the recruitment of various parts of the nociceptive system. The results also demonstrated the utilization of ARBER in establishing an fMRI-based whole-brain nociceptive map. The formalin induced nociceptive images may serve as a template of central nociceptive responses, which can facilitate the future use of fMRI in evaluation of new drugs and preclinical therapies for pain. (c) 2008 Wiley-Liss, Inc.

  17. Material specific lateralization of medial temporal lobe function: An fMRI investigation.

    PubMed

    Dalton, Marshall A; Hornberger, Michael; Piguet, Olivier

    2016-03-01

    The theory of material specific lateralization of memory function posits that left and right MTL regions are asymmetrically involved in mnemonic processing of verbal and nonverbal material respectively. Lesion and functional imaging (fMRI) studies provide robust evidence for a left MTL asymmetry in the verbal memory domain. Evidence for a right MTL/nonverbal asymmetry is not as robust. A handful of fMRI studies have investigated this issue but have generally utilised nonverbal stimuli which are amenable to semantic elaboration. This fMRI study aimed to investigate the neural correlates of recognition memory processing in 20 healthy young adults (mean age = 26 years) for verbal stimuli and nonverbal stimuli that were specifically designed to minimize verbalisation. Analyses revealed that the neural correlates of recognition memory processing for verbal and nonverbal stimuli were differentiable and asymmetrically recruited the left and right MTL respectively. The right perirhinal cortex and hippocampus were preferentially involved in successful recognition memory of items devoid of semantic information. In contrast, the left anterior hippocampus was preferentially involved in successful recognition memory of stimuli which contained semantic meaning. These results suggest that the left MTL is preferentially involved in mnemonic processing of verbal/semantic information. In contrast, the right MTL is preferentially involved in visual/non-semantic mnemonic processing. We propose that during development, the left MTL becomes specialised for verbal mnemonic processing due to its proximity with left lateralised cortical language processing areas while visual/non-semantic mnemonic processing gets 'crowded out' to become predominantly, but not completely, the domain of the right MTL. © 2015 Wiley Periodicals, Inc.

  18. Relation between functional magnetic resonance imaging (fMRI) and single neuron, local field potential (LFP) and electrocorticography (ECoG) activity in human cortex.

    PubMed

    Ojemann, George A; Ojemann, Jeffrey; Ramsey, Nick F

    2013-01-01

    The relation between changes in the blood oxygen dependent metabolic changes imaged by functional magnetic resonance imaging (fMRI) and neural events directly recorded from human cortex from single neurons, local field potentials (LFPs) and electrocorticogram (ECoG) is critically reviewed, based on the published literature including findings from the authors' laboratories. All these data are from special populations, usually patients with medically refractory epilepsy, as this provides the major opportunity for direct cortical neuronal recording in humans. For LFP and ECoG changes are often sought in different frequency bands, for single neurons in frequency of action potentials. Most fMRI studies address issues of functional localization. The relation of those findings to localized changes in neuronal recordings in humans has been established in several ways. Only a few studies have directly compared changes in activity from the same sites in the same individual, using the same behavioral measure. More often the comparison has been between fMRI and electrophysiologic changes in populations recorded from the same functional anatomic system as defined by lesion effects; in a few studies those systems have been defined by fMRI changes such as the "default" network. The fMRI-electrophysiologic relationships have been evaluated empirically by colocalization of significant changes, and by quantitative analyses, often multiple linear regression. There is some evidence that the fMRI-electrophysiology relationships differ in different cortical areas, particularly primary motor and sensory cortices compared to association cortex, but also within areas of association cortex. Although crucial for interpretation of fMRI changes as reflecting neural activity in human cortex, controversy remains as to these relationships. Supported by: Dutch Technology Foundation and University of Utrecht Grant UGT7685, ERC-Advanced grant 320708 (NR) and NIH grant NS065186 (JO).

  19. Well-being and Anticipation for Future Positive Events: Evidences from an fMRI Study.

    PubMed

    Luo, Yangmei; Chen, Xuhai; Qi, Senqing; You, Xuqun; Huang, Xiting

    2017-01-01

    Anticipation for future confers great benefits to human well-being and mental health. However, previous work focus on how people's well-being correlate with brain activities during perception of emotional stimuli, rather than anticipation for the future events. Here, the current study investigated how well-being relates to neural circuitry underlying the anticipating process of future desired events. Using event-related functional magnetic resonance imaging, 40 participants were scanned while they were performing an emotion anticipation task, in which they were instructed to anticipate the positive or neutral events. The results showed that bilateral medial prefrontal cortex (MPFC) were activated during anticipation for positive events relative to neutral events, and the enhanced brain activation in MPFC was associated with higher level of well-being. The findings suggest a neural mechanism by which the anticipation process to future desired events correlates to human well-being, which provide a future-oriented view on the neural sources of well-being.

  20. Well-being and Anticipation for Future Positive Events: Evidences from an fMRI Study

    PubMed Central

    Luo, Yangmei; Chen, Xuhai; Qi, Senqing; You, Xuqun; Huang, Xiting

    2018-01-01

    Anticipation for future confers great benefits to human well-being and mental health. However, previous work focus on how people’s well-being correlate with brain activities during perception of emotional stimuli, rather than anticipation for the future events. Here, the current study investigated how well-being relates to neural circuitry underlying the anticipating process of future desired events. Using event-related functional magnetic resonance imaging, 40 participants were scanned while they were performing an emotion anticipation task, in which they were instructed to anticipate the positive or neutral events. The results showed that bilateral medial prefrontal cortex (MPFC) were activated during anticipation for positive events relative to neutral events, and the enhanced brain activation in MPFC was associated with higher level of well-being. The findings suggest a neural mechanism by which the anticipation process to future desired events correlates to human well-being, which provide a future-oriented view on the neural sources of well-being. PMID:29375415

  1. Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands.

    PubMed

    Deligianni, Fani; Centeno, Maria; Carmichael, David W; Clayden, Jonathan D

    2014-01-01

    Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity.

  2. Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands

    PubMed Central

    Deligianni, Fani; Centeno, Maria; Carmichael, David W.; Clayden, Jonathan D.

    2014-01-01

    Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity. PMID:25221467

  3. The time course of symbolic number adaptation: oscillatory EEG activity and event-related potential analysis.

    PubMed

    Hsu, Yi-Fang; Szűcs, Dénes

    2012-02-15

    Several functional magnetic resonance imaging (fMRI) studies have used neural adaptation paradigms to detect anatomical locations of brain activity related to number processing. However, currently not much is known about the temporal structure of number adaptation. In the present study, we used electroencephalography (EEG) to elucidate the time course of neural events in symbolic number adaptation. The numerical distance of deviants relative to standards was manipulated. In order to avoid perceptual confounds, all levels of deviants consisted of perceptually identical stimuli. Multiple successive numerical distance effects were detected in event-related potentials (ERPs). Analysis of oscillatory activity further showed at least two distinct stages of neural processes involved in the automatic analysis of numerical magnitude, with the earlier effect emerging at around 200ms and the later effect appearing at around 400ms. The findings support for the hypothesis that numerical magnitude processing involves a succession of cognitive events. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  4. An fMRI study of working memory in first-degree unaffected relatives of schizophrenia patients.

    PubMed

    Meda, Shashwath A; Bhattarai, Manish; Morris, Nicholas A; Astur, Robert S; Calhoun, Vince D; Mathalon, Daniel H; Kiehl, Kent A; Pearlson, Godfrey D

    2008-09-01

    Identifying intermediate phenotypes of genetically complex psychiatric illnesses such as schizophrenia is important. First-degree relatives of persons with schizophrenia have increased genetic risk for the disorder and tend to show deficits on working memory (WM) tasks. An open question is the relationship between such behavioral endophenotypes and the corresponding brain activation patterns revealed during functional imaging. We measured task performance during a Sternberg WM task and used functional magnetic resonance imaging (fMRI) to assess whether 23 non-affected first-degree relatives showed altered performance and functional activation compared to 43 matched healthy controls. We predicted that a significant proportion of unaffected first-degree relatives would show either aberrant task performance and/or abnormal related fMRI blood oxygen level dependent (BOLD) patterns. While task performance in the relatives was not different than that of controls they were significantly slower in responding to probes., Schizophrenia relatives displayed reduced activation, most markedly in bilateral dorsolateral/ventrolateral (DLPFC/VLPFC) prefrontal and posterior parietal cortex when encoding stimuli and in bilateral DLPFC and parietal areas during response selection. Additionally, fMRI differences in both conditions were modulated by load, with a parametric increase in between-group differences with load in several key regions during encoding and an opposite effect during response selection.

  5. Common and Segregated Neural Substrates for Automatic Conceptual and Affective Priming as Revealed by Event-Related Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Liu, Hongyan; Hu, Zhiguo; Peng, Danling; Yang, Yanhui; Li, Kuncheng

    2010-01-01

    The brain activity associated with automatic semantic priming has been extensively studied. Thus far there has been no prior study that directly contrasts the neural mechanisms of semantic and affective priming. The present study employed event-related fMRI to examine the common and distinct neural bases underlying conceptual and affective priming…

  6. The Role of the Left Inferior Frontal Gyrus in Implicit Semantic Competition and Selection: An Event-Related fMRI Study

    PubMed Central

    Grindrod, Christopher M.; Bilenko, Natalia Y.; Myers, Emily B.; Blumstein, Sheila E.

    2008-01-01

    Recent research suggests that the left inferior frontal gyrus (LIFG) plays a role in selecting semantic information from among competing alternatives. A key question remains as to whether the LIFG is engaged by the selection of semantic information only or by increased semantic competition in and of itself, especially when such competition is implicit in nature. Ambiguous words presented in a lexical context provide a means of examining whether the LIFG is recruited under conditions when contextual cues constrain selection to only the meaning appropriate to the context (e.g., coin-mint-money) or under conditions of increased competition when contextual cues do not allow for the resolution to a particular meaning (e.g., candy-mint-money). In this event-related fMRI study, an implicit task was used in which subjects made lexical (i.e., word/nonword) decisions on the third stimulus of auditorily-presented triplets in conditions where the lexical context either promoted resolution toward a particular ambiguous word meaning or enhanced the competition among ambiguous word meanings. LIFG activation was observed when the context allowed for the resolution of competition and hence the selection of one meaning (e.g., coin-mint-money) but failed to emerge when competition between the meanings of an ambiguous word was unresolved by the context (e.g., candy-mint-money). In the latter case, there was a pattern of reduced activation in frontal, temporal and parietal areas. These findings demonstrate that selection or resolution of competition as opposed to increased semantic competition alone engages the LIFG. Moreover, they extend previous work in showing that the LIFG is recruited even in cases where the selection of meaning takes place implicitly. PMID:18656462

  7. The supplementary motor area in motor and perceptual time processing: fMRI studies.

    PubMed

    Macar, Françoise; Coull, Jennifer; Vidal, Franck

    2006-06-01

    The neural bases of timing mechanisms in the second-to-minute range are currently investigated using multidisciplinary approaches. This paper documents the involvement of the supplementary motor area (SMA) in the encoding of target durations by reporting convergent fMRI data from motor and perceptual timing tasks. Event-related fMRI was used in two temporal procedures, involving (1) the production of an accurate interval as compared to an accurate force, and (2) a dual-task of time and colour discrimination with parametric manipulation of the level of attention attributed to each parameter. The first study revealed greater activation of the SMA proper in skilful control of time compared to force. The second showed that increasing attentional allocation to time increased activity in a cortico-striatal network including the pre-SMA (in contrast with the occipital cortex for increasing attention to colour). Further, the SMA proper was sensitive to the attentional modulation cued prior to the time processing period. Taken together, these data and related literature suggest that the SMA plays a key role in time processing as part of the striato-cortical pathway previously identified by animal studies, human neuropsychology and neuroimaging.

  8. Sex differences in the response to emotional distraction: an event-related fMRI investigation.

    PubMed

    Iordan, Alexandru D; Dolcos, Sanda; Denkova, Ekaterina; Dolcos, Florin

    2013-03-01

    Evidence has suggested that women have greater emotional reactivity than men. However, it is unclear whether these differences in basic emotional responses are also associated with differences in emotional distractibility, and what the neural mechanisms that implement differences in emotional distractibility between women and men are. Functional MRI recording was used in conjunction with a working memory (WM) task, with emotional distraction (angry faces) presented during the interval between the memoranda and the probes. First, we found an increased impact of emotional distraction among women in trials associated with high-confidence responses, in the context of overall similar WM performance in women and men. Second, women showed increased sensitivity to emotional distraction in brain areas associated with "hot" emotional processing, whereas men showed increased sensitivity in areas associated with "cold" executive processing, in the context of overall similar patterns of response to emotional distraction in women and men. Third, a sex-related dorsal-ventral hemispheric dissociation emerged in the lateral PFC related to coping with emotional distraction, with women showing a positive correlation with WM performance in left ventral PFC, and men showing similar effects in the right dorsal PFC. In addition to extending to men results that have previously been reported in women, by showing that both sexes engage mechanisms that are similar overall in response to emotional distraction, the present study identifies sex differences in both the response to and coping with emotional distraction. These results have implications for understanding sex differences in the susceptibility to affective disorders, in which basic emotional responses, emotional distractibility, and coping abilities are altered.

  9. In-situ investigation of relations between slow slip events, repeaters and earthquake nucleation

    NASA Astrophysics Data System (ADS)

    Marty, S. B.; Schubnel, A.; Gardonio, B.; Bhat, H. S.; Fukuyama, E.

    2017-12-01

    Recent observations have shown that, in subduction zones, imperceptible slip, known as "slow slip events", could trigger powerful earthquakes and could be link to the onset of swarms of repeaters. In the aim of investigating the relation between repeaters, slow slip events and earthquake nucleation, we have conducted stick-slip experiments on saw-cut Indian Gabbro under upper crustal stress conditions (up to 180 MPa confining pressure). During the past decades, the reproduction of micro-earthquakes in the laboratory enabled a better understanding and to better constrain physical parameters that are the origin of the seismic source. Using a new set of calibrated piezoelectric acoustic emission sensors and high frequency dynamic strain gages, we are now able to measure a large number of physical parameters during stick-slip motion, such as the rupture velocity, the slip velocity, the dynamic stress drop and the absolute magnitudes and sizes of foreshock acoustic emissions. Preliminary observations systemically show quasi-static slip accelerations, onset of repeaters as well as an increase in the acoustic emission rate before failure. In the next future, we will further investigate the links between slow slip events, repeaters, stress build-up and earthquakes, using our high-frequency acoustic and strain recordings and applying template matching analysis.

  10. Variability comparison of simultaneous brain near-infrared spectroscopy (NIRS) and functional MRI (fMRI) during visual stimulation

    PubMed Central

    Minati, Ludovico; Visani, Elisa; Dowell, Nick G; Medford, Nick; Critchley, Hugo D

    2011-01-01

    Brain near-infrared spectroscopy (NIRS) is emerging as a potential alternative to functional MRI (fMRI). To date, no study has explicitly compared the two techniques in terms of measurement variability, a key parameter dictating attainable statistical power. Here, NIRS and fMRI were simultaneously recorded during event-related visual stimulation. Inter-subject coefficients of variation (CVs) for peak response amplitude were considerably larger for NIRS than fMRI, but inter-subject CVs for response latency and intra-subject CVs for response amplitude were overall comparable. Our results may represent an optimistic estimate of the CVs of NIRS measurements, as optode positioning was guided by structural MRI, which is normally unavailable. We conclude that fMRI may be preferable to NIRS for group comparisons, but NIRS is equally powerful when comparing conditions within participants. The discrepancy between inter- and intra-subject CVs is likely related to variability in head anatomy and tissue properties which may be better accounted for by emerging NIRS technology. PMID:21780948

  11. Gender differences in the processing of standard emotional visual stimuli: integrating ERP and fMRI results

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Tian, Jie; Wang, Xiaoxiang; Hu, Jin

    2005-04-01

    The comprehensive understanding of human emotion processing needs consideration both in the spatial distribution and the temporal sequencing of neural activity. The aim of our work is to identify brain regions involved in emotional recognition as well as to follow the time sequence in the millisecond-range resolution. The effect of activation upon visual stimuli in different gender by International Affective Picture System (IAPS) has been examined. Hemodynamic and electrophysiological responses were measured in the same subjects. Both fMRI and ERP study were employed in an event-related study. fMRI have been obtained with 3.0 T Siemens Magnetom whole-body MRI scanner. 128-channel ERP data were recorded using an EGI system. ERP is sensitive to millisecond changes in mental activity, but the source localization and timing is limited by the ill-posed 'inversed' problem. We try to investigate the ERP source reconstruction problem in this study using fMRI constraint. We chose ICA as a pre-processing step of ERP source reconstruction to exclude the artifacts and provide a prior estimate of the number of dipoles. The results indicate that male and female show differences in neural mechanism during emotion visual stimuli.

  12. Investigating virtual reality navigation in amnestic mild cognitive impairment using fMRI.

    PubMed

    Migo, E M; O'Daly, O; Mitterschiffthaler, M; Antonova, E; Dawson, G R; Dourish, C T; Craig, K J; Simmons, A; Wilcock, G K; McCulloch, E; Jackson, S H D; Kopelman, M D; Williams, S C R; Morris, R G

    2016-01-01

    Spatial navigation requires a well-established network of brain regions, including the hippocampus, caudate nucleus, and retrosplenial cortex. Amnestic Mild Cognitive Impairment (aMCI) is a condition with predominantly memory impairment, conferring a high predictive risk factor for dementia. aMCI is associated with hippocampal atrophy and subtle deficits in spatial navigation. We present the first use of a functional Magnetic Resonance Imaging (fMRI) navigation task in aMCI, using a virtual reality analog of the Radial Arm Maze. Compared with controls, aMCI patients showed reduced activity in the hippocampus bilaterally, retrosplenial cortex, and left dorsolateral prefrontal cortex. Reduced activation in key areas for successful navigation, as well as additional regions, was found alongside relatively normal task performance. Results also revealed increased activity in the right dorsolateral prefrontal cortex in aMCI patients, which may reflect compensation for reduced activations elsewhere. These data support suggestions that fMRI spatial navigation tasks may be useful for staging of progression in MCI.

  13. Large enhancement of perfusion contribution on fMRI signal

    PubMed Central

    Wang, Xiao; Zhu, Xiao-Hong; Zhang, Yi; Chen, Wei

    2012-01-01

    The perfusion contribution to the total functional magnetic resonance imaging (fMRI) signal was investigated using a rat model with mild hypercapnia at 9.4 T, and human subjects with visual stimulation at 4 T. It was found that the total fMRI signal change could be approximated as a linear superposition of ‘true' blood oxygenation level-dependent (BOLD; T2/T2*) effect and the blood flow-related (T1) effect. The latter effect was significantly enhanced by using short repetition time and large radiofrequency pulse flip angle and became comparable to the ‘true' BOLD signal in response to a mild hypercapnia in the rat brain, resulting in an improved contrast-to-noise ratio (CNR). Bipolar diffusion gradients suppressed the intravascular signals but had no significant effect on the flow-related signal. Similar results of enhanced fMRI signal were observed in the human study. The overall results suggest that the observed flow-related signal enhancement is likely originated from perfusion, and this enhancement can improve CNR and the spatial specificity for mapping brain activity and physiology changes. The nature of mixed BOLD and perfusion-related contributions in the total fMRI signal also has implication on BOLD quantification, in particular, the BOLD calibration model commonly used to estimate the change of cerebral metabolic rate of oxygen. PMID:22395206

  14. Functional Brain Activation Differences in Stuttering Identified with a Rapid fMRI Sequence

    ERIC Educational Resources Information Center

    Loucks, Torrey; Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.

    2011-01-01

    The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech…

  15. Say It with Flowers! An fMRI Study of Object Mediated Communication

    ERIC Educational Resources Information Center

    Tylen, Kristian; Wallentin, Mikkel; Roepstorff, Andreas

    2009-01-01

    Human communicational interaction can be mediated by a host of expressive means from words in a natural language to gestures and material symbols. Given the proper contextual setting even an everyday object can gain a mediating function in a communicational situation. In this study we used event-related fMRI to study the brain activity caused by…

  16. An fMRI Investigation of the Neural Correlates Underlying the Processing of Novel Metaphoric Expressions

    ERIC Educational Resources Information Center

    Mashal, N.; Faust, M.; Hendler, T.; Jung-Beeman, M.

    2007-01-01

    The neural networks associated with processing related pairs of words forming literal, novel, and conventional metaphorical expressions and unrelated pairs of words were studied in a group of 15 normal adults using fMRI. Subjects read the four types of linguistic expressions and decided which relation exists between the two words (metaphoric,…

  17. Interference from related actions in spoken word production: Behavioural and fMRI evidence.

    PubMed

    de Zubicaray, Greig; Fraser, Douglas; Ramajoo, Kori; McMahon, Katie

    2017-02-01

    Few investigations of lexical access in spoken word production have investigated the cognitive and neural mechanisms involved in action naming. These are likely to be more complex than the mechanisms involved in object naming, due to the ways in which conceptual features of action words are represented. The present study employed a blocked cyclic naming paradigm to examine whether related action contexts elicit a semantic interference effect akin to that observed with categorically related objects. Participants named pictures of intransitive actions to avoid a confound with object processing. In Experiment 1, body-part related actions (e.g., running, walking, skating, hopping) were named significantly slower compared to unrelated actions (e.g., laughing, running, waving, hiding). Experiment 2 employed perfusion functional Magnetic Resonance Imaging (fMRI) to investigate the neural mechanisms involved in this semantic interference effect. Compared to unrelated actions, naming related actions elicited significant perfusion signal increases in frontotemporal cortex, including bilateral inferior frontal gyrus (IFG) and hippocampus, and decreases in bilateral posterior temporal, occipital and parietal cortices, including intraparietal sulcus (IPS). The findings demonstrate a role for temporoparietal cortex in conceptual-lexical processing of intransitive action knowledge during spoken word production, and support the proposed involvement of interference resolution and incremental learning mechanisms in the blocked cyclic naming paradigm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Magnetic susceptibility induced echo time shifts: Is there a bias in age-related fMRI studies?

    PubMed Central

    Ngo, Giang-Chau; Wong, Chelsea N.; Guo, Steve; Paine, Thomas; Kramer, Arthur F.; Sutton, Bradley P.

    2016-01-01

    Purpose To evaluate the potential for bias in functional MRI (fMRI) aging studies resulting from age-related differences in magnetic field distributions which can impact echo time and functional contrast. Materials and Methods Magnetic field maps were taken on 31 younger adults (age: 22 ± 2.9 years) and 46 older adults (age: 66 ± 4.5 years) on a 3 T scanner. Using the spatial gradients of the magnetic field map for each participant, an echo planar imaging (EPI) trajectory was simulated. The effective echo time, time at which the k-space trajectory is the closest to the center of k-space, was calculated. This was used to examine both within-subject and across-age-group differences in the effective echo time maps. The Blood Oxygenation Level Dependent (BOLD) percent signal change resulting from those echo time shifts was also calculated to determine their impact on fMRI aging studies. Result For a single subject, the effective echo time varied as much as ± 5 ms across the brain. An unpaired t-test between the effective echo time across age group resulted in significant differences in several regions of the brain (p<0.01). The difference in echo time was only approximately 1 ms, however which is not expected to have an important impact on BOLD fMRI percent signal change (< 4%). Conclusion Susceptibility-induced magnetic field gradients induce local echo time shifts in gradient echo fMRI images, which can cause variable BOLD sensitivity across the brain. However, the age-related differences in BOLD signal are expected to be small for an fMRI study at 3 T. PMID:27299727

  19. Characterizing Response to Elemental Unit of Acoustic Imaging Noise: An fMRI Study

    PubMed Central

    Luh, Wen-Ming; Talavage, Thomas M.

    2010-01-01

    Acoustic imaging noise produced during functional magnetic resonance imaging (fMRI) studies can hinder auditory fMRI research analysis by altering the properties of the acquired time-series data. Acoustic imaging noise can be especially confounding when estimating the time course of the hemodynamic response (HDR) in auditory event-related fMRI (fMRI) experiments. This study is motivated by the desire to establish a baseline function that can serve not only as a comparison to other quantities of acoustic imaging noise for determining how detrimental is one's experimental noise, but also as a foundation for a model that compensates for the response to acoustic imaging noise. Therefore, the amplitude and spatial extent of the HDR to the elemental unit of acoustic imaging noise (i.e., a single ping) associated with echoplanar acquisition were characterized and modeled. Results from this fMRI study at 1.5 T indicate that the group-averaged HDR in left and right auditory cortex to acoustic imaging noise (duration of 46 ms) has an estimated peak magnitude of 0.29% (right) to 0.48% (left) signal change from baseline, peaks between 3 and 5 s after stimulus presentation, and returns to baseline and remains within the noise range approximately 8 s after stimulus presentation. PMID:19304477

  20. Effects of haloperidol and aripiprazole on the human mesolimbic motivational system: A pharmacological fMRI study.

    PubMed

    Bolstad, Ingeborg; Andreassen, Ole A; Groote, Inge; Server, Andres; Sjaastad, Ivar; Kapur, Shitij; Jensen, Jimmy

    2015-12-01

    The atypical antipsychotic drug aripiprazole is a partial dopamine (DA) D2 receptor agonist, which differentiates it from most other antipsychotics. This study compares the brain activation characteristic produced by aripiprazole with that of haloperidol, a typical D2 receptor antagonist. Healthy participants received an acute oral dose of haloperidol, aripiprazole or placebo, and then performed an active aversive conditioning task with aversive and neutral events presented as sounds, while blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was carried out. The fMRI task, targeting the mesolimbic motivational system that is thought to be disturbed in psychosis, was based on the conditioned avoidance response (CAR) animal model - a widely used test of therapeutic potential of antipsychotic drugs. In line with the CAR animal model, the present results show that subjects given haloperidol were not able to avoid more aversive than neutral task trials, even though the response times were shorter during aversive events. In the aripiprazole and placebo groups more aversive than neutral events were avoided. Accordingly, the task-related BOLD-fMRI response in the mesolimbic motivational system was diminished in the haloperidol group compared to the placebo group, particularly in the ventral striatum, whereas the aripiprazole group showed task-related activations intermediate of the placebo and haloperidol groups. The current results show differential effects on brain function by aripiprazole and haloperidol, probably related to altered DA transmission. This supports the use of pharmacological fMRI to study antipsychotic properties in humans. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  1. How Brooding Minds Inhibit Negative Material: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Vanderhasselt, Marie-Anne; Baeken, Chris; Van Schuerbeek, Peter; Luypaert, Rob; De Mey, Johan; De Raedt, Rudi

    2013-01-01

    Depressive brooding--a passive ruminative focus on one's problems, negative mood and their consequences--is a thinking style that places individuals at a greater risk to develop future psychopathology. In this study, we investigated whether inter-individual differences in depressive brooding are related to neural differences underlying the…

  2. Automatic numerical-spatial association in synaesthesia: An fMRI investigation.

    PubMed

    Arend, Isabel; Ashkenazi, Sarit; Yuen, Kenneth; Ofir, Shiran; Henik, Avishai

    2017-01-27

    A horizontal mental number line (MNL) is used to describe how quantities are represented across space. In humans, the neural correlates associated with such a representation are found in different areas of the posterior parietal cortex, especially, the intraparietal sulcus (IPS). In a phenomenon known as number-space synaesthesia, individuals visualise numbers in specific spatial locations. The experience of a MNL for number-space synaesthetes is explicit, idiosyncratic, and highly stable over time. It remains an open question whether the mechanisms underlying numerical-spatial association are shared by synaesthetes and nonsynaesthetes. We address the neural correlates of number-space association by examining the brain response in a number-space synaestheste (MkM) whose MNL differs dramatically in its ordinality and direction from that of a control group. MkM and 15 nonsynaesthetes compared the physical size of two numbers, while ignoring their numerical value, during an event-related functional magnetic resonance imaging session (fMRI). Two factors were analysed: the numerical distance effect (NDE; e.g., 2-4 small distance vs. 1-6 large distance), and the size congruity effect (e.g., 2-8 congruent vs. 2-8 incongruent). Only for MkM, the NDE elicited significant activity in the left and right IPS, supramarginal gyrus (bilateral), and in the left angular gyrus. These results strongly support the role of the parietal cortex in the automatic coding of space and quantity in number-space synaesthesia, even when numerical values are task-irrelevant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Brain atrophy can introduce age-related differences in BOLD response.

    PubMed

    Liu, Xueqing; Gerraty, Raphael T; Grinband, Jack; Parker, David; Razlighi, Qolamreza R

    2017-04-11

    Use of functional magnetic resonance imaging (fMRI) in studies of aging is often hampered by uncertainty about age-related differences in the amplitude and timing of the blood oxygenation level dependent (BOLD) response (i.e., hemodynamic impulse response function (HRF)). Such uncertainty introduces a significant challenge in the interpretation of the fMRI results. Even though this issue has been extensively investigated in the field of neuroimaging, there is currently no consensus about the existence and potential sources of age-related hemodynamic alterations. Using an event-related fMRI experiment with two robust and well-studied stimuli (visual and auditory), we detected a significant age-related difference in the amplitude of response to auditory stimulus. Accounting for brain atrophy by circumventing spatial normalization and processing the data in subjects' native space eliminated these observed differences. In addition, we simulated fMRI data using age differences in brain morphology while controlling HRF shape. Analyzing these simulated fMRI data using standard image processing resulted in differences in HRF amplitude, which were eliminated when the data were analyzed in subjects' native space. Our results indicate that age-related atrophy introduces inaccuracy in co-registration to standard space, which subsequently appears as attenuation in BOLD response amplitude. Our finding could explain some of the existing contradictory reports regarding age-related differences in the fMRI BOLD responses. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. The relation between statistical power and inference in fMRI

    PubMed Central

    Wager, Tor D.; Yarkoni, Tal

    2017-01-01

    Statistically underpowered studies can result in experimental failure even when all other experimental considerations have been addressed impeccably. In fMRI the combination of a large number of dependent variables, a relatively small number of observations (subjects), and a need to correct for multiple comparisons can decrease statistical power dramatically. This problem has been clearly addressed yet remains controversial—especially in regards to the expected effect sizes in fMRI, and especially for between-subjects effects such as group comparisons and brain-behavior correlations. We aimed to clarify the power problem by considering and contrasting two simulated scenarios of such possible brain-behavior correlations: weak diffuse effects and strong localized effects. Sampling from these scenarios shows that, particularly in the weak diffuse scenario, common sample sizes (n = 20–30) display extremely low statistical power, poorly represent the actual effects in the full sample, and show large variation on subsequent replications. Empirical data from the Human Connectome Project resembles the weak diffuse scenario much more than the localized strong scenario, which underscores the extent of the power problem for many studies. Possible solutions to the power problem include increasing the sample size, using less stringent thresholds, or focusing on a region-of-interest. However, these approaches are not always feasible and some have major drawbacks. The most prominent solutions that may help address the power problem include model-based (multivariate) prediction methods and meta-analyses with related synthesis-oriented approaches. PMID:29155843

  5. Abnormal brain function in neuromyelitis optica: A fMRI investigation of mPASAT.

    PubMed

    Wang, Fei; Liu, Yaou; Li, Jianjun; Sondag, Matthew; Law, Meng; Zee, Chi-Shing; Dong, Huiqing; Li, Kuncheng

    2017-10-01

    Cognitive impairment with the Neuromyelitis Optica (NMO) patients is debated. The present study is to study patterns of brain activation in NMO patients during a pair of task-related fMRI. We studied 20 patients with NMO and 20 control subjects matched for age, gender, education and handedness. All patients with NMO met the 2006 Wingerchuk diagnostic criteria. The fMRI paradigm included an auditory attention monitoring task and a modified version of the Paced Auditory Serial Addition Task (mPASAT). Both tasks were temporally and spatially balanced, with the exception of task difficulty. In mPASAT, Activation regions in control subjects included bilateral superior temporal gyri (BA22), left inferior frontal gyrus (BA45), bilateral inferior parietal lobule (BA7), left cingulate gyrus (BA32), left insula (BA13), and cerebellum. Activation regions in NMO patients included bilateral superior temporal gyri (BA22), left inferior frontal gyrus (BA9), right cingulate gyrus (BA32), right inferior parietal gyrus (BA40), left insula (BA13) and cerebellum. Some dispersed cognition related regions are greater in the patients. The present study showed altered cerebral activation during mPASAT in patients with NMO relative to healthy controls. These results are speculated to provide further evidence for brain plasticity in patients with NMO. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Integration of fMRI, NIROT and ERP for studies of human brain function.

    PubMed

    Gore, John C; Horovitz, Silvina G; Cannistraci, Christopher J; Skudlarski, Pavel

    2006-05-01

    Different methods of assessing human brain function possess specific advantages and disadvantages compared to others, but it is believed that combining different approaches will provide greater information than can be obtained from each alone. For example, functional magnetic resonance imaging (fMRI) has good spatial resolution but poor temporal resolution, whereas the converse is true for electrophysiological recordings (event-related potentials or ERPs). In this review of recent work, we highlight a novel approach to combining these modalities in a manner designed to increase information on the origins and locations of the generators of specific ERPs and the relationship between fMRI and ERP signals. Near infrared imaging techniques have also been studied as alternatives to fMRI and can be readily integrated with simultaneous electrophysiological recordings. Each of these modalities may in principle be also used in so-called steady-state acquisitions in which the correlational structure of signals from the brain may be analyzed to provide new insights into brain function.

  7. An fMRI investigation of the relationship between future imagination and cognitive flexibility

    PubMed Central

    Roberts, R.P.; Wiebels, K.; Sumner, R.L.; van Mulukom, V.; Grady, C.L.; Schacter, D.L.; Addis, D.R.

    2016-01-01

    While future imagination is largely considered to be a cognitive process grounded in default mode network activity, studies have shown that future imagination recruits regions in both default mode and frontoparietal control networks. In addition, it has recently been shown that the ability to imagine the future is associated with cognitive flexibility, and that tasks requiring cognitive flexibility result in increased coupling of the default mode network with frontoparietal control and salience networks. In the current study, we investigated the neural correlates underlying the association between cognitive flexibility and future imagination in two ways. First, we experimentally varied the degree of cognitive flexibility required during future imagination by manipulating the disparateness of episodic details contributing to imagined events. To this end, participants generated episodic details (persons, locations, objects) within three social spheres; during fMRI scanning they were presented with sets of three episodic details all taken from the same social sphere (Congruent condition) or different social spheres (Incongruent condition) and required to imagine a future event involving the three details. We predicted that, relative to the Congruent condition, future simulation in the Incongruent condition would be associated with increased activity in regions of the default mode, frontoparietal and salience networks. Second, we hypothesized that individual differences in cognitive flexibility, as measured by performance on the Alternate Uses Task, would correspond to individual differences in the brain regions recruited during future imagination. A task partial least squares (PLS) analysis showed that the Incongruent condition resulted in an increase in activity in regions in salience networks (e.g. the insula) but, contrary to our prediction, reduced activity in many regions of the default mode network (including the hippocampus). A subsequent functional

  8. Effect of trial-to-trial variability on optimal event-related fMRI design: Implications for Beta-series correlation and multi-voxel pattern analysis

    PubMed Central

    Abdulrahman, Hunar; Henson, Richard N.

    2016-01-01

    Functional magnetic resonance imaging (fMRI) studies typically employ rapid, event-related designs for behavioral reasons and for reasons associated with statistical efficiency. Efficiency is calculated from the precision of the parameters (Betas) estimated from a General Linear Model (GLM) in which trial onsets are convolved with a Hemodynamic Response Function (HRF). However, previous calculations of efficiency have ignored likely variability in the neural response from trial to trial, for example due to attentional fluctuations, or different stimuli across trials. Here we compare three GLMs in their efficiency for estimating average and individual Betas across trials as a function of trial variability, scan noise and Stimulus Onset Asynchrony (SOA): “Least Squares All” (LSA), “Least Squares Separate” (LSS) and “Least Squares Unitary” (LSU). Estimation of responses to individual trials in particular is important for both functional connectivity using “Beta-series correlation” and “multi-voxel pattern analysis” (MVPA). Our simulations show that the ratio of trial-to-trial variability to scan noise impacts both the optimal SOA and optimal GLM, especially for short SOAs < 5 s: LSA is better when this ratio is high, whereas LSS and LSU are better when the ratio is low. For MVPA, the consistency across voxels of trial variability and of scan noise is also critical. These findings not only have important implications for design of experiments using Beta-series regression and MVPA, but also statistical parametric mapping studies that seek only efficient estimation of the mean response across trials. PMID:26549299

  9. The modulating effect of personality traits on neural error monitoring: evidence from event-related FMRI.

    PubMed

    Sosic-Vasic, Zrinka; Ulrich, Martin; Ruchsow, Martin; Vasic, Nenad; Grön, Georg

    2012-01-01

    The present study investigated the association between traits of the Five Factor Model of Personality (Neuroticism, Extraversion, Openness for Experiences, Agreeableness, and Conscientiousness) and neural correlates of error monitoring obtained from a combined Eriksen-Flanker-Go/NoGo task during event-related functional magnetic resonance imaging in 27 healthy subjects. Individual expressions of personality traits were measured using the NEO-PI-R questionnaire. Conscientiousness correlated positively with error signaling in the left inferior frontal gyrus and adjacent anterior insula (IFG/aI). A second strong positive correlation was observed in the anterior cingulate gyrus (ACC). Neuroticism was negatively correlated with error signaling in the inferior frontal cortex possibly reflecting the negative inter-correlation between both scales observed on the behavioral level. Under present statistical thresholds no significant results were obtained for remaining scales. Aligning the personality trait of Conscientiousness with task accomplishment striving behavior the correlation in the left IFG/aI possibly reflects an inter-individually different involvement whenever task-set related memory representations are violated by the occurrence of errors. The strong correlations in the ACC may indicate that more conscientious subjects were stronger affected by these violations of a given task-set expressed by individually different, negatively valenced signals conveyed by the ACC upon occurrence of an error. Present results illustrate that for predicting individual responses to errors underlying personality traits should be taken into account and also lend external validity to the personality trait approach suggesting that personality constructs do reflect more than mere descriptive taxonomies.

  10. FMRI to probe sex-related differences in brain function with multitasking

    PubMed Central

    Tschernegg, Melanie; Neuper, Christa; Schmidt, Reinhold; Wood, Guilherme; Kronbichler, Martin; Fazekas, Franz; Enzinger, Christian

    2017-01-01

    Background Although established as a general notion in society, there is no solid scientific foundation for the existence of sex-differences in multitasking. Reaction time and accuracy in dual task conditions have an inverse relationship relative to single task, independently from sex. While a more disseminated network, parallel to decreasing accuracy and reaction time has been demonstrated in dual task fMRI studies, little is known so far whether there exist respective sex-related differences in activation. Methods We subjected 20 women (mean age = 25.45; SD = 5.23) and 20 men (mean age = 27.55; SD = 4.00) to a combined verbal and spatial fMRI paradigm at 3.0T to assess sex-related skills, based on the assumption that generally women better perform in verbal tasks while men do better in spatial tasks. We also obtained behavioral tests for verbal and spatial intelligence, attention, executive functions, and working memory. Results No differences between women and men were observed in behavioral measures of dual-tasking or cognitive performance. Generally, brain activation increased with higher task load, mainly in the bilateral inferior and prefrontal gyri, the anterior cingulum, thalamus, putamen and occipital areas. Comparing sexes, women showed increased activation in the inferior frontal gyrus in the verbal dual-task while men demonstrated increased activation in the precuneus and adjacent visual areas in the spatial task. Conclusion Against the background of equal cognitive and behavioral dual-task performance in both sexes, we provide first evidence for sex-related activation differences in functional networks for verbal and spatial dual-tasking. PMID:28759619

  11. FMRI to probe sex-related differences in brain function with multitasking.

    PubMed

    Tschernegg, Melanie; Neuper, Christa; Schmidt, Reinhold; Wood, Guilherme; Kronbichler, Martin; Fazekas, Franz; Enzinger, Christian; Koini, Marisa

    2017-01-01

    Although established as a general notion in society, there is no solid scientific foundation for the existence of sex-differences in multitasking. Reaction time and accuracy in dual task conditions have an inverse relationship relative to single task, independently from sex. While a more disseminated network, parallel to decreasing accuracy and reaction time has been demonstrated in dual task fMRI studies, little is known so far whether there exist respective sex-related differences in activation. We subjected 20 women (mean age = 25.45; SD = 5.23) and 20 men (mean age = 27.55; SD = 4.00) to a combined verbal and spatial fMRI paradigm at 3.0T to assess sex-related skills, based on the assumption that generally women better perform in verbal tasks while men do better in spatial tasks. We also obtained behavioral tests for verbal and spatial intelligence, attention, executive functions, and working memory. No differences between women and men were observed in behavioral measures of dual-tasking or cognitive performance. Generally, brain activation increased with higher task load, mainly in the bilateral inferior and prefrontal gyri, the anterior cingulum, thalamus, putamen and occipital areas. Comparing sexes, women showed increased activation in the inferior frontal gyrus in the verbal dual-task while men demonstrated increased activation in the precuneus and adjacent visual areas in the spatial task. Against the background of equal cognitive and behavioral dual-task performance in both sexes, we provide first evidence for sex-related activation differences in functional networks for verbal and spatial dual-tasking.

  12. The Neural Basis of Event Simulation: An fMRI Study

    PubMed Central

    Yomogida, Yukihito; Sugiura, Motoaki; Akimoto, Yoritaka; Miyauchi, Carlos Makoto; Kawashima, Ryuta

    2014-01-01

    Event simulation (ES) is the situational inference process in which perceived event features such as objects, agents, and actions are associated in the brain to represent the whole situation. ES provides a common basis for various cognitive processes, such as perceptual prediction, situational understanding/prediction, and social cognition (such as mentalizing/trait inference). Here, functional magnetic resonance imaging was used to elucidate the neural substrates underlying important subdivisions within ES. First, the study investigated whether ES depends on different neural substrates when it is conducted explicitly and implicitly. Second, the existence of neural substrates specific to the future-prediction component of ES was assessed. Subjects were shown contextually related object pictures implying a situation and performed several picture–word-matching tasks. By varying task goals, subjects were made to infer the implied situation implicitly/explicitly or predict the future consequence of that situation. The results indicate that, whereas implicit ES activated the lateral prefrontal cortex and medial/lateral parietal cortex, explicit ES activated the medial prefrontal cortex, posterior cingulate cortex, and medial/lateral temporal cortex. Additionally, the left temporoparietal junction plays an important role in the future-prediction component of ES. These findings enrich our understanding of the neural substrates of the implicit/explicit/predictive aspects of ES-related cognitive processes. PMID:24789353

  13. Question/statement judgments: an fMRI study of intonation processing.

    PubMed

    Doherty, Colin P; West, W Caroline; Dilley, Laura C; Shattuck-Hufnagel, Stefanie; Caplan, David

    2004-10-01

    We examined changes in fMRI BOLD signal associated with question/statement judgments in an event-related paradigm to investigate the neural basis of processing one aspect of intonation. Subjects made judgments about digitized recordings of three types of utterances: questions with rising intonation (RQ; e.g., "She was talking to her father?"), statements with a falling intonation (FS; e.g., "She was talking to her father."), and questions with a falling intonation and a word order change (FQ; e.g., "Was she talking to her father?"). Functional echo planar imaging (EPI) scans were collected from 11 normal subjects. There was increased BOLD activity in bilateral inferior frontal and temporal regions for RQ over either FQ or FS stimuli. The study provides data relevant to the location of regions responsive to intonationally marked illocutionary differences between questions and statements.

  14. Neural correlates of fixation duration in natural reading: Evidence from fixation-related fMRI.

    PubMed

    Henderson, John M; Choi, Wonil; Luke, Steven G; Desai, Rutvik H

    2015-10-01

    A key assumption of current theories of natural reading is that fixation duration reflects underlying attentional, language, and cognitive processes associated with text comprehension. The neurocognitive correlates of this relationship are currently unknown. To investigate this relationship, we compared neural activation associated with fixation duration in passage reading and a pseudo-reading control condition. The results showed that fixation duration was associated with activation in oculomotor and language areas during text reading. Fixation duration during pseudo-reading, on the other hand, showed greater involvement of frontal control regions, suggesting flexibility and task dependency of the eye movement network. Consistent with current models, these results provide support for the hypothesis that fixation duration in reading reflects attentional engagement and language processing. The results also demonstrate that fixation-related fMRI provides a method for investigating the neurocognitive bases of natural reading. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. An Event-Related Potential (ERP) Investigation of Filler-Gap Processing in Native and Second Language Speakers

    ERIC Educational Resources Information Center

    Dallas, Andrea; DeDe, Gayle; Nicol, Janet

    2013-01-01

    The current study employed a neuro-imaging technique, Event-Related Potentials (ERP), to investigate real-time processing of sentences containing filler-gap dependencies by late-learning speakers of English as a second language (L2) with a Chinese native language background. An individual differences approach was also taken to examine the role of…

  16. From a concept to a word in a syntactically complete sentence: an fMRI study on spontaneous language production in an overt picture description task.

    PubMed

    Grande, Marion; Meffert, Elisabeth; Schoenberger, Eva; Jung, Stefanie; Frauenrath, Tobias; Huber, Walter; Hussmann, Katja; Moormann, Mareike; Heim, Stefan

    2012-07-02

    Spontaneous language has rarely been subjected to neuroimaging studies. This study therefore introduces a newly developed method for the analysis of linguistic phenomena observed in continuous language production during fMRI. Most neuroimaging studies investigating language have so far focussed on single word or - to a smaller extent - sentence processing, mostly due to methodological considerations. Natural language production, however, is far more than the mere combination of words to larger units. Therefore, the present study aimed at relating brain activation to linguistic phenomena like word-finding difficulties or syntactic completeness in a continuous language fMRI paradigm. A picture description task with special constraints was used to provoke hesitation phenomena and speech errors. The transcribed speech sample was segmented into events of one second and each event was assigned to one category of a complex schema especially developed for this purpose. The main results were: conceptual planning engages bilateral activation of the precuneus. Successful lexical retrieval is accompanied - particularly in comparison to unsolved word-finding difficulties - by the left middle and superior temporal gyrus. Syntactic completeness is reflected in activation of the left inferior frontal gyrus (IFG) (area 44). In sum, the method has proven to be useful for investigating the neural correlates of lexical and syntactic phenomena in an overt picture description task. This opens up new prospects for the analysis of spontaneous language production during fMRI. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Neural evidence for phonologically based language production deficits in older adults: An fMRI investigation of age-related differences in picture-word interference.

    PubMed

    Rizio, Avery A; Moyer, Karlee J; Diaz, Michele T

    2017-04-01

    Older adults often show declines in phonological aspects of language production, particularly for low-frequency words, but maintain strong semantic systems. However, there are different theories about the mechanism that may underlie such age-related differences in language (e.g., age-related declines in transmission of activation or inhibition). This study used fMRI to investigate whether age-related differences in language production are associated with transmission deficits or inhibition deficits. We used the picture-word interference paradigm to examine age-related differences in picture naming as a function of both target frequency and the relationship between the target picture and distractor word. We found that the presence of a categorically related distractor led to greater semantic elaboration by older adults compared to younger adults, as evidenced by older adults' increased recruitment of regions including the left middle frontal gyrus and bilateral precuneus. When presented with a phonologically related distractor, patterns of neural activation are consistent with previously observed age deficits in phonological processing, including age-related reductions in the recruitment of regions such as the left middle temporal gyrus and right supramarginal gyrus. Lastly, older, but not younger, adults show increased brain activation of the pre- and postcentral gyri as a function of decreasing target frequency when target pictures are paired with a phonological distractor, suggesting that cuing the phonology of the target disproportionately aids production of low-frequency items. Overall, this pattern of results is generally consistent with the transmission deficit hypothesis, illustrating that links within the phonological system, but not the semantic system, are weakened with age.

  18. Developmental fMRI study of episodic verbal memory encoding in children.

    PubMed

    Maril, A; Davis, P E; Koo, J J; Reggev, N; Zuckerman, M; Ehrenfeld, L; Mulkern, R V; Waber, D P; Rivkin, M J

    2010-12-07

    Understanding the maturation and organization of cognitive function in the brain is a central objective of both child neurology and developmental cognitive neuroscience. This study focuses on episodic memory encoding of verbal information by children, a cognitive domain not previously studied using fMRI. Children from 7 to 19 years of age were scanned at 1.5-T field strength using event-related fMRI while performing a novel verbal memory encoding paradigm in which words were incidentally encoded. A subsequent memory analysis was performed. SPM2 was utilized for whole brain and region-of-interest analyses of data. Both whole-sample intragroup analyses and intergroup analyses of the sample divided into 2 subgroups by age were conducted. Importantly, behavioral memory performance was equal across the age range of children studied. Encoding-related activation in the left hippocampus and bilateral basal ganglia declined as age increased. In addition, while robust blood oxygen level-dependent signal was found in left prefrontal cortex with task performance, no encoding-related age-modulated prefrontal activation was observed in either hemisphere. These data are consistent with a developmental pattern of verbal memory encoding function in which left hippocampal and bilateral basal ganglionic activations are more robust earlier in childhood but then decline with age. No encoding-related activation was found in prefrontal cortex which may relate to this region's recognized delay in biologic maturation in humans. These data represent the first fMRI demonstration of verbal encoding function in children and are relevant developmentally and clinically.

  19. Extreme precipitation events and related weather patterns over Iraq

    NASA Astrophysics Data System (ADS)

    raheem Al-nassar, Ali; Sangrà, Pablo; Alarcón, Marta

    2016-04-01

    This study aims to investigate the extreme precipitation events and the associated weather phenomena in the Middle East and particularly in Iraq. For this purpose we used Baghdad daily precipitation records from the Iraqi Meteorological and Seismology Organization combined with ECMWF (ERA-Interim) reanalysis data for the period from January 2002 to December 2013. Extreme events were found statistically at the 90% percentile of the recorded precipitation, and were highly correlated with hydrological flooding in some cities of Iraq. We identified fifteen extreme precipitation events. The analysis of the corresponding weather patterns (500 hPa and 250 hPa geopotential and velocity field distribution) indicated that 5 events were related with cut off low causing the highest precipitation (180 mm), 3 events related with rex block (158 mm), 3 events related with jet streak occurrence (130 mm) and 4 events related with troughs (107 mm). . Five of these events caused flash floods and in particular one of them related with a rex block was the most dramatic heavy rain event in Iraq in 30 years. We investigated for each case the convective instability and dynamical forcing together with humidity sources. For convective instability we explored the distribution of the K index and SWEAT index. For dynamical forcing we analyzed at several levels Q vector, divergence, potential and relative vorticity advection and omega vertical velocity. Source of humidity was investigated through humidity and convergence of specific humidity distribution. One triggering factor of all the events is the advection and convergence of humidity from the Red Sea and the Persian Gulf. Therefore a necessary condition for extreme precipitation in Iraq is the advection and convergence of humidity from the Red Sea and Persian Gulf. Our preliminary analysis also indicates that extreme precipitation events are primary dynamical forced playing convective instability a secondary role.

  20. The functional role of dorso-lateral premotor cortex during mental rotation: an event-related fMRI study separating cognitive processing steps using a novel task paradigm.

    PubMed

    Lamm, Claus; Windischberger, Christian; Moser, Ewald; Bauer, Herbert

    2007-07-15

    Subjects deciding whether two objects presented at angular disparity are identical or mirror versions of each other usually show response times that linearly increase with the angle between objects. This phenomenon has been termed mental rotation. While there is widespread agreement that parietal cortex plays a dominant role in mental rotation, reports concerning the involvement of motor areas are less consistent. From a theoretical point of view, activation in motor areas suggests that mental rotation relies upon visuo-motor rather than visuo-spatial processing alone. However, the type of information that is processed by motor areas during mental rotation remains unclear. In this study we used event-related fMRI to assess whether activation in parietal and dorsolateral premotor areas (dPM) during mental rotation is distinctively related to processing spatial orientation information. Using a newly developed task paradigm we explicitly separated the processing steps (encoding, mental rotation proper and object matching) required by mental rotation tasks and additionally modulated the amount of spatial orientation information that had to be processed. Our results show that activation in dPM during mental rotation is not strongly modulated by the processing of spatial orientation information, and that activation in dPM areas is strongest during mental rotation proper. The latter finding suggests that dPM is involved in more generalized processes such as visuo-spatial attention and movement anticipation. We propose that solving mental rotation tasks is heavily dependent upon visuo-motor processes and evokes neural processing that may be considered as an implicit simulation of actual object rotation.

  1. Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data.

    PubMed

    Calhoun, V D; Adali, T; Pearlson, G D; Kiehl, K A

    2006-04-01

    Event-related potential (ERP) studies of the brain's response to infrequent, target (oddball) stimuli elicit a sequence of physiological events, the most prominent and well studied being a complex, the P300 (or P3) peaking approximately 300 ms post-stimulus for simple stimuli and slightly later for more complex stimuli. Localization of the neural generators of the human oddball response remains challenging due to the lack of a single imaging technique with good spatial and temporal resolution. Here, we use independent component analyses to fuse ERP and fMRI modalities in order to examine the dynamics of the auditory oddball response with high spatiotemporal resolution across the entire brain. Initial activations in auditory and motor planning regions are followed by auditory association cortex and motor execution regions. The P3 response is associated with brainstem, temporal lobe, and medial frontal activity and finally a late temporal lobe "evaluative" response. We show that fusing imaging modalities with different advantages can provide new information about the brain.

  2. fMRI capture of auditory hallucinations: Validation of the two-steps method.

    PubMed

    Leroy, Arnaud; Foucher, Jack R; Pins, Delphine; Delmaire, Christine; Thomas, Pierre; Roser, Mathilde M; Lefebvre, Stéphanie; Amad, Ali; Fovet, Thomas; Jaafari, Nemat; Jardri, Renaud

    2017-10-01

    Our purpose was to validate a reliable method to capture brain activity concomitant with hallucinatory events, which constitute frequent and disabling experiences in schizophrenia. Capturing hallucinations using functional magnetic resonance imaging (fMRI) remains very challenging. We previously developed a method based on a two-steps strategy including (1) multivariate data-driven analysis of per-hallucinatory fMRI recording and (2) selection of the components of interest based on a post-fMRI interview. However, two tests still need to be conducted to rule out critical pitfalls of conventional fMRI capture methods before this two-steps strategy can be adopted in hallucination research: replication of these findings on an independent sample and assessment of the reliability of the hallucination-related patterns at the subject level. To do so, we recruited a sample of 45 schizophrenia patients suffering from frequent hallucinations, 20 schizophrenia patients without hallucinations and 20 matched healthy volunteers; all participants underwent four different experiments. The main findings are (1) high accuracy in reporting unexpected sensory stimuli in an MRI setting; (2) good detection concordance between hypothesis-driven and data-driven analysis methods (as used in the two-steps strategy) when controlled unexpected sensory stimuli are presented; (3) good agreement of the two-steps method with the online button-press approach to capture hallucinatory events; (4) high spatial consistency of hallucinatory-related networks detected using the two-steps method on two independent samples. By validating the two-steps method, we advance toward the possible transfer of such technology to new image-based therapies for hallucinations. Hum Brain Mapp 38:4966-4979, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Brain activity underlying auditory perceptual learning during short period training: simultaneous fMRI and EEG recording

    PubMed Central

    2013-01-01

    Background There is an accumulating body of evidence indicating that neuronal functional specificity to basic sensory stimulation is mutable and subject to experience. Although fMRI experiments have investigated changes in brain activity after relative to before perceptual learning, brain activity during perceptual learning has not been explored. This work investigated brain activity related to auditory frequency discrimination learning using a variational Bayesian approach for source localization, during simultaneous EEG and fMRI recording. We investigated whether the practice effects are determined solely by activity in stimulus-driven mechanisms or whether high-level attentional mechanisms, which are linked to the perceptual task, control the learning process. Results The results of fMRI analyses revealed significant attention and learning related activity in left and right superior temporal gyrus STG as well as the left inferior frontal gyrus IFG. Current source localization of simultaneously recorded EEG data was estimated using a variational Bayesian method. Analysis of current localized to the left inferior frontal gyrus and the right superior temporal gyrus revealed gamma band activity correlated with behavioral performance. Conclusions Rapid improvement in task performance is accompanied by plastic changes in the sensory cortex as well as superior areas gated by selective attention. Together the fMRI and EEG results suggest that gamma band activity in the right STG and left IFG plays an important role during perceptual learning. PMID:23316957

  4. Optimized design and analysis of sparse-sampling FMRI experiments.

    PubMed

    Perrachione, Tyler K; Ghosh, Satrajit S

    2013-01-01

    Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase

  5. Different Anaphoric Expressions Are Investigated by Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Streb, Judith; Hennighausen, Erwin; Rosler, Frank

    2004-01-01

    Event-related potentials were recorded to substantiate the claim of a distinct psycholinguistic status of (a) pronouns vs. proper names and (b) ellipses vs. proper names. In two studies 41 students read sentences in which the number of intervening words between the anaphor and its antecedent was either small or large. Comparing the far with the…

  6. Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves.

    PubMed

    Schwalm, Miriam; Schmid, Florian; Wachsmuth, Lydia; Backhaus, Hendrik; Kronfeld, Andrea; Aedo Jury, Felipe; Prouvot, Pierre-Hugues; Fois, Consuelo; Albers, Franziska; van Alst, Timo; Faber, Cornelius; Stroh, Albrecht

    2017-09-15

    Spontaneous slow oscillation-associated slow wave activity represents an internally generated state which is characterized by alternations of network quiescence and stereotypical episodes of neuronal activity - slow wave events. However, it remains unclear which macroscopic signal is related to these active periods of the slow wave rhythm. We used optic fiber-based calcium recordings of local neural populations in cortex and thalamus to detect neurophysiologically defined slow calcium waves in isoflurane anesthetized rats. The individual slow wave events were used for an event-related analysis of simultaneously acquired whole-brain BOLD fMRI. We identified BOLD responses directly related to onsets of slow calcium waves, revealing a cortex-wide BOLD correlate: the entire cortex was engaged in this specific type of slow wave activity. These findings demonstrate a direct relation of defined neurophysiological events to a specific BOLD activity pattern and were confirmed for ongoing slow wave activity by independent component and seed-based analyses.

  7. Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves

    PubMed Central

    Backhaus, Hendrik; Kronfeld, Andrea; Aedo Jury, Felipe; Prouvot, Pierre-Hugues; Fois, Consuelo; Albers, Franziska; van Alst, Timo

    2017-01-01

    Spontaneous slow oscillation-associated slow wave activity represents an internally generated state which is characterized by alternations of network quiescence and stereotypical episodes of neuronal activity - slow wave events. However, it remains unclear which macroscopic signal is related to these active periods of the slow wave rhythm. We used optic fiber-based calcium recordings of local neural populations in cortex and thalamus to detect neurophysiologically defined slow calcium waves in isoflurane anesthetized rats. The individual slow wave events were used for an event-related analysis of simultaneously acquired whole-brain BOLD fMRI. We identified BOLD responses directly related to onsets of slow calcium waves, revealing a cortex-wide BOLD correlate: the entire cortex was engaged in this specific type of slow wave activity. These findings demonstrate a direct relation of defined neurophysiological events to a specific BOLD activity pattern and were confirmed for ongoing slow wave activity by independent component and seed-based analyses. PMID:28914607

  8. Coping with Self-Threat and the Evaluation of Self-Related Traits: An fMRI Study

    PubMed Central

    Corcoran, Katja; Ebner, Franz

    2015-01-01

    A positive view of oneself is important for a healthy lifestyle. Self-protection mechanisms such as suppressing negative self-related information help us to maintain a positive view of ourselves. This is of special relevance when, for instance, a negative test result threatens our positive self-view. To date, it is not clear which brain areas support self-protective mechanisms under self-threat. In the present functional magnetic resonance imaging (fMRI) study the participants (N = 46) received a (negative vs. positive) performance test feedback before entering the scanner. In the scanner, the participants were instructed to ascribe personality traits either to themselves or to a famous other. Our results showed that participants responded slower to negative self-related traits compared to positive self-related traits. High self-esteem individuals responded slower to negative traits compared to low self-esteem individuals following a self-threat. This indicates that high self-esteem individuals engage more in self-enhancing strategies after a threat by inhibiting negative self-related information more successfully than low self-esteem individuals. This behavioral pattern was mirrored in the fMRI data as dACC correlated positively with trait self-esteem. Generally, ACC activation was attenuated under threat when participants evaluated self-relevant traits and even more for negative self-related traits. We also found that activation in the ACC was negatively correlated with response times, indicating that greater activation of the ACC is linked to better access (faster response) to positive self-related traits and to impaired access (slower response) to negative self-related traits. These results confirm the ACC function as important in managing threatened self-worth but indicate differences in trait self-esteem levels. The fMRI analyses also revealed a decrease in activation within the left Hippocampus and the right thalamus under threat. This indicates that a down

  9. Spatio-Temporal Information Analysis of Event-Related BOLD Responses

    PubMed Central

    Alpert, Galit Fuhrmann; Handwerker, Dan; Sun, Felice T.; D’Esposito, Mark; Knight, Robert T.

    2009-01-01

    A new approach for analysis of event related fMRI (BOLD) signals is proposed. The technique is based on measures from information theory and is used both for spatial localization of task related activity, as well as for extracting temporal information regarding the task dependent propagation of activation across different brain regions. This approach enables whole brain visualization of voxels (areas) most involved in coding of a specific task condition, the time at which they are most informative about the condition, as well as their average amplitude at that preferred time. The approach does not require prior assumptions about the shape of the hemodynamic response function (HRF), nor about linear relations between BOLD response and presented stimuli (or task conditions). We show that relative delays between different brain regions can also be computed without prior knowledge of the experimental design, suggesting a general method that could be applied for analysis of differential time delays that occur during natural, uncontrolled conditions. Here we analyze BOLD signals recorded during performance of a motor learning task. We show that during motor learning, the BOLD response of unimodal motor cortical areas precedes the response in higher-order multimodal association areas, including posterior parietal cortex. Brain areas found to be associated with reduced activity during motor learning, predominantly in prefrontal brain regions, are informative about the task typically at significantly later times. PMID:17188515

  10. Lying about Facial Recognition: An fMRI Study

    ERIC Educational Resources Information Center

    Bhatt, S.; Mbwana, J.; Adeyemo, A.; Sawyer, A.; Hailu, A.; VanMeter, J.

    2009-01-01

    Novel deception detection techniques have been in creation for centuries. Functional magnetic resonance imaging (fMRI) is a neuroscience technology that non-invasively measures brain activity associated with behavior and cognition. A number of investigators have explored the utilization and efficiency of fMRI in deception detection. In this study,…

  11. Implicit and Explicit Measures of Sensitivity to Violations in Second Language Grammar: An Event-Related Potential Investigation

    ERIC Educational Resources Information Center

    Tokowicz, Natasha; MacWhinney, Brian

    2005-01-01

    We used event-related brain potentials (ERPs) to investigate the contributions of explicit and implicit processes during second language (L2) sentence comprehension. We used a L2 grammaticality judgment task (GJT) to test 20 native English speakers enrolled in the first four semesters of Spanish while recording both accuracy and ERP data. Because…

  12. Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study.

    PubMed

    Fabiani, Monica; Gordon, Brian A; Maclin, Edward L; Pearson, Melanie A; Brumback-Peltz, Carrie R; Low, Kathy A; McAuley, Edward; Sutton, Bradley P; Kramer, Arthur F; Gratton, Gabriele

    2014-01-15

    Brain aging is characterized by changes in both hemodynamic and neuronal responses, which may be influenced by the cardiorespiratory fitness of the individual. To investigate the relationship between neuronal and hemodynamic changes, we studied the brain activity elicited by visual stimulation (checkerboard reversals at different frequencies) in younger adults and in older adults varying in physical fitness. Four functional brain measures were used to compare neuronal and hemodynamic responses obtained from BA17: two reflecting neuronal activity (the event-related optical signal, EROS, and the C1 response of the ERP), and two reflecting functional hemodynamic changes (functional magnetic resonance imaging, fMRI, and near-infrared spectroscopy, NIRS). The results indicated that both younger and older adults exhibited a quadratic relationship between neuronal and hemodynamic effects, with reduced increases of the hemodynamic response at high levels of neuronal activity. Although older adults showed reduced activation, similar neurovascular coupling functions were observed in the two age groups when fMRI and deoxy-hemoglobin measures were used. However, the coupling between oxy- and deoxy-hemoglobin changes decreased with age and increased with increasing fitness. These data indicate that departures from linearity in neurovascular coupling may be present when using hemodynamic measures to study neuronal function. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. An fMRI investigation of responses to peer rejection in adolescents with autism spectrum disorders.

    PubMed

    Masten, Carrie L; Colich, Natalie L; Rudie, Jeffrey D; Bookheimer, Susan Y; Eisenberger, Naomi I; Dapretto, Mirella

    2011-07-01

    Peer rejection is particularly pervasive among adolescents with autism spectrum disorders (ASD). However, how adolescents with ASD differ from typically developing adolescents in their responses to peer rejection is poorly understood. The goal of the current investigation was to examine neural responses to peer exclusion among adolescents with ASD compared to typically developing adolescents. Nineteen adolescents with ASD and 17 typically developing controls underwent fMRI as they were ostensibly excluded by peers during an online game called Cyberball. Afterwards, participants reported their distress about the exclusion. Compared to typically developing adolescents, those with ASD displayed less activity in regions previously linked with the distressing aspect of peer exclusion, including the subgenual anterior cingulate and anterior insula, as well as less activity in regions previously linked with the regulation of distress responses during peer exclusion, including the ventrolateral prefrontal cortex and ventral striatum. Interestingly, however, both groups self-reported equivalent levels of distress. This suggests that adolescents with ASD may engage in differential processing of social experiences at the neural level, but be equally aware of, and concerned about, peer rejection. Overall, these findings contribute new insights about how this population may differentially experience negative social events in their daily lives.

  14. An fMRI investigation of responses to peer rejection in adolescents with autism spectrum disorders

    PubMed Central

    Masten, Carrie L.; Colich, Natalie L.; Rudie, Jeffrey D.; Bookheimer, Susan Y.; Eisenberger, Naomi I.; Dapretto, Mirella

    2011-01-01

    Peer rejection is particularly pervasive among adolescents with autism spectrum disorders (ASD). However, how adolescents with ASD differ from typically developing adolescents in their responses to peer rejection is poorly understood. The goal of the current investigation was to examine neural responses to peer exclusion among adolescents with ASD compared to typically developing adolescents. Nineteen adolescents with ASD and 17 typically developing controls underwent fMRI as they were ostensibly excluded by peers during an online game called Cyberball. Afterwards, participants reported their distress about the exclusion. Compared to typically developing adolescents, those with ASD displayed less activity in regions previously linked with the distressing aspect of peer exclusion, including the subgenual anterior cingulate and anterior insula, as well as less activity in regions previously linked with the regulation of distress responses during peer exclusion, including the ventrolateral prefrontal cortex and ventral striatum. Interestingly, however, both groups self-reported equivalent levels of distress. This suggests that adolescents with ASD may engage in differential processing of social experiences at the neural level, but be equally aware of, and concerned about, peer rejection. Overall, these findings contribute new insights about how this population may differentially experience negative social events in their daily lives. PMID:22318914

  15. Are There Multiple Kinds of Episodic Memory? An fMRI Investigation Comparing Autobiographical and Recognition Memory Tasks.

    PubMed

    Chen, Hung-Yu; Gilmore, Adrian W; Nelson, Steven M; McDermott, Kathleen B

    2017-03-08

    What brain regions underlie retrieval from episodic memory? The bulk of research addressing this question with fMRI has relied upon recognition memory for materials encoded within the laboratory. Another, less dominant tradition has used autobiographical methods, whereby people recall events from their lifetime, often after being cued with words or pictures. The current study addresses how the neural substrates of successful memory retrieval differed as a function of the targeted memory when the experimental parameters were held constant in the two conditions (except for instructions). Human participants studied a set of scenes and then took two types of memory test while undergoing fMRI scanning. In one condition (the picture memory test), participants reported for each scene (32 studied, 64 nonstudied) whether it was recollected from the prior study episode. In a second condition (the life memory test), participants reported for each scene (32 studied, 64 nonstudied) whether it reminded them of a specific event from their preexperimental lifetime. An examination of successful retrieval (yes responses) for recently studied scenes for the two test types revealed pronounced differences; that is, autobiographical retrieval instantiated with the life memory test preferentially activated the default mode network, whereas hits in the picture memory test preferentially engaged the parietal memory network as well as portions of the frontoparietal control network. When experimental cueing parameters are held constant, the neural underpinnings of successful memory retrieval differ when remembering life events and recently learned events. SIGNIFICANCE STATEMENT Episodic memory is often discussed as a solitary construct. However, experimental traditions examining episodic memory use very different approaches, and these are rarely compared to one another. When the neural correlates associated with each approach have been directly contrasted, results have varied considerably

  16. Attention and Semantic Processing during Speech: An fMRI Study

    ERIC Educational Resources Information Center

    Rama, Pia; Relander-Syrjanen, Kristiina; Carlson, Synnove; Salonen, Oili; Kujala, Teija

    2012-01-01

    This fMRI study was conducted to investigate whether language semantics is processed even when attention is not explicitly directed to word meanings. In the "unattended" condition, the subjects performed a visual detection task while hearing semantically related and unrelated word pairs. In the "phoneme" condition, the subjects made phoneme…

  17. Investigating the Group-Level Impact of Advanced Dual-Echo fMRI Combinations

    PubMed Central

    Kettinger, Ádám; Hill, Christopher; Vidnyánszky, Zoltán; Windischberger, Christian; Nagy, Zoltán

    2016-01-01

    Multi-echo fMRI data acquisition has been widely investigated and suggested to optimize sensitivity for detecting the BOLD signal. Several methods have also been proposed for the combination of data with different echo times. The aim of the present study was to investigate whether these advanced echo combination methods provide advantages over the simple averaging of echoes when state-of-the-art group-level random-effect analyses are performed. Both resting-state and task-based dual-echo fMRI data were collected from 27 healthy adult individuals (14 male, mean age = 25.75 years) using standard echo-planar acquisition methods at 3T. Both resting-state and task-based data were subjected to a standard image pre-processing pipeline. Subsequently the two echoes were combined as a weighted average, using four different strategies for calculating the weights: (1) simple arithmetic averaging, (2) BOLD sensitivity weighting, (3) temporal-signal-to-noise ratio weighting and (4) temporal BOLD sensitivity weighting. Our results clearly show that the simple averaging of data with the different echoes is sufficient. Advanced echo combination methods may provide advantages on a single-subject level but when considering random-effects group level statistics they provide no benefit regarding sensitivity (i.e., group-level t-values) compared to the simple echo-averaging approach. One possible reason for the lack of clear advantages may be that apart from increasing the average BOLD sensitivity at the single-subject level, the advanced weighted averaging methods also inflate the inter-subject variance. As the echo combination methods provide very similar results, the recommendation is to choose between them depending on the availability of time for collecting additional resting-state data or whether subject-level or group-level analyses are planned. PMID:28018165

  18. Optimized Design and Analysis of Sparse-Sampling fMRI Experiments

    PubMed Central

    Perrachione, Tyler K.; Ghosh, Satrajit S.

    2013-01-01

    Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase

  19. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions

    PubMed Central

    Luijten, Maartje; Machielsen, Marise W.J.; Veltman, Dick J.; Hester, Robert; de Haan, Lieuwe; Franken, Ingmar H.A.

    2014-01-01

    Background Several current theories emphasize the role of cognitive control in addiction. The present review evaluates neural deficits in the domains of inhibitory control and error processing in individuals with substance dependence and in those showing excessive addiction-like behaviours. The combined evaluation of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) findings in the present review offers unique information on neural deficits in addicted individuals. Methods We selected 19 ERP and 22 fMRI studies using stop-signal, go/no-go or Flanker paradigms based on a search of PubMed and Embase. Results The most consistent findings in addicted individuals relative to healthy controls were lower N2, error-related negativity and error positivity amplitudes as well as hypoactivation in the anterior cingulate cortex (ACC), inferior frontal gyrus and dorsolateral prefrontal cortex. These neural deficits, however, were not always associated with impaired task performance. With regard to behavioural addictions, some evidence has been found for similar neural deficits; however, studies are scarce and results are not yet conclusive. Differences among the major classes of substances of abuse were identified and involve stronger neural responses to errors in individuals with alcohol dependence versus weaker neural responses to errors in other substance-dependent populations. Limitations Task design and analysis techniques vary across studies, thereby reducing comparability among studies and the potential of clinical use of these measures. Conclusion Current addiction theories were supported by identifying consistent abnormalities in prefrontal brain function in individuals with addiction. An integrative model is proposed, suggesting that neural deficits in the dorsal ACC may constitute a hallmark neurocognitive deficit underlying addictive behaviours, such as loss of control. PMID:24359877

  20. Compressed Sensing for fMRI: Feasibility Study on the Acceleration of Non-EPI fMRI at 9.4T

    PubMed Central

    Kim, Seong-Gi; Ye, Jong Chul

    2015-01-01

    Conventional functional magnetic resonance imaging (fMRI) technique known as gradient-recalled echo (GRE) echo-planar imaging (EPI) is sensitive to image distortion and degradation caused by local magnetic field inhomogeneity at high magnetic fields. Non-EPI sequences such as spoiled gradient echo and balanced steady-state free precession (bSSFP) have been proposed as an alternative high-resolution fMRI technique; however, the temporal resolution of these sequences is lower than the typically used GRE-EPI fMRI. One potential approach to improve the temporal resolution is to use compressed sensing (CS). In this study, we tested the feasibility of k-t FOCUSS—one of the high performance CS algorithms for dynamic MRI—for non-EPI fMRI at 9.4T using the model of rat somatosensory stimulation. To optimize the performance of CS reconstruction, different sampling patterns and k-t FOCUSS variations were investigated. Experimental results show that an optimized k-t FOCUSS algorithm with acceleration by a factor of 4 works well for non-EPI fMRI at high field under various statistical criteria, which confirms that a combination of CS and a non-EPI sequence may be a good solution for high-resolution fMRI at high fields. PMID:26413503

  1. Physiogenomic analysis of localized FMRI brain activity in schizophrenia.

    PubMed

    Windemuth, Andreas; Calhoun, Vince D; Pearlson, Godfrey D; Kocherla, Mohan; Jagannathan, Kanchana; Ruaño, Gualberto

    2008-06-01

    The search for genetic factors associated with disease is complicated by the complexity of the biological pathways linking genotype and phenotype. This analytical complexity is particularly concerning in diseases historically lacking reliable diagnostic biological markers, such as schizophrenia and other mental disorders. We investigate the use of functional magnetic resonance imaging (fMRI) as an intermediate phenotype (endophenotype) to identify physiogenomic associations to schizophrenia. We screened 99 subjects, 30 subjects diagnosed with schizophrenia, 13 unaffected relatives of schizophrenia patients, and 56 unrelated controls, for gene polymorphisms associated with fMRI activation patterns at two locations in temporal and frontal lobes previously implied in schizophrenia. A total of 22 single nucleotide polymorphisms (SNPs) in 15 genes from the dopamine and serotonin neurotransmission pathways were genotyped in all subjects. We identified three SNPs in genes that are significantly associated with fMRI activity. SNPs of the dopamine beta-hydroxylase (DBH) gene and of the dopamine receptor D4 (DRD4) were associated with activity in the temporal and frontal lobes, respectively. One SNP of serotonin-3A receptor (HTR3A) was associated with temporal lobe activity. The results of this study support the physiogenomic analysis of neuroimaging data to discover associations between genotype and disease-related phenotypes.

  2. Increased fMRI signal with age in familial Alzheimer’s disease mutation carriers

    PubMed Central

    Braskie, Meredith N.; Medina, Luis D.; Rodriguez-Agudelo, Yaneth; Geschwind, Daniel H.; Macias-Islas, Miguel Angel; Cummings, Jeffrey L.; Bookheimer, Susan Y.; Ringman, John M.

    2010-01-01

    Although many Alzheimer’s disease (AD) patients have a family history of the disease, it is rarely inherited in a predictable way. Functional magnetic resonance imaging (fMRI) studies of non-demented adults carrying familial AD mutations provide an opportunity to prospectively identify brain differences associated with early AD-related changes. We compared fMRI activity of 18 non-demented autosomal dominant AD mutation carriers with fMRI activity in 8 of their non-carrier relatives as they performed a novelty encoding task in which they viewed novel and repeated images. Because age of disease onset is relatively consistent within families, we also correlated fMRI activity with subjects’ distance from the median age of diagnosis for their family. Mutation carriers did not show significantly different voxelwise fMRI activity from non-carriers as a group. However, as they approached their family age of disease diagnosis, only mutation carriers showed increased fMRI activity in the fusiform and middle temporal gyri. This suggests that during novelty encoding, increased fMRI activity in the temporal lobe may relate to incipient AD processes. PMID:21129823

  3. Autogenic training alters cerebral activation patterns in fMRI.

    PubMed

    Schlamann, Marc; Naglatzki, Ryan; de Greiff, Armin; Forsting, Michael; Gizewski, Elke R

    2010-10-01

    Cerebral activation patterns during the first three auto-suggestive phases of autogenic training (AT) were investigated in relation to perceived experiences. Nineteen volunteers trained in AT and 19 controls were studied with fMRI during the first steps of autogenic training. FMRI revealed activation of the left postcentral areas during AT in those with experience in AT, which also correlated with the level of AT experience. Activation of prefrontal and insular cortex was significantly higher in the group with experience in AT while insular activation was correlated with number years of simple relaxation exercises. Specific activation in subjects experienced in AT may represent a training effect. Furthermore, the correlation of insular activation suggests that these subjects are different from untrained subjects in emotional processing or self-awareness.

  4. A novel fMRI paradigm suggests that pedaling-related brain activation is altered after stroke

    PubMed Central

    Promjunyakul, Nutta-on; Schmit, Brian D.; Schindler-Ivens, Sheila M.

    2015-01-01

    The purpose of this study was to examine the feasibility of using functional magnetic resonance imaging (fMRI) to measure pedaling-related brain activation in individuals with stroke and age-matched controls. We also sought to identify stroke-related changes in brain activation associated with pedaling. Fourteen stroke and 12 control subjects were asked to pedal a custom, MRI-compatible device during fMRI. Subjects also performed lower limb tapping to localize brain regions involved in lower limb movement. All stroke and control subjects were able to pedal while positioned for fMRI. Two control subjects were withdrawn due to claustrophobia, and one control data set was excluded from analysis due to an incidental finding. In the stroke group, one subject was unable to enter the gantry due to excess adiposity, and one stroke data set was excluded from analysis due to excessive head motion. Consequently, 81% of subjects (12/14 stroke, 9/12 control) completed all procedures and provided valid pedaling-related fMRI data. In these subjects, head motion was ≤3 mm. In both groups, brain activation localized to the medial aspect of M1, S1, and Brodmann’s area 6 (BA6) and to the cerebellum (vermis, lobules IV, V, VIII). The location of brain activation was consistent with leg areas. Pedaling-related brain activation was apparent on both sides of the brain, with values for laterality index (LI) of –0.06 (0.20) in the stroke cortex, 0.05 (±0.06) in the control cortex, 0.29 (0.33) in the stroke cerebellum, and 0.04 (0.15) in the control cerebellum. In the stroke group, activation in the cerebellum – but not cortex – was significantly lateralized toward the damaged side of the brain (p = 0.01). The volume of pedaling-related brain activation was smaller in stroke as compared to control subjects. Differences reached statistical significance when all active regions were examined together [p = 0.03; 27,694 (9,608) μL stroke; 37,819 (9,169) μL control]. When individual

  5. MULTISCALE ADAPTIVE SMOOTHING MODELS FOR THE HEMODYNAMIC RESPONSE FUNCTION IN FMRI*

    PubMed Central

    Wang, Jiaping; Zhu, Hongtu; Fan, Jianqing; Giovanello, Kelly; Lin, Weili

    2012-01-01

    In the event-related functional magnetic resonance imaging (fMRI) data analysis, there is an extensive interest in accurately and robustly estimating the hemodynamic response function (HRF) and its associated statistics (e.g., the magnitude and duration of the activation). Most methods to date are developed in the time domain and they have utilized almost exclusively the temporal information of fMRI data without accounting for the spatial information. The aim of this paper is to develop a multiscale adaptive smoothing model (MASM) in the frequency domain by integrating the spatial and temporal information to adaptively and accurately estimate HRFs pertaining to each stimulus sequence across all voxels in a three-dimensional (3D) volume. We use two sets of simulation studies and a real data set to examine the finite sample performance of MASM in estimating HRFs. Our real and simulated data analyses confirm that MASM outperforms several other state-of-art methods, such as the smooth finite impulse response (sFIR) model. PMID:24533041

  6. Neurocognitive mechanisms underlying deceptive hazard evaluation: An event-related potentials investigation.

    PubMed

    Fu, Huijian; Qiu, Wenwei; Ma, Haiying; Ma, Qingguo

    2017-01-01

    Deceptive behavior is common in human social interactions. Researchers have been trying to uncover the cognitive process and neural basis underlying deception due to its theoretical and practical significance. We used Event-related potentials (ERPs) to investigate the neural correlates of deception when the participants completed a hazard judgment task. Pictures conveying or not conveying hazard information were presented to the participants who were then requested to discriminate the hazard content (safe or hazardous) and make a response corresponding to the cues (truthful or deceptive). Behavioral and electrophysiological data were recorded during the entire experiment. Results showed that deceptive responses, compared to truthful responses, were associated with longer reaction time (RT), lower accuracy, increased N2 and reduced late positive potential (LPP), suggesting a cognitively more demanding process to respond deceptively. The decrement in LPP correlated negatively with the increment in RT for deceptive relative to truthful responses, regardless of hazard content. In addition, hazardous information evoked larger N1 and P300 than safe information, reflecting an early processing bias and a later evaluative categorization process based on motivational significance, respectively. Finally, the interaction between honesty (truthful/deceptive) and safety (safe/hazardous) on accuracy and LPP indicated that deceptive responses towards safe information required more effort than deceptive responses towards hazardous information. Overall, these results demonstrate the neurocognitive substrates underlying deception about hazard information.

  7. Neurocognitive mechanisms underlying deceptive hazard evaluation: An event-related potentials investigation

    PubMed Central

    Qiu, Wenwei; Ma, Haiying; Ma, Qingguo

    2017-01-01

    Deceptive behavior is common in human social interactions. Researchers have been trying to uncover the cognitive process and neural basis underlying deception due to its theoretical and practical significance. We used Event-related potentials (ERPs) to investigate the neural correlates of deception when the participants completed a hazard judgment task. Pictures conveying or not conveying hazard information were presented to the participants who were then requested to discriminate the hazard content (safe or hazardous) and make a response corresponding to the cues (truthful or deceptive). Behavioral and electrophysiological data were recorded during the entire experiment. Results showed that deceptive responses, compared to truthful responses, were associated with longer reaction time (RT), lower accuracy, increased N2 and reduced late positive potential (LPP), suggesting a cognitively more demanding process to respond deceptively. The decrement in LPP correlated negatively with the increment in RT for deceptive relative to truthful responses, regardless of hazard content. In addition, hazardous information evoked larger N1 and P300 than safe information, reflecting an early processing bias and a later evaluative categorization process based on motivational significance, respectively. Finally, the interaction between honesty (truthful/deceptive) and safety (safe/hazardous) on accuracy and LPP indicated that deceptive responses towards safe information required more effort than deceptive responses towards hazardous information. Overall, these results demonstrate the neurocognitive substrates underlying deception about hazard information. PMID:28793344

  8. Counterfactual thinking: an fMRI study on changing the past for a better future

    PubMed Central

    Ma, Ning; Ampe, Lisa; Baetens, Kris; Van Overwalle, Frank

    2013-01-01

    Recent studies suggest that a brain network mainly associated with episodic memory has a more general function in imagining oneself in another time, place or perspective (e.g. episodic future thought, theory of mind, default mode). If this is true, counterfactual thinking (e.g. ‘If I had left the office earlier, I wouldn’t have missed my train.’) should also activate this network. Present functional magnetic resonance imaging (fMRI) study explores the common and distinct neural activity of counterfactual and episodic thinking by directly comparing the imagining of upward counterfactuals (creating better outcomes for negative past events) with the re-experiencing of negative past events and the imagining of positive future events. Results confirm that episodic and counterfactual thinking share a common brain network, involving a core memory network (hippocampal area, temporal lobes, midline, and lateral parietal lobes) and prefrontal areas that might be related to mentalizing (medial prefrontal cortex) and performance monitoring (right prefrontal cortex). In contrast to episodic past and future thinking, counterfactual thinking recruits some of these areas more strongly and extensively, and additionally activates the bilateral inferior parietal lobe and posterior medial frontal cortex. We discuss these findings in view of recent fMRI evidence on the working of episodic memory and theory of mind. PMID:22403155

  9. A receptor-based model for dopamine-induced fMRI signal

    PubMed Central

    Mandeville, Joseph. B.; Sander, Christin Y. M.; Jenkins, Bruce G.; Hooker, Jacob M.; Catana, Ciprian; Vanduffel, Wim; Alpert, Nathaniel M.; Rosen, Bruce R.; Normandin, Marc D.

    2013-01-01

    This report describes a multi-receptor physiological model of the fMRI temporal response and signal magnitude evoked by drugs that elevate synaptic dopamine in basal ganglia. The model is formulated as a summation of dopamine’s effects at D1-like and D2-like receptor families, which produce functional excitation and inhibition, respectively, as measured by molecular indicators like adenylate cyclase or neuroimaging techniques like fMRI. Functional effects within the model are described in terms of relative changes in receptor occupancies scaled by receptor densities and neuro-vascular coupling constants. Using literature parameters, the model reconciles many discrepant observations and interpretations of pre-clinical data. Additionally, we present data showing that amphetamine stimulation produces fMRI inhibition at low doses and a biphasic response at higher doses in the basal ganglia of non-human primates (NHP), in agreement with model predictions based upon the respective levels of evoked dopamine. Because information about dopamine release is required to inform the fMRI model, we simultaneously acquired PET 11C-raclopride data in several studies to evaluate the relationship between raclopride displacement and assumptions about dopamine release. At high levels of dopamine release, results suggest that refinements of the model will be required to consistently describe the PET and fMRI data. Overall, the remarkable success of the model in describing a wide range of preclinical fMRI data indicate that this approach will be useful for guiding the design and analysis of basic science and clinical investigations and for interpreting the functional consequences of dopaminergic stimulation in normal subjects and in populations with dopaminergic neuroadaptations. PMID:23466936

  10. Multivariate pattern analysis of fMRI: the early beginnings.

    PubMed

    Haxby, James V

    2012-08-15

    In 2001, we published a paper on the representation of faces and objects in ventral temporal cortex that introduced a new method for fMRI analysis, which subsequently came to be called multivariate pattern analysis (MVPA). MVPA now refers to a diverse set of methods that analyze neural responses as patterns of activity that reflect the varying brain states that a cortical field or system can produce. This paper recounts the circumstances and events that led to the original study and later developments and innovations that have greatly expanded this approach to fMRI data analysis, leading to its widespread application. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Key issues in decomposing fMRI during naturalistic and continuous music experience with independent component analysis.

    PubMed

    Cong, Fengyu; Puoliväli, Tuomas; Alluri, Vinoo; Sipola, Tuomo; Burunat, Iballa; Toiviainen, Petri; Nandi, Asoke K; Brattico, Elvira; Ristaniemi, Tapani

    2014-02-15

    Independent component analysis (ICA) has been often used to decompose fMRI data mostly for the resting-state, block and event-related designs due to its outstanding advantage. For fMRI data during free-listening experiences, only a few exploratory studies applied ICA. For processing the fMRI data elicited by 512-s modern tango, a FFT based band-pass filter was used to further pre-process the fMRI data to remove sources of no interest and noise. Then, a fast model order selection method was applied to estimate the number of sources. Next, both individual ICA and group ICA were performed. Subsequently, ICA components whose temporal courses were significantly correlated with musical features were selected. Finally, for individual ICA, common components across majority of participants were found by diffusion map and spectral clustering. The extracted spatial maps (by the new ICA approach) common across most participants evidenced slightly right-lateralized activity within and surrounding the auditory cortices. Meanwhile, they were found associated with the musical features. Compared with the conventional ICA approach, more participants were found to have the common spatial maps extracted by the new ICA approach. Conventional model order selection methods underestimated the true number of sources in the conventionally pre-processed fMRI data for the individual ICA. Pre-processing the fMRI data by using a reasonable band-pass digital filter can greatly benefit the following model order selection and ICA with fMRI data by naturalistic paradigms. Diffusion map and spectral clustering are straightforward tools to find common ICA spatial maps. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series

    PubMed Central

    Patel, Ameera X.; Kundu, Prantik; Rubinov, Mikail; Jones, P. Simon; Vértes, Petra E.; Ersche, Karen D.; Suckling, John; Bullmore, Edward T.

    2014-01-01

    The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies have demonstrated that these techniques are insufficient to remove motion confounds, and that even small movements can spuriously bias estimates of functional connectivity. Here we propose a new data-driven, spatially-adaptive, wavelet-based method for identifying, modeling, and removing non-stationary events in fMRI time series, caused by head movement, without the need for data scrubbing. This method involves the addition of just one extra step, the Wavelet Despike, in standard pre-processing pipelines. With this method, we demonstrate robust removal of a range of different motion artifacts and motion-related biases including distance-dependent connectivity artifacts, at a group and single-subject level, using a range of previously published and new diagnostic measures. The Wavelet Despike is able to accommodate the substantial spatial and temporal heterogeneity of motion artifacts and can consequently remove a range of high and low frequency artifacts from fMRI time series, that may be linearly or non-linearly related to physical movements. Our methods are demonstrated by the analysis of three cohorts of resting-state fMRI data, including two high-motion datasets: a previously published dataset on children (N = 22) and a new dataset on adults with stimulant drug dependence (N = 40). We conclude that there is a real risk of motion-related bias in connectivity analysis of fMRI data, but that this risk is generally manageable, by effective time series denoising strategies designed to attenuate synchronized signal transients induced by abrupt head movements. The Wavelet Despiking software described in this article is freely available for download at www

  13. The role of regional heterogeneity in age-related differences in functional hemispheric asymmetry: an fMRI study.

    PubMed

    Heng, Jiamin Gladys; Wu, Chiao-Yi; Archer, Josephine Astrid; Miyakoshi, Makoto; Nakai, Toshiharu; Chen, Shen-Hsing Annabel

    2017-10-09

    Neuroimaging literature has documented age-related hemispheric asymmetry reduction in frontal regions during task performances. As most studies employed working memory paradigms, it is therefore less clear if this pattern of neural reorganization is constrained by working memory processes or it would also emerge in other cognitive domains which are predominantly lateralized. Using blocked functional magnetic resonance imaging (fMRI), the present study used a homophone judgment task and a line judgment task to investigate age-related differences in functional hemispheric asymmetry in language and visuospatial processing respectively. Young and older adults achieved similar task accuracy although older adults required a significantly longer time. Age-related functional hemispheric asymmetry reduction was found only in dorsal inferior frontal gyrus and was associated with better performance when the homophone condition was contrasted against fixation, and not line condition. Our data thus highlights the importance of considering regional heterogeneity of aging effects together with general age-related cognitive processes.

  14. Automatized smoking-related action schemata are reflected by reduced fMRI activity in sensorimotor brain regions of smokers.

    PubMed

    Isik, Ayse Ilkay; Naumer, Marcus J; Kaiser, Jochen; Buschenlange, Christian; Wiesmann, Sandro; Czoschke, Stefan; Yalachkov, Yavor

    2017-01-01

    In the later stages of addiction, automatized processes play a prominent role in guiding drug-seeking and drug-taking behavior. However, little is known about the neural correlates of automatized drug-taking skills and drug-related action knowledge in humans. We employed functional magnetic resonance imaging (fMRI) while smokers and non-smokers performed an orientation affordance task, where compatibility between the hand used for a behavioral response and the spatial orientation of a priming stimulus leads to shorter reaction times resulting from activation of the corresponding motor representations. While non-smokers exhibited this behavioral effect only for control objects, smokers showed the affordance effect for both control and smoking-related objects. Furthermore, smokers exhibited reduced fMRI activation for smoking-related as compared to control objects for compatible stimulus-response pairings in a sensorimotor brain network consisting of the right primary motor cortex, supplementary motor area, middle occipital gyrus, left fusiform gyrus and bilateral cingulate gyrus. In the incompatible condition, we found higher fMRI activation in smokers for smoking-related as compared to control objects in the right primary motor cortex, cingulate gyrus, and left fusiform gyrus. This suggests that the activation and performance of deeply embedded, automatized drug-taking schemata employ less brain resources. This might reduce the threshold for relapsing in individuals trying to abstain from smoking. In contrast, the interruption or modification of already triggered automatized action representations require increased neural resources.

  15. First steps in using machine learning on fMRI data to predict intrusive memories of traumatic film footage

    PubMed Central

    Clark, Ian A.; Niehaus, Katherine E.; Duff, Eugene P.; Di Simplicio, Martina C.; Clifford, Gari D.; Smith, Stephen M.; Mackay, Clare E.; Woolrich, Mark W.; Holmes, Emily A.

    2014-01-01

    After psychological trauma, why do some only some parts of the traumatic event return as intrusive memories while others do not? Intrusive memories are key to cognitive behavioural treatment for post-traumatic stress disorder, and an aetiological understanding is warranted. We present here analyses using multivariate pattern analysis (MVPA) and a machine learning classifier to investigate whether peri-traumatic brain activation was able to predict later intrusive memories (i.e. before they had happened). To provide a methodological basis for understanding the context of the current results, we first show how functional magnetic resonance imaging (fMRI) during an experimental analogue of trauma (a trauma film) via a prospective event-related design was able to capture an individual's later intrusive memories. Results showed widespread increases in brain activation at encoding when viewing a scene in the scanner that would later return as an intrusive memory in the real world. These fMRI results were replicated in a second study. While traditional mass univariate regression analysis highlighted an association between brain processing and symptomatology, this is not the same as prediction. Using MVPA and a machine learning classifier, it was possible to predict later intrusive memories across participants with 68% accuracy, and within a participant with 97% accuracy; i.e. the classifier could identify out of multiple scenes those that would later return as an intrusive memory. We also report here brain networks key in intrusive memory prediction. MVPA opens the possibility of decoding brain activity to reconstruct idiosyncratic cognitive events with relevance to understanding and predicting mental health symptoms. PMID:25151915

  16. fMRI studies of successful emotional memory encoding: a quantitative meta-analysis

    PubMed Central

    Murty, Vishnu P.; Ritchey, Maureen; Adcock, R. Alison; LaBar, Kevin S.

    2010-01-01

    Over the past decade, fMRI techniques have been increasingly used to interrogate the neural correlates of successful emotional memory encoding. These investigations have typically aimed to either characterize the contributions of the amygdala and medial temporal lobe (MTL) memory system, replicating results in animals, or delineate the neural correlates of specific behavioral phenomena. It has remained difficult, however, to synthesize these findings into a systems neuroscience account of how networks across the whole brain support the enhancing effects of emotion on memory encoding. To this end, the present study employed a meta-analytic approach using activation likelihood estimates to assess the anatomical specificity and reliability of event-related fMRI activations related to successful memory encoding for emotional versus neutral information. The meta-analysis revealed consistent clusters within bilateral amygdala, anterior hippocampus, anterior and posterior parahippocampal gyrus, the ventral visual stream, left lateral prefrontal cortex and right ventral parietal cortex. The results within the amygdala and MTL support a wealth of findings from the animal literature linking these regions to arousal-mediated memory effects. The consistency of findings in cortical targets, including the visual, prefrontal, and parietal cortices, underscores the importance of generating hypotheses regarding their participation in emotional memory formation. In particular, we propose that the amygdala interacts with these structures to promote enhancements in perceptual processing, semantic elaboration, and attention, which serve to benefit subsequent memory for emotional material. These findings may motivate future research on emotional modulation of widespread neural systems and the implications of this modulation for cognition. PMID:20688087

  17. The role of fMRI in drug development

    PubMed Central

    Carmichael, Owen; Schwarz, Adam J.; Chatham, Christopher H.; Scott, David; Turner, Jessica A.; Upadhyay, Jaymin; Coimbra, Alexandre; Goodman, James A.; Baumgartner, Richard; English, Brett A.; Apolzan, John W.; Shankapal, Preetham; Hawkins, Keely R.

    2017-01-01

    Functional magnetic resonance imaging (fMRI) has been known for over a decade to have the potential to greatly enhance the process of developing novel therapeutic drugs for prevalent health conditions. However, the use of fMRI in drug development continues to be relatively limited because of a variety of technical, biological, and strategic barriers that continue to limit progress. Here, we briefly review the roles that fMRI can have in the drug development process and the requirements it must meet to be useful in this setting. We then provide an update on our current understanding of the strengths and limitations of fMRI as a tool for drug developers and recommend activities to enhance its utility. PMID:29154758

  18. Paying attention to emotion: an fMRI investigation of cognitive and emotional stroop tasks.

    PubMed

    Compton, Rebecca J; Banich, Marie T; Mohanty, Aprajita; Milham, Michael P; Herrington, John; Miller, Gregory A; Scalf, Paige E; Webb, Andrew; Heller, Wendy

    2003-06-01

    In this research, we investigated the degree to which brain systems involved in ignoring emotionally salient information differ from those involved in ignoring nonemotional information. The design allowed examination of regional brain activity, using fMRI during color-word and emotional Stroop tasks. Twelve participants indicated the color of words while ignoring word meaning in conditions in which neutral words were contrasted to emotionally negative, emotionally positive, and incongruent color words. Dorsolateral frontal lobe activity was increased by both negative and incongruent color words, indicating a common system for maintaining an attentional set in the presence of salient distractors. In posterior regions of the brain, activity depended on the nature of the information to be ignored. Ignoring color-incongruent words increased left parietal activity and decreased parahippocampal gyrus activity, whereas ignoring negative emotional words increased bilateral occipito-temporal activity and decreased amygdala activity. The results indicate that emotion and attention are intimately related via a network of regions that monitor for salient information, maintain attention on the task, suppress irrelevant information, and select appropriate responses.

  19. Real-time fMRI: a tool for local brain regulation.

    PubMed

    Caria, Andrea; Sitaram, Ranganatha; Birbaumer, Niels

    2012-10-01

    Real-time fMRI permits simultaneous measurement and observation of brain activity during an ongoing task. One of the most challenging applications of real-time fMRI in neuroscientific and clinical research is the possibility of acquiring volitional control of localized brain activity using real-time fMRI-based neurofeedback protocols. Real-time fMRI allows the experimenter to noninvasively manipulate brain activity as an independent variable to observe the effects on behavior. Real-time fMRI neurofeedback studies demonstrated that learned control of the local brain activity leads to specific changes in behavior. Here, the authors describe the implementation and application of real-time fMRI with particular emphasis on the self-regulation of local brain activity and the investigation of brain-function relationships. Real-time fMRI represents a promising new approach to cognitive neuroscience that could complement traditional neuroimaging techniques by providing more causal insights into the functional role of circumscribed brain regions in behavior.

  20. Physiogenomic Analysis of Localized fMRI Brain Activity in Schizophrenia

    PubMed Central

    Windemuth, Andreas; Calhoun, Vince D.; Pearlson, Godfrey D.; Kocherla, Mohan; Jagannathan, Kanchana; Ruaño, Gualberto

    2009-01-01

    The search for genetic factors associated with disease is complicated by the complexity of the biological pathways linking genotype and phenotype. This analytical complexity is particularly concerning in diseases historically lacking reliable diagnostic biological markers, such as schizophrenia and other mental disorders. We investigate the use of functional magnetic resonance imaging (fMRI) as an intermediate phenotype (endophenotype) to identify physiogenomic associations to schizophrenia. We screened 99 subjects, 30 subjects diagnosed with schizophrenia, 13 unaffected relatives of schizophrenia patients, and 56 unrelated controls, for gene polymorphisms associated with fMRI activation patterns at two locations in temporal and frontal lobes previously implied in schizophrenia. A total of 22 single nucleotide polymorphisms (SNPs) in 15 genes from the dopamine and serotonin neurotransmission pathways were genotyped in all subjects. We identified three SNPs in genes that are significantly associated with fMRI activity. SNPs of the dopamine beta-hydroxylase (DBH) gene and of the dopamine receptor D4 (DRD4) were associated with activity in the temporal and frontal lobes, respectively. One SNP of serotonin-3A receptor (HTR3A) was associated with temporal lobe activity. The results of this study support the physiogenomic analysis of neuroimaging data to discover associations between genotype and disease-related phenotypes. PMID:18330705

  1. Creative conceptual expansion: A combined fMRI replication and extension study to examine individual differences in creativity.

    PubMed

    Abraham, Anna; Rutter, Barbara; Bantin, Trisha; Hermann, Christiane

    2018-05-05

    The aims of this fMRI study were two-fold. The first objective of the study was to verify whether the findings associated with a previous fMRI study could be replicated in which a novel event-related experimental design was developed which rendered it possible to investigate the brain basis of creative conceptual expansion. The ability to widen the boundaries of conceptual structures is integral to creative idea generation, which makes conceptual expansion a core component of creative cognition. Creative conceptual expansion led to the engagement of brain regions that are known to be involved in the access, storage and relational integration of conceptual knowledge in the original study. These included the anterior inferior frontal gyrus, the temporal poles and the lateral frontal pole. These findings in relation to the brain basis of creative conceptual expansion were replicated in the current study. The second objective of this study was to evaluate the brain basis of individual differences in creative conceptual expansion. The high creative group relative to the low creative group was shown to exhibit greater activity in regions of the semantic cognition network as well as the salience network during creative conceptual expansion. The findings are discussed from the point of view of classical hypotheses about information processing biases that explain individual differences in creativity including flat associative hierarchies, defocused attention and cognitive disinhibition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Specific default mode subnetworks support mentalizing as revealed through opposing network recruitment by social and semantic FMRI tasks.

    PubMed

    Hyatt, Christopher J; Calhoun, Vince D; Pearlson, Godfrey D; Assaf, Michal

    2015-08-01

    The ability to attribute mental states to others, or "mentalizing," is posited to involve specific subnetworks within the overall default mode network (DMN), but this question needs clarification. To determine which default mode (DM) subnetworks are engaged by mentalizing processes, we assessed task-related recruitment of DM subnetworks. Spatial independent component analysis (sICA) applied to fMRI data using relatively high-order model (75 components). Healthy participants (n = 53, ages 17-60) performed two fMRI tasks: an interactive game involving mentalizing (Domino), a semantic memory task (SORT), and a resting state fMRI scan. sICA of the two tasks split the DMN into 10 subnetworks located in three core regions: medial prefrontal cortex (mPFC; five subnetworks), posterior cingulate/precuneus (PCC/PrC; three subnetworks), and bilateral temporoparietal junction (TPJ). Mentalizing events increased recruitment in five of 10 DM subnetworks, located in all three core DMN regions. In addition, three of these five DM subnetworks, one dmPFC subnetwork, one PCC/PrC subnetwork, and the right TPJ subnetwork, showed reduced recruitment by semantic memory task events. The opposing modulation by the two tasks suggests that these three DM subnetworks are specifically engaged in mentalizing. Our findings, therefore, suggest the unique involvement of mentalizing processes in only three of 10 DM subnetworks, and support the importance of the dmPFC, PCC/PrC, and right TPJ in mentalizing as described in prior studies. © 2015 Wiley Periodicals, Inc.

  3. Decoding fMRI Signatures of Real-world Autobiographical Memory Retrieval.

    PubMed

    Rissman, Jesse; Chow, Tiffany E; Reggente, Nicco; Wagner, Anthony D

    2016-04-01

    Extant neuroimaging data implicate frontoparietal and medial-temporal lobe regions in episodic retrieval, and the specific pattern of activity within and across these regions is diagnostic of an individual's subjective mnemonic experience. For example, in laboratory-based paradigms, memories for recently encoded faces can be accurately decoded from single-trial fMRI patterns [Uncapher, M. R., Boyd-Meredith, J. T., Chow, T. E., Rissman, J., & Wagner, A. D. Goal-directed modulation of neural memory patterns: Implications for fMRI-based memory detection. Journal of Neuroscience, 35, 8531-8545, 2015; Rissman, J., Greely, H. T., & Wagner, A. D. Detecting individual memories through the neural decoding of memory states and past experience. Proceedings of the National Academy of Sciences, U.S.A., 107, 9849-9854, 2010]. Here, we investigated the neural patterns underlying memory for real-world autobiographical events, probed at 1- to 3-week retention intervals as well as whether distinct patterns are associated with different subjective memory states. For 3 weeks, participants (n = 16) wore digital cameras that captured photographs of their daily activities. One week later, they were scanned while making memory judgments about sequences of photos depicting events from their own lives or events captured by the cameras of others. Whole-brain multivoxel pattern analysis achieved near-perfect accuracy at distinguishing correctly recognized events from correctly rejected novel events, and decoding performance did not significantly vary with retention interval. Multivoxel pattern classifiers also differentiated recollection from familiarity and reliably decoded the subjective strength of recollection, of familiarity, or of novelty. Classification-based brain maps revealed dissociable neural signatures of these mnemonic states, with activity patterns in hippocampus, medial PFC, and ventral parietal cortex being particularly diagnostic of recollection. Finally, a classifier

  4. Functional-anatomic study of episodic retrieval using fMRI. I. Retrieval effort versus retrieval success.

    PubMed

    Buckner, R L; Koutstaal, W; Schacter, D L; Wagner, A D; Rosen, B R

    1998-04-01

    A number of recent functional imaging studies have identified brain areas activated during tasks involving episodic memory retrieval. The identification of such areas provides a foundation for targeted hypotheses regarding the more specific contributions that these areas make to episodic retrieval. As a beginning effort toward such an endeavor, whole-brain functional magnetic resonance imaging (fMRI) was used to examine 14 subjects during episodic word recognition in a block-designed fMRI experiment. Study conditions were manipulated by presenting either shallow or deep encoding tasks. This manipulation yielded two recognition conditions that differed with regard to retrieval effort and retrieval success: shallow encoding yielded low levels of recognition success with high levels of retrieval effort, and deep encoding yielded high levels of recognition success with low levels of effort. Many brain areas were activated in common by these two recognition conditions compared to a low-level fixation condition, including left and right prefrontal regions often detected during PET episodic retrieval paradigms (e.g., R. L. Buckner et al., 1996, J. Neurosci. 16, 6219-6235) thereby generalizing these findings to fMRI. Characterization of the activated regions in relation to the separate recognition conditions showed (1) bilateral anterior insular regions and a left dorsal prefrontal region were more active after shallow encoding, when retrieval demanded greatest effort, and (2) right anterior prefrontal cortex, which has been implicated in episodic retrieval, was most active during successful retrieval after deep encoding. We discuss these findings in relation to component processes involved in episodic retrieval and in the context of a companion study using event-related fMRI.

  5. Probing consciousness with event-related potentials in the vegetative state

    PubMed Central

    Faugeras, F.; Rohaut, B.; Weiss, N.; Bekinschtein, T.A.; Galanaud, D.; Puybasset, L.; Bolgert, F.; Sergent, C.; Cohen, L.; Dehaene, S.

    2011-01-01

    Objective: Probing consciousness in noncommunicating patients is a major medical and neuroscientific challenge. While standardized and expert behavioral assessment of patients constitutes a mandatory step, this clinical evaluation stage is often difficult and doubtful, and calls for complementary measures which may overcome its inherent limitations. Several functional brain imaging methods are currently being developed within this perspective, including fMRI and cognitive event-related potentials (ERPs). We recently designed an original rule extraction ERP test that is positive only in subjects who are conscious of the long-term regularity of auditory stimuli. Methods: In the present work, we report the results of this test in a population of 22 patients who met clinical criteria for vegetative state. Results: We identified 2 patients showing this neural signature of consciousness. Interestingly, these 2 patients showed unequivocal clinical signs of consciousness within the 3 to 4 days following ERP recording. Conclusions: Taken together, these results strengthen the relevance of bedside neurophysiological tools to improve diagnosis of consciousness in noncommunicating patients. PMID:21593438

  6. Social economic decision-making across the lifespan: An fMRI investigation.

    PubMed

    Harlé, Katia M; Sanfey, Alan G

    2012-06-01

    Recent research in neuroeconomics suggests that social economic decision-making may be best understood as a dual-systems process, integrating the influence of deliberative and affective subsystems. However, most of this research has focused on young adults and it remains unclear whether our current models extend to healthy aging. To address this question, we investigated the behavioral and neural basis of simple economic decisions in 18 young and 20 older healthy adults. Participants made decisions which involved accepting or rejecting monetary offers from human and non-human (computer) partners in an Ultimatum Game, while undergoing functional magnetic resonance imaging (fMRI). The partners' proposals involved splitting an amount of money between the two players, and ranged from $1 to $5 (from a $10 pot). Relative to young adults, older participants expected more equitable offers and rejected moderately unfair offers ($3) to a larger extent. Imaging results revealed that, relative to young participants, older adults had higher activations in the left dorsolateral prefrontal cortex (DLPFC) when receiving unfair offers ($1-$3). Age group moderated the relationship between left DLPFC activation and acceptance rates of unfair offers. In contrast, older adults showed lower activation of bilateral anterior insula in response to unfair offers. No age group difference was observed when participants received fair ($5) offers. These findings suggest that healthy aging may be associated with a stronger reliance on computational areas subserving goal maintenance and rule shifting (DLPFC) during interactive economic decision-making. Consistent with a well-documented "positivity effect", older age may also decrease recruitment of areas involved in emotion processing and integration (anterior insula) in the face of social norm violation. Published by Elsevier Ltd.

  7. Social economic decision-making across the lifespan: an fMRI investigation

    PubMed Central

    Harlé, Katia M.; Sanfey, Alan G.

    2012-01-01

    Recent research in neuroeconomics suggests that social economic decision-making may be best understood as a dual-systems process, integrating the influence of deliberative and affective subsystems. However, most of this research has focused on young adults and it remains unclear whether our current models extend to healthy aging. To address this question, we investigated the behavioral and neural basis of simple economic decisions in 18 young and 20 older healthy adults. Participants made decisions which involved accepting or rejecting monetary offers from human and non-human (computer) partners in an Ultimatum Game, while undergoing functional magnetic resonance imaging (fMRI). The partners’ proposals involved splitting an amount of money between the two players, and ranged from $1 to $5 (from a $10 pot). Relative to young adults, older participants expected more equitable offers and rejected moderately unfair offers ($3) to a larger extent. Imaging results revealed that, relative to young participants, older adults had higher activations in the left dorsolateral prefrontal cortex (DLPFC) when receiving unfair offers ($1–$3). Age group moderated the relationship between left DLPFC activation and acceptance rates of unfair offers. In contrast, older adults showed lower activation of bilateral anterior insula in response to unfair offers. No age group difference was observed when participants received fair ($5) offers. These findings suggest that healthy aging may be associated with a stronger reliance on computational areas subserving goal maintenance and rule shifting (DLPFC) during interactive economic decision-making. Consistent with a well-documented “positivity effect”, older age may also decrease recruitment of areas involved in emotion processing and integration (anterior insula) in the face of social norm violation. PMID:22414593

  8. Residual fMRI sensitivity for identity changes in acquired prosopagnosia.

    PubMed

    Fox, Christopher J; Iaria, Giuseppe; Duchaine, Bradley C; Barton, Jason J S

    2013-01-01

    While a network of cortical regions contribute to face processing, the lesions in acquired prosopagnosia are highly variable, and likely result in different combinations of spared and affected regions of this network. To assess the residual functional sensitivities of spared regions in prosopagnosia, we designed a rapid event-related functional magnetic resonance imaging (fMRI) experiment that included pairs of faces with same or different identities and same or different expressions. By measuring the release from adaptation to these facial changes we determined the residual sensitivity of face-selective regions-of-interest. We tested three patients with acquired prosopagnosia, and all three of these patients demonstrated residual sensitivity for facial identity changes in surviving fusiform and occipital face areas of either the right or left hemisphere, but not in the right posterior superior temporal sulcus. The patients also showed some residual capabilities for facial discrimination with normal performance on the Benton Facial Recognition Test, but impaired performance on more complex tasks of facial discrimination. We conclude that fMRI can demonstrate residual processing of facial identity in acquired prosopagnosia, that this adaptation can occur in the same structures that show similar processing in healthy subjects, and further, that this adaptation may be related to behavioral indices of face perception.

  9. Residual fMRI sensitivity for identity changes in acquired prosopagnosia

    PubMed Central

    Fox, Christopher J.; Iaria, Giuseppe; Duchaine, Bradley C.; Barton, Jason J. S.

    2013-01-01

    While a network of cortical regions contribute to face processing, the lesions in acquired prosopagnosia are highly variable, and likely result in different combinations of spared and affected regions of this network. To assess the residual functional sensitivities of spared regions in prosopagnosia, we designed a rapid event-related functional magnetic resonance imaging (fMRI) experiment that included pairs of faces with same or different identities and same or different expressions. By measuring the release from adaptation to these facial changes we determined the residual sensitivity of face-selective regions-of-interest. We tested three patients with acquired prosopagnosia, and all three of these patients demonstrated residual sensitivity for facial identity changes in surviving fusiform and occipital face areas of either the right or left hemisphere, but not in the right posterior superior temporal sulcus. The patients also showed some residual capabilities for facial discrimination with normal performance on the Benton Facial Recognition Test, but impaired performance on more complex tasks of facial discrimination. We conclude that fMRI can demonstrate residual processing of facial identity in acquired prosopagnosia, that this adaptation can occur in the same structures that show similar processing in healthy subjects, and further, that this adaptation may be related to behavioral indices of face perception. PMID:24151479

  10. Multimodal Classification of Schizophrenia Patients with MEG and fMRI Data Using Static and Dynamic Connectivity Measures

    PubMed Central

    Cetin, Mustafa S.; Houck, Jon M.; Rashid, Barnaly; Agacoglu, Oktay; Stephen, Julia M.; Sui, Jing; Canive, Jose; Mayer, Andy; Aine, Cheryl; Bustillo, Juan R.; Calhoun, Vince D.

    2016-01-01

    Mental disorders like schizophrenia are currently diagnosed by physicians/psychiatrists through clinical assessment and their evaluation of patient's self-reported experiences as the illness emerges. There is great interest in identifying biological markers of prognosis at the onset of illness, rather than relying on the evolution of symptoms across time. Functional network connectivity, which indicates a subject's overall level of “synchronicity” of activity between brain regions, demonstrates promise in providing individual subject predictive power. Many previous studies reported functional connectivity changes during resting-state using only functional magnetic resonance imaging (fMRI). Nevertheless, exclusive reliance on fMRI to generate such networks may limit the inference of the underlying dysfunctional connectivity, which is hypothesized to be a factor in patient symptoms, as fMRI measures connectivity via hemodynamics. Therefore, combination of connectivity assessments using fMRI and magnetoencephalography (MEG), which more directly measures neuronal activity, may provide improved classification of schizophrenia than either modality alone. Moreover, recent evidence indicates that metrics of dynamic connectivity may also be critical for understanding pathology in schizophrenia. In this work, we propose a new framework for extraction of important disease related features and classification of patients with schizophrenia based on using both fMRI and MEG to investigate functional network components in the resting state. Results of this study show that the integration of fMRI and MEG provides important information that captures fundamental characteristics of functional network connectivity in schizophrenia and is helpful for prediction of schizophrenia patient group membership. Combined fMRI/MEG methods, using static functional network connectivity analyses, improved classification accuracy relative to use of fMRI or MEG methods alone (by 15 and 12

  11. Investigating brain response to music: a comparison of different fMRI acquisition schemes.

    PubMed

    Mueller, Karsten; Mildner, Toralf; Fritz, Thomas; Lepsien, Jöran; Schwarzbauer, Christian; Schroeter, Matthias L; Möller, Harald E

    2011-01-01

    Functional magnetic resonance imaging (fMRI) in auditory experiments is a challenge, because the scanning procedure produces considerable noise that can interfere with the auditory paradigm. The noise might either mask the auditory material presented, or interfere with stimuli designed to evoke emotions because it sounds loud and rather unpleasant. Therefore, scanning paradigms that allow interleaved auditory stimulation and image acquisition appear to be advantageous. The sparse temporal sampling (STS) technique uses a very long repetition time in order to achieve a stimulus presentation in the absence of scanner noise. Although only relatively few volumes are acquired for the resulting data sets, there have been recent studies where this method has furthered remarkable results. A new development is the interleaved silent steady state (ISSS) technique. Compared with STS, this method is capable of acquiring several volumes in the time frame between the auditory trials (while the magnetization is kept in a steady state during stimulus presentation). In order to draw conclusions about the optimum fMRI procedure with auditory stimulation, different echo-planar imaging (EPI) acquisition schemes were compared: Continuous scanning, STS, and ISSS. The total acquisition time of each sequence was adjusted to about 12.5 min. The results indicate that the ISSS approach exhibits the highest sensitivity in detecting subtle activity in sub-cortical brain regions. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data.

    PubMed

    Power, Jonathan D; Plitt, Mark; Gotts, Stephen J; Kundu, Prantik; Voon, Valerie; Bandettini, Peter A; Martin, Alex

    2018-02-27

    "Functional connectivity" techniques are commonplace tools for studying brain organization. A critical element of these analyses is to distinguish variance due to neurobiological signals from variance due to nonneurobiological signals. Multiecho fMRI techniques are a promising means for making such distinctions based on signal decay properties. Here, we report that multiecho fMRI techniques enable excellent removal of certain kinds of artifactual variance, namely, spatially focal artifacts due to motion. By removing these artifacts, multiecho techniques reveal frequent, large-amplitude blood oxygen level-dependent (BOLD) signal changes present across all gray matter that are also linked to motion. These whole-brain BOLD signals could reflect widespread neural processes or other processes, such as alterations in blood partial pressure of carbon dioxide (pCO 2 ) due to ventilation changes. By acquiring multiecho data while monitoring breathing, we demonstrate that whole-brain BOLD signals in the resting state are often caused by changes in breathing that co-occur with head motion. These widespread respiratory fMRI signals cannot be isolated from neurobiological signals by multiecho techniques because they occur via the same BOLD mechanism. Respiratory signals must therefore be removed by some other technique to isolate neurobiological covariance in fMRI time series. Several methods for removing global artifacts are demonstrated and compared, and were found to yield fMRI time series essentially free of motion-related influences. These results identify two kinds of motion-associated fMRI variance, with different physical mechanisms and spatial profiles, each of which strongly and differentially influences functional connectivity patterns. Distance-dependent patterns in covariance are nearly entirely attributable to non-BOLD artifacts.

  13. The effects of orientation and attention during surround suppression of small image features: A 7 Tesla fMRI study.

    PubMed

    Schallmo, Michael-Paul; Grant, Andrea N; Burton, Philip C; Olman, Cheryl A

    2016-08-01

    Although V1 responses are driven primarily by elements within a neuron's receptive field, which subtends about 1° visual angle in parafoveal regions, previous work has shown that localized fMRI responses to visual elements reflect not only local feature encoding but also long-range pattern attributes. However, separating the response to an image feature from the response to the surrounding stimulus and studying the interactions between these two responses demands both spatial precision and signal independence, which may be challenging to attain with fMRI. The present study used 7 Tesla fMRI with 1.2-mm resolution to measure the interactions between small sinusoidal grating patches (targets) at 3° eccentricity and surrounds of various sizes and orientations to test the conditions under which localized, context-dependent fMRI responses could be predicted from either psychophysical or electrophysiological data. Targets were presented at 8%, 16%, and 32% contrast while manipulating (a) spatial extent of parallel (strongly suppressive) or orthogonal (weakly suppressive) surrounds, (b) locus of attention, (c) stimulus onset asynchrony between target and surround, and (d) blocked versus event-related design. In all experiments, the V1 fMRI signal was lower when target stimuli were flanked by parallel versus orthogonal context. Attention amplified fMRI responses to all stimuli but did not show a selective effect on central target responses or a measurable effect on orientation-dependent surround suppression. Suppression of the V1 fMRI response by parallel surrounds was stronger than predicted from psychophysics but showed a better match to previous electrophysiological reports.

  14. Altered Dynamics of the fMRI Response to Faces in Individuals with Autism

    ERIC Educational Resources Information Center

    Kleinhans, Natalia M.; Richards, Todd; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth

    2016-01-01

    Abnormal fMRI habituation in autism spectrum disorders (ASDs) has been proposed as a critical component in social impairment. This study investigated habituation to fearful faces and houses in ASD and whether fMRI measures of brain activity discriminate between ASD and typically developing (TD) controls. Two identical fMRI runs presenting masked…

  15. Functional brain activation differences in stuttering identified with a rapid fMRI sequence

    PubMed Central

    Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.

    2011-01-01

    The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech motor and auditory brain activity in children who stutter closer to the age at which recovery from stuttering is documented. Rapid sequences may be preferred for individuals or populations who do not tolerate long scanning sessions. In this report, we document the application of a picture naming and phoneme monitoring task in three minute fMRI sequences with adults who stutter (AWS). If relevant brain differences are found in AWS with these approaches that conform to previous reports, then these approaches can be extended to younger populations. Pairwise contrasts of brain BOLD activity between AWS and normally fluent adults indicated the AWS showed higher BOLD activity in the right inferior frontal gyrus (IFG), right temporal lobe and sensorimotor cortices during picture naming and and higher activity in the right IFG during phoneme monitoring. The right lateralized pattern of BOLD activity together with higher activity in sensorimotor cortices is consistent with previous reports, which indicates rapid fMRI sequences can be considered for investigating stuttering in younger participants. PMID:22133409

  16. Laminar fMRI and computational theories of brain function.

    PubMed

    Stephan, K E; Petzschner, F H; Kasper, L; Bayer, J; Wellstein, K V; Stefanics, G; Pruessmann, K P; Heinzle, J

    2017-11-02

    Recently developed methods for functional MRI at the resolution of cortical layers (laminar fMRI) offer a novel window into neurophysiological mechanisms of cortical activity. Beyond physiology, laminar fMRI also offers an unprecedented opportunity to test influential theories of brain function. Specifically, hierarchical Bayesian theories of brain function, such as predictive coding, assign specific computational roles to different cortical layers. Combined with computational models, laminar fMRI offers a unique opportunity to test these proposals noninvasively in humans. This review provides a brief overview of predictive coding and related hierarchical Bayesian theories, summarises their predictions with regard to layered cortical computations, examines how these predictions could be tested by laminar fMRI, and considers methodological challenges. We conclude by discussing the potential of laminar fMRI for clinically useful computational assays of layer-specific information processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Nonlinear changes in brain activity during continuous word repetition: an event-related multiparametric functional MR imaging study.

    PubMed

    Hagenbeek, R E; Rombouts, S A R B; Veltman, D J; Van Strien, J W; Witter, M P; Scheltens, P; Barkhof, F

    2007-10-01

    Changes in brain activation as a function of continuous multiparametric word recognition have not been studied before by using functional MR imaging (fMRI), to our knowledge. Our aim was to identify linear changes in brain activation and, what is more interesting, nonlinear changes in brain activation as a function of extended word repetition. Fifteen healthy young right-handed individuals participated in this study. An event-related extended continuous word-recognition task with 30 target words was used to study the parametric effect of word recognition on brain activation. Word-recognition-related brain activation was studied as a function of 9 word repetitions. fMRI data were analyzed with a general linear model with regressors for linearly changing signal intensity and nonlinearly changing signal intensity, according to group average reaction time (RT) and individual RTs. A network generally associated with episodic memory recognition showed either constant or linearly decreasing brain activation as a function of word repetition. Furthermore, both anterior and posterior cingulate cortices and the left middle frontal gyrus followed the nonlinear curve of the group RT, whereas the anterior cingulate cortex was also associated with individual RT. Linear alteration in brain activation as a function of word repetition explained most changes in blood oxygen level-dependent signal intensity. Using a hierarchically orthogonalized model, we found evidence for nonlinear activation associated with both group and individual RTs.

  18. Effect of confounding variables on hemodynamic response function estimation using averaging and deconvolution analysis: An event-related NIRS study.

    PubMed

    Aarabi, Ardalan; Osharina, Victoria; Wallois, Fabrice

    2017-07-15

    Slow and rapid event-related designs are used in fMRI and functional near-infrared spectroscopy (fNIRS) experiments to temporally characterize the brain hemodynamic response to discrete events. Conventional averaging (CA) and the deconvolution method (DM) are the two techniques commonly used to estimate the Hemodynamic Response Function (HRF) profile in event-related designs. In this study, we conducted a series of simulations using synthetic and real NIRS data to examine the effect of the main confounding factors, including event sequence timing parameters, different types of noise, signal-to-noise ratio (SNR), temporal autocorrelation and temporal filtering on the performance of these techniques in slow and rapid event-related designs. We also compared systematic errors in the estimates of the fitted HRF amplitude, latency and duration for both techniques. We further compared the performance of deconvolution methods based on Finite Impulse Response (FIR) basis functions and gamma basis sets. Our results demonstrate that DM was much less sensitive to confounding factors than CA. Event timing was the main parameter largely affecting the accuracy of CA. In slow event-related designs, deconvolution methods provided similar results to those obtained by CA. In rapid event-related designs, our results showed that DM outperformed CA for all SNR, especially above -5 dB regardless of the event sequence timing and the dynamics of background NIRS activity. Our results also show that periodic low-frequency systemic hemodynamic fluctuations as well as phase-locked noise can markedly obscure hemodynamic evoked responses. Temporal autocorrelation also affected the performance of both techniques by inducing distortions in the time profile of the estimated hemodynamic response with inflated t-statistics, especially at low SNRs. We also found that high-pass temporal filtering could substantially affect the performance of both techniques by removing the low-frequency components of

  19. Neural substrates of phonological selection for Japanese character Kanji based on fMRI investigations.

    PubMed

    Matsuo, Kayako; Chen, Shen-Hsing Annabel; Hue, Chih-Wei; Wu, Chiao-Yi; Bagarinao, Epifanio; Tseng, Wen-Yih Isaac; Nakai, Toshiharu

    2010-04-15

    Japanese and Chinese both share the same ideographic/logographic character system. How these characters are processed, however, is inherently different for each language. We harnessed the unique property of homophone judgment in Japanese kanji to provide an analogous Chinese condition using event-related functional magnetic resonance imaging (fMRI) in 33 native Japanese speakers. We compared two types of kanji: (1) kanji that usually evokes only one pronunciation to Japanese speakers, which is representative of most Chinese characters (monophonic character); (2) kanji that evoked multiple pronunciation candidates, which is typical in Japanese kanji (heterophonic character). Results showed that character pairs with multiple sound possibilities increased activation in posterior regions of the left, middle and inferior frontal gyri (MFG and IFG), the bilateral anterior insulae, and the left anterior cingulate cortex as compared with those of kanji with only one sound. The activity seen in the MFG, dorsal IFG, and ventral IFG in the left posterior lateral prefrontal cortex, which was thought to correspond with language components of orthography, phonology, and semantics, respectively, was discussed in regards to their potentially important roles in information selection among competing sources of the components. A comparison with previous studies suggested that detailed analyses of activation in these language areas could explain differences between Japanese and Chinese, such as a greater involvement of the prefrontal language production regions for Japanese, whereas, for Chinese there is more phonological processing of inputs in the superior temporal gyrus. Copyright 2009 Elsevier Inc. All rights reserved.

  20. Neuroethics and fMRI: Mapping a Fledgling Relationship

    PubMed Central

    Garnett, Alex; Whiteley, Louise; Piwowar, Heather; Rasmussen, Edie; Illes, Judy

    2011-01-01

    Human functional magnetic resonance imaging (fMRI) informs the understanding of the neural basis of mental function and is a key domain of ethical enquiry. It raises questions about the practice and implications of research, and reflexively informs ethics through the empirical investigation of moral judgments. It is at the centre of debate surrounding the importance of neuroscience findings for concepts such as personhood and free will, and the extent of their practical consequences. Here, we map the landscape of fMRI and neuroethics, using citation analysis to uncover salient topics. We find that this landscape is sparsely populated: despite previous calls for debate, there are few articles that discuss both fMRI and ethical, legal, or social implications (ELSI), and even fewer direct citations between the two literatures. Recognizing that practical barriers exist to integrating ELSI discussion into the research literature, we argue nonetheless that the ethical challenges of fMRI, and controversy over its conceptual and practical implications, make this essential. PMID:21526115

  1. The Effect of fMRI (Noise) on Cognitive Control

    ERIC Educational Resources Information Center

    Hommel, Bernhard; Fischer, Rico; Colzato, Lorenza S.; van den Wildenberg, Wery P. M.; Cellini, Cristiano

    2012-01-01

    Stressful situations, the aversiveness of events, or increases in task difficulty (e.g., conflict) have repeatedly been shown to be capable of triggering attentional control adjustments. In the present study we tested whether the particularity of an fMRI testing environment (i.e., EPI noise) might result in such increases of the cognitive control…

  2. Convergence of EEG and fMRI measures of reward anticipation.

    PubMed

    Gorka, Stephanie M; Phan, K Luan; Shankman, Stewart A

    2015-12-01

    Deficits in reward anticipation are putative mechanisms for multiple psychopathologies. Research indicates that these deficits are characterized by reduced left (relative to right) frontal electroencephalogram (EEG) activity and blood oxygenation level-dependent (BOLD) signal abnormalities in mesolimbic and prefrontal neural regions during reward anticipation. Although it is often assumed that these two measures capture similar mechanisms, no study to our knowledge has directly examined the convergence between frontal EEG alpha asymmetry and functional magnetic resonance imaging (fMRI) during reward anticipation in the same sample. Therefore, the aim of the current study was to investigate if and where in the brain frontal EEG alpha asymmetry and fMRI measures were correlated in a sample of 40 adults. All participants completed two analogous reward anticipation tasks--once during EEG data collection and the other during fMRI data collection. Results indicated that the two measures do converge and that during reward anticipation, increased relative left frontal activity is associated with increased left anterior cingulate cortex (ACC)/medial prefrontal cortex (mPFC) and left orbitofrontal cortex (OFC) activation. This suggests that the two measures may similarly capture PFC functioning, which is noteworthy given the role of these regions in reward processing and the pathophysiology of disorders such as depression and schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Dual-TRACER: High resolution fMRI with constrained evolution reconstruction.

    PubMed

    Li, Xuesong; Ma, Xiaodong; Li, Lyu; Zhang, Zhe; Zhang, Xue; Tong, Yan; Wang, Lihong; Sen Song; Guo, Hua

    2018-01-01

    fMRI with high spatial resolution is beneficial for studies in psychology and neuroscience, but is limited by various factors such as prolonged imaging time, low signal to noise ratio and scarcity of advanced facilities. Compressed Sensing (CS) based methods for accelerating fMRI data acquisition are promising. Other advanced algorithms like k-t FOCUSS or PICCS have been developed to improve performance. This study aims to investigate a new method, Dual-TRACER, based on Temporal Resolution Acceleration with Constrained Evolution Reconstruction (TRACER), for accelerating fMRI acquisitions using golden angle variable density spiral. Both numerical simulations and in vivo experiments at 3T were conducted to evaluate and characterize this method. Results show that Dual-TRACER can provide functional images with a high spatial resolution (1×1mm 2 ) under an acceleration factor of 20 while maintaining hemodynamic signals well. Compared with other investigated methods, dual-TRACER provides a better signal recovery, higher fMRI sensitivity and more reliable activation detection. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Toward systems neuroscience in mild cognitive impairment and Alzheimer's disease: a meta-analysis of 75 fMRI studies.

    PubMed

    Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; He, Yong; Zuo, Xi-Nian

    2015-03-01

    Most of the previous task functional magnetic resonance imaging (fMRI) studies found abnormalities in distributed brain regions in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and few studies investigated the brain network dysfunction from the system level. In this meta-analysis, we aimed to examine brain network dysfunction in MCI and AD. We systematically searched task-based fMRI studies in MCI and AD published between January 1990 and January 2014. Activation likelihood estimation meta-analyses were conducted to compare the significant group differences in brain activation, the significant voxels were overlaid onto seven referenced neuronal cortical networks derived from the resting-state fMRI data of 1,000 healthy participants. Thirty-nine task-based fMRI studies (697 MCI patients and 628 healthy controls) were included in MCI-related meta-analysis while 36 task-based fMRI studies (421 AD patients and 512 healthy controls) were included in AD-related meta-analysis. The meta-analytic results revealed that MCI and AD showed abnormal regional brain activation as well as large-scale brain networks. MCI patients showed hypoactivation in default, frontoparietal, and visual networks relative to healthy controls, whereas AD-related hypoactivation mainly located in visual, default, and ventral attention networks relative to healthy controls. Both MCI-related and AD-related hyperactivation fell in frontoparietal, ventral attention, default, and somatomotor networks relative to healthy controls. MCI and AD presented different pathological while shared similar compensatory large-scale networks in fulfilling the cognitive tasks. These system-level findings are helpful to link the fundamental declines of cognitive tasks to brain networks in MCI and AD. © 2014 Wiley Periodicals, Inc.

  5. Is First-Order Vector Autoregressive Model Optimal for fMRI Data?

    PubMed

    Ting, Chee-Ming; Seghouane, Abd-Krim; Khalid, Muhammad Usman; Salleh, Sh-Hussain

    2015-09-01

    We consider the problem of selecting the optimal orders of vector autoregressive (VAR) models for fMRI data. Many previous studies used model order of one and ignored that it may vary considerably across data sets depending on different data dimensions, subjects, tasks, and experimental designs. In addition, the classical information criteria (IC) used (e.g., the Akaike IC (AIC)) are biased and inappropriate for the high-dimensional fMRI data typically with a small sample size. We examine the mixed results on the optimal VAR orders for fMRI, especially the validity of the order-one hypothesis, by a comprehensive evaluation using different model selection criteria over three typical data types--a resting state, an event-related design, and a block design data set--with varying time series dimensions obtained from distinct functional brain networks. We use a more balanced criterion, Kullback's IC (KIC) based on Kullback's symmetric divergence combining two directed divergences. We also consider the bias-corrected versions (AICc and KICc) to improve VAR model selection in small samples. Simulation results show better small-sample selection performance of the proposed criteria over the classical ones. Both bias-corrected ICs provide more accurate and consistent model order choices than their biased counterparts, which suffer from overfitting, with KICc performing the best. Results on real data show that orders greater than one were selected by all criteria across all data sets for the small to moderate dimensions, particularly from small, specific networks such as the resting-state default mode network and the task-related motor networks, whereas low orders close to one but not necessarily one were chosen for the large dimensions of full-brain networks.

  6. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series.

    PubMed

    Patel, Ameera X; Kundu, Prantik; Rubinov, Mikail; Jones, P Simon; Vértes, Petra E; Ersche, Karen D; Suckling, John; Bullmore, Edward T

    2014-07-15

    The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies have demonstrated that these techniques are insufficient to remove motion confounds, and that even small movements can spuriously bias estimates of functional connectivity. Here we propose a new data-driven, spatially-adaptive, wavelet-based method for identifying, modeling, and removing non-stationary events in fMRI time series, caused by head movement, without the need for data scrubbing. This method involves the addition of just one extra step, the Wavelet Despike, in standard pre-processing pipelines. With this method, we demonstrate robust removal of a range of different motion artifacts and motion-related biases including distance-dependent connectivity artifacts, at a group and single-subject level, using a range of previously published and new diagnostic measures. The Wavelet Despike is able to accommodate the substantial spatial and temporal heterogeneity of motion artifacts and can consequently remove a range of high and low frequency artifacts from fMRI time series, that may be linearly or non-linearly related to physical movements. Our methods are demonstrated by the analysis of three cohorts of resting-state fMRI data, including two high-motion datasets: a previously published dataset on children (N=22) and a new dataset on adults with stimulant drug dependence (N=40). We conclude that there is a real risk of motion-related bias in connectivity analysis of fMRI data, but that this risk is generally manageable, by effective time series denoising strategies designed to attenuate synchronized signal transients induced by abrupt head movements. The Wavelet Despiking software described in this article is freely available for download at www

  7. Intersession reliability of fMRI activation for heat pain and motor tasks

    PubMed Central

    Quiton, Raimi L.; Keaser, Michael L.; Zhuo, Jiachen; Gullapalli, Rao P.; Greenspan, Joel D.

    2014-01-01

    As the practice of conducting longitudinal fMRI studies to assess mechanisms of pain-reducing interventions becomes more common, there is a great need to assess the test–retest reliability of the pain-related BOLD fMRI signal across repeated sessions. This study quantitatively evaluated the reliability of heat pain-related BOLD fMRI brain responses in healthy volunteers across 3 sessions conducted on separate days using two measures: (1) intraclass correlation coefficients (ICC) calculated based on signal amplitude and (2) spatial overlap. The ICC analysis of pain-related BOLD fMRI responses showed fair-to-moderate intersession reliability in brain areas regarded as part of the cortical pain network. Areas with the highest intersession reliability based on the ICC analysis included the anterior midcingulate cortex, anterior insula, and second somatosensory cortex. Areas with the lowest intersession reliability based on the ICC analysis also showed low spatial reliability; these regions included pregenual anterior cingulate cortex, primary somatosensory cortex, and posterior insula. Thus, this study found regional differences in pain-related BOLD fMRI response reliability, which may provide useful information to guide longitudinal pain studies. A simple motor task (finger-thumb opposition) was performed by the same subjects in the same sessions as the painful heat stimuli were delivered. Intersession reliability of fMRI activation in cortical motor areas was comparable to previously published findings for both spatial overlap and ICC measures, providing support for the validity of the analytical approach used to assess intersession reliability of pain-related fMRI activation. A secondary finding of this study is that the use of standard ICC alone as a measure of reliability may not be sufficient, as the underlying variance structure of an fMRI dataset can result in inappropriately high ICC values; a method to eliminate these false positive results was used in this

  8. Investigation of BOLD fMRI Resonance Frequency Shifts and Quantitative Susceptibility Changes at 7 T

    PubMed Central

    Bianciardi, Marta; van Gelderen, Peter; Duyn, Jeff H.

    2013-01-01

    Although blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) experiments of brain activity generally rely on the magnitude of the signal, they also provide frequency information that can be derived from the phase of the signal. However, because of confounding effects of instrumental and physiological origin, BOLD related frequency information is difficult to extract and therefore rarely used. Here, we explored the use of high field (7 T) and dedicated signal processing methods to extract frequency information and use it to quantify and interpret blood oxygenation and blood volume changes. We found that optimized preprocessing improves detection of task-evoked and spontaneous changes in phase signals and resonance frequency shifts over large areas of the cortex with sensitivity comparable to that of magnitude signals. Moreover, our results suggest the feasibility of mapping BOLD quantitative susceptibility changes in at least part of the activated area and its largest draining veins. Comparison with magnitude data suggests that the observed susceptibility changes originate from neuronal activity through induced blood volume and oxygenation changes in pial and intracortical veins. Further, from frequency shifts and susceptibility values, we estimated that, relative to baseline, the fractional oxygen saturation in large vessels increased by 0.02–0.05 during stimulation, which is consistent to previously published estimates. Together, these findings demonstrate that valuable information can be derived from fMRI imaging of BOLD frequency shifts and quantitative susceptibility changes. PMID:23897623

  9. Task-Related Edge Density (TED)-A New Method for Revealing Dynamic Network Formation in fMRI Data of the Human Brain.

    PubMed

    Lohmann, Gabriele; Stelzer, Johannes; Zuber, Verena; Buschmann, Tilo; Margulies, Daniel; Bartels, Andreas; Scheffler, Klaus

    2016-01-01

    The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach "Task-related Edge Density" (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function.

  10. Automatic processing of semantic relations in fMRI: neural activation during semantic priming of taxonomic and thematic categories.

    PubMed

    Sachs, Olga; Weis, Susanne; Zellagui, Nadia; Huber, Walter; Zvyagintsev, Mikhail; Mathiak, Klaus; Kircher, Tilo

    2008-07-07

    Most current models of knowledge organization are based on hierarchical or taxonomic categories (animals, tools). Another important organizational pattern is thematic categorization, i.e. categories held together by external relations, a unifying scene or event (car and garage). The goal of this study was to compare the neural correlates of these categories under automatic processing conditions that minimize strategic influences. We used fMRI to examine neural correlates of semantic priming for category members with a short stimulus onset asynchrony (SOA) of 200 ms as subjects performed a lexical decision task. Four experimental conditions were compared: thematically related words (car-garage); taxonomically related (car-bus); unrelated (car-spoon); non-word trials (car-derf). We found faster reaction times for related than for unrelated prime-target pairs for both thematic and taxonomic categories. However, the size of the thematic priming effect was greater than that of the taxonomic. The imaging data showed signal changes for the taxonomic priming effects in the right precuneus, postcentral gyrus, middle frontal and superior frontal gyri and thematic priming effects in the right middle frontal gyrus and anterior cingulate. The contrast of neural priming effects showed larger signal changes in the right precuneus associated with the taxonomic but not with thematic priming response. We suggest that the greater involvement of precuneus in the processing of taxonomic relations indicates their reduced salience in the knowledge structure compared to more prominent thematic relations.

  11. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study.

    PubMed

    Fu, Cynthia H Y; Williams, Steven C R; Cleare, Anthony J; Brammer, Michael J; Walsh, Nicholas D; Kim, Jieun; Andrew, Chris M; Pich, Emilio Merlo; Williams, Pauline M; Reed, Laurence J; Mitterschiffthaler, Martina T; Suckling, John; Bullmore, Edward T

    2004-09-01

    Depression is associated with interpersonal difficulties related to abnormalities in affective facial processing. To map brain systems activated by sad facial affect processing in patients with depression and to identify brain functional correlates of antidepressant treatment and symptomatic response. Two groups underwent scanning twice using functional magnetic resonance imaging (fMRI) during an 8-week period. The event-related fMRI paradigm entailed incidental affect recognition of facial stimuli morphed to express discriminable intensities of sadness. Participants were recruited by advertisement from the local population; depressed subjects were treated as outpatients. We matched 19 medication-free, acutely symptomatic patients satisfying DSM-IV criteria for unipolar major depressive disorder by age, sex, and IQ with 19 healthy volunteers. Intervention After the baseline assessment, patients received fluoxetine hydrochloride, 20 mg/d, for 8 weeks. Average activation (capacity) and differential response to variable affective intensity (dynamic range) were estimated in each fMRI time series. We used analysis of variance to identify brain regions that demonstrated a main effect of group (depressed vs healthy subjects) and a group x time interaction (attributable to antidepressant treatment). Change in brain activation associated with reduction of depressive symptoms in the patient group was identified by means of regression analysis. Permutation tests were used for inference. Over time, depressed subjects showed reduced capacity for activation in the left amygdala, ventral striatum, and frontoparietal cortex and a negatively correlated increase of dynamic range in the prefrontal cortex. Symptomatic improvement was associated with reduction of dynamic range in the pregenual cingulate cortex, ventral striatum, and cerebellum. Antidepressant treatment reduces left limbic, subcortical, and neocortical capacity for activation in depressed subjects and increases the

  12. Using fMRI to study reward processing in humans: past, present, and future

    PubMed Central

    Wang, Kainan S.; Smith, David V.

    2016-01-01

    Functional magnetic resonance imaging (fMRI) is a noninvasive tool used to probe cognitive and affective processes. Although fMRI provides indirect measures of neural activity, the advent of fMRI has allowed for 1) the corroboration of significant animal findings in the human brain, and 2) the expansion of models to include more common human attributes that inform behavior. In this review, we briefly consider the neural basis of the blood oxygenation level dependent signal to set up a discussion of how fMRI studies have applied it in examining cognitive models in humans and the promise of using fMRI to advance such models. Specifically, we illustrate the contribution that fMRI has made to the study of reward processing, focusing on the role of the striatum in encoding reward-related learning signals that drive anticipatory and consummatory behaviors. For instance, we discuss how fMRI can be used to link neural signals (e.g., striatal responses to rewards) to individual differences in behavior and traits. While this functional segregation approach has been constructive to our understanding of reward-related functions, many fMRI studies have also benefitted from a functional integration approach that takes into account how interconnected regions (e.g., corticostriatal circuits) contribute to reward processing. We contend that future work using fMRI will profit from using a multimodal approach, such as combining fMRI with noninvasive brain stimulation tools (e.g., transcranial electrical stimulation), that can identify causal mechanisms underlying reward processing. Consequently, advancements in implementing fMRI will promise new translational opportunities to inform our understanding of psychopathologies. PMID:26740530

  13. Learning by strategies and learning by drill--evidence from an fMRI study.

    PubMed

    Delazer, M; Ischebeck, A; Domahs, F; Zamarian, L; Koppelstaetter, F; Siedentopf, C M; Kaufmann, L; Benke, T; Felber, S

    2005-04-15

    The present fMRI study investigates, first, whether learning new arithmetic operations is reflected by changing cerebral activation patterns, and second, whether different learning methods lead to differential modifications of brain activation. In a controlled design, subjects were trained over a week on two new complex arithmetic operations, one operation trained by the application of back-up strategies, i.e., a sequence of arithmetic operations, the other by drill, i.e., by learning the association between the operands and the result. In the following fMRI session, new untrained items, items trained by strategy and items trained by drill, were assessed using an event-related design. Untrained items as compared to trained showed large bilateral parietal activations, with the focus of activation along the right intraparietal sulcus. Further foci of activation were found in both inferior frontal gyri. The reverse contrast, trained vs. untrained, showed a more focused activation pattern with activation in both angular gyri. As suggested by the specific activation patterns, newly acquired expertise was implemented in previously existing networks of arithmetic processing and memory. Comparisons between drill and strategy conditions suggest that successful retrieval was associated with different brain activation patterns reflecting the underlying learning methods. While the drill condition more strongly activated medial parietal regions extending to the left angular gyrus, the strategy condition was associated to the activation of the precuneus which may be accounted for by visual imagery in memory retrieval.

  14. Intrusive Memories of Distressing Information: An fMRI Study

    PubMed Central

    Battaglini, Eva; Liddell, Belinda; Das, Pritha; Malhi, Gin; Felmingham, Kim

    2016-01-01

    Although intrusive memories are characteristic of many psychological disorders, the neurobiological underpinning of these involuntary recollections are largely unknown. In this study we used functional magentic resonance imaging (fMRI) to identify the neural networks associated with encoding of negative stimuli that are subsequently experienced as intrusive memories. Healthy partipants (N = 42) viewed negative and neutral images during a visual/verbal processing task in an fMRI context. Two days later they were assessed on the Impact of Event Scale for occurrence of intrusive memories of the encoded images. A sub-group of participants who reported significant intrusions (n = 13) demonstrated stronger activation in the amygdala, bilateral ACC and parahippocampal gyrus during verbal encoding relative to a group who reported no intrusions (n = 13). Within-group analyses also revealed that the high intrusion group showed greater activity in the dorsomedial (dmPFC) and dorsolateral prefrontal cortex (dlPFC), inferior frontal gyrus and occipital regions during negative verbal processing compared to neutral verbal processing. These results do not accord with models of intrusions that emphasise visual processing of information at encoding but are consistent with models that highlight the role of inhibitory and suppression processes in the formation of subsequent intrusive memories. PMID:27685784

  15. Memory-related hippocampal functioning in ecstasy and amphetamine users: a prospective fMRI study.

    PubMed

    Becker, Benjamin; Wagner, Daniel; Koester, Philip; Bender, Katja; Kabbasch, Christoph; Gouzoulis-Mayfrank, Euphrosyne; Daumann, Jörg

    2013-02-01

    Recreational use of ecstasy (3,4-methylenedioxymethamphetamine [MDMA]) has been associated with memory impairments. Functional neuroimaging studies with cross-sectional designs reported altered memory-related hippocampal functioning in ecstasy-polydrug users. However, differences might be pre-existing or related to the concomitant use of amphetamine. To prospectively investigate the specific effects of ecstasy on memory-related hippocampal functioning. We used an associative memory task and functional magnetic resonance imaging (fMRI) in 40 ecstasy and/or amphetamine users at baseline (t1) and after 12 months (t2). At t1, all subjects had very limited amphetamine and/or ecstasy experience (less than 5 units lifetime dose). Based on the reported drug use at t2, subjects with continued ecstasy and/or amphetamine use (n = 17) were compared to subjects who stopped use after t1 (n = 12). Analysis of repeated measures revealed that encoding-related activity in the left parahippocampal gyrus changed differentially between the groups. Activity in this region increased in abstinent subjects from t1 to t2, however, decreased in subjects with continued use. Decreases within the left parahippocampal gyrus were associated with the use of ecstasy, but not amphetamine, during the follow-up period. However, there were no significant differences in memory performance. The current findings suggest specific effects of ecstasy use on memory-related hippocampal functioning. However, alternative explanations such as (sub-)acute cannabis effects are conceivable.

  16. Neurocognitive Development of Relational Reasoning

    ERIC Educational Resources Information Center

    Crone, Eveline A.; Wendelken, Carter; van Leijenhorst, Linda; Honomichl, Ryan D.; Christoff, Kalina; Bunge, Silvia A.

    2009-01-01

    Relational reasoning is an essential component of fluid intelligence, and is known to have a protracted developmental trajectory. To date, little is known about the neural changes that underlie improvements in reasoning ability over development. In this event-related functional magnetic resonance imaging (fMRI) study, children aged 8-12 and adults…

  17. Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability: an event-related functional-anatomic MRI study.

    PubMed

    Dickerson, B C; Miller, S L; Greve, D N; Dale, A M; Albert, M S; Schacter, D L; Sperling, R A

    2007-01-01

    The ability to spontaneously recall recently learned information is a fundamental mnemonic activity of daily life, but has received little study using functional neuroimaging. We developed a functional MRI (fMRI) paradigm to study regional brain activity during encoding that predicts free recall. In this event-related fMRI study, ten lists of fourteen pictures of common objects were shown to healthy young individuals and regional brain activity during encoding was analyzed based on subsequent free recall performance. Free recall of items was predicted by activity during encoding in hippocampal, fusiform, and inferior prefrontal cortical regions. Within-subject variance in free recall performance for the ten lists was predicted by a linear combination of condition-specific inferior prefrontal, hippocampal, and fusiform activity. Recall performance was better for lists in which prefrontal activity was greater for all items of the list and hippocampal and fusiform activity were greater specifically for items that were recalled from the list. Thus, the activity of medial temporal, fusiform, and prefrontal brain regions during the learning of new information is important for the subsequent free recall of this information. These fronto-temporal brain regions act together as a large-scale memory-related network, the components of which make distinct yet interacting contributions during encoding that predict subsequent successful free recall performance.

  18. Breaking down the barriers: fMRI applications in pain, analgesia and analgesics

    PubMed Central

    Borsook, David; Becerra, Lino R

    2006-01-01

    This review summarizes functional magnetic resonance imaging (fMRI) findings that have informed our current understanding of pain, analgesia and related phenomena, and discusses the potential role of fMRI in improved therapeutic approaches to pain. It is divided into 3 main sections: (1) fMRI studies of acute and chronic pain. Physiological studies of pain have found numerous regions of the brain to be involved in the interpretation of the 'pain experience'; studies in chronic pain conditions have identified a significant CNS component; and fMRI studies of surrogate models of chronic pain are also being used to further this understanding. (2) fMRI studies of endogenous pain processing including placebo, empathy, attention or cognitive modulation of pain. (3) The use of fMRI to evaluate the effects of analgesics on brain function in acute and chronic pain. fMRI has already provided novel insights into the neurobiology of pain. These insights should significantly advance therapeutic approaches to chronic pain. PMID:16982005

  19. Memory Performance and fMRI Signal in Presymptomatic Familial Alzheimer’s Disease

    PubMed Central

    Braskie, Meredith N.; Medina, Luis D.; Rodriguez-Agudelo, Yaneth; Geschwind, Daniel H.; Macias-Islas, Miguel Angel; Thompson, Paul M.; Cummings, Jeffrey L.; Bookheimer, Susan Y.; Ringman, John M.

    2013-01-01

    Rare autosomal dominant mutations result in familial Alzheimer’s disease (FAD) with a relatively consistent age of onset within families. This provides an estimate of years until disease onset (relative age) in mutation carriers. Increased AD risk has been associated with differences in functional magnetic resonance imaging (fMRI) activity during memory tasks, but most of these studies have focused on possession of apolipoprotein E allele 4 (APOE4), a risk factor, but not causative variant, of late-onset AD. Evaluation of fMRI activity in presymptomatic FAD mutation carriers versus noncarriers provides insight into preclinical changes in those who will certainly develop AD in a prescribed period of time. Adults from FAD mutation-carrying families (nine mutation carriers, eight noncarriers) underwent fMRI scanning while performing a memory task. We examined fMRI signal differences between carriers and noncarriers, and how signal related to fMRI task performance within mutation status group, controlling for relative age and education. Mutation noncarriers had greater retrieval period activity than carriers in several AD-relevant regions, including the left hippocampus. Better performing noncarriers showed greater encoding period activity including in the parahippocampal gyrus. Poorer performing carriers showed greater retrieval period signal, including in the frontal and temporal lobes, suggesting underlying pathological processes. PMID:22806961

  20. Neural correlates of experienced moral emotion: an fMRI investigation of emotion in response to prejudice feedback.

    PubMed

    Fourie, Melike M; Thomas, Kevin G F; Amodio, David M; Warton, Christopher M R; Meintjes, Ernesta M

    2014-01-01

    Guilt, shame, and embarrassment are quintessential moral emotions with important regulatory functions for the individual and society. Moral emotions are, however, difficult to study with neuroimaging methods because their elicitation is more intricate than that of basic emotions. Here, using functional MRI (fMRI), we employed a novel social prejudice paradigm to examine specific brain regions associated with real-time moral emotion, focusing on guilt and related moral-negative emotions. The paradigm induced intense moral-negative emotion (primarily guilt) in 22 low-prejudice individuals through preprogrammed feedback indicating implicit prejudice against Black and disabled people. fMRI data indicated that this experience of moral-negative emotion was associated with increased activity in anterior paralimbic structures, including the anterior cingulate cortex (ACC) and anterior insula, in addition to areas associated with mentalizing, including the dorsomedial prefrontal cortex, posterior cingulate cortex, and precuneus. Of significance was prominent conflict-related activity in the supragenual ACC, which is consistent with theories proposing an association between acute guilt and behavioral inhibition. Finally, a significant negative association between self-reported guilt and neural activity in the pregenual ACC suggested a role of self-regulatory processes in response to moral-negative affect. These findings are consistent with the multifaceted self-regulatory functions of moral-negative emotions in social behavior.

  1. fMRI and MRS measures of neuroplasticity in the pharyngeal motor cortex

    PubMed Central

    Michou, Emilia; Williams, Steve; Vidyasagar, Rishma; Downey, Darragh; Mistry, Satish; Edden, Richard A.E.; Hamdy, Shaheen

    2016-01-01

    Introduction Paired associative stimulation (PAS), is a novel non-invasive technique where two neural substrates are employed in a temporally coordinated manner in order to modulate cortico-motor excitability within the motor cortex (M1). In swallowing, combined pharyngeal electrical and transcranial-magnetic-stimulation induced beneficial neurophysiological and behavioural effects in healthy subjects and dysphagic stroke patients. Here, we aimed to investigate the whole-brain changes in neural activation during swallowing using functional magnetic resonance imaging (fMRI) following PAS application and in parallel assess associated GABA changes with magnetic resonance spectroscopy (MRS). Methods Healthy adults (n = 11, 38 ± 9 years old) were randomised to receive real and sham PAS to the ‘stronger’ motor cortex pharyngeal representation, on 2 separate visits. Following PAS, event-related fMRI was performed to assess changes in brain activation in response to water and saliva swallowing and during rest. Data were analysed (SPM8) at P < .001. MRS data were acquired using MEGA-PRESS before and after the fMRI acquisitions on both visits and GABA concentrations were measured (AMARES, jMRUI). Results Following real PAS, BOLD signal changes (group analyses) increased at the site of stimulation during water and saliva swallowing, compared to sham PAS. It is also evident that PAS induced significant increases in BOLD signal to contralateral (to stimulation) hemispheric areas that are of importance to the swallowing neural network. Following real PAS, GABA: creatine ratio showed a trend to increase contralateral to PAS. Conclusion Targeted PAS applied to the human pharyngeal motor cortex induces local and remote changes in both primary and non-primary areas for water and saliva tasks. There is a possibility that changes of the inhibitory neurotransmitter, GABA, may play a role in the changes in BOLD signal. These findings provide evidence for the mechanisms underlying

  2. Determination of hemispheric dominance with mental rotation using functional transcranial Doppler sonography and FMRI.

    PubMed

    Hattemer, Katja; Plate, Annika; Heverhagen, Johannes T; Haag, Anja; Keil, Boris; Klein, Karl Martin; Hermsen, Anke; Oertel, Wolfgang H; Hamer, Hajo M; Rosenow, Felix; Knake, Susanne

    2011-01-01

    the aim of this study was to investigate specific activation patterns and potential gender differences during mental rotation and to investigate whether functional magnetic resonance imaging (fMRI) and functional transcranial Doppler sonography (fTCD) lateralize hemispheric dominance concordantly. regional brain activation and hemispheric dominance during mental rotation (cube perspective test) were investigated in 10 female and 10 male healthy subjects using fMRI and fTCD. significant activation was found in the superior parietal lobe, at the parieto-occipital border, in the middle and superior frontal gyrus bilaterally, and the right inferior frontal gyrus using fMRI. Men showed a stronger lateralization to the right hemisphere during fMRI and a tendency toward stronger right-hemispheric activation during fTCD. Furthermore, more activation in frontal and parieto-occipital regions of the right hemisphere was observed using fMRI. Hemispheric dominance for mental rotation determined by the 2 methods correlated well (P= .008), but did not show concordant results in every single subject. the neural basis of mental rotation depends on a widespread bilateral network. Hemispheric dominance for mental rotation determined by fMRI and fTCD, though correlating well, is not always concordant. Hemispheric lateralization of complex cortical functions such as spatial rotation therefore should be investigated using multimodal imaging approaches, especially if used clinically as a tool for the presurgical evaluation of patients undergoing neurosurgery. Copyright © 2009 by the American Society of Neuroimaging.

  3. Olfactory Deficit Detected by fMRI in Early Alzheimer’s Disease

    PubMed Central

    Wang, Jianli; Eslinger, Paul J.; Doty, Richard L.; Zimmerman, Erin K.; Grunfeld, Robert; Sun, Xiaoyu; Connor, James R.; Price, Joseph L.; Smith, Michael B.; Yang, Qing X.

    2012-01-01

    Alzheimer’s disease (AD) is accompanied by smell dysfunction, as measured by psychophysical tests. Currently it is unknown whether AD-related alterations in central olfactory system neural activity, as measured by functional magnetic resonance imaging (fMRI), are detectable beyond those observed in healthy elderly. Moreover, it is not known whether such changes are correlated with indices of odor perception and dementia. To investigate these issues, twelve early stage AD patients and thirteen non-demented controls underwent fMRI while being exposed to each of three concentrations of lavender oil odorant. All participants were administered the University of Pennsylvania Smell Identification Test (UPSIT), the Mini-Mental State Examination (MMSE), the Mattis Dementia Rating Scale-2 (DRS-2), and the Clinical Dementia Rating Scale (CDR). The Blood oxygen level-dependent (BOLD) signal at primary olfactory cortex (POC) was weaker in AD than in HC subjects. At the lowest odorant concentration, the BOLD signals within POC, hippocampus, and insula were significantly correlated with UPSIT, MMSE, DRS-2, and CDR scores. The BOLD signal intensity and activation volume within the POC increased significantly as a function of odorant concentration in the AD group, but not in the control group. These findings demonstrate that olfactory fMRI is sensitive to the AD-related olfactory and functional cognitive decline. PMID:20709038

  4. Anticipatory Regulation of Action Control in a Simon Task: Behavioral, Electrophysiological, and fMRI Correlates

    PubMed Central

    Strack, Gamze; Kaufmann, Christian; Kehrer, Stefanie; Brandt, Stephan; Stürmer, Birgit

    2013-01-01

    With the present study we investigated cue-induced preparation in a Simon task and measured electroencephalogram and functional magnetic resonance imaging (fMRI) data in two within-subjects sessions. Cues informed either about the upcoming (1) spatial stimulus-response compatibility (rule cues), or (2) the stimulus location (position cues), or (3) were non-informative. Only rule cues allowed anticipating the upcoming compatibility condition. Position cues allowed anticipation of the upcoming location of the Simon stimulus but not its compatibility condition. Rule cues elicited fastest and most accurate performance for both compatible and incompatible trials. The contingent negative variation (CNV) in the event-related potential (ERP) of the cue-target interval is an index of anticipatory preparation and was magnified after rule cues. The N2 in the post-target ERP as a measure of online action control was reduced in Simon trials after rule cues. Although compatible trials were faster than incompatible trials in all cue conditions only non-informative cues revealed a compatibility effect in additional indicators of Simon task conflict like accuracy and the N2. We thus conclude that rule cues induced anticipatory re-coding of the Simon task that did not involve cognitive conflict anymore. fMRI revealed that rule cues yielded more activation of the left rostral, dorsal, and ventral prefrontal cortex as well as the pre-SMA as compared to POS and NON-cues. Pre-SMA and ventrolateral prefrontal activation after rule cues correlated with the effective use of rule cues in behavioral performance. Position cues induced a smaller CNV effect and exhibited less prefrontal and pre-SMA contributions in fMRI. Our data point to the importance to disentangle different anticipatory adjustments that might also include the prevention of upcoming conflict via task re-coding. PMID:23408377

  5. Regional homogeneity changes in prelingually deafened patients: a resting-state fMRI study

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; He, Huiguang; Xian, Junfang; Lv, Bin; Li, Meng; Li, Yong; Liu, Zhaohui; Wang, Zhenchang

    2010-03-01

    Resting-state functional magnetic resonance imaging (fMRI) is a technique that measures the intrinsic function of brain and has some advantages over task-induced fMRI. Regional homogeneity (ReHo) assesses the similarity of the time series of a given voxel with its nearest neighbors on a voxel-by-voxel basis, which reflects the temporal homogeneity of the regional BOLD signal. In the present study, we used the resting state fMRI data to investigate the ReHo changes of the whole brain in the prelingually deafened patients relative to normal controls. 18 deaf patients and 22 healthy subjects were scanned. Kendall's coefficient of concordance (KCC) was calculated to measure the degree of regional coherence of fMRI time courses. We found that regional coherence significantly decreased in the left frontal lobe, bilateral temporal lobes and right thalamus, and increased in the postcentral gyrus, cingulate gyrus, left temporal lobe, left thalamus and cerebellum in deaf patients compared with controls. These results show that the prelingually deafened patients have higher degree of regional coherence in the paleocortex, and lower degree in neocortex. Since neocortex plays an important role in the development of auditory, these evidences may suggest that the deaf persons reorganize the paleocortex to offset the loss of auditory.

  6. Task-Related Edge Density (TED)—A New Method for Revealing Dynamic Network Formation in fMRI Data of the Human Brain

    PubMed Central

    Lohmann, Gabriele; Stelzer, Johannes; Zuber, Verena; Buschmann, Tilo; Margulies, Daniel; Bartels, Andreas; Scheffler, Klaus

    2016-01-01

    The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach “Task-related Edge Density” (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function. PMID:27341204

  7. Voluntary Explicit versus Involuntary Conceptual Memory Are Associated with Dissociable fMRI Responses in Hippocampus, Amygdala, and Parietal Cortex for Emotional and Neutral Word Pairs

    ERIC Educational Resources Information Center

    Ramponi, Cristina; Barnard, Philip J.; Kherif, Ferath; Henson, Richard N.

    2011-01-01

    Although functional neuroimaging studies have supported the distinction between explicit and implicit forms of memory, few have matched explicit and implicit tests closely, and most of these tested perceptual rather than conceptual implicit memory. We compared event-related fMRI responses during an intentional test, in which a group of…

  8. Fast fMRI provides high statistical power in the analysis of epileptic networks.

    PubMed

    Jacobs, Julia; Stich, Julia; Zahneisen, Benjamin; Assländer, Jakob; Ramantani, Georgia; Schulze-Bonhage, Andreas; Korinthenberg, Rudolph; Hennig, Jürgen; LeVan, Pierre

    2014-03-01

    EEG-fMRI is a unique method to combine the high temporal resolution of EEG with the high spatial resolution of MRI to study generators of intrinsic brain signals such as sleep grapho-elements or epileptic spikes. While the standard EPI sequence in fMRI experiments has a temporal resolution of around 2.5-3s a newly established fast fMRI sequence called MREG (Magnetic-Resonance-Encephalography) provides a temporal resolution of around 100ms. This technical novelty promises to improve statistics, facilitate correction of physiological artifacts and improve the understanding of epileptic networks in fMRI. The present study compares simultaneous EEG-EPI and EEG-MREG analyzing epileptic spikes to determine the yield of fast MRI in the analysis of intrinsic brain signals. Patients with frequent interictal spikes (>3/20min) underwent EEG-MREG and EEG-EPI (3T, 20min each, voxel size 3×3×3mm, EPI TR=2.61s, MREG TR=0.1s). Timings of the spikes were used in an event-related analysis to generate activation maps of t-statistics. (FMRISTAT, |t|>3.5, cluster size: 7 voxels, p<0.05 corrected). For both sequences, the amplitude and location of significant BOLD activations were compared with the spike topography. 13 patients were recorded and 33 different spike types could be analyzed. Peak T-values were significantly higher in MREG than in EPI (p<0.0001). Positive BOLD effects correlating with the spike topography were found in 8/29 spike types using the EPI and in 22/33 spikes types using the MREG sequence. Negative BOLD responses in the default mode network could be observed in 3/29 spike types with the EPI and in 19/33 with the MREG sequence. With the latter method, BOLD changes were observed even when few spikes occurred during the investigation. Simultaneous EEG-MREG thus is possible with good EEG quality and shows higher sensitivity in regard to the localization of spike-related BOLD responses than EEG-EPI. The development of new methods of analysis for this sequence such as

  9. Modeling fMRI signals can provide insights into neural processing in the cerebral cortex.

    PubMed

    Vanni, Simo; Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo

    2015-08-01

    Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals. Copyright © 2015 the American Physiological Society.

  10. Modeling fMRI signals can provide insights into neural processing in the cerebral cortex

    PubMed Central

    Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo

    2015-01-01

    Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals. PMID:25972586

  11. Event-Related Brain Potential Correlates of Emotional Face Processing

    ERIC Educational Resources Information Center

    Eimer, Martin; Holmes, Amanda

    2007-01-01

    Results from recent event-related brain potential (ERP) studies investigating brain processes involved in the detection and analysis of emotional facial expression are reviewed. In all experiments, emotional faces were found to trigger an increased ERP positivity relative to neutral faces. The onset of this emotional expression effect was…

  12. Sparse network-based models for patient classification using fMRI

    PubMed Central

    Rosa, Maria J.; Portugal, Liana; Hahn, Tim; Fallgatter, Andreas J.; Garrido, Marta I.; Shawe-Taylor, John; Mourao-Miranda, Janaina

    2015-01-01

    Pattern recognition applied to whole-brain neuroimaging data, such as functional Magnetic Resonance Imaging (fMRI), has proved successful at discriminating psychiatric patients from healthy participants. However, predictive patterns obtained from whole-brain voxel-based features are difficult to interpret in terms of the underlying neurobiology. Many psychiatric disorders, such as depression and schizophrenia, are thought to be brain connectivity disorders. Therefore, pattern recognition based on network models might provide deeper insights and potentially more powerful predictions than whole-brain voxel-based approaches. Here, we build a novel sparse network-based discriminative modeling framework, based on Gaussian graphical models and L1-norm regularized linear Support Vector Machines (SVM). In addition, the proposed framework is optimized in terms of both predictive power and reproducibility/stability of the patterns. Our approach aims to provide better pattern interpretation than voxel-based whole-brain approaches by yielding stable brain connectivity patterns that underlie discriminative changes in brain function between the groups. We illustrate our technique by classifying patients with major depressive disorder (MDD) and healthy participants, in two (event- and block-related) fMRI datasets acquired while participants performed a gender discrimination and emotional task, respectively, during the visualization of emotional valent faces. PMID:25463459

  13. A Comparative Study of Average, Linked Mastoid, and REST References for ERP Components Acquired during fMRI

    PubMed Central

    Yang, Ping; Fan, Chenggui; Wang, Min; Li, Ling

    2017-01-01

    In simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) studies, average reference (AR), and digitally linked mastoid (LM) are popular re-referencing techniques in event-related potential (ERP) analyses. However, they may introduce their own physiological signals and alter the EEG/ERP outcome. A reference electrode standardization technique (REST) that calculated a reference point at infinity was proposed to solve this problem. To confirm the advantage of REST in ERP analyses of synchronous EEG-fMRI studies, we compared the reference effect of AR, LM, and REST on task-related ERP results of a working memory task during an fMRI scan. As we hypothesized, we found that the adopted reference did not change the topography map of ERP components (N1 and P300 in the present study), but it did alter the task-related effect on ERP components. LM decreased or eliminated the visual working memory (VWM) load effect on P300, and the AR distorted the distribution of VWM location-related effect at left posterior electrodes as shown in the statistical parametric scalp mapping (SPSM) of N1. ERP cortical source estimates, which are independent of the EEG reference choice, were used as the golden standard to infer the relative utility of different references on the ERP task-related effect. By comparison, REST reference provided a more integrated and reasonable result. These results were further confirmed by the results of fMRI activations and a corresponding EEG-only study. Thus, we recommend the REST, especially with a realistic head model, as the optimal reference method for ERP data analysis in simultaneous EEG-fMRI studies. PMID:28529472

  14. A Comparative Study of Average, Linked Mastoid, and REST References for ERP Components Acquired during fMRI.

    PubMed

    Yang, Ping; Fan, Chenggui; Wang, Min; Li, Ling

    2017-01-01

    In simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) studies, average reference (AR), and digitally linked mastoid (LM) are popular re-referencing techniques in event-related potential (ERP) analyses. However, they may introduce their own physiological signals and alter the EEG/ERP outcome. A reference electrode standardization technique (REST) that calculated a reference point at infinity was proposed to solve this problem. To confirm the advantage of REST in ERP analyses of synchronous EEG-fMRI studies, we compared the reference effect of AR, LM, and REST on task-related ERP results of a working memory task during an fMRI scan. As we hypothesized, we found that the adopted reference did not change the topography map of ERP components (N1 and P300 in the present study), but it did alter the task-related effect on ERP components. LM decreased or eliminated the visual working memory (VWM) load effect on P300, and the AR distorted the distribution of VWM location-related effect at left posterior electrodes as shown in the statistical parametric scalp mapping (SPSM) of N1. ERP cortical source estimates, which are independent of the EEG reference choice, were used as the golden standard to infer the relative utility of different references on the ERP task-related effect. By comparison, REST reference provided a more integrated and reasonable result. These results were further confirmed by the results of fMRI activations and a corresponding EEG-only study. Thus, we recommend the REST, especially with a realistic head model, as the optimal reference method for ERP data analysis in simultaneous EEG-fMRI studies.

  15. Emotion Regulation Training for Treating Warfighters with Combat-Related PTSD Using Real-Time fMRI and EEG-Assisted Neurofeedback

    DTIC Science & Technology

    2014-10-01

    Real-Time fMRI and EEG -Assisted Neurofeedback . PRINCIPAL INVESTIGATOR: Jerzy Bodurka RECIPIENT: Laureate Institute for Brain Research REPORT...imaging neurofeedback (rtfMRI-nf) training with concurrent electroencephalography ( EEG ) recordings to directly target and modulate the emotion...the project and are actively enrolling veterans to complete rtfMRI-nf neurofeedback training with simultaneous EEG recordings, and a pre-, post

  16. A New Paradigm for Individual Subject Language Mapping: Movie-Watching fMRI.

    PubMed

    Tie, Yanmei; Rigolo, Laura; Ozdemir Ovalioglu, Aysegul; Olubiyi, Olutayo; Doolin, Kelly L; Mukundan, Srinivasan; Golby, Alexandra J

    2015-01-01

    Functional MRI (fMRI) based on language tasks has been used in presurgical language mapping in patients with lesions in or near putative language areas. However, if patients have difficulty performing the tasks due to neurological deficits, it leads to unreliable or noninterpretable results. In this study, we investigate the feasibility of using a movie-watching fMRI for language mapping. A 7-minute movie clip with contrasting speech and nonspeech segments was shown to 22 right-handed healthy subjects. Based on all subjects' language functional regions-of-interest, 6 language response areas were defined, within which a language response model (LRM) was derived by extracting the main temporal activation profile. Using a leave-one-out procedure, individuals' language areas were identified as the areas that expressed highly correlated temporal responses with the LRM derived from an independent group of subjects. Compared with an antonym generation task-based fMRI, the movie-watching fMRI generated language maps with more localized activations in the left frontal language area, larger activations in the left temporoparietal language area, and significant activations in their right-hemisphere homologues. Results of 2 brain tumor patients' movie-watching fMRI using the LRM derived from the healthy subjects indicated its ability to map putative language areas; while their task-based fMRI maps were less robust and noisier. These results suggest that it is feasible to use this novel "task-free" paradigm as a complementary tool for fMRI language mapping when patients cannot perform the tasks. Its deployment in more neurosurgical patients and validation against gold-standard techniques need further investigation. Copyright © 2015 by the American Society of Neuroimaging.

  17. A new paradigm for individual subject language mapping: Movie-watching fMRI

    PubMed Central

    Tie, Yanmei; Rigolo, Laura; Ovalioglu, Aysegul Ozdemir; Olubiyi, Olutayo; Doolin, Kelly L.; Mukundan, Srinivasan; Golby, Alexandra J.

    2015-01-01

    Background Functional MRI (fMRI) based on language tasks has been used in pre-surgical language mapping in patients with lesions in or near putative language areas. However, if the patients have difficulty performing the tasks due to neurological deficits, it leads to unreliable or non-interpretable results. In this study, we investigate the feasibility of using a movie-watching fMRI for language mapping. Methods A 7-min movie clip with contrasting speech and non-speech segments was shown to 22 right-handed healthy subjects. Based on all subjects' language functional regions-of-interest, six language response areas were defined, within which a language response model (LRM) was derived by extracting the main temporal activation profile. Using a leave-one-out procedure, individuals' language areas were identified as the areas that expressed highly correlated temporal responses with the LRM derived from an independent group of subjects. Results Compared with an antonym generation task-based fMRI, the movie-watching fMRI generated language maps with more localized activations in the left frontal language area, larger activations in the left temporoparietal language area, and significant activations in their right-hemisphere homologues. Results of two brain tumor patients' movie-watching fMRI using the LRM derived from the healthy subjects indicated its ability to map putative language areas; while their task-based fMRI maps were less robust and noisier. Conclusions These results suggest that it is feasible to use this novel “task-free” paradigm as a complementary tool for fMRI language mapping when patients cannot perform the tasks. Its deployment in more neurosurgical patients and validation against gold-standard techniques need further investigation. PMID:25962953

  18. Scale-Free and Multifractal Time Dynamics of fMRI Signals during Rest and Task

    PubMed Central

    Ciuciu, P.; Varoquaux, G.; Abry, P.; Sadaghiani, S.; Kleinschmidt, A.

    2012-01-01

    Scaling temporal dynamics in functional MRI (fMRI) signals have been evidenced for a decade as intrinsic characteristics of ongoing brain activity (Zarahn et al., 1997). Recently, scaling properties were shown to fluctuate across brain networks and to be modulated between rest and task (He, 2011): notably, Hurst exponent, quantifying long memory, decreases under task in activating and deactivating brain regions. In most cases, such results were obtained: First, from univariate (voxelwise or regionwise) analysis, hence focusing on specific cognitive systems such as Resting-State Networks (RSNs) and raising the issue of the specificity of this scale-free dynamics modulation in RSNs. Second, using analysis tools designed to measure a single scaling exponent related to the second order statistics of the data, thus relying on models that either implicitly or explicitly assume Gaussianity and (asymptotic) self-similarity, while fMRI signals may significantly depart from those either of those two assumptions (Ciuciu et al., 2008; Wink et al., 2008). To address these issues, the present contribution elaborates on the analysis of the scaling properties of fMRI temporal dynamics by proposing two significant variations. First, scaling properties are technically investigated using the recently introduced Wavelet Leader-based Multifractal formalism (WLMF; Wendt et al., 2007). This measures a collection of scaling exponents, thus enables a richer and more versatile description of scale invariance (beyond correlation and Gaussianity), referred to as multifractality. Also, it benefits from improved estimation performance compared to tools previously used in the literature. Second, scaling properties are investigated in both RSN and non-RSN structures (e.g., artifacts), at a broader spatial scale than the voxel one, using a multivariate approach, namely the Multi-Subject Dictionary Learning (MSDL) algorithm (Varoquaux et al., 2011) that produces a set of spatial components that

  19. On the role of conflict and control in social cognition: event-related brain potential investigations.

    PubMed

    Bartholow, Bruce D

    2010-03-01

    Numerous social-cognitive models posit that social behavior largely is driven by links between constructs in long-term memory that automatically become activated when relevant stimuli are encountered. Various response biases have been understood in terms of the influence of such "implicit" processes on behavior. This article reviews event-related potential (ERP) studies investigating the role played by cognitive control and conflict resolution processes in social-cognitive phenomena typically deemed automatic. Neurocognitive responses associated with response activation and conflict often are sensitive to the same stimulus manipulations that produce differential behavioral responses on social-cognitive tasks and that often are attributed to the role of automatic associations. Findings are discussed in the context of an overarching social cognitive neuroscience model in which physiological data are used to constrain social-cognitive theories.

  20. Cortical processing of pitch: Model-based encoding and decoding of auditory fMRI responses to real-life sounds.

    PubMed

    De Angelis, Vittoria; De Martino, Federico; Moerel, Michelle; Santoro, Roberta; Hausfeld, Lars; Formisano, Elia

    2017-11-13

    Pitch is a perceptual attribute related to the fundamental frequency (or periodicity) of a sound. So far, the cortical processing of pitch has been investigated mostly using synthetic sounds. However, the complex harmonic structure of natural sounds may require different mechanisms for the extraction and analysis of pitch. This study investigated the neural representation of pitch in human auditory cortex using model-based encoding and decoding analyses of high field (7 T) functional magnetic resonance imaging (fMRI) data collected while participants listened to a wide range of real-life sounds. Specifically, we modeled the fMRI responses as a function of the sounds' perceived pitch height and salience (related to the fundamental frequency and the harmonic structure respectively), which we estimated with a computational algorithm of pitch extraction (de Cheveigné and Kawahara, 2002). First, using single-voxel fMRI encoding, we identified a pitch-coding region in the antero-lateral Heschl's gyrus (HG) and adjacent superior temporal gyrus (STG). In these regions, the pitch representation model combining height and salience predicted the fMRI responses comparatively better than other models of acoustic processing and, in the right hemisphere, better than pitch representations based on height/salience alone. Second, we assessed with model-based decoding that multi-voxel response patterns of the identified regions are more informative of perceived pitch than the remainder of the auditory cortex. Further multivariate analyses showed that complementing a multi-resolution spectro-temporal sound representation with pitch produces a small but significant improvement to the decoding of complex sounds from fMRI response patterns. In sum, this work extends model-based fMRI encoding and decoding methods - previously employed to examine the representation and processing of acoustic sound features in the human auditory system - to the representation and processing of a relevant

  1. Daily iTBS worsens hand motor training--a combined TMS, fMRI and mirror training study.

    PubMed

    Läppchen, C H; Ringer, T; Blessin, J; Schulz, K; Seidel, G; Lange, R; Hamzei, F

    2015-02-15

    Repetitive transcranial magnetic stimulation (rTMS) is used to increase regional excitability to improve motor function in combination with training after neurological diseases or events such as stroke. We investigated whether a daily application of intermittent theta burst stimulation (iTBS; a short-duration rTMS that increases regional excitability) improves the training effect compared with sham stimulation in association with a four-day hand training program using a mirror (mirror training, MT). The right dorsal premotor cortex (dPMC right) was chosen as the target region for iTBS because this region has recently been emphasized as a node within a network related to MT. Healthy subjects were randomized into the iTBS group or sham group (control group CG). In the iTBS group, iTBS was applied daily over dPMC right, which was functionally determined in an initial fMRI session prior to starting MT. MT involved 20 min of hand training daily in a mirror over four days. The hand tests, the intracortical excitability and fMRI were evaluated prior to and at the end of MT. The results of the hand training tests of the iTBS group were surprisingly significantly poorer compared with those from the CG group. Both groups showed a different course of excitability in both M1 and a different course of fMRI activation within the supplementary motor area and M1 left. We suggest the inter-regional functional balance was affected by daily iTBS over dPMC right. Maybe an inter-regional connectivity within a network is differentially balanced. An excitability increase within an inhibitory-balanced network would therefore disturb the underlying network. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.

    PubMed

    Kim, Seong-Gi; Ogawa, Seiji

    2012-07-01

    After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O(2) utilization (CMRO(2)), (5) dynamic responses of BOLD, CBF, CMRO(2), and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.

  3. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals

    PubMed Central

    Kim, Seong-Gi; Ogawa, Seiji

    2012-01-01

    After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O2 utilization (CMRO2), (5) dynamic responses of BOLD, CBF, CMRO2, and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means. PMID:22395207

  4. Functional magnetic resonance imaging (FMRI) with auditory stimulation in songbirds.

    PubMed

    Van Ruijssevelt, Lisbeth; De Groof, Geert; Van der Kant, Anne; Poirier, Colline; Van Audekerke, Johan; Verhoye, Marleen; Van der Linden, Annemie

    2013-06-03

    The neurobiology of birdsong, as a model for human speech, is a pronounced area of research in behavioral neuroscience. Whereas electrophysiology and molecular approaches allow the investigation of either different stimuli on few neurons, or one stimulus in large parts of the brain, blood oxygenation level dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) allows combining both advantages, i.e. compare the neural activation induced by different stimuli in the entire brain at once. fMRI in songbirds is challenging because of the small size of their brains and because their bones and especially their skull comprise numerous air cavities, inducing important susceptibility artifacts. Gradient-echo (GE) BOLD fMRI has been successfully applied to songbirds (1-5) (for a review, see (6)). These studies focused on the primary and secondary auditory brain areas, which are regions free of susceptibility artifacts. However, because processes of interest may occur beyond these regions, whole brain BOLD fMRI is required using an MRI sequence less susceptible to these artifacts. This can be achieved by using spin-echo (SE) BOLD fMRI (7,8) . In this article, we describe how to use this technique in zebra finches (Taeniopygia guttata), which are small songbirds with a bodyweight of 15-25 g extensively studied in behavioral neurosciences of birdsong. The main topic of fMRI studies on songbirds is song perception and song learning. The auditory nature of the stimuli combined with the weak BOLD sensitivity of SE (compared to GE) based fMRI sequences makes the implementation of this technique very challenging.

  5. The neural correlates of volitional attention: A combined fMRI and ERP study.

    PubMed

    Bengson, Jesse J; Kelley, Todd A; Mangun, George R

    2015-07-01

    Studies of visual-spatial attention typically use instructional cues to direct attention to a relevant location, but in everyday vision, attention is often focused volitionally, in the absence of external signals. Although investigations of cued attention comprise hundreds of behavioral and physiological studies, remarkably few studies of voluntary attention have addressed the challenging question of how spatial attention is initiated and controlled in the absence of external instructions, which we refer to as willed attention. To explore this question, we employed a trial-by-trial spatial attention task using electroencephalography and functional magnetic resonance imaging (fMRI). The fMRI results reveal a unique network of brain regions for willed attention that includes the anterior cingulate cortex, left middle frontal gyrus (MFG), and the left and right anterior insula (AI). We also observed two event-related potentials (ERPs) associated with willed attention; one with a frontal distribution occurring 250-350 ms postdecision cue onset (EWAC: Early Willed Attention Component), and another occurring between 400 and 800 ms postdecision-cue onset (WAC: Willed Attention Component). In addition, each ERP component uniquely correlated across subjects with different willed attention-specific sites of BOLD activation. The EWAC was correlated with the willed attention-specific left AI and left MFG activations and the later WAC was correlated only with left AI. These results offer a comprehensive and novel view of the electrophysiological and anatomical profile of willed attention and further illustrate the relationship between scalp-recorded ERPs and the BOLD response. © 2015 Wiley Periodicals, Inc.

  6. Prefrontal-Hippocampal-Fusiform Activity During Encoding Predicts Intraindividual Differences in Free Recall Ability: An Event-Related Functional-Anatomic MRI Study

    PubMed Central

    Dickerson, B.C.; Miller, S.L.; Greve, D.N.; Dale, A.M.; Albert, M.S.; Schacter, D.L.; Sperling, R.A.

    2009-01-01

    The ability to spontaneously recall recently learned information is a fundamental mnemonic activity of daily life, but has received little study using functional neuroimaging. We developed a functional MRI (fMRI) paradigm to study regional brain activity during encoding that predicts free recall. In this event-related fMRI study, ten lists of fourteen pictures of common objects were shown to healthy young individuals and regional brain activity during encoding was analyzed based on subsequent free recall performance. Free recall of items was predicted by activity during encoding in hippocampal, fusiform, and inferior prefrontal cortical regions. Within-subject variance in free recall performance for the ten lists was predicted by a linear combination of condition-specific inferior prefrontal, hippocampal, and fusiform activity. Recall performance was better for lists in which pre-frontal activity was greater for all items of the list and hippocampal and fusi-form activity were greater specifically for items that were recalled from the list. Thus, the activity of medial temporal, fusiform, and prefrontal brain regions during the learning of new information is important for the subsequent free recall of this information. These fronto-temporal brain regions act together as a large-scale memory-related network, the components of which make distinct yet interacting contributions during encoding that predict subsequent successful free recall performance. PMID:17604356

  7. Effects of hypoglycemia on human brain activation measured with fMRI.

    PubMed

    Anderson, Adam W; Heptulla, Rubina A; Driesen, Naomi; Flanagan, Daniel; Goldberg, Philip A; Jones, Timothy W; Rife, Fran; Sarofin, Hedy; Tamborlane, William; Sherwin, Robert; Gore, John C

    2006-07-01

    Functional magnetic resonance imaging (fMRI) was used to measure the effects of acute hypoglycemia caused by passive sensory stimulation on brain activation. Visual stimulation was used to generate blood-oxygen-level-dependent (BOLD) contrast, which was monitored during hyperinsulinemic hypoglycemic and euglycemic clamp studies. Hypoglycemia (50 +/- 1 mg glucose/dl) decreased the fMRI signal relative to euglycemia in 10 healthy human subjects: the fractional signal change was reduced by 28 +/- 12% (P < .05). These changes were reversed when euglycemia was restored. These data provide a basis of comparison for studies that quantify hypoglycemia-related changes in fMRI activity during cognitive tasks based on visual stimuli and demonstrate that variations in blood glucose levels may modulate BOLD signals in the healthy brain.

  8. The Global Signal in fMRI: Nuisance or Information?

    PubMed Central

    Nalci, Alican; Falahpour, Maryam

    2017-01-01

    The global signal is widely used as a regressor or normalization factor for removing the effects of global variations in the analysis of functional magnetic resonance imaging (fMRI) studies. However, there is considerable controversy over its use because of the potential bias that can be introduced when it is applied to the analysis of both task-related and resting-state fMRI studies. In this paper we take a closer look at the global signal, examining in detail the various sources that can contribute to the signal. For the most part, the global signal has been treated as a nuisance term, but there is growing evidence that it may also contain valuable information. We also examine the various ways that the global signal has been used in the analysis of fMRI data, including global signal regression, global signal subtraction, and global signal normalization. Furthermore, we describe new ways for understanding the effects of global signal regression and its relation to the other approaches. PMID:28213118

  9. Deconstructing events: The neural bases for space, time, and causality

    PubMed Central

    Kranjec, Alexander; Cardillo, Eileen R.; Lehet, Matthew; Chatterjee, Anjan

    2013-01-01

    Space, time, and causality provide a natural structure for organizing our experience. These abstract categories allow us to think relationally in the most basic sense; understanding simple events require one to represent the spatial relations among objects, the relative durations of actions or movements, and links between causes and effects. The present fMRI study investigates the extent to which the brain distinguishes between these fundamental conceptual domains. Participants performed a one-back task with three conditions of interest (SPACE, TIME and CAUSALITY). Each condition required comparing relations between events in a simple verbal narrative. Depending on the condition, participants were instructed to either attend to the spatial, temporal, or causal characteristics of events, but between participants, each particular event relation appeared in all three conditions. Contrasts compared neural activity during each condition against the remaining two and revealed how thinking about events is deconstructed neurally. Space trials recruited neural areas traditionally associated with visuospatial processing, primarily bilateral frontal and occipitoparietal networks. Causality trials activated areas previously found to underlie causal thinking and thematic role assignment, such as left medial frontal, and left middle temporal gyri, respectively. Causality trials also produced activations in SMA, caudate, and cerebellum; cortical and subcortical regions associated with the perception of time at different timescales. The TIME contrast however, produced no significant effects. This pattern, indicating negative results for TIME trials, but positive effects for CAUSALITY trials in areas important for time perception, motivated additional overlap analyses to further probe relations between domains. The results of these analyses suggest a closer correspondence between time and causality than between time and space. PMID:21861674

  10. Flexible Adaptive Paradigms for fMRI Using a Novel Software Package ‘Brain Analysis in Real-Time’ (BART)

    PubMed Central

    Hellrung, Lydia; Hollmann, Maurice; Zscheyge, Oliver; Schlumm, Torsten; Kalberlah, Christian; Roggenhofer, Elisabeth; Okon-Singer, Hadas; Villringer, Arno; Horstmann, Annette

    2015-01-01

    In this work we present a new open source software package offering a unified framework for the real-time adaptation of fMRI stimulation procedures. The software provides a straightforward setup and highly flexible approach to adapt fMRI paradigms while the experiment is running. The general framework comprises the inclusion of parameters from subject’s compliance, such as directing gaze to visually presented stimuli and physiological fluctuations, like blood pressure or pulse. Additionally, this approach yields possibilities to investigate complex scientific questions, for example the influence of EEG rhythms or fMRI signals results themselves. To prove the concept of this approach, we used our software in a usability example for an fMRI experiment where the presentation of emotional pictures was dependent on the subject’s gaze position. This can have a significant impact on the results. So far, if this is taken into account during fMRI data analysis, it is commonly done by the post-hoc removal of erroneous trials. Here, we propose an a priori adaptation of the paradigm during the experiment’s runtime. Our fMRI findings clearly show the benefits of an adapted paradigm in terms of statistical power and higher effect sizes in emotion-related brain regions. This can be of special interest for all experiments with low statistical power due to a limited number of subjects, a limited amount of time, costs or available data to analyze, as is the case with real-time fMRI. PMID:25837719

  11. The nature and treatment of stuttering as revealed by fMRI A within- and between-group comparison.

    PubMed

    Neumann, Katrin; Euler, Harald A; von Gudenberg, Alexander Wolff; Giraud, Anne-Lise; Lanfermann, Heinrich; Gall, Volker; Preibisch, Christine

    2003-01-01

    This article reviews some of our recent functional magnetic resonance imaging (fMRI) studies of stuttering. Using event-related fMRI experiments, we investigated brain activation during speech production. Results of three studies comparing persons who stutter (PWS) and persons who do not stutter (PWNS) are outlined. Their findings point to a region in the right frontal operculum (RFO) that was consistently implicated in stuttering. During overt reading and before fluency shaping therapy, PWS showed higher and more distributed neuronal activation than PWNS. Immediately after therapy differential activations were even more distributed and left sided. They extended to frontal, temporal, and parietal regions, anterior cingulate, insula, and putamen. These over-activations were slightly reduced and again more right sided two years after therapy. Left frontal deactivations remained stable over two years of observation, and therefore possibly indicate a dysfunction. After therapy, we noted higher activations in persons who stutter moderately than in those who stutter severely. These activations might reflect patterns of compensation. We discuss why these findings suggest that fluency-inducing techniques might synchronize a disturbed signal transmission between auditory, speech motor planning, and motor areas. The reader will learn about and be able to: (1) identify regions of brain activations and deactivations specific for PWS; (2) describe brain activation changes induced by fluency shaping therapy; and (3) discuss the correlation between stuttering severity and brain activation.

  12. Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal.

    PubMed

    Wen, Haiguang; Liu, Zhongming

    2016-06-01

    Spontaneous activity observed with resting-state fMRI is used widely to uncover the brain's intrinsic functional networks in health and disease. Although many networks appear modular and specific, global and nonspecific fMRI fluctuations also exist and both pose a challenge and present an opportunity for characterizing and understanding brain networks. Here, we used a multimodal approach to investigate the neural correlates to the global fMRI signal in the resting state. Like fMRI, resting-state power fluctuations of broadband and arrhythmic, or scale-free, macaque electrocorticography and human magnetoencephalography activity were correlated globally. The power fluctuations of scale-free human electroencephalography (EEG) were coupled with the global component of simultaneously acquired resting-state fMRI, with the global hemodynamic change lagging the broadband spectral change of EEG by ∼5 s. The levels of global and nonspecific fluctuation and synchronization in scale-free population activity also varied across and depended on arousal states. Together, these results suggest that the neural origin of global resting-state fMRI activity is the broadband power fluctuation in scale-free population activity observable with macroscopic electrical or magnetic recordings. Moreover, the global fluctuation in neurophysiological and hemodynamic activity is likely modulated through diffuse neuromodulation pathways that govern arousal states and vigilance levels. This study provides new insights into the neural origin of resting-state fMRI. Results demonstrate that the broadband power fluctuation of scale-free electrophysiology is globally synchronized and directly coupled with the global component of spontaneous fMRI signals, in contrast to modularly synchronized fluctuations in oscillatory neural activity. These findings lead to a new hypothesis that scale-free and oscillatory neural processes account for global and modular patterns of functional connectivity observed

  13. High-field fMRI unveils orientation columns in humans.

    PubMed

    Yacoub, Essa; Harel, Noam; Ugurbil, Kâmil

    2008-07-29

    Functional (f)MRI has revolutionized the field of human brain research. fMRI can noninvasively map the spatial architecture of brain function via localized increases in blood flow after sensory or cognitive stimulation. Recent advances in fMRI have led to enhanced sensitivity and spatial accuracy of the measured signals, indicating the possibility of detecting small neuronal ensembles that constitute fundamental computational units in the brain, such as cortical columns. Orientation columns in visual cortex are perhaps the best known example of such a functional organization in the brain. They cannot be discerned via anatomical characteristics, as with ocular dominance columns. Instead, the elucidation of their organization requires functional imaging methods. However, because of insufficient sensitivity, spatial accuracy, and image resolution of the available mapping techniques, thus far, they have not been detected in humans. Here, we demonstrate, by using high-field (7-T) fMRI, the existence and spatial features of orientation- selective columns in humans. Striking similarities were found with the known spatial features of these columns in monkeys. In addition, we found that a larger number of orientation columns are devoted to processing orientations around 90 degrees (vertical stimuli with horizontal motion), whereas relatively similar fMRI signal changes were observed across any given active column. With the current proliferation of high-field MRI systems and constant evolution of fMRI techniques, this study heralds the exciting prospect of exploring unmapped and/or unknown columnar level functional organizations in the human brain.

  14. Tracking brain arousal fluctuations with fMRI

    PubMed Central

    Chang, Catie; Leopold, David A.; Schölvinck, Marieke Louise; Mandelkow, Hendrik; Picchioni, Dante; Liu, Xiao; Ye, Frank Q.; Turchi, Janita N.; Duyn, Jeff H.

    2016-01-01

    Changes in brain activity accompanying shifts in vigilance and arousal can interfere with the study of other intrinsic and task-evoked characteristics of brain function. However, the difficulty of tracking and modeling the arousal state during functional MRI (fMRI) typically precludes the assessment of arousal-dependent influences on fMRI signals. Here we combine fMRI, electrophysiology, and the monitoring of eyelid behavior to demonstrate an approach for tracking continuous variations in arousal level from fMRI data. We first characterize the spatial distribution of fMRI signal fluctuations that track a measure of behavioral arousal; taking this pattern as a template, and using the local field potential as a simultaneous and independent measure of cortical activity, we observe that the time-varying expression level of this template in fMRI data provides a close approximation of electrophysiological arousal. We discuss the potential benefit of these findings for increasing the sensitivity of fMRI as a cognitive and clinical biomarker. PMID:27051064

  15. EXPLORING FUNCTIONAL CONNECTIVITY IN FMRI VIA CLUSTERING.

    PubMed

    Venkataraman, Archana; Van Dijk, Koene R A; Buckner, Randy L; Golland, Polina

    2009-04-01

    In this paper we investigate the use of data driven clustering methods for functional connectivity analysis in fMRI. In particular, we consider the K-Means and Spectral Clustering algorithms as alternatives to the commonly used Seed-Based Analysis. To enable clustering of the entire brain volume, we use the Nyström Method to approximate the necessary spectral decompositions. We apply K-Means, Spectral Clustering and Seed-Based Analysis to resting-state fMRI data collected from 45 healthy young adults. Without placing any a priori constraints, both clustering methods yield partitions that are associated with brain systems previously identified via Seed-Based Analysis. Our empirical results suggest that clustering provides a valuable tool for functional connectivity analysis.

  16. Causal relations among events and states in dynamic geographical phenomena

    NASA Astrophysics Data System (ADS)

    Huang, Zhaoqiang; Feng, Xuezhi; Xuan, Wenling; Chen, Xiuwan

    2007-06-01

    There is only a static state of the real world to be recorded in conventional geographical information systems. However, there is not only static information but also dynamic information in geographical phenomena. So that how to record the dynamic information and reveal the relations among dynamic information is an important issue in a spatio-temporal information system. From an ontological perspective, we can initially divide the spatio-temporal entities in the world into continuants and occurrents. Continuant entities endure through some extended (although possibly very short) interval of time (e.g., houses, roads, cities, and real-estate). Occurrent entities happen and are then gone (e.g., a house repair job, road construction project, urban expansion, real-estate transition). From an information system perspective, continuants and occurrents that have a unique identity in the system are referred to as objects and events, respectively. And the change is represented implicitly by static snapshots in current spatial temporal information systems. In the previous models, the objects can be considered as the fundamental components of the system, and the change is modeled by considering time-varying attributes of these objects. In the spatio-temporal database, the temporal information that is either interval or instant is involved and the underlying data structures and indexes for temporal are considerable investigated. However, there is the absence of explicit ways of considering events, which affect the attributes of objects or the state. So the research issue of this paper focuses on how to model events in conceptual models of dynamic geographical phenomena and how to represent the causal relations among events and the objects or states. Firstly, the paper reviews the conceptual modeling in a temporal GIS by researchers. Secondly, this paper discusses the spatio-temporal entities: objects and events. Thirdly, this paper investigates the causal relations amongst

  17. Voluntary Enhancement of Neural Signatures of Affiliative Emotion Using fMRI Neurofeedback

    PubMed Central

    Moll, Jorge; Weingartner, Julie H.; Bado, Patricia; Basilio, Rodrigo; Sato, João R.; Melo, Bruno R.; Bramati, Ivanei E.; de Oliveira-Souza, Ricardo; Zahn, Roland

    2014-01-01

    In Ridley Scott’s film “Blade Runner”, empathy-detection devices are employed to measure affiliative emotions. Despite recent neurocomputational advances, it is unknown whether brain signatures of affiliative emotions, such as tenderness/affection, can be decoded and voluntarily modulated. Here, we employed multivariate voxel pattern analysis and real-time fMRI to address this question. We found that participants were able to use visual feedback based on decoded fMRI patterns as a neurofeedback signal to increase brain activation characteristic of tenderness/affection relative to pride, an equally complex control emotion. Such improvement was not observed in a control group performing the same fMRI task without neurofeedback. Furthermore, the neurofeedback-driven enhancement of tenderness/affection-related distributed patterns was associated with local fMRI responses in the septohypothalamic area and frontopolar cortex, regions previously implicated in affiliative emotion. This demonstrates that humans can voluntarily enhance brain signatures of tenderness/affection, unlocking new possibilities for promoting prosocial emotions and countering antisocial behavior. PMID:24847819

  18. A Review of Challenges in the Use of fMRI for Disease Classification / Characterization and A Projection Pursuit Application from Multi-site fMRI Schizophrenia Study.

    PubMed

    Demirci, Oguz; Clark, Vincent P; Magnotta, Vincent A; Andreasen, Nancy C; Lauriello, John; Kiehl, Kent A; Pearlson, Godfrey D; Calhoun, Vince D

    2008-09-01

    Functional magnetic resonance imaging (fMRI) is a fairly new technique that has the potential to characterize and classify brain disorders such as schizophrenia. It has the possibility of playing a crucial role in designing objective prognostic/diagnostic tools, but also presents numerous challenges to analysis and interpretation. Classification provides results for individual subjects, rather than results related to group differences. This is a more complicated endeavor that must be approached more carefully and efficient methods should be developed to draw generalized and valid conclusions out of high dimensional data with a limited number of subjects, especially for heterogeneous disorders whose pathophysiology is unknown. Numerous research efforts have been reported in the field using fMRI activation of schizophrenia patients and healthy controls. However, the results are usually not generalizable to larger data sets and require careful definition of the techniques used both in designing algorithms and reporting prediction accuracies. In this review paper, we survey a number of previous reports and also identify possible biases (cross-validation, class size, e.g.) in class comparison/prediction problems. Some suggestions to improve the effectiveness of the presentation of the prediction accuracy results are provided. We also present our own results using a projection pursuit algorithm followed by an application of independent component analysis proposed in an earlier study. We classify schizophrenia versus healthy controls using fMRI data of 155 subjects from two sites obtained during three different tasks. The results are compared in order to investigate the effectiveness of each task and differences between patients with schizophrenia and healthy controls were investigated.

  19. Under-reactive but easily distracted: An fMRI investigation of attentional capture in autism spectrum disorder.

    PubMed

    Keehn, Brandon; Nair, Aarti; Lincoln, Alan J; Townsend, Jeanne; Müller, Ralph-Axel

    2016-02-01

    For individuals with autism spectrum disorder (ASD), salient behaviorally-relevant information often fails to capture attention, while subtle behaviorally-irrelevant details commonly induce a state of distraction. The present study used functional magnetic resonance imaging (fMRI) to investigate the neurocognitive networks underlying attentional capture in sixteen high-functioning children and adolescents with ASD and twenty-one typically developing (TD) individuals. Participants completed a rapid serial visual presentation paradigm designed to investigate activation of attentional networks to behaviorally-relevant targets and contingent attention capture by task-irrelevant distractors. In individuals with ASD, target stimuli failed to trigger bottom-up activation of the ventral attentional network and the cerebellum. Additionally, the ASD group showed no differences in behavior or occipital activation associated with contingent attentional capture. Rather, results suggest that to-be-ignored distractors that shared either task-relevant or irrelevant features captured attention in ASD. Results indicate that individuals with ASD may be under-reactive to behaviorally-relevant stimuli, unable to filter irrelevant information, and that both top-down and bottom-up attention networks function atypically in ASD. Lastly, deficits in target-related processing were associated with autism symptomatology, providing further support for the hypothesis that non-social attentional processes and their neurofunctional underpinnings may play a significant role in the development of sociocommunicative impairments in ASD. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Time course based artifact identification for independent components of resting-state FMRI.

    PubMed

    Rummel, Christian; Verma, Rajeev Kumar; Schöpf, Veronika; Abela, Eugenio; Hauf, Martinus; Berruecos, José Fernando Zapata; Wiest, Roland

    2013-01-01

    In functional magnetic resonance imaging (fMRI) coherent oscillations of the blood oxygen level-dependent (BOLD) signal can be detected. These arise when brain regions respond to external stimuli or are activated by tasks. The same networks have been characterized during wakeful rest when functional connectivity of the human brain is organized in generic resting-state networks (RSN). Alterations of RSN emerge as neurobiological markers of pathological conditions such as altered mental state. In single-subject fMRI data the coherent components can be identified by blind source separation of the pre-processed BOLD data using spatial independent component analysis (ICA) and related approaches. The resulting maps may represent physiological RSNs or may be due to various artifacts. In this methodological study, we propose a conceptually simple and fully automatic time course based filtering procedure to detect obvious artifacts in the ICA output for resting-state fMRI. The filter is trained on six and tested on 29 healthy subjects, yielding mean filter accuracy, sensitivity and specificity of 0.80, 0.82, and 0.75 in out-of-sample tests. To estimate the impact of clearly artifactual single-subject components on group resting-state studies we analyze unfiltered and filtered output with a second level ICA procedure. Although the automated filter does not reach performance values of visual analysis by human raters, we propose that resting-state compatible analysis of ICA time courses could be very useful to complement the existing map or task/event oriented artifact classification algorithms.

  1. Perception of Biological Motion in Schizophrenia and Healthy Individuals: A Behavioral and fMRI Study

    PubMed Central

    Kim, Jejoong; Park, Sohee; Blake, Randolph

    2011-01-01

    Background Anomalous visual perception is a common feature of schizophrenia plausibly associated with impaired social cognition that, in turn, could affect social behavior. Past research suggests impairment in biological motion perception in schizophrenia. Behavioral and functional magnetic resonance imaging (fMRI) experiments were conducted to verify the existence of this impairment, to clarify its perceptual basis, and to identify accompanying neural concomitants of those deficits. Methodology/Findings In Experiment 1, we measured ability to detect biological motion portrayed by point-light animations embedded within masking noise. Experiment 2 measured discrimination accuracy for pairs of point-light biological motion sequences differing in the degree of perturbation of the kinematics portrayed in those sequences. Experiment 3 measured BOLD signals using event-related fMRI during a biological motion categorization task. Compared to healthy individuals, schizophrenia patients performed significantly worse on both the detection (Experiment 1) and discrimination (Experiment 2) tasks. Consistent with the behavioral results, the fMRI study revealed that healthy individuals exhibited strong activation to biological motion, but not to scrambled motion in the posterior portion of the superior temporal sulcus (STSp). Interestingly, strong STSp activation was also observed for scrambled or partially scrambled motion when the healthy participants perceived it as normal biological motion. On the other hand, STSp activation in schizophrenia patients was not selective to biological or scrambled motion. Conclusion Schizophrenia is accompanied by difficulties discriminating biological from non-biological motion, and associated with those difficulties are altered patterns of neural responses within brain area STSp. The perceptual deficits exhibited by schizophrenia patients may be an exaggerated manifestation of neural events within STSp associated with perceptual errors made by

  2. Investigating common coding of observed and executed actions in the monkey brain using cross-modal multi-variate fMRI classification.

    PubMed

    Fiave, Prosper Agbesi; Sharma, Saloni; Jastorff, Jan; Nelissen, Koen

    2018-05-19

    Mirror neurons are generally described as a neural substrate hosting shared representations of actions, by simulating or 'mirroring' the actions of others onto the observer's own motor system. Since single neuron recordings are rarely feasible in humans, it has been argued that cross-modal multi-variate pattern analysis (MVPA) of non-invasive fMRI data is a suitable technique to investigate common coding of observed and executed actions, allowing researchers to infer the presence of mirror neurons in the human brain. In an effort to close the gap between monkey electrophysiology and human fMRI data with respect to the mirror neuron system, here we tested this proposal for the first time in the monkey. Rhesus monkeys either performed reach-and-grasp or reach-and-touch motor acts with their right hand in the dark or observed videos of human actors performing similar motor acts. Unimodal decoding showed that both executed or observed motor acts could be decoded from numerous brain regions. Specific portions of rostral parietal, premotor and motor cortices, previously shown to house mirror neurons, in addition to somatosensory regions, yielded significant asymmetric action-specific cross-modal decoding. These results validate the use of cross-modal multi-variate fMRI analyses to probe the representations of own and others' actions in the primate brain and support the proposed mapping of others' actions onto the observer's own motor cortices. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. The neuroscience of investing: fMRI of the reward system.

    PubMed

    Peterson, Richard L

    2005-11-15

    Functional magnetic resonance imaging (fMRI) has proven a useful tool for observing neural BOLD signal changes during complex cognitive and emotional tasks. Yet the meaning and applicability of the fMRI data being gathered is still largely unknown. The brain's reward system underlies the fundamental neural processes of goal evaluation, preference formation, positive motivation, and choice behavior. fMRI technology allows researchers to dynamically visualize reward system processes. Experimenters can then correlate reward system BOLD activations with experimental behavior from carefully controlled experiments. In the SPAN lab at Stanford University, directed by Brian Knutson Ph.D., researchers have been using financial tasks during fMRI scanning to correlate emotion, behavior, and cognition with the reward system's fundamental neural activations. One goal of the SPAN lab is the development of predictive models of behavior. In this paper we extrapolate our fMRI results toward understanding and predicting individual behavior in the uncertain and high-risk environment of the financial markets. The financial market price anomalies of "value versus glamour" and "momentum" may be real-world examples of reward system activation biasing collective behavior. On the individual level, the investor's bias of overconfidence may similarly be related to reward system activation. We attempt to understand selected "irrational" investor behaviors and anomalous financial market price patterns through correlations with findings from fMRI research of the reward system.

  4. The neural basis of parallel saccade programming: an fMRI study.

    PubMed

    Hu, Yanbo; Walker, Robin

    2011-11-01

    The neural basis of parallel saccade programming was examined in an event-related fMRI study using a variation of the double-step saccade paradigm. Two double-step conditions were used: one enabled the second saccade to be partially programmed in parallel with the first saccade while in a second condition both saccades had to be prepared serially. The intersaccadic interval, observed in the parallel programming (PP) condition, was significantly reduced compared with latency in the serial programming (SP) condition and also to the latency of single saccades in control conditions. The fMRI analysis revealed greater activity (BOLD response) in the frontal and parietal eye fields for the PP condition compared with the SP double-step condition and when compared with the single-saccade control conditions. By contrast, activity in the supplementary eye fields was greater for the double-step condition than the single-step condition but did not distinguish between the PP and SP requirements. The role of the frontal eye fields in PP may be related to the advanced temporal preparation and increased salience of the second saccade goal that may mediate activity in other downstream structures, such as the superior colliculus. The parietal lobes may be involved in the preparation for spatial remapping, which is required in double-step conditions. The supplementary eye fields appear to have a more general role in planning saccade sequences that may be related to error monitoring and the control over the execution of the correct sequence of responses.

  5. History of Suicide Attempt Is Associated with Reduced Medial Prefrontal Cortex Activity during Emotional Decision-Making among Men with Schizophrenia: An Exploratory fMRI Study.

    PubMed

    Potvin, Stéphane; Tikàsz, Andràs; Richard-Devantoy, Stéphane; Lungu, Ovidiu; Dumais, Alexandre

    2018-01-01

    Despite the high prevalence of suicidal ideas/attempts in schizophrenia, only a handful of neuroimaging studies have examined the neurobiological differences associated with suicide risk in this population. The main objective of the current exploratory study is to examine the neurofunctional correlates associated with a history of suicide attempt in schizophrenia, using a risky decision-making task, in order to show alterations in brain reward regions in this population. Thirty-two male outpatients with schizophrenia were recruited: 13 patients with (SCZ + S) and 19 without a history of suicidal attempt (SCZ - S). Twenty-one healthy men with no history of mental disorders or suicidal attempt/idea were also recruited. Participants were scanned using fMRI while performing the Balloon Analogue Risk Task . A rapid event-related fMRI paradigm was used, separating decision and outcome events, and the explosion probabilities were included as parametric modulators. The most important finding of this study is that SCZ + S patients had reduced activations of the medial prefrontal cortex during the success outcome event (with parametric modulation), relative to both SCZ - S patients and controls, as illustrated by a spatial conjunction analysis. These exploratory results suggest that a history of suicidal attempt in schizophrenia is associated with blunted brain reward activity during emotional decision-making.

  6. History of Suicide Attempt Is Associated with Reduced Medial Prefrontal Cortex Activity during Emotional Decision-Making among Men with Schizophrenia: An Exploratory fMRI Study

    PubMed Central

    Richard-Devantoy, Stéphane; Dumais, Alexandre

    2018-01-01

    Despite the high prevalence of suicidal ideas/attempts in schizophrenia, only a handful of neuroimaging studies have examined the neurobiological differences associated with suicide risk in this population. The main objective of the current exploratory study is to examine the neurofunctional correlates associated with a history of suicide attempt in schizophrenia, using a risky decision-making task, in order to show alterations in brain reward regions in this population. Thirty-two male outpatients with schizophrenia were recruited: 13 patients with (SCZ + S) and 19 without a history of suicidal attempt (SCZ − S). Twenty-one healthy men with no history of mental disorders or suicidal attempt/idea were also recruited. Participants were scanned using fMRI while performing the Balloon Analogue Risk Task. A rapid event-related fMRI paradigm was used, separating decision and outcome events, and the explosion probabilities were included as parametric modulators. The most important finding of this study is that SCZ + S patients had reduced activations of the medial prefrontal cortex during the success outcome event (with parametric modulation), relative to both SCZ − S patients and controls, as illustrated by a spatial conjunction analysis. These exploratory results suggest that a history of suicidal attempt in schizophrenia is associated with blunted brain reward activity during emotional decision-making. PMID:29686902

  7. Decoding Overlapping Memories in the Medial Temporal Lobes Using High-Resolution fMRI

    ERIC Educational Resources Information Center

    Chadwick, Martin J.; Hassabis, Demis; Maguire, Eleanor A.

    2011-01-01

    The hippocampus is proposed to process overlapping episodes as discrete memory traces, although direct evidence for this in human episodic memory is scarce. Using green-screen technology we created four highly overlapping movies of everyday events. Participants were scanned using high-resolution fMRI while recalling the movies. Multivariate…

  8. Assessment of biofeedback rehabilitation in post-stroke patients combining fMRI and gait analysis: a case study

    PubMed Central

    2014-01-01

    Background The ability to walk independently is a primary goal for rehabilitation after stroke. Gait analysis provides a great amount of valuable information, while functional magnetic resonance imaging (fMRI) offers a powerful approach to define networks involved in motor control. The present study reports a new methodology based on both fMRI and gait analysis outcomes in order to investigate the ability of fMRI to reflect the phases of motor learning before/after electromyographic biofeedback treatment: the preliminary fMRI results of a post stroke subject’s brain activation, during passive and active ankle dorsal/plantarflexion, before and after biofeedback (BFB) rehabilitation are reported and their correlation with gait analysis data investigated. Methods A control subject and a post-stroke patient with chronic hemiparesis were studied. Functional magnetic resonance images were acquired during a block-design protocol on both subjects while performing passive and active ankle dorsal/plantarflexion. fMRI and gait analysis were assessed on the patient before and after electromyographic biofeedback rehabilitation treatment during gait activities. Lower limb three-dimensional kinematics, kinetics and surface electromyography were evaluated. Correlation between fMRI and gait analysis categorical variables was assessed: agreement/disagreement was assigned to each variable if the value was in/outside the normative range (gait analysis), or for presence of normal/diffuse/no activation of motor area (fMRI). Results Altered fMRI activity was found on the post-stroke patient before biofeedback rehabilitation with respect to the control one. Meanwhile the patient showed a diffuse, but more limited brain activation after treatment (less voxels). The post-stroke gait data showed a trend towards the normal range: speed, stride length, ankle power, and ankle positive work increased. Preliminary correlation analysis revealed that consistent changes were observed both for the

  9. Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).

    PubMed

    Wong, Chung-Ki; Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Luo, Qingfei; Bodurka, Jerzy

    2016-04-01

    Head motions during functional magnetic resonance imaging (fMRI) impair fMRI data quality and introduce systematic artifacts that can affect interpretation of fMRI results. Electroencephalography (EEG) recordings performed simultaneously with fMRI provide high-temporal-resolution information about ongoing brain activity as well as head movements. Recently, an EEG-assisted retrospective motion correction (E-REMCOR) method was introduced. E-REMCOR utilizes EEG motion artifacts to correct the effects of head movements in simultaneously acquired fMRI data on a slice-by-slice basis. While E-REMCOR is an efficient motion correction approach, it involves an independent component analysis (ICA) of the EEG data and identification of motion-related ICs. Here we report an automated implementation of E-REMCOR, referred to as aE-REMCOR, which we developed to facilitate the application of E-REMCOR in large-scale EEG-fMRI studies. The aE-REMCOR algorithm, implemented in MATLAB, enables an automated preprocessing of the EEG data, an ICA decomposition, and, importantly, an automatic identification of motion-related ICs. aE-REMCOR has been used to perform retrospective motion correction for 305 fMRI datasets from 16 subjects, who participated in EEG-fMRI experiments conducted on a 3T MRI scanner. Performance of aE-REMCOR has been evaluated based on improvement in temporal signal-to-noise ratio (TSNR) of the fMRI data, as well as correction efficiency defined in terms of spike reduction in fMRI motion parameters. The results show that aE-REMCOR is capable of substantially reducing head motion artifacts in fMRI data. In particular, when there are significant rapid head movements during the scan, a large TSNR improvement and high correction efficiency can be achieved. Depending on a subject's motion, an average TSNR improvement over the brain upon the application of aE-REMCOR can be as high as 27%, with top ten percent of the TSNR improvement values exceeding 55%. The average

  10. FMRI Is a Valid Noninvasive Alternative to Wada Testing

    PubMed Central

    Binder, Jeffrey R.

    2010-01-01

    Partial removal of the anterior temporal lobe (ATL) is a highly effective surgical treatment for intractable temporal lobe epilepsy, yet roughly half of patients who undergo left ATL resection show decline in language or verbal memory function postoperatively. Two recent studies demonstrate that preoperative fMRI can predict postoperative naming and verbal memory changes in such patients. Most importantly, fMRI significantly improves the accuracy of prediction relative to other noninvasive measures used alone. Addition of language and memory lateralization data from the intracarotid amobarbital (Wada) test did not improve prediction accuracy in these studies. Thus, fMRI provides patients and practitioners with a safe, non-invasive, and well-validated tool for making better-informed decisions regarding elective surgery based on a quantitative assessment of cognitive risk. PMID:20850386

  11. Role of Amygdala Connectivity in the Persistence of Emotional Memories Over Time: An Event-Related fMRI Investigation

    PubMed Central

    Dolcos, Florin; Cabeza, Roberto

    2008-01-01

    According to the consolidation hypothesis, enhanced memory for emotional information reflects the modulatory effect of the amygdala on the medial temporal lobe (MTL) memory system during consolidation. Although there is evidence that amygdala–MTL connectivity enhances memory for emotional stimuli, it remains unclear whether this enhancement increases over time, as consolidation processes unfold. To investigate this, we used functional magnetic resonance imaging to measure encoding activity predicting memory for emotionally negative and neutral pictures after short (20-min) versus long (1-week) delays. Memory measures distinguished between vivid remembering (recollection) and feelings of knowing (familiarity). Consistent with the consolidation hypothesis, the persistence of recollection over time (long divided by short) was greater for emotional than neutral pictures. Activity in the amygdala predicted subsequent memory to a greater extent for emotional than neutral pictures. Although this advantage did not vary with delay, the contribution of amygdala–MTL connectivity to subsequent memory for emotional items increased over time. Moreover, both this increase in connectivity and amygdala activity itself were correlated with individual differences in recollection persistence for emotional but not neutral pictures. These results suggest that the amygdala and its connectivity with the MTL are critical to sustaining emotional memories over time, consistent with the consolidation hypothesis. PMID:18375529

  12. Studying the neural bases of prism adaptation using fMRI: A technical and design challenge.

    PubMed

    Bultitude, Janet H; Farnè, Alessandro; Salemme, Romeo; Ibarrola, Danielle; Urquizar, Christian; O'Shea, Jacinta; Luauté, Jacques

    2017-12-01

    Prism adaptation induces rapid recalibration of visuomotor coordination. The neural mechanisms of prism adaptation have come under scrutiny since the observations that the technique can alleviate hemispatial neglect following stroke, and can alter spatial cognition in healthy controls. Relative to non-imaging behavioral studies, fMRI investigations of prism adaptation face several challenges arising from the confined physical environment of the scanner and the supine position of the participants. Any researcher who wishes to administer prism adaptation in an fMRI environment must adjust their procedures enough to enable the experiment to be performed, but not so much that the behavioral task departs too much from true prism adaptation. Furthermore, the specific temporal dynamics of behavioral components of prism adaptation present additional challenges for measuring their neural correlates. We developed a system for measuring the key features of prism adaptation behavior within an fMRI environment. To validate our configuration, we present behavioral (pointing) and head movement data from 11 right-hemisphere lesioned patients and 17 older controls who underwent sham and real prism adaptation in an MRI scanner. Most participants could adapt to prismatic displacement with minimal head movements, and the procedure was well tolerated. We propose recommendations for fMRI studies of prism adaptation based on the design-specific constraints and our results.

  13. Optimizing Within-Subject Experimental Designs for jICA of Multi-Channel ERP and fMRI

    PubMed Central

    Mangalathu-Arumana, Jain; Liebenthal, Einat; Beardsley, Scott A.

    2018-01-01

    Joint independent component analysis (jICA) can be applied within subject for fusion of multi-channel event-related potentials (ERP) and functional magnetic resonance imaging (fMRI), to measure brain function at high spatiotemporal resolution (Mangalathu-Arumana et al., 2012). However, the impact of experimental design choices on jICA performance has not been systematically studied. Here, the sensitivity of jICA for recovering neural sources in individual data was evaluated as a function of imaging SNR, number of independent representations of the ERP/fMRI data, relationship between instantiations of the joint ERP/fMRI activity (linear, non-linear, uncoupled), and type of sources (varying parametrically and non-parametrically across representations of the data), using computer simulations. Neural sources were simulated with spatiotemporal and noise attributes derived from experimental data. The best performance, maximizing both cross-modal data fusion and the separation of brain sources, occurred with a moderate number of representations of the ERP/fMRI data (10–30), as in a mixed block/event related experimental design. Importantly, the type of relationship between instantiations of the ERP/fMRI activity, whether linear, non-linear or uncoupled, did not in itself impact jICA performance, and was accurately recovered in the common profiles (i.e., mixing coefficients). Thus, jICA provides an unbiased way to characterize the relationship between ERP and fMRI activity across brain regions, in individual data, rendering it potentially useful for characterizing pathological conditions in which neurovascular coupling is adversely affected. PMID:29410611

  14. Processing of zero-derived words in English: an fMRI investigation.

    PubMed

    Pliatsikas, Christos; Wheeldon, Linda; Lahiri, Aditi; Hansen, Peter C

    2014-01-01

    Derivational morphological processes allow us to create new words (e.g. punish (V) to noun (N) punishment) from base forms. The number of steps from the basic units to derived words often varies (e.g., nationalityinvestigated derivational processes in which morphological complexity is related to a change in surface form. It is therefore unclear whether the effects reported are attributable to underlying morphological complexity or to the processing of multiple surface morphemes. Here we report the first study to investigate morphological processing where derivational steps are not overtly marked (e.g., bridge-N>bridge-V) i.e., zero-derivation (Aronoff, 1980). We compared the processing of one-step (soakingfMRI experiment. Participants were presented with derived forms of words (soaking, bridging) in a lexical decision task. Although the surface derived -ing forms can be contextually participles, gerunds, or even nouns, they are all derived from verbs since the suffix -ing can only be attached to verb roots. Crucially, the verb root is the basic form for the one-step words, whereas for the two-step words the verb root is zero derived from a basic noun. Significantly increased brain activity was observed for complex (one-step and two-step) versus simple (zero-step) forms in regions involved in morphological processing, such as the left inferior frontal gyrus (LIFG). Critically, activation was also more pronounced for two-step compared to one-step forms. Since both types of derived words have the same surface structure, our findings suggest that morphological processing is based on underlying morphological complexity, independent of overt

  15. An fMRI compatible wrist robotic interface to study brain development in neonates.

    PubMed

    Allievi, A G; Melendez-Calderon, A; Arichi, T; Edwards, A D; Burdet, E

    2013-06-01

    A comprehensive understanding of the mechanisms that underlie brain development in premature infants and newborns is crucial for the identification of interventional therapies and rehabilitative strategies. fMRI has the potential to identify such mechanisms, but standard techniques used in adults cannot be implemented in infant studies in a straightforward manner. We have developed an MR safe wrist stimulating robot to systematically investigate the functional brain activity related to both spontaneous and induced wrist movements in premature babies using fMRI. We present the technical aspects of this development and the results of validation experiments. Using the device, the cortical activity associated with both active and passive finger movements were reliably identified in a healthy adult subject. In two preterm infants, passive wrist movements induced a well localized positive BOLD response in the contralateral somatosensory cortex. Furthermore, in a single preterm infant, spontaneous wrist movements were found to be associated with an adjacent cluster of activity, at the level of the infant's primary motor cortex. The described device will allow detailed and objective fMRI studies of somatosensory and motor system development during early human life and following neonatal brain injury.

  16. Multi-voxel pattern classification differentiates personally experienced event memories from secondhand event knowledge.

    PubMed

    Chow, Tiffany E; Westphal, Andrew J; Rissman, Jesse

    2018-04-11

    Studies of autobiographical memory retrieval often use photographs to probe participants' memories for past events. Recent neuroimaging work has shown that viewing photographs depicting events from one's own life evokes a characteristic pattern of brain activity across a network of frontal, parietal, and medial temporal lobe regions that can be readily distinguished from brain activity associated with viewing photographs from someone else's life (Rissman, Chow, Reggente, and Wagner, 2016). However, it is unclear whether the neural signatures associated with remembering a personally experienced event are distinct from those associated with recognizing previously encountered photographs of an event. The present experiment used a novel functional magnetic resonance imaging (fMRI) paradigm to investigate putative differences in brain activity patterns associated with these distinct expressions of memory retrieval. Eighteen participants wore necklace-mounted digital cameras to capture events from their everyday lives over the course of three weeks. One week later, participants underwent fMRI scanning, where on each trial they viewed a sequence of photographs depicting either an event from their own life or from another participant's life and judged their memory for this event. Importantly, half of the trials featured photographic sequences that had been shown to participants during a laboratory session administered the previous day. Multi-voxel pattern analyses assessed the sensitivity of two brain networks of interest-as identified by a meta-analysis of prior autobiographical and laboratory-based memory retrieval studies-to the original source of the photographs (own life or other's life) and their experiential history as stimuli (previewed or non-previewed). The classification analyses revealed a striking dissociation: activity patterns within the autobiographical memory network were significantly more diagnostic than those within the laboratory-based network as to

  17. Emotion Regulation Training for Training Warfighters with Combat Related PTSD Using Real Time fMRI and EEG Assisted Neurofeedback

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-12-1-0607 TITLE: Emotion Regulation Training for Treating Warfighters with Combat-Related PTSD Using Real -Time fMRI...Related PTSD Using Real -Time fMRI and EEG-Assisted Neurofeedback 5a. CONTRACT NUMBER W81XWH-12-1-0607 5b. GRANT NUMBER PT110256 5c. PROGRAM ELEMENT...emphasize dysregulation of the amygdala, which is involved in the regulation of PTSD-relevant emotions. We are utilizing real -time functional magnetic

  18. Dynamic fMRI of a decision-making task

    NASA Astrophysics Data System (ADS)

    Singh, Manbir; Sungkarat, Witaya

    2008-03-01

    A novel fMRI technique has been developed to capture the dynamics of the evolution of brain activity during complex tasks such as those designed to evaluate the neural basis of decision-making under different situations. A task called the Iowa Gambling Task was used as an example. Six normal human volunteers were studied. The task was presented inside a 3T MRI and a dynamic fMRI study of the approximately 2s period between the beginning and end of the decision-making period was conducted by employing a series of reference functions, separated by 200 ms, designed to capture activation at different time-points within this period. As decision-making culminates with a button-press, the timing of the button press was chosen as the reference (t=0) and corresponding reference functions were shifted backward in steps of 200ms from this point up to the time when motor activity from the previous button press became predominant. SPM was used to realign, high-pass filter (cutoff 200s), normalize to the Montreal Neurological Institute (MNI) Template using a 12 parameter affine/non-linear transformation, 8mm Gaussian smoothing, and event-related General Linear Model analysis for each of the shifted reference functions. The t-score of each activated voxel was then examined to find its peaking time. A random effect analysis (p<0.05) showed prefrontal, parietal and bi-lateral hippocampal activation peaking at different times during the decision making period in the n=6 group study.

  19. Iterative approach of dual regression with a sparse prior enhances the performance of independent component analysis for group functional magnetic resonance imaging (fMRI) data.

    PubMed

    Kim, Yong-Hwan; Kim, Junghoe; Lee, Jong-Hwan

    2012-12-01

    This study proposes an iterative dual-regression (DR) approach with sparse prior regularization to better estimate an individual's neuronal activation using the results of an independent component analysis (ICA) method applied to a temporally concatenated group of functional magnetic resonance imaging (fMRI) data (i.e., Tc-GICA method). An ordinary DR approach estimates the spatial patterns (SPs) of neuronal activation and corresponding time courses (TCs) specific to each individual's fMRI data with two steps involving least-squares (LS) solutions. Our proposed approach employs iterative LS solutions to refine both the individual SPs and TCs with an additional a priori assumption of sparseness in the SPs (i.e., minimally overlapping SPs) based on L(1)-norm minimization. To quantitatively evaluate the performance of this approach, semi-artificial fMRI data were created from resting-state fMRI data with the following considerations: (1) an artificially designed spatial layout of neuronal activation patterns with varying overlap sizes across subjects and (2) a BOLD time series (TS) with variable parameters such as onset time, duration, and maximum BOLD levels. To systematically control the spatial layout variability of neuronal activation patterns across the "subjects" (n=12), the degree of spatial overlap across all subjects was varied from a minimum of 1 voxel (i.e., 0.5-voxel cubic radius) to a maximum of 81 voxels (i.e., 2.5-voxel radius) across the task-related SPs with a size of 100 voxels for both the block-based and event-related task paradigms. In addition, several levels of maximum percentage BOLD intensity (i.e., 0.5, 1.0, 2.0, and 3.0%) were used for each degree of spatial overlap size. From the results, the estimated individual SPs of neuronal activation obtained from the proposed iterative DR approach with a sparse prior showed an enhanced true positive rate and reduced false positive rate compared to the ordinary DR approach. The estimated TCs of the

  20. FMRI investigation of cross-modal interactions in beat perception: Audition primes vision, but not vice versa

    PubMed Central

    Grahn, Jessica A.; Henry, Molly J.; McAuley, J. Devin

    2011-01-01

    How we measure time and integrate temporal cues from different sensory modalities are fundamental questions in neuroscience. Sensitivity to a “beat” (such as that routinely perceived in music) differs substantially between auditory and visual modalities. Here we examined beat sensitivity in each modality, and examined cross-modal influences, using functional magnetic resonance imaging (fMRI) to characterize brain activity during perception of auditory and visual rhythms. In separate fMRI sessions, participants listened to auditory sequences or watched visual sequences. The order of auditory and visual sequence presentation was counterbalanced so that cross-modal order effects could be investigated. Participants judged whether sequences were speeding up or slowing down, and the pattern of tempo judgments was used to derive a measure of sensitivity to an implied beat. As expected, participants were less sensitive to an implied beat in visual sequences than in auditory sequences. However, visual sequences produced a stronger sense of beat when preceded by auditory sequences with identical temporal structure. Moreover, increases in brain activity were observed in the bilateral putamen for visual sequences preceded by auditory sequences when compared to visual sequences without prior auditory exposure. No such order-dependent differences (behavioral or neural) were found for the auditory sequences. The results provide further evidence for the role of the basal ganglia in internal generation of the beat and suggest that an internal auditory rhythm representation may be activated during visual rhythm perception. PMID:20858544

  1. ICA-based artefact and accelerated fMRI acquisition for improved Resting State Network imaging

    PubMed Central

    Griffanti, Ludovica; Salimi-Khorshidi, Gholamreza; Beckmann, Christian F.; Auerbach, Edward J.; Douaud, Gwenaëlle; Sexton, Claire E.; Zsoldos, Enikő; Ebmeier, Klaus P; Filippini, Nicola; Mackay, Clare E.; Moeller, Steen; Xu, Junqian; Yacoub, Essa; Baselli, Giuseppe; Ugurbil, Kamil; Miller, Karla L.; Smith, Stephen M.

    2014-01-01

    The identification of resting state networks (RSNs) and the quantification of their functional connectivity in resting-state fMRI (rfMRI) are seriously hindered by the presence of artefacts, many of which overlap spatially or spectrally with RSNs. Moreover, recent developments in fMRI acquisition yield data with higher spatial and temporal resolutions, but may increase artefacts both spatially and/or temporally. Hence the correct identification and removal of non-neural fluctuations is crucial, especially in accelerated acquisitions. In this paper we investigate the effectiveness of three data-driven cleaning procedures, compare standard against higher (spatial and temporal) resolution accelerated fMRI acquisitions, and investigate the combined effect of different acquisitions and different cleanup approaches. We applied single-subject independent component analysis (ICA), followed by automatic component classification with FMRIB’s ICA-based X-noiseifier (FIX) to identify artefactual components. We then compared two first-level (within-subject) cleaning approaches for removing those artefacts and motion-related fluctuations from the data. The effectiveness of the cleaning procedures were assessed using timeseries (amplitude and spectra), network matrix and spatial map analyses. For timeseries and network analyses we also tested the effect of a second-level cleaning (informed by group-level analysis). Comparing these approaches, the preferable balance between noise removal and signal loss was achieved by regressing out of the data the full space of motion-related fluctuations and only the unique variance of the artefactual ICA components. Using similar analyses, we also investigated the effects of different cleaning approaches on data from different acquisition sequences. With the optimal cleaning procedures, functional connectivity results from accelerated data were statistically comparable or significantly better than the standard (unaccelerated) acquisition

  2. FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network

    PubMed Central

    Qin, Wei; Tian, Jie; Bai, Lijun; Pan, Xiaohong; Yang, Lin; Chen, Peng; Dai, Jianping; Ai, Lin; Zhao, Baixiao; Gong, Qiyong; Wang, Wei; von Deneen, Karen M; Liu, Yijun

    2008-01-01

    Background Recently, increasing evidence has indicated that the primary acupuncture effects are mediated by the central nervous system. However, specific brain networks underpinning these effects remain unclear. Results In the present study using fMRI, we employed a within-condition interregional covariance analysis method to investigate functional connectivity of brain networks involved in acupuncture. The fMRI experiment was performed before, during and after acupuncture manipulations on healthy volunteers at an acupuncture point, which was previously implicated in a neural pathway for pain modulation. We first identified significant fMRI signal changes during acupuncture stimulation in the left amygdala, which was subsequently selected as a functional reference for connectivity analyses. Our results have demonstrated that there is a brain network associated with the amygdala during a resting condition. This network encompasses the brain structures that are implicated in both pain sensation and pain modulation. We also found that such a pain-related network could be modulated by both verum acupuncture and sham acupuncture. Furthermore, compared with a sham acupuncture, the verum acupuncture induced a higher level of correlations among the amygdala-associated network. Conclusion Our findings indicate that acupuncture may change this amygdala-specific brain network into a functional state that underlies pain perception and pain modulation. PMID:19014532

  3. Sex differences and emotion regulation: an event-related potential study.

    PubMed

    Gardener, Elyse K T; Carr, Andrea R; Macgregor, Amy; Felmingham, Kim L

    2013-01-01

    Difficulties in emotion regulation have been implicated as a potential mechanism underlying anxiety and mood disorders. It is possible that sex differences in emotion regulation may contribute towards the heightened female prevalence for these disorders. Previous fMRI studies of sex differences in emotion regulation have shown mixed results, possibly due to difficulties in discriminating the component processes of early emotional reactivity and emotion regulation. The present study used event-related potentials (ERPs) to examine sex differences in N1 and N2 components (reflecting early emotional reactivity) and P3 and LPP components (reflecting emotion regulation). N1, N2, P3, and LPP were recorded from 20 men and 23 women who were instructed to "increase," "decrease," and "maintain" their emotional response during passive viewing of negative images. Results indicated that women had significantly greater N1 and N2 amplitudes (reflecting early emotional reactivity) to negative stimuli than men, supporting a female negativity bias. LPP amplitudes increased to the "increase" instruction, and women displayed greater LPP amplitudes than men to the "increase" instruction. There were no differences to the "decrease" instruction in women or men. These findings confirm predictions of the female negativity bias hypothesis and suggest that women have greater up-regulation of emotional responses to negative stimuli. This finding is highly significant in light of the female vulnerability for developing anxiety disorders.

  4. Lying about facial recognition: an fMRI study.

    PubMed

    Bhatt, S; Mbwana, J; Adeyemo, A; Sawyer, A; Hailu, A; Vanmeter, J

    2009-03-01

    Novel deception detection techniques have been in creation for centuries. Functional magnetic resonance imaging (fMRI) is a neuroscience technology that non-invasively measures brain activity associated with behavior and cognition. A number of investigators have explored the utilization and efficiency of fMRI in deception detection. In this study, 18 subjects were instructed during an fMRI "line-up" task to either conceal (lie) or reveal (truth) the identities of individuals seen in study sets in order to determine the neural correlates of intentionally misidentifying previously known faces (lying about recognition). A repeated measures ANOVA (lie vs. truth and familiar vs. unfamiliar) and two paired t-tests (familiar vs. unfamiliar and familiar lie vs. familiar truth) revealed areas of activation associated with deception in the right MGF, red nucleus, IFG, SMG, SFG (with ACC), DLPFC, and bilateral precuneus. The areas activated in the present study may be involved in the suppression of truth, working and visuospatial memories, and imagery when providing misleading (deceptive) responses to facial identification prompts in the form of a "line-up".

  5. Reduced empathic responses for sexually objectified women: An fMRI investigation.

    PubMed

    Cogoni, Carlotta; Carnaghi, Andrea; Silani, Giorgia

    2018-02-01

    Sexual objectification is a widespread phenomenon characterized by a focus on the individual's physical appearance over his/her mental state. This has been associated with negative social consequences, as objectified individuals are judged to be less human, competent, and moral. Moreover, behavioral responses toward the person change as a function of the degree of the perceived sexual objectification. In the present study, we investigated how behavioral and neural representations of other social pain are modulated by the degree of sexual objectification of the target. Using a within-subject fMRI design, we found reduced empathic feelings for positive (but not negative) emotions toward sexually objectified women as compared to non-objectified (personalized) women when witnessing their participation to a ball-tossing game. At the brain level, empathy for social exclusion of personalized women recruited areas coding the affective component of pain (i.e., anterior insula and cingulate cortex), the somatosensory components of pain (i.e., posterior insula and secondary somatosensory cortex) together with the mentalizing network (i.e., middle frontal cortex) to a greater extent than for the sexually objectified women. This diminished empathy is discussed in light of the gender-based violence that is afflicting the modern society. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Situation and person attributions under spontaneous and intentional instructions: an fMRI study

    PubMed Central

    Kestemont, Jenny; Vandekerckhove, Marie; Ma, Ning; Van Hoeck, Nicole

    2013-01-01

    This functional magnetic resonance imaging (fMRI) research explores how observers make causal beliefs about an event in terms of the person or situation. Thirty-four participants read various short descriptions of social events that implied either the person or the situation as the cause. Half of them were explicitly instructed to judge whether the event was caused by something about the person or the situation (intentional inferences), whereas the other half was instructed simply to read the material carefully (spontaneous inferences). The results showed common activation in areas related to mentalizing, across all types of causes or instructions (posterior superior temporal sulcus, temporo-parietal junction, precuneus). However, the medial prefrontal cortex was activated only under spontaneous instructions, but not under intentional instruction. This suggests a bias toward person attributions (e.g. fundamental attribution bias). Complementary to this, intentional situation attributions activated a stronger and more extended network compared to intentional person attributions, suggesting that situation attributions require more controlled, extended and broader processing of the information. PMID:22345370

  7. Electrophysiological correlates of the BOLD signal for EEG-informed fMRI

    PubMed Central

    Murta, Teresa; Leite, Marco; Carmichael, David W; Figueiredo, Patrícia; Lemieux, Louis

    2015-01-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG–fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological–haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (EEG–fMRI mapping), or exploring a range of EEG-derived quantities to determine which best explain colocalised BOLD fluctuations (local EEG–fMRI coupling). While reviewing studies of different forms of brain activity (epileptic and nonepileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG–fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations. PMID:25277370

  8. fMRI and MEG in the study of typical and atypical cognitive development.

    PubMed

    Taylor, M J; Donner, E J; Pang, E W

    2012-01-01

    The tremendous changes in brain structure over childhood are critical to the development of cognitive functions. Neuroimaging provides a means of linking these brain-behaviour relations, as task protocols can be adapted for use with young children to assess the development of cognitive functions in both typical and atypical populations. This paper reviews some of our research using magnetoencephalography (MEG) and functional MRI (fMRI) in the study of cognitive development, with a focus on frontal lobe functions. Working memory for complex abstract patterns showed clear development in terms of the recruitment of frontal regions, seen with fMRI, with indications of strategy differences across the age range, from 6 to 35 years of age. Right hippocampal involvement was also evident in these n-back tasks, demonstrating its involvement in recognition in simple working memory protocols. Children born very preterm (7 to 9 years of age) showed reduced fMRI activation particularly in the precuneus and right hippocampal regions relative to control children. In a large normative n-back study (n=90) with upright and inverted faces, MEG data also showed right hippocampal activation that was present across the age range; frontal sources were evident only from 10 years of age. Other studies have investigated the development of set shifting, an executive function that is often deficit in atypical populations. fMRI showed recruitment of frontal areas, including the insula, that have significantly different patterns in children (7 to 14 years of age) with autism spectrum disorder compared to typically developing children, indicating that successful performance implicated differing strategies in these two groups of children. These types of studies will help our understanding of both normal brain-behaviour development and cognitive dysfunction in atypically developing populations. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  9. Toward brain correlates of natural behavior: fMRI during violent video games.

    PubMed

    Mathiak, Klaus; Weber, René

    2006-12-01

    Modern video games represent highly advanced virtual reality simulations and often contain virtual violence. In a significant amount of young males, playing video games is a quotidian activity, making it an almost natural behavior. Recordings of brain activation with functional magnetic resonance imaging (fMRI) during gameplay may reflect neuronal correlates of real-life behavior. We recorded 13 experienced gamers (18-26 years; average 14 hrs/week playing) while playing a violent first-person shooter game (a violent computer game played in self-perspective) by means of distortion and dephasing reduced fMRI (3 T; single-shot triple-echo echo-planar imaging [EPI]). Content analysis of the video and sound with 100 ms time resolution achieved relevant behavioral variables. These variables explained significant signal variance across large distributed networks. Occurrence of violent scenes revealed significant neuronal correlates in an event-related design. Activation of dorsal and deactivation of rostral anterior cingulate and amygdala characterized the mid-frontal pattern related to virtual violence. Statistics and effect sizes can be considered large at these areas. Optimized imaging strategies allowed for single-subject and for single-trial analysis with good image quality at basal brain structures. We propose that virtual environments can be used to study neuronal processes involved in semi-naturalistic behavior as determined by content analysis. Importantly, the activation pattern reflects brain-environment interactions rather than stimulus responses as observed in classical experimental designs. We relate our findings to the general discussion on social effects of playing first-person shooter games. (c) 2006 Wiley-Liss, Inc.

  10. PrE (Person-Relative-to-Event) Theory of Coping with Threat.

    ERIC Educational Resources Information Center

    Mulilis, John-Paul; Duval, T. Shelley

    The generalizability of Person-Relative-to-Event (PrE) theory, originally applied to disaster-related situations, is investigated in a non-disaster simulation. The PrE theory of coping with threat emphasizes the relationship between level of appraised threat relative to person resources and personal responsibility. This theory has previously been…

  11. Cannabis-related hospitalizations: unexpected serious events identified through hospital databases

    PubMed Central

    Jouanjus, Emilie; Leymarie, Florence; Tubery, Marie; Lapeyre-Mestre, Maryse

    2011-01-01

    AIMS Cannabis is the most prevalent illicit drug used worldwide and can be responsible for serious health defects in users. However, the risk related to cannabis consumption is not well established. The present study aimed to assess cannabis-related adverse events leading to hospitalization, and to estimate the corresponding annual risk for consumers. METHODS Participants were patients admitted to the public hospitals in the Toulouse area (France) between January 2004 and December 2007 in relation to the use of cannabis. Reasons for admission and other occurring events were identified through hospital discharge summaries. We described all observed adverse events (AEs) and estimated their regional incidence on the basis of cannabis consumption data. RESULTS We included 200 patients, and identified a total of 619 adverse events (AEs), one of which was lethal. Psychiatric disorders involved 57.7% of patients and accounted for 18.2% of AEs. Most frequent outcomes were central and peripheral nervous system disorders (15.8% of AEs), acute intoxication (12.1%), respiratory system disorders (11.1%) and cardiovascular disorders (9.5%). We estimated that in 2007 the incidence of cannabis-related AEs in the Midi-Pyrenees region ranged from 1.2 per 1000 regular cannabis users (95% confidence interval (CI) 0.7, 1.6) to 3.2 (95% CI 2.5, 3.9). CONCLUSIONS Cannabis use is associated with complications, considered to be serious since they lead to hospitalization. Beyond the well-known and widely investigated psychiatric events, serious cerebro and cardiovascular complications have been identified. These findings contribute to improve the knowledge of cannabis-related adverse events. PMID:21204913

  12. Comparative study of SVM methods combined with voxel selection for object category classification on fMRI data.

    PubMed

    Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li

    2011-02-16

    Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice.

  13. An fMRI Investigation of Cerebellar Function During Verbal Working Memory in Methadone Maintenance Patients

    PubMed Central

    Marvel, Cherie L.; Faulkner, Monica L.; Strain, Eric C.; Mintzer, Miriam Z.; Desmond, John E.

    2011-01-01

    Working memory is impaired in opioid-dependent individuals, yet the neural underpinnings of working memory in this population are largely unknown. Previous studies in healthy adults have demonstrated that working memory is supported by a network of brain regions that includes a cerebro-cerebellar circuit. The cerebellum, in particular, may be important for inner speech mechanisms that assist verbal working memory. This study used functional magnetic resonance imaging (fMRI) to examine brain activity associated with working memory in 5 opioid-dependent, methadone-maintained patients and 5 matched, healthy controls. An item recognition task was administered in two conditions: 1) a low working memory load “match” condition in which participants determined whether target letters presented at the beginning of the trial matched a probe item, and 2) a high working memory load “manipulation” condition in which participants counted two alphabetical letters forward of each of the targets and determined whether either of these new items matched a probe item. Response times and accuracy scores were not significantly different between the groups. FMRI analyses indicated that, in association with higher working memory load (“manipulation” condition), the patient group exhibited hyperactivity in the superior and inferior cerebellum and amygdala relative to that of controls. At a more liberal statistical threshold, patients exhibited hypoactivity in the left prefrontal and medial frontal/pre-SMA regions. These results indicate that verbal working memory in opioid-dependent individuals involves a disrupted cerebro-cerebellar circuit, and shed light on the neuroanatomical basis of working memory impairments in this population. PMID:21892700

  14. fMRI Validation of fNIRS Measurements During a Naturalistic Task

    PubMed Central

    Noah, J. Adam; Ono, Yumie; Nomoto, Yasunori; Shimada, Sotaro; Tachibana, Atsumichi; Zhang, Xian; Bronner, Shaw; Hirsch, Joy

    2015-01-01

    We present a method to compare brain activity recorded with near-infrared spectroscopy (fNIRS) in a dance video game task to that recorded in a reduced version of the task using fMRI (functional magnetic resonance imaging). Recently, it has been shown that fNIRS can accurately record functional brain activities equivalent to those concurrently recorded with functional magnetic resonance imaging for classic psychophysical tasks and simple finger tapping paradigms. However, an often quoted benefit of fNIRS is that the technique allows for studying neural mechanisms of complex, naturalistic behaviors that are not possible using the constrained environment of fMRI. Our goal was to extend the findings of previous studies that have shown high correlation between concurrently recorded fNIRS and fMRI signals to compare neural recordings obtained in fMRI procedures to those separately obtained in naturalistic fNIRS experiments. Specifically, we developed a modified version of the dance video game Dance Dance Revolution (DDR) to be compatible with both fMRI and fNIRS imaging procedures. In this methodology we explain the modifications to the software and hardware for compatibility with each technique as well as the scanning and calibration procedures used to obtain representative results. The results of the study show a task-related increase in oxyhemoglobin in both modalities and demonstrate that it is possible to replicate the findings of fMRI using fNIRS in a naturalistic task. This technique represents a methodology to compare fMRI imaging paradigms which utilize a reduced-world environment to fNIRS in closer approximation to naturalistic, full-body activities and behaviors. Further development of this technique may apply to neurodegenerative diseases, such as Parkinson’s disease, late states of dementia, or those with magnetic susceptibility which are contraindicated for fMRI scanning. PMID:26132365

  15. Review of thalamocortical resting-state fMRI studies in schizophrenia

    PubMed Central

    Giraldo-Chica, Monica; Woodward, Neil D.

    2017-01-01

    Brain circuitry underlying cognition, emotion, and perception is abnormal in schizophrenia. There is considerable evidence that the neuropathology of schizophrenia includes the thalamus, a key hub of cortical-subcortical circuitry and an important regulator of cortical activity. However, the thalamus is a heterogeneous structure composed of several nuclei with distinct inputs and cortical connections. Limitations of conventional neuroimaging methods and conflicting findings from post-mortem investigations have made it difficult to determine if thalamic pathology in schizophrenia is widespread or limited to specific thalamocortical circuits. Resting-state fMRI has proven invaluable for understanding the large-scale functional organization of the brain and investigating neural circuitry relevant to psychiatric disorders. This article summarizes resting-state fMRI investigations of thalamocortical functional connectivity in schizophrenia. Particular attention is paid to the course, diagnostic specificity, and clinical correlates of thalamocortical network dysfunction. PMID:27531067

  16. [Unconscious Acoustical Stimuli Effects on Event-related Potentials in Humans].

    PubMed

    Kopeikina, E A; Choroshich, V V; Aleksandrov, A Y; Ivanova, V Y

    2015-01-01

    Unconscious perception essentially affects human behavior. The main results in this area obtained in experiments with visual stimuli. However, the acoustical stimuli play not less important role in behavior. The main idea of this paper is the electroencephalographic investigation of unconscious acoustical stimulation effects on electro-physiological activity of the brain. For this purpose, the event-related potentials were acquired under unconscious stimulus priming paradigm. The one syllable, three letter length, Russian words and pseudo-words with single letter substitution were used as primes and targets. As a result, we find out that repetition and alternative priming similarly affects the event-related potential's component with 200 ms latency after target application in frontal parietal and temporal areas. Under alternative priming the direction of potential amplitude modification nearby 400 ms was altered for word and semi-word targets. Alternative priming reliably increase ERP's amplitude in 400 ms locality with pseudo-word targets and decrease it under word targets. Taking into account, that all participants were unable to distinguish the applied prime stimuli, we can assume that the event-related potential changes evoked by unconscious perception of acoustical stimuli. The ERP amplitude dynamics revealed in current investigation demonstrate the opportunity of subliminal acoustical stimuli to modulate the electrical activity evoked by verbal acoustical stimulation.

  17. Nonlinear Complexity Analysis of Brain fMRI Signals in Schizophrenia

    PubMed Central

    Sokunbi, Moses O.; Gradin, Victoria B.; Waiter, Gordon D.; Cameron, George G.; Ahearn, Trevor S.; Murray, Alison D.; Steele, Douglas J.; Staff, Roger T.

    2014-01-01

    We investigated the differences in brain fMRI signal complexity in patients with schizophrenia while performing the Cyberball social exclusion task, using measures of Sample entropy and Hurst exponent (H). 13 patients meeting diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM IV) criteria for schizophrenia and 16 healthy controls underwent fMRI scanning at 1.5 T. The fMRI data of both groups of participants were pre-processed, the entropy characterized and the Hurst exponent extracted. Whole brain entropy and H maps of the groups were generated and analysed. The results after adjusting for age and sex differences together show that patients with schizophrenia exhibited higher complexity than healthy controls, at mean whole brain and regional levels. Also, both Sample entropy and Hurst exponent agree that patients with schizophrenia have more complex fMRI signals than healthy controls. These results suggest that schizophrenia is associated with more complex signal patterns when compared to healthy controls, supporting the increase in complexity hypothesis, where system complexity increases with age or disease, and also consistent with the notion that schizophrenia is characterised by a dysregulation of the nonlinear dynamics of underlying neuronal systems. PMID:24824731

  18. Tentative Evidence for Striatal Hyperactivity in Adolescent Cannabis Using Boys: A Cross-Sectional Multicenter fMRI Study

    PubMed Central

    Jager, Gerry; Block, Robert I.; Luijten, Maartje; Ramsey, Nick F.

    2013-01-01

    Adolescents' risk-taking behavior has been linked to a maturational imbalance between reward (“go”) and inhibitory-control (“stop”) related brain circuitry. This may drive adolescent drug-taking, such as cannabis use. In this study we assessed the non-acute effects of adolescent cannabis use on reward-related brain function. We performed a two-site (United States and Netherlands; pooled data) functional magnetic resonance imaging (fMRI) study with a cross-sectional design. Twenty-one abstinent but frequent cannabis-using boys were compared with 24 non-using peers on reward-related brain function, using a monetary incentive delay task with fMRI. Focus was on anticipatory and response stages of reward and brain areas critically involved in reward processing like the striatum. Performance in users was normal. Region-of-interest analysis indicated striatal hyperactivity during anticipatory stages of reward in users. Intriguingly, this effect was most pronounced during non-rewarding events. Striatal hyperactivity in adolescent cannabis users may signify an overly sensitive motivational brain circuitry. Frequent cannabis use during adolescence may induce diminished ability to disengage the motivational circuit when no reward can be obtained. This could strengthen the search for reinforcements like drugs of abuse, even when facing the negative (non-rewarding) consequences. PMID:23909003

  19. Tentative evidence for striatal hyperactivity in adolescent cannabis-using boys: a cross-sectional multicenter fMRI study.

    PubMed

    Jager, Gerry; Block, Robert I; Luijten, Maartje; Ramsey, Nick F

    2013-01-01

    Adolescents' risk-taking behavior has been linked to a maturational imbalance between reward ("go") and inhibitory-control ("stop")-related brain circuitry. This may drive adolescent drug-taking, such as cannabis use. In this study, we assessed the non-acute effects of adolescent cannabis use on reward-related brain function. We performed a two-site (United States and Netherlands; pooled data) functional magnetic resonance imaging (fMRI) study with a cross-sectional design. Twenty-one abstinent but frequent cannabis-using boys were compared with 24 non-using peers on reward-related brain function, using a monetary incentive delay task with fMRI. Focus was on anticipatory and response stages of reward and brain areas critically involved in reward processing like the striatum. Performance in users was normal. Region-of-interest analysis indicated striatal hyperactivity during anticipatory stages of reward in users. Intriguingly, this effect was most pronounced during non-rewarding events. Striatal hyperactivity in adolescent cannabis users may signify an overly sensitive motivational brain circuitry. Frequent cannabis use during adolescence may induce diminished ability to disengage the motivational circuit when no reward can be obtained. This could strengthen the search for reinforcements like drugs of abuse, even when facing the negative (non-rewarding) consequences.

  20. Selective attention modulates neural substrates of repetition priming and "implicit" visual memory: suppressions and enhancements revealed by FMRI.

    PubMed

    Vuilleumier, Patrik; Schwartz, Sophie; Duhoux, Stéphanie; Dolan, Raymond J; Driver, Jon

    2005-08-01

    Attention can enhance processing for relevant information and suppress this for ignored stimuli. However, some residual processing may still arise without attention. Here we presented overlapping outline objects at study, with subjects attending to those in one color but not the other. Attended objects were subsequently recognized on a surprise memory test, whereas there was complete amnesia for ignored items on such direct explicit testing; yet reliable behavioral priming effects were found on indirect testing. Event-related fMRI examined neural responses to previously attended or ignored objects, now shown alone in the same or mirror-reversed orientation as before, intermixed with new items. Repetition-related decreases in fMRI responses for objects previously attended and repeated in the same orientation were found in the right posterior fusiform, lateral occipital, and left inferior frontal cortex. More anterior fusiform regions also showed some repetition decreases for ignored objects, irrespective of orientation. View-specific repetition decreases were found in the striate cortex, particularly for previously attended items. In addition, previously ignored objects produced some fMRI response increases in the bilateral lingual gyri, relative to new objects. Selective attention at exposure can thus produce several distinct long-term effects on processing of stimuli repeated later, with neural response suppression stronger for previously attended objects, and some response enhancement for previously ignored objects, with these effects arising in different brain areas. Although repetition decreases may relate to positive priming phenomena, the repetition increases for ignored objects shown here for the first time might relate to processes that can produce "negative priming" in some behavioral studies. These results reveal quantitative and qualitative differences between neural substrates of long-term repetition effects for attended versus unattended objects.

  1. Evaluation of preprocessing steps to compensate for magnetic field distortions due to body movements in BOLD fMRI

    PubMed Central

    Barry, Robert L.; Williams, Joy M.; Klassen, L. Martyn; Gallivan, Jason P.; Culham, Jody C.

    2009-01-01

    Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is currently the dominant technique for non-invasive investigation of brain functions. One of the challenges with BOLD fMRI, particularly at high fields, is compensation for the effects of spatiotemporally varying magnetic field inhomogeneities (ΔB0) caused by normal subject respiration, and in some studies, movement of the subject during the scan to perform tasks related to the functional paradigm. The presence of ΔB0 during data acquisition distorts reconstructed images and introduces extraneous fluctuations in the fMRI time series that decrease the BOLD contrast-to-noise ratio. Optimization of the fMRI data-processing pipeline to compensate for geometric distortions is of paramount importance to ensure high quality of fMRI data. To investigate ΔB0 caused by subject movement, echo-planar imaging scans were collected with and without concurrent motion of a phantom arm. The phantom arm was constructed and moved by the experimenter to emulate forearm motions while subjects remained still and observed a visual stimulation paradigm. These data were then subjected to eight different combinations of preprocessing steps. The best preprocessing pipeline included navigator correction, a complex phase regressor, and spatial smoothing. The synergy between navigator correction and phase regression reduced geometric distortions better than either step in isolation, and preconditioned the data to make them more amenable to the benefits of spatial smoothing. The combination of these steps provided a 10% increase in t-statistics compared to only navigator correction and spatial smoothing, and reduced the noise and false activations in regions where no legitimate effects would occur. PMID:19695810

  2. Using the relational event model (REM) to investigate the temporal dynamics of animal social networks.

    PubMed

    Tranmer, Mark; Marcum, Christopher Steven; Morton, F Blake; Croft, Darren P; de Kort, Selvino R

    2015-03-01

    Social dynamics are of fundamental importance in animal societies. Studies on nonhuman animal social systems often aggregate social interaction event data into a single network within a particular time frame. Analysis of the resulting network can provide a useful insight into the overall extent of interaction. However, through aggregation, information is lost about the order in which interactions occurred, and hence the sequences of actions over time. Many research hypotheses relate directly to the sequence of actions, such as the recency or rate of action, rather than to their overall volume or presence. Here, we demonstrate how the temporal structure of social interaction sequences can be quantified from disaggregated event data using the relational event model (REM). We first outline the REM, explaining why it is different from other models for longitudinal data, and how it can be used to model sequences of events unfolding in a network. We then discuss a case study on the European jackdaw, Corvus monedula , in which temporal patterns of persistence and reciprocity of action are of interest, and present and discuss the results of a REM analysis of these data. One of the strengths of a REM analysis is its ability to take into account different ways in which data are collected. Having explained how to take into account the way in which the data were collected for the jackdaw study, we briefly discuss the application of the model to other studies. We provide details of how the models may be fitted in the R statistical software environment and outline some recent extensions to the REM framework.

  3. Studying brain organization via spontaneous fMRI signal

    PubMed Central

    Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E

    2014-01-01

    In recent years, some substantial advances in understanding human (and non-human) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the “resting” brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called “resting state”. This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. PMID:25459408

  4. FMRI investigation of cross-cultural music comprehension.

    PubMed

    Morrison, Steven J; Demorest, Steven M; Aylward, Elizabeth H; Cramer, Steven C; Maravilla, Kenneth R

    2003-09-01

    The popular view of music as a "universal" language ignores the privileged position of the cultural insider in comprehending musical information unique to their own tradition. The purpose of this study was to test the hypothesis that listeners would demonstrate different neural activity in response to culturally familiar and unfamiliar music and that those differences may be affected by the extent of subjects' formal musical training. Just as familiar languages have been shown to use distinct brain processes, we hypothesized that an analogous difference might be found in music and that it may depend in part on subjects' formal musical knowledge. Using fMRI we compared the activation patterns of professional musicians and untrained controls reared in the United States as they listened to music from their culture (Western) and from an unfamiliar culture (Chinese). No overall differences in activation were observed for either subject group in response to the two musical styles, although there were differences in recall performance based on style and there were activation differences based on training. Trained listeners demonstrated additional activation in the right STG for both musics and in the right and left midfrontal regions for Western music and Chinese music, respectively. Our findings indicate that listening to culturally different musics may activate similar neural resources but with dissimilar results in recall performance.

  5. How instructions modify perception: An fMRI study investigating brain areas involved in attributing human agency

    PubMed Central

    Stanley, James; Gowen, Emma; Miall, R. Christopher

    2010-01-01

    Behavioural studies suggest that the processing of movement stimuli is influenced by beliefs about the agency behind these actions. The current study examined how activity in social and action related brain areas differs when participants were instructed that identical movement stimuli were either human or computer generated. Participants viewed a series of point-light animation figures derived from motion-capture recordings of a moving actor, while functional magnetic resonance imaging (fMRI) was used to monitor patterns of neural activity. The stimuli were scrambled to produce a range of stimulus realism categories; furthermore, before each trial participants were told that they were about to view either a recording of human movement or a computer-simulated pattern of movement. Behavioural results suggested that agency instructions influenced participants' perceptions of the stimuli. The fMRI analysis indicated different functions within the paracingulate cortex: ventral paracingulate cortex was more active for human compared to computer agency instructed trials across all stimulus types, whereas dorsal paracingulate cortex was activated more highly in conflicting conditions (human instruction, low realism or vice versa). These findings support the hypothesis that ventral paracingulate encodes stimuli deemed to be of human origin, whereas dorsal paracingulate cortex is involved more in the ascertainment of human or intentional agency during the observation of ambiguous stimuli. Our results highlight the importance of prior instructions or beliefs on movement processing and the role of the paracingulate cortex in integrating prior knowledge with bottom-up stimuli. PMID:20398769

  6. Large-Scale, High-Resolution Neurophysiological Maps Underlying fMRI of Macaque Temporal Lobe

    PubMed Central

    Papanastassiou, Alex M.; DiCarlo, James J.

    2013-01-01

    Maps obtained by functional magnetic resonance imaging (fMRI) are thought to reflect the underlying spatial layout of neural activity. However, previous studies have not been able to directly compare fMRI maps to high-resolution neurophysiological maps, particularly in higher level visual areas. Here, we used a novel stereo microfocal x-ray system to localize thousands of neural recordings across monkey inferior temporal cortex (IT), construct large-scale maps of neuronal object selectivity at subvoxel resolution, and compare those neurophysiology maps with fMRI maps from the same subjects. While neurophysiology maps contained reliable structure at the sub-millimeter scale, fMRI maps of object selectivity contained information at larger scales (>2.5 mm) and were only partly correlated with raw neurophysiology maps collected in the same subjects. However, spatial smoothing of neurophysiology maps more than doubled that correlation, while a variety of alternative transforms led to no significant improvement. Furthermore, raw spiking signals, once spatially smoothed, were as predictive of fMRI maps as local field potential signals. Thus, fMRI of the inferior temporal lobe reflects a spatially low-passed version of neurophysiology signals. These findings strongly validate the widespread use of fMRI for detecting large (>2.5 mm) neuronal domains of object selectivity but show that a complete understanding of even the most pure domains (e.g., faces vs nonface objects) requires investigation at fine scales that can currently only be obtained with invasive neurophysiological methods. PMID:24048850

  7. Functional and Neuroanatomical Specificity of Episodic Memory Dysfunction in Schizophrenia: An fMRI study of the Relational and Item-Specific Encoding Task

    PubMed Central

    Ragland, J. Daniel; Ranganath, Charan; Harms, Michael P.; Barch, Deanna M.; Gold, James M.; Layher, Evan; Lesh, Tyler A.; MacDonald, Angus W.; Niendam, Tara A.; Phillips, Joshua; Silverstein, Steven M.; Yonelinas, Andrew P.; Carter, Cameron S.

    2015-01-01

    Importance Individuals with schizophrenia (SZ) can encode item-specific information to support familiarity-based recognition, but are disproportionately impaired encoding inter-item relationships (relational encoding) and recollecting information. The Relational and Item-Specific Encoding (RiSE) paradigm has been used to disentangle these encoding and retrieval processes, which may be dependent on specific medial temporal lobe (MTL) and prefrontal cortex (PFC) subregions. Functional imaging during RiSE task performance could help to specify dysfunctional neural circuits in SZ that can be targeted for interventions to improve memory and functioning in the illness. Objectives To use functional magnetic resonance imaging (fMRI) to test the hypothesis that SZ disproportionately affects MTL and PFC subregions during relational encoding and retrieval, relative to item-specific memory processes. Imaging results from healthy comparison subjects (HC) will also be used to establish neural construct validity for RiSE. Design, Setting, and Participants This multi-site, case-control, cross-sectional fMRI study was conducted at five CNTRACS sites. The final sample included 52 clinically stable outpatients with SZ, and 57 demographically matched HC. Main Outcomes and Measures Behavioral performance speed and accuracy (d’) on item recognition and associative recognition tasks. Voxelwise statistical parametric maps for a priori MTL and PFC regions of interest (ROI), testing activation differences between relational and item-specific memory during encoding and retrieval. Results Item recognition was disproportionately impaired in SZ patients relative to controls following relational encoding. The differential deficit was accompanied by reduced dorsolateral prefrontal cortex (DLPFC) activation during relational encoding in SZ, relative to HC. Retrieval success (hits > misses) was associated with hippocampal (HI) activation in HC during relational item recognition and associative

  8. An FMRI-compatible Symbol Search task.

    PubMed

    Liebel, Spencer W; Clark, Uraina S; Xu, Xiaomeng; Riskin-Jones, Hannah H; Hawkshead, Brittany E; Schwarz, Nicolette F; Labbe, Donald; Jerskey, Beth A; Sweet, Lawrence H

    2015-03-01

    Our objective was to determine whether a Symbol Search paradigm developed for functional magnetic resonance imaging (FMRI) is a reliable and valid measure of cognitive processing speed (CPS) in healthy older adults. As all older adults are expected to experience cognitive declines due to aging, and CPS is one of the domains most affected by age, establishing a reliable and valid measure of CPS that can be administered inside an MR scanner may prove invaluable in future clinical and research settings. We evaluated the reliability and construct validity of a newly developed FMRI Symbol Search task by comparing participants' performance in and outside of the scanner and to the widely used and standardized Symbol Search subtest of the Wechsler Adult Intelligence Scale (WAIS). A brief battery of neuropsychological measures was also administered to assess the convergent and discriminant validity of the FMRI Symbol Search task. The FMRI Symbol Search task demonstrated high test-retest reliability when compared to performance on the same task administered out of the scanner (r=.791; p<.001). The criterion validity of the new task was supported, as it exhibited a strong positive correlation with the WAIS Symbol Search (r=.717; p<.001). Predicted convergent and discriminant validity patterns of the FMRI Symbol Search task were also observed. The FMRI Symbol Search task is a reliable and valid measure of CPS in healthy older adults and exhibits expected sensitivity to the effects of age on CPS performance.

  9. Oddball and incongruity effects during Stroop task performance: a comparative fMRI study on selective attention.

    PubMed

    Melcher, Tobias; Gruber, Oliver

    2006-11-22

    The aim of this fMRI study was to investigate and compare the neural mechanisms of selective attention during two different operationalizations of competition between task-relevant and task-irrelevant information: Stroop-incongruity and oddballs. For this purpose, we employed a Stroop-like oddball task in which subjects responded to the font size of presented word stimuli. Stroop-incongruity was created by (response-)incongruent word information while oddballs comprised low-frequency events in a task-irrelevant, unattended dimension. Thereby, in order to elucidate the influence of processing domain from which competition emanates, oddball conditions were created in two different attribute dimensions, color and word meaning. Either oddball condition was expected to evoke an orienting response, which participants would have to override in order to maintain adequate performance. Incongruent Stroop trials were expected to produce Stroop-interference so that subjects would have to override the predominant tendency to read and respond to word meaning. All competition conditions exhibited significantly prolonged reaction times compared to control trials, demonstrating that our experimental manipulation was indeed effective. fMRI data analyses delineated two discriminative components of competition: one component mainly related to motor preparation and another, primarily attentional component. Regarding the first, Stroop-interference increased activation mainly in regions implicated in motor control or response preparation. Regarding the second, Word-oddballs increased activation in a frontoparietal "attention network". Furthermore, Word-oddballs and Color-oddballs exhibited striking activation overlap mainly in prefrontal regions but also in posterior processing areas. Here, the data emphasized a prominent role of posterior lateral PFC in implementing top-down attentional control.

  10. Enhanced Thalamic Functional Connectivity with No fMRI Responses to Affected Forelimb Stimulation in Stroke-Recovered Rats.

    PubMed

    Shim, Woo H; Suh, Ji-Yeon; Kim, Jeong K; Jeong, Jaeseung; Kim, Young R

    2016-01-01

    Neurological recovery after stroke has been extensively investigated to provide better understanding of neurobiological mechanism, therapy, and patient management. Recent advances in neuroimaging techniques, particularly functional MRI (fMRI), have widely contributed to unravel the relationship between the altered neural function and stroke-affected brain areas. As results of previous investigations, the plastic reorganization and/or gradual restoration of the hemodynamic fMRI responses to neural stimuli have been suggested as relevant mechanisms underlying the stroke recovery process. However, divergent study results and modality-dependent outcomes have clouded the proper interpretation of variable fMRI signals. Here, we performed both evoked and resting state fMRI (rs-fMRI) to clarify the link between the fMRI phenotypes and post-stroke functional recovery. The experiments were designed to examine the altered neural activity within the contra-lesional hemisphere and other undamaged brain regions using rat models with large unilateral stroke, which despite the severe injury, exhibited nearly full recovery at ∼6 months after stroke. Surprisingly, both blood oxygenation level-dependent and blood volume-weighted (CBVw) fMRI activities elicited by electrical stimulation of the stroke-affected forelimb were completely absent, failing to reveal the neural origin of the behavioral recovery. In contrast, the functional connectivity maps showed highly robust rs-fMRI activity concentrated in the contra-lesional ventromedial nucleus of thalamus (VM). The negative finding in the stimuli-induced fMRI study using the popular rat middle cerebral artery model denotes weak association between the fMRI hemodynamic responses and neurological improvement. The results strongly caution the indiscreet interpretation of stroke-affected fMRI signals and demonstrate rs-fMRI as a complementary tool for efficiently characterizing stroke recovery.

  11. The neural basis of implicit moral attitude--an IAT study using event-related fMRI.

    PubMed

    Luo, Qian; Nakic, Marina; Wheatley, Thalia; Richell, Rebecca; Martin, Alex; Blair, R James R

    2006-05-01

    Recent models of morality have suggested the importance of affect-based automatic moral attitudes in moral reasoning. However, previous investigations of moral reasoning have frequently relied upon explicit measures that are susceptible to voluntary control. To investigate participant's automatic moral attitudes, we used a morality Implicit Association Test (IAT). Participants rated the legality of visually depicted legal and illegal behaviors of two different intensity levels (e.g., high intensity illegal = interpersonal violence; low intensity illegal = vandalism) both when the target concept (e.g., illegal) was behaviorally paired with an associated attribute (e.g., bad; congruent condition) or an unassociated attribute (e.g., good; incongruent condition). Behaviorally, an IAT effect was shown; RTs were faster in the congruent rather than incongruent conditions. At the neural level, implicit moral attitude, as indexed by increased BOLD response as a function of stimulus intensity, was associated with increased activation in the right amygdala and the ventromedial orbitofrontal cortex. In addition, performance on incongruent trials relative to congruent trials was associated with increased activity in the right ventrolateral prefrontal cortex (BA 47), left subgenual cingulate gyrus (BA 25), bilateral premotor cortex (BA 6) and the left caudate. The functional contributions of these regions in moral reasoning are discussed.

  12. Brain Activations Related to Saccadic Response Conflict are not Sensitive to Time on Task.

    PubMed

    Beldzik, Ewa; Domagalik, Aleksandra; Oginska, Halszka; Marek, Tadeusz; Fafrowicz, Magdalena

    2015-01-01

    Establishing a role of the dorsal medial frontal cortex in the performance monitoring and cognitive control has been a challenge to neuroscientists for the past decade. In light of recent findings, the conflict monitoring hypothesis has been elaborated to an action-outcome predictor theory. One of the findings that led to this re-evaluation was the fMRI study in which conflict-related brain activity was investigated in terms of the so-called time on task effect, i.e., a linear increase of the BOLD signal with longer response times. The aim of this study was to investigate brain regions involved in the processing of saccadic response conflict and to account for the time on task effect. A modified spatial cueing task was implemented in the event-related fMRI study with oculomotor responses. The results revealed several brain regions which show higher activity for incongruent trials in comparison to the congruent ones, including pre-supplementary motor area together with the frontal and parietal regions. Further analysis accounting for the effect of response time provided evidence that these brain activations were not sensitive to time on task but reflected purely the congruency effect.

  13. Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field.

    PubMed

    Moerel, Michelle; De Martino, Federico; Kemper, Valentin G; Schmitter, Sebastian; Vu, An T; Uğurbil, Kâmil; Formisano, Elia; Yacoub, Essa

    2018-01-01

    Following rapid technological advances, ultra-high field functional MRI (fMRI) enables exploring correlates of neuronal population activity at an increasing spatial resolution. However, as the fMRI blood-oxygenation-level-dependent (BOLD) contrast is a vascular signal, the spatial specificity of fMRI data is ultimately determined by the characteristics of the underlying vasculature. At 7T, fMRI measurement parameters determine the relative contribution of the macro- and microvasculature to the acquired signal. Here we investigate how these parameters affect relevant high-end fMRI analyses such as encoding, decoding, and submillimeter mapping of voxel preferences in the human auditory cortex. Specifically, we compare a T 2 * weighted fMRI dataset, obtained with 2D gradient echo (GE) EPI, to a predominantly T 2 weighted dataset obtained with 3D GRASE. We first investigated the decoding accuracy based on two encoding models that represented different hypotheses about auditory cortical processing. This encoding/decoding analysis profited from the large spatial coverage and sensitivity of the T 2 * weighted acquisitions, as evidenced by a significantly higher prediction accuracy in the GE-EPI dataset compared to the 3D GRASE dataset for both encoding models. The main disadvantage of the T 2 * weighted GE-EPI dataset for encoding/decoding analyses was that the prediction accuracy exhibited cortical depth dependent vascular biases. However, we propose that the comparison of prediction accuracy across the different encoding models may be used as a post processing technique to salvage the spatial interpretability of the GE-EPI cortical depth-dependent prediction accuracy. Second, we explored the mapping of voxel preferences. Large-scale maps of frequency preference (i.e., tonotopy) were similar across datasets, yet the GE-EPI dataset was preferable due to its larger spatial coverage and sensitivity. However, submillimeter tonotopy maps revealed biases in assigned frequency

  14. Regional Homogeneity Predicts Creative Insight: A Resting-State fMRI Study.

    PubMed

    Lin, Jiabao; Cui, Xuan; Dai, Xiaoying; Mo, Lei

    2018-01-01

    Creative insight plays an important role in our daily life. Previous studies have investigated the neural correlates of creative insight by functional magnetic resonance imaging (fMRI), however, the intrinsic resting-state brain activity associated with creative insight is still unclear. In the present study, we used regional homogeneity (ReHo) as an index in resting-state fMRI (rs-fMRI) to identify brain regions involved in individual differences in creative insight, which was compued by the response time (RT) of creative Chinese character chunk decomposition. The findings indicated that ReHo in the anterior cingulate cortex (ACC)/caudate nucleus (CN) and angular gyrus (AG)/superior temporal gyrus (STG)/inferior parietal lobe (IPL) negatively predicted creative insight. Furthermore, these findings suggested that spontaneous brain activity in multiple regions related to breaking and establishing mental sets, goal-directed solutions exploring, shifting attention, forming new associations and emotion experience contributes to creative insight. In conclusion, the present study provides new evidence to further understand the cognitive processing and neural correlates of creative insight.

  15. The effect of ageing on fMRI: Correction for the confounding effects of vascular reactivity evaluated by joint fMRI and MEG in 335 adults.

    PubMed

    Tsvetanov, Kamen A; Henson, Richard N A; Tyler, Lorraine K; Davis, Simon W; Shafto, Meredith A; Taylor, Jason R; Williams, Nitin; Cam-Can; Rowe, James B

    2015-06-01

    In functional magnetic resonance imaging (fMRI) research one is typically interested in neural activity. However, the blood-oxygenation level-dependent (BOLD) signal is a composite of both neural and vascular activity. As factors such as age or medication may alter vascular function, it is essential to account for changes in neurovascular coupling when investigating neurocognitive functioning with fMRI. The resting-state fluctuation amplitude (RSFA) in the fMRI signal (rsfMRI) has been proposed as an index of vascular reactivity. The RSFA compares favourably with other techniques such as breath-hold and hypercapnia, but the latter are more difficult to perform in some populations, such as older adults. The RSFA is therefore a candidate for use in adjusting for age-related changes in vascular reactivity in fMRI studies. The use of RSFA is predicated on its sensitivity to vascular rather than neural factors; however, the extent to which each of these factors contributes to RSFA remains to be characterized. The present work addressed these issues by comparing RSFA (i.e., rsfMRI variability) to proxy measures of (i) cardiovascular function in terms of heart rate (HR) and heart rate variability (HRV) and (ii) neural activity in terms of resting state magnetoencephalography (rsMEG). We derived summary scores of RSFA, a sensorimotor task BOLD activation, cardiovascular function and rsMEG variability for 335 healthy older adults in the population-based Cambridge Centre for Ageing and Neuroscience cohort (Cam-CAN; www.cam-can.com). Mediation analysis revealed that the effects of ageing on RSFA were significantly mediated by vascular factors, but importantly not by the variability in neuronal activity. Furthermore, the converse effects of ageing on the rsMEG variability were not mediated by vascular factors. We then examined the effect of RSFA scaling of task-based BOLD in the sensorimotor task. The scaling analysis revealed that much of the effects of age on task

  16. The effect of ageing on fMRI: Correction for the confounding effects of vascular reactivity evaluated by joint fMRI and MEG in 335 adults

    PubMed Central

    Henson, Richard N. A.; Tyler, Lorraine K.; Davis, Simon W.; Shafto, Meredith A.; Taylor, Jason R.; Williams, Nitin; Cam‐CAN; Rowe, James B.

    2015-01-01

    Abstract In functional magnetic resonance imaging (fMRI) research one is typically interested in neural activity. However, the blood‐oxygenation level‐dependent (BOLD) signal is a composite of both neural and vascular activity. As factors such as age or medication may alter vascular function, it is essential to account for changes in neurovascular coupling when investigating neurocognitive functioning with fMRI. The resting‐state fluctuation amplitude (RSFA) in the fMRI signal (rsfMRI) has been proposed as an index of vascular reactivity. The RSFA compares favourably with other techniques such as breath‐hold and hypercapnia, but the latter are more difficult to perform in some populations, such as older adults. The RSFA is therefore a candidate for use in adjusting for age‐related changes in vascular reactivity in fMRI studies. The use of RSFA is predicated on its sensitivity to vascular rather than neural factors; however, the extent to which each of these factors contributes to RSFA remains to be characterized. The present work addressed these issues by comparing RSFA (i.e., rsfMRI variability) to proxy measures of (i) cardiovascular function in terms of heart rate (HR) and heart rate variability (HRV) and (ii) neural activity in terms of resting state magnetoencephalography (rsMEG). We derived summary scores of RSFA, a sensorimotor task BOLD activation, cardiovascular function and rsMEG variability for 335 healthy older adults in the population‐based Cambridge Centre for Ageing and Neuroscience cohort (Cam‐CAN; www.cam-can.com). Mediation analysis revealed that the effects of ageing on RSFA were significantly mediated by vascular factors, but importantly not by the variability in neuronal activity. Furthermore, the converse effects of ageing on the rsMEG variability were not mediated by vascular factors. We then examined the effect of RSFA scaling of task‐based BOLD in the sensorimotor task. The scaling analysis revealed that much of the effects

  17. Towards Large-scale Twitter Mining for Drug-related Adverse Events.

    PubMed

    Bian, Jiang; Topaloglu, Umit; Yu, Fan

    2012-10-29

    Drug-related adverse events pose substantial risks to patients who consume post-market or Drug-related adverse events pose substantial risks to patients who consume post-market or investigational drugs. Early detection of adverse events benefits not only the drug regulators, but also the manufacturers for pharmacovigilance. Existing methods rely on patients' "spontaneous" self-reports that attest problems. The increasing popularity of social media platforms like the Twitter presents us a new information source for finding potential adverse events. Given the high frequency of user updates, mining Twitter messages can lead us to real-time pharmacovigilance. In this paper, we describe an approach to find drug users and potential adverse events by analyzing the content of twitter messages utilizing Natural Language Processing (NLP) and to build Support Vector Machine (SVM) classifiers. Due to the size nature of the dataset (i.e., 2 billion Tweets), the experiments were conducted on a High Performance Computing (HPC) platform using MapReduce, which exhibits the trend of big data analytics. The results suggest that daily-life social networking data could help early detection of important patient safety issues.

  18. A novel approach to calibrate the hemodynamic model using functional Magnetic Resonance Imaging (fMRI) measurements.

    PubMed

    Khoram, Nafiseh; Zayane, Chadia; Djellouli, Rabia; Laleg-Kirati, Taous-Meriem

    2016-03-15

    The calibration of the hemodynamic model that describes changes in blood flow and blood oxygenation during brain activation is a crucial step for successfully monitoring and possibly predicting brain activity. This in turn has the potential to provide diagnosis and treatment of brain diseases in early stages. We propose an efficient numerical procedure for calibrating the hemodynamic model using some fMRI measurements. The proposed solution methodology is a regularized iterative method equipped with a Kalman filtering-type procedure. The Newton component of the proposed method addresses the nonlinear aspect of the problem. The regularization feature is used to ensure the stability of the algorithm. The Kalman filter procedure is incorporated here to address the noise in the data. Numerical results obtained with synthetic data as well as with real fMRI measurements are presented to illustrate the accuracy, robustness to the noise, and the cost-effectiveness of the proposed method. We present numerical results that clearly demonstrate that the proposed method outperforms the Cubature Kalman Filter (CKF), one of the most prominent existing numerical methods. We have designed an iterative numerical technique, called the TNM-CKF algorithm, for calibrating the mathematical model that describes the single-event related brain response when fMRI measurements are given. The method appears to be highly accurate and effective in reconstructing the BOLD signal even when the measurements are tainted with high noise level (as high as 30%). Published by Elsevier B.V.

  19. Studying brain organization via spontaneous fMRI signal.

    PubMed

    Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E

    2014-11-19

    In recent years, some substantial advances in understanding human (and nonhuman) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the "resting" brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called "resting state." This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting-state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Accident sequence precursor events with age-related contributors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, G.A.; Kohn, W.E.

    1995-12-31

    The Accident Sequence Precursor (ASP) Program at ORNL analyzed about 14.000 Licensee Event Reports (LERs) filed by US nuclear power plants 1987--1993. There were 193 events identified as precursors to potential severe core accident sequences. These are reported in G/CR-4674. Volumes 7 through 20. Under the NRC Nuclear Plant Aging Research program, the authors evaluated these events to determine the extent to which component aging played a role. Events were selected that involved age-related equipment degradation that initiated an event or contributed to an event sequence. For the 7-year period, ORNL identified 36 events that involved aging degradation as amore » contributor to an ASP event. Except for 1992, the percentage of age-related events within the total number of ASP events over the 7-year period ({approximately}19%) appears fairly consistent up to 1991. No correlation between plant ape and number of precursor events was found. A summary list of the age-related events is presented in the report.« less

  1. Altered affective response in marijuana smokers: an FMRI study.

    PubMed

    Gruber, Staci A; Rogowska, Jadwiga; Yurgelun-Todd, Deborah A

    2009-11-01

    More than 94 million Americans have tried marijuana, and it remains the most widely used illicit drug in the nation. Investigations of the cognitive effects of marijuana report alterations in brain function during tasks requiring executive control, including inhibition and decision-making. Endogenous cannabinoids regulate a variety of emotional responses, including anxiety, mood control, and aggression; nevertheless, little is known about smokers' responses to affective stimuli. The anterior cingulate and amygdala play key roles in the inhibition of impulsive behavior and affective regulation, and studies using PET and fMRI have demonstrated changes within these regions in marijuana smokers. Given alterations in mood and perception often observed in smokers, we hypothesized altered fMRI patterns of response in 15 chronic heavy marijuana smokers relative to 15 non-marijuana smoking control subjects during the viewing of masked happy and fearful faces. Despite no between-group differences on clinical or demographic measures, smokers demonstrated a relative decrease in both anterior cingulate and amygdalar activity during masked affective stimuli compared to controls, who showed relative increases in activation within these regions during the viewing of masked faces. Findings indicate that chronic heavy marijuana smokers demonstrate altered activation of frontal and limbic systems while viewing masked faces, consistent with autoradiographic studies reporting high CB-1 receptor density in these regions. These data suggest differences in affective processing in chronic smokers, even when stimuli are presented below the level of conscious processing, and underscore the likelihood that marijuana smokers process emotional information differently from those who do not smoke, which may result in negative consequences.

  2. Contrasting Semantic versus Inhibitory Processing in the Angular Gyrus: An fMRI Study.

    PubMed

    Lewis, Gwyneth A; Poeppel, David; Murphy, Gregory L

    2018-06-06

    Recent studies of semantic memory have focused on dissociating the neural bases of two foundational components of human thought: taxonomic categories, which group similar objects like dogs and seals based on features, and thematic categories, which group dissimilar objects like dogs and leashes based on events. While there is emerging consensus that taxonomic concepts are represented in the anterior temporal lobe, there is disagreement over whether thematic concepts are represented in the angular gyrus (AG). We previously found AG sensitivity to both kinds of concepts; however, some accounts suggest that such activity reflects inhibition of irrelevant information rather than thematic activation. To test these possibilities, an fMRI experiment investigated both types of conceptual relations in the AG during two semantic judgment tasks. Each task trained participants to give negative responses (inhibition) or positive responses (activation) to word pairs based on taxonomic and thematic criteria of relatedness. Results showed AG engagement during both negative judgments and thematic judgments, but not during positive judgments about taxonomic pairs. Together, the results suggest that activity in the AG reflects functions that include both thematic (but not taxonomic) processing and inhibiting irrelevant semantic information.

  3. Single trial decoding of belief decision making from EEG and fMRI data using independent components features

    PubMed Central

    Douglas, Pamela K.; Lau, Edward; Anderson, Ariana; Head, Austin; Kerr, Wesley; Wollner, Margalit; Moyer, Daniel; Li, Wei; Durnhofer, Mike; Bramen, Jennifer; Cohen, Mark S.

    2013-01-01

    The complex task of assessing the veracity of a statement is thought to activate uniquely distributed brain regions based on whether a subject believes or disbelieves a given assertion. In the current work, we present parallel machine learning methods for predicting a subject's decision response to a given propositional statement based on independent component (IC) features derived from EEG and fMRI data. Our results demonstrate that IC features outperformed features derived from event related spectral perturbations derived from any single spectral band, yet were similar to accuracy across all spectral bands combined. We compared our diagnostic IC spatial maps with our conventional general linear model (GLM) results, and found that informative ICs had significant spatial overlap with our GLM results, yet also revealed unique regions like amygdala that were not statistically significant in GLM analyses. Overall, these results suggest that ICs may yield a parsimonious feature set that can be used along with a decision tree structure for interpretation of features used in classifying complex cognitive processes such as belief and disbelief across both fMRI and EEG neuroimaging modalities. PMID:23914164

  4. Haptic fMRI: using classification to quantify task-correlated noise during goal-directed reaching motions.

    PubMed

    Menon, Samir; Quigley, Paul; Yu, Michelle; Khatib, Oussama

    2014-01-01

    Neuroimaging artifacts in haptic functional magnetic resonance imaging (Haptic fMRI) experiments have the potential to induce spurious fMRI activation where there is none, or to make neural activation measurements appear correlated across brain regions when they are actually not. Here, we demonstrate that performing three-dimensional goal-directed reaching motions while operating Haptic fMRI Interface (HFI) does not create confounding motion artifacts. To test for artifacts, we simultaneously scanned a subject's brain with a customized soft phantom placed a few centimeters away from the subject's left motor cortex. The phantom captured task-related motion and haptic noise, but did not contain associated neural activation measurements. We quantified the task-related information present in fMRI measurements taken from the brain and the phantom by using a linear max-margin classifier to predict whether raw time series data could differentiate between motion planning or reaching. fMRI measurements in the phantom were uninformative (2σ, 45-73%; chance=50%), while those in primary motor, visual, and somatosensory cortex accurately classified task-conditions (2σ, 90-96%). We also localized artifacts due to the haptic interface alone by scanning a stand-alone fBIRN phantom, while an operator performed haptic tasks outside the scanner's bore with the interface at the same location. The stand-alone phantom had lower temporal noise and had similar mean classification but a tighter distribution (bootstrap Gaussian fit) than the brain phantom. Our results suggest that any fMRI measurement artifacts for Haptic fMRI reaching experiments are dominated by actual neural responses.

  5. Brain correlates of discourse processing: An fMRI investigation of irony and conventional metaphor comprehension

    PubMed Central

    Eviatar, Zohar; Just, Marcel Adam

    2006-01-01

    Higher levels of discourse processing evoke patterns of cognition and brain activation that extend beyond the literal comprehension of sentences. We used fMRI to examine brain activation patterns while 16 healthy participants read brief three-sentence stories that concluded with either a literal, metaphoric, or ironic sentence. The fMRI images acquired during the reading of the critical sentence revealed a selective response of the brain to the two types of nonliteral utterances. Metaphoric utterances resulted in significantly higher levels of activation in the left inferior frontal gyrus and in bilateral inferior temporal cortex than the literal and ironic utterances. Ironic statements resulted in significantly higher activation levels than literal statements in the right superior and middle temporal gyri, with metaphoric statements resulting in intermediate levels in these regions. The findings show differential hemispheric sensitivity to these aspects of figurative language, and are relevant to models of the functional cortical architecture of language processing in connected discourse. PMID:16806316

  6. Resting-state fMRI and social cognition: An opportunity to connect.

    PubMed

    Doruyter, Alex; Groenewold, Nynke A; Dupont, Patrick; Stein, Dan J; Warwick, James M

    2017-09-01

    Many psychiatric disorders are characterized by altered social cognition. The importance of social cognition has previously been recognized by the National Institute of Mental Health Research Domain Criteria project, in which it features as a core domain. Social task-based functional magnetic resonance imaging (fMRI) currently offers the most direct insight into how the brain processes social information; however, resting-state fMRI may be just as important in understanding the biology and network nature of social processing. Resting-state fMRI allows researchers to investigate the functional relationships between brain regions in a neutral state: so-called resting functional connectivity (RFC). There is evidence that RFC is predictive of how the brain processes information during social tasks. This is important because it shifts the focus from possibly context-dependent aberrations to context-independent aberrations in functional network architecture. Rather than being analysed in isolation, the study of resting-state brain networks shows promise in linking results of task-based fMRI results, structural connectivity, molecular imaging findings, and performance measures of social cognition-which may prove crucial in furthering our understanding of the social brain. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Test-Retest Reliability of fMRI Brain Activity during Memory Encoding

    PubMed Central

    Brandt, David J.; Sommer, Jens; Krach, Sören; Bedenbender, Johannes; Kircher, Tilo; Paulus, Frieder M.; Jansen, Andreas

    2013-01-01

    The mechanisms underlying hemispheric specialization of memory are not completely understood. Functional magnetic resonance imaging (fMRI) can be used to develop and test models of hemispheric specialization. In particular for memory tasks however, the interpretation of fMRI results is often hampered by the low reliability of the data. In the present study we therefore analyzed the test-retest reliability of fMRI brain activation related to an implicit memory encoding task, with a particular focus on brain activity of the medial temporal lobe (MTL). Fifteen healthy subjects were scanned with fMRI on two sessions (average retest interval 35 days) using a commonly applied novelty encoding paradigm contrasting known and unknown stimuli. To assess brain lateralization, we used three different stimuli classes that differed in their verbalizability (words, scenes, fractals). Test-retest reliability of fMRI brain activation was assessed by an intraclass-correlation coefficient (ICC), describing the stability of inter-individual differences in the brain activation magnitude over time. We found as expected a left-lateralized brain activation network for the words paradigm, a bilateral network for the scenes paradigm, and predominantly right-hemispheric brain activation for the fractals paradigm. Although these networks were consistently activated in both sessions on the group level, across-subject reliabilities were only poor to fair (ICCs ≤ 0.45). Overall, the highest ICC values were obtained for the scenes paradigm, but only in strongly activated brain regions. In particular the reliability of brain activity of the MTL was poor for all paradigms. In conclusion, for novelty encoding paradigms the interpretation of fMRI results on a single subject level is hampered by its low reliability. More studies are needed to optimize the retest reliability of fMRI activation for memory tasks. PMID:24367338

  8. Working Memory in 8 Kleine-Levin Syndrome Patients: An fMRI Study

    PubMed Central

    Engstrom, Maria; Vigren, Patrick; Karlsson, Thomas; Landtblom, Anne-Marie

    2009-01-01

    Study Objectives: The objectives of this study were to investigate possible neuropathology behind the Kleine-Levin Syndrome (KLS), a severe form of hypersomnia with onset during adolescence. Design: Functional magnetic resonance imaging (fMRI) applying a verbal working memory task was used in conjunction with a paper-and-pencil version of the task. Participants: Eight patients with KLS and 12 healthy volunteers participated in the study. Results: The results revealed a pattern of increased thalamic activity and reduced frontal activity (involving the anterior cingulate and adjacent prefrontal cortex) while performing a reading span task. Discussion: This finding may explain the clinical symptoms observed in KLS, in that the thalamus is known to be involved in the control of sleep. Given the increasing access to fMRI, this investigation may aid clinicians in the diagnosis of patients suffering from severe forms of hypersomnia. Citation: Engström M; Vigren P; Karlsson T; Landtblom AM. Working memory in 8 kleine-levin syndrome patients: an fmri study. SLEEP 2009;32(5):681–688. PMID:19480235

  9. An EEG Finger-Print of fMRI deep regional activation.

    PubMed

    Meir-Hasson, Yehudit; Kinreich, Sivan; Podlipsky, Ilana; Hendler, Talma; Intrator, Nathan

    2014-11-15

    This work introduces a general framework for producing an EEG Finger-Print (EFP) which can be used to predict specific brain activity as measured by fMRI at a given deep region. This new approach allows for improved EEG spatial resolution based on simultaneous fMRI activity measurements. Advanced signal processing and machine learning methods were applied on EEG data acquired simultaneously with fMRI during relaxation training guided by on-line continuous feedback on changing alpha/theta EEG measure. We focused on demonstrating improved EEG prediction of activation in sub-cortical regions such as the amygdala. Our analysis shows that a ridge regression model that is based on time/frequency representation of EEG data from a single electrode, can predict the amygdala related activity significantly better than a traditional theta/alpha activity sampled from the best electrode and about 1/3 of the times, significantly better than a linear combination of frequencies with a pre-defined delay. The far-reaching goal of our approach is to be able to reduce the need for fMRI scanning for probing specific sub-cortical regions such as the amygdala as the basis for brain-training procedures. On the other hand, activity in those regions can be characterized with higher temporal resolution than is obtained by fMRI alone thus revealing additional information about their processing mode. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Hostile attribution biases for relationally provocative situations and event-related potentials.

    PubMed

    Godleski, Stephanie A; Ostrov, Jamie M; Houston, Rebecca J; Schlienz, Nicolas J

    2010-04-01

    This exploratory study investigates how hostile attribution biases for relationally provocative situations may be related to neurocognitive processing using the P300 event-related potential. Participants were 112 (45 women) emerging adults enrolled in a large, public university in upstate New York. Participants completed self-report measures on relational aggression and hostile attribution biases and performed an auditory perseveration task to elicit the P300. It was found that hostile attribution biases for relational provocation situations was associated with a larger P300 amplitude above and beyond the role of hostile attribution biases for instrumental situations, relational aggression, and gender. Larger P300 amplitude is interpreted to reflect greater allocation of cognitive resources or enhanced "attending" to salient stimuli. Implications for methodological approaches to studying aggression and hostile attribution biases and for theory are discussed, as well as implications for the fields of developmental psychology and psychopathology. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Modulation of cognitive control levels via manipulation of saccade trial-type probability assessed with event-related BOLD fMRI.

    PubMed

    Pierce, Jordan E; McDowell, Jennifer E

    2016-02-01

    Cognitive control supports flexible behavior adapted to meet current goals and can be modeled through investigation of saccade tasks with varying cognitive demands. Basic prosaccades (rapid glances toward a newly appearing stimulus) are supported by neural circuitry, including occipital and posterior parietal cortex, frontal and supplementary eye fields, and basal ganglia. These trials can be contrasted with complex antisaccades (glances toward the mirror image location of a stimulus), which are characterized by greater functional magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) signal in the aforementioned regions and recruitment of additional regions such as dorsolateral prefrontal cortex. The current study manipulated the cognitive demands of these saccade tasks by presenting three rapid event-related runs of mixed saccades with a varying probability of antisaccade vs. prosaccade trials (25, 50, or 75%). Behavioral results showed an effect of trial-type probability on reaction time, with slower responses in runs with a high antisaccade probability. Imaging results exhibited an effect of probability in bilateral pre- and postcentral gyrus, bilateral superior temporal gyrus, and medial frontal gyrus. Additionally, the interaction between saccade trial type and probability revealed a strong probability effect for prosaccade trials, showing a linear increase in activation parallel to antisaccade probability in bilateral temporal/occipital, posterior parietal, medial frontal, and lateral prefrontal cortex. In contrast, antisaccade trials showed elevated activation across all runs. Overall, this study demonstrated that improbable performance of a typically simple prosaccade task led to augmented BOLD signal to support changing cognitive control demands, resulting in activation levels similar to the more complex antisaccade task. Copyright © 2016 the American Physiological Society.

  12. Uncertainty in anticipation of uncomfortable rectal distension is modulated by the autonomic nervous system--a fMRI study in healthy volunteers.

    PubMed

    Rubio, Amandine; Van Oudenhove, Lukas; Pellissier, Sonia; Ly, Huynh Giao; Dupont, Patrick; Lafaye de Micheaux, Hugo; Tack, Jan; Dantzer, Cécile; Delon-Martin, Chantal; Bonaz, Bruno

    2015-02-15

    The human brain responds both before and during the application of aversive stimuli. Anticipation allows the organism to prepare its nociceptive system to respond adequately to the subsequent stimulus. The context in which an uncomfortable stimulus is experienced may also influence neural processing. Uncertainty of occurrence, timing and intensity of an aversive event may lead to increased anticipatory anxiety, fear, physiological arousal and sensory perception. We aimed to identify, in healthy volunteers, the effects of uncertainty in the anticipation of uncomfortable rectal distension, and the impact of the autonomic nervous system (ANS) activity and anxiety-related psychological variables on neural mechanisms of anticipation of rectal distension using fMRI. Barostat-controlled uncomfortable rectal distensions were preceded by cued uncertain or certain anticipation in 15 healthy volunteers in a fMRI protocol at 3T. Electrocardiographic data were concurrently registered by MR scanner. The low frequency (LF)-component of the heart rate variability (HRV) time-series was extracted and inserted as a regressor in the fMRI model ('LF-HRV model'). The impact of ANS activity was analyzed by comparing the fMRI signal in the 'standard model' and in the 'LF-HRV model' across the different anticipation and distension conditions. The scores of the psychological questionnaires and the rating of perceived anticipatory anxiety were included as covariates in the fMRI data analysis. Our experiments led to the following key findings: 1) the subgenual anterior cingulate cortex (sgACC) is the only activation site that relates to uncertainty in healthy volunteers and is directly correlated to individual questionnaire score for pain-related anxiety; 2) uncertain anticipation of rectal distension involved several relevant brain regions, namely activation of sgACC and medial prefrontal cortex and deactivation of amygdala, insula, thalamus, secondary somatosensory cortex, supplementary

  13. The Magical Activation of Left Amygdala when Reading Harry Potter: An fMRI Study on How Descriptions of Supra-Natural Events Entertain and Enchant

    PubMed Central

    Hsu, Chun-Ting; Jacobs, Arthur M.; Altmann, Ulrike; Conrad, Markus

    2015-01-01

    Literature containing supra-natural, or magical events has enchanted generations of readers. When reading narratives describing such events, readers mentally simulate a text world different from the real one. The corresponding violation of world-knowledge during this simulation likely increases cognitive processing demands for ongoing discourse integration, catches readers’ attention, and might thus contribute to the pleasure and deep emotional experience associated with ludic immersive reading. In the present study, we presented participants in an MR scanner with passages selected from the Harry Potter book series, half of which described magical events, while the other half served as control condition. Passages in both conditions were closely matched for relevant psycholinguistic variables including, e.g., emotional valence and arousal, passage-wise mean word imageability and frequency, and syntactic complexity. Post-hoc ratings showed that readers considered supra-natural contents more surprising and more strongly associated with reading pleasure than control passages. In the fMRI data, we found stronger neural activation for the supra-natural than the control condition in bilateral inferior frontal gyri, bilateral inferior parietal lobules, left fusiform gyrus, and left amygdala. The increased activation in the amygdala (part of the salience and emotion processing network) appears to be associated with feelings of surprise and the reading pleasure, which supra-natural events, full of novelty and unexpectedness, brought about. The involvement of bilateral inferior frontal gyri likely reflects higher cognitive processing demand due to world knowledge violations, whereas increased attention to supra-natural events is reflected in inferior frontal gyri and inferior parietal lobules that are part of the fronto-parietal attention network. PMID:25671315

  14. The magical activation of left amygdala when reading Harry Potter: an fMRI study on how descriptions of supra-natural events entertain and enchant.

    PubMed

    Hsu, Chun-Ting; Jacobs, Arthur M; Altmann, Ulrike; Conrad, Markus

    2015-01-01

    Literature containing supra-natural, or magical events has enchanted generations of readers. When reading narratives describing such events, readers mentally simulate a text world different from the real one. The corresponding violation of world-knowledge during this simulation likely increases cognitive processing demands for ongoing discourse integration, catches readers' attention, and might thus contribute to the pleasure and deep emotional experience associated with ludic immersive reading. In the present study, we presented participants in an MR scanner with passages selected from the Harry Potter book series, half of which described magical events, while the other half served as control condition. Passages in both conditions were closely matched for relevant psycholinguistic variables including, e.g., emotional valence and arousal, passage-wise mean word imageability and frequency, and syntactic complexity. Post-hoc ratings showed that readers considered supra-natural contents more surprising and more strongly associated with reading pleasure than control passages. In the fMRI data, we found stronger neural activation for the supra-natural than the control condition in bilateral inferior frontal gyri, bilateral inferior parietal lobules, left fusiform gyrus, and left amygdala. The increased activation in the amygdala (part of the salience and emotion processing network) appears to be associated with feelings of surprise and the reading pleasure, which supra-natural events, full of novelty and unexpectedness, brought about. The involvement of bilateral inferior frontal gyri likely reflects higher cognitive processing demand due to world knowledge violations, whereas increased attention to supra-natural events is reflected in inferior frontal gyri and inferior parietal lobules that are part of the fronto-parietal attention network.

  15. Integration of EEG source imaging and fMRI during continuous viewing of natural movies.

    PubMed

    Whittingstall, Kevin; Bartels, Andreas; Singh, Vanessa; Kwon, Soyoung; Logothetis, Nikos K

    2010-10-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are noninvasive neuroimaging tools which can be used to measure brain activity with excellent temporal and spatial resolution, respectively. By combining the neural and hemodynamic recordings from these modalities, we can gain better insight into how and where the brain processes complex stimuli, which may be especially useful in patients with different neural diseases. However, due to their vastly different spatial and temporal resolutions, the integration of EEG and fMRI recordings is not always straightforward. One fundamental obstacle has been that paradigms used for EEG experiments usually rely on event-related paradigms, while fMRI is not limited in this regard. Therefore, here we ask whether one can reliably localize stimulus-driven EEG activity using the continuously varying feature intensities occurring in natural movie stimuli presented over relatively long periods of time. Specifically, we asked whether stimulus-driven aspects in the EEG signal would be co-localized with the corresponding stimulus-driven BOLD signal during free viewing of a movie. Secondly, we wanted to integrate the EEG signal directly with the BOLD signal, by estimating the underlying impulse response function (IRF) that relates the BOLD signal to the underlying current density in the primary visual area (V1). We made sequential fMRI and 64-channel EEG recordings in seven subjects who passively watched 2-min-long segments of a James Bond movie. To analyze EEG data in this natural setting, we developed a method based on independent component analysis (ICA) to reject EEG artifacts due to blinks, subject movement, etc., in a way unbiased by human judgment. We then calculated the EEG source strength of this artifact-free data at each time point of the movie within the entire brain volume using low-resolution electromagnetic tomography (LORETA). This provided for every voxel in the brain (i.e., in 3D space) an

  16. Analysis and visualization of single-trial event-related potentials

    NASA Technical Reports Server (NTRS)

    Jung, T. P.; Makeig, S.; Westerfield, M.; Townsend, J.; Courchesne, E.; Sejnowski, T. J.

    2001-01-01

    In this study, a linear decomposition technique, independent component analysis (ICA), is applied to single-trial multichannel EEG data from event-related potential (ERP) experiments. Spatial filters derived by ICA blindly separate the input data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain sources. Both the data and their decomposition are displayed using a new visualization tool, the "ERP image," that can clearly characterize single-trial variations in the amplitudes and latencies of evoked responses, particularly when sorted by a relevant behavioral or physiological variable. These tools were used to analyze data from a visual selective attention experiment on 28 control subjects plus 22 neurological patients whose EEG records were heavily contaminated with blink and other eye-movement artifacts. Results show that ICA can separate artifactual, stimulus-locked, response-locked, and non-event-related background EEG activities into separate components, a taxonomy not obtained from conventional signal averaging approaches. This method allows: (1) removal of pervasive artifacts of all types from single-trial EEG records, (2) identification and segregation of stimulus- and response-locked EEG components, (3) examination of differences in single-trial responses, and (4) separation of temporally distinct but spatially overlapping EEG oscillatory activities with distinct relationships to task events. The proposed methods also allow the interaction between ERPs and the ongoing EEG to be investigated directly. We studied the between-subject component stability of ICA decomposition of single-trial EEG epochs by clustering components with similar scalp maps and activation power spectra. Components accounting for blinks, eye movements, temporal muscle activity, event-related potentials, and event-modulated alpha activities were largely replicated across subjects. Applying ICA and ERP image

  17. Simulating fiction: individual differences in literature comprehension revealed with FMRI.

    PubMed

    Nijhof, Annabel D; Willems, Roel M

    2015-01-01

    When we read literary fiction, we are transported to fictional places, and we feel and think along with the characters. Despite the importance of narrative in adult life and during development, the neurocognitive mechanisms underlying fiction comprehension are unclear. We used functional magnetic resonance imaging (fMRI) to investigate how individuals differently employ neural networks important for understanding others' beliefs and intentions (mentalizing), and for sensori-motor simulation while listening to excerpts from literary novels. Localizer tasks were used to localize both the cortical motor network and the mentalizing network in participants after they listened to excerpts from literary novels. Results show that participants who had high activation in anterior medial prefrontal cortex (aMPFC; part of the mentalizing network) when listening to mentalizing content of literary fiction, had lower motor cortex activity when they listened to action-related content of the story, and vice versa. This qualifies how people differ in their engagement with fiction: some people are mostly drawn into a story by mentalizing about the thoughts and beliefs of others, whereas others engage in literature by simulating more concrete events such as actions. This study provides on-line neural evidence for the existence of qualitatively different styles of moving into literary worlds, and adds to a growing body of literature showing the potential to study narrative comprehension with neuroimaging methods.

  18. Age-Dependent Mesial Temporal Lobe Lateralization in Language FMRI

    PubMed Central

    Sepeta, Leigh N.; Berl, Madison M.; Wilke, Marko; You, Xiaozhen; Mehta, Meera; Xu, Benjamin; Inati, Sara; Dustin, Irene; Khan, Omar; Austermuehle, Alison; Theodore, William H.; Gaillard, William D.

    2015-01-01

    Objective FMRI activation of the mesial temporal lobe (MTL) may be important for epilepsy surgical planning. We examined MTL activation and lateralization during language fMRI in children and adults with focal epilepsy. Methods 142 controls and patients with left hemisphere focal epilepsy (Pediatric: epilepsy, n = 17, mean age = 9.9 ± 2.0; controls, n = 48; mean age = 9.1 ± 2.6; Adult: epilepsy, n = 20, mean age = 26.7 ± 5.8; controls, n = 57, mean age = 26.2 ± 7.5) underwent 3T fMRI using a language task (auditory description decision task). Image processing and analyses were conducted in SPM8; ROIs included MTL, Broca’s area, and Wernicke’s area. We assessed group and individual MTL activation, and examined degree of lateralization. Results Patients and controls (pediatric and adult) demonstrated group and individual MTL activation during language fMRI. MTL activation was left lateralized for adults but less so in children (p’s < 0.005). Patients did not differ from controls in either age group. Stronger left-lateralized MTL activation was related to older age (p = 0.02). Language lateralization (Broca’s and Wernicke’s) predicted 19% of the variance in MTL lateralization for adults (p = 0.001), but not children. Significance Language fMRI may be used to elicit group and individual MTL activation. The developmental difference in MTL lateralization and its association with language lateralization suggests a developmental shift in lateralization of MTL function, with increased left lateralization across the age span. This shift may help explain why children have better memory outcomes following resection compared to adults. PMID:26696589

  19. FMRI activity during associative encoding is correlated with cardiorespiratory fitness and source memory performance in older adults

    PubMed Central

    Hayes, Scott M.; Hayes, Jasmeet P.; Williams, Victoria J.; Liu, Huiting; Verfaellie, Mieke

    2017-01-01

    Older adults (OA), relative to young adults (YA), exhibit age-related alterations in functional Magnetic Resonance Imaging (fMRI) activity during associative encoding, which contributes to deficits in source memory. Yet, there are remarkable individual differences in brain health and memory performance among OA. Cardiorespiratory fitness (CRF) is one individual difference factor that may attenuate brain aging, and thereby contribute to enhanced source memory in OA. To examine this possibility, 26 OA and 31 YA completed a treadmill-based exercise test to evaluate CRF (peak VO2) and fMRI to examine brain activation during a face-name associative encoding task. Our results indicated that in OA, peak VO2 was positively associated with fMRI activity during associative encoding in multiple regions including bilateral prefrontal cortex, medial frontal cortex, bilateral thalamus and left hippocampus. Next, a conjunction analysis was conducted to assess whether CRF influenced age-related differences in fMRI activation. We classified OA as high or low CRF and compared their activation to YA. High fit OA (HFOA) showed fMRI activation more similar to YA than low fit OA (LFOA) (i.e., reduced age-related differences) in multiple regions including thalamus, posterior and prefrontal cortex. Conversely, in other regions, primarily in prefrontal cortex, HFOA, but not LFOA, demonstrated greater activation than YA (i.e., increased age-related differences). Further, fMRI activity in these brain regions was positively associated with source memory among OA, with a mediation model demonstrating that associative encoding activation in medial frontal cortex indirectly influenced the relationship between peak VO2 and subsequent source memory performance. These results indicate that CRF may contribute to neuroplasticity among OA, reducing age-related differences in some brain regions, consistent with the brain maintenance hypothesis, but accentuating age-differences in other regions

  20. Towards a neural circuit model of verbal humor processing: an fMRI study of the neural substrates of incongruity detection and resolution.

    PubMed

    Chan, Yu-Chen; Chou, Tai-Li; Chen, Hsueh-Chih; Yeh, Yu-Chu; Lavallee, Joseph P; Liang, Keng-Chen; Chang, Kuo-En

    2013-02-01

    The present study builds on our previous study within the framework of Wyer and Collin's comprehension-elaboration theory of humor processing. In this study, an attempt is made to segregate the neural substrates of incongruity detection and incongruity resolution during the comprehension of verbal jokes. Although a number of fMRI studies have investigated the incongruity-resolution process, the differential neurological substrates of comprehension are still not fully understood. The present study utilized an event-related fMRI design incorporating three conditions (unfunny, nonsensical and funny) to examine distinct brain regions associated with the detection and resolution of incongruities. Stimuli in the unfunny condition contained no incongruities; stimuli in the nonsensical condition contained irresolvable incongruities; and stimuli in the funny condition contained resolvable incongruities. The results showed that the detection of incongruities was associated with greater activation in the right middle temporal gyrus and right medial frontal gyrus, and the resolution of incongruities with greater activation in the left superior frontal gyrus and left inferior parietal lobule. Further analysis based on participants' rating scores provided converging results. Our findings suggest a three-stage neural circuit model of verbal humor processing: incongruity detection and incongruity resolution during humor comprehension and inducement of the feeling of amusement during humor elaboration. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Altered prefrontal brain activity in persons at risk for Alzheimer's disease: an fMRI study.

    PubMed

    Elgh, Eva; Larsson, Anne; Eriksson, Sture; Nyberg, Lars

    2003-06-01

    Early diagnosis of Alzheimer's disease (AD) is critical for adequate treatment and care. Recently it has been shown that functional magnetic resonance imaging (fMRI) can be important in preclinical detection of AD. The purpose of this study was to examine possible differences in memory-related brain activation between persons with high versus low risk for AD. This was achieved by combining a validated neurocognitive screening battery (the 7-minutes test) with memory assessment and fMRI. One hundred two healthy community-living persons with subjective memory complaints were recruited through advertisement and tested with the 7-minutes test. Based on their test performance they were classified as having either high (n = 8) or low risk (n = 94) for AD. Six high-risk individuals and six age-, sex-, and education-matched low-risk individuals were investigated with fMRI while engaged in episodic memory tasks. The high-risk individuals performed worse than low-risk individuals on tests of episodic memory. Patterns of brain activity during episodic encoding and retrieval showed significant group differences (p < .05 corrected). During both encoding and retrieval, the low-risk persons showed increased activity relative to a baseline condition in prefrontal brain regions that previously have been implicated in episodic memory. By contrast, the high-risk persons did not significantly activate any prefrontal regions, but instead showed increased activity in visual occipito-temporal regions. Patterns of prefrontal brain activity related to episodic memory differ between persons with high versus low risk for AD, and lowered prefrontal activity may predict subsequent disease.

  2. An fMRI investigation of the cognitive reappraisal of negative memories

    PubMed Central

    Holland, Alisha C.; Kensinger, Elizabeth A.

    2013-01-01

    Episodic memory retrieval can be influenced by individuals’ current goals, including those that are emotional in nature. Participants underwent an fMRI scan while reappraising, or changing the way they thought about aversive images they had previously encoded, to down-regulate (i.e., decrease), up-regulate (i.e., increase), or maintain the emotional intensity associated with their recall. A conjunction analysis between down- and up-regulation during the entire 12-sec recall period revealed that both commonly activated reappraisal-related regions, particularly in the lateral and medial prefrontal cortex (PFC). However, when we analyzed a reappraisal instruction phase prior to recall and then divided the recall phase into the time when individuals were first searching for their memories and later elaborating on their details, we found that down- and up-regulation engaged greater neural activity at different time points. Up-regulation engaged greater PFC activity than down-regulation or maintenance during the reappraisal instruction phase. In contrast, down-regulation engaged greater lateral PFC activity as images were being searched for and retrieved. Maintaining the emotional intensity associated with the aversive images engaged similar regions to a greater extent than either reappraisal condition as participants elaborated on the details of the images they were holding in mind. Our findings suggest that down- and up-regulation engage similar neural regions during memory retrieval, but differ in the timing of this engagement. PMID:23500898

  3. Developmental Changes in Memory Encoding: Insights from Event-Related Potentials

    ERIC Educational Resources Information Center

    Rollins, Leslie; Riggins, Tracy

    2013-01-01

    The aim of the present study was to investigate developmental changes in encoding processes between 6-year-old children and adults using event-related potentials (ERPs). Although episodic memory ("EM") effects have been reported in both children and adults at retrieval and subsequent memory effects have been established in adults, no…

  4. Topologic analysis and comparison of brain activation in children with epilepsy versus controls: an fMRI study

    NASA Astrophysics Data System (ADS)

    Oweis, Khalid J.; Berl, Madison M.; Gaillard, William D.; Duke, Elizabeth S.; Blackstone, Kaitlin; Loew, Murray H.; Zara, Jason M.

    2010-03-01

    This paper describes the development of novel computer-aided analysis algorithms to identify the language activation patterns at a certain Region of Interest (ROI) in Functional Magnetic Resonance Imaging (fMRI). Previous analysis techniques have been used to compare typical and pathologic activation patterns in fMRI images resulting from identical tasks but none of them analyzed activation topographically in a quantitative manner. This paper presents new analysis techniques and algorithms capable of identifying a pattern of language activation associated with localization related epilepsy. fMRI images of 64 healthy individuals and 31 patients with localization related epilepsy have been studied and analyzed on an ROI basis. All subjects are right handed with normal MRI scans and have been classified into three age groups (4-6, 7-9, 10-12 years). Our initial efforts have focused on investigating activation in the Left Inferior Frontal Gyrus (LIFG). A number of volumetric features have been extracted from the data. The LIFG has been cut into slices and the activation has been investigated topographically on a slice by slice basis. Overall, a total of 809 features have been extracted, and correlation analysis was applied to eliminate highly correlated features. Principal Component analysis was then applied to account only for major components in the data and One-Way Analysis of Variance (ANOVA) has been applied to test for significantly different features between normal and patient groups. Twenty Nine features have were found to be significantly different (p<0.05) between patient and control groups

  5. Comparative Study of SVM Methods Combined with Voxel Selection for Object Category Classification on fMRI Data

    PubMed Central

    Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li

    2011-01-01

    Background Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Methodology/Principal Findings Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. Conclusions/Significance The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal

  6. A Sensitivity Analysis of fMRI Balloon Model.

    PubMed

    Zayane, Chadia; Laleg-Kirati, Taous Meriem

    2015-01-01

    Functional magnetic resonance imaging (fMRI) allows the mapping of the brain activation through measurements of the Blood Oxygenation Level Dependent (BOLD) contrast. The characterization of the pathway from the input stimulus to the output BOLD signal requires the selection of an adequate hemodynamic model and the satisfaction of some specific conditions while conducting the experiment and calibrating the model. This paper, focuses on the identifiability of the Balloon hemodynamic model. By identifiability, we mean the ability to estimate accurately the model parameters given the input and the output measurement. Previous studies of the Balloon model have somehow added knowledge either by choosing prior distributions for the parameters, freezing some of them, or looking for the solution as a projection on a natural basis of some vector space. In these studies, the identification was generally assessed using event-related paradigms. This paper justifies the reasons behind the need of adding knowledge, choosing certain paradigms, and completing the few existing identifiability studies through a global sensitivity analysis of the Balloon model in the case of blocked design experiment.

  7. Aging affects the interaction between attentional control and source memory: an fMRI study.

    PubMed

    Dulas, Michael R; Duarte, Audrey

    2014-12-01

    Age-related source memory impairments may be due, at least in part, to deficits in executive processes mediated by the PFC at both study and test. Behavioral work suggests that providing environmental support at encoding, such as directing attention toward item-source associations, may improve source memory and reduce age-related deficits in the recruitment of these executive processes. The present fMRI study investigated the effects of directed attention and aging on source memory encoding and retrieval. At study, participants were shown pictures of objects. They were either asked to attend to the objects and their color (source) or to their size. At test, participants determined if objects were seen before, and if so, whether they were the same color as previously. Behavioral results showed that direction of attention improved source memory for both groups; however, age-related deficits persisted. fMRI results revealed that, across groups, direction of attention facilitated medial temporal lobe-mediated contextual binding processes during study and attenuated right PFC postretrieval monitoring effects at test. However, persistent age-related source memory deficits may be related to increased recruitment of medial anterior PFC during encoding, indicative of self-referential processing, as well as underrecruitment of lateral anterior PFC-mediated relational processes. Taken together, this study suggests that, even when supported, older adults may fail to selectively encode goal-relevant contextual details supporting source memory performance.

  8. Retrieval orientation and the control of recollection: an fMRI study

    PubMed Central

    Morcom, Alexa M.; Rugg, Michael D.

    2012-01-01

    The present study used event-related fMRI to examine the impact of the adoption of different retrieval orientations on the neural correlates of recollection. In each of two study-test blocks, subjects encoded a mixed list of words and pictures, and then performed a recognition memory task with words as the test items. In one block, the requirement was to respond positively to test items corresponding to studied words, and to reject both new items and items corresponding to the studied pictures. In the other block, positive responses were made to test items corresponding to pictures, and items corresponding to words were classified along with the new items. Based on previous event-related potential (ERP) findings, we predicted that in the word task, recollection-related effects would be found for target information only. This prediction was fulfilled. In both tasks, targets elicited the characteristic pattern of recollection-related activity. By contrast, non-targets elicited this pattern in the picture task, but not in the word task. Importantly, the left angular gyrus was among the regions demonstrating this dissociation of non-target recollection effects according to retrieval orientation. The findings for the angular gyrus parallel prior findings for the `left-parietal' ERP old/new effect, and add to the evidence that the effect reflects recollection-related neural activity originating in left ventral parietal cortex. Thus, the results converge with the previous ERP findings to suggest that the processing of retrieval cues can be constrained to prevent the retrieval of goal-irrelevant information. PMID:23110678

  9. Neural Correlates of Metonymy Resolution

    ERIC Educational Resources Information Center

    Rapp, Alexander M.; Erb, Michael; Grodd, Wolfgang; Bartels, Mathias; Markert, Katja

    2011-01-01

    Metonymies are exemplary models for complex semantic association processes at the sentence level. We investigated processing of metonymies using event-related functional magnetic resonance imaging (fMRI). During an 1.5 Tesla fMRI scan, 14 healthy subjects (12 female) read 124 short German sentences with either literal (like "Africa is arid"),…

  10. Extreme water-related weather events and waterborne disease.

    PubMed

    Cann, K F; Thomas, D Rh; Salmon, R L; Wyn-Jones, A P; Kay, D

    2013-04-01

    Global climate change is expected to affect the frequency, intensity and duration of extreme water-related weather events such as excessive precipitation, floods, and drought. We conducted a systematic review to examine waterborne outbreaks following such events and explored their distribution between the different types of extreme water-related weather events. Four medical and meteorological databases (Medline, Embase, GeoRef, PubMed) and a global electronic reporting system (ProMED) were searched, from 1910 to 2010. Eighty-seven waterborne outbreaks involving extreme water-related weather events were identified and included, alongside 235 ProMED reports. Heavy rainfall and flooding were the most common events preceding outbreaks associated with extreme weather and were reported in 55·2% and 52·9% of accounts, respectively. The most common pathogens reported in these outbreaks were Vibrio spp. (21·6%) and Leptospira spp. (12·7%). Outbreaks following extreme water-related weather events were often the result of contamination of the drinking-water supply (53·7%). Differences in reporting of outbreaks were seen between the scientific literature and ProMED. Extreme water-related weather events represent a risk to public health in both developed and developing countries, but impact will be disproportionate and likely to compound existing health disparities.

  11. Multi-channel linear descriptors for event-related EEG collected in brain computer interface.

    PubMed

    Pei, Xiao-mei; Zheng, Chong-xun; Xu, Jin; Bin, Guang-yu; Wang, Hong-wu

    2006-03-01

    By three multi-channel linear descriptors, i.e. spatial complexity (omega), field power (sigma) and frequency of field changes (phi), event-related EEG data within 8-30 Hz were investigated during imagination of left or right hand movement. Studies on the event-related EEG data indicate that a two-channel version of omega, sigma and phi could reflect the antagonistic ERD/ERS patterns over contralateral and ipsilateral areas and also characterize different phases of the changing brain states in the event-related paradigm. Based on the selective two-channel linear descriptors, the left and right hand motor imagery tasks are classified to obtain satisfactory results, which testify the validity of the three linear descriptors omega, sigma and phi for characterizing event-related EEG. The preliminary results show that omega, sigma together with phi have good separability for left and right hand motor imagery tasks, which could be considered for classification of two classes of EEG patterns in the application of brain computer interfaces.

  12. Cerebral somatic pain modulation during autogenic training in fMRI.

    PubMed

    Naglatzki, R P; Schlamann, M; Gasser, T; Ladd, M E; Sure, U; Forsting, M; Gizewski, E R

    2012-10-01

    Functional magnetic resonance imaging (fMRI) studies are increasingly employed in different conscious states. Autogenic training (AT) is a common clinically used relaxation method. The purpose of this study was to investigate the cerebral modulation of pain activity patterns due to AT and to correlate the effects to the degree of experience with AT and strength of stimuli. Thirteen volunteers familiar with AT were studied with fMRI during painful electrical stimulation in a block design alternating between resting state and electrical stimulation, both without AT and while employing the same paradigm when utilizing their AT abilities. The subjective rating of painful stimulation and success in modulation during AT was assessed. During painful electrical stimulation without AT, fMRI revealed activation of midcingulate, right secondary sensory, right supplementary motor, and insular cortices, the right thalamus and left caudate nucleus. In contrast, utilizing AT only activation of left insular and supplementary motor cortices was revealed. The paired t-test revealed pain-related activation in the midcingulate, posterior cingulate and left anterior insular cortices for the condition without AT, and activation in the left ventrolateral prefrontal cortex under AT. Activation of the posterior cingulate cortex and thalamus correlated with the amplitude of electrical stimulation. This study revealed an effect on cerebral pain processing while performing AT. This might represent the cerebral correlate of different painful stimulus processing by subjects who are trained in performing relaxation techniques. However, due to the absence of a control group, further studies are needed to confirm this theory. © 2012 European Federation of International Association for the Study of Pain Chapters.

  13. A combined event-related potential and neuropsychological investigation of developmental dyscalculia.

    PubMed

    Soltész, Fruzsina; Szucs, Dénes; Dékány, Judit; Márkus, Attila; Csépe, Valéria

    2007-05-01

    Adolescents with developmental dyscalculia (DD) but no other impairments were examined with neuropsychological tests and with event-related brain potentials (ERPs). A matched control group and an adult control group were tested as well. Behavioural and ERP markers of the magnitude representation were examined in a task where subjects decided whether visually presented Hindu-Arabic digits were smaller or larger than 5. There was a normal behavioural numerical distance effect (better performance for digits closer to the reference number than for digits further away from it) in DD. This suggests that semantic magnitude relations depend on a phenomenologically (nearly) normal magnitude representation in DD, at least in the range of single-digit numbers. However, minor discrepancies between DD subjects and controls suggest that the perception of the magnitude of single digits may be slightly impaired in DD. Early ERP distance effects were similar in DD and in control subjects. In contrast, between 400 and 440 ms there was a focused right-parietal ERP distance effect in controls, but not in DD. This suggests that early, more automatic processing of digits was similar in both groups, and between-group processing differences arose later, during more complex controlled processing. This view is supported by signs of decelerated executive functioning in developmental dyscalculia. Further, DD subjects did not differ from controls in general mental rotation and in body parts knowledge, but were markedly impaired in mental finger rotation, finger knowledge, and tactile performance.

  14. Multimodal imaging of repetition priming: Using fMRI, MEG, and intracranial EEG to reveal spatiotemporal profiles of word processing.

    PubMed

    McDonald, Carrie R; Thesen, Thomas; Carlson, Chad; Blumberg, Mark; Girard, Holly M; Trongnetrpunya, Amy; Sherfey, Jason S; Devinsky, Orrin; Kuzniecky, Rubin; Dolye, Werner K; Cash, Sydney S; Leonard, Matthew K; Hagler, Donald J; Dale, Anders M; Halgren, Eric

    2010-11-01

    Repetition priming is a core feature of memory processing whose anatomical correlates remain poorly understood. In this study, we use advanced multimodal imaging (functional magnetic resonance imaging (fMRI) and magnetoencephalography; MEG) to investigate the spatiotemporal profile of repetition priming. We use intracranial electroencephalography (iEEG) to validate our fMRI/MEG measurements. Twelve controls completed a semantic judgment task with fMRI and MEG that included words presented once (new, 'N') and words that repeated (old, 'O'). Six patients with epilepsy completed the same task during iEEG recordings. Blood-oxygen level dependent (BOLD) responses for N vs. O words were examined across the cortical surface and within regions of interest. MEG waveforms for N vs. O words were estimated using a noise-normalized minimum norm solution, and used to interpret the timecourse of fMRI. Spatial concordance was observed between fMRI and MEG repetition effects from 350 to 450 ms within bilateral occipitotemporal and medial temporal, left prefrontal, and left posterior temporal cortex. Additionally, MEG revealed widespread sources within left temporoparietal regions, whereas fMRI revealed bilateral reductions in occipitotemporal and left superior frontal, and increases in inferior parietal, precuneus, and dorsolateral prefrontal activity. BOLD suppression in left posterior temporal, left inferior prefrontal, and right occipitotemporal cortex correlated with MEG repetition-related reductions. IEEG responses from all three regions supported the timecourse of MEG and localization of fMRI. Furthermore, iEEG decreases to repeated words were associated with decreased gamma power in several regions, providing evidence that gamma oscillations are tightly coupled to cognitive phenomena and reflect regional activations seen in the BOLD signal. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Multimodal imaging of repetition priming: Using fMRI, MEG, and intracranial EEG to reveal spatiotemporal profiles of word processing

    PubMed Central

    McDonald, Carrie R.; Thesen, Thomas; Carlson, Chad; Blumberg, Mark; Girard, Holly M.; Trongnetrpunya, Amy; Sherfey, Jason S.; Devinsky, Orrin; Kuzniecky, Rubin; Dolye, Werner K.; Cash, Sydney S.; Leonard, Matt K.; Hagler, Donald J.; Dale, Anders M.; Halgren, Eric

    2010-01-01

    Repetition priming is a core feature of memory processing whose anatomical correlates remain poorly understood. In this study, we use advanced multimodal imaging (functional magnetic resonance imaging (fMRI) and magnetoencephalography; MEG) to investigate the spatiotemporal profile of repetition priming. We use intracranial electroencephalography (iEEG) to validate our fMRI/MEG measurements. Twelve controls completed a semantic judgment task with fMRI and MEG that included words presented once (new, ‘N’) and words that repeated (old, ‘O’). Six patients with epilepsy completed the same task during iEEG recordings. Blood-oxygen level dependent (BOLD) responses for N vs O words were examined across the cortical surface and within regions of interest. MEG waveforms for N vs O words were estimated using a noise-normalized minimum norm solution, and used to interpret the timecourse of fMRI. Spatial concordance was observed between fMRI and MEG repetition effects from 350–450ms within bilateral occipitotemporal and medial temporal, left prefrontal, and left posterior temporal cortex. Additionally, MEG revealed widespread sources within left temporoparietal regions, whereas fMRI revealed bilateral reductions in occipitotemporal and left superior frontal, and increases in inferior parietal, precuneus, and dorsolateral prefrontal activity. BOLD suppression in left posterior temporal, left inferior prefrontal, and right occipitotemporal cortex correlated with MEG repetition-related reductions. IEEG responses from all three regions supported the timecourse of MEG and localization of fMRI. Furthermore, iEEG decreases to repeated words were associated with decreased gamma power in several regions, providing evidence that gamma oscillations are tightly coupled to cognitive phenomena and reflect regional activations seen in the BOLD signal. PMID:20620212

  16. Neural Correlates of Perceiving Emotional Faces and Bodies in Developmental Prosopagnosia: An Event-Related fMRI-Study

    PubMed Central

    Van den Stock, Jan; van de Riet, Wim A. C.; Righart, Ruthger; de Gelder, Beatrice

    2008-01-01

    Many people experience transient difficulties in recognizing faces but only a small number of them cannot recognize their family members when meeting them unexpectedly. Such face blindness is associated with serious problems in everyday life. A better understanding of the neuro-functional basis of impaired face recognition may be achieved by a careful comparison with an equally unique object category and by a adding a more realistic setting involving neutral faces as well facial expressions. We used event-related functional magnetic resonance imaging (fMRI) to investigate the neuro-functional basis of perceiving faces and bodies in three developmental prosopagnosics (DP) and matched healthy controls. Our approach involved materials consisting of neutral faces and bodies as well as faces and bodies expressing fear or happiness. The first main result is that the presence of emotional information has a different effect in the patient vs. the control group in the fusiform face area (FFA). Neutral faces trigger lower activation in the DP group, compared to the control group, while activation for facial expressions is the same in both groups. The second main result is that compared to controls, DPs have increased activation for bodies in the inferior occipital gyrus (IOG) and for neutral faces in the extrastriate body area (EBA), indicating that body and face sensitive processes are less categorically segregated in DP. Taken together our study shows the importance of using naturalistic emotional stimuli for a better understanding of developmental face deficits. PMID:18797499

  17. A Neural Network Approach to fMRI Binocular Visual Rivalry Task Analysis

    PubMed Central

    Bertolino, Nicola; Ferraro, Stefania; Nigri, Anna; Bruzzone, Maria Grazia; Ghielmetti, Francesco; Leonardi, Matilde; Agostino Parati, Eugenio; Grazia Bruzzone, Maria; Franceschetti, Silvana; Caldiroli, Dario; Sattin, Davide; Giovannetti, Ambra; Pagani, Marco; Covelli, Venusia; Ciaraffa, Francesca; Vela Gomez, Jesus; Reggiori, Barbara; Ferraro, Stefania; Nigri, Anna; D'Incerti, Ludovico; Minati, Ludovico; Andronache, Adrian; Rosazza, Cristina; Fazio, Patrik; Rossi, Davide; Varotto, Giulia; Panzica, Ferruccio; Benti, Riccardo; Marotta, Giorgio; Molteni, Franco

    2014-01-01

    The purpose of this study was to investigate whether artificial neural networks (ANN) are able to decode participants’ conscious experience perception from brain activity alone, using complex and ecological stimuli. To reach the aim we conducted pattern recognition data analysis on fMRI data acquired during the execution of a binocular visual rivalry paradigm (BR). Twelve healthy participants were submitted to fMRI during the execution of a binocular non-rivalry (BNR) and a BR paradigm in which two classes of stimuli (faces and houses) were presented. During the binocular rivalry paradigm, behavioral responses related to the switching between consciously perceived stimuli were also collected. First, we used the BNR paradigm as a functional localizer to identify the brain areas involved the processing of the stimuli. Second, we trained the ANN on the BNR fMRI data restricted to these regions of interest. Third, we applied the trained ANN to the BR data as a ‘brain reading’ tool to discriminate the pattern of neural activity between the two stimuli. Fourth, we verified the consistency of the ANN outputs with the collected behavioral indicators of which stimulus was consciously perceived by the participants. Our main results showed that the trained ANN was able to generalize across the two different tasks (i.e. BNR and BR) and to identify with high accuracy the cognitive state of the participants (i.e. which stimulus was consciously perceived) during the BR condition. The behavioral response, employed as control parameter, was compared with the network output and a statistically significant percentage of correspondences (p-value <0.05) were obtained for all subjects. In conclusion the present study provides a method based on multivariate pattern analysis to investigate the neural basis of visual consciousness during the BR phenomenon when behavioral indicators lack or are inconsistent, like in disorders of consciousness or sedated patients. PMID:25121595

  18. Ventilator-Related Adverse Events: A Taxonomy and Findings From 3 Incident Reporting Systems.

    PubMed

    Pham, Julius Cuong; Williams, Tamara L; Sparnon, Erin M; Cillie, Tam K; Scharen, Hilda F; Marella, William M

    2016-05-01

    to the purpose of the database and the source of the reports, resulting in significant differences in reported event categories across the 3 systems, and (3) a public-private collaboration for investigating ventilator-related adverse events under the P5S model is feasible. Copyright © 2016 by Daedalus Enterprises.

  19. Evaluating cognitive models of visual word recognition using fMRI: Effects of lexical and sublexical variables.

    PubMed

    Protopapas, Athanassios; Orfanidou, Eleni; Taylor, J S H; Karavasilis, Efstratios; Kapnoula, Efthymia C; Panagiotaropoulou, Georgia; Velonakis, Georgios; Poulou, Loukia S; Smyrnis, Nikolaos; Kelekis, Dimitrios

    2016-03-01

    In this study predictions of the dual-route cascaded (DRC) model of word reading were tested using fMRI. Specifically, patterns of co-localization were investigated: (a) between pseudoword length effects and a pseudowords vs. fixation contrast, to reveal the sublexical grapho-phonemic conversion (GPC) system; and (b) between word frequency effects and a words vs. pseudowords contrast, to reveal the orthographic and phonological lexicon. Forty four native speakers of Greek were scanned at 3T in an event-related lexical decision task with three event types: (a) 150 words in which frequency, length, bigram and syllable frequency, neighborhood, and orthographic consistency were decorrelated; (b) 150 matched pseudowords; and (c) fixation. Whole-brain analysis failed to reveal the predicted co-localizations. Further analysis with participant-specific regions of interest defined within masks from the group contrasts revealed length effects in left inferior parietal cortex and frequency effects in the left middle temporal gyrus. These findings could be interpreted as partially consistent with the existence of the GPC system and phonological lexicon of the model, respectively. However, there was no evidence in support of an orthographic lexicon, weakening overall support for the model. The results are discussed with respect to the prospect of using neuroimaging in cognitive model evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Further dissociating the processes involved in recognition memory: an FMRI study.

    PubMed

    Henson, Richard N A; Hornberger, Michael; Rugg, Michael D

    2005-07-01

    Based on an event-related potential study by Rugg et al. [Dissociation of the neural correlates of implicit and explicit memory. Nature, 392, 595-598, 1998], we attempted to isolate the hemodynamic correlates of recollection, familiarity, and implicit memory within a single verbal recognition memory task using event-related fMRI. Words were randomly cued for either deep or shallow processing, and then intermixed with new words for yes/no recognition. The number of studied words was such that, whereas most were recognized ("hits"), an appreciable number of shallow-studied words were not ("misses"). Comparison of deep hits versus shallow hits at test revealed activations in regions including the left inferior parietal gyrus. Comparison of shallow hits versus shallow misses revealed activations in regions including the bilateral intraparietal sulci, the left posterior middle frontal gyrus, and the left frontopolar cortex. Comparison of hits versus correct rejections revealed a relative deactivation in an anterior left medial-temporal region (most likely the perirhinal cortex). Comparison of shallow misses versus correct rejections did not reveal response decreases in any regions expected on the basis of previous imaging studies of priming. Given these and previous data, we associate the left inferior parietal activation with recollection, the left anterior medial-temporal deactivation with familiarity, and the intraparietal and prefrontal responses with target detection. The absence of differences between shallow misses and correct rejections means that the hemodynamic correlates of implicit memory remain unclear.

  1. Resting states are resting traits--an FMRI study of sex differences and menstrual cycle effects in resting state cognitive control networks.

    PubMed

    Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten

    2014-01-01

    To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the current study is particularly interested in fronto-parietal resting state networks. Resting state fMRI was measured in sixteen women during three different cycle phases (menstrual, follicular, and luteal). Fifteen men underwent three sessions in corresponding time intervals. We used independent component analysis to identify four fronto-parietal networks. The results showed sex differences in two of these networks with women exhibiting higher functional connectivity in general, including the prefrontal cortex. Menstrual cycle effects on resting states were non-existent. It is concluded that sex differences in resting state fMRI might reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hormones on the functional connectivity in the resting brain.

  2. Varenicline and abnormal sleep related events.

    PubMed

    Savage, Ruth L; Zekarias, Alem; Caduff-Janosa, Pia

    2015-05-01

    To assess adverse drug reaction reports of "abnormal sleep related events" associated with varenicline, a partial agonist to the α4β2 subtype of nicotinic acetylcholine receptors on neurones, indicated for smoking cessation. Twenty-seven reports of "abnormal sleep related events" often associated with abnormal dreams, nightmares, or somnambulism, which are known to be associated with varenicline use, were identified in the World Health Organisation (WHO) Global Individual Case Safety Reports Database. Original anonymous reports were obtained from the four national pharmacovigilance centers that submitted these reports and assessed for reaction description and causality. These 27 reports include 10 of aggressive activity occurring during sleep and seven of other sleep related harmful or potentially harmful activities, such as apparently deliberate self-harm, moving a child or a car, or lighting a stove or a cigarette. Assessment of these 17 reports of aggression or other actual or potential harm showed that nine patients recovered or were recovering on varenicline withdrawal and there were no consistent alternative explanations. Thirteen patients experienced single events, and two had multiple events. Frequency was not stated for the remaining two patients. The descriptions of the reports of aggression during sleep with violent dreaming are similar to those of rapid eye movement sleep behavior disorder and also nonrapid eye movement (NREM) sleep parasomnias in some adults. Patients who experience somnambulism or dreams of a violent nature while taking varenicline should be advised to consult their health providers. Consideration should be given to clarifying the term sleep disorders in varenicline product information and including sleep related harmful and potentially harmful events. © 2015 Associated Professional Sleep Societies, LLC.

  3. Competition between Visual Events Modulates the Influence of Salience during Free-Viewing of Naturalistic Videos

    PubMed Central

    Nardo, Davide; Console, Paola; Reverberi, Carlo; Macaluso, Emiliano

    2016-01-01

    In daily life the brain is exposed to a large amount of external signals that compete for processing resources. The attentional system can select relevant information based on many possible combinations of goal-directed and stimulus-driven control signals. Here, we investigate the behavioral and physiological effects of competition between distinctive visual events during free-viewing of naturalistic videos. Nineteen healthy subjects underwent functional magnetic resonance imaging (fMRI) while viewing short video-clips of everyday life situations, without any explicit goal-directed task. Each video contained either a single semantically-relevant event on the left or right side (Lat-trials), or multiple distinctive events in both hemifields (Multi-trials). For each video, we computed a salience index to quantify the lateralization bias due to stimulus-driven signals, and a gaze index (based on eye-tracking data) to quantify the efficacy of the stimuli in capturing attention to either side. Behaviorally, our results showed that stimulus-driven salience influenced spatial orienting only in presence of multiple competing events (Multi-trials). fMRI results showed that the processing of competing events engaged the ventral attention network, including the right temporoparietal junction (R TPJ) and the right inferior frontal cortex. Salience was found to modulate activity in the visual cortex, but only in the presence of competing events; while the orienting efficacy of Multi-trials affected activity in both the visual cortex and posterior parietal cortex (PPC). We conclude that in presence of multiple competing events, the ventral attention system detects semantically-relevant events, while regions of the dorsal system make use of saliency signals to select relevant locations and guide spatial orienting. PMID:27445760

  4. Readers select a comprehension mode independent of pronoun: Evidence from fMRI during narrative comprehension.

    PubMed

    Hartung, Franziska; Hagoort, Peter; Willems, Roel M

    2017-07-01

    Perspective is a crucial feature for communicating about events. Yet it is unclear how linguistically encoded perspective relates to cognitive perspective taking. Here, we tested the effect of perspective taking with short literary stories. Participants listened to stories with 1st or 3rd person pronouns referring to the protagonist, while undergoing fMRI. When comparing action events with 1st and 3rd person pronouns, we found no evidence for a neural dissociation depending on the pronoun. A split sample approach based on the self-reported experience of perspective taking revealed 3 comprehension preferences. One group showed a strong 1st person preference, another a strong 3rd person preference, while a third group engaged in 1st and 3rd person perspective taking simultaneously. Comparing brain activations of the groups revealed different neural networks. Our results suggest that comprehension is perspective dependent, but not on the perspective suggested by the text, but on the reader's (situational) preference. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Jasdzewski, G.; Strangman, G.; Wagner, J.; Kwong, K. K.; Poldrack, R. A.; Boas, D. A.; Sutton, J. P. (Principal Investigator)

    2003-01-01

    Several current brain imaging techniques rest on the assumption of a tight coupling between neural activity and hemodynamic response. The nature of this neurovascular coupling, however, is not completely understood. There is some evidence for a decoupling of these processes at the onset of neural activity, which manifests itself as a momentary increase in the relative concentration of deoxyhemoglobin (HbR). The existence of this early component of the hemodynamic response function, however, is controversial, as it is inconsistently found. Near infrared spectroscopy (NIRS) allows quantification of levels of oxyhemoglobin (HbO(2)) and HbR during task performance in humans. We acquired NIRS data during performance of simple motor and visual tasks, using rapid-presentation event-related paradigms. Our results demonstrate that rapid, event-related NIRS can provide robust estimates of the hemodynamic response without artifacts due to low-frequency signal components, unlike data from blocked designs. In both the motor and visual data the onset of the increase in HbO(2) occurs before HbR decreases, and there is a poststimulus undershoot. Our results also show that total blood volume (HbT) drops before HbO(2) and undershoots baseline, raising a new issue for neurovascular models. We did not find early deoxygenation in the motor data using physiologically plausible values for the differential pathlength factor, but did find one in the visual data. We suggest that this difference, which is consistent with functional magnetic resonance imaging (fMRI) data, may be attributable to different capillary transit times in these cortices.

  6. The subthalamic microlesion story in Parkinson's disease: electrode insertion-related motor improvement with relative cortico-subcortical hypoactivation in fMRI.

    PubMed

    Jech, Robert; Mueller, Karsten; Urgošík, Dušan; Sieger, Tomáš; Holiga, Štefan; Růžička, Filip; Dušek, Petr; Havránková, Petra; Vymazal, Josef; Růžička, Evžen

    2012-01-01

    Electrode implantation into the subthalamic nucleus for deep brain stimulation in Parkinson's disease (PD) is associated with a temporary motor improvement occurring prior to neurostimulation. We studied this phenomenon by functional magnetic resonance imaging (fMRI) when considering the Unified Parkinson's Disease Rating Scale (UPDRS-III) and collateral oedema. Twelve patients with PD (age 55.9± (SD)6.8 years, PD duration 9-15 years) underwent bilateral electrode implantation into the subthalamic nucleus. The fMRI was carried out after an overnight withdrawal of levodopa (OFF condition): (i) before and (ii) within three days after surgery in absence of neurostimulation. The motor task involved visually triggered finger tapping. The OFF/UPDRS-III score dropped from 33.8±8.7 before to 23.3±4.8 after the surgery (p<0.001), correlating with the postoperative oedema score (p<0.05). During the motor task, bilateral activation of the thalamus and basal ganglia, motor cortex and insula were preoperatively higher than after surgery (p<0.001). The results became more enhanced after compensation for the oedema and UPDRS-III scores. In addition, the rigidity and axial symptoms score correlated inversely with activation of the putamen and globus pallidus (p<0.0001). One month later, the OFF/UPDRS-III score had returned to the preoperative level (35.8±7.0, p = 0.4).In conclusion, motor improvement induced by insertion of an inactive electrode into the subthalamic nucleus caused an acute microlesion which was at least partially related to the collateral oedema and associated with extensive impact on the motor network. This was postoperatively manifested as lowered movement-related activation at the cortical and subcortical levels and differed from the known effects of neurostimulation or levodopa. The motor system finally adapted to the microlesion within one month as suggested by loss of motor improvement and good efficacy of deep brain stimulation.

  7. The Subthalamic Microlesion Story in Parkinson's Disease: Electrode Insertion-Related Motor Improvement with Relative Cortico-Subcortical Hypoactivation in fMRI

    PubMed Central

    Urgošík, Dušan; Sieger, Tomáš; Holiga, Štefan; Růžička, Filip; Dušek, Petr; Havránková, Petra; Vymazal, Josef; Růžička, Evžen

    2012-01-01

    Electrode implantation into the subthalamic nucleus for deep brain stimulation in Parkinson's disease (PD) is associated with a temporary motor improvement occurring prior to neurostimulation. We studied this phenomenon by functional magnetic resonance imaging (fMRI) when considering the Unified Parkinson's Disease Rating Scale (UPDRS-III) and collateral oedema. Twelve patients with PD (age 55.9± (SD)6.8 years, PD duration 9–15 years) underwent bilateral electrode implantation into the subthalamic nucleus. The fMRI was carried out after an overnight withdrawal of levodopa (OFF condition): (i) before and (ii) within three days after surgery in absence of neurostimulation. The motor task involved visually triggered finger tapping. The OFF/UPDRS-III score dropped from 33.8±8.7 before to 23.3±4.8 after the surgery (p<0.001), correlating with the postoperative oedema score (p<0.05). During the motor task, bilateral activation of the thalamus and basal ganglia, motor cortex and insula were preoperatively higher than after surgery (p<0.001). The results became more enhanced after compensation for the oedema and UPDRS-III scores. In addition, the rigidity and axial symptoms score correlated inversely with activation of the putamen and globus pallidus (p<0.0001). One month later, the OFF/UPDRS-III score had returned to the preoperative level (35.8±7.0, p = 0.4). In conclusion, motor improvement induced by insertion of an inactive electrode into the subthalamic nucleus caused an acute microlesion which was at least partially related to the collateral oedema and associated with extensive impact on the motor network. This was postoperatively manifested as lowered movement-related activation at the cortical and subcortical levels and differed from the known effects of neurostimulation or levodopa. The motor system finally adapted to the microlesion within one month as suggested by loss of motor improvement and good efficacy of deep brain stimulation. PMID:23145068

  8. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging.

    PubMed

    Griffanti, Ludovica; Salimi-Khorshidi, Gholamreza; Beckmann, Christian F; Auerbach, Edward J; Douaud, Gwenaëlle; Sexton, Claire E; Zsoldos, Enikő; Ebmeier, Klaus P; Filippini, Nicola; Mackay, Clare E; Moeller, Steen; Xu, Junqian; Yacoub, Essa; Baselli, Giuseppe; Ugurbil, Kamil; Miller, Karla L; Smith, Stephen M

    2014-07-15

    The identification of resting state networks (RSNs) and the quantification of their functional connectivity in resting-state fMRI (rfMRI) are seriously hindered by the presence of artefacts, many of which overlap spatially or spectrally with RSNs. Moreover, recent developments in fMRI acquisition yield data with higher spatial and temporal resolutions, but may increase artefacts both spatially and/or temporally. Hence the correct identification and removal of non-neural fluctuations is crucial, especially in accelerated acquisitions. In this paper we investigate the effectiveness of three data-driven cleaning procedures, compare standard against higher (spatial and temporal) resolution accelerated fMRI acquisitions, and investigate the combined effect of different acquisitions and different cleanup approaches. We applied single-subject independent component analysis (ICA), followed by automatic component classification with FMRIB's ICA-based X-noiseifier (FIX) to identify artefactual components. We then compared two first-level (within-subject) cleaning approaches for removing those artefacts and motion-related fluctuations from the data. The effectiveness of the cleaning procedures was assessed using time series (amplitude and spectra), network matrix and spatial map analyses. For time series and network analyses we also tested the effect of a second-level cleaning (informed by group-level analysis). Comparing these approaches, the preferable balance between noise removal and signal loss was achieved by regressing out of the data the full space of motion-related fluctuations and only the unique variance of the artefactual ICA components. Using similar analyses, we also investigated the effects of different cleaning approaches on data from different acquisition sequences. With the optimal cleaning procedures, functional connectivity results from accelerated data were statistically comparable or significantly better than the standard (unaccelerated) acquisition, and

  9. Network modelling methods for FMRI.

    PubMed

    Smith, Stephen M; Miller, Karla L; Salimi-Khorshidi, Gholamreza; Webster, Matthew; Beckmann, Christian F; Nichols, Thomas E; Ramsey, Joseph D; Woolrich, Mark W

    2011-01-15

    There is great interest in estimating brain "networks" from FMRI data. This is often attempted by identifying a set of functional "nodes" (e.g., spatial ROIs or ICA maps) and then conducting a connectivity analysis between the nodes, based on the FMRI timeseries associated with the nodes. Analysis methods range from very simple measures that consider just two nodes at a time (e.g., correlation between two nodes' timeseries) to sophisticated approaches that consider all nodes simultaneously and estimate one global network model (e.g., Bayes net models). Many different methods are being used in the literature, but almost none has been carefully validated or compared for use on FMRI timeseries data. In this work we generate rich, realistic simulated FMRI data for a wide range of underlying networks, experimental protocols and problematic confounds in the data, in order to compare different connectivity estimation approaches. Our results show that in general correlation-based approaches can be quite successful, methods based on higher-order statistics are less sensitive, and lag-based approaches perform very poorly. More specifically: there are several methods that can give high sensitivity to network connection detection on good quality FMRI data, in particular, partial correlation, regularised inverse covariance estimation and several Bayes net methods; however, accurate estimation of connection directionality is more difficult to achieve, though Patel's τ can be reasonably successful. With respect to the various confounds added to the data, the most striking result was that the use of functionally inaccurate ROIs (when defining the network nodes and extracting their associated timeseries) is extremely damaging to network estimation; hence, results derived from inappropriate ROI definition (such as via structural atlases) should be regarded with great caution. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Predictors of post-event rumination related to social anxiety.

    PubMed

    Kocovski, Nancy L; Rector, Neil A

    2007-01-01

    Post-event processing is the cognitive rumination that follows social events in cognitive models of social anxiety. The aim of this study was to examine factors that may predict the extent to which individuals engage in post-event processing. Anxious rumination, social anxiety, anxiety sensitivity and post-event processing related to a recent anxiety-provoking social event were assessed in a college student sample (n = 439). Social anxiety and anxious rumination, but not anxiety sensitivity, significantly predicted the extent to which the participants engaged in post-event processing related to an anxiety-provoking social event. Factors that appear to impact on the post-event period include the nature of the social situation and the ethnicity of the participant. It appears that both general rumination over anxious symptoms, and specific rumination related to social events are relevant for cognitive models of social anxiety.

  11. Diagnostic Classification of Schizophrenia Patients on the Basis of Regional Reward-Related fMRI Signal Patterns

    PubMed Central

    Koch, Stefan P.; Hägele, Claudia; Haynes, John-Dylan; Heinz, Andreas; Schlagenhauf, Florian; Sterzer, Philipp

    2015-01-01

    Functional neuroimaging has provided evidence for altered function of mesolimbic circuits implicated in reward processing, first and foremost the ventral striatum, in patients with schizophrenia. While such findings based on significant group differences in brain activations can provide important insights into the pathomechanisms of mental disorders, the use of neuroimaging results from standard univariate statistical analysis for individual diagnosis has proven difficult. In this proof of concept study, we tested whether the predictive accuracy for the diagnostic classification of schizophrenia patients vs. healthy controls could be improved using multivariate pattern analysis (MVPA) of regional functional magnetic resonance imaging (fMRI) activation patterns for the anticipation of monetary reward. With a searchlight MVPA approach using support vector machine classification, we found that the diagnostic category could be predicted from local activation patterns in frontal, temporal, occipital and midbrain regions, with a maximal cluster peak classification accuracy of 93% for the right pallidum. Region-of-interest based MVPA for the ventral striatum achieved a maximal cluster peak accuracy of 88%, whereas the classification accuracy on the basis of standard univariate analysis reached only 75%. Moreover, using support vector regression we could additionally predict the severity of negative symptoms from ventral striatal activation patterns. These results show that MVPA can be used to substantially increase the accuracy of diagnostic classification on the basis of task-related fMRI signal patterns in a regionally specific way. PMID:25799236

  12. Developmental Changes in Error Monitoring: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Wiersema, Jan R.; van der Meere, Jacob J.; Roeyers, Herbert

    2007-01-01

    The aim of the study was to investigate the developmental trajectory of error monitoring. For this purpose, children (age 7-8), young adolescents (age 13-14) and adults (age 23-24) performed a Go/No-Go task and were compared on overt reaction time (RT) performance and on event-related potentials (ERPs), thought to reflect error detection…

  13. Distinct pattern separation related transfer functions in human CA3/dentate and CA1 revealed using high-resolution fMRI and variable mnemonic similarity

    PubMed Central

    Lacy, Joyce W.; Yassa, Michael A.; Stark, Shauna M.; Muftuler, L. Tugan; Stark, Craig E.L.

    2011-01-01

    Producing and maintaining distinct (orthogonal) neural representations for similar events is critical to avoiding interference in long-term memory. Recently, our laboratory provided the first evidence for separation-like signals in the human CA3/dentate. Here, we extended this by parametrically varying the change in input (similarity) while monitoring CA1 and CA3/dentate for separation and completion-like signals using high-resolution fMRI. In the CA1, activity varied in a graded fashion in response to increases in the change in input. In contrast, the CA3/dentate showed a stepwise transfer function that was highly sensitive to small changes in input. PMID:21164173

  14. Neural Correlates of Temporal Auditory Processing in Developmental Dyslexia during German Vowel Length Discrimination: An fMRI Study

    ERIC Educational Resources Information Center

    Steinbrink, Claudia; Groth, Katarina; Lachmann, Thomas; Riecker, Axel

    2012-01-01

    This fMRI study investigated phonological vs. auditory temporal processing in developmental dyslexia by means of a German vowel length discrimination paradigm (Groth, Lachmann, Riecker, Muthmann, & Steinbrink, 2011). Behavioral and fMRI data were collected from dyslexics and controls while performing same-different judgments of vowel duration in…

  15. Aging effects on functional auditory and visual processing using fMRI with variable sensory loading.

    PubMed

    Cliff, Michael; Joyce, Dan W; Lamar, Melissa; Dannhauser, Thomas; Tracy, Derek K; Shergill, Sukhwinder S

    2013-05-01

    Traditionally, studies investigating the functional implications of age-related structural brain alterations have focused on higher cognitive processes; by increasing stimulus load, these studies assess behavioral and neurophysiological performance. In order to understand age-related changes in these higher cognitive processes, it is crucial to examine changes in visual and auditory processes that are the gateways to higher cognitive functions. This study provides evidence for age-related functional decline in visual and auditory processing, and regional alterations in functional brain processing, using non-invasive neuroimaging. Using functional magnetic resonance imaging (fMRI), younger (n=11; mean age=31) and older (n=10; mean age=68) adults were imaged while observing flashing checkerboard images (passive visual stimuli) and hearing word lists (passive auditory stimuli) across varying stimuli presentation rates. Younger adults showed greater overall levels of temporal and occipital cortical activation than older adults for both auditory and visual stimuli. The relative change in activity as a function of stimulus presentation rate showed differences between young and older participants. In visual cortex, the older group showed a decrease in fMRI blood oxygen level dependent (BOLD) signal magnitude as stimulus frequency increased, whereas the younger group showed a linear increase. In auditory cortex, the younger group showed a relative increase as a function of word presentation rate, while older participants showed a relatively stable magnitude of fMRI BOLD response across all rates. When analyzing participants across all ages, only the auditory cortical activation showed a continuous, monotonically decreasing BOLD signal magnitude as a function of age. Our preliminary findings show an age-related decline in demand-related, passive early sensory processing. As stimulus demand increases, visual and auditory cortex do not show increases in activity in older

  16. PEER - January 12, 2010 Haiti Earthquake - Related Events

    Science.gov Websites

    Related Events Related Events Preliminary Reconnaissance Presentation about Chile Earthquake Tuesday Topic: Chile EERI/PEER Reconnaissance Briefing Date: Tuesday, March 30, 2010 Time: 3:00 PM to 5PM

  17. Event-related oscillations (EROs) and event-related potentials (ERPs) comparison in facial expression recognition.

    PubMed

    Balconi, Michela; Pozzoli, Uberto

    2007-09-01

    The study aims to explore the significance of event-related potentials (ERPs) and event-related brain oscillations (EROs) (delta, theta, alpha, beta, gamma power) in response to emotional (fear, happiness, sadness) when compared with neutral faces during 180-250 post-stimulus time interval. The ERP results demonstrated that the emotional face elicited a negative peak at approximately 230 ms (N2). Moreover, EEG measures showed that motivational significance of face (emotional vs. neutral) could modulate the amplitude of EROs, but only for some frequency bands (i.e. theta and gamma bands). In a second phase, we considered the resemblance of the two EEG measures by a regression analysis. It revealed that theta and gamma oscillations mainly effect as oscillation activity at the N2 latency. Finally, a posterior increased power of theta was found for emotional faces.

  18. Simulating Fiction: Individual Differences in Literature Comprehension Revealed with fMRI

    PubMed Central

    Nijhof, Annabel D.; Willems, Roel M.

    2015-01-01

    When we read literary fiction, we are transported to fictional places, and we feel and think along with the characters. Despite the importance of narrative in adult life and during development, the neurocognitive mechanisms underlying fiction comprehension are unclear. We used functional magnetic resonance imaging (fMRI) to investigate how individuals differently employ neural networks important for understanding others’ beliefs and intentions (mentalizing), and for sensori-motor simulation while listening to excerpts from literary novels. Localizer tasks were used to localize both the cortical motor network and the mentalizing network in participants after they listened to excerpts from literary novels. Results show that participants who had high activation in anterior medial prefrontal cortex (aMPFC; part of the mentalizing network) when listening to mentalizing content of literary fiction, had lower motor cortex activity when they listened to action-related content of the story, and vice versa. This qualifies how people differ in their engagement with fiction: some people are mostly drawn into a story by mentalizing about the thoughts and beliefs of others, whereas others engage in literature by simulating more concrete events such as actions. This study provides on-line neural evidence for the existence of qualitatively different styles of moving into literary worlds, and adds to a growing body of literature showing the potential to study narrative comprehension with neuroimaging methods. PMID:25671708

  19. Specificity of Esthetic Experience for Artworks: An fMRI Study

    PubMed Central

    Di Dio, Cinzia; Canessa, Nicola; Cappa, Stefano F.; Rizzolatti, Giacomo

    2011-01-01

    In a previous functional magnetic resonance imaging (fMRI) study, where we investigated the neural correlates of esthetic experience, we found that observing canonical sculptures, relative to sculptures whose proportions had been modified, produced the activation of a network that included the lateral occipital gyrus, precuneus, prefrontal areas, and, most interestingly, the right anterior insula. We interpreted this latter activation as the neural signature underpinning hedonic response during esthetic experience. With the aim of exploring whether this specific hedonic response is also present during the observation of non-art biological stimuli, in the present fMRI study we compared the activations associated with viewing masterpieces of classical sculpture with those produced by the observation of pictures of young athletes. The two stimulus-categories were matched on various factors, including body postures, proportion, and expressed dynamism. The stimuli were presented in two conditions: observation and esthetic judgment. The two stimulus-categories produced a rather similar global activation pattern. Direct comparisons between sculpture and real-body images revealed, however, relevant differences, among which the activation of right antero-dorsal insula during sculptures viewing only. Along with our previous data, this finding suggests that the hedonic state associated with activation of right dorsal anterior insula underpins esthetic experience for artworks. PMID:22121344

  20. Investigating Focal Connectivity Deficits in Alzheimer's Disease Using Directional Brain Networks Derived from Resting-State fMRI

    PubMed Central

    Zhao, Sinan; Rangaprakash, D; Venkataraman, Archana; Liang, Peipeng; Deshpande, Gopikrishna

    2017-01-01

    Connectivity analysis of resting-state fMRI has been widely used to identify biomarkers of Alzheimer's disease (AD) based on brain network aberrations. However, it is not straightforward to interpret such connectivity results since our understanding of brain functioning relies on regional properties (activations and morphometric changes) more than connections. Further, from an interventional standpoint, it is easier to modulate the activity of regions (using brain stimulation, neurofeedback, etc.) rather than connections. Therefore, we employed a novel approach for identifying focal directed connectivity deficits in AD compared to healthy controls. In brief, we present a model of directed connectivity (using Granger causality) that characterizes the coupling among different regions in healthy controls and Alzheimer's disease. We then characterized group differences using a (between-subject) generative model of pathology, which generates latent connectivity variables that best explain the (within-subject) directed connectivity. Crucially, our generative model at the second (between-subject) level explains connectivity in terms of local or regionally specific abnormalities. This allows one to explain disconnections among multiple regions in terms of regionally specific pathology; thereby offering a target for therapeutic intervention. Two foci were identified, locus coeruleus in the brain stem and right orbitofrontal cortex. Corresponding disrupted connectivity network associated with the foci showed that the brainstem is the critical focus of disruption in AD. We further partitioned the aberrant connectomic network into four unique sub-networks, which likely leads to symptoms commonly observed in AD. Our findings suggest that fMRI studies of AD, which have been largely cortico-centric, could in future investigate the role of brain stem in AD. PMID:28729831

  1. Voxel-wise motion artifacts in population-level whole-brain connectivity analysis of resting-state FMRI.

    PubMed

    Spisák, Tamás; Jakab, András; Kis, Sándor A; Opposits, Gábor; Aranyi, Csaba; Berényi, Ervin; Emri, Miklós

    2014-01-01

    Functional Magnetic Resonance Imaging (fMRI) based brain connectivity analysis maps the functional networks of the brain by estimating the degree of synchronous neuronal activity between brain regions. Recent studies have demonstrated that "resting-state" fMRI-based brain connectivity conclusions may be erroneous when motion artifacts have a differential effect on fMRI BOLD signals for between group comparisons. A potential explanation could be that in-scanner displacement, due to rotational components, is not spatially constant in the whole brain. However, this localized nature of motion artifacts is poorly understood and is rarely considered in brain connectivity studies. In this study, we initially demonstrate the local correspondence between head displacement and the changes in the resting-state fMRI BOLD signal. Than, we investigate how connectivity strength is affected by the population-level variation in the spatial pattern of regional displacement. We introduce Regional Displacement Interaction (RDI), a new covariate parameter set for second-level connectivity analysis and demonstrate its effectiveness in reducing motion related confounds in comparisons of groups with different voxel-vise displacement pattern and preprocessed using various nuisance regression methods. The effect of using RDI as second-level covariate is than demonstrated in autism-related group comparisons. The relationship between the proposed method and some of the prevailing subject-level nuisance regression techniques is evaluated. Our results show that, depending on experimental design, treating in-scanner head motion as a global confound may not be appropriate. The degree of displacement is highly variable among various brain regions, both within and between subjects. These regional differences bias correlation-based measures of brain connectivity. The inclusion of the proposed second-level covariate into the analysis successfully reduces artifactual motion-related group differences

  2. An fMRI investigation into the effect of preceding stimuli during visual oddball tasks.

    PubMed

    Fajkus, Jiří; Mikl, Michal; Shaw, Daniel Joel; Brázdil, Milan

    2015-08-15

    This study investigates the modulatory effect of stimulus sequence on neural responses to novel stimuli. A group of 34 healthy volunteers underwent event-related functional magnetic resonance imaging while performing a three-stimulus visual oddball task, involving randomly presented frequent stimuli and two types of infrequent stimuli - targets and distractors. We developed a modified categorization of rare stimuli that incorporated the type of preceding rare stimulus, and analyzed the event-related functional data according to this sequence categorization; specifically, we explored hemodynamic response modulation associated with increasing rare-to-rare stimulus interval. For two consecutive targets, a modulation of brain function was evident throughout posterior midline and lateral temporal cortex, while responses to targets preceded by distractors were modulated in a widely distributed fronto-parietal system. As for distractors that follow targets, brain function was modulated throughout a set of posterior brain structures. For two successive distractors, however, no significant modulation was observed, which is consistent with previous studies and our primary hypothesis. The addition of the aforementioned technique extends the possibilities of conventional oddball task analysis, enabling researchers to explore the effects of the whole range of rare stimuli intervals. This methodology can be applied to study a wide range of associated cognitive mechanisms, such as decision making, expectancy and attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Distinct BOLD fMRI Responses of Capsaicin-Induced Thermal Sensation Reveal Pain-Related Brain Activation in Nonhuman Primates

    PubMed Central

    Asad, Abu Bakar Ali; Seah, Stephanie; Baumgartner, Richard; Feng, Dai; Jensen, Andres; Manigbas, Elaine; Henry, Brian; Houghton, Andrea; Evelhoch, Jeffrey L.; Derbyshire, Stuart W. G.; Chin, Chih-Liang

    2016-01-01

    Background Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored. Methodology Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8). BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle) at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm) application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail). Principal Findings Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the ‘pain matrix’, including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, p<0.02, n = 8), while no significant change was found after the vehicle application. The tail withdrawal behavioral study demonstrated a significant main effect of temperature and a trend towards capsaicin induced reduction of latency at both temperatures. Conclusions These findings provide insights into the specific brain regions involved with aversive, ‘pain-like’, responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain

  4. Adapting to Changing Memory Retrieval Demands: Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Benoit, Roland G.; Werkle-Bergner, Markus; Mecklinger, Axel; Kray, Jutta

    2009-01-01

    This study investigated preparatory processes involved in adapting to changing episodic memory retrieval demands. Event-related potentials (ERPs) were recorded while participants performed a general old/new recognition task and a specific task that also required retrieval of perceptual details. The relevant task remained either constant or changed…

  5. Pomegranate Juice Augments Memory and fMRI Activity in Middle-Aged and Older Adults with Mild Memory Complaints

    PubMed Central

    Bookheimer, Susan Y.; Renner, Brian A.; Ekstrom, Arne; Henning, Susanne M.; Brown, Jesse A.; Jones, Mike; Moody, Teena; Small, Gary W.

    2013-01-01

    Despite increasing emphasis on the potential of dietary antioxidants in preventing memory loss and on diet as a precursor of neurological health, rigorous studies investigating the cognitive effects of foods and their components are rare. Recent animal studies have reported memory and other cognitive benefits of polyphenols, found abundantly in pomegranate juice. We performed a preliminary, placebo-controlled randomized trial of pomegranate juice in older subjects with age-associated memory complaints using memory testing and functional brain activation (fMRI) as outcome measures. Thirty-two subjects (28 completers) were randomly assigned to drink 8 ounces of either pomegranate juice or a flavor-matched placebo drink for 4 weeks. Subjects received memory testing, fMRI scans during cognitive tasks, and blood draws for peripheral biomarkers before and after the intervention. Investigators and subjects were all blind to group membership. After 4 weeks, only the pomegranate group showed a significant improvement in the Buschke selective reminding test of verbal memory and a significant increase in plasma trolox-equivalent antioxidant capacity (TEAC) and urolithin A-glucuronide. Furthermore, compared to the placebo group, the pomegranate group had increased fMRI activity during verbal and visual memory tasks. While preliminary, these results suggest a role for pomegranate juice in augmenting memory function through task-related increases in functional brain activity. PMID:23970941

  6. Functional Connectivity Mapping in the Animal Model: Principles and Applications of Resting-State fMRI

    PubMed Central

    Gorges, Martin; Roselli, Francesco; Müller, Hans-Peter; Ludolph, Albert C.; Rasche, Volker; Kassubek, Jan

    2017-01-01

    “Resting-state” fMRI has substantially contributed to the understanding of human and non-human functional brain organization by the analysis of correlated patterns in spontaneous activity within dedicated brain systems. Spontaneous neural activity is indirectly measured from the blood oxygenation level-dependent signal as acquired by echo planar imaging, when subjects quietly “resting” in the scanner. Animal models including disease or knockout models allow a broad spectrum of experimental manipulations not applicable in humans. The non-invasive fMRI approach provides a promising tool for cross-species comparative investigations. This review focuses on the principles of “resting-state” functional connectivity analysis and its applications to living animals. The translational aspect from in vivo animal models toward clinical applications in humans is emphasized. We introduce the fMRI-based investigation of the non-human brain’s hemodynamics, the methodological issues in the data postprocessing, and the functional data interpretation from different abstraction levels. The longer term goal of integrating fMRI connectivity data with structural connectomes obtained with tracing and optical imaging approaches is presented and will allow the interrogation of fMRI data in terms of directional flow of information and may identify the structural underpinnings of observed functional connectivity patterns. PMID:28539914

  7. Brain correlates of autonomic modulation: combining heart rate variability with fMRI.

    PubMed

    Napadow, Vitaly; Dhond, Rupali; Conti, Giulia; Makris, Nikos; Brown, Emery N; Barbieri, Riccardo

    2008-08-01

    The central autonomic network (CAN) has been described in animal models but has been difficult to elucidate in humans. Potential confounds include physiological noise artifacts affecting brainstem neuroimaging data, and difficulty in deriving non-invasive continuous assessments of autonomic modulation. We have developed and implemented a new method which relates cardiac-gated fMRI timeseries with continuous-time heart rate variability (HRV) to estimate central autonomic processing. As many autonomic structures of interest are in brain regions strongly affected by cardiogenic pulsatility, we chose to cardiac-gate our fMRI acquisition to increase sensitivity. Cardiac-gating introduces T1-variability, which was corrected by transforming fMRI data to a fixed TR using a previously published method [Guimaraes, A.R., Melcher, J.R., et al., 1998. Imaging subcortical auditory activity in humans. Hum. Brain Mapp. 6(1), 33-41]. The electrocardiogram was analyzed with a novel point process adaptive-filter algorithm for computation of the high-frequency (HF) index, reflecting the time-varying dynamics of efferent cardiovagal modulation. Central command of cardiovagal outflow was inferred by using the resample HF timeseries as a regressor to the fMRI data. A grip task was used to perturb the autonomic nervous system. Our combined HRV-fMRI approach demonstrated HF correlation with fMRI activity in the hypothalamus, cerebellum, parabrachial nucleus/locus ceruleus, periaqueductal gray, amygdala, hippocampus, thalamus, and dorsomedial/dorsolateral prefrontal, posterior insular, and middle temporal cortices. While some regions consistent with central cardiovagal control in animal models gave corroborative evidence for our methodology, other mostly higher cortical or limbic-related brain regions may be unique to humans. Our approach should be optimized and applied to study the human brain correlates of autonomic modulation for various stimuli in both physiological and pathological

  8. High-Speed Real-Time Resting-State fMRI Using Multi-Slab Echo-Volumar Imaging

    PubMed Central

    Posse, Stefan; Ackley, Elena; Mutihac, Radu; Zhang, Tongsheng; Hummatov, Ruslan; Akhtari, Massoud; Chohan, Muhammad; Fisch, Bruce; Yonas, Howard

    2013-01-01

    We recently demonstrated that ultra-high-speed real-time fMRI using multi-slab echo-volumar imaging (MEVI) significantly increases sensitivity for mapping task-related activation and resting-state networks (RSNs) compared to echo-planar imaging (Posse et al., 2012). In the present study we characterize the sensitivity of MEVI for mapping RSN connectivity dynamics, comparing independent component analysis (ICA) and a novel seed-based connectivity analysis (SBCA) that combines sliding-window correlation analysis with meta-statistics. This SBCA approach is shown to minimize the effects of confounds, such as movement, and CSF and white matter signal changes, and enables real-time monitoring of RSN dynamics at time scales of tens of seconds. We demonstrate highly sensitive mapping of eloquent cortex in the vicinity of brain tumors and arterio-venous malformations, and detection of abnormal resting-state connectivity in epilepsy. In patients with motor impairment, resting-state fMRI provided focal localization of sensorimotor cortex compared with more diffuse activation in task-based fMRI. The fast acquisition speed of MEVI enabled segregation of cardiac-related signal pulsation using ICA, which revealed distinct regional differences in pulsation amplitude and waveform, elevated signal pulsation in patients with arterio-venous malformations and a trend toward reduced pulsatility in gray matter of patients compared with healthy controls. Mapping cardiac pulsation in cortical gray matter may carry important functional information that distinguishes healthy from diseased tissue vasculature. This novel fMRI methodology is particularly promising for mapping eloquent cortex in patients with neurological disease, having variable degree of cooperation in task-based fMRI. In conclusion, ultra-high-real-time speed fMRI enhances the sensitivity of mapping the dynamics of resting-state connectivity and cerebro-vascular pulsatility for clinical and neuroscience research applications

  9. Resolving the orthographic ambiguity during visual word recognition in Arabic: an event-related potential investigation

    PubMed Central

    Taha, Haitham; Khateb, Asaid

    2013-01-01

    The Arabic alphabetical orthographic system has various unique features that include the existence of emphatic phonemic letters. These represent several pairs of letters that share a phonological similarity and use the same parts of the articulation system. The phonological and articulatory similarities between these letters lead to spelling errors where the subject tends to produce a pseudohomophone (PHw) instead of the correct word. Here, we investigated whether or not the unique orthographic features of the written Arabic words modulate early orthographic processes. For this purpose, we analyzed event-related potentials (ERPs) collected from adult skilled readers during an orthographic decision task on real words and their corresponding PHw. The subjects' reaction times (RTs) were faster in words than in PHw. ERPs analysis revealed significant response differences between words and the PHw starting during the N170 and extending to the P2 component, with no difference during processing steps devoted to phonological and lexico-semantic processing. Amplitude and latency differences were found also during the P6 component which peaked earlier for words and where source localization indicated the involvement of the classical left language areas. Our findings replicate some of the previous findings on PHw processing and extend them to involve early orthographical processes. PMID:24348367

  10. fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI.

    PubMed

    Niranjan, Arun; Christie, Isabel N; Solomon, Samuel G; Wells, Jack A; Lythgoe, Mark F

    2016-10-01

    The use of functional magnetic resonance imaging (fMRI) in mice is increasingly prevalent, providing a means to non-invasively characterise functional abnormalities associated with genetic models of human diseases. The predominant stimulus used in task-based fMRI in the mouse is electrical stimulation of the paw. Task-based fMRI in mice using visual stimuli remains underexplored, despite visual stimuli being common in human fMRI studies. In this study, we map the mouse brain visual system with BOLD measurements at 9.4T using flashing light stimuli with medetomidine anaesthesia. BOLD responses were observed in the lateral geniculate nucleus, the superior colliculus and the primary visual area of the cortex, and were modulated by the flashing frequency, diffuse vs focussed light and stimulus context. Negative BOLD responses were measured in the visual cortex at 10Hz flashing frequency; but turned positive below 5Hz. In addition, the use of interleaved snapshot GE-EPI improved fMRI image quality without diminishing the temporal contrast-noise-ratio. Taken together, this work demonstrates a novel methodological protocol in which the mouse brain visual system can be non-invasively investigated using BOLD fMRI. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Encoding and retrieval of landmark-related spatial cues during navigation: an fMRI study.

    PubMed

    Wegman, Joost; Tyborowska, Anna; Janzen, Gabriele

    2014-07-01

    To successfully navigate, humans can use different cues from their surroundings. Learning locations in an environment can be supported by parallel subsystems in the hippocampus and the striatum. We used fMRI to look at differences in the use of object-related spatial cues while 47 participants actively navigated in an open-field virtual environment. In each trial, participants navigated toward a target object. During encoding, three positional cues (columns) with directional cues (shadows) were available. During retrieval, the removed target had to be replaced while either two objects without shadows (objects trial) or one object with a shadow (shadow trial) were available. Participants were informed in blocks about which type of retrieval trial was most likely to occur, thereby modulating expectations of having to rely on a single landmark or on a configuration of landmarks. How the spatial learning systems in the hippocampus and caudate nucleus were involved in these landmark-based encoding and retrieval processes were investigated. Landmark configurations can create a geometry similar to boundaries in an environment. It was found that the hippocampus was involved in encoding when relying on configurations of landmarks, whereas the caudate nucleus was involved in encoding when relying on single landmarks. This might suggest that the observed hippocampal activation for configurations of objects is linked to a spatial representation observed with environmental boundaries. Retrieval based on configurations of landmarks activated regions associated with the spatial updation of object locations for reorientation. When only a single landmark was available during retrieval, regions associated with updating the location of oneself were activated. There was also evidence that good between-participant performance was predicted by right hippocampal activation. This study therefore sheds light on how the brain deals with changing demands on spatial processing related purely

  12. The calculating brain: an fMRI study.

    PubMed

    Rickard, T C; Romero, S G; Basso, G; Wharton, C; Flitman, S; Grafman, J

    2000-01-01

    To explore brain areas involved in basic numerical computation, functional magnetic imaging (fMRI) scanning was performed on college students during performance of three tasks; simple arithmetic, numerical magnitude judgment, and a perceptual-motor control task. For the arithmetic relative to the other tasks, results for all eight subjects revealed bilateral activation in Brodmann's area 44, in dorsolateral prefrontal cortex (areas 9 and 10), in inferior and superior parietal areas, and in lingual and fusiform gyri. Activation was stronger on the left for all subjects, but only at Brodmann's area 44 and the parietal cortices. No activation was observed in the arithmetic task in several other areas previously implicated for arithmetic, including the angular and supramarginal gyri and the basal ganglia. In fact, angular and supramarginal gyri were significantly deactivated by the verification task relative to both the magnitude judgment and control tasks for every subject. Areas activated by the magnitude task relative to the control were more variable, but in five subjects included bilateral inferior parietal cortex. These results confirm some existing hypotheses regarding the neural basis of numerical processes, invite revision of others, and suggest productive lines for future investigation.

  13. Single-trial EEG-informed fMRI analysis of emotional decision problems in hot executive function.

    PubMed

    Guo, Qian; Zhou, Tiantong; Li, Wenjie; Dong, Li; Wang, Suhong; Zou, Ling

    2017-07-01

    Executive function refers to conscious control in psychological process which relates to thinking and action. Emotional decision is a part of hot executive function and contains emotion and logic elements. As a kind of important social adaptation ability, more and more attention has been paid in recent years. Gambling task can be well performed in the study of emotional decision. As fMRI researches focused on gambling task show not completely consistent brain activation regions, this study adopted EEG-fMRI fusion technology to reveal brain neural activity related with feedback stimuli. In this study, an EEG-informed fMRI analysis was applied to process simultaneous EEG-fMRI data. First, relative power-spectrum analysis and K-means clustering method were performed separately to extract EEG-fMRI features. Then, Generalized linear models were structured using fMRI data and using different EEG features as regressors. The results showed that in the win versus loss stimuli, the activated regions almost covered the caudate, the ventral striatum (VS), the orbital frontal cortex (OFC), and the cingulate. Wide activation areas associated with reward and punishment were revealed by the EEG-fMRI integration analysis than the conventional fMRI results, such as the posterior cingulate and the OFC. The VS and the medial prefrontal cortex (mPFC) were found when EEG power features were performed as regressors of GLM compared with results entering the amplitudes of feedback-related negativity (FRN) as regressors. Furthermore, the brain region activation intensity was the strongest when theta-band power was used as a regressor compared with the other two fusion results. The EEG-based fMRI analysis can more accurately depict the whole-brain activation map and analyze emotional decision problems.

  14. Impaired practice effects following mild traumatic brain injury: an event-related potential investigation.

    PubMed

    Rogers, Jeffrey M; Fox, Allison M; Donnelly, James

    2015-01-01

    The negative effects of mild traumatic brain injury (mTBI) on attention are well established. Effects of practice on neuropsychological test performance have also been long recognized and more recently linked to electrophysiological indices of information processing. The current study examined the behavioural and electrophysiological impact of mTBI on consistent practice of a neuropsychological test of attention. Prospective cohort study. Adult participants with a history of mild TBI (n = 10; time since injury > 2 months, mean = 15.2 months) and healthy matched controls (n = 10) completed the Paced Auditory Serial Addition Task (PASAT) at four separate sessions. Event-related potentials (ERPs) were simultaneously recorded. Accuracy of PASAT performance in both groups improved significantly with practice. In healthy controls behavioural improvements were associated with significant attenuation of a frontally distributed ERP component marker of executive attention. These executive attention demands did not appear to ease with consistent practice in the mTBI group, who also endorsed more concussion-related symptoms. These preliminary results suggest sustained mental effort is required to achieve 'normal' performance levels following mTBI and support the use of practice-related, ERP indices of recovery from mTBI as a sensitive correlate of persistent post-concussion symptoms.

  15. Neuropsychology and cognitive neuroscience in the fMRI era: A recapitulation of localizationist and connectionist views.

    PubMed

    Sutterer, Matthew J; Tranel, Daniel

    2017-11-01

    We highlight the past 25 years of cognitive neuroscience and neuropsychology, focusing on the impact to the field of the introduction in 1992 of functional MRI (fMRI). We reviewed the past 25 years of literature in cognitive neuroscience and neuropsychology, focusing on the relation and interplay of fMRI studies and studies utilizing the "lesion method" in human participants with focal brain damage. Our review highlights the state of localist/connectionist research debates in cognitive neuroscience and neuropsychology circa 1992, and details how the introduction of fMRI into the field at that time catalyzed a new wave of efforts to map complex human behavior to specific brain regions. This, in turn, eventually evolved into many studies that focused on networks and connections between brain areas, culminating in recent years with large-scale investigations such as the Human Connectome Project. We argue that throughout the past 25 years, neuropsychology-and more precisely, the "lesion method" in humans-has continued to play a critical role in arbitrating conclusions and theories derived from inferred patterns of local brain activity or wide-spread connectivity from functional imaging approaches. We conclude by highlighting the future for neuropsychology in the context of an increasingly complex methodological armamentarium. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. A preliminary investigation of Stroop-related intrinsic connectivity in cocaine dependence: Associations with treatment outcomes

    PubMed Central

    Mitchell, Marci R.; Balodis, Iris M.; DeVito, Elise E.; Lacadie, Cheryl M.; Yeston, Jon; Scheinost, Dustin; Constable, R. Todd; Carroll, Kathleen M.; Potenza, Marc N.

    2013-01-01

    Background Cocaine-dependent individuals demonstrate neural and behavioral differences compared to healthy comparison subjects when performing the Stroop color-word inference test. Stroop measures also relate to treatment outcome for cocaine dependence. Intrinsic connectivity analyses assess the extent to which task-related regional brain activations are related to each other in the absence of defining a priori regions-of-interest. Objective This study examined: 1) the extent to which cocaine-dependent and non-addicted individuals differed on measures of intrinsic connectivity during fMRI Stroop performance; and, 2) the relationships between fMRI Stroop intrinsic connectivity and treatment outcome in cocaine dependence. Methods Sixteen treatment-seeking cocaine-dependent patients and matched non-addicted comparison subjects completed an fMRI Stroop task. Between-group differences in intrinsic connectivity were assessed and related to self-reported and urine-toxicology-based cocaine-abstinence measures. Results Cocaine-dependent patients vs. comparison subjects showed less intrinsic connectivity in cortical and sub-cortical regions. When adjusting for individual degree of intrinsic connectivity, cocaine-dependent vs. comparison subjects showed relatively greater intrinsic connectivity in the ventral striatum, putamen, inferior frontal gyrus, anterior insula, thalamus, and substantia nigra. Non-mean-adjusted intrinsic-connectivity measures in the midbrain, thalamus, ventral striatum, substantia nigra, insula, and hippocampus negatively correlated with measures of cocaine abstinence. Conclusion The diminished intrinsic connectivity in cocaine-dependent vs. comparison subjects suggests poorer communication across brain regions during cognitive-control processes. In mean-adjusted analyses, the cocaine-dependent group displayed relatively greater Stroop-related connectivity in regions implicated in motivational processes in addictions. The relationships between treatment

  17. MEG and fMRI Fusion for Non-Linear Estimation of Neural and BOLD Signal Changes

    PubMed Central

    Plis, Sergey M.; Calhoun, Vince D.; Weisend, Michael P.; Eichele, Tom; Lane, Terran

    2010-01-01

    The combined analysis of magnetoencephalography (MEG)/electroencephalography and functional magnetic resonance imaging (fMRI) measurements can lead to improvement in the description of the dynamical and spatial properties of brain activity. In this paper we empirically demonstrate this improvement using simulated and recorded task related MEG and fMRI activity. Neural activity estimates were derived using a dynamic Bayesian network with continuous real valued parameters by means of a sequential Monte Carlo technique. In synthetic data, we show that MEG and fMRI fusion improves estimation of the indirectly observed neural activity and smooths tracking of the blood oxygenation level dependent (BOLD) response. In recordings of task related neural activity the combination of MEG and fMRI produces a result with greater signal-to-noise ratio, that confirms the expectation arising from the nature of the experiment. The highly non-linear model of the BOLD response poses a difficult inference problem for neural activity estimation; computational requirements are also high due to the time and space complexity. We show that joint analysis of the data improves the system's behavior by stabilizing the differential equations system and by requiring fewer computational resources. PMID:21120141

  18. Varenicline and Abnormal Sleep Related Events

    PubMed Central

    Savage, Ruth L.; Zekarias, Alem; Caduff-Janosa, Pia

    2015-01-01

    Study Objectives: To assess adverse drug reaction reports of “abnormal sleep related events” associated with varenicline, a partial agonist to the α4β2 subtype of nicotinic acetylcholine receptors on neurones, indicated for smoking cessation. Design: Twenty-seven reports of “abnormal sleep related events” often associated with abnormal dreams, nightmares, or somnambulism, which are known to be associated with varenicline use, were identified in the World Health Organisation (WHO) Global Individual Case Safety Reports Database. Original anonymous reports were obtained from the four national pharmacovigilance centers that submitted these reports and assessed for reaction description and causality. Measurements and Results: These 27 reports include 10 of aggressive activity occurring during sleep and seven of other sleep related harmful or potentially harmful activities, such as apparently deliberate self-harm, moving a child or a car, or lighting a stove or a cigarette. Assessment of these 17 reports of aggression or other actual or potential harm showed that nine patients recovered or were recovering on varenicline withdrawal and there were no consistent alternative explanations. Thirteen patients experienced single events, and two had multiple events. Frequency was not stated for the remaining two patients. Conclusions: The descriptions of the reports of aggression during sleep with violent dreaming are similar to those of rapid eye movement sleep behavior disorder and also nonrapid eye movement (NREM) sleep parasomnias in some adults. Patients who experience somnambulism or dreams of a violent nature while taking varenicline should be advised to consult their health providers. Consideration should be given to clarifying the term sleep disorders in varenicline product information and including sleep related harmful and potentially harmful events. Citation: Savage RL, Zekarias A, Caduff-Janosa P. Varenicline and abnormal sleep related events. SLEEP 2015

  19. Time-dependent correlation of cerebral blood flow with oxygen metabolism in activated human visual cortex as measured by fMRI.

    PubMed

    Lin, Ai-Ling; Fox, Peter T; Yang, Yihong; Lu, Hanzhang; Tan, Li-Hai; Gao, Jia-Hong

    2009-01-01

    The aim of this study was to investigate the relationship between relative cerebral blood flow (delta CBF) and relative cerebral metabolic rate of oxygen (delta CMRO(2)) during continuous visual stimulation (21 min at 8 Hz) with fMRI biophysical models by simultaneously measuring of BOLD, CBF and CBV fMRI signals. The delta CMRO(2) was determined by both a newly calibrated single-compartment model (SCM) and a multi-compartment model (MCM) and was in agreement between these two models (P>0.5). The duration-varying delta CBF and delta CMRO(2) showed a negative correlation with time (r=-0.97, P<0.001); i.e., delta CBF declines while delta CMRO(2) increases during continuous stimulation. This study also illustrated that without properly calibrating the critical parameters employed in the SCM, an incorrect and even an opposite appearance of the flow-metabolism relationship during prolonged visual stimulation (positively linear coupling) can result. The time-dependent negative correlation between flow and metabolism demonstrated in this fMRI study is consistent with a previous PET observation and further supports the view that the increase in CBF is driven by factors other than oxygen demand and the energy demands will eventually require increased aerobic metabolism as stimulation continues.

  20. fMRI orientation decoding in V1 does not require global maps or globally coherent orientation stimuli.

    PubMed

    Alink, Arjen; Krugliak, Alexandra; Walther, Alexander; Kriegeskorte, Nikolaus

    2013-01-01

    The orientation of a large grating can be decoded from V1 functional magnetic resonance imaging (fMRI) data, even at low resolution (3-mm isotropic voxels). This finding has suggested that columnar-level neuronal information might be accessible to fMRI at 3T. However, orientation decodability might alternatively arise from global orientation-preference maps. Such global maps across V1 could result from bottom-up processing, if the preferences of V1 neurons were biased toward particular orientations (e.g., radial from fixation, or cardinal, i.e., vertical or horizontal). Global maps could also arise from local recurrent or top-down processing, reflecting pre-attentive perceptual grouping, attention spreading, or predictive coding of global form. Here we investigate whether fMRI orientation decoding with 2-mm voxels requires (a) globally coherent orientation stimuli and/or (b) global-scale patterns of V1 activity. We used opposite-orientation gratings (balanced about the cardinal orientations) and spirals (balanced about the radial orientation), along with novel patch-swapped variants of these stimuli. The two stimuli of a patch-swapped pair have opposite orientations everywhere (like their globally coherent parent stimuli). However, the two stimuli appear globally similar, a patchwork of opposite orientations. We find that all stimulus pairs are robustly decodable, demonstrating that fMRI orientation decoding does not require globally coherent orientation stimuli. Furthermore, decoding remained robust after spatial high-pass filtering for all stimuli, showing that fine-grained components of the fMRI patterns reflect visual orientations. Consistent with previous studies, we found evidence for global radial and vertical preference maps in V1. However, these were weak or absent for patch-swapped stimuli, suggesting that global preference maps depend on globally coherent orientations and might arise through recurrent or top-down processes related to the perception of

  1. Using Event-related Potentials to Inform the Neurocognitive Processes Underlying Knowledge Extension through Memory Integration.

    PubMed

    Varga, Nicole L; Bauer, Patricia J

    2017-11-01

    To build a general knowledge base, it is imperative that individuals acquire, integrate, and further extend knowledge across experiences. For instance, in one episode an individual may learn that George Washington was the first president. In a separate episode they may then learn that Washington was the commander of the Continental Army. Integration of the information in memory may then support self-derivation of the new knowledge that the leader of the Continental Army was also the first president. Despite a considerable amount of fMRI research aimed at further elucidating the neuroanatomical regions supporting this ability, a consensus has yet to be reached with regards to the precise neurocognitive processes involved. In the present research, we capitalized on the high temporal resolution of event-related potentials (ERPs) to inform the time course of processes elicited during successful integration and further extension of new factual knowledge. Adults read novel, related stem facts and were tested for self-derivation of novel integration facts while ERPs were recorded. Consistent with current theoretical models, memory integration was first triggered by novelty detection within 400 msec of experience of a second, related stem fact. Two additional temporally staged encoding processes were then observed interpreted to reflect (1) explicit meaning comprehension and (2) representation of the integrated relation in memory. During the test for self-derivation, a single ERP was elicited, which presumably reflected retrieval and/or recombination of previously integrated knowledge. Together, the present research provides important insight into the time course of neurocognitive processing associated with the formation of a knowledge base.

  2. Attribution of extreme weather and climate-related events.

    PubMed

    Stott, Peter A; Christidis, Nikolaos; Otto, Friederike E L; Sun, Ying; Vanderlinden, Jean-Paul; van Oldenborgh, Geert Jan; Vautard, Robert; von Storch, Hans; Walton, Peter; Yiou, Pascal; Zwiers, Francis W

    2016-01-01

    Extreme weather and climate-related events occur in a particular place, by definition, infrequently. It is therefore challenging to detect systematic changes in their occurrence given the relative shortness of observational records. However, there is a clear interest from outside the climate science community in the extent to which recent damaging extreme events can be linked to human-induced climate change or natural climate variability. Event attribution studies seek to determine to what extent anthropogenic climate change has altered the probability or magnitude of particular events. They have shown clear evidence for human influence having increased the probability of many extremely warm seasonal temperatures and reduced the probability of extremely cold seasonal temperatures in many parts of the world. The evidence for human influence on the probability of extreme precipitation events, droughts, and storms is more mixed. Although the science of event attribution has developed rapidly in recent years, geographical coverage of events remains patchy and based on the interests and capabilities of individual research groups. The development of operational event attribution would allow a more timely and methodical production of attribution assessments than currently obtained on an ad hoc basis. For event attribution assessments to be most useful, remaining scientific uncertainties need to be robustly assessed and the results clearly communicated. This requires the continuing development of methodologies to assess the reliability of event attribution results and further work to understand the potential utility of event attribution for stakeholder groups and decision makers. WIREs Clim Change 2016, 7:23-41. doi: 10.1002/wcc.380 For further resources related to this article, please visit the WIREs website.

  3. Differentiating maturational and training influences on fMRI activation during music processing.

    PubMed

    Ellis, Robert J; Norton, Andrea C; Overy, Katie; Winner, Ellen; Alsop, David C; Schlaug, Gottfried

    2012-04-15

    Two major influences on how the brain processes music are maturational development and active musical training. Previous functional neuroimaging studies investigating music processing have typically focused on either categorical differences between "musicians versus nonmusicians" or "children versus adults." In the present study, we explored a cross-sectional data set (n=84) using multiple linear regression to isolate the performance-independent effects of age (5 to 33 years) and cumulative duration of musical training (0 to 21,000 practice hours) on fMRI activation similarities and differences between melodic discrimination (MD) and rhythmic discrimination (RD). Age-related effects common to MD and RD were present in three left hemisphere regions: temporofrontal junction, ventral premotor cortex, and the inferior part of the intraparietal sulcus, regions involved in active attending to auditory rhythms, sensorimotor integration, and working memory transformations of pitch and rhythmic patterns. By contrast, training-related effects common to MD and RD were localized to the posterior portion of the left superior temporal gyrus/planum temporale, an area implicated in spectrotemporal pattern matching and auditory-motor coordinate transformations. A single cluster in right superior temporal gyrus showed significantly greater activation during MD than RD. This is the first fMRI which has distinguished maturational from training effects during music processing. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Relationship of Event-Related Potentials to the Vigilance Decrement

    PubMed Central

    Haubert, Ashley; Walsh, Matt; Boyd, Rachel; Morris, Megan; Wiedbusch, Megan; Krusmark, Mike; Gunzelmann, Glenn

    2018-01-01

    Cognitive fatigue emerges in wide-ranging tasks and domains, but traditional vigilance tasks provide a well-studied context in which to explore the mechanisms underlying it. Though a variety of experimental methodologies have been used to investigate cognitive fatigue in vigilance, relatively little research has utilized electroencephalography (EEG), specifically event-related potentials (ERPs), to explore the nature of cognitive fatigue, also known as the vigilance decrement. Moreover, much of the research that has been done on vigilance and ERPs uses non-traditional vigilance paradigms, limiting generalizability to the established body of behavioral results and corresponding theories. In this study, we address concerns with prior research by (1) investigating the vigilance decrement using a well-established visual vigilance task, (2) utilizing a task designed to attenuate possible confounding ERP components present within a vigilance paradigm, and (3) informing our interpretations with recent findings from ERP research. We averaged data across electrodes located over the frontal, central, and parietal scalp. Then, we generated waveforms locked to the onset of critical low-frequency or non-critical high-frequency events during a 40 min task that was segregated into time blocks for data analysis. There were three primary findings from the analyses of these data. First, mean amplitude of N1 was greater during later blocks for both low-frequency and high-frequency events, a contradictory finding compared to past visual vigilance studies that is further discussed with respect to current interpretations of the N1 in visual attention tasks. Second, P3b mean amplitude following low-frequency events was reduced during later blocks, with a later onset latency. Third and finally, the decrease in P3b amplitude correlated with individual differences in the magnitude of the vigilance decrement, assessed using d′. The results provide evidence for degradations of cognitive

  5. Improving language mapping in clinical fMRI through assessment of grammar.

    PubMed

    Połczyńska, Monika; Japardi, Kevin; Curtiss, Susan; Moody, Teena; Benjamin, Christopher; Cho, Andrew; Vigil, Celia; Kuhn, Taylor; Jones, Michael; Bookheimer, Susan

    2017-01-01

    Brain surgery in the language dominant hemisphere remains challenging due to unintended post-surgical language deficits, despite using pre-surgical functional magnetic resonance (fMRI) and intraoperative cortical stimulation. Moreover, patients are often recommended not to undergo surgery if the accompanying risk to language appears to be too high. While standard fMRI language mapping protocols may have relatively good predictive value at the group level, they remain sub-optimal on an individual level. The standard tests used typically assess lexico-semantic aspects of language, and they do not accurately reflect the complexity of language either in comprehension or production at the sentence level. Among patients who had left hemisphere language dominance we assessed which tests are best at activating language areas in the brain. We compared grammar tests (items testing word order in actives and passives, wh -subject and object questions, relativized subject and object clauses and past tense marking) with standard tests (object naming, auditory and visual responsive naming), using pre-operative fMRI. Twenty-five surgical candidates (13 females) participated in this study. Sixteen patients presented with a brain tumor, and nine with epilepsy. All participants underwent two pre-operative fMRI protocols: one including CYCLE-N grammar tests (items testing word order in actives and passives, wh-subject and object questions, relativized subject and object clauses and past tense marking); and a second one with standard fMRI tests (object naming, auditory and visual responsive naming). fMRI activations during performance in both protocols were compared at the group level, as well as in individual candidates. The grammar tests generated more volume of activation in the left hemisphere (left/right angular gyrus, right anterior/posterior superior temporal gyrus) and identified additional language regions not shown by the standard tests (e.g., left anterior

  6. FMRI activity during associative encoding is correlated with cardiorespiratory fitness and source memory performance in older adults.

    PubMed

    Hayes, Scott M; Hayes, Jasmeet P; Williams, Victoria J; Liu, Huiting; Verfaellie, Mieke

    2017-06-01

    Older adults (OA), relative to young adults (YA), exhibit age-related alterations in functional Magnetic Resonance Imaging (fMRI) activity during associative encoding, which contributes to deficits in source memory. Yet, there are remarkable individual differences in brain health and memory performance among OA. Cardiorespiratory fitness (CRF) is one individual difference factor that may attenuate brain aging, and thereby contribute to enhanced source memory in OA. To examine this possibility, 26 OA and 31 YA completed a treadmill-based exercise test to evaluate CRF (peak VO 2 ) and fMRI to examine brain activation during a face-name associative encoding task. Our results indicated that in OA, peak VO 2 was positively associated with fMRI activity during associative encoding in multiple regions including bilateral prefrontal cortex, medial frontal cortex, bilateral thalamus and left hippocampus. Next, a conjunction analysis was conducted to assess whether CRF influenced age-related differences in fMRI activation. We classified OA as high or low CRF and compared their activation to YA. High fit OA (HFOA) showed fMRI activation more similar to YA than low fit OA (LFOA) (i.e., reduced age-related differences) in multiple regions including thalamus, posterior and prefrontal cortex. Conversely, in other regions, primarily in prefrontal cortex, HFOA, but not LFOA, demonstrated greater activation than YA (i.e., increased age-related differences). Further, fMRI activity in these brain regions was positively associated with source memory among OA, with a mediation model demonstrating that associative encoding activation in medial frontal cortex indirectly influenced the relationship between peak VO 2 and subsequent source memory performance. These results indicate that CRF may contribute to neuroplasticity among OA, reducing age-related differences in some brain regions, consistent with the brain maintenance hypothesis, but accentuating age-differences in other regions

  7. Age-related changes in brain activation associated with dimensional shifts of attention: an fMRI study.

    PubMed

    Morton, J Bruce; Bosma, Rachael; Ansari, Daniel

    2009-05-15

    Brain activation associated with dimensional shifts of attention was measured in 14 children and 13 adults using 4 T fMRI. Across all participants, dimensional shifting was associated with activity in a distributed frontoparietal network, including superior parietal cortex, dorsolateral prefrontal cortex, inferior frontal junction, and the pre-supplementary motor region. There were also age-related differences in brain activity, with children but not adults showing an effect of dimension shifting in the right superior frontal sulcus, and adults but not children showing an effect of dimension shifting in the left superior parietal cortex and the right thalamus. These differences were likely not attributable to behavioral differences as children and adults performed comparably. Implications for neurodevelopmental accounts of shifting are discussed.

  8. Common neural systems associated with the recognition of famous faces and names: An event-related fMRI study

    PubMed Central

    Nielson, Kristy A.; Seidenberg, Michael; Woodard, John L.; Durgerian, Sally; Zhang, Qi; Gross, William L.; Gander, Amelia; Guidotti, Leslie M.; Antuono, Piero; Rao, Stephen M.

    2010-01-01

    Person recognition can be accomplished through several modalities (face, name, voice). Lesion, neurophysiology and neuroimaging studies have been conducted in an attempt to determine the similarities and differences in the neural networks associated with person identity via different modality inputs. The current study used event-related functional-MRI in 17 healthy participants to directly compare activation in response to randomly presented famous and non-famous names and faces (25 stimuli in each of the four categories). Findings indicated distinct areas of activation that differed for faces and names in regions typically associated with pre-semantic perceptual processes. In contrast, overlapping brain regions were activated in areas associated with the retrieval of biographical knowledge and associated social affective features. Specifically, activation for famous faces was primarily right lateralized and famous names were left lateralized. However, for both stimuli, similar areas of bilateral activity were observed in the early phases of perceptual processing. Activation for fame, irrespective of stimulus modality, activated an extensive left hemisphere network, with bilateral activity observed in the hippocampi, posterior cingulate, and middle temporal gyri. Findings are discussed within the framework of recent proposals concerning the neural network of person identification. PMID:20167415

  9. Training-related changes in early visual processing of functionally illiterate adults: evidence from event-related brain potentials

    PubMed Central

    2013-01-01

    Background Event-related brain potentials (ERPs) were used to investigate training-related changes in fast visual word recognition of functionally illiterate adults. Analyses focused on the left-lateralized occipito-temporal N170, which represents the earliest processing of visual word forms. Event-related brain potentials were recorded from 20 functional illiterates receiving intensive literacy training for adults, 10 functional illiterates not participating in the training and 14 regular readers while they read words, pseudowords or viewed symbol strings. Subjects were required to press a button whenever a stimulus was immediately repeated. Results Attending intensive literacy training was associated with improvements in reading and writing skills and with an increase of the word-related N170 amplitude. For untrained functional illiterates and regular readers no changes in literacy skills or N170 amplitude were observed. Conclusions Results of the present study suggest that the word-related N170 can still be modulated in adulthood as a result of the improvements in literacy skills. PMID:24330622

  10. Training-related changes in early visual processing of functionally illiterate adults: evidence from event-related brain potentials.

    PubMed

    Boltzmann, Melanie; Rüsseler, Jascha

    2013-12-13

    Event-related brain potentials (ERPs) were used to investigate training-related changes in fast visual word recognition of functionally illiterate adults. Analyses focused on the left-lateralized occipito-temporal N170, which represents the earliest processing of visual word forms. Event-related brain potentials were recorded from 20 functional illiterates receiving intensive literacy training for adults, 10 functional illiterates not participating in the training and 14 regular readers while they read words, pseudowords or viewed symbol strings. Subjects were required to press a button whenever a stimulus was immediately repeated. Attending intensive literacy training was associated with improvements in reading and writing skills and with an increase of the word-related N170 amplitude. For untrained functional illiterates and regular readers no changes in literacy skills or N170 amplitude were observed. Results of the present study suggest that the word-related N170 can still be modulated in adulthood as a result of the improvements in literacy skills.

  11. Post-traumatic stress disorder (PTSD) after stigma related events in HIV infected individuals in Nigeria.

    PubMed

    Adewuya, Abiodun O; Afolabi, Mohammed O; Ola, Bola A; Ogundele, Olorunfemi A; Ajibare, Adeola O; Oladipo, Bamidele F; Fakande, Ibiyemi

    2009-09-01

    One of the most distressing concerns of many people living with HIV in sub-Saharan Africa is the stigma. Intense stigma may be traumatic. This study aimed to investigate the probability and correlates of Posttraumatic stress disorder (PTSD) following intense stigmatizing events and situations in HIV infected individuals in Nigeria. Adult sero-positive attendees of an HIV care centre (N = 190) completed questionnaires regarding sociodemographic and clinical details; the 12-item General Health Questionnaire (GHQ-12) and the Rosenberg's Self-Esteem Scale. The clients were then interviewed for the presence of stigma related PTSD with a modified version of the mini international neuropsychiatry interview (MINI). About 2/3 of the participants had experienced at least an intense HIV-related stigmatizing event or situation. The rate of HIV-stigma related PTSD was 27.4%. Independent predictors of HIV stigma-related PTSD included past history of traumatic events (Single event, OR 2.28, 95% CI 1.08-4.73; Multiple events, OR 9.47, 95% CI 2.97-32.20), low self esteem (OR 6.52, 95% CI 2.59-16.55), poor level of social support (OR 3.33, 95% CI 1.24-9.79) and presence of general psychopathology (OR 2.18, 95% CI 1.07-4.44). PTSD may not be specific to traumatic events alone. There is a possibility of PTSD after an intense stigmatizing event or situation. While the validity for the validity of HIV-stigma related PTSD warrants further investigation, stigma needs to be considered when planning rehabilitation strategies for HIV infected individuals in sub-Saharan Africa. A closer attention to self esteem, level of social support and presence of psychopathology is needed in these individuals.

  12. Introducing the Event Related Fixed Interval Area (ERFIA) Multilevel Technique: a Method to Analyze the Complete Epoch of Event-Related Potentials at Single Trial Level

    PubMed Central

    Vossen, Catherine J.; Vossen, Helen G. M.; Marcus, Marco A. E.; van Os, Jim; Lousberg, Richel

    2013-01-01

    In analyzing time-locked event-related potentials (ERPs), many studies have focused on specific peaks and their differences between experimental conditions. In theory, each latency point after a stimulus contains potentially meaningful information, regardless of whether it is peak-related. Based on this assumption, we introduce a new concept which allows for flexible investigation of the whole epoch and does not primarily focus on peaks and their corresponding latencies. For each trial, the entire epoch is partitioned into event-related fixed-interval areas under the curve (ERFIAs). These ERFIAs, obtained at single trial level, act as dependent variables in a multilevel random regression analysis. The ERFIA multilevel method was tested in an existing ERP dataset of 85 healthy subjects, who underwent a rating paradigm of 150 painful and non-painful somatosensory electrical stimuli. We modeled the variability of each consecutive ERFIA with a set of predictor variables among which were stimulus intensity and stimulus number. Furthermore, we corrected for latency variations of the P2 (260 ms). With respect to known relationships between stimulus intensity, habituation, and pain-related somatosensory ERP, the ERFIA method generated highly comparable results to those of commonly used methods. Notably, effects on stimulus intensity and habituation were also observed in non-peak-related latency ranges. Further, cortical processing of actual stimulus intensity depended on the intensity of the previous stimulus, which may reflect pain-memory processing. In conclusion, the ERFIA multilevel method is a promising tool that can be used to study event-related cortical processing. PMID:24224018

  13. Cognitive Association Formation in Episodic Memory: Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Kim, Alice S. N.; Vallesi, Antonino; Picton, Terence W.; Tulving, Endel

    2009-01-01

    The present study focused on the processes underlying cognitive association formation by investigating subsequent memory effects. Event-related potentials were recorded as participants studied pairs of words, presented one word at a time, for later recall. The findings showed that a frontal-positive late wave (LW), which occurred 1-1.6 s after the…

  14. Behavior, neuropsychology and fMRI.

    PubMed

    Bennett, Maxwell R; Hatton, Sean; Hermens, Daniel F; Lagopoulos, Jim

    Cognitive neuroscientists in the late 20th century began the task of identifying the part(s) of the brain concerned with normal behavior as manifest in the psychological capacities as affective powers, reasoning, behaving purposively and the pursuit of goals, following introduction of the 'functional magnetic resonance imaging' (fMRI) method for identifying brain activity. For this research program to be successful two questions require satisfactory answers. First, as the fMRI method can currently only be used on stationary subjects, to what extent can neuropsychological tests applicable to such stationary subjects be correlated with normal behavior. Second, to what extent can correlations between the various neuropsychological tests on the one hand, and sites of brain activity determined with fMRI on the other, be regarded as established. The extent to which these questions have yet received satisfactory answers is reviewed, and suggestions made both for improving correlations of neuropsychological tests with behavior as well as with the results of fMRI-based observations. Copyright © 2016. Published by Elsevier Ltd.

  15. Opioid Utilization and Opioid-Related Adverse Events in Non-Surgical Patients in U.S. Hospitals

    PubMed Central

    Herzig, Shoshana J.; Rothberg, Michael B.; Cheung, Michael; Ngo, Long H.; Marcantonio, Edward R.

    2014-01-01

    Background Recent studies in the outpatient setting have demonstrated high rates of opioid prescribing and overdose-related deaths. Prescribing practices in hospitalized patients are unexamined. Objective To investigate patterns and predictors of opioid utilization in non-surgical admissions to U.S. hospitals, variation in use, and the association between hospital-level use and rates of severe opioid-related adverse events. Design, Setting, and Patients Adult non-surgical admissions to 286 U.S. hospitals. Measurements Opioid exposure and severe opioid-related adverse events during hospitalization, defined using hospital charges and ICD-9-CM codes. Results Of 1.14 million admissions, opioids were used in 51%. The mean ± s.d. daily dose received in oral morphine equivalents (OME) was 68 ± 185 mg; 23% of exposed received a total daily dose of ≥ 100 mg OME. Opioid prescribing rates ranged from 5% in the lowest to 72% in the highest prescribing hospital (mean 51% ± 10%). After adjusting for patient characteristics, the adjusted opioid prescribing rates ranged from 33–64% (mean 50% ± s.d. 4%). Among exposed, 0.97% experienced severe opioid-related adverse events. Hospitals with higher opioid prescribing rates had higher adjusted relative risk of a severe opioid-related adverse event per patient exposed (RR 1.23 [1.14–1.33] for highest compared to lowest prescribing quartile). Conclusions The majority of hospitalized non-surgical patients were exposed to opioids, often at high doses. Hospitals that used opioids most frequently had increased adjusted risk of a severe opioid-related adverse event per patient exposed. Interventions to standardize and enhance the safety of opioid prescribing in hospitalized patients should be investigated. PMID:24227700

  16. Sources and implications of whole-brain fMRI signals in humans

    PubMed Central

    Power, Jonathan D; Plitt, Mark; Laumann, Timothy O; Martin, Alex

    2016-01-01

    Whole-brain fMRI signals are a subject of intense interest: variance in the global fMRI signal (the spatial mean of all signals in the brain) indexes subject arousal, and psychiatric conditions such as schizophrenia and autism have been characterized by differences in the global fMRI signal. Further, vigorous debates exist on whether global signals ought to be removed from fMRI data. However, surprisingly little research has focused on the empirical properties of whole-brain fMRI signals. Here we map the spatial and temporal properties of the global signal, individually, in 1000+ fMRI scans. Variance in the global fMRI signal is strongly linked to head motion, to hardware artifacts, and to respiratory patterns and their attendant physiologic changes. Many techniques used to prepare fMRI data for analysis fail to remove these uninteresting kinds of global signal fluctuations. Thus, many studies include, at the time of analysis, prominent global effects of yawns, breathing changes, and head motion, among other signals. Such artifacts will mimic dynamic neural activity and will spuriously alter signal covariance throughout the brain. Methods capable of isolating and removing global artifactual variance while preserving putative “neural” variance are needed; this paper adopts no position on the topic of global signal regression. PMID:27751941

  17. fMRI and EEG responses to periodic visual stimulation.

    PubMed

    Guy, C N; ffytche, D H; Brovelli, A; Chumillas, J

    1999-08-01

    EEG/VEP and fMRI responses to periodic visual stimulation are reported. The purpose of these experiments was to look for similar patterns in the time series produced by each method to help understand the relationship between the two. The stimulation protocol was the same for both sets of experiments and consisted of five complete cycles of checkerboard pattern reversal at 1.87 Hz for 30 s followed by 30 s of a stationary checkerboard. The fMRI data was analyzed using standard methods, while the EEG was analyzed with a new measurement of activation-the VEPEG. Both VEPEG and fMRI time series contain the fundamental frequency of the stimulus and quasi harmonic components-an unexplained double frequency commonly found in fMRI data. These results have prompted a reappraisal of the methods for analyzing fMRI data and have suggested a connection between our findings and much older published invasive electrophysiological measurements of blood flow and the partial pressures of oxygen and carbon dioxide. Overall our new analysis suggests that fMRI signals are strongly dependant on hydraulic blood flow effects. We distinguish three categories of fMRI signal corresponding to: focal activated regions of brain tissue; diffuse nonspecific regions of steal; and major cerebral vessels of arterial supply or venous drainage. Each category of signal has its own finger print in frequency, amplitude, and phase. Finally, we put forward the hypothesis that modulations in blood flow are not only the consequence but are also the cause of modulations in functional activity. Copyright 1999 Academic Press.

  18. Brain activation patterns elicited by the 'Faces Symbol Test' -- a pilot fMRI study.

    PubMed

    Grabner, Rh; Popotnig, F; Ropele, S; Neuper, C; Gorani, F; Petrovic, K; Ebner, F; Strasser-Fuchs, S; Fazekas, F; Enzinger, C

    2008-04-01

    The Faces Symbol Test (FST) has recently been proposed as a brief and patient-friendly screening instrument for the assessment of cognitive dysfunction in patients with multiple sclerosis (MS). However, in contrast to well-established MS screening tests such as the Paced Auditory Serial Addition Test, the neural correlates of the FST have not been investigated so far. In the present study, we developed a functional MRI (fMRI) version of the FST to provide first data on brain regions and networks involved in this test. A sample of 19 healthy participants completed a version of the FST adapted for fMRI, requiring matching of faces and symbols in a multiple choice test and two further experimental conditions drawing on cognitive subcomponents (face matching and symbol matching). Imaging data showed a differential involvement of a fronto-parieto-occipital network in the three conditions. The most demanding FST condition elicited brain activation patterns related with sustained attention and executive control. These results suggest that the FST recruits brain networks critical for higher-order cognitive functions often impaired in MS patients.

  19. BOLD fMRI and DTI in strabismic amblyopes following occlusion therapy.

    PubMed

    Gupta, Shikha; Kumaran, Senthil S; Saxena, Rohit; Gudwani, Sunita; Menon, Vimala; Sharma, Pradeep

    2016-08-01

    Evaluation of brain cluster activation using the functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) was sought in strabismic amblyopes. In this hospital-based case-control cross-sectional study, fMRI and DTI were conducted in strabismic amblyopes before initiation of any therapy and after visual recovery following the administration of occlusion therapy. FMRI was performed in 10 strabismic amblyopic subjects (baseline group) and in 5 left strabismic amblyopic children post-occlusion therapy after two-line visual improvement. Ten age-matched healthy children with right ocular dominance formed control group. Structural and functional MRI was carried out on 1.5T MR scanner. The visual task consisted of 8 Hz flickering checkerboard with red dot and occasional green dot. Blood-oxygen-level-dependent (BOLD) fMRI was analyzed using statistical parametric mapping and DTI on NordicIce (NordicNeuroLab) softwares. Reduced occipital activation was elicited when viewing with the amblyopic eye in amblyopes. An 'ipsilateral to viewing eye' pattern of calcarine BOLD activation was observed in controls and left amblyopes. Activation of cortical areas associated with visual processing differed in relation to the viewing eye. Following visual recovery on occlusion therapy, enhanced activity in bilateral hemispheres in striate as well as extrastriate regions when viewing with either eye was seen. Improvement in visual acuity following occlusion therapy correlates with hemodynamic activity in amblyopes.

  20. Mild cognitive impairment and fMRI studies of brain functional connectivity: the state of the art

    PubMed Central

    Farràs-Permanyer, Laia; Guàrdia-Olmos, Joan; Peró-Cebollero, Maribel

    2015-01-01

    In the last 15 years, many articles have studied brain connectivity in Mild Cognitive Impairment patients with fMRI techniques, seemingly using different connectivity statistical models in each investigation to identify complex connectivity structures so as to recognize typical behavior in this type of patient. This diversity in statistical approaches may cause problems in results comparison. This paper seeks to describe how researchers approached the study of brain connectivity in MCI patients using fMRI techniques from 2002 to 2014. The focus is on the statistical analysis proposed by each research group in reference to the limitations and possibilities of those techniques to identify some recommendations to improve the study of functional connectivity. The included articles came from a search of Web of Science and PsycINFO using the following keywords: f MRI, MCI, and functional connectivity. Eighty-one papers were found, but two of them were discarded because of the lack of statistical analysis. Accordingly, 79 articles were included in this review. We summarized some parts of the articles, including the goal of every investigation, the cognitive paradigm and methods used, brain regions involved, use of ROI analysis and statistical analysis, emphasizing on the connectivity estimation model used in each investigation. The present analysis allowed us to confirm the remarkable variability of the statistical analysis methods found. Additionally, the study of brain connectivity in this type of population is not providing, at the moment, any significant information or results related to clinical aspects relevant for prediction and treatment. We propose to follow guidelines for publishing fMRI data that would be a good solution to the problem of study replication. The latter aspect could be important for future publications because a higher homogeneity would benefit the comparison between publications and the generalization of results. PMID:26300802

  1. Errors without Conflict: Implications for Performance Monitoring Theories of Anterior Cingulate Cortex

    ERIC Educational Resources Information Center

    van Veen, V.; Holroyd, C.B.; Cohen, J.D.; Stenger, V.A.; Carter, C.S.

    2004-01-01

    Recent theories of the neural basis of performance monitoring have emphasized a central role for the anterior cingulate cortex (ACC). Replicating an earlier event-related potential (ERP) study, which showed an error feedback negativity that was modeled as having an ACC generator, we used event-related fMRI to investigate whether the ACC would…

  2. Reward circuitry in resilience to severe trauma: An fMRI investigation of resilient special forces soldiers

    PubMed Central

    Vythilingam, Meena; Nelson, Eric E.; Scaramozza, Matthew; Waldeck, Tracy; Hazlett, Gary; Southwick, Steven M.; Pine, Daniel S.; Drevets, Wayne; Charney, Dennis S.; Ernst, Monique

    2008-01-01

    Enhanced brain reward function could contribute to resilience to trauma. Reward circuitry in active duty, resilient special forces (SF) soldiers was evaluated using fMRI during a monetary incentive delay task. Findings in this group of resilient individuals revealed unique patterns of activation during expectation of reward in the subgenual prefrontal cortex and nucleus accumbens area; regions pivotal to reward processes. PMID:19243926

  3. Advances in fMRI Real-Time Neurofeedback.

    PubMed

    Watanabe, Takeo; Sasaki, Yuka; Shibata, Kazuhisa; Kawato, Mitsuo

    2017-12-01

    Functional magnetic resonance imaging (fMRI) neurofeedback is a type of biofeedback in which real-time online fMRI signals are used to self-regulate brain function. Since its advent in 2003 significant progress has been made in fMRI neurofeedback techniques. Specifically, the use of implicit protocols, external rewards, multivariate analysis, and connectivity analysis has allowed neuroscientists to explore a possible causal involvement of modified brain activity in modified behavior. These techniques have also been integrated into groundbreaking new neurofeedback technologies, specifically decoded neurofeedback (DecNef) and functional connectivity-based neurofeedback (FCNef). By modulating neural activity and behavior, DecNef and FCNef have substantially advanced both basic and clinical research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Combining fMRI and behavioral measures to examine the process of human learning.

    PubMed

    Karuza, Elisabeth A; Emberson, Lauren L; Aslin, Richard N

    2014-03-01

    Prior to the advent of fMRI, the primary means of examining the mechanisms underlying learning were restricted to studying human behavior and non-human neural systems. However, recent advances in neuroimaging technology have enabled the concurrent study of human behavior and neural activity. We propose that the integration of behavioral response with brain activity provides a powerful method of investigating the process through which internal representations are formed or changed. Nevertheless, a review of the literature reveals that many fMRI studies of learning either (1) focus on outcome rather than process or (2) are built on the untested assumption that learning unfolds uniformly over time. We discuss here various challenges faced by the field and highlight studies that have begun to address them. In doing so, we aim to encourage more research that examines the process of learning by considering the interrelation of behavioral measures and fMRI recording during learning. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Combining fMRI and Behavioral Measures to Examine the Process of Human Learning

    PubMed Central

    Karuza, Elisabeth A.; Emberson, Lauren L.; Aslin, Richard N.

    2013-01-01

    Prior to the advent of fMRI, the primary means of examining the mechanisms underlying learning were restricted to studying human behavior and non-human neural systems. However, recent advances in neuroimaging technology have enabled the concurrent study of human behavior and neural activity. We propose that the integration of behavioral response with brain activity provides a powerful method of investigating the process through which internal representations are formed or changed. Nevertheless, a review of the literature reveals that many fMRI studies of learning either (1) focus on outcome rather than process or (2) are built on the untested assumption that learning unfolds uniformly over time. We discuss here various challenges faced by the field and highlight studies that have begun to address them. In doing so, we aim to encourage more research that examines the process of learning by considering the interrelation of behavioral measures and fMRI recording during learning. PMID:24076012

  6. EEG-Informed fMRI: A Review of Data Analysis Methods

    PubMed Central

    Abreu, Rodolfo; Leal, Alberto; Figueiredo, Patrícia

    2018-01-01

    The simultaneous acquisition of electroencephalography (EEG) with functional magnetic resonance imaging (fMRI) is a very promising non-invasive technique for the study of human brain function. Despite continuous improvements, it remains a challenging technique, and a standard methodology for data analysis is yet to be established. Here we review the methodologies that are currently available to address the challenges at each step of the data analysis pipeline. We start by surveying methods for pre-processing both EEG and fMRI data. On the EEG side, we focus on the correction for several MR-induced artifacts, particularly the gradient and pulse artifacts, as well as other sources of EEG artifacts. On the fMRI side, we consider image artifacts induced by the presence of EEG hardware inside the MR scanner, and the contamination of the fMRI signal by physiological noise of non-neuronal origin, including a review of several approaches to model and remove it. We then provide an overview of the approaches specifically employed for the integration of EEG and fMRI when using EEG to predict the blood oxygenation level dependent (BOLD) fMRI signal, the so-called EEG-informed fMRI integration strategy, the most commonly used strategy in EEG-fMRI research. Finally, we systematically review methods used for the extraction of EEG features reflecting neuronal phenomena of interest. PMID:29467634

  7. Considering sex differences clarifies the effects of depression on facial emotion processing during fMRI.

    PubMed

    Jenkins, L M; Kendall, A D; Kassel, M T; Patrón, V G; Gowins, J R; Dion, C; Shankman, S A; Weisenbach, S L; Maki, P; Langenecker, S A

    2018-01-01

    Sex differences in emotion processing may play a role in women's increased risk for Major Depressive Disorder (MDD). However, studies of sex differences in brain mechanisms involved in emotion processing in MDD (or interactions of sex and diagnosis) are sparse. We conducted an event-related fMRI study examining the interactive and distinct effects of sex and MDD on neural activity during a facial emotion perception task. To minimize effects of current affective state and cumulative disease burden, we studied participants with remitted MDD (rMDD) who were early in the course of the illness. In total, 88 individuals aged 18-23 participated, including 48 with rMDD (32 female) and 40 healthy controls (HC; 25 female). fMRI revealed an interaction between sex and diagnosis for sad and neutral facial expressions in the superior frontal gyrus and left middle temporal gyrus. Results also revealed an interaction of sex with diagnosis in the amygdala. Data was from two sites, which might increase variability, but it also increases power to examine sex by diagnosis interactions. This study demonstrates the importance of taking sex differences into account when examining potential trait (or scar) mechanisms that could be useful in identifying individuals at-risk for MDD as well as for evaluating potential therapeutic innovations. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Investigating rare events with nonequilibrium work measurements. I. Nonequilibrium transition path probabilities

    NASA Astrophysics Data System (ADS)

    Moradi, Mahmoud; Sagui, Celeste; Roland, Christopher

    2014-01-01

    We have developed a formalism for investigating transition pathways and transition probabilities for rare events in biomolecular systems. In this paper, we set the theoretical framework for employing nonequilibrium work relations to estimate the relative reaction rates associated with different classes of transition pathways. Particularly, we derive an extension of Crook's transient fluctuation theorem, which relates the relative transition rates of driven systems in the forward and reverse directions, and allows for the calculation of these relative rates using work measurements (e.g., in Steered Molecular Dynamics). The formalism presented here can be combined with Transition Path Theory to relate the equilibrium and driven transition rates. The usefulness of this framework is illustrated by means of a Gaussian model and a driven proline dimer.

  9. Neural signatures of experimentally induced flow experiences identified in a typical fMRI block design with BOLD imaging

    PubMed Central

    Keller, Johannes; Grön, Georg

    2016-01-01

    Previously, experimentally induced flow experiences have been demonstrated with perfusion imaging during activation blocks of 3 min length to accommodate with the putatively slowly evolving “mood” characteristics of flow. Here, we used functional magnetic resonance imaging (fMRI) in a sample of 23 healthy, male participants to investigate flow in the context of a typical fMRI block design with block lengths as short as 30 s. To induce flow, demands of arithmetic tasks were automatically and continuously adjusted to the individual skill level. Compared against conditions of boredom and overload, experience of flow was evident from individuals’ reported subjective experiences and changes in electrodermal activity. Neural activation was relatively increased during flow, particularly in the anterior insula, inferior frontal gyri, basal ganglia and midbrain. Relative activation decreases during flow were observed in medial prefrontal and posterior cingulate cortex, and in the medial temporal lobe including the amygdala. Present findings suggest that even in the context of comparably short activation blocks flow can be reliably experienced and is associated with changes in neural activation of brain regions previously described. Possible mechanisms of interacting brain regions are outlined, awaiting further investigation which should now be possible given the greater temporal resolution compared with previous perfusion imaging. PMID:26508774

  10. Performance of Blind Source Separation Algorithms for FMRI Analysis using a Group ICA Method

    PubMed Central

    Correa, Nicolle; Adali, Tülay; Calhoun, Vince D.

    2007-01-01

    Independent component analysis (ICA) is a popular blind source separation (BSS) technique that has proven to be promising for the analysis of functional magnetic resonance imaging (fMRI) data. A number of ICA approaches have been used for fMRI data analysis, and even more ICA algorithms exist, however the impact of using different algorithms on the results is largely unexplored. In this paper, we study the performance of four major classes of algorithms for spatial ICA, namely information maximization, maximization of non-gaussianity, joint diagonalization of cross-cumulant matrices, and second-order correlation based methods when they are applied to fMRI data from subjects performing a visuo-motor task. We use a group ICA method to study the variability among different ICA algorithms and propose several analysis techniques to evaluate their performance. We compare how different ICA algorithms estimate activations in expected neuronal areas. The results demonstrate that the ICA algorithms using higher-order statistical information prove to be quite consistent for fMRI data analysis. Infomax, FastICA, and JADE all yield reliable results; each having their strengths in specific areas. EVD, an algorithm using second-order statistics, does not perform reliably for fMRI data. Additionally, for the iterative ICA algorithms, it is important to investigate the variability of the estimates from different runs. We test the consistency of the iterative algorithms, Infomax and FastICA, by running the algorithm a number of times with different initializations and note that they yield consistent results over these multiple runs. Our results greatly improve our confidence in the consistency of ICA for fMRI data analysis. PMID:17540281

  11. Aberrant Processing of Deviant Stimuli in Schizophrenia Revealed by Fusion of FMRI and EEG Data

    PubMed Central

    Calhoun, VD; Wu, L; Kiehl, KA; Eichele, T; Pearlson, GD

    2010-01-01

    Background Aberrant electrophysiological and hemodynamic processing of auditory oddball stimuli is among the most robustly documented findings in patients with schizophrenia. However, no study to date has directly examined linked patterns of electrical and hemodynamic differences in patients and controls. Methods In a recent paper we demonstrated a data-driven approach, joint independent component analysis (jICA) to fuse together functional magnetic resonance imaging (fMRI) and event-related potential (ERP) data and elucidated the chronometry of auditory oddball target detection in healthy control subjects. In this paper we extend our fusion method to identify specific differences in the neuronal chronometry of target detection for chronic schizophrenia patients compared to healthy controls. Results We found one linked source, consistent with the N2 response, known to be related to cognitive processing of deviant stimuli, spatially localized to bilateral fronto-temporal regions. This source showed significant between-group differences both in amplitude response and in the fMRI/ERP distribution pattern. These findings are consistent with previous work showing N2 amplitude and latency abnormalities in schizophrenia, and provide new information about the linkage between the two. Conclusions In summary, we use a novel approach to isolate and identify a linked fMRI/ERP component which shows marked differences in chronic schizophrenia patients. We also demonstrate that jointly using both fMRI and ERP measures provides a fully picture of the underlying hemodynamic and electrical changes which are present in patients. Our approach also has broad applicability to other diseases such as autism, Alzheimer’s disease, or bipolar disorder. PMID:21331320

  12. Menopause-related brain activation patterns during visual sexual arousal in menopausal women: An fMRI pilot study using time-course analysis.

    PubMed

    Kim, Gwang-Won; Jeong, Gwang-Woo

    2017-02-20

    The aging process and menopausal transition are important factors in sexual dysfunction of menopausal women. No neuroimaging study has assessed the age- and menopause-related changes on brain activation areas associated with sexual arousal in menopausal women. The purpose of this study was to evaluate the time course of regional brain activity associated with sexual arousal evoked by visual stimulation in premenopausal and menopausal women, and further to assess the effect of menopause on the brain areas associated with sexual arousal in menopausal women using functional magnetic resonance imaging (fMRI). Thirty volunteers consisting of 15 premenopausal and 15 menopausal women underwent the fMRI. For the activation condition, volunteers viewed sexually arousing visual stimulation. The brain areas with significantly higher activation in premenopausal women compared with menopausal women included the thalamus, amygdala, and anterior cingulate cortex (ACC) using analysis of covariance adjusting for age (p<0.005). Blood-oxygen-level-dependent signal changes in the amygdala while viewing erotic video were positively correlated with estrogen levels in the two groups. Our findings suggest that reduced brain activity of the thalamus, amygdala, and ACC in menopausal women may be associated with menopause-related decrease in sexual arousal. These findings might help elucidate the neural mechanisms associated with sexual dysfunction in menopausal women. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Neural Changes after Phonological Treatment for Anomia: An fMRI Study

    ERIC Educational Resources Information Center

    Rochon, Elizabeth; Leonard, Carol; Burianova, Hana; Laird, Laura; Soros, Peter; Graham, Simon; Grady, Cheryl

    2010-01-01

    Functional magnetic resonance imaging (fMRI) was used to investigate the neural processing characteristics associated with word retrieval abilities after a phonologically-based treatment for anomia in two stroke patients with aphasia. Neural activity associated with a phonological and a semantic task was compared before and after treatment with…

  14. Detecting social-cognitive deficits after traumatic brain injury: An ALE meta-analysis of fMRI studies.

    PubMed

    Xiao, Hui; Jacobsen, Andre; Chen, Ziqian; Wang, Yang

    2017-01-01

    Traumatic brain injury (TBI) can result in significant social dysfunction, which is represented by impairment to social-cognitive abilities (i.e. social cognition, social attention/executive function and communication). This study is aimed to explore brain networks mediating the social dysfunction after TBI and its underlying mechanisms. We performed a quantitative meta-analysis using the activation likelihood estimation (ALE) approach on functional magnetic resonance imaging (fMRI) studies of social-cognitive abilities following TBI. Sixteen studies fulfilled the inclusion criteria resulting in a total of 190 patients with TBI and 206 controls enrolled in the ALE meta-analysis. The temporoparietal junction (TPJ) and the medial prefrontal cortex (mPFC) were the specific regions that social cognition predominantly engaged. The cingulate gyrus, frontal gyrus and inferior parietal lobule were the main regions related to social attention/executive functions. Communication dysfunction, especially related to language deficits, was found to show greater activation of the temporal gyrus and fusiform gyrus in TBI. The current ALE meta-analytic findings provide evidence that patients have significant social-cognitive disabilities following TBI. The relatively limited pool of literature and the varied fMRI results from published studies indicate that social-cognitive abilities following TBI is an area that would greatly benefit from further investigation.

  15. Brain entropy and human intelligence: A resting-state fMRI study

    PubMed Central

    Calderone, Daniel; Morales, Leah J.

    2018-01-01

    Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns. PMID:29432427

  16. Brain entropy and human intelligence: A resting-state fMRI study.

    PubMed

    Saxe, Glenn N; Calderone, Daniel; Morales, Leah J

    2018-01-01

    Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns.

  17. Event-related potential correlates of emergent inference in human arbitrary relational learning.

    PubMed

    Wang, Ting; Dymond, Simon

    2013-01-01

    Two experiments investigated the functional-anatomical correlates of cognition supporting untrained, emergent relational inference in a stimulus equivalence task. In Experiment 1, after learning a series of conditional relations involving words and pseudowords, participants performed a relatedness task during which EEG was recorded. Behavioural performance was faster and more accurate on untrained, indirectly related symmetry (i.e., learn AB and infer BA) and equivalence trials (i.e., learn AB and AC and infer CB) than on unrelated trials, regardless of whether or not a formal test for stimulus equivalence relations had been conducted. Consistent with previous results, event related potentials (ERPs) evoked by trained and emergent trials at parietal and occipital sites differed only for those participants who had not received a prior equivalence test. Experiment 2 further replicated and extended these behavioural and ERP findings using arbitrary symbols as stimuli and demonstrated time and frequency differences for trained and untrained relatedness trials. Overall, the findings demonstrate convincingly the ERP correlates of intra-experimentally established stimulus equivalence relations consisting entirely of arbitrary symbols and offer support for a contemporary cognitive-behavioural model of symbolic categorisation and relational inference. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Research in China on event-related potentials in patients with schizophrenia

    PubMed Central

    Wang, Jijun; Guo, Qian

    2012-01-01

    Abstract Event-related potentials (ERPs) are objective electrophysiological indicators that can be used to assess cognitive processes in the human brain. Psychiatric researchers in China have applied this method to study schizophrenia since the early 1980s. ERP measures used in the study of schizophrenia include contingent negative variation (CNV), P300, mismatch negativity (MMN), error-related negativity (ERN) and auditory P50 inhibition. This review summarizes the main findings of ERP research in patients with schizophrenia reported by Chinese investigators. PMID:25324605

  19. Effective Connectivity Modeling for fMRI: Six Issues and Possible Solutions Using Linear Dynamic Systems

    PubMed Central

    Smith, Jason F.; Pillai, Ajay; Chen, Kewei; Horwitz, Barry

    2012-01-01

    Analysis of directionally specific or causal interactions between regions in functional magnetic resonance imaging (fMRI) data has proliferated. Here we identify six issues with existing effective connectivity methods that need to be addressed. The issues are discussed within the framework of linear dynamic systems for fMRI (LDSf). The first concerns the use of deterministic models to identify inter-regional effective connectivity. We show that deterministic dynamics are incapable of identifying the trial-to-trial variability typically investigated as the marker of connectivity while stochastic models can capture this variability. The second concerns the simplistic (constant) connectivity modeled by most methods. Connectivity parameters of the LDSf model can vary at the same timescale as the input data. Further, extending LDSf to mixtures of multiple models provides more robust connectivity variation. The third concerns the correct identification of the network itself including the number and anatomical origin of the network nodes. Augmentation of the LDSf state space can identify additional nodes of a network. The fourth concerns the locus of the signal used as a “node” in a network. A novel extension LDSf incorporating sparse canonical correlations can select most relevant voxels from an anatomically defined region based on connectivity. The fifth concerns connection interpretation. Individual parameter differences have received most attention. We present alternative network descriptors of connectivity changes which consider the whole network. The sixth concerns the temporal resolution of fMRI data relative to the timescale of the inter-regional interactions in the brain. LDSf includes an “instantaneous” connection term to capture connectivity occurring at timescales faster than the data resolution. The LDS framework can also be extended to statistically combine fMRI and EEG data. The LDSf framework is a promising foundation for effective connectivity

  20. Investigating the neural correlates of smoking: Feasibility and results of combining electronic cigarettes with fMRI.

    PubMed

    Wall, Matthew B; Mentink, Alexander; Lyons, Georgina; Kowalczyk, Oliwia S; Demetriou, Lysia; Newbould, Rexford D

    2017-09-12

    Cigarette addiction is driven partly by the physiological effects of nicotine, but also by the distinctive sensory and behavioural aspects of smoking, and understanding the neural effects of such processes is vital. There are many practical difficulties associated with subjects smoking in the modern neuroscientific laboratory environment, however electronic cigarettes obviate many of these issues, and provide a close simulation of smoking tobacco cigarettes. We have examined the neural effects of 'smoking' electronic cigarettes with concurrent functional Magnetic Resonance Imaging (fMRI). The results demonstrate the feasibility of using these devices in the MRI environment, and show brain activation in a network of cortical (motor cortex, insula, cingulate, amygdala) and sub-cortical (putamen, thalamus, globus pallidus, cerebellum) regions. Concomitant relative deactivations were seen in the ventral striatum and orbitofrontal cortex. These results reveal the brain processes involved in (simulated) smoking for the first time, and validate a novel approach to the study of smoking, and addiction more generally.

  1. Monkey cortex through fMRI glasses

    PubMed Central

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A.

    2015-01-01

    In 1998 several groups reported the feasibility of functional magnetic resonance imaging (fMRI) experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category and feature selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. PMID:25102559

  2. Monkey cortex through fMRI glasses.

    PubMed

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A

    2014-08-06

    In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Neural correlates of the essence of conscious conflict: fMRI of sustaining incompatible intentions.

    PubMed

    Gray, Jeremy R; Bargh, John A; Morsella, Ezequiel

    2013-09-01

    The study of intrapsychic conflict has long been central to many key theories about the control of behavior. More recently, by focusing on the nature of conflicting processes in the brain, investigators have revealed great insights about controlled versus automatic processes and the nature of self-control. Despite these advances, many theories of cognitive control or self-control remain agnostic about the function of subjective awareness (i.e., basic consciousness). Why people consciously experience some conflicts in the nervous system but not others remains a mystery. One hypothesis is that people become conscious only of conflicts involving competition for the control of skeletal muscle. To test one aspect of this larger hypothesis, in the present study, 14 participants were trained to introspect the feeling of conflict (the urge to make an error during a Stroop color-word interference task) and then were asked to introspect in the same way while sustaining simple compatible and incompatible intentions during fMRI scanning (to move a finger left or right). As predicted, merely sustaining incompatible skeletomotor intentions prior to their execution produced stronger systematic changes in subjective experience than sustaining compatible intentions, as indicated by self-report ratings obtained in the scanner. Similar ratings held for a modified Stroop-like task when contrasting incompatible versus compatible trials also during fMRI scanning. We use subjective ratings as the basis of parametric analyses of fMRI data, focusing a priori on the brain regions involved in action-related urges (e.g., parietal cortex) and cognitive control (e.g., dorsal anterior cingulate cortex, lateral PFC). The results showed that subjective conflict from sustaining incompatible intentions was consistently related to activity in the left post-central gyrus.

  4. Intrinsic Brain Connectivity in Chronic Pain: A Resting-State fMRI Study in Patients with Rheumatoid Arthritis

    PubMed Central

    Flodin, Pär; Martinsen, Sofia; Altawil, Reem; Waldheim, Eva; Lampa, Jon; Kosek, Eva; Fransson, Peter

    2016-01-01

    Background: Rheumatoid arthritis (RA) is commonly accompanied by pain that is discordant with the degree of peripheral pathology. Very little is known about the cerebral processes involved in pain processing in RA. Here we investigated resting-state brain connectivity associated with prolonged pain in RA. Methods: 24 RA subjects and 19 matched controls were compared with regard to both behavioral measures of pain perception and resting-resting state fMRI data acquired subsequently to fMRI sessions involving pain stimuli. The resting-state fMRI brain connectivity was investigated using 159 seed regions located in cardinal pain processing brain regions. Additional principal component based multivariate pattern analysis of the whole brain connectivity pattern was carried out in a data driven analysis to localize group differences in functional connectivity. Results: When RA patients were compared to controls, we observed significantly lower pain resilience for pressure on the affected finger joints (i.e., P50-joint) and an overall heightened level of perceived global pain in RA patients. Relative to controls, RA patients displayed increased brain connectivity predominately for the supplementary motor areas, mid-cingulate cortex, and the primary sensorimotor cortex. Additionally, we observed an increase in brain connectivity between the insula and prefrontal cortex as well as between anterior cingulate cortex and occipital areas for RA patients. None of the group differences in brain connectivity were significantly correlated with behavioral parameters. Conclusion: Our study provides experimental evidence of increased connectivity between frontal midline regions that are implicated in affective pain processing and bilateral sensorimotor regions in RA patients. PMID:27014038

  5. Gender Differences in Memory Processing: Evidence from Event-Related Potentials to Faces

    ERIC Educational Resources Information Center

    Guillem, F.; Mograss, M.

    2005-01-01

    This study investigated gender differences on memory processing using event-related potentials (ERPs). Behavioral data and ERPs were recorded in 16 males and 10 females during a recognition memory task for faces. The behavioral data results showed that females performed better than males. Gender differences on ERPs were evidenced over anterior…

  6. There's more than one way to scan a cat: imaging cat auditory cortex with high-field fMRI using continuous or sparse sampling.

    PubMed

    Hall, Amee J; Brown, Trecia A; Grahn, Jessica A; Gati, Joseph S; Nixon, Pam L; Hughes, Sarah M; Menon, Ravi S; Lomber, Stephen G

    2014-03-15

    When conducting auditory investigations using functional magnetic resonance imaging (fMRI), there are inherent potential confounds that need to be considered. Traditional continuous fMRI acquisition methods produce sounds >90 dB which compete with stimuli or produce neural activation masking evoked activity. Sparse scanning methods insert a period of reduced MRI-related noise, between image acquisitions, in which a stimulus can be presented without competition. In this study, we compared sparse and continuous scanning methods to identify the optimal approach to investigate acoustically evoked cortical, thalamic and midbrain activity in the cat. Using a 7 T magnet, we presented broadband noise, 10 kHz tones, or 0.5 kHz tones in a block design, interleaved with blocks in which no stimulus was presented. Continuous scanning resulted in larger clusters of activation and more peak voxels within the auditory cortex. However, no significant activation was observed within the thalamus. Also, there was no significant difference found, between continuous or sparse scanning, in activations of midbrain structures. Higher magnitude activations were identified in auditory cortex compared to the midbrain using both continuous and sparse scanning. These results indicate that continuous scanning is the preferred method for investigations of auditory cortex in the cat using fMRI. Also, choice of method for future investigations of midbrain activity should be driven by other experimental factors, such as stimulus intensity and task performance during scanning. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Neural responses to witnessing peer rejection after being socially excluded: fMRI as a window into adolescents’ emotional processing

    PubMed Central

    Masten, Carrie L.; Eisenberger, Naomi I.; Pfeifer, Jennifer H.; Dapretto, Mirella

    2013-01-01

    During adolescence, concerns about peer rejection and acceptance become increasingly common. Adolescents regularly experience peer rejection firsthand and witness these behaviors among their peers. In the current study, neuroimaging techniques were employed to conduct a preliminary investigation of the affective and cognitive processes involved in witnessing peer acceptance and rejection—specifically when these witnessed events occur in the immediate aftermath of a firsthand experience with rejection. During an fMRI scan, twenty-three adolescents underwent a simulated experience of firsthand peer rejection. Then, immediately following this experience they watched as another adolescent was ostensibly first accepted and then rejected. Findings indicated that in the immediate aftermath of being rejected by peers, adolescents displayed neural activity consistent with distress when they saw another peer being accepted, and neural activity consistent with emotion regulation and mentalizing (e.g., perspective-taking) processes when they saw another peer being rejected. Furthermore, individuals displaying a heightened sensitivity to firsthand rejection were more likely to show neural activity consistent with distress when observing a peer being accepted. Findings are discussed in terms of how witnessing others being accepted or rejected relates to adolescents’ interpretations of both firsthand and observed experiences with peers. Additionally, the potential impact that witnessed events might have on the broader perpetuation of bullying at this age is also considered. PMID:24033579

  8. Posterior and prefrontal contributions to the development posttraumatic stress disorder symptom severity: an fMRI study of symptom provocation in acute stress disorder.

    PubMed

    Cwik, Jan C; Sartory, Gudrun; Nuyken, Malte; Schürholt, Benjamin; Seitz, Rüdiger J

    2017-09-01

    Acute stress disorder (ASD) is predictive of the development of posttraumatic stress disorder (PTSD). In response to symptom provocation, the exposure to trauma-related pictures, ASD patients showed increased activation of the medial posterior areas of precuneus and posterior cingulate cortex as well as of superior prefrontal cortex in a previous study. The current study aimed at investigating which activated areas are predictive of the development of PTSD. Nineteen ASD patients took part in an fMRI study in which they were shown personalized trauma-related and neutral pictures within 4 weeks of the traumatic event. They were assessed for severity of PTSD 4 weeks later. Activation contrasts between trauma-related and neutral pictures were correlated with subsequent PTSD symptom severity. Greater activation in, among others, right medial precuneus, left retrosplenial cortex, precentral and right superior temporal gyrus as well as less activation in lateral, superior prefrontal and left fusiform gyrus was related to subsequently increased PTSD severity. The results are broadly in line with neural areas related to etiological models of PTSD, namely multisensory associative learning recruiting posterior regions on the one hand and failure to reappraise maladaptive cognitions, thought to involve prefrontal areas, on the other.

  9. Event-related potentials in response to violations of content and temporal event knowledge.

    PubMed

    Drummer, Janna; van der Meer, Elke; Schaadt, Gesa

    2016-01-08

    Scripts that store knowledge of everyday events are fundamentally important for managing daily routines. Content event knowledge (i.e., knowledge about which events belong to a script) and temporal event knowledge (i.e., knowledge about the chronological order of events in a script) constitute qualitatively different forms of knowledge. However, there is limited information about each distinct process and the time course involved in accessing content and temporal event knowledge. Therefore, we analyzed event-related potentials (ERPs) in response to either correctly presented event sequences or event sequences that contained a content or temporal error. We found an N400, which was followed by a posteriorly distributed P600 in response to content errors in event sequences. By contrast, we did not find an N400 but an anteriorly distributed P600 in response to temporal errors in event sequences. Thus, the N400 seems to be elicited as a response to a general mismatch between an event and the established event model. We assume that the expectancy violation of content event knowledge, as indicated by the N400, induces the collapse of the established event model, a process indicated by the posterior P600. The expectancy violation of temporal event knowledge is assumed to induce an attempt to reorganize the event model in working memory, a process indicated by the frontal P600. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Improving fMRI reliability in presurgical mapping for brain tumours.

    PubMed

    Stevens, M Tynan R; Clarke, David B; Stroink, Gerhard; Beyea, Steven D; D'Arcy, Ryan Cn

    2016-03-01

    Functional MRI (fMRI) is becoming increasingly integrated into clinical practice for presurgical mapping. Current efforts are focused on validating data quality, with reliability being a major factor. In this paper, we demonstrate the utility of a recently developed approach that uses receiver operating characteristic-reliability (ROC-r) to: (1) identify reliable versus unreliable data sets; (2) automatically select processing options to enhance data quality; and (3) automatically select individualised thresholds for activation maps. Presurgical fMRI was conducted in 16 patients undergoing surgical treatment for brain tumours. Within-session test-retest fMRI was conducted, and ROC-reliability of the patient group was compared to a previous healthy control cohort. Individually optimised preprocessing pipelines were determined to improve reliability. Spatial correspondence was assessed by comparing the fMRI results to intraoperative cortical stimulation mapping, in terms of the distance to the nearest active fMRI voxel. The average ROC-r reliability for the patients was 0.58±0.03, as compared to 0.72±0.02 in healthy controls. For the patient group, this increased significantly to 0.65±0.02 by adopting optimised preprocessing pipelines. Co-localisation of the fMRI maps with cortical stimulation was significantly better for more reliable versus less reliable data sets (8.3±0.9 vs 29±3 mm, respectively). We demonstrated ROC-r analysis for identifying reliable fMRI data sets, choosing optimal postprocessing pipelines, and selecting patient-specific thresholds. Data sets with higher reliability also showed closer spatial correspondence to cortical stimulation. ROC-r can thus identify poor fMRI data at time of scanning, allowing for repeat scans when necessary. ROC-r analysis provides optimised and automated fMRI processing for improved presurgical mapping. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence

  11. An automated method for identifying artifact in independent component analysis of resting-state FMRI.

    PubMed

    Bhaganagarapu, Kaushik; Jackson, Graeme D; Abbott, David F

    2013-01-01

    An enduring issue with data-driven analysis and filtering methods is the interpretation of results. To assist, we present an automatic method for identification of artifact in independent components (ICs) derived from functional MRI (fMRI). The method was designed with the following features: does not require temporal information about an fMRI paradigm; does not require the user to train the algorithm; requires only the fMRI images (additional acquisition of anatomical imaging not required); is able to identify a high proportion of artifact-related ICs without removing components that are likely to be of neuronal origin; can be applied to resting-state fMRI; is automated, requiring minimal or no human intervention. We applied the method to a MELODIC probabilistic ICA of resting-state functional connectivity data acquired in 50 healthy control subjects, and compared the results to a blinded expert manual classification. The method identified between 26 and 72% of the components as artifact (mean 55%). About 0.3% of components identified as artifact were discordant with the manual classification; retrospective examination of these ICs suggested the automated method had correctly identified these as artifact. We have developed an effective automated method which removes a substantial number of unwanted noisy components in ICA analyses of resting-state fMRI data. Source code of our implementation of the method is available.

  12. Preliminary fMRI findings on the effects of event rate in adults with ADHD.

    PubMed

    Kooistra, Libbe; van der Meere, Jaap J; Edwards, Jodi D; Kaplan, Bonnie J; Crawford, Susan; Goodyear, Bradley G

    2010-05-01

    Inhibition problems in attention deficit hyperactivity disorder (ADHD) are sensitive to stimulus event rate. This pilot study explores the neural basis of this increased susceptibility to event rate in ADHD. Event-related functional magnetic resonance imaging was used in conjunction with the administration of a fast (1.5 s) and a slow (7 s) Go/No-Go task. Brain activity patterns and reaction times of ten young male adults with ADHD (two of whom were in partial remission) and ten healthy male controls were compared. The ADHD group responded slower than controls with greater variability but with similar number of errors. Accurate response inhibition in the ADHD group in the slow condition was associated with widespread fronto-striatal activation, including the thalamus. For correct Go trials only, the ADHD group compared with controls showed substantial under-activation in the slow condition. The observed abnormal brain activation in the slow condition in adults with ADHD supports a fronto-striatal etiology, and underlines a presumed activation regulation deficit. Larger sample sizes to further validate these preliminary findings are needed.

  13. Investigating the Impact of Off-Nominal Events on High-Density "Green" Arrivals

    NASA Technical Reports Server (NTRS)

    Callatine, Todd J.; Cabrall, Christopher; Kupfer, Michael; Martin, Lynne; Mercer, Joey; Palmer, Everett A.

    2012-01-01

    Trajectory-based controller tools developed to support a schedule-based terminal-area air traffic management (ATM) concept have been shown effective for enabling green arrivals along Area Navigation (RNAV) routes in moderately high-density traffic conditions. A recent human-in-the-loop simulation investigated the robustness of the concept and tools to off-nominal events events that lead to situations in which runway arrival schedules require adjustments and controllers can no longer use speed control alone to impose the necessary delays. Study participants included a terminal-area Traffic Management Supervisor responsible for adjusting the schedules. Sector-controller participants could issue alternate RNAV transition routes to absorb large delays. The study also included real-time winds/wind-forecast changes. The results indicate that arrival spacing accuracy, schedule conformance, and tool usage and usefulness are similar to that observed in simulations of nominal operations. However, the time and effort required to recover from an off-nominal event is highly context-sensitive, and impacted by the required schedule adjustments and control methods available for managing the evolving situation. The research suggests ways to bolster the off-nominal recovery process, and highlights challenges related to using human-in-the-loop simulation to investigate the safety and robustness of advanced ATM concepts.

  14. Resting States Are Resting Traits – An fMRI Study of Sex Differences and Menstrual Cycle Effects in Resting State Cognitive Control Networks

    PubMed Central

    Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten

    2014-01-01

    To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the current study is particularly interested in fronto-parietal resting state networks. Resting state fMRI was measured in sixteen women during three different cycle phases (menstrual, follicular, and luteal). Fifteen men underwent three sessions in corresponding time intervals. We used independent component analysis to identify four fronto-parietal networks. The results showed sex differences in two of these networks with women exhibiting higher functional connectivity in general, including the prefrontal cortex. Menstrual cycle effects on resting states were non-existent. It is concluded that sex differences in resting state fMRI might reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hormones on the functional connectivity in the resting brain. PMID:25057823

  15. Simultaneous ERP and fMRI of the auditory cortex in a passive oddball paradigm.

    PubMed

    Liebenthal, Einat; Ellingson, Michael L; Spanaki, Marianna V; Prieto, Thomas E; Ropella, Kristina M; Binder, Jeffrey R

    2003-08-01

    Infrequent occurrences of a deviant sound within a sequence of repetitive standard sounds elicit the automatic mismatch negativity (MMN) event-related potential (ERP). The main MMN generators are located in the superior temporal cortex, but their number, precise location, and temporal sequence of activation remain unclear. In this study, ERP and functional magnetic resonance imaging (fMRI) data were obtained simultaneously during a passive frequency oddball paradigm. There were three conditions, a STANDARD, a SMALL deviant, and a LARGE deviant. A clustered image acquisition technique was applied to prevent contamination of the fMRI data by the acoustic noise of the scanner and to limit contamination of the electroencephalogram (EEG) by the gradient-switching artifact. The ERP data were used to identify areas in which the blood oxygenation (BOLD) signal varied with the magnitude of the negativity in each condition. A significant ERP MMN was obtained, with larger peaks to LARGE deviants and with frontocentral scalp distribution, consistent with the MMN reported outside the magnetic field. This result validates the experimental procedures for simultaneous ERP/fMRI of the auditory cortex. Main foci of increased BOLD signal were observed in the right superior temporal gyrus [STG; Brodmann area (BA) 22] and right superior temporal plane (STP; BA 41 and 42). The imaging results provide new information supporting the idea that generators in the right lateral aspect of the STG are implicated in processes of frequency deviant detection, in addition to generators in the right and left STP.

  16. Brain Activity Associated with Emoticons: An fMRI Study

    NASA Astrophysics Data System (ADS)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe that brain activities associated with emoticons by using fMRI. In communication over a computer network, we use abstract faces such as computer graphics (CG) avatars and emoticons. These faces convey users' emotions and enrich their communications. However, the manner in which these faces influence the mental process is as yet unknown. The human brain may perceive the abstract face in an entirely different manner, depending on its level of reality. We conducted an experiment using fMRI in order to investigate the effects of emoticons. The results show that right inferior frontal gyrus, which associated with nonverbal communication, is activated by emoticons. Since the emoticons were created to reflect the real human facial expressions as accurately as possible, we believed that they would activate the right fusiform gyrus. However, this region was not found to be activated during the experiment. This finding is useful in understanding how abstract faces affect our behaviors and decision-making in communication over a computer network.

  17. Emotion-motion interactions in conversion disorder: an FMRI study.

    PubMed

    Aybek, Selma; Nicholson, Timothy R; O'Daly, Owen; Zelaya, Fernando; Kanaan, Richard A; David, Anthony S

    2015-01-01

    To evaluate the neural correlates of implicit processing of negative emotions in motor conversion disorder (CD) patients. An event related fMRI task was completed by 12 motor CD patients and 14 matched healthy controls using standardised stimuli of faces with fearful and sad emotional expressions in comparison to faces with neutral expressions. Temporal changes in the sensitivity to stimuli were also modelled and tested in the two groups. We found increased amygdala activation to negative emotions in CD compared to healthy controls in region of interest analyses, which persisted over time consistent with previous findings using emotional paradigms. Furthermore during whole brain analyses we found significantly increased activation in CD patients in areas involved in the 'freeze response' to fear (periaqueductal grey matter), and areas involved in self-awareness and motor control (cingulate gyrus and supplementary motor area). In contrast to healthy controls, CD patients exhibited increased response amplitude to fearful stimuli over time, suggesting abnormal emotional regulation (failure of habituation / sensitization). Patients with CD also activated midbrain and frontal structures that could reflect an abnormal behavioral-motor response to negative including threatening stimuli. This suggests a mechanism linking emotions to motor dysfunction in CD.

  18. The Iowa Gambling Task in fMRI Images

    PubMed Central

    Li, Xiangrui; Lu, Zhong-Lin; D'Argembeau, Arnaud; Ng, Marie; Bechara, Antoine

    2009-01-01

    The Iowa Gambling Task (IGT) is a sensitive test for the detection of decision-making impairments in several neurologic and psychiatric populations. Very few studies have employed the IGT in fMRI investigations, in part, because the task is cognitively complex. Here we report a method for exploring brain activity using fMRI during performance of the IGT. Decision-making during the IGT was associated with activity in several brain regions in a group of healthy individuals. The activated regions were consistent with the neural circuitry hypothesized to underlie somatic marker activation and decision-making. Specifically, a neural circuitry involving the dorsolateral prefrontal cortex (for working memory), the insula and posterior cingulate cortex (for representations of emotional states), the mesial orbitofrontal and ventromedial prefrontal cortex (for coupling the two previous processes), the ventral striatum and anterior cingulate/SMA (supplementary motor area) for implementing behavioral decisions was engaged. These results have implications for using the IGT to study abnormal mechanisms of decision making in a variety of clinical populations. PMID:19777556

  19. White versus gray matter: fMRI hemodynamic responses show similar characteristics, but differ in peak amplitude

    PubMed Central

    2012-01-01

    Background There is growing evidence for the idea of fMRI activation in white matter. In the current study, we compared hemodynamic response functions (HRF) in white matter and gray matter using 4 T fMRI. White matter fMRI activation was elicited in the isthmus of the corpus callosum at both the group and individual levels (using an established interhemispheric transfer task). Callosal HRFs were compared to HRFs from cingulate and parietal activation. Results Examination of the raw HRF revealed similar overall response characteristics. Finite impulse response modeling confirmed that the WM HRF characteristics were comparable to those of the GM HRF, but had significantly decreased peak response amplitudes. Conclusions Overall, the results matched a priori expectations of smaller HRF responses in white matter due to the relative drop in cerebral blood flow (CBF) and cerebral blood volume (CBV). Importantly, the findings demonstrate that despite lower CBF and CBV, white matter fMRI activation remained within detectable ranges at 4 T. PMID:22852798

  20. Task preparation processes related to reward prediction precede those related to task-difficulty expectation

    PubMed Central

    Schevernels, Hanne; Krebs, Ruth M.; Santens, Patrick; Woldorff, Marty G.; Boehler, C. Nico

    2013-01-01

    Recently, attempts have been made to disentangle the neural underpinnings of preparatory processes related to reward and attention. Functional magnetic resonance imaging (fMRI) research showed that neural activity related to the anticipation of reward and to attentional demands invokes neural activity patterns featuring large-scale overlap, along with some differences and interactions. Due to the limited temporal resolution of fMRI, however, the temporal dynamics of these processes remain unclear. Here, we report an event-related potentials (ERP) study in which cued attentional demands and reward prospect were combined in a factorial design. Results showed that reward prediction dominated early cue processing, as well as the early and later parts of the contingent negative variation (CNV) slow-wave ERP component that has been associated with task-preparation processes. Moreover these reward-related electrophysiological effects correlated across participants with response-time speeding on reward-prospect trials. In contrast, cued attentional demands affected only the later part of the CNV, with the highest amplitudes following cues predicting high-difficulty potential-reward targets, thus suggesting maximal task preparation when the task requires it and entails reward prospect. Consequently, we suggest that task-preparation processes triggered by reward can arise earlier, and potentially more directly, than strategic top-down aspects of preparation based on attentional demands. PMID:24064071

  1. Distinct fMRI Responses to Self-Induced versus Stimulus Motion during Free Viewing in the Macaque

    PubMed Central

    Kaneko, Takaaki; Saleem, Kadharbatcha S.; Berman, Rebecca A.; Leopold, David A.

    2016-01-01

    Visual motion responses in the brain are shaped by two distinct sources: the physical movement of objects in the environment and motion resulting from one's own actions. The latter source, termed visual reafference, stems from movements of the head and body, and in primates from the frequent saccadic eye movements that mark natural vision. To study the relative contribution of reafferent and stimulus motion during natural vision, we measured fMRI activity in the brains of two macaques as they freely viewed >50 hours of naturalistic video footage depicting dynamic social interactions. We used eye movements obtained during scanning to estimate the level of reafferent retinal motion at each moment in time. We also estimated the net stimulus motion by analyzing the video content during the same time periods. Mapping the responses to these distinct sources of retinal motion, we found a striking dissociation in the distribution of visual responses throughout the brain. Reafferent motion drove fMRI activity in the early retinotopic areas V1, V2, V3, and V4, particularly in their central visual field representations, as well as lateral aspects of the caudal inferotemporal cortex (area TEO). However, stimulus motion dominated fMRI responses in the superior temporal sulcus, including areas MT, MST, and FST as well as more rostral areas. We discuss this pronounced separation of motion processing in the context of natural vision, saccadic suppression, and the brain's utilization of corollary discharge signals. SIGNIFICANCE STATEMENT Visual motion arises not only from events in the external world, but also from the movements of the observer. For example, even if objects are stationary in the world, the act of walking through a room or shifting one's eyes causes motion on the retina. This “reafferent” motion propagates into the brain as signals that must be interpreted in the context of real object motion. The delineation of whole-brain responses to stimulus versus self

  2. Mapping interictal epileptic discharges using mutual information between concurrent EEG and fMRI.

    PubMed

    Caballero-Gaudes, César; Van de Ville, Dimitri; Grouiller, Frédéric; Thornton, Rachel; Lemieux, Louis; Seeck, Margitta; Lazeyras, François; Vulliemoz, Serge

    2013-03-01

    The mapping of haemodynamic changes related to interictal epileptic discharges (IED) in simultaneous electroencephalography (EEG) and functional MRI (fMRI) studies is usually carried out by means of EEG-correlated fMRI analyses where the EEG information specifies the model to test on the fMRI signal. The sensitivity and specificity critically depend on the accuracy of EEG detection and the validity of the haemodynamic model. In this study we investigated whether an information theoretic analysis based on the mutual information (MI) between the presence of epileptic activity on EEG and the fMRI data can provide further insights into the haemodynamic changes related to interictal epileptic activity. The important features of MI are that: 1) both recording modalities are treated symmetrically; 2) no requirement for a-priori models for the haemodynamic response function, or assumption of a linear relationship between the spiking activity and BOLD responses, and 3) no parametric model for the type of noise or its probability distribution is necessary for the computation of MI. Fourteen patients with pharmaco-resistant focal epilepsy underwent EEG-fMRI and intracranial EEG and/or surgical resection with positive postoperative outcome (seizure freedom or considerable reduction in seizure frequency) was available in 7/14 patients. We used nonparametric statistical assessment of the MI maps based on a four-dimensional wavelet packet resampling method. The results of MI were compared to the statistical parametric maps obtained with two conventional General Linear Model (GLM) analyses based on the informed basis set (canonical HRF and its temporal and dispersion derivatives) and the Finite Impulse Response (FIR) models. The MI results were concordant with the electro-clinically or surgically defined epileptogenic area in 8/14 patients and showed the same degree of concordance as the results obtained with the GLM-based methods in 12 patients (7 concordant and 5 discordant). In

  3. Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla

    PubMed Central

    Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore; Larsson, Henrik B. W.; Pinborg, Lars H.; Kjær, Troels W.; Fabricius, Martin; Svarer, Claus; Ozenne, Brice; Thomsen, Carsten; Beniczky, Sándor; Posse, Stefan

    2017-01-01

    Purpose Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. Materials and methods The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18–70 years) and 13 patients with epilepsy (8 males, age range 21–67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients). Results RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG

  4. Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla.

    PubMed

    Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore; Larsson, Henrik B W; Pinborg, Lars H; Kjær, Troels W; Fabricius, Martin; Svarer, Claus; Ozenne, Brice; Thomsen, Carsten; Beniczky, Sándor; Paulson, Olaf B; Posse, Stefan

    2017-01-01

    Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18-70 years) and 13 patients with epilepsy (8 males, age range 21-67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients). RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG data quality were found between EEG

  5. The association between cortisol and the BOLD response in male adolescents undergoing fMRI.

    PubMed

    Keulers, Esther H H; Stiers, Peter; Nicolson, Nancy A; Jolles, Jelle

    2015-02-19

    MRI participation has been shown to induce subjective and neuroendocrine stress reactions. A recent aging study showed that cortisol levels during fMRI have an age-dependent effect on cognitive performance and brain functioning. The present study examined whether this age-specific influence of cortisol on behavioral and brain activation levels also applies to adolescence. Salivary cortisol as well as subjective experienced anxiety were assessed during the practice session, at home, and before, during and after the fMRI session in young versus old male adolescents. Cortisol levels were enhanced pre-imaging relative to during and post-imaging in both age groups, suggesting anticipatory stress and anxiety. Overall, a negative correlation was found between cortisol output during the fMRI experiment and brain activation magnitude during performance of a gambling task. In young but not in old adolescents, higher cortisol output was related to stronger deactivation of clusters in the anterior and posterior cingulate cortex. In old but not in young adolescents, a negative correlation was found between cortisol and activation in the inferior parietal and in the superior frontal cortex. In sum, cortisol increased the deactivation of several brain areas, although the location of the affected areas in the brain was age-dependent. The present findings suggest that cortisol output during fMRI should be considered as confounder and integrated in analyzing developmental changes in brain activation during adolescence. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Estimating neural response functions from fMRI

    PubMed Central

    Kumar, Sukhbinder; Penny, William

    2014-01-01

    This paper proposes a methodology for estimating Neural Response Functions (NRFs) from fMRI data. These NRFs describe non-linear relationships between experimental stimuli and neuronal population responses. The method is based on a two-stage model comprising an NRF and a Hemodynamic Response Function (HRF) that are simultaneously fitted to fMRI data using a Bayesian optimization algorithm. This algorithm also produces a model evidence score, providing a formal model comparison method for evaluating alternative NRFs. The HRF is characterized using previously established “Balloon” and BOLD signal models. We illustrate the method with two example applications based on fMRI studies of the auditory system. In the first, we estimate the time constants of repetition suppression and facilitation, and in the second we estimate the parameters of population receptive fields in a tonotopic mapping study. PMID:24847246

  7. The Relative Importance of Spatial Versus Temporal Structure in the Perception of Biological Motion: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Hirai, Masahiro; Hiraki, Kazuo

    2006-01-01

    We investigated how the spatiotemporal structure of animations of biological motion (BM) affects brain activity. We measured event-related potentials (ERPs) during the perception of BM under four conditions: normal spatial and temporal structure; scrambled spatial and normal temporal structure; normal spatial and scrambled temporal structure; and…

  8. Improving temporal resolution in fMRI using a 3D spiral acquisition and low rank plus sparse (L+S) reconstruction.

    PubMed

    Petrov, Andrii Y; Herbst, Michael; Andrew Stenger, V

    2017-08-15

    Rapid whole-brain dynamic Magnetic Resonance Imaging (MRI) is of particular interest in Blood Oxygen Level Dependent (BOLD) functional MRI (fMRI). Faster acquisitions with higher temporal sampling of the BOLD time-course provide several advantages including increased sensitivity in detecting functional activation, the possibility of filtering out physiological noise for improving temporal SNR, and freezing out head motion. Generally, faster acquisitions require undersampling of the data which results in aliasing artifacts in the object domain. A recently developed low-rank (L) plus sparse (S) matrix decomposition model (L+S) is one of the methods that has been introduced to reconstruct images from undersampled dynamic MRI data. The L+S approach assumes that the dynamic MRI data, represented as a space-time matrix M, is a linear superposition of L and S components, where L represents highly spatially and temporally correlated elements, such as the image background, while S captures dynamic information that is sparse in an appropriate transform domain. This suggests that L+S might be suited for undersampled task or slow event-related fMRI acquisitions because the periodic nature of the BOLD signal is sparse in the temporal Fourier transform domain and slowly varying low-rank brain background signals, such as physiological noise and drift, will be predominantly low-rank. In this work, as a proof of concept, we exploit the L+S method for accelerating block-design fMRI using a 3D stack of spirals (SoS) acquisition where undersampling is performed in the k z -t domain. We examined the feasibility of the L+S method to accurately separate temporally correlated brain background information in the L component while capturing periodic BOLD signals in the S component. We present results acquired in control human volunteers at 3T for both retrospective and prospectively acquired fMRI data for a visual activation block-design task. We show that a SoS fMRI acquisition with an

  9. An event map of memory space in the hippocampus

    PubMed Central

    Deuker, Lorena; Bellmund, Jacob LS; Navarro Schröder, Tobias; Doeller, Christian F

    2016-01-01

    The hippocampus has long been implicated in both episodic and spatial memory, however these mnemonic functions have been traditionally investigated in separate research strands. Theoretical accounts and rodent data suggest a common mechanism for spatial and episodic memory in the hippocampus by providing an abstract and flexible representation of the external world. Here, we monitor the de novo formation of such a representation of space and time in humans using fMRI. After learning spatio-temporal trajectories in a large-scale virtual city, subject-specific neural similarity in the hippocampus scaled with the remembered proximity of events in space and time. Crucially, the structure of the entire spatio-temporal network was reflected in neural patterns. Our results provide evidence for a common coding mechanism underlying spatial and temporal aspects of episodic memory in the hippocampus and shed new light on its role in interleaving multiple episodes in a neural event map of memory space. DOI: http://dx.doi.org/10.7554/eLife.16534.001 PMID:27710766

  10. Performance of blind source separation algorithms for fMRI analysis using a group ICA method.

    PubMed

    Correa, Nicolle; Adali, Tülay; Calhoun, Vince D

    2007-06-01

    Independent component analysis (ICA) is a popular blind source separation technique that has proven to be promising for the analysis of functional magnetic resonance imaging (fMRI) data. A number of ICA approaches have been used for fMRI data analysis, and even more ICA algorithms exist; however, the impact of using different algorithms on the results is largely unexplored. In this paper, we study the performance of four major classes of algorithms for spatial ICA, namely, information maximization, maximization of non-Gaussianity, joint diagonalization of cross-cumulant matrices and second-order correlation-based methods, when they are applied to fMRI data from subjects performing a visuo-motor task. We use a group ICA method to study variability among different ICA algorithms, and we propose several analysis techniques to evaluate their performance. We compare how different ICA algorithms estimate activations in expected neuronal areas. The results demonstrate that the ICA algorithms using higher-order statistical information prove to be quite consistent for fMRI data analysis. Infomax, FastICA and joint approximate diagonalization of eigenmatrices (JADE) all yield reliable results, with each having its strengths in specific areas. Eigenvalue decomposition (EVD), an algorithm using second-order statistics, does not perform reliably for fMRI data. Additionally, for iterative ICA algorithms, it is important to investigate the variability of estimates from different runs. We test the consistency of the iterative algorithms Infomax and FastICA by running the algorithm a number of times with different initializations, and we note that they yield consistent results over these multiple runs. Our results greatly improve our confidence in the consistency of ICA for fMRI data analysis.

  11. Challenges in measuring individual differences in functional connectivity using fMRI: The case of healthy aging

    PubMed Central

    Tsvetanov, Kamen A.; Cam‐CAN; Henson, Richard N.

    2017-01-01

    Abstract Many studies report individual differences in functional connectivity, such as those related to age. However, estimates of connectivity from fMRI are confounded by other factors, such as vascular health, head motion and changes in the location of functional regions. Here, we investigate the impact of these confounds, and pre‐processing strategies that can mitigate them, using data from the Cambridge Centre for Ageing & Neuroscience (www.cam-can.com). This dataset contained two sessions of resting‐state fMRI from 214 adults aged 18–88. Functional connectivity between all regions was strongly related to vascular health, most likely reflecting respiratory and cardiac signals. These variations in mean connectivity limit the validity of between‐participant comparisons of connectivity estimates, and were best mitigated by regression of mean connectivity over participants. We also showed that high‐pass filtering, instead of band‐pass filtering, produced stronger and more reliable age‐effects. Head motion was correlated with gray‐matter volume in selected brain regions, and with various cognitive measures, suggesting that it has a biological (trait) component, and warning against regressing out motion over participants. Finally, we showed that the location of functional regions was more variable in older adults, which was alleviated by smoothing the data, or using a multivariate measure of connectivity. These results demonstrate that analysis choices have a dramatic impact on connectivity differences between individuals, ultimately affecting the associations found between connectivity and cognition. It is important that fMRI connectivity studies address these issues, and we suggest a number of ways to optimize analysis choices. Hum Brain Mapp 38:4125–4156, 2017. © 2017 Wiley Periodicals, Inc. PMID:28544076

  12. Using fMRI to Study Conceptual Change: Why and How?

    ERIC Educational Resources Information Center

    Masson, Steve; Potvin, Patrice; Riopel, Martin; Foisy, Lorie-Marlene Brault; Lafortune, Stephanie

    2012-01-01

    Although the use of brain imaging techniques, such as functional magnetic resonance imaging (fMRI) is increasingly common in educational research, only a few studies regarding science learning have so far taken advantage of this technology. This paper aims to facilitate the design and implementation of brain imaging studies relating to science…

  13. Word Processing in Children with Autism Spectrum Disorders: Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Sandbank, Michael; Yoder, Paul; Key, Alexandra P.

    2017-01-01

    Purpose: This investigation was conducted to determine whether young children with autism spectrum disorders exhibited a canonical neural response to word stimuli and whether putative event-related potential (ERP) measures of word processing were correlated with a concurrent measure of receptive language. Additional exploratory analyses were used…

  14. Joint fMRI analysis and subject clustering using sparse dictionary learning

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Jun; Dontaraju, Krishna K.

    2017-08-01

    Multi-subject fMRI data analysis methods based on sparse dictionary learning are proposed. In addition to identifying the component spatial maps by exploiting the sparsity of the maps, clusters of the subjects are learned by postulating that the fMRI volumes admit a subspace clustering structure. Furthermore, in order to tune the associated hyper-parameters systematically, a cross-validation strategy is developed based on entry-wise sampling of the fMRI dataset. Efficient algorithms for solving the proposed constrained dictionary learning formulations are developed. Numerical tests performed on synthetic fMRI data show promising results and provides insights into the proposed technique.

  15. Cognitive dissonance induction in everyday life: An fMRI study.

    PubMed

    de Vries, Jan; Byrne, Mark; Kehoe, Elizabeth

    2015-01-01

    This functional magnetic resonance imaging (fMRI) study explored the neural substrates of cognitive dissonance during dissonance "induction." A novel task was developed based on the results of a separate item selection study (n = 125). Items were designed to generate dissonance by prompting participants to reflect on everyday personal experiences that were inconsistent with values they had expressed support for. One experimental condition (dissonance) and three control conditions (justification, consonance, and non-self-related inconsistency) were used for comparison. Items of all four types were presented to each participant (n = 14) in a randomized design. The fMRI analysis used a whole-brain approach focusing on the moments dissonance was induced. Results showed that in comparison with the control conditions the dissonance experience led to higher levels of activation in several brain regions. Specifically dissonance was associated with increased neural activation in key brain regions including the anterior cingulate cortex (ACC), anterior insula, inferior frontal gyrus, and precuneus. This supports current perspectives that emphasize the role of anterior cingulate and insula in dissonance processing. Less extensive activation in the prefrontal cortex than in some previous studies is consistent with this study's emphasis on dissonance induction, rather than reduction. This article also contains a short review and comparison with other fMRI studies of cognitive dissonance.

  16. Adaptation of a haptic robot in a 3T fMRI.

    PubMed

    Snider, Joseph; Plank, Markus; May, Larry; Liu, Thomas T; Poizner, Howard

    2011-10-04

    Functional magnetic resonance imaging (fMRI) provides excellent functional brain imaging via the BOLD signal with advantages including non-ionizing radiation, millimeter spatial accuracy of anatomical and functional data, and nearly real-time analyses. Haptic robots provide precise measurement and control of position and force of a cursor in a reasonably confined space. Here we combine these two technologies to allow precision experiments involving motor control with haptic/tactile environment interaction such as reaching or grasping. The basic idea is to attach an 8 foot end effecter supported in the center to the robot allowing the subject to use the robot, but shielding it and keeping it out of the most extreme part of the magnetic field from the fMRI machine (Figure 1). The Phantom Premium 3.0, 6DoF, high-force robot (SensAble Technologies, Inc.) is an excellent choice for providing force-feedback in virtual reality experiments, but it is inherently non-MR safe, introduces significant noise to the sensitive fMRI equipment, and its electric motors may be affected by the fMRI's strongly varying magnetic field. We have constructed a table and shielding system that allows the robot to be safely introduced into the fMRI environment and limits both the degradation of the fMRI signal by the electrically noisy motors and the degradation of the electric motor performance by the strongly varying magnetic field of the fMRI. With the shield, the signal to noise ratio (SNR: mean signal/noise standard deviation) of the fMRI goes from a baseline of ~380 to ~330, and ~250 without the shielding. The remaining noise appears to be uncorrelated and does not add artifacts to the fMRI of a test sphere (Figure 2). The long, stiff handle allows placement of the robot out of range of the most strongly varying parts of the magnetic field so there is no significant effect of the fMRI on the robot. The effect of the handle on the robot's kinematics is minimal since it is lightweight (~2

  17. Distress after a single violent crime: how shame-proneness and event-related shame work together as risk factors for post-victimization symptoms.

    PubMed

    Semb, Olof; Strömsten, Lotta M J; Sundbom, Elisabet; Fransson, Per; Henningsson, Mikael

    2011-08-01

    To increase understanding of post-victimization symptom development, the present study investigated the role of shame- and guilt-proneness and event-related shame and guilt as potential risk factors. 35 individuals (M age = 31.7 yr.; 48.5% women), recently victimized by a single event of severe violent crime, were assessed regarding shame- and guilt-proneness, event-related shame and guilt, and post-victimization symptoms. The mediating role of event-related shame was investigated with structural equation modeling (SEM), using bootstrapping. The guilt measures were unrelated to each other and to post-victimization symptoms. The shame measures were highly intercorrelated and were both positively correlated to more severe post-victimization symptom levels. Event-related shame as mediator between shame-proneness and post-victimization symptoms was demonstrated by prevalent significant indirect effects. Both shame measures are potent risk factors for distress after victimization, whereby part of the effect of shame-proneness on post-victimization symptoms is explained by event-related shame.

  18. Event-related theta synchronization predicts deficit in facial affect recognition in schizophrenia.

    PubMed

    Csukly, Gábor; Stefanics, Gábor; Komlósi, Sarolta; Czigler, István; Czobor, Pál

    2014-02-01

    Growing evidence suggests that abnormalities in the synchronized oscillatory activity of neurons in schizophrenia may lead to impaired neural activation and temporal coding and thus lead to neurocognitive dysfunctions, such as deficits in facial affect recognition. To gain an insight into the neurobiological processes linked to facial affect recognition, we investigated both induced and evoked oscillatory activity by calculating the Event Related Spectral Perturbation (ERSP) and the Inter Trial Coherence (ITC) during facial affect recognition. Fearful and neutral faces as well as nonface patches were presented to 24 patients with schizophrenia and 24 matched healthy controls while EEG was recorded. The participants' task was to recognize facial expressions. Because previous findings with healthy controls showed that facial feature decoding was associated primarily with oscillatory activity in the theta band, we analyzed ERSP and ITC in this frequency band in the time interval of 140-200 ms, which corresponds to the N170 component. Event-related theta activity and phase-locking to facial expressions, but not to nonface patches, predicted emotion recognition performance in both controls and patients. Event-related changes in theta amplitude and phase-locking were found to be significantly weaker in patients compared with healthy controls, which is in line with previous investigations showing decreased neural synchronization in the low frequency bands in patients with schizophrenia. Neural synchrony is thought to underlie distributed information processing. Our results indicate a less effective functioning in the recognition process of facial features, which may contribute to a less effective social cognition in schizophrenia. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  19. On the distinguishability of HRF models in fMRI.

    PubMed

    Rosa, Paulo N; Figueiredo, Patricia; Silvestre, Carlos J

    2015-01-01

    Modeling the Hemodynamic Response Function (HRF) is a critical step in fMRI studies of brain activity, and it is often desirable to estimate HRF parameters with physiological interpretability. A biophysically informed model of the HRF can be described by a non-linear time-invariant dynamic system. However, the identification of this dynamic system may leave much uncertainty on the exact values of the parameters. Moreover, the high noise levels in the data may hinder the model estimation task. In this context, the estimation of the HRF may be seen as a problem of model falsification or invalidation, where we are interested in distinguishing among a set of eligible models of dynamic systems. Here, we propose a systematic tool to determine the distinguishability among a set of physiologically plausible HRF models. The concept of absolutely input-distinguishable systems is introduced and applied to a biophysically informed HRF model, by exploiting the structure of the underlying non-linear dynamic system. A strategy to model uncertainty in the input time-delay and magnitude is developed and its impact on the distinguishability of two physiologically plausible HRF models is assessed, in terms of the maximum noise amplitude above which it is not possible to guarantee the falsification of one model in relation to another. Finally, a methodology is proposed for the choice of the input sequence, or experimental paradigm, that maximizes the distinguishability of the HRF models under investigation. The proposed approach may be used to evaluate the performance of HRF model estimation techniques from fMRI data.

  20. Relationship between fMRI response during a nonverbal memory task and marijuana use in college students.

    PubMed

    Dager, Alecia D; Tice, Madelynn R; Book, Gregory A; Tennen, Howard; Raskin, Sarah A; Austad, Carol S; Wood, Rebecca M; Fallahi, Carolyn R; Hawkins, Keith A; Pearlson, Godfrey D

    2018-04-26

    Marijuana (MJ) is widely used among college students, with peak use between ages 18-22. Research suggests memory dysfunction in adolescent and young adult MJ users, but the neural correlates are unclear. We examined functional magnetic resonance imaging (fMRI) response during a memory task among college students with varying degrees of MJ involvement. Participants were 64 college students, ages 18-20, who performed a visual encoding and recognition task during fMRI. MJ use was ascertained for 3 months prior to scanning; 27 individuals reported past 3-month MJ use, and 33 individuals did not. fMRI response was modeled during encoding based on whether targets were subsequently recognized (correct encoding), and during recognition based on target identification (hits). fMRI response in left and right inferior frontal gyrus (IFG) and hippocampal regions of interest was examined between MJ users and controls. There were no group differences between MJ users and controls on fMRI response during encoding, although single sample t-tests revealed that MJ users failed to activate the hippocampus. During recognition, MJ users showed less fMRI response than controls in right hippocampus (Cohen's d = 0.55), left hippocampus (Cohen's d = 0.67) and left IFG (Cohen's d = 0.61). Heavier MJ involvement was associated with lower fMRI response in left hippocampus and left IFG. This study provides evidence of MJ-related prefrontal and hippocampal dysfunction during recognition memory in college students. These findings may contribute to our previously identified decrements in academic performance in college MJ users and could have substantial implications for academic and occupational functioning. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Spontaneous mentalizing during an interactive real world task: an fMRI study.

    PubMed

    Spiers, Hugo J; Maguire, Eleanor A

    2006-01-01

    There are moments in everyday life when we need to consider the thoughts and intentions of other individuals in order to act in a socially appropriate manner. Most of this mentalizing occurs spontaneously as we go about our business in the complexity of the real world. As such, studying the neural basis of spontaneous mentalizing has been virtually impossible. Here we devised a means to achieve this by employing a unique combination of functional magnetic resonance imaging (fMRI), a detailed and interactive virtual reality simulation of a bustling familiar city, and a retrospective verbal report protocol. We were able to provide insights into the content of spontaneous mentalizing events and identify the brain regions that underlie them. We found increased activity in a number of regions, namely the right posterior superior temporal sulcus, the medial prefrontal cortex and the right temporal pole associated with spontaneous mentalizing. Furthermore, we observed the right posterior superior temporal sulcus to be consistently active during several different subtypes of mentalizing events. By contrast, medial prefrontal cortex seemed to be particularly involved in thinking about agents that were visible in the environment. Our findings show that it is possible to investigate the neural basis of mentalizing in a manner closer to its true context, the real world, opening up intriguing possibilities for making comparisons with those who have mentalizing problems.

  2. A longitudinal fMRI investigation in acute post-traumatic stress disorder (PTSD).

    PubMed

    Ke, Jun; Zhang, Li; Qi, Rongfeng; Li, Weihui; Hou, Cailan; Zhong, Yuan; He, Zhong; Li, Lingjiang; Lu, Guangming

    2016-11-01

    Background Neuroimaging studies have implicated limbic, paralimbic, and prefrontal cortex in the pathophysiology of chronic post-traumatic stress disorder (PTSD). However, little is known about the neural substrates of acute PTSD and how they change with symptom improvement. Purpose To examine the neural circuitry underlying acute PTSD and brain function changes during clinical recovery from this disorder. Material and Methods Nineteen acute PTSD patients and nine non-PTSD subjects who all experienced a devastating mining accident underwent clinical assessment as well as functional magnetic resonance imaging (fMRI) scanning while viewing trauma-related and neutral pictures. Two years after the accident, a subgroup of 17 patients completed a second clinical evaluation, of which 13 were given an identical follow-up scan. Results Acute PTSD patients demonstrated greater activation in the vermis and right posterior cingulate, and greater deactivation in the bilateral medial prefrontal cortex and inferior parietal lobules than controls in the traumatic versus neutral condition. At follow-up, PTSD patients showed symptom reduction and decreased activation in the right middle frontal gyrus, bilateral posterior cingulate/precuneus, and cerebellum. Correlation results confirmed these findings and indicated that brain activation in the posterior cingulate/precuneus and vermis was predictive of PTSD symptom improvement. Conclusion The findings support the involvement of the medial prefrontal cortex, inferior parietal lobule, posterior cingulate, and vermis in the pathogenesis of acute PTSD. Brain activation in the vermis and posterior cingulate/precuneus appears to be a biological marker of recovery potential from PTSD. Furthermore, decreased activation of the middle frontal gyrus, posterior cingulate/precuneus, and cerebellum may reflect symptom improvement.

  3. Orchestrating Proactive and Reactive Mechanisms for Filtering Distracting Information: Brain-Behavior Relationships Revealed by a Mixed-Design fMRI Study

    PubMed Central

    Marini, Francesco; Demeter, Elise; Roberts, Kenneth C.; Chelazzi, Leonardo

    2016-01-01

    Given the information overload often imparted to human cognitive-processing systems, suppression of irrelevant and distracting information is essential for successful behavior. Using a hybrid block/event-related fMRI design, we characterized proactive and reactive brain mechanisms for filtering distracting stimuli. Participants performed a flanker task, discriminating the direction of a target arrow in the presence versus absence of congruent or incongruent flanking distracting arrows during either Pure blocks (distracters always absent) or Mixed blocks (distracters on 80% of trials). Each Mixed block had either 20% or 60% incongruent trials. Activations in the dorsal frontoparietal attention network during Mixed versus Pure blocks evidenced proactive (blockwise) recruitment of a distraction-filtering mechanism. Sustained activations in right middle frontal gyrus during 60% Incongruent blocks correlated positively with behavioral indices of distraction-filtering (slowing when distracters might occur) and negatively with distraction-related behavioral costs (incongruent vs congruent trials), suggesting a role in coordinating proactive filtering of potential distracters. Event-related analyses showed that incongruent trials elicited greater reactive activations in 20% (vs 60%) Incongruent blocks for counteracting distraction and conflict, including in the insula and anterior cingulate. Context-related effects in occipitoparietal cortex consisted of greater target-evoked activations for distracter-absent trials (central-target-only) in Mixed versus Pure blocks, suggesting enhanced attentional engagement. Functional-localizer analyses in V1/V2/V3 revealed less distracter-processing activity in 60% (vs 20%) Incongruent blocks, presumably reflecting tonic suppression by proactive filtering mechanisms. These results delineate brain mechanisms underlying proactive and reactive filtering of distraction and conflict, and how they are orchestrated depending on distraction

  4. Test-retest reliability of fMRI during nonverbal semantic decisions in moderate-severe nonfluent aphasia patients

    PubMed Central

    Kurland, Jacquie; Naeser, Margaret A.; Baker, Errol H.; Doron, Karl; Martin, Paula I.; Seekins, Heidi E.; Bogdan, Andrew; Renshaw, Perry; Yurgelun-Todd, Deborah

    2005-01-01

    Cortical reorganization in poststroke aphasia is not well understood. Few studies have investigated neural mechanisms underlying language recovery in severe aphasia patients, who are typically viewed as having a poor prognosis for language recovery. Although test-retest reliability is routinely demonstrated during collection of language data in single-subject aphasia research, this is rarely examined in fMRI studies investigating the underlying neural mechanisms in aphasia recovery. The purpose of this study was to acquire fMRI test-retest data examining semantic decisions both within and between two aphasia patients. Functional MRI was utilized to image individuals with chronic, moderate-severe nonfluent aphasia during nonverbal, yes/no button-box semantic judgments of iconic sentences presented in the Computer-assisted Visual Communication (C-ViC) program. We investigated the critical issue of intra-subject reliability by exploring similarities and differences in regions of activation during participants’ performance of identical tasks twice on the same day. Each participant demonstrated high intra-subject reliability, with response decrements typical of task familiarity. Differences between participants included greater left hemisphere perilesional activation in the individual with better response to C-ViC training. This study provides fMRI reliability in chronic nonfluent aphasia, and adds to evidence supporting differences in individual cortical reorganization in aphasia recovery. PMID:15706052

  5. Assessment of lexical semantic judgment abilities in alcohol-dependent subjects: an fMRI study.

    PubMed

    Bagga, D; Singh, N; Modi, S; Kumar, P; Bhattacharya, D; Garg, M L; Khushu, S

    2013-12-01

    Neuropsychological studies have shown that alcohol dependence is associated with neurocognitive deficits in tasks requiring memory, perceptual motor skills, abstraction and problem solving, whereas language skills are relatively spared in alcoholics despite structural abnormalities in the language-related brain regions. To investigate the preserved mechanisms of language processing in alcohol-dependents, functional brain imaging was undertaken in healthy controls (n=18) and alcohol-dependents (n=16) while completing a lexical semantic judgment task in a 3 T MR scanner. Behavioural data indicated that alcohol-dependents took more time than controls for performing the task but there was no significant difference in their response accuracy. fMRI data analysis revealed that while performing the task, the alcoholics showed enhanced activations in left supramarginal gyrus, precuneus bilaterally, left angular gyrus, and left middle temporal gyrus as compared to control subjects. The extensive activations observed in alcoholics as compared to controls suggest that alcoholics recruit additional brain areas to meet the behavioural demands for equivalent task performance. The results are consistent with previous fMRI studies suggesting compensatory mechanisms for the execution of task for showing an equivalent performance or decreased neural efficiency of relevant brain networks. However, on direct comparison of the two groups, the results did not survive correction for multiple comparisons; therefore, the present findings need further exploration.

  6. Neural Mechanisms of Recognizing Camouflaged Objects: A Human fMRI Study

    DTIC Science & Technology

    2015-07-30

    Unlimited Final Report: Neural Mechanisms of Recognizing Camouflaged Objects: A Human fMRI Study The views, opinions and/or findings contained in this...27709-2211 Visual search, Camouflage, Functional magnetic resonance imaging ( fMRI ), Perceptual learning REPORT DOCUMENTATION PAGE 11. SPONSOR...ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Neural Mechanisms of Recognizing Camouflaged Objects: A Human fMRI Study

  7. An fMRI Investigation of Posttraumatic Flashbacks

    ERIC Educational Resources Information Center

    Whalley, Matthew G.; Kroes, Marijn C. W.; Huntley, Zoe; Rugg, Michael D.; Davis, Simon W.; Brewin, Chris R.

    2013-01-01

    Flashbacks are a defining feature of posttraumatic stress disorder (PTSD), but there have been few studies of their neural basis. We tested predictions from a dual representation model of PTSD that, compared with ordinary episodic memories of the same traumatic event, flashbacks would be associated with activity in dorsal visual stream and related…

  8. An Event-Related Potentials Study of Mental Rotation in Identifying Chemical Structural Formulas

    ERIC Educational Resources Information Center

    Huang, Chin-Fei; Liu, Chia-Ju

    2012-01-01

    The purpose of this study was to investigate how mental rotation strategies affect the identification of chemical structural formulas. This study conducted event-related potentials (ERPs) experiments. In addition to the data collected in the ERPs, a Chemical Structure Conceptual Questionnaire and interviews were also admin-istered for data…

  9. An Automated Method for Identifying Artifact in Independent Component Analysis of Resting-State fMRI

    PubMed Central

    Bhaganagarapu, Kaushik; Jackson, Graeme D.; Abbott, David F.

    2013-01-01

    An enduring issue with data-driven analysis and filtering methods is the interpretation of results. To assist, we present an automatic method for identification of artifact in independent components (ICs) derived from functional MRI (fMRI). The method was designed with the following features: does not require temporal information about an fMRI paradigm; does not require the user to train the algorithm; requires only the fMRI images (additional acquisition of anatomical imaging not required); is able to identify a high proportion of artifact-related ICs without removing components that are likely to be of neuronal origin; can be applied to resting-state fMRI; is automated, requiring minimal or no human intervention. We applied the method to a MELODIC probabilistic ICA of resting-state functional connectivity data acquired in 50 healthy control subjects, and compared the results to a blinded expert manual classification. The method identified between 26 and 72% of the components as artifact (mean 55%). About 0.3% of components identified as artifact were discordant with the manual classification; retrospective examination of these ICs suggested the automated method had correctly identified these as artifact. We have developed an effective automated method which removes a substantial number of unwanted noisy components in ICA analyses of resting-state fMRI data. Source code of our implementation of the method is available. PMID:23847511

  10. Unsupervised spatiotemporal analysis of fMRI data using graph-based visualizations of self-organizing maps.

    PubMed

    Katwal, Santosh B; Gore, John C; Marois, Rene; Rogers, Baxter P

    2013-09-01

    We present novel graph-based visualizations of self-organizing maps for unsupervised functional magnetic resonance imaging (fMRI) analysis. A self-organizing map is an artificial neural network model that transforms high-dimensional data into a low-dimensional (often a 2-D) map using unsupervised learning. However, a postprocessing scheme is necessary to correctly interpret similarity between neighboring node prototypes (feature vectors) on the output map and delineate clusters and features of interest in the data. In this paper, we used graph-based visualizations to capture fMRI data features based upon 1) the distribution of data across the receptive fields of the prototypes (density-based connectivity); and 2) temporal similarities (correlations) between the prototypes (correlation-based connectivity). We applied this approach to identify task-related brain areas in an fMRI reaction time experiment involving a visuo-manual response task, and we correlated the time-to-peak of the fMRI responses in these areas with reaction time. Visualization of self-organizing maps outperformed independent component analysis and voxelwise univariate linear regression analysis in identifying and classifying relevant brain regions. We conclude that the graph-based visualizations of self-organizing maps help in advanced visualization of cluster boundaries in fMRI data enabling the separation of regions with small differences in the timings of their brain responses.

  11. Alcohol Dose Effects on Brain Circuits During Simulated Driving: An fMRI Study

    PubMed Central

    Meda, Shashwath A.; Calhoun, Vince D.; Astur, Robert S.; Turner, Beth M.; Ruopp, Kathryn; Pearlson, Godfrey D.

    2009-01-01

    Driving while intoxicated remains a major public health hazard. Driving is a complex task involving simultaneous recruitment of multiple cognitive functions. The investigators studied the neural substrates of driving and their response to different blood alcohol concentrations (BACs), using functional magnetic resonance imaging (fMRI) and a virtual reality driving simulator. We used independent component analysis (ICA) to isolate spatially independent and temporally correlated driving-related brain circuits in 40 healthy, adult moderate social drinkers. Each subject received three individualized, separate single-blind doses of beverage alcohol to produce BACs of 0.05% (moderate), 0.10% (high), or 0% (placebo). 3 T fMRI scanning and continuous behavioral measurement occurred during simulated driving. Brain function was assessed and compared using both ICA and a conventional general linear model (GLM) analysis. ICA results replicated and significantly extended our previous 1.5T study (Calhoun et al. [2004a]: Neuropsychopharmacology 29:2097–2017). GLM analysis revealed significant dose-related functional differences, complementing ICA data. Driving behaviors including opposite white line crossings and mean speed independently demonstrated significant dose-dependent changes. Behavior-based factors also predicted a frontal-basal-temporal circuit to be functionally impaired with alcohol dosage across baseline scaled, good versus poorly performing drivers. We report neural correlates of driving behavior and found dose-related spatio-temporal disruptions in critical driving-associated regions including the superior, middle and orbito frontal gyri, anterior cingulate, primary/supplementary motor areas, basal ganglia, and cerebellum. Overall, results suggest that alcohol (especially at high doses) causes significant impairment of both driving behavior and brain functionality related to motor planning and control, goal directedness, error monitoring, and memory. PMID

  12. Model-free fMRI group analysis using FENICA.

    PubMed

    Schöpf, V; Windischberger, C; Robinson, S; Kasess, C H; Fischmeister, F PhS; Lanzenberger, R; Albrecht, J; Kleemann, A M; Kopietz, R; Wiesmann, M; Moser, E

    2011-03-01

    Exploratory analysis of functional MRI data allows activation to be detected even if the time course differs from that which is expected. Independent Component Analysis (ICA) has emerged as a powerful approach, but current extensions to the analysis of group studies suffer from a number of drawbacks: they can be computationally demanding, results are dominated by technical and motion artefacts, and some methods require that time courses be the same for all subjects or that templates be defined to identify common components. We have developed a group ICA (gICA) method which is based on single-subject ICA decompositions and the assumption that the spatial distribution of signal changes in components which reflect activation is similar between subjects. This approach, which we have called Fully Exploratory Network Independent Component Analysis (FENICA), identifies group activation in two stages. ICA is performed on the single-subject level, then consistent components are identified via spatial correlation. Group activation maps are generated in a second-level GLM analysis. FENICA is applied to data from three studies employing a wide range of stimulus and presentation designs. These are an event-related motor task, a block-design cognition task and an event-related chemosensory experiment. In all cases, the group maps identified by FENICA as being the most consistent over subjects correspond to task activation. There is good agreement between FENICA results and regions identified in prior GLM-based studies. In the chemosensory task, additional regions are identified by FENICA and temporal concatenation ICA that we show is related to the stimulus, but exhibit a delayed response. FENICA is a fully exploratory method that allows activation to be identified without assumptions about temporal evolution, and isolates activation from other sources of signal fluctuation in fMRI. It has the advantage over other gICA methods that it is computationally undemanding, spotlights

  13. Event-related brain potentials - Comparison between children and adults

    NASA Technical Reports Server (NTRS)

    Courchesne, E.

    1977-01-01

    The reported investigation shows that nontarget stimuli which are infrequently presented and deviate from the background elicit Nc and Pc waves in children. The same stimuli elicit P3 waves in adults. The scalp distribution of P3 waves in adults appears to vary with the ease of stimulus recognition or the degree of stimulus novelty. However, the Nc and Pc distributions in children do not seem to vary with these factors. The differences between children and adults in event-related potentials suggest corresponding differences in the mode of processing employed by each when rare, deviant stimuli are encountered

  14. Testing the physiological plausibility of conflicting psychological models of response inhibition: A forward inference fMRI study.

    PubMed

    Criaud, Marion; Longcamp, Marieke; Anton, Jean-Luc; Nazarian, Bruno; Roth, Muriel; Sescousse, Guillaume; Strafella, Antonio P; Ballanger, Bénédicte; Boulinguez, Philippe

    2017-08-30

    The neural mechanisms underlying response inhibition and related disorders are unclear and controversial for several reasons. First, it is a major challenge to assess the psychological bases of behaviour, and ultimately brain-behaviour relationships, of a function which is precisely intended to suppress overt measurable behaviours. Second, response inhibition is difficult to disentangle from other parallel processes involved in more general aspects of cognitive control. Consequently, different psychological and anatomo-functional models coexist, which often appear in conflict with each other even though they are not necessarily mutually exclusive. The standard model of response inhibition in go/no-go tasks assumes that inhibitory processes are reactively and selectively triggered by the stimulus that participants must refrain from reacting to. Recent alternative models suggest that action restraint could instead rely on reactive but non-selective mechanisms (all automatic responses are automatically inhibited in uncertain contexts) or on proactive and non-selective mechanisms (a gating function by which reaction to any stimulus is prevented in anticipation of stimulation when the situation is unpredictable). Here, we assessed the physiological plausibility of these different models by testing their respective predictions regarding event-related BOLD modulations (forward inference using fMRI). We set up a single fMRI design which allowed for us to record simultaneously the different possible forms of inhibition while limiting confounds between response inhibition and parallel cognitive processes. We found BOLD dynamics consistent with non-selective models. These results provide new theoretical and methodological lines of inquiry for the study of basic functions involved in behavioural control and related disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Decrease in fMRI brain activation during working memory performed after sleeping under 10 lux light.

    PubMed

    Kang, Seung-Gul; Yoon, Ho-Kyoung; Cho, Chul-Hyun; Kwon, Soonwook; Kang, June; Park, Young-Min; Lee, Eunil; Kim, Leen; Lee, Heon-Jeong

    2016-11-09

    The aim of this study was to investigate the effect of exposure to dim light at night (dLAN) when sleeping on functional brain activation during a working-memory tasks. We conducted the brain functional magnetic resonance imaging (fMRI) analysis on 20 healthy male subjects. All participants slept in a polysomnography laboratory without light exposure on the first and second nights and under a dim-light condition of either 5 or 10 lux on the third night. The fMRI scanning was conducted during n-back tasks after second and third nights. Statistical parametric maps revealed less activation in the right inferior frontal gyrus (IFG) after exposure to 10-lux light. The brain activity in the right and left IFG areas decreased more during the 2-back task than during the 1- or 0-back task in the 10-lux group. The exposure to 5-lux light had no significant effect on brain activities. The exposure to dLAN might influence the brain function which is related to the cognition.

  16. The influence of emotional priming on the neural substrates of memory: a prospective fMRI study using portrait art stimuli.

    PubMed

    Baeken, Chris; De Raedt, Rudi; Van Schuerbeek, Peter; De Mey, Johan; Bossuyt, Axel; Luypaert, Robert

    2012-07-16

    Events coupled with an emotional context seem to be better retained than non-emotional events. The aim of our study was to investigate whether an emotional context could influence the neural substrates of memory associations with novel portrait art stimuli. In the current prospective fMRI study, we have investigated for one specific visual art form (modern artistic portraits with a high degree of abstraction) whether memory is influenced by priming with emotional facial pictures. In total forty healthy female volunteers in the same age range were recruited for the study. Twenty of these women participated in a prospective brain imaging memory paradigm and were asked to memorize a series of similar looking, but different portraits. After randomization, for twelve participants (Group 1), a third of the portraits was emotionally primed with approach-related pictures (smiling baby faces), a third with withdrawal-related pictures (baby faces with severe dermatological conditions), and another third with neutral images. Group 2 consisted of eight participants and they were not primed. Then, during an fMRI session 2h later, these portraits were viewed in random order intermixed with a set of new (previously unseen) ones, and the participants had to decide for each portrait whether or not they had already been seen. In a separate experiment, a different sample of twenty healthy females (Group 3) rated their mood after being exposed to the same art stimuli, without priming. The portraits did not evoke significant mood changes by themselves, supporting their initial neutral emotional character (Group 3). The correct decision on whether the portraits were Familiar of Unfamiliar led to similar neuronal activations in brain areas implicated in visual and attention processing for both groups (Groups 1 and 2). In contrast, whereas primed participants showed significant higher neuronal activities in the left midline superior frontal cortex (Brodmann area (BA) 6), unprimed

  17. Comparison of glomerular activity patterns by fMRI and wide-field calcium imaging: implications for principles underlying odor mapping

    PubMed Central

    Sanganahalli, Basavaraju G.; Rebello, Michelle R.; Herman, Peter; Papademetris, Xenophon; Shepherd, Gordon M.; Verhagen, Justus V.; Hyder, Fahmeed

    2015-01-01

    Functional imaging signals arise from distinct metabolic and hemodynamic events at the neuropil, but how these processes are influenced by pre- and post-synaptic activities need to be understood for quantitative interpretation of stimulus-evoked mapping data. The olfactory bulb (OB) glomeruli, spherical neuropil regions with well-defined neuronal circuitry, can provide insights into this issue. Optical calcium-sensitive fluorescent dye imaging (OICa2+) reflects dynamics of pre-synaptic input to glomeruli, whereas high-resolution functional magnetic resonance imaging (fMRI) using deoxyhemoglobin contrast reveals neuropil function within the glomerular layer where both pre- and post-synaptic activities contribute. We imaged odor-specific activity patterns of the dorsal OB in the same anesthetized rats with fMRI and OICa2+ and then co-registered the respective maps to compare patterns in the same space. Maps by each modality were very reproducible as trial-to-trial patterns for a given odor, overlapping by ~80%. Maps evoked by ethyl butyrate and methyl valerate for a given modality overlapped by ~80%, suggesting activation of similar dorsal glomerular networks by these odors. Comparison of maps generated by both methods for a given odor showed ~70% overlap, indicating similar odor-specific maps by each method. These results suggest that odor-specific glomerular patterns by high-resolution fMRI primarily tracks pre-synaptic input to the OB. Thus combining OICa2+ and fMRI lays the framework for studies of OB processing over a range of spatiotemporal scales, where OICa2+ can feature the fast dynamics of dorsal glomerular clusters and fMRI can map the entire glomerular sheet in the OB. PMID:26631819

  18. Cortex-based inter-subject analysis of iEEG and fMRI data sets: application to sustained task-related BOLD and gamma responses.

    PubMed

    Esposito, Fabrizio; Singer, Neomi; Podlipsky, Ilana; Fried, Itzhak; Hendler, Talma; Goebel, Rainer

    2013-02-01

    Linking regional metabolic changes with fluctuations in the local electromagnetic fields directly on the surface of the human cerebral cortex is of tremendous importance for a better understanding of detailed brain processes. Functional magnetic resonance imaging (fMRI) and intra-cranial electro-encephalography (iEEG) measure two technically unrelated but spatially and temporally complementary sets of functional descriptions of human brain activity. In order to allow fine-grained spatio-temporal human brain mapping at the population-level, an effective comparative framework for the cortex-based inter-subject analysis of iEEG and fMRI data sets is needed. We combined fMRI and iEEG recordings of the same patients with epilepsy during alternated intervals of passive movie viewing and music listening to explore the degree of local spatial correspondence and temporal coupling between blood oxygen level dependent (BOLD) fMRI changes and iEEG spectral power modulations across the cortical surface after cortex-based inter-subject alignment. To this purpose, we applied a simple model of the iEEG activity spread around each electrode location and the cortex-based inter-subject alignment procedure to transform discrete iEEG measurements into cortically distributed group patterns by establishing a fine anatomic correspondence of many iEEG cortical sites across multiple subjects. Our results demonstrate the feasibility of a multi-modal inter-subject cortex-based distributed analysis for combining iEEG and fMRI data sets acquired from multiple subjects with the same experimental paradigm but with different iEEG electrode coverage. The proposed iEEG-fMRI framework allows for improved group statistics in a common anatomical space and preserves the dynamic link between the temporal features of the two modalities. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Receptive Vocabulary Knowledge in Low-Functioning Autism as Assessed by Eye Movements, Pupillary Dilation, and Event-Related Potentials

    DTIC Science & Technology

    2012-06-01

    for Asperger Syndrome and other high-functioning autism spectrum disorders in school age children. Journal of Autism & Developmental Disorders, 29...Functioning Autism as Assessed by Eye Movements, Pupillary Dilation, and Event-Related Potentials PRINCIPAL INVESTIGATOR: Barry Gordon...Knowledge in Low-Functioning Autism as Assessed by Eye- Movements, Pupillary Dilation, and Event-Related Potentials 5b. GRANT NUMBER W81XWH-10-1-0404

  20. High Field fMRI Reveals Thalamocortical Integration of Segregated Cognitive and Emotional Processing in Mediodorsal and Intralaminar Thalamic Nuclei

    PubMed Central

    Metzger, C. D.; Eckert, U.; Steiner, J.; Sartorius, A.; Buchmann, J. E.; Stadler, J.; Tempelmann, C.; Speck, O.; Bogerts, B.; Abler, B.; Walter, M.

    2010-01-01

    Thalamocortical loops, connecting functionally segregated, higher order cortical regions, and basal ganglia, have been proposed not only for well described motor and sensory regions, but also for limbic and prefrontal areas relevant for affective and cognitive processes. These functions are, however, more specific to humans, rendering most invasive neuroanatomical approaches impossible and interspecies translations difficult. In contrast, non-invasive imaging of functional neuroanatomy using fMRI allows for the development of elaborate task paradigms capable of testing the specific functionalities proposed for these circuits. Until recently, spatial resolution largely limited the anatomical definition of functional clusters at the level of distinct thalamic nuclei. Since their anatomical distinction seems crucial not only for the segregation of cognitive and limbic loops but also for the detection of their functional interaction during cognitive–emotional integration, we applied high resolution fMRI on 7 Tesla. Using an event-related design, we could isolate thalamic effects for preceding attention as well as experience of erotic stimuli. We could demonstrate specific thalamic effects of general emotional arousal in mediodorsal nucleus and effects specific to preceding attention and expectancy in intralaminar centromedian/parafascicular complex. These thalamic effects were paralleled by specific coactivations in the head of caudate nucleus as well as segregated portions of rostral or caudal cingulate cortex and anterior insula supporting distinct thalamo–striato–cortical loops. In addition to predescribed effects of sexual arousal in hypothalamus and ventral striatum, high resolution fMRI could extent this network to paraventricular thalamus encompassing laterodorsal and parataenial nuclei. We could lend evidence to segregated subcortical loops which integrate cognitive and emotional aspects of basic human behavior such as sexual processing. PMID:21088699