Is Hyperinsulinemia a Form of Diabetes?
... underlying problem. Hyperinsulinemia is most often caused by insulin resistance — a condition in which your body doesn't ... pancreas tries to compensate by making more insulin. Insulin resistance may eventually lead to the development of type ...
The pharmacogenomics of drug resistance to protein kinase inhibitors
Gillis, Nancy K.; McLeod, Howard L.
2016-01-01
Dysregulation of growth factor cell signaling is a major driver of most human cancers. This has led to development of numerous drugs targeting protein kinases, with demonstrated efficacy in the treatment of a wide spectrum of cancers. Despite their high initial response rates and survival benefits, the majority of patients eventually develop resistance to these targeted therapies. This review article discusses examples of established mechanisms of drug resistance to anticancer therapies, including drug target mutations or gene amplifications, emergence of alternate signaling pathways, and pharmacokinetic variation. This reveals a role for pharmacogenomic analysis to identify and monitor for resistance, with possible therapeutic strategies to combat chemoresistance. PMID:27620953
Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens
Pamer, Eric G.
2016-01-01
The intestinal microbiota, which is composed of diverse populations of commensal bacterial species, provides resistance against colonization and invasion by pathogens. Antibiotic treatment can damage the intestinal microbiota and, paradoxically, increase susceptibility to infections. Reestablishing microbiota-mediated colonization resistance after antibiotic treatment could markedly reduce infections, particularly those caused by antibiotic-resistant bacteria. Ongoing studies are identifying commensal bacterial species that can be developed into next-generation probiotics to reestablish or enhance colonization resistance. These live medicines are at various stages of discovery, testing, and production and are being subjected to existing regulatory gauntlets for eventual introduction into clinical practice. The development of next-generation probiotics to reestablish colonization resistance and eliminate potential pathogens from the gut is warranted and will reduce health care–associated infections caused by highly antibiotic-resistant bacteria. PMID:27126035
Adelaiye, Remi; Ciamporcero, Eric; Miles, Kiersten Marie; Sotomayor, Paula; Bard, Jonathan; Tsompana, Maria; Conroy, Dylan; Shen, Li; Ramakrishnan, Swathi; Ku, Sheng-Yu; Orillion, Ashley; Prey, Joshua; Fetterly, Gerald; Buck, Michael; Chintala, Sreenivasulu; Bjarnason, Georg A; Pili, Roberto
2015-02-01
Sunitinib is considered a first-line therapeutic option for patients with advanced clear cell renal cell carcinoma (ccRCC). Despite sunitinib's clinical efficacy, patients eventually develop drug resistance and disease progression. Herein, we tested the hypothesis whether initial sunitinib resistance may be transient and could be overcome by dose increase. In selected patients initially treated with 50 mg sunitinib and presenting with minimal toxicities, sunitinib dose was escalated to 62.5 mg and/or 75 mg at the time of tumor progression. Mice bearing two different patient-derived ccRCC xenografts (PDX) were treated 5 days per week with a dose-escalation schema (40-60-80 mg/kg sunitinib). Tumor tissues were collected before dose increments for immunohistochemistry analyses and drug levels. Selected intrapatient sunitinib dose escalation was safe and several patients had added progression-free survival. In parallel, our preclinical results showed that PDXs, although initially responsive to sunitinib at 40 mg/kg, eventually developed resistance. When the dose was incrementally increased, again we observed tumor response to sunitinib. A resistant phenotype was associated with transient increase of tumor vasculature despite intratumor sunitinib accumulation at higher dose. In addition, we observed associated changes in the expression of the methyltransferase EZH2 and histone marks at the time of resistance. Furthermore, specific EZH2 inhibition resulted in increased in vitro antitumor effect of sunitinib. Overall, our results suggest that initial sunitinib-induced resistance may be overcome, in part, by increasing the dose, and highlight the potential role of epigenetic changes associated with sunitinib resistance that can represent new targets for therapeutic intervention. ©2014 American Association for Cancer Research.
Makuuchi, Yosuke; Hayashi, Hidetoshi; Haratani, Koji; Tanizaki, Junko; Tanaka, Kaoru; Takeda, Masayuki; Sakai, Kazuko; Shimizu, Shigeki; Ito, Akihiko; Nishio, Kazuto; Nakagawa, Kazuhiko
2018-05-01
The second-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) alectinib and ceritinib are standard treatment options for patients with non-small cell lung cancer (NSCLC) positive for ALK fusion genes. However, almost all patients eventually develop resistance to these drugs. We here report a case of ALK -rearranged NSCLC that developed resistance to alectinib but remained sensitive to ceritinib. The L1196M mutation within the ALK fusion gene was detected after failure of consecutive treatment with crizotinib and alectinib, but no other mechanism underlying acquired resistance to ALK-TKIs was found to be operative. Given the increasing application of ALK-TKIs to the treatment of patients with ALK -rearranged NSCLC, further clinical evaluation is warranted to provide a better understanding of the mechanisms of acquired resistance to these agents and to inform treatment strategies for such tumors harboring secondary mutations.
Methylseleninic acid sensitizes Notch3-activated OVCA429 ovarian cancer cells to carboplatin
USDA-ARS?s Scientific Manuscript database
Ovarian cancer, the deadliest of gynecologic cancers, is usually diagnosed at advanced stage due to invalidated screening test and non-specific symptoms presented. Although carboplatin has been popular for treating ovarian cancer for decades, patients eventually develop resistance to this platinum-c...
Wang, Ronghao; Lin, Wanying; Lin, Changyi; Li, Lei; Sun, Yin; Chang, Chawnshang
2016-08-28
Androgen deprivation therapy (ADT) with the newly developed powerful anti-androgen enzalutamide (Enz, also known as MDV3100) has promising therapeutic effects to suppress castration resistant prostate cancer (CRPC) and extending patients' lives an extra 4.8 months. However, most Enz therapy eventually fails with the development of Enz resistance. The detailed mechanisms how CRPC develops Enz resistance remain unclear and may involve multiple mechanisms. Among them, the induction of the androgen receptor (AR) mutant AR-F876L in some CRPC patients may represent one driving force that confers Enz resistance. Here, we demonstrate that the AR degradation enhancer, ASC-J9(®), not only degrades wild-type AR, but also has the ability to target AR-F876L. The consequence of suppressing AR-F876L may then abrogate AR-F876L mediated CRPC cell proliferation and metastasis. Thus, developing ASC-J9(®) as a new therapeutic approach may represent a novel therapy to better suppress CRPC that has already developed Enz resistance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Changing strategy in malaria control
Pampana, E. J.
1954-01-01
Residual-insecticide spraying methods may lead to the eradication of malaria from a country or from an area of it, and therefore to the possibility that the spraying campaign may eventually be discontinued. This is the final target to be aimed at in planning national malaria-control campaigns. As it is now known that some anopheline vector species may develop resistance to insecticides, a plea is made that control programmes should be planned to cover such large areas and with such criteria of efficiency as to eradicate malaria and to enable the campaign to be discontinued before resistance may have developed. PMID:13209311
Pagedar, Ankita; Singh, Jitender; Batish, Virender K
2011-06-01
The present study was undertaken to investigate the role of efflux pump activity (EPA) in conferring adaptive and cross resistances against ciprofloxacin (CF) and benzalkonium chloride (BC) in dairy isolates of Pseudomonas aeruginosa. Biofilm formation potential was correlated with development of adaptive resistance in originally resistant strains. Irrespective of parent strains's susceptibility, isolates developed substantial adaptive resistance against CF and BC. Significant difference was observed in ability of non resistant isolates to develop adaptive resistance against CF and BC (P < 0.02) and subsequent cross resistance. EPA was quantified using EtBr (Ethidium Bromide) model and its role was more prominent [confirmed by its inhibition using efflux pump inhibitor (EPI) 2,4-dinitrophenol (DNP)], in conferring adaptive resistance (P = 0.147) than cross resistance (P = 0.343). Reduction in adaptive resistances due to EPI was more evident in originally non resistant strains, which reaffirms EPA as probable mechanism of adaptive resistance. The present study perhaps first of its kind, suggests an active role of EPA in conferring adaptive and cross resistances in food related P. aeruginosa isolates and supports reverse hypothesis that antibiotic-resistant organisms eventually become tolerant to other antibacterial agents as well. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Combination Therapy Improves Survival in Prostate Cancer Model | Center for Cancer Research
Surgery and radiotherapy are the recommended treatments for localized prostate cancer. Recurrent prostate cancer, however, is often treated with androgen-deprivation therapy. Most patients who undergo this type of therapy eventually develop castration-resistant prostate cancer (CRPC). Though initially androgen-related therapies for CRPC had been thought to be ineffective,
Singh, Pankaj Kumar; Silakari, Om
2017-10-01
Clinical reports suggest that EGFR-mutated lung cancer usually respond significantly towards small molecule tyrosine kinase inhibitors. Same studies also report the eventual development of acquired resistance within a median time interval of 9 to 14months. One of the major mechanisms involved in this acquired resistance was found to be a secondary point mutation at gate-keeper residue, EGFR T790M. However, there are other recent studies which disclose the role of few other novel key players such as, ZEB1, TOPK etc., in the development of tolerance towards the EGFR TKI's, along with other commonly known mechanisms, such as amplification of signalling pathways such as, c-MET, Erbb2, AXL, additional acquired secondary mutations (PIK3CA, BRAF), or phenotypic transformation (small cell or epithelial to mesenchymal transitions). Interestingly, a recent study showed development of resistance via another point mutation, C797S, in case of tumors which were previously resistant and were administered agents capable of overcoming T790M gatekeeper mutation based resistance. Thus, raising serious concern over the direction of drug development involving tyrosine kinases such as EGFR. Current approaches focussing on development of third generation inhibitors, dual inhibitors or inhibitors of HSP90 have shown significant activity but do not answer the long term question of resistance. Copyright © 2017 Elsevier Inc. All rights reserved.
Pirazzoli, Valentina; Nebhan, Caroline; Song, Xiaoling; Wurtz, Anna; Walther, Zenta; Cai, Guoping; Zhao, Zhongming; Jia, Peilin; de Stanchina, Elisa; Shapiro, Erik M.; Gale, Molly; Yin, Ruonan; Horn, Leora; Carbone, David P.; Stephens, Philip J; Miller, Vincent; Gettinger, Scott; Pao, William; Politi, Katerina
2014-01-01
SUMMARY Patients with EGFR-mutant lung adenocarcinomas (LUADs) who initially respond to first-generation TKIs develop resistance to these drugs. A combination of the irreversible TKI afatinib and the EGFR antibody cetuximab can be used to overcome resistance to first-generation TKIs; however, resistance to this drug combination eventually emerges. We identified activation of the mTORC1 signaling pathway as a mechanism of resistance to dual inhibition of EGFR in mouse models. Addition of rapamycin reversed resistance in vivo. Analysis of afatinib+cetuximab-resistant biopsy specimens revealed the presence of genomic alterations in genes that modulate mTORC1 signaling including NF2 and TSC1. These findings pinpoint enhanced mTORC1 activation as a mechanism of resistance to afatinib+cetuximab and identify genomic mechanisms that lead to activation of this pathway, revealing a potential therapeutic strategy for treating patients with resistance to these drugs. PMID:24813888
Ghodhbane, Hanen; Elaidi, Sabrine; Sabatier, Jean-Marc; Achour, Sami; Benhmida, Jeannette; Regaya, Imed
2015-01-01
Multiresistant Gram-negative bacteria are the prime mover of nosocomial infections. Some are naturally resistant to antibiotics, their genetic makes them insensitive to certain families of antibiotics and they transmit these resistors to their offspring. Moreover, when bacteria are subjected to antibiotics, they eventually develop resistance against drugs to which they were previously sensitive. In recent years, many bacteriocins active against gram-negative bacteria have been identified proving their efficacy in treating infections. While further investigation remains necessary before the possibilities for bacteriocins in clinical practice can be described more fully, this review provides an overview of bacteriocins acting on the most common infectious gram negative bacteria (Klebsiella, Acinetobacter, Pseudomonas aeruginosa and E. coli).
Arinze, Folasade; Shaver, Aaron; Raffanti, Stephen
2017-10-01
Recurrent anogenital herpes simplex virus infections are common in patients with human immunodeficiency virus (HIV), of whom approximately 5% develop resistance to acyclovir. We present a case of a 49-year-old man with HIV who had an 8-year history of recurrent left inguinal herpes simplex virus type 2 ulcerations. He initially responded to oral acyclovir, but developed resistance to acyclovir and eventually foscarnet. The lesion progressed to a large hypertrophic mass that required surgical excision, which led to resolution without recurrences. Our case highlights the importance of surgical excision as a treatment option in refractory herpes simplex virus anogenital infections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chi-Chen; Institute of Biomedical Science, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taiwan; Department of Medical Research and Education, Taichung Veterans General Hospital, Taichung, Taiwan
2015-11-01
Gefitinib is the first-line chemotherapeutic drug for treating non-small cell lung cancer (NSCLC), which comprises nearly 85% of all lung cancer cases worldwide. However, most patients eventually develop drug resistance after 12–18 months of treatment. Hence, investigating the drug resistance mechanism and resistance-associated biomarkers is necessary. Two lung adenocarcinoma cell lines, PC9 and gefitinib-resistant PC9/Gef, were established for examining resistance mechanisms and identifying potential therapeutic targets. Two-dimensional differential gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry were used for examining global protein expression changes between PC9 and PC9/Gef. The results revealed that 164 identified proteins were associated withmore » the formation of gefitinib resistance in PC9 cells. Additional studies using RNA interference showed that progesterone receptor membrane component 1 and pericentrin proteins have major roles in gefitinib resistance. In conclusion, the proteomic approach enabled identifying of numerous proteins involved in gefitinib resistance. The results provide useful diagnostic markers and therapeutic candidates for treating gefitinib-resistant NSCLC. - Highlights: • 164 proteins associated with gefitinib resistance were identified through proteomic analysis. • In this study, a lung adenocarcinoma and its gefitinib resistant partner were established. • mPR and PCNT proteins have evidenced to play important roles in gefitinib resistance.« less
Combined EGFR/MEK Inhibition Prevents the Emergence of Resistance in EGFR mutant Lung Cancer
Uddin, Sharmeen; Capelletti, Marzia; Ercan, Dalia; Ogino, Atsuko; Pratilas, Christine A.; Rosen, Neal; Gray, Nathanael S.; Wong, Kwok-Kin; Jänne, Pasi A.
2016-01-01
Irreversible pyrimidine based EGFR inhibitors, including WZ4002, selectively inhibit both EGFR activating and EGFR inhibitor resistant T790M mutations more potently than wild type EGFR. While this class of mutant selective EGFR inhibitors is effective clinically in lung cancer patients harboring EGFR T790M, prior preclinical studies demonstrate that acquired resistance can occur through genomic alterations that activate ERK1/2 signaling. Here we find that ERK1/2 reactivation occurs rapidly following WZ4002 treatment. Concomitant inhibition of ERK1/2 by the MEK inhibitor trametinib prevents ERK1/2 reactivation, enhances WZ4002 induced apoptosis and inhibits the emergence of resistance in WZ4002 sensitive models known to acquire resistance via both T790M dependent and independent mechanisms. Resistance to WZ4002 in combination with trametinib eventually emerges due to AKT/mTOR reactivation. These data suggest that initial co-targeting of EGFR and MEK could significantly impede the development of acquired resistance in mutant EGFR lung cancer. PMID:26036643
Santarpia, Mariacarmela; Altavilla, Giuseppe; Rosell, Rafael
2015-06-01
Crizotinib was the first clinically available anaplastic lymphoma kinase (ALK) inhibitor, showing remarkable activity against ALK-rearranged non-small-cell lung cancer (NSCLC). Despite initial responses, acquired resistance to crizotinib inevitably develops, with the brain being a common site of relapse. Alectinib is a highly selective, next-generation ALK inhibitor with potent inhibitory activity also against ALK mutations conferring resistance to crizotinib, including the gatekeeper L1196M substitution. In a Phase I/II study from Japan, alectinib was found to be highly active and safe in crizotinib-naïve, ALK-rearranged NSCLC patients. Alectinib also demonstrated promising antitumor activity in crizotinib-resistant patients, including those with CNS metastases. Based on these data, the drug received Breakthrough Therapy Designation by the US FDA and has been recently approved in Japan for the treatment of ALK-positive, advanced NSCLC patients. However, patients may eventually develop resistance to alectinib, highlighting the need for novel therapeutic strategies to further improve the management of ALK-rearranged NSCLC.
Kolber, Michael A
2007-01-01
Most physicians that treat individuals with HIV-1 disease are able to successfully suppress viral replication with the pharmacologic armamentarium available today. For the majority of patients this results in immune reconstitution and improved quality of life. However, a large fraction of these patients have transient elevations in their viral burden and even persistence of low-level viremia. In fact, many individuals whose viral load is suppressed to < 50 c/ml have evidence of low-level viral replication. The impact of low-level viremia and persistent viral replication is an area of significant study and interest owing to the potential for the development of drug resistance mutations. Here the fundamental question is whether and perhaps what factors provide a venue for the development of resistant virus. The concern is clearly the eventual progression of disease with the exhaustion of treatment options. The purpose of this review is to evaluate the current literature regarding the effect of low-level viremia on the development of drug resistance mutations. Herein, we discuss the impact of different levels of viral suppression on the development of mutations. In addition, we look at the role that resistance and fitness play in determining the survival of a breakthrough mutation within the background of drug.
Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus
Tangvarasittichai, Surapon
2015-01-01
Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM. PMID:25897356
Civil-Military Relations in Mexico: A Way Ahead
2011-10-28
of policy to avert military perceptions of civilian incompetence and to overcome military resistance to democratic leadership .23 Deciding when and...leadership would eventually overcome the military’s corporate resistance to democratic leadership .32 LEGISLATIVE OVERSIGHT AND ACCOUNTABILITY In
Targeting Siah2 as Novel Therapy for Metastatic Prostate Cancer
2017-12-01
unlimited. The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official...challenge (Wyatt and Gleave, 2015). PCa initially responds to the first line androgen deprivation therapy (ADT) or androgen receptor ( AR ) pathway...inhibition (ARPI) but eventually develops into lethal castration resistance prostate cancer (CRPC, Loriot et al., 2012). The most recognized AR -negative
Targeting Siah2 as Novel Therapy for Metastatic Prostate Cancer
2017-12-01
opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position...deprivation therapy (ADT) or androgen receptor ( AR ) pathway inhibition (ARPI) but eventually develops into lethal castration resistance prostate cancer...CRPC, Loriot et al., 2012). The most recognized AR -negative CRPC variant is neuroendocrine PCa (NEPC), which is characterized by the expression of
Aortic intimal sarcoma masquerading as bilateral renal artery stenosis.
Sethi, Supreet; Pothineni, Naga Krishna; Syal, Gaurav; Ali, Syed Mujtaba; Krause, Michelle W
2013-01-01
Aortic intimal sarcoma is a rare tumor with poor prognosis. The most common manifestations are thromboembolic phenomena and vascular obstruction. We present a case of aortic intimal sarcoma causing bilateral renal artery stenosis which manifested as resistant hypertension and acute kidney inury. Multiple attempts to stent the renal arteries were unsuccessful. Eventually the patient developed acute limb ischemia and oliguric kidney failure as complications of the primary tumor.
Oaxaca, Derrick M; Yang-Reid, Sun Ah; Ross, Jeremy A; Rodriguez, Georgialina; Staniswalis, Joan G; Kirken, Robert A
2016-09-01
Tyrosine kinase inhibitors (TKIs) have dramatically improved the life expectancy of patients suffering from chronic myeloid leukemia (CML); however, patients will eventually develop resistance to TKI therapy or adverse side effects due to secondary off-target mechanisms associated with TKIs. CML patients exhibiting TKI resistance are at greater risk of developing an aggressive and drug-insensitive disease. Drug-resistant CML typically arises in response to spontaneous mutations within the drug binding sites of the targeted oncoproteins. To better understand the mechanism of drug resistance in TKI-resistant CML patients, the BCR-ABL transformed cell line KCL22 was grown with increasing concentrations of imatinib for a period of 6 weeks. Subsequently, a drug-resistant derivative of the parental KCL22 cell line harboring the T315I gatekeeper mutation was isolated and investigated for TKI drug sensitivity via multi-agent drug screens. A synergistic combination of ponatinib- and forskolin-reduced cell viability was identified in this clinically relevant imatinib-resistant CML cell line, which also proved efficacious in other CML cell lines. In summary, this study provides new insight into the biological underpinnings of BCR-ABL-driven CML and potential rationale for investigating novel treatment strategies for patients with T315I CML.
Wang, Jun; Wang, Baocheng; Chu, Huili; Yao, Yunfeng
2016-01-01
Identifying activating EGFR mutations is a useful predictive strategy that helps select a population of advanced non-small-cell lung cancer (NSCLC) patients for treatment with EGFR tyrosine kinase inhibitors (TKIs). Patients with sensitizing EGFR mutations (predominantly an in-frame deletion in exon 19 and an L858R substitution) are highly responsive to first-generation EGFR TKIs, such as gefitinib and erlotinib, and show improved progression-free survival without serious side effects. However, all patients with activating EGFR mutations who are initially responsive to EGFR TKIs eventually develop acquired resistance after a median progression-free survival of 10–16 months, followed by disease progression. Moreover, ~20%–30% of NSCLC patients have no objective tumor regression on initial EGFR TKI treatment, although they harbor an activating EGFR mutation. These patients represent an NSCLC subgroup that is defined as having intrinsic or primary resistance to EGFR TKIs. Different mechanisms of acquired EGFR TKI resistance have been identified, and several novel compounds have been developed to reverse acquired resistance, but little is known about EGFR TKI intrinsic resistance. In this review, we summarize the latest findings involving mechanisms of intrinsic resistance to EGFR TKIs in advanced NSCLC with activating EGFR mutations and present possible therapeutic strategies to overcome this resistance. PMID:27382309
Shivapooja, Phanindhar; Yu, Qian; Orihuela, Beatriz; Mays, Robin; Rittschof, Daniel; Genzer, Jan; López, Gabriel P
2015-11-25
We present a method for dual-mode-management of biofouling by modifying surface of silicone elastomers with zwitterionic polymeric grafts. Poly(sulfobetaine methacrylate) was grafted from poly(vinylmethylsiloxane) elastomer substrates using thiol-ene click chemistry and surface-initiated, controlled radical polymerization. These surfaces exhibited both fouling resistance and triggered fouling-release functionality. The zwitterionic polymers exhibited fouling resistance over short-term (∼hours) exposure to bacteria and barnacle cyprids. The biofilms that eventually accumulated over prolonged-exposure (∼days) were easily detached by applying mechanical strain to the elastomer substrate. Such dual-functional surfaces may be useful in developing environmentally and biologically friendly coatings for biofouling management on marine, industrial, and biomedical equipment because they can obviate the use of toxic compounds.
Influence of microstructure on the fretting resistance of Al-Cu-Li alloys
NASA Astrophysics Data System (ADS)
Delacroix, Jessica; Cazottes, Sophie; Daniélou, Armelle; Fouvry, Siegfried; Buffiere, Jean-Yves
The resistance of two Al-Cu-Li alloys (2050 and 2196) to fretting has been investigated. For each material two heat treatments have been studied (T8 and low temperature ageing). Fretting tests with a cylinder-plane configuration have been performed in the partial slip regime. The results obtained show that the low temperature temper gives a better resistance to fretting crack initiation and propagation than the T8 temper for both alloys. The 3D shape of the fretting cracks has been observed by high resolution synchrotron X-ray tomography. Multiple initiation sites were observed below the contact. In their early stages of development, the fretting cracks grow approximately radially within the material leading to thumb nail cracks which eventually merge laterally. The difference in fretting resistance is analysed with respect to the 3D fracture surface of the fretting cracks in relation with the alloys precipitation state.
Katayama, Ryohei; Khan, Tahsin M.; Benes, Cyril; Lifshits, Eugene; Ebi, Hiromichi; Rivera, Victor M.; Shakespeare, William C.; Iafrate, A. John; Engelman, Jeffrey A.; Shaw, Alice T.
2011-01-01
The echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion oncogene represents a molecular target in a small subset of non-small cell lung cancers (NSCLCs). This fusion leads to constitutive ALK activation with potent transforming activity. In a pivotal phase 1 clinical trial, the ALK tyrosine kinase inhibitor (TKI) crizotinib (PF-02341066) demonstrated impressive antitumor activity in the majority of patients with NSCLC harboring ALK fusions. However, despite these remarkable initial responses, cancers eventually develop resistance to crizotinib, usually within 1 y, thereby limiting the potential clinical benefit. To determine how cancers acquire resistance to ALK inhibitors, we established a model of acquired resistance to crizotinib by exposing a highly sensitive EML4-ALK–positive NSCLC cell line to increasing doses of crizotinib until resistance emerged. We found that cells resistant to intermediate doses of crizotinib developed amplification of the EML4-ALK gene. Cells resistant to higher doses (1 μM) also developed a gatekeeper mutation, L1196M, within the kinase domain, rendering EML4-ALK insensitive to crizotinib. This gatekeeper mutation was readily detected using a unique and highly sensitive allele-specific PCR assay. Although crizotinib was ineffectual against EML4-ALK harboring the gatekeeper mutation, we observed that two structurally different ALK inhibitors, NVP-TAE684 and AP26113, were highly active against the resistant cancer cells in vitro and in vivo. Furthermore, these resistant cells remained highly sensitive to the Hsp90 inhibitor 17-AAG. Thus, we have developed a model of acquired resistance to ALK inhibitors and have shown that second-generation ALK TKIs or Hsp90 inhibitors are effective in treating crizotinib-resistant tumors harboring secondary gatekeeper mutations. PMID:21502504
Spatial mapping of antibiotic resistance
USDA-ARS?s Scientific Manuscript database
A serious concern for modern animal production is the fear that feed antimicrobials, such as monensin, increase the potential for high levels of antibiotic resistant (AR) gene prevalence in the manure, which may subsequently be shared with soil communities and eventually be taken up by human pathoge...
Combination Therapy Improves Survival in Prostate Cancer Model | Center for Cancer Research
Surgery and radiotherapy are the recommended treatments for localized prostate cancer. Recurrent prostate cancer, however, is often treated with androgen-deprivation therapy. Most patients who undergo this type of therapy eventually develop castration-resistant prostate cancer (CRPC). Though initially androgen-related therapies for CRPC had been thought to be ineffective, further studies have demonstrated that the disease remains dependent on the signaling of androgens, such as testosterone, for its continued progression. This development suggests that alternative strategies for manipulating androgen signaling may prove useful for treating CRPC.
Everolimus affects vasculogenic mimicry in renal carcinoma resistant to sunitinib
Serova, Maria; Tijeras-Raballand, Annemilaï; Santos, Celia Dos; Martinet, Matthieu; Neuzillet, Cindy; Lopez, Alfred; Mitchell, Dianne C.; Bryan, Brad A.; Gapihan, Guillaume; Janin, Anne; Bousquet, Guilhem; Riveiro, Maria Eugenia; Bieche, Ivan; Faivre, Sandrine
2016-01-01
Angiogenesis is hallmark of clear cell renal cell carcinogenesis. Anti-angiogenic therapies have been successful in improving disease outcome; however, most patients treated with anti-angiogenic agents will eventually progress. In this study we report that clear cell renal cell carcinoma was associated with vasculogenic mimicry in both mice and human with tumor cells expressing endothelial markers in the vicinity of tumor vessels. We show that vasculogenic mimicry was efficiently targeted by sunitinib but eventually associated with tumor resistance and a more aggressive phenotype both in vitro and in vivo. Re-challenging these resistant tumors in mice, we showed that second-line treatment with everolimus particularly affected vasculogenic mimicry and tumor cell differentiation compared to sorafenib and axitinib. Finally, our results highlighted the phenotypic and genotypic changes at the tumor cell and microenvironment levels during sunitinib response and progression and the subsequent improvement second-line therapies bring to the current renal cell carcinoma treatment paradigm. PMID:27509260
Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops.
Khatodia, Surender; Bhatotia, Kirti; Tuteja, Narendra
2017-05-04
Clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9) system of targeted genome editing has already revolutionized the plant science research. This is a RNA guided programmable endonuclease based system composed of 2 components, the Cas9 nuclease and an engineered guide RNA targeting any DNA sequence of the form N20-NGG for novel genome editing applications. The CRISPR/Cas9 technology of targeted genome editing has been recently applied for imparting virus resistance in plants. The robustness, wide adaptability, and easy engineering of this system has proved its potential as an antiviral tool for plants. Novel DNA free genome editing by using the preassembled Cas9/gRNA ribonucleoprotein complex for development of virus resistance in any plant species have been prospected for the future. Also, in this review we have discussed the reports of CRISPR/Cas9 mediated virus resistance strategy against geminiviruses by targeting the viral genome and transgene free strategy against RNA viruses by targeting the host plant factors. In conclusion, CRISPR/Cas9 technology will provide a more durable and broad spectrum viral resistance in agriculturally important crops which will eventually lead to public acceptance and commercialization in the near future.
Wang, Shuyun; Gao, Aiqin; Liu, Jie; Sun, Yuping
2018-03-01
As the standard first-line treatment for advanced non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutation, EGFR-tyrosine kinase inhibitors (EGFR-TKIs) have significantly improved the median progression-free survival (PFS) up to 18.9 months. However, almost all patients eventually develop acquired resistance to EGFR-TKIs, which limits the first-line PFS. To overcome the resistance and improve overall survival, researchers have tried to identify the resistance mechanisms and develop new treatment strategies, among which a combination of EGFR-TKIs and cytotoxic chemotherapy is one of the hotspots. The data from preclinical and clinical studies on combined EGFR-TKIs and chemotherapy have shown very interesting results. Here, we reviewed the available preclinical and clinical studies on first-line EGFR-TKIs-chemotherapy combination in patients with advanced NSCLC harboring activating EGFR mutation, aiming to provide evidences for more potential choices and shed light on clinical treatment.
Perdigão, João; Macedo, Rita; Silva, Carla; Machado, Diana; Couto, Isabel; Viveiros, Miguel; Jordao, Luisa; Portugal, Isabel
2013-01-01
The development and transmission of extensively drug-resistant (XDR) tuberculosis (TB) constitutes a serious threat to the effective control of TB in several countries. Here, in an attempt to further elucidate the dynamics of the acquisition of resistance to second-line drugs and investigate an eventual role for eis promoter mutations in aminoglycoside resistance, we have studied a set of multidrug-resistant (MDR)/XDR-TB isolates circulating in Lisbon, Portugal. Forty-four MDR-TB or XDR-TB isolates were genotyped and screened for mutations in genes associated with second-line drug resistance, namely tlyA, gyrA, rrs and eis. The most prevalent mutations found in each gene were Ins755GT in tlyA, A1401G in rrs, G-10A in eis and S91P in gyrA. Additionally, two genetic clusters were found in this study: Lisboa3 and Q1. The characteristic mutational profile found among recent XDR-TB circulating in Lisbon was also found in MDR-TB strains isolated in the 1990s. Also investigated was the resistance level conferred by eis G-10A mutations, revealing that eis G-10A mutations may result in amikacin resistance undetectable by widely used phenotypic assays. The analysis of the distribution of the mutations found by genetic clustering showed that in the Q1 cluster, two mutations, gyrA D94A and rrs A1401G, were enough to ensure development of XDR-TB from an MDR strain. Moreover, in the Lisboa3 cluster it was possible to elaborate a model in which the development of low-level kanamycin resistance was at the origin of the emergence of XDR-TB strains that can be discriminated by tlyA mutations.
Lineage plasticity-mediated therapy resistance in prostate cancer.
Blee, Alexandra M; Huang, Haojie
2018-06-12
Therapy resistance is a significant challenge for prostate cancer treatment in clinic. Although targeted therapies such as androgen deprivation and androgen receptor (AR) inhibition are effective initially, tumor cells eventually evade these strategies through multiple mechanisms. Lineage reprogramming in response to hormone therapy represents a key mechanism that is increasingly observed. The studies in this area have revealed specific combinations of alterations present in adenocarcinomas that provide cells with the ability to transdifferentiate and perpetuate AR-independent tumor growth after androgen-based therapies. Interestingly, several master regulators have been identified that drive plasticity, some of which also play key roles during development and differentiation of the cell lineages in the normal prostate. Thus, further study of each AR-independent tumor type and understanding underlying mechanisms are warranted to develop combinational therapies that combat lineage plasticity in prostate cancer.
Reconceptualizing "Resistant" Learners and Rethinking Instruction: Risking a Trip to the Swamp.
ERIC Educational Resources Information Center
Hauschildt, Patricia M.; McMahon, Susan I.
1996-01-01
Focuses on five fifth-grade students for whom student-led literature discussion was not working. Tells what happened when all five of the students were put in one group, and shows that students who seemed to be resistant eventually engaged themselves with the books they were reading. (SR)
Tanimoto, Azusa; Yamada, Tadaaki; Nanjo, Shigeki; Takeuchi, Shinji; Ebi, Hiromichi; Kita, Kenji; Matsumoto, Kunio; Yano, Seiji
2014-07-15
Alectinib is a new generation ALK inhibitor with activity against the gatekeeper L1196M mutation that showed remarkable activity in a phase I/II study with echinoderm microtubule associated protein-like 4 (EML4)--anaplastic lymphoma kinase (ALK) non-small cell lung cancer (NSCLC) patients. However, alectinib resistance may eventually develop. Here, we found that EGFR ligands and HGF, a ligand of the MET receptor, activate EGFR and MET, respectively, as alternative pathways, and thereby induce resistance to alectinib. Additionally, the heat shock protein 90 (Hsp90) inhibitor suppressed protein expression of ALK, MET, EGFR, and AKT, and thereby induced apoptosis in EML4-ALK NSCLC cells, even in the presence of EGFR ligands or HGF. These results suggest that Hsp90 inhibitors may overcome ligand-triggered resistance to new generation ALK inhibitors and may result in more successful treatment of NSCLC patients with EML4-ALK.
Tanimoto, Azusa; Yamada, Tadaaki; Nanjo, Shigeki; Takeuchi, Shinji; Ebi, Hiromichi; Kita, Kenji; Matsumoto, Kunio; Yano, Seiji
2014-01-01
Alectinib is a new generation ALK inhibitor with activity against the gatekeeper L1196M mutation that showed remarkable activity in a phase I/II study with echinoderm microtubule associated protein-like 4 (EML4) - anaplastic lymphoma kinase (ALK) non-small cell lung cancer (NSCLC) patients. However, alectinib resistance may eventually develop. Here, we found that EGFR ligands and HGF, a ligand of the MET receptor, activate EGFR and MET, respectively, as alternative pathways, and thereby induce resistance to alectinib. Additionally, the heat shock protein 90 (Hsp90) inhibitor suppressed protein expression of ALK, MET, EGFR, and AKT, and thereby induced apoptosis in EML4-ALK NSCLC cells, even in the presence of EGFR ligands or HGF. These results suggest that Hsp90 inhibitors may overcome ligand-triggered resistance to new generation ALK inhibitors and may result in more successful treatment of NSCLC patients with EML4-ALK. PMID:24952482
Wang, Liming; Sun, Qiang; Wang, Xin; Wen, Tao; Yin, Jun-Jie; Wang, Pengyang; Bai, Ru; Zhang, Xiang-Qian; Zhang, Lu-Hua; Lu, An-Hui; Chen, Chunying
2015-02-11
Under evolutionary pressure from chemotherapy, cancer cells develop resistance characteristics such as a low redox state, which eventually leads to treatment failures. An attractive option for combatting resistance is producing a high concentration of produced free radicals in situ. Here, we report the production and use of dispersible hollow carbon nanospheres (HCSs) as a novel platform for delivering the drug doxorubicine (DOX) and generating additional cellular reactive oxygen species using near-infrared laser irradiation. These irradiated HCSs catalyzed sufficiently persistent free radicals to produce a large number of heat shock factor-1 protein homotrimers, thereby suppressing the activation and function of resistance-related genes. Laser irradiation also promoted the release of DOX from lysosomal DOX@HCSs into the cytoplasm so that it could enter cell nuclei. As a result, DOX@HCSs reduced the resistance of human breast cancer cells (MCF-7/ADR) to DOX through the synergy among photothermal effects, increased generation of free radicals, and chemotherapy with the aid of laser irradiation. HCSs can provide a unique and versatile platform for combatting chemotherapy-resistant cancer cells. These findings provide new clinical strategies and insights for the treatment of resistant cancers.
Chanbang, Y; Arthur, F. H; Wilde, G. E; Throne, J. E; Subramanyam, B. H
2008-01-01
Several physical and chemical attributes of rice were evaluated to determine which character would be best to use to assess multiple rice varieties for resistance to the lesser grain borer, Rhyzopertha dominica (F.). Laboratory tests were conducted on single varieties of long-, short-, and medium grain-rice to develop procedures and methodologies that could be used for large-scale screening studies. Progeny production of R. dominica was positively correlated with the percentage of broken hulls. Although kernel hardness, amylose content, neonate preference for brown rice, and adult emergence from neonates varied among the three rice varieties tested they did not appear to be valid indicators of eventual progeny production, and may not be useful predictors of resistance or susceptibility. Soundness and integrity seem to be the best characters to use for varietal screening studies with R. dominica. PMID:20337559
Vibrio vulnificus: An Environmental and Clinical Burden
Heng, Sing-Peng; Letchumanan, Vengadesh; Deng, Chuan-Yan; Ab Mutalib, Nurul-Syakima; Khan, Tahir M.; Chuah, Lay-Hong; Chan, Kok-Gan; Goh, Bey-Hing; Pusparajah, Priyia; Lee, Learn-Han
2017-01-01
Vibrio vulnificus is a Gram negative, rod shaped bacterium that belongs to the family Vibrionaceae. It is a deadly, opportunistic human pathogen which is responsible for the majority of seafood-associated deaths worldwide. V. vulnificus infection can be fatal as it may cause severe wound infections potentially requiring amputation or lead to sepsis in susceptible individuals. Treatment is increasingly challenging as V. vulnificus has begun to develop resistance against certain antibiotics due to their indiscriminate use. This article aims to provide insight into the antibiotic resistance of V. vulnificus in different parts of the world as well as an overall review of its clinical manifestations, treatment, and prevention. Understanding the organism's antibiotic resistance profile is vital in order to select appropriate treatment and initiate appropriate prevention measures to treat and control V. vulnificus infections, which should eventually help lower the mortality rate associated with this pathogen worldwide. PMID:28620366
2014-10-01
OCT 2014 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Ex Vivo Activity of Endoperoxide Antimalarials , Including Artemisone...Prescribed by ANSI Std Z39-18 Ex Vivo Activity of Endoperoxide Antimalarials , Including Artemisone and Arterolane, against Multidrug-Resistant...potent antimalarial activity (2, 3). Despite having a rapid mecha- nism of action, artemisinin resistance eventually emerged and was first detected
Antibiotics: Precious Goods in Changing Times.
Sass, Peter
2017-01-01
Antibiotics represent a first line of defense of diverse microorganisms, which produce and use antibiotics to counteract natural enemies or competitors for nutritional resources in their nearby environment. For antimicrobial activity, nature has invented a great variety of mechanisms of antibiotic action that involve the perturbation of essential bacterial structures or biosynthesis pathways of macromolecules such as the bacterial cell wall, DNA, RNA, or proteins, thereby threatening the specific microbial lifestyle and eventually even survival. However, along with highly inventive modes of antibiotic action, nature also developed a comparable set of resistance mechanisms that help the bacteria to circumvent antibiotic action. Microorganisms have evolved specific adaptive responses that allow appropriately reacting to the presence of antimicrobial agents, ensuring survival during antimicrobial stress. In times of rapid development and spread of antibiotic (multi-)resistance, we need to explore new, resistance-breaking strategies to counteract bacterial infections. This chapter intends to give an overview of common antibiotics and their target pathways. It will also discuss recent advances in finding new antibiotics with novel modes of action, illustrating that nature's repertoire of innovative new antimicrobial agents has not been fully exploited yet, and we still might find new drugs that help to evade established antimicrobial resistance strategies.
Shao, Yi; Zhong, Dian-Sheng
2018-04-01
Non-small-cell lung cancer patients with sensitive epidermal growth factor receptor mutations generally respond well to tyrosine kinase inhibitors (TKIs). However, acquired resistance will eventually develop place after 8-16 months. Several mechanisms contribute to the resistance including T790M mutation, c-Met amplification, epithelial mesenchymal transformation and PIK3CA mutation; however, histological transformation is a rare mechanism. The patterns and mechanisms underlying histological transformation need to be explored. We searched PubMed, EMBASE and search engines Google Scholar, Medical Matrix for literature related to histological transformation. Case reports, cases series, and clinical and basic medical research articles were reviewed. Sixty-one articles were included in this review. Cases of transformation to small-cell lung cancer, squamous cell carcinoma, large-cell neuroendocrine carcinoma and sarcoma after TKI resistance have all been reported. As the clinical course differed dramatically between cases, a new treatment scheme needs to be recruited. The mechanisms underlying histological transformation have not been fully elucidated and probably relate to cancer stem cells, driver genetic alterations under selective pressure or the heterogeneity of the tumor. When TKI resistance develops, we recommend that patients undergo a second biopsy to determine the reason, guide the next treatment and predict the prognosis.
Osimertinib for EGFR T790M mutation-positive non-small cell lung cancer.
Soejima, Kenzo; Yasuda, Hiroyuki; Hirano, Toshiyuki
2017-01-01
Significant advances have been made since the development of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) targeting EGFR mutations in non-small-cell lung cancer (NSCLC), however, lung cancer cells eventually acquire resistance to those agents. Osimertinib (AZD9291) has been developed as 3 rd generation EGFR-TKI with activities against sensitizing mutations and T790 M resistance mutation, which account for about 50% of the mechanisms of acquired resistance to 1 st or 2 nd generation EGFR-TKIs. A recent phase I/II clinical trial with osimertinib for advanced NSCLC patients with known sensitizing EGFR mutations and documented disease progression on prior EGFR-TKIs revealed promising effect with acceptable toxicities. Areas covered: This article summarizes current understanding and available preclinical and clinical data on osimertinib and also discusses future directions. The literature search included PubMed and the latest articles from international conferences. Expert commentary: The development of osimertinib has provided new therapeutic options for NSCLC patients harboring T790 M. Compared with other EGFR-TKIs including rociletinib, osimertinib seems to possess an advantage with respect to the effect and safety profile among existing EGFR-TKIs. However, tumor progression still occurs even when treating with osimertinib. A further understanding of the mechanisms of resistance is eagerly anticipated in order to develop next generation EGFR-TKIs.
Update on antimicrobial resistance.
Weber, Carol J
2005-02-01
WHO experts believe that antimicrobial resistance is potentially containable, but the window of opportunity to control and eventually eliminate the most dangerous infectious diseases is closing. If we miss our opportunity, it may become very difficult and expensive--and in some cases impossible--to treat infectious diseases. WHO's global strategy to contain antimicrobial resistance requires a massive effort and an alliance among countries, governments, international organizations, drug manufacturers, and private and public health care sectors. If infectious diseases are fought wisely and widely by the international community, drug resistance can be controlled and lives saved.
Bae, Chungyun; Han, Sang Wook; Song, Yu-Rim; Kim, Bo-Young; Lee, Hyung-Jin; Lee, Je-Min; Yeam, Inhwa; Heu, Sunggi; Oh, Chang-Sik
2015-07-01
Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops.
Peng, Ueihuei; Wang, Zhihao; Pei, Sa; Ou, Yunchao; Hu, Pengchao; Liu, Wanhong; Song, Jiquan
2017-02-01
BRAFV600E mutation is found in ~50% of melanoma patients and BRAFV600E kinase activity inhibitor, vemurafenib, has achieved a remarkable clinical response rate. However, most patients treated with vemurafenib eventually develop resistance. Overcoming primary and secondary resistance to selective BRAF inhibitors remains one of the most critically compelling challenges for these patients. HDAC6 has been shown to confer resistance to chemotherapy in several types of cancer. Few studies focused on the role of HDAC6 in vemurafenib resistance. Here we showed that overexpression of HDAC6 confers resistance to vemurafenib in BRAF-mutant A375 cells. ACY-1215, a selective HDAC6 inhibitor, inhibits the proliferation and induces the apoptosis of A375 cells. Moreover, ACY-1215 sensitizes A375 cells to vemurafenib induced cell proliferation inhibition and apoptosis induction, which occur partly through induction of endoplasmic reticulum (ER) stress and inactivation of extracellular signal-regulated kinase (ERK). Taken together, our results suggest that the inhibition of HDAC6 may be a promising strategy for the treatment of melanoma and overcoming resistance to vemurafenib.
McCoach, C E; Jimeno, A
2016-10-01
Oncogenic driver mutations in the epidermal growth factor receptor (EGFR) gene have provided a focus for effective targeted therapy. Unfortunately, all patients eventually develop resistance to frontline therapy with EGFR tyrosine kinase inhibitors (TKIs). The majority of patients develop a large subclonal population of tumor cells with a T790M mutation that renders these cells resistant to first-generation TKIs. Osimertinib is a third-generation EGFR TKI that was designed to overcome resistance from T790M mutations. This agent has demonstrated strong preclinical activity, and in the clinic it has demonstrated a high objective response rate and progression-free survival in patients with EGFR double mutations (L858R/T790M and exon 19 deletion/T790M). It is now approved by the FDA for patients who have a documented T790M mutation and who have progressed on a prior TKI. Osimertinib is also approved in the E.U. and Japan. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.
Yadav, Vipin; Burke, Teresa F; Huber, Lysiane; Van Horn, Robert D; Zhang, Youyan; Buchanan, Sean G; Chan, Edward M; Starling, James J; Beckmann, Richard P; Peng, Sheng-Bin
2014-10-01
B-RAF selective inhibitors, including vemurafenib, were recently developed as effective therapies for melanoma patients with B-RAF V600E mutation. However, most patients treated with vemurafenib eventually develop resistance largely due to reactivation of MAPK signaling. Inhibitors of MAPK signaling, including MEK1/2 inhibitor trametinib, failed to show significant clinical benefit in patients with acquired resistance to vemurafenib. Here, we describe that cell lines with acquired resistance to vemurafenib show reactivation of MAPK signaling and upregulation of cyclin D1 and are sensitive to inhibition of LY2835219, a selective inhibitor of cyclin-dependent kinase (CDK) 4/6. LY2835219 was demonstrated to inhibit growth of melanoma A375 tumor xenografts and delay tumor recurrence in combination with vemurafenib. Furthermore, we developed an in vivo vemurafenib-resistant model by continuous administration of vemurafenib in A375 xenografts. Consistently, we found that MAPK is reactivated and cyclin D1 is elevated in vemurafenib-resistant tumors, as well as in the resistant cell lines derived from these tumors. Importantly, LY2835219 exhibited tumor growth regression in a vemurafenib-resistant model. Mechanistic analysis revealed that LY2835219 induced apoptotic cell death in a concentration-dependent manner in vemurafenib-resistant cells whereas it primarily mediated cell-cycle G1 arrest in the parental cells. Similarly, RNAi-mediated knockdown of cyclin D1 induced significantly higher rate of apoptosis in the resistant cells than in parental cells, suggesting that elevated cyclin D1 activity is important for the survival of vemurafenib-resistant cells. Altogether, we propose that targeting cyclin D1-CDK4/6 signaling by LY2835219 is an effective strategy to overcome MAPK-mediated resistance to B-RAF inhibitors in B-RAF V600E melanoma. ©2014 American Association for Cancer Research.
Malaria in South America: a drug discovery perspective.
Cruz, Luiza R; Spangenberg, Thomas; Lacerda, Marcus V G; Wells, Timothy N C
2013-05-24
The challenge of controlling and eventually eradicating malaria means that new tools are urgently needed. South America's role in this fight spans both ends of the research and development spectrum: both as a continent capable of discovering and developing new medicines, and also as a continent with significant numbers of malaria patients. This article reviews the contribution of groups in the South American continent to the research and development of new medicines over the last decade. Therefore, the current situation of research targeting malaria control and eradication is discussed, including endemicity, geographical distribution, treatment, drug-resistance and diagnosis. This sets the scene for a review of efforts within South America to discover and optimize compounds with anti-malarial activity.
Drone, Elizabeth R.; McCrory, Allison L.; Lane, Natalie; Fiala, Katherine
2014-01-01
A 62-year-old white man with a 10-year history of treatment-refractory Sweet's syndrome was admitted to the hospital with the onset of purpuric lesions. Methylprednisolone and infliximab were administered. Our patient developed disseminated Nocardia infection and eventually succumbed. Opportunistic infections such as Nocardia have been associated with infliximab and other tumour necrosis factor (TNF)-α inhibitors. The astute clinician should be aware of the risk of rare opportunistic infections, particularly in patients on TNF-α inhibitors and systemic corticosteroids. PMID:25165648
Drone, Elizabeth R; McCrory, Allison L; Lane, Natalie; Fiala, Katherine
2014-07-01
A 62-year-old white man with a 10-year history of treatment-refractory Sweet's syndrome was admitted to the hospital with the onset of purpuric lesions. Methylprednisolone and infliximab were administered. Our patient developed disseminated Nocardia infection and eventually succumbed. Opportunistic infections such as Nocardia have been associated with infliximab and other tumour necrosis factor (TNF)-α inhibitors. The astute clinician should be aware of the risk of rare opportunistic infections, particularly in patients on TNF-α inhibitors and systemic corticosteroids.
Trichomonads, hydrogenosomes and drug resistance.
Kulda, J
1999-02-01
Trichomonas vaginalis and Tritrichomonas foetus are sexually transmitted pathogens of the genito-urinary tract of humans and cattle, respectively. These organisms are amitochondrial anaerobes possessing hydrogenosomes, double membrane-bound organelles involved in catabolic processes extending glycolysis. The oxidative decarboxylation of pyruvate in hydrogenosomes is coupled to ATP synthesis and linked to ferredoxin-mediated electron transport. This pathway is responsible for metabolic activation of 5-nitroimidazole drugs, such as metronidazole, used in chemotherapy of trichomoniasis. Prolonged cultivation of trichomonads under sublethal pressure of metronidazole results in development of drug resistance. In both pathogenic species the resistance develops in a multistep process involving a sequence of stages that differ in drug susceptibility and metabolic activities. Aerobic resistance, similar to that occurring in clinical isolates of T. vaginalis from treatment-refractory patients, appears as the earliest stage. The terminal stage is characterised by stable anaerobic resistance at which the parasites show very high levels of minimal lethal concentration for metronidazole under anaerobic conditions (approximately 1000 microg ml(-1)). The key event in the development of resistance is progressive decrease and eventual loss of the pyruvate:ferredoxin oxidoreductase so that the drug-activating process is averted. In T. vaginalis at least, the development of resistance is also accompanied by decreased expression of ferredoxin. The pyruvate:ferredoxin oxidoreductase deficiency completely precludes metronidazole activation in T. foetus, while T. vaginalis possesses an additional drug-activating system which must be eliminated before the full resistance is acquired. This alternative pathway involves the hydrogenosomal malic enzyme and NAD:ferredoxin oxidoreductase. Metronidazole-resistant trichomonads compensate for the hydrogenosomal deficiency by an increased rate of glycolysis and by changes in their cytosolic pathways. Trichomonas vaginalis enhances lactate fermentation while T. foetus activates pyruvate conversion to ethanol. Drug-resistant T. foetus also increases activity of the cytosolic NADP-dependent malic enzyme, to enhance the pyruvate producing bypass and provide NADPH required by alcohol dehydrogenase. Production of succinate by this species is abolished. Metabolic changes accompanying in-vitro development of metronidazole resistance demonstrate the versatility of trichomonad metabolism and provide an interesting example of how unicellular eukaryotes can adjust their metabolism in response to the pressure of an unfavorable environment.
Translational metagenomics and the human resistome: confronting the menace of the new millennium.
Willmann, Matthias; Peter, Silke
2017-01-01
The increasing threat of antimicrobial resistance poses one of the greatest challenges to modern medicine. The collection of all antimicrobial resistance genes carried by various microorganisms in the human body is called the human resistome and represents the source of resistance in pathogens that can eventually cause life-threatening and untreatable infections. A deep understanding of the human resistome and its multilateral interaction with various environments is necessary for developing proper measures that can efficiently reduce the spread of resistance. However, the human resistome and its evolution still remain, for the most part, a mystery to researchers. Metagenomics, particularly in combination with next-generation-sequencing technology, provides a powerful methodological approach for studying the human microbiome as well as the pathogenome, the virolume and especially the resistome. We summarize below current knowledge on how the human resistome is shaped and discuss how metagenomics can be employed to improve our understanding of these complex processes, particularly as regards a rapid translation of new findings into clinical diagnostics, infection control and public health.
Weirich, Jason W; Shaw, David R; Coble, Keith H; Owen, Micheal D K; Dixon, Philip M; Weller, Stephen C; Young, Bryan G; Wilson, Robert G; Jordan, David L
2011-07-01
The introduction of glyphosate-resistant (GR) crops in the late 1990s made weed control in maize, cotton and soybean simple. With the rapid adoption of GR crops, many growers began to rely solely on glyphosate for weed control. This eventually led to the evolution of GR weeds. Growers are often reluctant to adopt a weed resistance best management practice (BMP) because of the added cost of additional herbicides to weed control programs which would reduce short-term revenue. This study was designed to evaluate when a grower that is risk neutral (profit maximizing) or risk averse should adopt a weed resistance BMP. Whether a grower is risk neutral or risk averse, the optimal decision would be to adopt a weed resistance BMP when the expected loss in revenue is greater than 30% and the probability of resistance evolution is 0.1 or greater. However, if the probability of developing resistance increases to 0.3, then the best decision would be to adopt a weed resistance BMP when the expected loss is 10% or greater. Given the scenarios analyzed, risk-neutral or risk-averse growers should implement a weed resistance BMP with confidence that they have made the right decision economically and avoided the risk of lost revenue from resistance. If the grower wants to continue to see the same level of return, adoption of BMP is required. Copyright © 2011 Society of Chemical Industry.
Effect of Environmental Exposures on Fatigue Life of P/M Disk Superalloys
NASA Technical Reports Server (NTRS)
Draper, Susan
2011-01-01
As the temperature capability of Ni-base superalloy powder metallurgy disks is steadily increased, environmental resistance and protection of advanced nickel-based turbine disk components are becoming increasingly important. Localized surface hot corrosion attack and damage from oxidation have been shown to impair disk fatigue life and may eventually limit disk operating temperatures. NASA Research Announcement (NRA) contracts have been awarded to GE Aviation and Honeywell Aerospace to separately develop fatigue resistant metallic and ceramic coatings for corrosion resistance and the corrosion/fatigue results of selected coatings will be presented. The microstructural response of a bare ME3 disk superalloy has been evaluated for moderate (704 C) and aggressive (760-816 C) oxidizing exposures up to 2,020 hours. Cross section analysis reveals sub-surface damage (significant for aggressive exposures) that consists of Al2O3 "fingers", interfacial voids, a recrystallized precipitate-free layer and GB carbide dissolution. The effects of a Nichrome corrosion coating on this microstructural response will also be presented.
Bioassay for Volatile Low Molecular Weight Insecticides and Methods of Use
2007-07-05
2003; Festucci-Buselli eta!., 2005). Hikone-R is resistant to a number of insecticides, including malathion, DDT and neonicotinoids (Sundseth et a...Hikone-R strain (LeGoff eta!. 2003; Festucci-Buselli et a!., 2005) confers resistance to malathion (Sundseth et a!., 1989), DDT, neonicotinoids (Daborn...eventually contribute to NCR with DDT, neonicotinoids and organo- phosphates such as malathion and DDVP. Regarding target site insensitivity, by the same
Shi, Puyu; Oh, You-Take; Zhang, Guojing; Yao, Weilong; Yue, Ping; Li, Yikun; Kanteti, Rajani; Riehm, Jacob; Salgia, Ravi; Owonikoko, Taofeek K; Ramalingam, Suresh S; Chen, Mingwei; Sun, Shi-Yong
2016-10-01
The 3rd generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs; e.g., AZD9291), which selectively and irreversibly inhibit EGFR activating and T790M mutants, represent very promising therapeutic options for patients with non-small cell lung cancer (NSCLC) that has become resistant to 1st generation EGFR-TKIs due to T790M mutation. However, eventual resistance to the 3rd generation EGFR-TKIs has already been described in the clinic, resulting in disease progression. Therefore, there is a great challenge and urgent need to understand how this resistance occurs and to develop effective strategies to delay or overcome the resistance. The current study has demonstrated that Met amplification and hyperactivation is a resistance mechanism to both 1st and 3rd generation EGFR-TKIs since both erlotinib- and AZD9291-resistant HCC827 cell lines possessed amplified Met gene and hyperactivated Met, and were cross-resistant to AZD9291 or erlotinib. Met inhibition overcame the resistance of these cell lines to AZD9291 both in vitro and in vivo, including enhancement of apoptosis or G1 cell cycle arrest. Hence, we suggest that Met inhibition is also an effective strategy to overcome resistance of certain EGFR-mutated NSCLCs with Met amplification to AZD9291, warranting the further clinical validation of our findings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Type 2 diabetes mellitus as a disorder of galanin resistance.
Fang, Penghua; Shi, Mingyi; Zhu, Yan; Bo, Ping; Zhang, Zhenwen
2016-01-01
The increasing prevalence of type 2 diabetes mellitus with its high morbidity and mortality becomes an important health problem. The multifactorial etiology of type 2 diabetes mellitus is relative to many gene and molecule alterations, and increased insulin resistance. Besides these, however, there are still other predisposing and risk factors accounting for type 2 diabetes mellitus not to be identified and recognized. Emerging evidence indicated that defects in galanin function played a crucial role in development of type 2 diabetes mellitus. Galanin homeostasis is tightly relative to insulin resistance and is regulated by blood glucose. Hyperglycemia, hyperinsulinism, enhanced plasma galanin levels and decreased galanin receptor activities are some of the characters of type 2 diabetes mellitus. The discrepancy between high insulin level and low glucose handling is named as insulin resistance. Similarly, the discrepancy between high galanin level and low glucose handling may be denominated as galanin resistance too. In this review, the characteristic milestones of type 2 diabetes mellitus were condensed as two analogical conceptual models, obesity-hyper-insulin-insulin resistance-type 2 diabetes mellitus and obesity-hyper-galanin-galanin resistance-type 2 diabetes mellitus. Both galanin resistance and insulin resistance are correlative with each other. Conceptualizing the etiology of type 2 diabetes mellitus as a disorder of galanin resistance may inspire a new concept to deepen our knowledge about pathogenesis of type 2 diabetes mellitus, eventually leading to novel preventive and therapeutic interventions for type 2 diabetes mellitus. Copyright © 2015 Elsevier Inc. All rights reserved.
Kabani, Amin; Joffe, Ari; Cadrain, Gisele; Jadavji, Taj
1990-01-01
The first report of a case of ampicillin- and chloramphenicol-resistant Haemophilus influenzae type b invasive infection in Canada is described in a four-month-old male with meningitis. He was treated with cefotaxime 200 mg/kg/day divided every 6 h and dexamethasone 0.6 mg/kg/day divided every 6 h, eventually recovering after a complicated course. Follow-up at 21 months showed mild to moderate global developmental delay. While chloramphenicol resistance is rare in North America, a case of meningitis initially unresponsive to ampicillin and chloramphenicol must be considered suspect for resistance. Third generation cephalosporins should be used for resistant cases. PMID:22553448
Resistance and change: a multiple streams approach to understanding health policy making in Ghana.
Kusi-Ampofo, Owuraku; Church, John; Conteh, Charles; Heinmiller, B Timothy
2015-02-01
Although much has been written on health policy making in developed countries, the same cannot be said of less developed countries, especially in Africa. Drawing largely on available historical and government records, newspaper publications, parliamentary Hansards, and published books and articles, this article uses John W. Kingdon's multiple streams framework to explain how the problem, politics, and policy streams converged for Ghana's National Health Insurance Scheme (NHIS) to be passed into law in 2003. The article contends that a change in government in the 2000 general election opened a "policy window" for eventual policy change from "cash-and-carry" to the NHIS. Copyright © 2015 by Duke University Press.
Yadav, Vipin; Zhang, Xiaoyi; Liu, Jiangang; Estrem, Shawn; Li, Shuyu; Gong, Xue-Qian; Buchanan, Sean; Henry, James R.; Starling, James J.; Peng, Sheng-Bin
2012-01-01
Oncogenic B-RAF V600E mutation is found in 50% of melanomas and drives MEK/ERK pathway and cancer progression. Recently, a selective B-RAF inhibitor, vemurafenib (PLX4032), received clinical approval for treatment of melanoma with B-RAF V600E mutation. However, patients on vemurafenib eventually develop resistance to the drug and demonstrate tumor progression within an average of 7 months. Recent reports indicated that multiple complex and context-dependent mechanisms may confer resistance to B-RAF inhibition. In the study described herein, we generated B-RAF V600E melanoma cell lines of acquired-resistance to vemurafenib, and investigated the underlying mechanism(s) of resistance. Biochemical analysis revealed that MEK/ERK reactivation through Ras is the key resistance mechanism in these cells. Further analysis of total gene expression by microarray confirmed a significant increase of Ras and RTK gene signatures in the vemurafenib-resistant cells. Mechanistically, we found that the enhanced activation of fibroblast growth factor receptor 3 (FGFR3) is linked to Ras and MAPK activation, therefore conferring vemurafenib resistance. Pharmacological or genetic inhibition of the FGFR3/Ras axis restored the sensitivity of vemurafenib-resistant cells to vemurafenib. Additionally, activation of FGFR3 sufficiently reactivated Ras/MAPK signaling and conferred resistance to vemurafenib in the parental B-RAF V600E melanoma cells. Finally, we demonstrated that vemurafenib-resistant cells maintain their addiction to the MAPK pathway, and inhibition of MEK or pan-RAF activities is an effective therapeutic strategy to overcome acquired-resistance to vemurafenib. Together, we describe a novel FGFR3/Ras mediated mechanism for acquired-resistance to B-RAF inhibition. Our results have implications for the development of new therapeutic strategies to improve the outcome of patients with B-RAF V600E melanoma. PMID:22730329
Reinforcements: The key to high performance composite materials
NASA Technical Reports Server (NTRS)
Grisaffe, Salvatore J.
1990-01-01
Better high temperature fibers are the key to high performance, light weight composite materials. However, current U.S. and Japanese fibers still have inadequate high temperature strength, creep resistance, oxidation resistance, modulus, stability, and thermal expansion match with some of the high temperature matrices being considered for future aerospace applications. In response to this clear deficiency, both countries have research and development activities underway. Once successful fibers are identified, their production will need to be taken from laboratory scale to pilot plant scale. In such efforts it can be anticipated that the Japanese decisions will be based on longer term criteria than those applied in the U.S. Since the initial markets will be small, short term financial criteria may adversely minimize the number and strength of U.S. aerospace materials suppliers to well into the 21st century. This situation can only be compounded by the Japanese interests in learning to make commercial products with existing materials so that when the required advanced fibers eventually do arrive, their manufacturing skills will be developed.
Advanced Magnetic Head Development Revision 1 Final Report CRADA No. TC-0840-94
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerjan, C.; Shi, S.
The specific go,il of this research was the development of a prototype read magnetic sensor head using the Current:Perpendicular-to-Plane (CPP) geometry with known GMR (Giant Magneto-Resistive) multilayered structures to achieve read densities greater than 10 Gbit/in2, field sensitivities greater than 1%/Oe, switching fields less than 20 Oe, and total MR response greater than 10%. The specific materials needed for this idcnl behavior had to be determined, as did the eventual design of the sensor (placement of contact leads, shields, and biasing magnets). Thus the thrust of the rescnrch required a search for the proper multilayer material combination und the developmentmore » of a simulation capability to guide sensor design. Issues i:elated to device integration, such as media noise and lead contact resistance, were also recognized as important technological hurdles but these items were deferred until the operating conditions of the-prototype GMR sensor were more precisely determined.« less
Implications of ESR1 Mutations in Hormone Receptor-Positive Breast Cancer.
Reinert, Tomás; Gonçalves, Rodrigo; Bines, José
2018-04-17
Endocrine treatment resistance eventually develops during adjuvant and even more often during hormonal treatment for advanced breast cancer (ABC). An ESR1 gene mutation, which encodes for the estrogen receptor (ER) protein, is one of the potential mechanisms of therapy resistance. The ESR1 mutations result in conformational changes in the ER leading to subsequent estrogen-independent transcriptional activity. These mutations are found at a lower level in early stage when compared to metastatic BC, more often through selective pressure after aromatase inhibitor (AI) treatment. Recent studies have explored the role of ESR1 mutations as potential prognostic and predictive biomarkers and showed that ESR1 mutations are likely associated with a more aggressive disease. However, definitive associations with outcome in order to make a specific treatment recommendation are yet to be found. The development of targeted therapy directed to ESR1-mutated clones is an appealing concept, and preclinical and clinical works are in progress. ESR1 mutations represent an exciting field with a rapidly increasing number of recent publications that will likely advance the knowledge of treatment resistance mechanisms and pave the way into more individualized patient endocrine treatment.
Wong, Hilda; Leung, Roland; Kwong, Ava; Chiu, Joanne; Liang, Raymond; Swanton, Charles; Yau, Thomas
2011-01-01
Human epidermal growth factor receptor (HER)-2(+) breast cancer is a distinct molecular and clinical entity, the prognosis of which is improved by trastuzumab. However, primary resistance to trastuzumab is observed in >50% of patients with HER-2(+) advanced breast cancer, and the majority of patients who initially respond to treatment eventually develop disease progression. To facilitate crosstrial comparisons and the understanding of resistance mechanisms, we propose a unifying definition of trastuzumab resistance as progression at first radiological reassessment at 8-12 weeks or within 3 months after first-line trastuzumab in the metastatic setting or new recurrences diagnosed during or within 12 months after adjuvant trastuzumab. In contrast, we define trastuzumab-refractory breast cancer as disease progression after two or more lines of trastuzumab-containing regimens that initially achieved disease response or stabilization at first radiological assessment. We review mechanisms of trastuzumab resistance mediated by p95HER-2 overexpression, phosphoinositide 3-kinase pathway activation, and signaling pathway activation driven by HER-3, epidermal growth factor receptor, and insulin-like growth factor 1 receptor. We distinguish in vitro from in vivo evidence, highlighting that most data describing trastuzumab resistance are derived from preclinical studies or small retrospective patient cohorts, and discuss targeted therapeutic approaches to overcome resistance. Prospective analysis through clinical trials with robust tissue collection procedures, prior to and following acquisition of resistance, integrated with next-generation tumor genome sequencing technologies, is identified as a priority area for development. The identification of predictive biomarkers is of paramount importance to optimize health economic costs and enhance stratification of anti-HER-2 targeted therapies.
Muniyan, Sakthivel; D’Cunha, Napoleon; Robinson, Tashika; Hoelting, Kyle; Dwyer, Jennifer G.; Bu, Xiu R.; Batra, Surinder K.; Lin, Ming-Fong
2015-01-01
Prostate cancer (PCa) is the second leading cause of cancer-related death afflicting United States males. Most treatments to-date for metastatic PCa include androgen-deprivation therapy and second-generation anti-androgens such as abiraterone acetate and enzalutamide. However, a majority of patients eventually develop resistance to these therapies and relapse into the lethal, castration-resistant form of PCa to which no adequate treatment option remains. Hence, there is an immediate need to develop effective therapeutic agents toward this patient population. Imidazopyridines have recently been shown to possess Akt kinase inhibitory activity; thus in this study, we investigated the inhibitory effect of novel imidazopyridine derivatives HIMP, M-MeI, OMP, and EtOP on different human castration-resistant PCa cells. Among these compounds, HIMP and M-MeI were found to possess selective dose- and time-dependent growth inhibition: they reduced castration-resistant PCa cell proliferation and spared benign prostate epithelial cells. Using LNCaP C-81 cells as the model system, these compounds also reduced colony formation as well as cell adhesion and migration, and M-MeI was the most potent in all studies. Further investigation revealed that while HIMP primarily inhibits PCa cell growth via suppression of PI3K/Akt signaling pathway, M-MeI can inhibit both PI3K/Akt and androgen receptor pathways and arrest cell growth in the G2 phase. Thus, our results indicate the novel compound M-MeI to be a promising candidate for castration-resistant PCa therapy, and future studies investigating the mechanism of imidazopyridine inhibition may aid to the development of effective anti-PCa agents. PMID:26121643
Ingersoll, Matthew A; Lyons, Anastesia S; Muniyan, Sakthivel; D'Cunha, Napoleon; Robinson, Tashika; Hoelting, Kyle; Dwyer, Jennifer G; Bu, Xiu R; Batra, Surinder K; Lin, Ming-Fong
2015-01-01
Prostate cancer (PCa) is the second leading cause of cancer-related death afflicting United States males. Most treatments to-date for metastatic PCa include androgen-deprivation therapy and second-generation anti-androgens such as abiraterone acetate and enzalutamide. However, a majority of patients eventually develop resistance to these therapies and relapse into the lethal, castration-resistant form of PCa to which no adequate treatment option remains. Hence, there is an immediate need to develop effective therapeutic agents toward this patient population. Imidazopyridines have recently been shown to possess Akt kinase inhibitory activity; thus in this study, we investigated the inhibitory effect of novel imidazopyridine derivatives HIMP, M-MeI, OMP, and EtOP on different human castration-resistant PCa cells. Among these compounds, HIMP and M-MeI were found to possess selective dose- and time-dependent growth inhibition: they reduced castration-resistant PCa cell proliferation and spared benign prostate epithelial cells. Using LNCaP C-81 cells as the model system, these compounds also reduced colony formation as well as cell adhesion and migration, and M-MeI was the most potent in all studies. Further investigation revealed that while HIMP primarily inhibits PCa cell growth via suppression of PI3K/Akt signaling pathway, M-MeI can inhibit both PI3K/Akt and androgen receptor pathways and arrest cell growth in the G2 phase. Thus, our results indicate the novel compound M-MeI to be a promising candidate for castration-resistant PCa therapy, and future studies investigating the mechanism of imidazopyridine inhibition may aid to the development of effective anti-PCa agents.
Joshi, R K; Mohanty, S; Subudhi, E; Nayak, S
2010-09-08
Turmeric (Curcuma longa), an important asexually reproducing spice crop of the family Zingiberaceae is highly susceptible to bacterial and fungal pathogens. The identification of resistance gene analogs holds great promise for development of resistant turmeric cultivars. Degenerate primers designed based on known resistance genes (R-genes) were used in combinations to elucidate resistance gene analogs from Curcuma longa cultivar surama. The three primers resulted in amplicons with expected sizes of 450-600 bp. The nucleotide sequence of these amplicons was obtained through sequencing; their predicted amino acid sequences compared to each other and to the amino acid sequences of known R-genes revealed significant sequence similarity. The finding of conserved domains, viz., kinase-1a, kinase-2 and hydrophobic motif, provided evidence that the sequences belong to the NBS-LRR class gene family. The presence of tryptophan as the last residue of kinase-2 motif further qualified them to be in the non-TIR-NBS-LRR subfamily of resistance genes. A cluster analysis based on the neighbor-joining method was carried out using Curcuma NBS analogs together with several resistance gene analogs and known R-genes, which classified them into two distinct subclasses, corresponding to clades N3 and N4 of non-TIR-NBS sequences described in plants. The NBS analogs that we isolated can be used as guidelines to eventually isolate numerous R-genes in turmeric.
Which Neuropsychological Tests Predict Progression to Alzheimer’s Disease in Hispanics?
Weissberger, Gali H.; Salmon, David P.; Bondi, Mark W.; Gollan, Tamar H.
2013-01-01
Objective To investigate which neuropsychological tests predict eventual progression to Alzheimer’s disease (AD) in both Hispanic and non-Hispanic individuals. Although our approach was exploratory, we predicted that tests that underestimate cognitive ability in healthy aging Hispanics might not be sensitive to future cognitive decline in this cultural group. Method We compared first-year data of 22 older adults (11 Hispanic) who were diagnosed as cognitively normal but eventually developed AD (decliners), to 60 age- and education-matched controls (27 Hispanic) who remained cognitively normal. To identify tests that may be culturally biased in our sample, we compared Hispanic with non-Hispanic controls on all tests and asked which tests were sensitive to future decline in each cultural group. Results Compared to age-, education-, and gender-matched non-Hispanic controls, Hispanic controls obtained lower scores on tests of language, executive function, and some measures of global cognition. Consistent with our predictions, some tests identified non-Hispanic, but not Hispanic, decliners (vocabulary, semantic fluency). Contrary to our predictions, a number of tests on which Hispanics obtained lower scores than non-Hispanics nevertheless predicted eventual progression to AD in both cultural groups (e.g., Boston Naming Test [BNT], Trails A and B). Conclusions Cross-cultural variation in test sensitivity to decline may reflect greater resistance of medium difficulty items to decline and bilingual advantages that initially protect Hispanics against some aspects of cognitive decline commonly observed in non-Hispanics with preclinical AD. These findings highlight a need for further consideration of cross-cultural differences in neuropsychological test performance and development of culturally unbiased measures. PMID:23688216
Kalpoe, Jayant S; Al Naiemi, Nashwan; Poirel, Laurent; Nordmann, Patrice
2011-05-01
Traditionally, bacteria in The Netherlands have low levels of resistance to antibiotics. This report describes what is believed to be the first carbapenem-resistant Klebsiella pneumoniae producing an OXA-48 type β-lactamase in The Netherlands. The isolate co-produced a CTX-M-15 type β-lactamase and was recovered from a patient who was transferred from a hospital in India to an intensive care unit in The Netherlands. His recovery in The Netherlands was complicated by pneumonia due to the carbapenem-resistant K. pneumoniae to which he eventually succumbed. Pre-emptive screening for carbapenem-resistant Enterobacteriaceae in selected patients could be imperative to maintain the low prevalence of these highly resistant bacteria in Dutch hospitals.
Chemo Resistance of Breast Cancer Stem Cells
2007-05-01
Thus PTEN deficiency results in myeloproliferative disorders and eventually leukemia (112, 113). The most recent study by He et al, using...Gateff E. Malignant neoplasms of genetic origin in Drosophila melanogaster. Science. 1978 Jun 30;200(4349):1448-59. 48. Nusslein-Volhard C, Wieschaus
TAM Receptor Tyrosine Kinases in Cancer Drug Resistance.
Vouri, Mikaella; Hafizi, Sassan
2017-06-01
Receptor tyrosine kinases (RTK) are major regulators of key biological processes, including cell growth, survival, and differentiation, and were established early on as proto-oncogenes, with aberrant expression linked to tumor progression in many cancers. Therefore, RTKs have emerged as major targets for selective therapy with small-molecule inhibitors. However, despite improvements in survival rates, it is now apparent that the targeting of RTKs with selective inhibitors is only transiently effective, as the majority of patients eventually become resistant to therapy. As chemoresistance is the leading cause of cancer spread, progression, and mortality, there is an increasing need for understanding the mechanisms by which cancer cells can evade therapy-induced cell death. The TAM (Tyro3, Axl, Mer) subfamily of RTKs in particular feature in a variety of cancer types that have developed resistance to a broad range of therapeutic agents, including both targeted as well as conventional chemotherapeutics. This article reviews the roles of TAMs as tumor drivers and as mediators of chemoresistance, and the potential effectiveness of targeting them as part of therapeutic strategies to delay or combat resistance. Cancer Res; 77(11); 2775-8. ©2017 AACR . ©2017 American Association for Cancer Research.
Paclitaxel targets VEGF-mediated angiogenesis in ovarian cancer treatment
Ai, Bin; Bie, Zhixin; Zhang, Shuai; Li, Ailing
2016-01-01
Ovarian cancer is one of the gynecologic cancers with the highest mortality, wherein vascular endothelial growth factor (VEGF) is involved in regulating tumor vascularization, growth, migration, and invasion. VEGF-mediated angiogenesis in tumors has been targeted in various cancer treatments, and anti-VEGF therapy has been used clinically for treatment of several types of cancer. Paclitaxel is a natural antitumor agent in the standard front-line treatment that has significant efficiency to treat advanced cancers, including ovarian cancer. Although platinum/paclitaxel-based chemotherapy has good response rates, most patients eventually relapse because the disease develops drug resistance. We aim to review the recent advances in paclitaxel treatment of ovarian cancer via antiangiogenesis. Single-agent therapy may be used in selected cases of ovarian cancer. However, to prevent drug resistance, drug combinations should be identified for optimal effectiveness and existing therapies should be improved. PMID:27648354
Emerald ash borer invasion of North America: history, biology, ecology, impacts, and management.
Herms, Daniel A; McCullough, Deborah G
2014-01-01
Since its accidental introduction from Asia, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has killed millions of ash trees in North America. As it continues to spread, it could functionally extirpate ash with devastating economic and ecological impacts. Little was known about EAB when it was first discovered in North America in 2002, but substantial advances in understanding of EAB biology, ecology, and management have occurred since. Ash species indigenous to China are generally resistant to EAB and may eventually provide resistance genes for introgression into North American species. EAB is characterized by stratified dispersal resulting from natural and human-assisted spread, and substantial effort has been devoted to the development of survey methods. Early eradication efforts were abandoned largely because of the difficulty of detecting and delineating infestations. Current management is focused on biological control, insecticide protection of high-value trees, and integrated efforts to slow ash mortality.
Multifaceted Defense against Listeria monocytogenes in the Gastro-Intestinal Lumen
Becattini, Simone; Pamer, Eric G.
2017-01-01
Listeria monocytogenes is a foodborne pathogen that can cause febrile gastroenteritis in healthy subjects and systemic infections in immunocompromised individuals. Despite the high prevalence of L. monocytogenes in the environment and frequent contamination of uncooked meat and poultry products, infections with this pathogen are relatively uncommon, suggesting that protective defenses in the general population are effective. In the mammalian gastrointestinal tract, a variety of defense mechanisms prevent L. monocytogenes growth, epithelial penetration and systemic dissemination. Among these defenses, colonization resistance mediated by the gut microbiota is crucial in protection against a range of intestinal pathogens, including L. monocytogenes. Here we review defined mechanisms of defense against L. monocytogenes in the lumen of the gastro-intestinal tract, with particular emphasis on protection conferred by the autochthonous microbiota. We suggest that selected probiotic species derived from the microbiota may be developed for eventual clinical use to enhance resistance against L. monocytogenes infections. PMID:29271903
Challenges beyond elimination in leprosy.
Naaz, Farah; Mohanty, Partha Sarathi; Bansal, Avi Kumar; Kumar, Dilip; Gupta, Umesh Datta
2017-01-01
Every year >200,000 new leprosy cases are registered globally. This number has been fairly stable over the past 8 years. The World Health Organization has set a target to interrupt the transmission of leprosy globally by 2020. It is important, in terms of global action and research activities, to consider the eventuality of multidrug therapy (MDT) resistance developing. It is necessary to measure disease burden comprehensively, and contact-centered preventive interventions should be part of a global elimination strategy. Drug resistance is the reduction in effectiveness of a drug such as an antimicrobial or an antineoplastic in curing a disease or condition. MDT has proven to be a powerful tool in the control of leprosy, especially when patients report early and start prompt treatment. Adherence to and its successful completion is equally important. This paper has reviewed the current state of leprosy worldwide and discussed the challenges and also emphasizes the challenge beyond the elimination in leprosy.
Analysis and calculation of lightning-induced voltages in aircraft electrical circuits
NASA Technical Reports Server (NTRS)
Plumer, J. A.
1974-01-01
Techniques to calculate the transfer functions relating lightning-induced voltages in aircraft electrical circuits to aircraft physical characteristics and lightning current parameters are discussed. The analytical work was carried out concurrently with an experimental program of measurements of lightning-induced voltages in the electrical circuits of an F89-J aircraft. A computer program, ETCAL, developed earlier to calculate resistive and inductive transfer functions is refined to account for skin effect, providing results more valid over a wider range of lightning waveshapes than formerly possible. A computer program, WING, is derived to calculate the resistive and inductive transfer functions between a basic aircraft wing and a circuit conductor inside it. Good agreement is obtained between transfer inductances calculated by WING and those reduced from measured data by ETCAL. This computer program shows promise of expansion to permit eventual calculation of potential lightning-induced voltages in electrical circuits of complete aircraft in the design stage.
Jeong, Nari; Kim, Jin-Young; Park, Seong-Cheol; Lee, Jong-Kook; Gopal, Ramamourthy; Yoo, Suyeon; Son, Byoung Kwan; Hahm, Joon Soo; Park, Yoonkyung; Hahm, Kyung-Soo
2010-09-03
Pseudomonas aeruginosa has eventually developed resistance against flomoxef sodium, isepamicin and cefpiramide. Therefore, in this study, the antibacterial activity and synergistic effects of the amphipathic-derived P5-18mer antimicrobial peptide were tested against pathogens associated with cholelithiasis that have developed resistance against commonly used antibiotics. The results were then compared with the activities of the amphipathic-derived peptide, P5-18mer, melittin and common antibiotics. Growth inhibition of planktonic bacteria was tested using the National Committee for Clinical Laboratory Standards (NCCLS). The bactericidal activity of the antimicrobial peptides was measured using time-kill curves. Synergistic effects were evaluated by testing the effects of P5-18mer alone and in combination with flomoxef sodium, isepamicin or cefpiramide at 0.5xMIC. P5-18mer peptide displayed strong activity against pathogens and flomoxef sodium, isepamicin and cefpiramide-resistant bacteria cell lines obtained from a patient with gallstones; however, it did not exert cytotoxicity against the human keratinocyte HaCat cell line. In addition, the results of time-kill curves indicated that P5-18mer peptide exerted bactericidal activity against four strains of P. aeruginosa. Finally, the use of P5-18mer and antibiotics exerted synergistic effects against cell lines that were resistant to commonly used antibiotics. These results indicate that this class of peptides has a rapid microbicidal effect on flomoxef sodium, isepamicin and cefpiramide-resistant strains of P. aeruginosa. Therefore, these peptides may be used as a lead drug for the treatment of acquired pathogens from patients with cholelithiasis who are affected with antibiotic-resistant bacteria. Copyright 2010 Elsevier Inc. All rights reserved.
Teoh, Jeffrey J.; Gamache, Awndre E.; Gillespie, Alyssa L.; Stadnisky, Michael D.; Yagita, Hideo; Bullock, Timothy N.J.; Brown, Michael G.
2016-01-01
Natural killer (NK) cells represent a critical first-line of immune defense against a bevy of viral pathogens, and infection can provoke them to mediate both supportive and suppressive effects on virus-specific adaptive immunity. In mice expressing MHC I Dk, a major MCMV resistance factor and self-ligand of the inhibitory Ly49G2 (G2) receptor, licensed G2+ NK cells provide essential host resistance against murine (M)CMV infection. Additionally G2+ NK cell responses to MCMV increase the rate and extent of dendritic cell (DC) recovery, as well as early priming of CD8+ T-cell effectors in response to MCMV. However, relatively little is known about the NK-cell effect on co-stimulatory ligand patterns displayed by DCs, or ensuing effector and memory T-cell responses. Here we found that CD27-dependent CD8+ T-cell priming and differentiation is shaped by the efficiency of NK responses to virus infection. Surprisingly, differences in specific NK responses to MCMV in Dk-disparate mice failed to distinguish early DC co-stimulatory patterns. Nonetheless, while CD27 deficiency did not impede licensed NK-mediated resistance, both CD70 and CD27 were required to efficiently prime and regulate effector CD8+ T-cell differentiation in response to MCMV, which eventually resulted in biased memory T-cell precursor formation in Dk mice. In contrast, CD8+ T-cells accrued more slowly in non-Dk mice, and eventually differentiated into terminal effector cells regardless of CD27 stimulation. Disparity in this requirement for CD27 signaling indicates that specific virus control mediated by NK cells can shape DC co-stimulatory signals needed to prime CD8+ T cells and eventual T-cell fate decisions. PMID:27798162
Ultra-high field NMR and MRI - the role of magnet technology to increase sensitivity and specificity
NASA Astrophysics Data System (ADS)
Moser, Ewald; Laistler, Elmar; Schmitt, Franz; Kontaxis, Georg
2017-08-01
"History, of course, is difficult to write, if for no other reason, than that it has so many players and so many authors." - P. J. Keating (former Australian Prime Minister) Starting with post-war developments in nuclear magnetic resonance (NMR) a race for stronger and stronger magnetic fields has begun in the 1950s to overcome the inherently low sensitivity of this promising method. Further challenges were larger magnet bores to accommodate small animals and eventually humans. Initially, resistive electromagnets with small pole distances, or sample volumes, and field strengths up to 2.35 T (or 100 MHz 1H frequency) were used in applications in physics, chemistry, and material science. This was followed by stronger and more stable (NbTi based) superconducting magnet technology typically implemented first for small-bore systems in analytical chemistry, biochemistry and structural biology, and eventually allowing larger horizontal-bore magnets with diameters large enough to fit small laboratory animals. By the end of the 1970s, first low-field resistive magnets big enough to accommodate humans were developed and superconducting whole-body systems followed. Currently, cutting-edge analytical NMR systems are available at proton frequencies up to 1 GHz (23.5 T) based on Nb3Sn at 1.9 K. A new 1.2 GHz system (28 T) at 1.9 K, operating in persistent mode but using a combination of low and high temperature multi-filament superconductors is to be released. Preclinical instruments range from small-bore animal systems with typically 600 - 800 MHz (14.1 - 18.8 T) up to 900 MHz (21 T) at 1.9 K. Human whole-body MRI systems currently operate up to 10.5 T. Hybrid combined superconducting and resistive electromagnets with even higher field strength of 45 T dc and 100 T pulsed, are available for material research, of course with smaller free bore diameters. This rather costly development towards higher and higher field strength is a consequence of the inherently low and, thus, urgently needed sensitivity in all NMR experiments. This review particularly describes and compares the developments in superconducting magnet technology and, thus, sensitivity in three fields of research: analytical NMR, biomedical and preclinical research, and human MRI and MRS, highlighting important steps and
Ultrafine polybenzimidazole (PBI) fibers. [separators for alkaline batteries and dfuel cells
NASA Technical Reports Server (NTRS)
Chenevey, E. C.
1979-01-01
Mats were made from ultrafine polybenzimidazole (PBI) fibers to provide an alternate to the use of asbestos as separators in fuel cells and alkaline batteries. To minimize distortion during mat drying, a process to provide a dry fibrid was developed. Two fibrid types were developed: one coarse, making mats for battery separators; the other fine, making low permeability matrices for fuel cells. Eventually, it was demonstrated that suitable mat fabrication techniques yielded fuel cell separators from the coarser alkaline battery fibrids. The stability of PBI mats to 45% KOH at 123 C can be increased by heat treatment at high temperatures. Weight loss data to 1000 hours exposure show the alkali resistance of the mats to be superior to that of asbestos.
WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors
Anastas, Jamie N.; Kulikauskas, Rima M.; Tamir, Tigist; Rizos, Helen; Long, Georgina V.; von Euw, Erika M.; Yang, Pei-Tzu; Chen, Hsiao-Wang; Haydu, Lauren; Toroni, Rachel A.; Lucero, Olivia M.; Chien, Andy J.; Moon, Randall T.
2014-01-01
About half of all melanomas harbor a mutation that results in a constitutively active BRAF kinase mutant (BRAFV600E/K) that can be selectively inhibited by targeted BRAF inhibitors (BRAFis). While patients treated with BRAFis initially exhibit measurable clinical improvement, the majority of patients eventually develop drug resistance and relapse. Here, we observed marked elevation of WNT5A in a subset of tumors from patients exhibiting disease progression on BRAFi therapy. WNT5A transcript and protein were also elevated in BRAFi-resistant melanoma cell lines generated by long-term in vitro treatment with BRAFi. RNAi-mediated reduction of endogenous WNT5A in melanoma decreased cell growth, increased apoptosis in response to BRAFi challenge, and decreased the activity of prosurvival AKT signaling. Conversely, overexpression of WNT5A promoted melanoma growth, tumorigenesis, and activation of AKT signaling. Similarly to WNT5A knockdown, knockdown of the WNT receptors FZD7 and RYK inhibited growth, sensitized melanoma cells to BRAFi, and reduced AKT activation. Together, these findings suggest that chronic BRAF inhibition elevates WNT5A expression, which promotes AKT signaling through FZD7 and RYK, leading to increased growth and therapeutic resistance. Furthermore, increased WNT5A expression in BRAFi-resistant melanomas correlates with a specific transcriptional signature, which identifies potential therapeutic targets to reduce clinical BRAFi resistance. PMID:24865425
ERIC Educational Resources Information Center
Smith, Mary Tinglof
1982-01-01
A member of the Los Angeles board of education describes her experiences in the attempt to enforce school desegregation in the district between 1962 and 1965, discusses the board's "color blind" policy and its resistance to integration efforts, and examines integrationists' limited successes and eventual failure in the desegregation…
Endocrine resistance in breast cancer – an overview and update
Clarke, Robert; Tyson, John J.; Dixon, J. Michael
2015-01-01
Tumors that express detectable levels of the product of the ESR1 gene (estrogen receptor-α; ERα) represent the single largest molecular subtype of breast cancer. More women eventually die from ERα+ breast cancer than from either HER2+ disease (almost half of which also express ERα) and/or from triple negative breast cancer (ERα-negative, progesterone receptor-negative, and HER2-negative). Antiestrogens and aromatase inhibitors are largely indistinguishable from each other in their abilities to improve overall survival and almost 50% of ERα+ breast cancers will eventually fail one or more of these endocrine interventions. The precise reasons why these therapies fail in ERα+ breast cancer remain largely unknown. Pharmacogenetic explanations for Tamoxifen resistance are controversial. The role of ERα mutations in endocrine resistance remains unclear. Targeting the growth factors and oncogenes most strongly correlated with endocrine resistance has proven mostly disappointing in their abilities to improve overall survival substantially, particularly in the metastatic setting. Nonetheless, there are new concepts in endocrine resistance that integrate molecular signaling, cellular metabolism, and stress responses including endoplasmic reticulum stress and the unfolded protein response (UPR) that provide novel insights and suggest innovative therapeutic targets. Encouraging evidence that drug combinations with CDK4/CDK6 inhibitors can extend recurrence free survival may yet translate to improvements in overall survival. Whether the improvements seen with immunotherapy in other cancers can be achieved in breast cancer remains to be determined, particularly for ERα+ breast cancers. This review explores the basic mechanisms of resistance to endocrine therapies, concluding with some new insights from systems biology approaches further implicating autophagy and the UPR in detail, and a brief discussion of exciting new avenues and future prospects. PMID:26455641
Ahead of the Times in Murfreesboro.
ERIC Educational Resources Information Center
Jones, John Hodge
1994-01-01
Murfreesboro (Tennessee) City Schools extended the school day and year with no additional cost to taxpayers. Implementation was arduous and faced great resistance. Eventual solution made better use of the school system's capital assets and human resources, rearranged Chapter 1 money, required additional business support and parents' willingness to…
DOT National Transportation Integrated Search
2009-03-01
Low temperature cracking is one of the major : distress modes in asphalt pavement and is : disastrous to pavement performance and service : life. A poor riding surface leads to an increase in : maintenance and eventual early replacement of : the pave...
Carvajal, Karla; Balderas-Villalobos, Jaime; Bello-Sanchez, Ma Dolores; Phillips-Farfán, Bryan; Molina-Muñoz, Tzindilu; Aldana-Quintero, Hugo; Gómez-Viquez, Norma L
2014-11-01
Obesity and insulin resistance (IR) are strongly connected to the development of subclinical cardiac dysfunction and eventually can lead to heart failure, which is the main cause of morbidity and death in patients having these metabolic diseases. It has been considered that excessive fat tissue may play a critical role in producing systemic IR and enhancing reactive oxygen species (ROS) generation. This oxidative stress (OS) may elicit or exacerbate IR. On the other hand, evidence suggests that some of the cellular mechanisms involved in the pathophysiology of obesity and IR-related cardiomyopathy are excessive myocardial ROS production and abnormal Ca(2+) homeostasis. In addition, emerging evidence suggests that augmented ROS production may contribute to Ca(2+) mishandling by affecting the redox state of key proteins implicated in this process. In this review, we focus on the role of Ca(2+) mishandling in the development of cardiac dysfunction in obesity and IR and address the evidence suggesting that OS might also contribute to cardiac dysfunction by affecting Ca(2+) handling. Copyright © 2014 Elsevier Ltd. All rights reserved.
Milik, Sandra N; Abdel-Aziz, Amal Kamal; Lasheen, Deena S; Serya, Rabah A T; Minucci, Saverio; Abouzid, Khaled A M
2018-06-06
In light of the emergence of resistance against the currently available EGFR inhibitors, our study focuses on tackling this problem through the development of dual EGFR/HER2 inhibitors with improved enzymatic affinities. Guided by the binding mode of the marketed dual EGFR/HER2 inhibitor, Lapatinib, we proposed the design of dual EGFR/HER2 inhibitors based on the 6-phenylthieno[2,3-d]pyrimidine as a core scaffold and hinge binder. After two cycles of screening aiming to identify the optimum aniline headgroup and solubilizing group, we eventually identified 27b as a dual EGFR/HER2 inhibitor with IC 50 values of 91.7 nM and 1.2 μM, respectively. Notably, 27b dramatically reduced the viability of various patient-derived cancer cells preferentially overexpressing EGFR/HER2 (A431, MDA-MBA-361 and SKBr3 with IC 50 values of 1.45, 3.5 and 4.83 μM, respectively). Additionally, 27b efficiently thwarted the proliferation of lapatinib-resistant human non-small lung carcinoma (NCI-H1975) cells, harboring T790 M mutation, with IC 50 of 4.2 μM. Consistently, 27b significantly blocked EGF-induced EGFR activation and inactivated its downstream AKT/mTOR/S6 signalling pathway triggering apoptotic cell death in NCI-H1975 cells. The present study presents a promising candidate for further design and development of novel EGFR/HER2 inhibitors capable of overcoming EGFR TKIs resistance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Advanced materials for radiation-cooled rockets
NASA Technical Reports Server (NTRS)
Reed, Brian; Biaglow, James; Schneider, Steven
1993-01-01
The most common material system currently used for low thrust, radiation-cooled rockets is a niobium alloy (C-103) with a fused silica coating (R-512A or R-512E) for oxidation protection. However, significant amounts of fuel film cooling are usually required to keep the material below its maximum operating temperature of 1370 C, degrading engine performance. Also the R-512 coating is subject to cracking and eventual spalling after repeated thermal cycling. A new class of high-temperature, oxidation-resistant materials are being developed for radiation-cooled rockets, with the thermal margin to reduce or eliminate fuel film cooling, while still exceeding the life of silicide-coated niobium. Rhenium coated with iridium is the most developed of these high-temperature materials. Efforts are on-going to develop 22 N, 62 N, and 440 N engines composed of these materials for apogee insertion, attitude control, and other functions. There is also a complimentary NASA and industry effort to determine the life limiting mechanisms and characterize the thermomechanical properties of these materials. Other material systems are also being studied which may offer more thermal margin and/or oxidation resistance, such as hafnium carbide/tantalum carbide matrix composites and ceramic oxide-coated iridium/rhenium chambers.
The Growth of Economic Studies at Cambridge: 1776-1860.
ERIC Educational Resources Information Center
Rashid, Salim
1980-01-01
Traces the resistance toward establishing an economics curriculum at Cambridge University from 1776 to 1860. Complex reasons include inertia, low intellectual standards, fear of being considered partisan, and avoidance of change during good times. The eventual introduction of economics was achieved only when wholesale reforms were enacted within…
Th2 and Th1 Responses: Clear and Hidden Sides of Immunity Against Intestinal Helminths.
Cortés, Alba; Muñoz-Antoli, Carla; Esteban, J Guillermo; Toledo, Rafael
2017-09-01
Intestinal helminthiases affect millions of people worldwide, mainly in developing regions, where they cause a significant negative impact on human health and socioeconomic growth of affected populations. However, intestinal helminthiases are still among the most neglected tropical diseases. Protective immunity against intestinal helminths is associated with development of type 2 responses. Nevertheless, in some host-intestinal helminth combinations, local Th1 responses are initiated, inducing chronicity. The usage of helminth-mouse models is useful for elucidating the mechanisms behind the initiation of each type of response. Herein, the current knowledge on these topics is reviewed, paying particular attention to the earliest events of the immune cascade which eventually lead to either susceptibility or resistance to infection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Experiences in extraction of contact parameters from process-evaluation test-structures
NASA Technical Reports Server (NTRS)
Lieneweg, Udo
1988-01-01
Six-terminal-contact test structures are introduced for characterizing ohmic contacts between a metal and a heavily doped semiconductor layer. Specifically, the six-terminal test structure supplies the additional information needed in order to calculate the transmission length and eventual corrections to the characteristic resistance per unit width due to finite contact length. The essential feature of this test structure is a square contact with four taps in the lower (semiconductor) layer. Every other one of these taps is used for current injection ('front'). From the voltage drop at the opposite tap and the side taps, the 'end' resistance and the 'side' resistances are calculated. The test structures are shown to give valuable information complementary to the common front resistance measurements. The interfacial resistivity is obtained directly after proper correction for flange effects.
Rajan, Soumya S.; Gokhale, Vijay; Groysman, Matthew J.; Pongtornpipat, Praechompoo; Tapia, Edgar O.; Wang, Mengdie; Schatz, Jonathan H.
2016-01-01
The anaplastic lymphoma kinase (ALK) protein drives tumorigenesis in subsets of several tumors through chromosomal rearrangements that express and activate its C-terminal kinase domain. In addition, germline predisposition alleles and acquired mutations are found in the full-length protein in the pediatric tumor neuroblastoma. ALK-specific tyrosine kinase inhibitors (TKIs) have become important new drugs for ALK-driven lung cancer, but acquired resistance via multiple mechanisms including kinase-domain mutations eventually develops, limiting median progression-free survival to less than a year. Here we assess the impact of several kinase-domain mutations that arose during TKI resistance selections of ALK+ anaplastic large-cell lymphoma (ALCL) cell lines. These include novel variants with respect to ALK-fusion cancers, R1192P and T1151M, and with respect to ALCL, F1174L and I1171S. We assess the effects of these mutations on the activity of six clinical inhibitors in independent systems engineered to depend on either the ALCL fusion kinase NPM-ALK or the lung-cancer fusion kinase EML4-ALK. Our results inform treatment strategies with a likelihood of bypassing mutations when detected in resistant patient samples and highlight differences between the effects of particular mutations on the two ALK fusions. PMID:27009859
PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit.
Kim, Jaeyoun; Lee, Kwanwoo; Rhee, Kunsoo
2015-12-09
Centrioles are duplicated and segregated in close link to the cell cycle. During mitosis, daughter centrioles are disengaged and eventually separated from mother centrioles. New daughter centrioles may be generated only after centriole separation. Therefore, centriole separation is considered a licensing step for centriole duplication. It was previously known that separase specifically cleaves pericentrin (PCNT) during mitotic exit. Here we report that PCNT has to be phosphorylated by PLK1 to be a suitable substrate of separase. Phospho-resistant mutants of PCNT are not cleaved by separase and eventually inhibit centriole separation. Furthermore, phospho-mimetic PCNT mutants rescue centriole separation even in the presence of a PLK1 inhibitor. On the basis on these results, we propose that PLK1 phosphorylation is a priming step for separase-mediated cleavage of PCNT and eventually for centriole separation. PLK1 phosphorylation of PCNT provides an additional layer of regulatory mechanism to ensure the fidelity of centriole separation during mitotic exit.
Carbon Dioxide: an alternative processing method for milk
USDA-ARS?s Scientific Manuscript database
The shelf life of refrigerated fluid milk pasteurized at high temperature for a short time (HTST) in the United States is typically about 14 days, due to the eventual growth of heat-resistant bacteria and the off-flavors they produce. Fluid milk processors would like to achieve a shelf life of 60 t...
Kim, Jihye; Vasu, Vihas T; Mishra, Rangnath; Singleton, Katherine R; Yoo, Minjae; Leach, Sonia M; Farias-Hesson, Eveline; Mason, Robert J; Kang, Jaewoo; Ramamoorthy, Preveen; Kern, Jeffrey A; Heasley, Lynn E; Finigan, James H; Tan, Aik Choon
2014-09-01
Non-small-cell lung cancer (NSCLC) is the leading cause of cancer death in the United States. Targeted tyrosine kinase inhibitors (TKIs) directed against the epidermal growth factor receptor (EGFR) have been widely and successfully used in treating NSCLC patients with activating EGFR mutations. Unfortunately, the duration of response is short-lived, and all patients eventually relapse by acquiring resistance mechanisms. We performed an integrative systems biology approach to determine essential kinases that drive EGFR-TKI resistance in cancer cell lines. We used a series of bioinformatics methods to analyze and integrate the functional genetics screen and RNA-seq data to identify a set of kinases that are critical in survival and proliferation in these TKI-resistant lines. By connecting the essential kinases to compounds using a novel kinase connectivity map (K-Map), we identified and validated bosutinib as an effective compound that could inhibit proliferation and induce apoptosis in TKI-resistant lines. A rational combination of bosutinib and gefitinib showed additive and synergistic effects in cancer cell lines resistant to EGFR TKI alone. We have demonstrated a bioinformatics-driven discovery roadmap for drug repurposing and development in overcoming resistance in EGFR-mutant NSCLC, which could be generalized to other cancer types in the era of personalized medicine. K-Map can be accessible at: http://tanlab.ucdenver.edu/kMap. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Han, Nam; Cuong, Tran Viet; Han, Min; Ryu, Beo Deul; Chandramohan, S; Park, Jong Bae; Kang, Ji Hye; Park, Young-Jae; Ko, Kang Bok; Kim, Hee Yun; Kim, Hyun Kyu; Ryu, Jae Hyoung; Katharria, Y S; Choi, Chel-Jong; Hong, Chang-Hee
2013-01-01
The future of solid-state lighting relies on how the performance parameters will be improved further for developing high-brightness light-emitting diodes. Eventually, heat removal is becoming a crucial issue because the requirement of high brightness necessitates high-operating current densities that would trigger more joule heating. Here we demonstrate that the embedded graphene oxide in a gallium nitride light-emitting diode alleviates the self-heating issues by virtue of its heat-spreading ability and reducing the thermal boundary resistance. The fabrication process involves the generation of scalable graphene oxide microscale patterns on a sapphire substrate, followed by its thermal reduction and epitaxial lateral overgrowth of gallium nitride in a metal-organic chemical vapour deposition system under one-step process. The device with embedded graphene oxide outperforms its conventional counterpart by emitting bright light with relatively low-junction temperature and thermal resistance. This facile strategy may enable integration of large-scale graphene into practical devices for effective heat removal.
Plant Perception and Short-Term Responses to Phytophagous Insects and Mites.
Santamaria, M Estrella; Arnaiz, Ana; Gonzalez-Melendi, Pablo; Martinez, Manuel; Diaz, Isabel
2018-05-03
Plant⁻pest relationships involve complex processes encompassing a network of molecules, signals, and regulators for overcoming defenses they develop against each other. Phytophagous arthropods identify plants mainly as a source of food. In turn, plants develop a variety of strategies to avoid damage and survive. The success of plant defenses depends on rapid and specific recognition of the phytophagous threat. Subsequently, plants trigger a cascade of short-term responses that eventually result in the production of a wide range of compounds with defense properties. This review deals with the main features involved in the interaction between plants and phytophagous insects and acari, focusing on early responses from the plant side. A general landscape of the diverse strategies employed by plants within the first hours after pest perception to block the capability of phytophagous insects to develop mechanisms of resistance is presented, with the potential of providing alternatives for pest control.
Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective.
Schlüter, Urte; Benchabane, Meriem; Munger, Aurélie; Kiggundu, Andrew; Vorster, Juan; Goulet, Marie-Claire; Cloutier, Conrad; Michaud, Dominique
2010-10-01
Protease inhibitors are a promising complement to Bt toxins for the development of insect-resistant transgenic crops, but their limited specificity against proteolytic enzymes and the ubiquity of protease-dependent processes in living organisms raise questions about their eventual non-target effects in agroecosystems. After a brief overview of the main factors driving the impacts of insect-resistant transgenic crops on non-target organisms, the possible effects of protease inhibitors are discussed from a multitrophic perspective, taking into account not only the target herbivore proteases but also the proteases of other organisms found along the trophic chain, including the plant itself. Major progress has been achieved in recent years towards the design of highly potent broad-spectrum inhibitors and the field deployment of protease inhibitor-expressing transgenic plants resistant to major herbivore pests. A thorough assessment of the current literature suggests that, whereas the non-specific inhibitory effects of recombinant protease inhibitors in plant food webs could often be negligible and their 'unintended' pleiotropic effects in planta of potential agronomic value, the innocuity of these proteins might always remain an issue to be assessed empirically, on a case-by-case basis.
Reentrant Resistive Behavior and Dimensional Crossover in Disordered Superconducting TiN Films.
Postolova, Svetlana V; Mironov, Alexey Yu; Baklanov, Mikhail R; Vinokur, Valerii M; Baturina, Tatyana I
2017-05-11
A reentrant temperature dependence of the normal state resistance often referred to as the N-shaped temperature dependence, is omnipresent in disordered superconductors - ranging from high-temperature cuprates to ultrathin superconducting films - that experience superconductor-to-insulator transition. Yet, despite the ubiquity of this phenomenon its origin still remains a subject of debate. Here we investigate strongly disordered superconducting TiN films and demonstrate universality of the reentrant behavior. We offer a quantitative description of the N-shaped resistance curve. We show that upon cooling down the resistance first decreases linearly with temperature and then passes through the minimum that marks the 3D-2D crossover in the system. In the 2D temperature range the resistance first grows with decreasing temperature due to quantum contributions and eventually drops to zero as the system falls into a superconducting state. Our findings demonstrate the prime importance of disorder in dimensional crossover effects.
de Castro, Sonia; Camarasa, María-José
2018-04-25
HIV infection still has a serious health and socio-economical impact and is one of the primary causes of morbidity and mortality all over the world. HIV infection and the AIDS pandemic are still matters of great concern, especially in less developed countries where the access to highly active antiretroviral therapy (HAART) is limited. Patient compliance is another serious drawback. Nowadays, HAART is the treatment of choice although it is not the panacea. Despite the fact that it suppresses viral replication at undetectable viral loads and prevents progression of HIV infection into AIDS HAART has several pitfalls, namely, long-term side-effects, drug resistance development, emergence of drug-resistant viruses, low compliance and the intolerance of some patients to these drugs. Moreover, another serious health concern is the event of co-infection with more than one pathogen at the same time (e.g. HIV and HCV, HBV, herpes viruses, etc). Currently, the multi-target drug approach has become an exciting strategy to address complex diseases and overcome drug resistance development. Such multifunctional molecules combine in their structure pharmacophores that may simultaneously interfere with multiple targets and their use may eventually be more safe and efficacious than that involving a mixture of separate molecules because of avoidance or delay of drug resistance, lower incidence of unwanted drug-drug interactions and improved compliance. In this review we focus on multifunctional molecules with dual activity against different targets of the HIV life cycle or able to block replication, not only of HIV but also of other viruses that are often co-pathogens of HIV. The different approaches are documented by selected examples. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Mansouri, Sepideh; Farahmand, Leila; Teymourzadeh, Azin; Majidzadeh-A, Keivan
2017-08-08
Despite prolonged disease-free survival and overall survival rates in estrogen receptor (ER)-positive patients undergoing adjuvant treatment, Tamoxifen therapy tends to fail due to eventual acquisition of resistance. Although numerous studies have emphasized the role of receptor tyrosine kinases (RTKs) in the development of Tamoxifen resistance, inadequate clinical evidence is available regarding the alteration of biomarker expression during acquired resistance, thus undermining the validity of the findings. Results of two meta-analyses investigating the effect of HER2 status on the prognosis of Tamoxifen-receiving patients have demonstrated that despite HER2-negative patients having longer disease-free survival; there is no difference in overhaul survival between the two groups. Furthermore, due to the intricate molecular interactions among estrogen receptors including ERα36, ERα66, and also RTKs, it is not surprising that RTK suppression does not restore Tamoxifen sensitivity. In considering such a complex network, we speculate that by the time HER2/EGFR is suppressed via targeted therapies, activation of ERα66 and ERα36 initiate molecular signaling pathways downstream of RTKs, thereby enhancing cell proliferation even in the presence of both Tamoxifen and RTK inhibitors. Although clinical findings regarding the molecular pathways downstream of RTKs have been thoroughly discussed in this review, further clinical studies are required in determining a consistency between preclinical and clinical findings. Discovering the best targets in preventing tumor progression requires thorough comprehension of estrogen-dependent and estrogen-independent pathways during Tamoxifen resistance development. Indeed, exploring additional clinically-proven targets would allow for better characterized treatments being available for breast cancer patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Henriksen, Erik J; Prasannarong, Mujalin
2013-09-25
The canonical renin-angiotensin system (RAS) involves the initial action of renin to cleave angiotensinogen to angiotensin I (ANG I), which is then converted to ANG II by the angiotensin converting enzyme (ACE). ANG II plays a critical role in numerous physiological functions, and RAS overactivity underlies many conditions of cardiovascular dysregulation. In addition, ANG II, by acting on both endothelial and myocellular AT1 receptors, can induce insulin resistance by increasing cellular oxidative stress, leading to impaired insulin signaling and insulin-stimulated glucose transport activity. This insulin resistance associated with RAS overactivity, when coupled with progressive ß-cell dysfunction, eventually leads to the development of type 2 diabetes. Interventions that target RAS overactivity, including ACE inhibitors, ANG II receptor blockers, and, most recently, renin inhibitors, are effective both in reducing hypertension and in improving whole-body and skeletal muscle insulin action, due at least in part to enhanced Akt-dependent insulin signaling and insulin-dependent glucose transport activity. ANG-(1-7), which is produced from ANG II by the action of ACE2 and acts via Mas receptors, can counterbalance the deleterious actions of the ACE/ANG II/AT1 receptor axis on the insulin-dependent glucose transport system in skeletal muscle. This beneficial effect of the ACE2/ANG-(1-7)/Mas receptor axis appears to depend on the activation of Akt. Collectively, these findings underscore the importance of RAS overactivity in the multifactorial etiology of insulin resistance in skeletal muscle, and provide support for interventions that target the RAS to ameliorate both cardiovascular dysfunctions and insulin resistance in skeletal muscle tissue. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Houser, Dorian S; Champagne, Cory D; Crocker, Daniel E
2013-11-01
Insulin resistance in modern society is perceived as a pathological consequence of excess energy consumption and reduced physical activity. Its presence in relation to the development of cardiovascular risk factors has been termed the metabolic syndrome, which produces increased mortality and morbidity and which is rapidly increasing in human populations. Ironically, insulin resistance likely evolved to assist animals during food shortages by increasing the availability of endogenous lipid for catabolism while protecting protein from use in gluconeogenesis and eventual oxidation. Some species that incorporate fasting as a predictable component of their life history demonstrate physiological traits similar to the metabolic syndrome during prolonged fasts. One such species is the northern elephant seal (Mirounga angustirostris), which fasts from food and water for periods of up to 4 months. During this time, ∼90% of the seals metabolic demands are met through fat oxidation and circulating non-esterified fatty acids are high (0.7-3.2 mM). All life history stages of elephant seal studied to date demonstrate insulin resistance and fasting hyperglycemia as well as variations in hormones and adipocytokines that reflect the metabolic syndrome to some degree. Elephant seals demonstrate some intriguing adaptations with the potential for medical advancement; for example, ketosis is negligible despite significant and prolonged fatty acid oxidation and investigation of this feature might provide insight into the treatment of diabetic ketoacidosis. The parallels to the metabolic syndrome are likely reflected to varying degrees in other marine mammals, most of which evolved on diets high in lipid and protein content but essentially devoid of carbohydrate. Utilization of these natural models of insulin resistance may further our understanding of the pathophysiology of the metabolic syndrome in humans and better assist the development of preventative measures and therapies.
Isolated central nervous system progression on Crizotinib
Chun, Stephen G.; Choe, Kevin S.; Iyengar, Puneeth; Yordy, John S.; Timmerman, Robert D.
2012-01-01
Advanced non-small lung cancer (NSCLC) remains almost uniformly lethal with marginal long-term survival despite efforts to target specific oncogenic addiction pathways that may drive these tumors with small molecularly targeted agents and biologics. The EML4-ALK fusion gene encodes a chimeric tyrosine kinase that activates the Ras signaling pathway, and this fusion protein is found in approximately 5% of NSCLC. Targeting EML4-ALK with Crizotinib in this subset of NSCLC has documented therapeutic efficacy, but the vast majority of patients eventually develop recurrent disease that is often refractory to further treatments. We present the clinicopathologic features of three patients with metastatic NSCLC harboring the EML4-ALK translocation that developed isolated central nervous system (CNS) metastases in the presence of good disease control elsewhere in the body. These cases suggest a differential response of NSCLC to Crizotinib in the brain in comparison to other sites of disease, and are consistent with a previous report of poor CNS penetration of Crizotinib. Results of ongoing clinical trials will clarify whether the CNS is a major sanctuary site for EML4-ALK positive NSCLC being treated with Crizotinib. While understanding molecular mechanisms of resistance is critical to overcome therapeutic resistance, understanding physiologic mechanisms of resistance through analyzing anatomic patterns of failure may be equally crucial to improve long-term survival for patients with EML4-ALK translocation positive NSCLC. PMID:22986231
Update on options for treatment of metastatic castration-resistant prostate cancer.
Vishnu, Prakash; Tan, Winston W
2010-06-24
Prostate cancer is one of the most common cancers in men in US and European countries. Despite having a favorable prognosis, the incidence of incurable metastatic disease and mortality in the US is about 28,000 per year. Although hormone-based androgen deprivation therapies typically result in rapid responses, nearly all patients eventually develop progressive castration-resistant disease state. With readily available prostate-specific antigen (PSA) testing, most of these patients are asymptomatic and manifest progression simply as a rising PSA. In patients with castration-resistant prostate cancer (CRPC), the median survival is about 1-2 years, with improvements in survival seen mostly with docetaxel-based regimens. The purpose of this article is to review the recent developments in the treatment of advanced CRPC. Since the two landmark trials (TAX-327 and Southwest Oncology Group 99-16) in CRPC, several newer cytotoxic drugs (epothilones, satraplatin), targeted agents (abiraterone, MDV3100) and vaccines have been tested in phase II and III setting with promising results. The role of newer agents in the treatment of CRPC still needs to be validated by phase III trials, which are currently ongoing. Whilst the novel biomarkers, 'circulating tumor cells', have been shown to provide important prognostic information and are anticipated to be incorporated in future clinical decision-making, their exact utility and relevance calls for a larger prospective validation.
Winter, David J.; Pacheco, M. Andreína; Vallejo, Andres F.; Schwartz, Rachel S.; Arevalo-Herrera, Myriam; Herrera, Socrates
2015-01-01
Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and through the development of new genetic markers that can be used to monitor efforts to reduce malaria transmission. Here we analyze whole-genome data from eight field samples from a region in Cordóba, Colombia where malaria is endemic. We find considerable genetic diversity within this population, a result that contrasts with earlier studies suggesting that P. vivax had limited diversity in the Americas. We also identify a selective sweep around a substitution known to confer resistance to sulphadoxine-pyrimethamine (SP). This is the first observation of a selective sweep for SP resistance in this species. These results indicate that P. vivax has been exposed to SP pressure even when the drug is not in use as a first line treatment for patients afflicted by this parasite. We identify multiple non-synonymous substitutions in three other genes known to be involved with drug resistance in Plasmodium species. Finally, we found extensive microsatellite polymorphisms. Using this information we developed 18 polymorphic and easy to score microsatellite loci that can be used in epidemiological investigations in South America. PMID:26709695
Winter, David J; Pacheco, M Andreína; Vallejo, Andres F; Schwartz, Rachel S; Arevalo-Herrera, Myriam; Herrera, Socrates; Cartwright, Reed A; Escalante, Ananias A
2015-12-01
Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and through the development of new genetic markers that can be used to monitor efforts to reduce malaria transmission. Here we analyze whole-genome data from eight field samples from a region in Cordóba, Colombia where malaria is endemic. We find considerable genetic diversity within this population, a result that contrasts with earlier studies suggesting that P. vivax had limited diversity in the Americas. We also identify a selective sweep around a substitution known to confer resistance to sulphadoxine-pyrimethamine (SP). This is the first observation of a selective sweep for SP resistance in this species. These results indicate that P. vivax has been exposed to SP pressure even when the drug is not in use as a first line treatment for patients afflicted by this parasite. We identify multiple non-synonymous substitutions in three other genes known to be involved with drug resistance in Plasmodium species. Finally, we found extensive microsatellite polymorphisms. Using this information we developed 18 polymorphic and easy to score microsatellite loci that can be used in epidemiological investigations in South America.
NASA Astrophysics Data System (ADS)
Lin, Yongchong; Xu, Lishuai; Mu, Guijin
2018-02-01
Yardangs are a type of wind-sculpted landform which generally form in hyper-arid regions. Several factors affect the development of yardangs, and the relative importance of these factors likely varies with differences in regional environmental factors. In the Loulan region of Lop Nur, wind dynamics are the principal factor affecting the development of yardangs. However, layered yardangs, which have undergone a unique form of differential erosion, are common in the region. These erosional landforms differ from typical yardangs which are eroded solely by abrasion and deflation. We conducted field and laboratory investigations of layered yardangs to determine their origin. The results indicate that there are two types of strata comprising the yardangs: uncompacted sand-silt layers, with a lower carbonate content; and compacted clay-silt layers, with a higher carbonate content. Both types of strata are horizontal and occur in alternating layers. This type of structure enables the wind to more easily erode the less resistant sand-silt layers at different heights, leaving the more resistant compacted clay-silt layers relatively intact. Eventually the undercut remnant clay-silt layers collapse once the weight of the suspended strata exceeds their elastic resistance (more than 90% of the fallen blocks have length/thickness ratios between 1.2 and 2.5). Therefore, in addition to wind dynamics, the lithology and structure of the strata are important factors affecting the development of the layered yardangs. This type of differential erosion accelerates the development of the yardangs in the Loulan region.
A model of activity-dependent changes in dendritic spine density and spine structure.
Crook, S M; Dur-E-Ahmad, M; Baer, S M
2007-10-01
Recent evidence indicates that the morphology and density of dendritic spines are regulated during synaptic plasticity. See, for instance, a review by Hayashi and Majewska [9]. In this work, we extend previous modeling studies [27] by combining a model for activity-dependent spine density with one for calcium-mediated spine stem restructuring. The model is based on the standard dimensionless cable equation, which represents the change in the membrane potential in a passive dendrite. Additional equations characterize the change in spine density along the dendrite, the current balance equation for an individual spine head, the change in calcium concentration in the spine head, and the dynamics of spine stem resistance. We use computational studies to investigate the changes in spine density and structure for differing synaptic inputs and demonstrate the effects of these changes on the input-output properties of the dendritic branch. Moderate amounts of high-frequency synaptic activation to dendritic spines result in an increase in spine stem resistance that is correlated with spine stem elongation. In addition, the spine density increases both inside and outside the input region. The model is formulated so that this long-term potentiation-inducing stimulus eventually leads to structural stability. In contrast, a prolonged low-frequency stimulation paradigm that would typically induce long-term depression results in a decrease in stem resistance (correlated with stem shortening) and an eventual decrease in spine density.
Rehabilitating Afghanistan's natural resources
George Hernandez
2011-01-01
The Soviet Union invaded Afghanistan in late 1979. During the next 23 years, the war between the Mujahideen Resistance and the Soviet forces, the ensuing civil war, and eventual take over by the Taliban caused enormous harm to the natural resources of Afghanistan. In 2003, the USDA Forest Service (USFS) was asked by the USDA Foreign Agricultural Service to provide...
Antimicrobial Resistance in the Food Chain: A Review
Verraes, Claire; Van Boxstael, Sigrid; Van Meervenne, Eva; Van Coillie, Els; Butaye, Patrick; Catry, Boudewijn; de Schaetzen, Marie-Athénaïs; Van Huffel, Xavier; Imberechts, Hein; Dierick, Katelijne; Daube, George; Saegerman, Claude; De Block, Jan; Dewulf, Jeroen; Herman, Lieve
2013-01-01
Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages). A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance. PMID:23812024
Kim, Jae Yoon; Moon, Jun-Cheol; Kim, Hyo Chul; Shin, Seungho; Song, Kitae; Kim, Kyung-Hee; Lee, Byung-Moo
2017-01-01
Premise of the study: Positional cloning in combination with phenotyping is a general approach to identify disease-resistance gene candidates in plants; however, it requires several time-consuming steps including population or fine mapping. Therefore, in the present study, we suggest a new combined strategy to improve the identification of disease-resistance gene candidates. Methods and Results: Downy mildew (DM)–resistant maize was selected from five cultivars using a spreader row technique. Positional cloning and bioinformatics tools were used to identify the DM-resistance quantitative trait locus marker (bnlg1702) and 47 protein-coding gene annotations. Eventually, five DM-resistance gene candidates, including bZIP34, Bak1, and Ppr, were identified by quantitative reverse-transcription PCR (RT-PCR) without fine mapping of the bnlg1702 locus. Conclusions: The combined protocol with the spreader row technique, quantitative trait locus positional cloning, and quantitative RT-PCR was effective for identifying DM-resistance candidate genes. This cloning approach may be applied to other whole-genome-sequenced crops or resistance to other diseases. PMID:28224059
Macroporous hydrogel micropillars for quantifying Met kinase activity in cancer cell lysates.
Powers, Alicia D; Liu, Bi; Lee, Andrew G; Palecek, Sean P
2012-09-07
Overactive and overexpressed kinases have been implicated in the cause and progression of many cancers. Kinase inhibitors offer a targeted approach for treating cancers associated with increased or deregulated kinase activity. Often, however, cancer cells exhibit initial resistance to these inhibitors or evolve to develop resistance during treatment. Additionally, cancers of any one tissue type are typically heterogeneous in their oncogenesis mechanisms, and thus diagnosis of a particular type of cancer does not necessarily provide insight into what kinase therapies may be effective. For example, while some lung cancer cells that overexpress the epidermal growth factor receptor (EFGR) respond to treatment with EGFR kinase inhibitors, overexpression or hyperactivity of Met kinase correlates with resistance to EGFR kinase inhibitors. Here we describe a microfluidic-based assay for quantifying Met kinase activity in cancer cell lysates with the eventual goals of predicting cancer cell responsiveness to kinase inhibitors and monitoring development of resistance to these inhibitors. In this assay, we immobilized a phosphorylation substrate for Met kinase into macroporous hydrogel micropillars. We then exposed the micropillars to a cancer cell lysate and detected substrate phosphorylation using a fluorescently conjugated antibody. This assay is able to quantify Met kinase activity in whole cell lysate from as few as 150 cancer cells. It can also detect cells expressing overactive Met kinase in a background of up to 75% non-cancerous cells. Additionally, the assay can quantify kinase inhibition by the Met-specific kinase inhibitors SU11274 and PHA665752, suggesting predictive capability for cellular response to kinase inhibitors.
Li, Zhipeng; Yang, Zejia; Lapidus, Rena G; Liu, Xuefeng; Cullen, Kevin J; Dan, Han C
2015-01-01
Current treatment methods for advanced head and neck squamous cell carcinoma (HNSCC) include surgery, radiation therapy and chemotherapy. For recurrent and metastatic HNSCC, cisplatin is the most common treatment option, but most of patients will eventually develop cisplatin resistance. Therefore, it is imperative to define the mechanisms involved in cisplatin resistance and find novel therapeutic strategies to overcome this deadly disease. In order to determine the role of nuclear factor-kappa B (NF-κB) in contributing to acquired cisplatin resistance in HNSCC, the expression and activity of NF-κB and its upstream kinases, IKKα and IKKβ, were evaluated and compared in three pairs of cisplatin sensitive and resistant HNSCC cell lines, including a pair of patient derived HNSCC cell line. The experiments revealed that NF-κB p65 activity was elevated in cisplatin resistant HNSCC cells compared to that in their parent cells. Importantly, the phosphorylation of NF-κB p65 at serine 536 and the phosphorylation of IKKα and IKKβ at their activation loops were dramatically elevated in the resistant cell lines. Furthermore, knockdown of NF-κB or overexpression of p65-S536 alanine (p65-S536A) mutant sensitizes resistant cells to cisplatin. Additionally, the novel IKKβ inhibitor CmpdA has been shown to consistently block the phosphorylation of NF-κB at serine 536 while also dramatically improving the efficacy of cisplatin in inhibition of cell proliferation and induction of apoptosis in the cisplatin resistant cancer cells. These results indicated that IKK/NF-κB plays a pivotal role in controlling acquired cisplatin resistance and that targeting the IKK/NF-κB signaling pathway may provide a possible therapeutic method to overcome the acquired resistance to cisplatin in HNSCC. PMID:26693062
Bahramnejad, Bahman
2014-01-01
P. atlantica subsp. Kurdica, with the local name of Baneh, is a wild medicinal plant which grows in Kurdistan, Iran. The identification of resistance gene analogs holds great promise for the development of resistant cultivars. A PCR approach with degenerate primers designed according to conserved NBS-LRR (nucleotide binding site-leucine rich repeat) regions of known disease-resistance (R) genes was used to amplify and clone homologous sequences from P. atlantica subsp. Kurdica. A DNA fragment of the expected 500-bp size was amplified. The nucleotide sequence of this amplicon was obtained through sequencing and the predicted amino acid sequence compared to the amino acid sequences of known R-genes revealed significant sequence similarity. Alignment of the deduced amino acid sequence of P. atlantica subsp. Kurdica resistance gene analog (RGA) showed strong identity, ranging from 68% to 77%, to the non-toll interleukin receptor (non-TIR) R-gene subfamily from other plants. A P-loop motif (GMMGGEGKTT), a conserved and hydrophobic motif GLPLAL, a kinase-2a motif (LLVLDDV), when replaced by IAVFDDI in PAKRGA1 and a kinase-3a (FGPGSRIII) were presented in all RGA. A phylogenetic tree, based on the deduced amino-acid sequences of PAKRGA1 and RGAs from different species indicated that they were separated in two clusters, PAKRGA1 being on cluster II. The isolated NBS analogs can be eventually used as guidelines to isolate numerous R-genes in Pistachio. PMID:27843981
Sforza, Vincenzo; Martinelli, Erika; Ciardiello, Fortunato; Gambardella, Valentina; Napolitano, Stefania; Martini, Giulia; della Corte, Carminia; Cardone, Claudia; Ferrara, Marianna L; Reginelli, Alfonso; Liguori, Giuseppina; Belli, Giulio; Troiani, Teresa
2016-01-01
The prognosis of patients with metastatic colorectal cancer (mCRC) remain poor despite the impressive improvement of treatments observed over the last 20 years that led to an increase in median overall survival from 6 mo, with the only best supportive care, to approximately 30 mo with the introduction of active chemotherapy drugs and targeted agents. The monoclonal antibodies (moAbs) cetuximab and panitumumab, directed against the epidermal growth factor receptor (EGFR), undoubtedly represent a major step forward in the treatment of mCRC, given the relevant efficacy in terms of progression-free survival, overall survival, response rate, and quality of life observed in several phase III clinical trials among different lines of treatment. However, the anti-EGFR moAbs were shown only to be effective in a subset of patients. For instance, KRAS and NRAS mutations have been identified as biomarkers of resistance to these drugs, improving the selection of patients who might derive a benefit from these treatments. Nevertheless, several other alterations might affect the response to these drugs, and unfortunately, even the responders eventually become resistant by developing secondary (or acquired) resistance in approximately 13-18 mo. Several studies highlighted that the landscape of responsible alterations of both primary and acquired resistance to anti-EGFR drugs biochemically converge into MEK-ERK and PIK3CA-AKT pathways. In this review, we describe the currently known mechanisms of primary and acquired resistance to anti-EGFR moAbs together with the various strategies evaluated to prevent, overcame or revert them. PMID:27605871
Magnetic field twist driven by remote convective motions: Characteristics and twist rates
NASA Technical Reports Server (NTRS)
Wang, Zheng-Zhi; Hassam, A. B.
1987-01-01
It is generally believed that convective motions below the solar photosphere induce a twist in the coronal magnetic field as a result of frozen-in physics. A question of interest is how much twist can one expect from a persistent convective motion, given the fact that dissipative effects will eventually figure. This question is examined by considering a model problem: two conducting plates, with finite resistivity, are set in sheared motion and forced at constant relative speed. A resistive plasma is between the plates and an initially vertical magnetic field connects the plates. The time rate of tilt experienced by the field is obtained as a function of Hartmann number and the resistivity ratio. Both analytical and numerical approaches are considered.
NASA Astrophysics Data System (ADS)
Zhu, Jun; Zhang, David Wei; Kuo, Chinte; Wang, Qing; Wei, Fang; Zhang, Chenming; Chen, Han; He, Daquan; Hsu, Stephen D.
2017-07-01
As technology node shrinks, aggressive design rules for contact and other back end of line (BEOL) layers continue to drive the need for more effective full chip patterning optimization. Resist top loss is one of the major challenges for 28 nm and below technology nodes, which can lead to post-etch hotspots that are difficult to predict and eventually degrade the process window significantly. To tackle this problem, we used an advanced programmable illuminator (FlexRay) and Tachyon SMO (Source Mask Optimization) platform to make resistaware source optimization possible, and it is proved to greatly improve the imaging contrast, enhance focus and exposure latitude, and minimize resist top loss thus improving the yield.
HER2 in Breast Cancer Stemness: A Negative Feedback Loop towards Trastuzumab Resistance
Nami, Babak; Wang, Zhixiang
2017-01-01
HER2 receptor tyrosine kinase that is overexpressed in approximately 20% of all breast cancers (BCs) is a poor prognosis factor and a precious target for BC therapy. Trastuzumab is approved by FDA to specifically target HER2 for treating HER2+ BC. However, about 60% of patients with HER2+ breast tumor develop de novo resistance to trastuzumab, partially due to the loss of expression of HER2 extracellular domain on their tumor cells. This is due to shedding/cleavage of HER2 by metalloproteinases (ADAMs and MMPs). HER2 shedding results in the accumulation of intracellular carboxyl-terminal HER2 (p95HER2), which is a common phenomenon in trastuzumab-resistant tumors and is suggested as a predictive marker for trastuzumab resistance. Up-regulation of the metalloproteinases is a poor prognosis factor and is commonly seen in mesenchymal-like cancer stem cells that are risen during epithelial to mesenchymal transition (EMT) of tumor cells. HER2 cleavage during EMT can explain why secondary metastatic tumors with high percentage of mesenchymal-like cancer stem cells are mostly resistant to trastuzumab but still sensitive to lapatinib. Importantly, many studies report HER2 interaction with oncogenic/stemness signaling pathways including TGF-β/Smad, Wnt/β-catenin, Notch, JAK/STAT and Hedgehog. HER2 overexpression promotes EMT and the emergence of cancer stem cell properties in BC. Increased expression and activation of metalloproteinases during EMT leads to proteolytic cleavage and shedding of HER2 receptor, which downregulates HER2 extracellular domain and eventually increases trastuzumab resistance. Here, we review the hypothesis that a negative feedback loop between HER2 and stemness signaling drives resistance of BC to trastuzumab. PMID:28445439
Rota, Paola; Cirillo, Federica; Piccoli, Marco; Gregorio, Antonio; Tettamanti, Guido; Allevi, Pietro; Anastasia, Luigi
2015-10-05
Previous studies demonstrated that reducing the GM3 content in myoblasts increased the cell resistance to hypoxic stress, suggesting that a pharmacological inhibition of the GM3 synthesis could be instrumental for the development of new treatments for ischemic diseases. Herein, the synthesis of several dephosphonated CMP-Neu5Ac congeners and their anti-GM3-synthase activity is reported. Biological activity testes revealed that some inhibitors almost completely blocked the GM3-synthase activity in vitro and reduced the GM3 content in living embryonic kidney 293A cells, eventually activating the epidermal growth factor receptor (EGFR) signaling cascade. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rodney C. De Groot; Bessie Woodward; Paul E. Hennon
2000-01-01
Yellow-cedar trees have been mysteriously dying for more than a century in southeast Alaska. As these stems continue to stand for decades in the forest, foliage, twigs, and branches deteriorate. The sapwood in the stem degrades, leaving columns of essentially heartwood standing like ghosts in the forest until they eventually drop. To estimate the potential for...
Silva, Sara; Gouveia-Oliveira, Rodrigo; Maretzek, António; Carriço, João; Gudnason, Thorolfur; Kristinsson, Karl G; Ekdahl, Karl; Brito-Avô, António; Tomasz, Alexander; Sanches, Ilda Santos; Lencastre, Hermínia de; Almeida, Jonas
2003-01-01
Background EURIS (European Resistance Intervention Study) was launched as a multinational study in September of 2000 to identify the multitude of complex risk factors that contribute to the high carriage rate of drug resistant Streptococcus pneumoniae strains in children attending Day Care Centers in several European countries. Access to the very large number of data required the development of a web-based infrastructure – EURISWEB – that includes a relational online database, coupled with a query system for data retrieval, and allows integrative storage of demographic, clinical and molecular biology data generated in EURIS. Methods All components of the system were developed using open source programming tools: data storage management was supported by PostgreSQL, and the hypertext preprocessor to generate the web pages was implemented using PHP. The query system is based on a software agent running in the background specifically developed for EURIS. Results The website currently contains data related to 13,500 nasopharyngeal samples and over one million measures taken from 5,250 individual children, as well as over one thousand pre-made and user-made queries aggregated into several reports, approximately. It is presently in use by participating researchers from three countries (Iceland, Portugal and Sweden). Conclusion An operational model centered on a PHP engine builds the interface between the user and the database automatically, allowing an easy maintenance of the system. The query system is also sufficiently adaptable to allow the integration of several advanced data analysis procedures far more demanding than simple queries, eventually including artificial intelligence predictive models. PMID:12846930
[Antiseptic sensitivity of clinical strains of Pseudomonas aeruginosa].
Adarchenko, A A; Krasil'nikov, A P; Sobeshchuk, O P
1989-12-01
MICs, the frequency of clinical and statistic resistance and the antiseptic activity index were studied in complex on out-of-hospital and hospital ecovars of P. aeruginosa. The forms resistant to a number of antiseptics, i.e. chloramine B, chlorhexidine, decamethoxine and dioxidine whose frequency eventually increased were shown to be widely distributed. The antiseptic sensitivity spectrum was more narrow and more heterogeneous than that of other bacteria, the heterogeneity level being dependent on the antiseptic type and bacterial ecovar. The activity of pervomur, phenol, resorcin and boric acid was higher against the clinical strains of P. aeruginosa while iodopyrin, sulfacetamide sodium and dioxidine were less active. The P. aeruginosa strains had natural resistance to cetylpyridinium chloride, rokkal, ethonium, sodium laurate and laurylsulfate and rivanol. It was recommended to assay antiseptic sensitivity of agents causing purulent inflammatory infections and to control circulation of antiseptic resistant variants of bacteria in hospitals.
[Dysphagia in a young woman from Somalia].
Veldhuis, Suzanne; van Altena, Richard; van Steenwijk, Reindert P; Rauws, Erik A J; Eeftinck Schattenkerk, Jan Karel M
2013-01-01
Multidrug-resistant tuberculosis is increasing worldwide. The determination of possible resistance is essential for adequate treatment. Tuberculosis is common amongst immigrants from Somalia and extra-pulmonary localisation is often seen. A 21-year-old woman from Somalia presented with progressive dysphagia and severe weight loss. Endoscopy revealed two ulcers in the mid-oesophagus. A chest x-ray showed enlarged lymph nodes in the right hilar and mediastinal regions. The Ziehl-Neelsen stain and PCR for mycobacteria were negative. Sputum samples and oesophageal biopsies were cultured. Quadruple tuberculostatic therapy was started empirically. After five weeks, a sputum culture grew Mycobacterium tuberculosis, which was resistant to rifampicin and isoniazid. She was treated with second-line anti-tuberculous therapy and eventually recovered. Tuberculosis can manifest in many ways. It is important to obtain patient material for culture; not only to confirm the diagnosis but also for the determination of possible resistance which is necessary for adequate therapy.
NASA Technical Reports Server (NTRS)
Carlson, Toby N.
1988-01-01
Using model development, image analysis and micrometeorological measurements, the object is to push beyond the present limitations of using the infrared temperature method for remotely determining surface energy fluxes and soil moisture over vegetation. Model development consists of three aspects: (1) a more complex vegetation formulation which is more flexible and realistic; (2) a method for modeling the fluxes over patchy vegetation cover; and (3) a method for inferring a two-layer soil vertical moisture gradient from analyses of horizontal variations in surface temperatures. HAPEX and FIFE satellite data will be used along with aircraft thermal infrared and solar images as input for the models. To test the models, moisture availability and bulk canopy resistances will be calculated from data collected locally at the Rock Springs experimental field site and, eventually, from the FIFE project.
Reentrant resistive behavior and dimensional crossover in disordered superconducting TiN films
Postolova, Svetlana V.; Mironov, Alexey Yu.; Baklanov, Mikhail R.; ...
2017-05-11
A reentrant temperature dependence of the normal state resistance often referred to as the N-shaped temperature dependence, is omnipresent in disordered superconductors – ranging from high-temperature cuprates to ultrathin superconducting films – that experience superconductor-to-insulator transition. Yet, despite the ubiquity of this phenomenon its origin still remains a subject of debate. Here we investigate strongly disordered superconducting TiN films and demonstrate universality of the reentrant behavior. We offer a quantitative description of the N-shaped resistance curve. We show that upon cooling down the resistance first decreases linearly with temperature and then passes through the minimum that marks the 3D-2D crossovermore » in the system. In the 2D temperature range the resistance first grows with decreasing temperature due to quantum contributions and eventually drops to zero as the system falls into a superconducting state. As a result, our findings demonstrate the prime importance of disorder in dimensional crossover effects.« less
STAT3 signaling mediates tumour resistance to EGFR targeted therapeutics.
Zulkifli, Ahmad A; Tan, Fiona H; Putoczki, Tracy L; Stylli, Stanley S; Luwor, Rodney B
2017-08-15
Several EGFR inhibitors are currently undergoing clinical assessment or are approved for the clinical management of patients with varying tumour types. However, treatment often results in a lack of response in many patients. The majority of patients that initially respond eventually present with tumours that display acquired resistance to the original therapy. A large number of receptor tyrosine and intracellular kinases have been implicated in driving signaling that mediates this tumour resistance to anti-EGFR targeted therapy, and in a few cases these discoveries have led to overall changes in prospective tumour screening and clinical practice (K-RAS in mCRC and EGFR T790M in NSCLC). In this mini-review, we specifically focus on the role of the STAT3 signaling axis in providing both intrinsic and acquired resistance to inhibitors of the EGFR. We also focus on STAT3 pathway targeting in an attempt to overcome resistance to anti-EGFR therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.
Pomié, Céline; Blasco-Baque, Vincent; Klopp, Pascale; Nicolas, Simon; Waget, Aurélie; Loubières, Pascale; Azalbert, Vincent; Puel, Anthony; Lopez, Frédéric; Dray, Cédric; Valet, Philippe; Lelouvier, Benjamin; Servant, Florence; Courtney, Michael; Amar, Jacques; Burcelin, Rémy; Garidou, Lucile
2016-06-01
To demonstrate that glycemia and insulin resistance are controlled by a mechanism involving the adaptive immune system and gut microbiota crosstalk. We triggered the immune system with microbial extracts specifically from the intestinal ileum contents of HFD-diabetic mice by the process of immunization. 35 days later, immunized mice were fed a HFD for up to two months in order to challenge the development of metabolic features. The immune responses were quantified. Eventually, adoptive transfer of immune cells from the microbiota-immunized mice to naïve mice was performed to demonstrate the causality of the microbiota-stimulated adaptive immune system on the development of metabolic disease. The gut microbiota of the immunized HFD-fed mice was characterized in order to demonstrate whether the manipulation of the microbiota to immune system interaction reverses the causal deleterious effect of gut microbiota dysbiosis on metabolic disease. Subcutaneous injection (immunization procedure) of ileum microbial extracts prevented hyperglycemia and insulin resistance in a dose-dependent manner in response to a HFD. The immunization enhanced the proliferation of CD4 and CD8 T cells in lymphoid organs, also increased cytokine production and antibody secretion. As a mechanism explaining the metabolic improvement, the immunization procedure reversed gut microbiota dysbiosis. Finally, adoptive transfer of immune cells from immunized mice improved metabolic features in response to HFD. Glycemia and insulin sensitivity can be regulated by triggering the adaptive immunity to microbiota interaction. This reduces the gut microbiota dysbiosis induced by a fat-enriched diet.
The Critical Role of Pulmonary Arterial Compliance in Pulmonary Hypertension
Prins, Kurt W.; Pritzker, Marc R.; Scandurra, John; Volmers, Karl; Weir, E. Kenneth
2016-01-01
The normal pulmonary circulation is a low-pressure, high-compliance system. Pulmonary arterial compliance decreases in the presence of pulmonary hypertension because of increased extracellular matrix/collagen deposition in the pulmonary arteries. Loss of pulmonary arterial compliance has been consistently shown to be a predictor of increased mortality in patients with pulmonary hypertension, even more so than pulmonary vascular resistance in some studies. Decreased pulmonary arterial compliance causes premature reflection of waves from the distal pulmonary vasculature, leading to increased pulsatile right ventricular afterload and eventually right ventricular failure. Evidence suggests that decreased pulmonary arterial compliance is a cause rather than a consequence of distal small vessel proliferative vasculopathy. Pulmonary arterial compliance decreases early in the disease process even when pulmonary artery pressure and pulmonary vascular resistance are normal, potentially enabling early diagnosis of pulmonary vascular disease, especially in high-risk populations. With the recognition of the prognostic importance of pulmonary arterial compliance, its impact on right ventricular function, and its contributory role in the development and progression of distal small-vessel proliferative vasculopathy, pulmonary arterial compliance is an attractive target for the treatment of pulmonary hypertension. PMID:26848601
Singh, Jasjit; Esparza, Samuel; Patterson, Melanie; Vogel, Kate; Patel, Bijal; Gornick, Wendi
2013-04-01
In February 2007, we experienced an abrupt 8-fold increase in vancomycin-resistant Enterococcus (VRE)-positive pediatric hematology/oncology patients in isolation per day, peaking at 12 patients in isolation per day in June 2007. We enforced and expanded infection prevention practices and initiated a rigorous 6-month clearance process. After noting an eventual decrease, we modified clearance to a 3-month process, maintaining <1 patient/day in isolation by June 2009, subjectively improving family and staff satisfaction after this 2-year process. VRE infection was relatively uncommon (7.8%), although continued VRE colonization portended an overall poorer prognosis.
Information Control: Preserving the Advantage
2015-06-01
sanitary laboratory for US forces to exploit technical solutions with minimal resistance, inevitably leading to potent and promising results on the...parity, eventually forcing decision makers to pursue bilateral and multilateral agreements in space law. See McDougall, 272. 21 James Clay Moltz, The...the discussions of human nature, control, and strategy outlined in Chapter 1. 12 James Clay Moltz, The Politics of Space Security: Strategic Restraint
A Laser Based Fusion Test Facility
2008-10-01
Nike laser have explored the intensities employed by these Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...and best beam smoothing with KrF makes it the most resistant to such instability. As discussed above, recent experiments using the Nike facility...support this expectation. There is ongoing experimental and theoretical work on Nike , Omega, and eventually NIF to determine these intensity limits
Stewart, Erin L.; Tan, Samuel Zhixing; Liu, Geoffrey
2015-01-01
Lung cancer is the leading cause of cancer related deaths in Canada with non-small cell lung cancer (NSCLC) being the predominant form of the disease. Tumor characterization can identify cancer-driving mutations as treatment targets. One of the most successful examples of cancer targeted therapy is inhibition of mutated epidermal growth factor receptor (EGFR), which occurs in ~10-30% of NSCLC patients. While this treatment has benefited many patients with activating EGFR mutations, almost all who initially benefited will eventually acquire resistance. Approximately 50% of cases of acquired resistance (AR) are due to a secondary T790M mutation in exon 20 of the EGFR gene; however, many of the remaining mechanisms of resistance are still unknown. Much work has been done to elucidate the remaining mechanisms of resistance. This review aims to highlight both the mechanisms of resistance that have already been identified in patients and potential novel mechanisms identified in preclinical models which have yet to be validated in the patient settings. PMID:25806347
Wang, Yuanzhong; Zhou, Dujin; Phung, Sheryl; Warden, Charles; Rashid, Rumana; Chan, Nymph; Chen, Shiuan
2017-02-21
Many estrogen receptor alpha (ERα)-positive breast cancers initially respond to aromatase inhibitors (AIs), but eventually acquire resistance. Here, we report that serum- and glucocorticoid-inducible kinase 3 (SGK3), a kinase transcriptionally regulated by ERα in breast cancer, sustains ERα signaling and drives acquired AI resistance. SGK3 is up-regulated and essential for endoplasmic reticulum (EnR) homeostasis through preserving sarcoplasmic/EnR calcium ATPase 2b (SERCA2b) function in AI-resistant cells. We have further found that EnR stress response down-regulates ERα expression through the protein kinase RNA-like EnR kinase (PERK) arm, and SGK3 retains ERα expression and signaling by preventing excessive EnR stress. Our study reveals regulation of ERα expression mediated by the EnR stress response and the feed-forward regulation between SGK3 and ERα in breast cancer. Given SGK3 inhibition reduces AI-resistant cell survival by eliciting excessive EnR stress and also depletes ERα expression/function, we propose SGK3 inhibition as a potential effective treatment of acquired AI-resistant breast cancer.
In Situ Measurement Activities at the NASA Orbital Debris Program Office
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Burchell, M.; Corsaro, R.; Drolshagen, G.; Giovane, F.; Pisacane, V.; Stansbery, E.
2009-01-01
The NASA Orbital Debris Program Office has been involved in the development of several particle impact instruments since 2003. The main objective of this development is to eventually conduct in situ measurements to better characterize the small (millimeter or smaller) orbital debris and micrometeoroid populations in the near-Earth environment. In addition, the Office also supports similar instrument development to define the micrometeoroid and lunar secondary ejecta environment for future lunar exploration activities. The instruments include impact acoustic sensors, resistive grid sensors, fiber optic displacement sensors, and impact ionization sensors. They rely on different mechanisms and detection principles to identify particle impacts. A system consisting of these different sensors will provide data that are complimentary to each other, and will provide a better description of the physical and dynamical properties (e.g., size, mass, and impact speed) of the particles in the environment. Details of several systems being considered by the Office and their intended mission objectives are summarized in this paper.
Evidence-based disease management: its role in cardiovascular risk reduction.
Fanning, Etta L
2004-01-01
Cardiovascular disease remains the most pressing healthcare problem in the United States. Traditional risk factors--hypertension, obesity, and diabetes-are still unresolved issues; and new risk factors--pre-diabetes, insulin resistance, and pediatric and adolescent diabetes-have emerged. There is an urgent need to identify the risk factors for cardiovascular disease, and address risk reduction with disease management and treatment for each factor, based on qualitative and quantitative approaches for developing the evidence base for public health action. The objectives of this paper are to review (i) the burden of cardiovascular illness-morbidity, mortality, and cost; (ii) risk factors and the emerging epidemic of adolescent obesity; (iii) the challenges of attaining target endpoints; and (iv) the attributes of a successful programmatic healthcare initiative for potential impact on cardiovascular care and, eventually, public health.
Electric field computation and measurements in the electroporation of inhomogeneous samples
NASA Astrophysics Data System (ADS)
Bernardis, Alessia; Bullo, Marco; Campana, Luca Giovanni; Di Barba, Paolo; Dughiero, Fabrizio; Forzan, Michele; Mognaschi, Maria Evelina; Sgarbossa, Paolo; Sieni, Elisabetta
2017-12-01
In clinical treatments of a class of tumors, e.g. skin tumors, the drug uptake of tumor tissue is helped by means of a pulsed electric field, which permeabilizes the cell membranes. This technique, which is called electroporation, exploits the conductivity of the tissues: however, the tumor tissue could be characterized by inhomogeneous areas, eventually causing a non-uniform distribution of current. In this paper, the authors propose a field model to predict the effect of tissue inhomogeneity, which can affect the current density distribution. In particular, finite-element simulations, considering non-linear conductivity against field relationship, are developed. Measurements on a set of samples subject to controlled inhomogeneity make it possible to assess the numerical model in view of identifying the equivalent resistance between pairs of electrodes.
Role of Stromal Paracrine Signals in Proliferative Diseases of the Aging Human Prostate
Takahashi, Sanai; Sugimura, Yoshiki
2018-01-01
Androgens are essential for the development, differentiation, growth, and function of the prostate through epithelial–stromal interactions. However, androgen concentrations in the hypertrophic human prostate decrease significantly with age, suggesting an inverse correlation between androgen levels and proliferative diseases of the aging prostate. In elderly males, age- and/or androgen-related stromal remodeling is spontaneously induced, i.e., increased fibroblast and myofibroblast numbers, but decreased smooth muscle cell numbers in the prostatic stroma. These fibroblasts produce not only growth factors, cytokines, and extracellular matrix proteins, but also microRNAs as stromal paracrine signals that stimulate prostate epithelial cell proliferation. Surgical or chemical castration is the standard systemic therapy for patients with advanced prostate cancer. Androgen deprivation therapy induces temporary remission, but the majority of patients eventually progress to castration-resistant prostate cancer, which is associated with a high mortality rate. Androgen deprivation therapy-induced stromal remodeling may be involved in the development and progression of castration-resistant prostate cancer. In the tumor microenvironment, activated fibroblasts stimulating prostate cancer cell proliferation are called carcinoma-associated fibroblasts. In this review, we summarize the role of stromal paracrine signals in proliferative diseases of the aging human prostate and discuss the potential clinical applications of carcinoma-associated fibroblast-derived exosomal microRNAs as promising biomarkers. PMID:29614830
Houser, Dorian S.; Champagne, Cory D.; Crocker, Daniel E.
2013-01-01
Insulin resistance in modern society is perceived as a pathological consequence of excess energy consumption and reduced physical activity. Its presence in relation to the development of cardiovascular risk factors has been termed the metabolic syndrome, which produces increased mortality and morbidity and which is rapidly increasing in human populations. Ironically, insulin resistance likely evolved to assist animals during food shortages by increasing the availability of endogenous lipid for catabolism while protecting protein from use in gluconeogenesis and eventual oxidation. Some species that incorporate fasting as a predictable component of their life history demonstrate physiological traits similar to the metabolic syndrome during prolonged fasts. One such species is the northern elephant seal (Mirounga angustirostris), which fasts from food and water for periods of up to 4 months. During this time, ∼90% of the seals metabolic demands are met through fat oxidation and circulating non-esterified fatty acids are high (0.7–3.2 mM). All life history stages of elephant seal studied to date demonstrate insulin resistance and fasting hyperglycemia as well as variations in hormones and adipocytokines that reflect the metabolic syndrome to some degree. Elephant seals demonstrate some intriguing adaptations with the potential for medical advancement; for example, ketosis is negligible despite significant and prolonged fatty acid oxidation and investigation of this feature might provide insight into the treatment of diabetic ketoacidosis. The parallels to the metabolic syndrome are likely reflected to varying degrees in other marine mammals, most of which evolved on diets high in lipid and protein content but essentially devoid of carbohydrate. Utilization of these natural models of insulin resistance may further our understanding of the pathophysiology of the metabolic syndrome in humans and better assist the development of preventative measures and therapies. PMID:24198811
Duan, Shanzhou; Tsai, Ying; Keng, Peter; Chen, Yongbing; Lee, Soo Ok; Chen, Yuhchyau
2015-09-29
Cisplatin-based chemotherapy is currently the most effective treatment regimen for non-small cell lung cancer (NSCLC), but eventually tumor resistance develops which limits its success. The potential implication of IL-6 signaling in the cisplatin resistance of NSCLC was explored by testing whether NSCLC cells with different levels of intracellular IL-6 show different responses to the cytotoxic treatment of cisplatin. When the cisplatin cytotoxicity of the IL-6 knocked down human NSCLC cells (A549IL-6si and H157IL-6si) were compared with their corresponding scramble control cells (A549sc and H157sc), higher cisplatin cytotoxicity was found in IL-6 si cells than sc cells. Subcutaneous xenograft mouse models were developed using a pair of A549sc and A549IL-6si cells. When the tumor grew to about 400 mm2, mice were treated with cisplatin and tumor regression was monitored. Higher tumor regression was detected in the A549IL-6si xenografts compared to A549sc xenografts following cisplatin treatment. Immunostaining study results from tumor tissues also supported this finding. Expression of anti-apoptotic proteins Bcl-2 and Mcl-1 and DNA repair associated molecules ATM, CHK1, TP73, p53, and ERCC1 were significantly up regulated in cisplatin-treated A549sc and H157sc cells, but no increase was detected in A549IL-6si and H157IL-6si cells. Further inhibitor studies revealed that up regulation of these molecules by IL-6 may be through activation of IL-6 downstream signaling pathways like Akt, MAPK, Stat3, and Erk. These results provide potential for combining cisplatin and inhibitors of IL-6 signaling or its downstream signaling pathway as a future therapeutic approach in preventing development of cisplatin resistant NSCLC tumors.
Oxygen migration during resistance switching and failure of hafnium oxide memristors
Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng; ...
2017-03-06
While the recent establishment of the role of thermophoresis/diffusion-driven oxygen migration during resistance switching in metal oxide memristors provided critical insights required for memristor modeling, extended investigations of the role of oxygen migration during ageing and failure remain to be detailed. Such detailing will enable failure-tolerant design, which can lead to enhanced performance of memristor-based next-generation storage-class memory. Furthermore, we directly observed lateral oxygen migration using in-situ synchrotron x-ray absorption spectromicroscopy of HfO x memristors during initial resistance switching, wear over millions of switching cycles, and eventual failure, through which we determined potential physical causes of failure. Using this information,more » we reengineered devices to mitigate three failure mechanisms and demonstrated an improvement in endurance of about three orders of magnitude.« less
EPHA2 blockade overcomes acquired resistance to EGFR kinase inhibitors in lung cancer
Amato, Katherine R.; Wang, Shan; Tan, Li; Hastings, Andrew K.; Song, Wenqiang; Lovly, Christine M.; Meador, Catherine B.; Ye, Fei; Lu, Pengcheng; Balko, Justin M.; Colvin, Daniel C.; Cates, Justin M.; Pao, William; Gray, Nathanael S.; Chen, Jin
2015-01-01
Despite the success of treating EGFR mutant lung cancer patients with EGFR tyrosine kinase inhibitors (TKIs), all patients eventually acquire resistance to these therapies. Although various resistance mechanisms have been described, there are currently no FDA-approved therapies that target alternative mechanisms to treat lung tumors with acquired resistance to first-line EGFR TKI agents. Here we found that EPHA2 is overexpressed in EGFR TKI resistant tumor cells. Loss of EPHA2 reduced the viability of erlotinib resistant tumor cells harboring EGFRT790M mutations in vitro and inhibited tumor growth and progression in an inducible EGFRL858R+T790M mutant lung cancer model in vivo. Targeting EPHA2 in erlotinib resistant cells decreased S6K1-mediated phosphorylation of cell death agonist BAD, resulting in reduced tumor cell proliferation and increased apoptosis. Furthermore, pharmacologic inhibition of EPHA2 by the small molecule inhibitor, ALW-II-41-27, decreased both survival and proliferation of erlotinib resistant tumor cells and inhibited tumor growth in vivo. ALW-II-41-27 was also effective in decreasing viability of cells with acquired resistance to the third generation EGFR TKI, AZD9291. Collectively, these data define a role for EPHA2 in the maintenance of cell survival of TKI resistant, EGFR mutant lung cancer and indicate that EPHA2 may serve as a useful therapeutic target in TKI resistant tumors. PMID:26744526
Lee, Nathan V.; Lira, Maruja E.; Pavlicek, Adam; Ye, Jingjing; Buckman, Dana; Bagrodia, Shubha; Srinivasa, Sreesha P.; Zhao, Yongjun; Aparicio, Samuel; Rejto, Paul A.; Christensen, James G.; Ching, Keith A.
2012-01-01
Targeting cancers with amplified or abnormally activated c-Met (hepatocyte growth factor receptor) may have therapeutic benefit based on nonclinical and emerging clinical findings. However, the eventual emergence of drug resistant tumors motivates the pre-emptive identification of potential mechanisms of clinical resistance. We rendered a MET amplified gastric cancer cell line, GTL16, resistant to c-Met inhibition with prolonged exposure to a c-Met inhibitor, PF-04217903 (METi). Characterization of surviving cells identified an amplified chromosomal rearrangement between 7q32 and 7q34 which overexpresses a constitutively active SND1-BRAF fusion protein. In the resistant clones, hyperactivation of the downstream MAPK pathway via SND1-BRAF conferred resistance to c-Met receptor tyrosine kinase inhibition. Combination treatment with METi and a RAF inhibitor, PF-04880594 (RAFi) inhibited ERK activation and circumvented resistance to either single agent. Alternatively, treatment with a MEK inhibitor, PD-0325901 (MEKi) alone effectively blocked ERK phosphorylation and inhibited cell growth. Our results suggest that combination of a c-Met tyrosine kinase inhibitor with a BRAF or a MEK inhibitor may be effective in treating resistant tumors that use activated BRAF to escape suppression of c-Met signaling. PMID:22745804
Current state of herbicides in herbicide-resistant crops.
Green, Jerry M
2014-09-01
Current herbicide and herbicide trait practices are changing in response to the rapid spread of glyphosate-resistant weeds. Growers urgently needed glyphosate when glyphosate-resistant crops became available because weeds were becoming widely resistant to most commonly used selective herbicides, making weed management too complex and time consuming for large farm operations. Glyphosate made weed management easy and efficient by controlling all emerged weeds at a wide range of application timings. However, the intensive use of glyphosate over wide areas and concomitant decline in the use of other herbicides led eventually to the widespread evolution of weeds resistant to glyphosate. Today, weeds that are resistant to glyphosate and other herbicide types are threatening current crop production practices. Unfortunately, all commercial herbicide modes of action are over 20 years old and have resistant weed problems. The severity of the problem has prompted the renewal of efforts to discover new weed management technologies. One technology will be a new generation of crops with resistance to glyphosate, glufosinate and other existing herbicide modes of action. Other technologies will include new chemical, biological, cultural and mechanical methods for weed management. From the onset of commercialization, growers must now preserve the utility of new technologies by integrating their use with other weed management technologies in diverse and sustainable systems. © 2014 Society of Chemical Industry.
Magnetic and transport properties of Co2Mn1-xCrxSi Heusler alloy thin films
NASA Astrophysics Data System (ADS)
Aftab, M.; Hassnain Jaffari, G.; Hasanain, S. K.; Ali Abbas, Turab; Ismat Shah, S.
2013-09-01
Magnetic, transport, and magnetotransport properties of Co2Mn1-xCrxSi (0 ≤ x ≤ 1) DC sputter grown thin films have been investigated. In films with x > 0.2 saturation magnetization values are seen to deviate from the Slater-Pauling rule due to the enhancement of Co-Cr antisite disorder. The increasing structural disorder eventually results in a sign change of the temperature coefficient of resistivity (at x > 0.6), while a resistivity minimum is observed for the metallic compositions. From resistivity measurements, we conclude that there is a phase transition from a half-metallic ferromagnetic phase to a normal ferromagnetic phase at T ˜ 68 K in composition with x ≤ 0.2. Both the onset temperature and the temperature range for half metallic phase were found to decrease with increasing x among the metallic compositions. Magnetotransport measurements performed on metallic compositions at temperatures below and above the resistivity minimum suggest the presence of both the metallic as well as semiconducting/localized states.
Ma, Liyuan; Li, Qian; Shen, Li; Feng, Xue; Xiao, Yunhua; Tao, Jiemeng; Liang, Yili; Yin, Huaqun; Liu, Xueduan
2016-10-01
Acidophilic microorganisms involved in uranium bioleaching are usually suppressed by dissolved fluoride ions, eventually leading to reduced leaching efficiency. However, little is known about the regulation mechanisms of microbial resistance to fluoride. In this study, the resistance of Acidithiobacillus ferrooxidans ATCC 23270 to fluoride was investigated by detecting bacterial growth fluctuations and ferrous or sulfur oxidation. To explore the regulation mechanism, a whole genome microarray was used to profile the genome-wide expression. The fluoride tolerance of A. ferrooxidans cultured in the presence of FeSO4 was better than that cultured with the S(0) substrate. The differentially expressed gene categories closely related to fluoride tolerance included those involved in energy metabolism, cellular processes, protein synthesis, transport, the cell envelope, and binding proteins. This study highlights that the cellular ferrous oxidation ability was enhanced at the lower fluoride concentrations. An overview of the cellular regulation mechanisms of extremophiles to fluoride resistance is discussed.
Self-Test Procedures for Gas Sensors Embedded in Microreactor Systems
Helwig, Andreas; Hackner, Angelika; Zappa, Dario; Sberveglieri, Giorgio
2018-01-01
Metal oxide (MOX) gas sensors sensitively respond to a wide variety of combustible, explosive and poisonous gases. However, due to the lack of a built-in self-test capability, MOX gas sensors have not yet been able to penetrate safety-critical applications. In the present work we report on gas sensing experiments performed on MOX gas sensors embedded in ceramic micro-reaction chambers. With the help of an external micro-pump, such systems can be operated in a periodic manner alternating between flow and no-flow conditions, thus allowing repetitive measurements of the sensor resistances under clean air, R0, and under gas exposure, Rgas, to be obtained, even under field conditions. With these pairs of resistance values, eventual drifts in the sensor baseline resistance can be detected and drift-corrected values of the relative resistance response Resp=(R0−Rgas)/R0 can be determined. Residual poisoning-induced changes in the relative resistance response can be detected by reference to humidity measurements taken with room-temperature-operated capacitive humidity sensors which are insensitive to the poisoning processes operative on heated MOX gas sensors. PMID:29401673
Shien, Kazuhiko; Papadimitrakopoulou, Vassiliki A; Ruder, Dennis; Behrens, Carmen; Shen, Li; Kalhor, Neda; Song, Juhee; Lee, J Jack; Wang, Jing; Tang, Ximing; Herbst, Roy S; Toyooka, Shinichi; Girard, Luc; Minna, John D; Kurie, Jonathan M; Wistuba, Ignacio I; Izzo, Julie G
2017-10-01
Molecularly targeted drugs have yielded significant therapeutic advances in oncogene-driven non-small cell lung cancer (NSCLC), but a majority of patients eventually develop acquired resistance. Recently, the relation between proinflammatory cytokine IL6 and resistance to targeted drugs has been reported. We investigated the functional contribution of IL6 and the other members of IL6 family proinflammatory cytokine pathway to resistance to targeted drugs in NSCLC cells. In addition, we examined the production of these cytokines by cancer cells and cancer-associated fibroblasts (CAF). We also analyzed the prognostic significance of these molecule expressions in clinical NSCLC samples. In NSCLC cells with acquired resistance to targeted drugs, we observed activation of the IL6-cytokine pathway and STAT3 along with epithelial-to-mesenchymal transition (EMT) features. In particular, IL6 family cytokine oncostatin-M (OSM) induced a switch to the EMT phenotype and protected cells from targeted drug-induced apoptosis in OSM receptors (OSMRs)/JAK1/STAT3-dependent manner. The cross-talk between NSCLC cells and CAFs also preferentially activated the OSM/STAT3 pathway via a paracrine mechanism and decreased sensitivity to targeted drugs. The selective JAK1 inhibitor filgotinib effectively suppressed STAT3 activation and OSMR expression, and cotargeting inhibition of the oncogenic pathway and JAK1 reversed resistance to targeted drugs. In the analysis of clinical samples, OSMR gene expression appeared to be associated with worse prognosis in patients with surgically resected lung adenocarcinoma. Our data suggest that the OSMRs/JAK1/STAT3 axis contributes to resistance to targeted drugs in oncogene-driven NSCLC cells, implying that this pathway could be a therapeutic target. Mol Cancer Ther; 16(10); 2234-45. ©2017 AACR . ©2017 American Association for Cancer Research.
Sym004, a Novel EGFR Antibody Mixture, Can Overcome Acquired Resistance to Cetuximab1
Iida, Mari; Brand, Toni M; Starr, Megan M; Li, Chunrong; Huppert, Evan J; Luthar, Neha; Pedersen, Mikkel W; Horak, Ivan D; Kragh, Michael; Wheeler, Deric L
2013-01-01
The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in a variety of human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for head and neck and colorectal cancer treatment, but many patients treated with cetuximab don't respond or eventually acquire resistance. To determine how tumor cells acquire resistance to cetuximab, we previously developed a model of acquired resistance using the non-small cell lung cancer line NCI-H226. These cetuximab-resistant (CtxR) cells exhibit increased steady-state EGFR expression secondary to alterations in EGFR trafficking and degradation and, further, retained dependence on EGFR signaling for enhanced growth potential. Here, we examined Sym004, a novel mixture of antibodies directed against distinct epitopes on the extracellular domain of EGFR, as an alternative therapy for CtxR tumor cells. Sym004 treatment of CtxR clones resulted in rapid EGFR degradation, followed by robust inhibition of cell proliferation and down-regulation of several mitogen-activated protein kinase pathways. To determine whether Sym004 could have therapeutic benefit in vivo, we established de novo CtxR NCI-H226 mouse xenografts and subsequently treated CtxR tumors with Sym004. Sym004 treatment of mice harboring CtxR tumors resulted in growth delay compared to mice continued on cetuximab. Levels of total and phospho-EGFR were robustly decreased in CtxR tumors treated with Sym004. Immunohistochemical analysis of these Sym004-treated xenograft tumors further demonstrated decreased expression of Ki67, and phospho-rpS6, as well as a modest increase in cleaved caspase-3. These results indicate that Sym004 may be an effective targeted therapy for CtxR tumors. PMID:24204198
Almeida, José R; Mendes, Bruno; Lancellotti, Marcelo; Marangoni, Sergio; Vale, Nuno; Passos, Óscar; Ramos, Maria J; Fernandes, Pedro A; Gomes, Paula; Da Silva, Saulo L
2018-04-10
Currently, the evolving and complex mechanisms of bacterial resistance to conventional antibiotics are increasing, while alternative medicines are drying up, which urges the need to discover novel agents able to kill antibiotic-resistant bacteria. Lys49 phospholipase A 2 s (PLA 2 s) from snake venoms are multifunctional toxins able to induce a huge variety of therapeutic effects and consequently serve as templates for new drug leads. Hence, the present study was aimed at the synthesis of oligopeptides mimicking regions of the antibacterial Lys49 PLA 2 toxin (CoaTx-II), recently isolated from Crotalus oreganus abyssus snake venom, to identify small peptides able to reproduce the therapeutic action of the toxin. Five peptides, representing major regions of interest within CoaTx-II, were synthesized and screened for their antibacterial properties. The 13-mer peptide pC-CoaTxII, corresponding to residues 115-129 of CoaTx-II, was able to reproduce the promising bactericidal effect of the toxin against multi-resistant clinical isolates. Peptide pC-CoaTxII is mainly composed by positively charged and hydrophobic amino acids, a typical trait in most antimicrobial peptides, and presented no defined secondary structure in aqueous environment. The physicochemical properties of pC-CoaTxII are favorable towards a strong interaction with anionic lipid membranes as those in bacteria. Additional in silico studies suggest formation of a water channel across the membrane upon peptide insertion, eventually leading to bacterial cell disruption and death. Overall, our findings confirm the valuable potential of snake venom toxins towards design and synthesis of novel antimicrobials, thus representing key insights towards development of alternative efficient antimicrobials to fight bacterial resistance to current antibiotics. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Yang, Haiyuan; You, Aiqing; Yang, Zhifan; Zhang, Futie; He, Ruifeng; Zhu, Lili; He, Guangcun
2004-12-01
Resistance to the brown planthopper (BPH), Nilaparvata lugens Stal, a devastating sucking insect pest of rice, is an important breeding objective in rice improvement programs. Bph15, one of the 17 major BPH resistance genes so far identified in both cultivated and wild rice, has been identified in an introgression line, B5, and mapped on chromosome 4 flanked by restriction fragment length polymorphism markers C820 and S11182. In order to pave the way for positional cloning of this gene, we have developed a high-resolution genetic map of Bph15 by positioning 21 DNA markers in the target chromosomal region. Mapping was based on a PCR-based screening of 9,472 F(2) individuals derived from a cross between RI93, a selected recombinant inbred line of B5 bearing the resistance gene Bph15, and a susceptible variety, Taichung Native 1, in order to identify recombinant plants within the Bph15 region. Recombinant F(2) individuals with the Bph15 genotype were determined by phenotype evaluation. Analysis of recombination events in the Bph15 region delimited the gene locus to an interval between markers RG1 and RG2 that co-segregated with the M1 marker. A genomic library of B5 was screened using these markers, and bacterial artificial chromosome clones spanning the Bph15 chromosome region were obtained. An assay of the recombinants using the sub-clones of these clones in combination with sequence analysis delimited the Bph15 gene to a genomic segment of approximately 47 kb. This result should serve as the basis for eventual isolation of the Bph15 resistance gene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azuma, Koichi; Tsurutani, Junji, E-mail: tsurutani_j@dotd.med.kindai.ac.jp; Sakai, Kazuko
2011-04-01
Highlights: {yields} A lapatinib-resistant breast cancer cell line, UACC812 (UACC812/LR), was found to harbor amplification of the FGFR2 gene. {yields} Inhibition of the molecule by a specific inhibitor of FGFR dramatically induced growth inhibition accompanied by cell death. {yields} Immunohistochemical analysis of patients with HER2-positive breast cancer demonstrated an association between FGFR2 expression and poor outcome for lapatinib-containing chemotherapy. -- Abstract: Agents that target HER2 have improved the prognosis of patients with HER2-amplified breast cancers. However, patients who initially respond to such targeted therapy eventually develop resistance to the treatment. We have established a line of lapatinib-resistant breast cancer cellsmore » (UACC812/LR) by chronic exposure of HER2-amplified and lapatinib-sensitive UACC812 cells to the drug. The mechanism by which UACC812/LR acquired resistance to lapatinib was explored using comprehensive gene hybridization. The FGFR2 gene in UACC812/LR was highly amplified, accompanied by overexpression of FGFR2 and reduced expression of HER2, and a cell proliferation assay showed that the IC{sub 50} of PD173074, a small-molecule inhibitor of FGFR tyrosine kinase, was 10,000 times lower in UACC812/LR than in the parent cells. PD173074 decreased the phosphorylation of FGFR2 and substantially induced apoptosis in UACC812/LR, but not in the parent cells. FGFR2 appeared to be a pivotal molecule for the survival of UACC812/LR as they became independent of the HER2 pathway, suggesting that a switch of addiction from the HER2 to the FGFR2 pathway enabled cancer cells to become resistant to HER2-targeted therapy. The present study is the first to implicate FGFR in the development of resistance to lapatinib in cancer, and suggests that FGFR-targeted therapy might become a promising salvage strategy after lapatinib failure in patients with HER2-positive breast cancer.« less
Glyphosate Vedotin for Treatment of Bone Metastatic Castration-Resistant Prostate Cancer
2015-07-01
eventual death. However, there is no effective treatment available for bone metastatic CRPC. In this project, we propose to create a new drug and test...its selective anti-cancer effects in the cultured prostate cancer cell lines (Specific Aim 1) and in the bone tumor animal models that mimic human...prostate cancer patients. However, there is no effective treatment available for bone metastatic CRPC. The existing FDA-approved therapies only extend
LaFrate, Andrew L; Gunther, Jillian R; Carlson, Kathryn E; Katzenellenbogen, John A
2008-12-01
Most patients with hormone-responsive breast cancer eventually develop resistance to traditional antiestrogens such as tamoxifen, and this has become a major obstacle in their treatment. We prepared and characterized the activity of a series of 16 guanylhydrazone small molecules that are designed to block estrogen receptor (ER) activity through a non-traditional mechanism, by directly interfering with coactivator binding to agonist-liganded ER. The inhibitory activity of these compounds was determined in cell-based transcription assays using ER-responsive reporter gene and mammalian two-hybrid assays. Several of the compounds gave IC(50) values in the low micromolar range. Two secondary assays were used to confirm that these compounds were acting through the proposed non-traditional mode of estrogen inhibitory action and not as conventional antagonists at the ligand binding site.
Breznay, Nicholas P.; Kapitulnik, Aharon
2017-09-15
Electrons confined to two dimensions display an unexpected diversity of behaviors as they are cooled to absolute zero. Noninteracting electrons are predicted to eventually “localize” into an insulating ground state, and it has long been supposed that electron correlations stabilize only one other phase: superconductivity. However, many two-dimensional (2D) superconducting materials have shown surprising evidence for metallic behavior, where the electrical resistivity saturates in the zero-temperature limit; the nature of this unexpected metallic state remains under intense scrutiny. We report electrical transport properties for two disordered 2D superconductors, indium oxide and tantalum nitride, and observe a magnetic field–tuned transition frommore » a true superconductor to a metallic phase with saturated resistivity. Lastly, this metallic phase is characterized by a vanishing Hall resistivity, suggesting that it retains particle-hole symmetry from the disrupted superconducting state.« less
Breznay, Nicholas P.; Kapitulnik, Aharon
2017-01-01
Electrons confined to two dimensions display an unexpected diversity of behaviors as they are cooled to absolute zero. Noninteracting electrons are predicted to eventually “localize” into an insulating ground state, and it has long been supposed that electron correlations stabilize only one other phase: superconductivity. However, many two-dimensional (2D) superconducting materials have shown surprising evidence for metallic behavior, where the electrical resistivity saturates in the zero-temperature limit; the nature of this unexpected metallic state remains under intense scrutiny. We report electrical transport properties for two disordered 2D superconductors, indium oxide and tantalum nitride, and observe a magnetic field–tuned transition from a true superconductor to a metallic phase with saturated resistivity. This metallic phase is characterized by a vanishing Hall resistivity, suggesting that it retains particle-hole symmetry from the disrupted superconducting state. PMID:28929135
Breznay, Nicholas P; Kapitulnik, Aharon
2017-09-01
Electrons confined to two dimensions display an unexpected diversity of behaviors as they are cooled to absolute zero. Noninteracting electrons are predicted to eventually "localize" into an insulating ground state, and it has long been supposed that electron correlations stabilize only one other phase: superconductivity. However, many two-dimensional (2D) superconducting materials have shown surprising evidence for metallic behavior, where the electrical resistivity saturates in the zero-temperature limit; the nature of this unexpected metallic state remains under intense scrutiny. We report electrical transport properties for two disordered 2D superconductors, indium oxide and tantalum nitride, and observe a magnetic field-tuned transition from a true superconductor to a metallic phase with saturated resistivity. This metallic phase is characterized by a vanishing Hall resistivity, suggesting that it retains particle-hole symmetry from the disrupted superconducting state.
Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae) from Argentina.
Montagna, Cristina Mónica; Gauna, Lidia Ester; D'Angelo, Ana Pechen de; Anguiano, Olga Liliana
2012-06-01
Black flies, a non-target species of the insecticides used in fruit production, represent a severe medical and veterinary problem. Large increases in the level of resistance to the pyrethroids fenvalerate (more than 355-fold) and deltamethrin (162-fold) and a small increase in resistance to the organophosphate azinphos methyl (2-fold) were observed between 1996-2008 in black fly larvae under insecticide pressure. Eventually, no change or a slight variation in insecticide resistance was followed by a subsequent increase in resistance. The evolution of pesticide resistance in a field population is a complex and stepwise process that is influenced by several factors, the most significant of which is the insecticide selection pressure, such as the dose and frequency of application. The variation in insecticide susceptibility within a black fly population in the productive area may be related to changes in fruit-pest control. The frequency of individuals with esterase activities higher than the maximum value determined in the susceptible population increased consistently over the sampling period. However, the insecticide resistance was not attributed to glutathione S-transferase activity. In conclusion, esterase activity in black flies from the productive area is one mechanism underlying the high levels of resistance to pyrethroids, which have been recently used infrequently. These enzymes may be reselected by currently used pesticides and enhance the resistance to these insecticides.
Ko, Ryo; Kenmotsu, Hirotsugu; Serizawa, Masakuni; Koh, Yasuhiro; Wakuda, Kazushige; Ono, Akira; Taira, Tetsuhiko; Naito, Tateaki; Murakami, Haruyasu; Isaka, Mitsuhiro; Endo, Masahiro; Nakajima, Takashi; Ohde, Yasuhisa; Yamamoto, Nobuyuki; Takahashi, Kazuhisa; Takahashi, Toshiaki
2016-11-08
The majority of non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation eventually develop resistance to EGFR tyrosine kinase inhibitors (TKIs). Minimal information exists regarding genetic alterations in rebiopsy samples from Asian NSCLC patients who develop acquired resistance to EGFR-TKIs. We retrospectively reviewed the medical records of patients with NSCLC harboring EGFR mutations who had undergone rebiopsies after developing acquired resistance to EGFR-TKIs. We analyzed 27 practicable samples using a tumor genotyping panel to assess 23 hot-spot sites of genetic alterations in nine genes (EGFR, KRAS, BRAF, PIK3CA, NRAS, MEK1, AKT1, PTEN, and HER2), gene copy number of EGFR, MET, PIK3CA, FGFR1, and FGFR2, and ALK, ROS1, and RET fusions. Additionally, 34 samples were analyzed by commercially available EGFR mutation tests. Sixty-one patients underwent rebiopsy. Twenty-seven samples were analyzed using our tumor genotyping panel, and 34 samples were analyzed for EGFR mutations only by commercial clinical laboratories. Twenty-one patients (34 %) had EGFR T790M mutation. Using our tumor genotyping panel, MET gene copy number gain was observed in two of 27 (7 %) samples. Twenty patients received continuous treatment with EGFR-TKIs even after disease progression, and 11 of these patients had T790M mutation in rebiopsy samples. In contrast, only 10 of 41 patients who finished EGFR-TKI treatment at disease progression had T790M mutation. The frequency of T790M mutation in patients who received continuous treatment with EGFR-TKIs after disease progression was significantly higher than that in patients who finished EGFR-TKI treatment at disease progression (55 % versus 24 %, p = 0.018). The frequency of T790M mutation in this study was lower than that in previous reports examining western patients. These results suggest that continuous treatment with EGFR-TKI after disease progression may enhance the frequency of EGFR T790M mutation in rebiopsy samples.
NASA Astrophysics Data System (ADS)
Hardiansyah, Andri; Chaldun, Elsy Rahimi; Nuryadin, Bebeh Wahid; Fikriyyah, Anti Khoerul; Subhan, Achmad; Ghozali, Muhammad; Purwasasmita, Bambang Sunendar
2018-04-01
In this study, carbon-based advanced materials for lithium-ion battery applications were prepared by using soybean waste-based biomass material, through a straightforward process of heat treatment followed by chemical modification processes. Various types of carbon-based advanced materials were developed. Physicochemical characteristics and electrochemical performance of the resultant materials were characterized systematically. Scanning electron microscopy observation revealed that the activated carbon and graphene exhibits wrinkles structures and porous morphology. Electrochemical impedance spectroscopy (EIS) revealed that both activated carbon and graphene-based material exhibited a good conductivity. For instance, the graphene-based material exhibited equivalent series resistance value of 25.9 Ω as measured by EIS. The graphene-based material also exhibited good reversibility and cyclic performance. Eventually, it would be anticipated that the utilization of soybean waste-based biomass material, which is conforming to the principles of green materials, could revolutionize the development of advanced material for high-performance energy storage applications, especially for lithium-ion batteries application.
Fire-Resistant Reinforcement Makes Steel Structures Sturdier
NASA Technical Reports Server (NTRS)
2006-01-01
Built and designed by Avco Corporation, the Apollo heat shield was coated with an ablative material whose purpose was to burn and, thus, dissipate energy. The material charred to form a protective coating which blocked heat penetration beyond the outer surface. Avco Corporation subsequently entered into a contract with Ames Research Center to develop spinoff applications of the heat shield in the arena of fire protection, specifically for the development of fire-retardant paints and foams for aircraft. This experience led to the production of Chartek 59, manufactured by Avco Specialty Materials (a subsidiary of Avco Corporation eventually acquired by Textron, Inc.) and marketed as the world s first intumescent epoxy material. As an intumescent coating, Chartek 59 expanded in volume when exposed to heat or flames and acted as an insulating barrier. It also retained its space-age ablative properties and dissipated heat through burn-off. Further applications were discovered, and the fireproofing formulation found its way into oil refineries, chemical plants, and other industrial facilities working with highly flammable products.
Temporal characteristics of botulinum neurotoxin therapy
Lebeda, Frank J; Cer, Regina Z; Stephens, Robert M; Mudunuri, Uma
2010-01-01
Botulinum neurotoxin is a pharmaceutical treatment used for an increasing number of neurological and non-neurological indications, symptoms and diseases. Despite the wealth of clinical reports that involve the timing of the therapeutic effects of this toxin, few studies have attempted to integrate these data into unified models. Secondary reactions have also been examined including the development of adverse events, resistance to repeated applications, and nerve terminal sprouting. Our primary intent for conducting this review was to gather relevant pharmacodynamic data from suitable biomedical literature regarding botulinum neurotoxins via the use of automated data-mining techniques. We envision that mathematical models will ultimately be of value to those who are healthcare decision makers and providers, as well as clinical and basic researchers. Furthermore, we hypothesize that the combination of this computer-intensive approach with mathematical modeling will predict the percentage of patients who will favorably or adversely respond to this treatment and thus will eventually assist in developing the increasingly important area of personalized medicine. PMID:20021324
NASA Astrophysics Data System (ADS)
Hardiansyah, Andri; Chaldun, Elsy Rahimi; Nuryadin, Bebeh Wahid; Fikriyyah, Anti Khoerul; Subhan, Achmad; Ghozali, Muhammad; Purwasasmita, Bambang Sunendar
2018-07-01
In this study, carbon-based advanced materials for lithium-ion battery applications were prepared by using soybean waste-based biomass material, through a straightforward process of heat treatment followed by chemical modification processes. Various types of carbon-based advanced materials were developed. Physicochemical characteristics and electrochemical performance of the resultant materials were characterized systematically. Scanning electron microscopy observation revealed that the activated carbon and graphene exhibits wrinkles structures and porous morphology. Electrochemical impedance spectroscopy (EIS) revealed that both activated carbon and graphene-based material exhibited a good conductivity. For instance, the graphene-based material exhibited equivalent series resistance value of 25.9 Ω as measured by EIS. The graphene-based material also exhibited good reversibility and cyclic performance. Eventually, it would be anticipated that the utilization of soybean waste-based biomass material, which is conforming to the principles of green materials, could revolutionize the development of advanced material for high-performance energy storage applications, especially for lithium-ion batteries application.
EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer.
Amato, Katherine R; Wang, Shan; Tan, Li; Hastings, Andrew K; Song, Wenqiang; Lovly, Christine M; Meador, Catherine B; Ye, Fei; Lu, Pengcheng; Balko, Justin M; Colvin, Daniel C; Cates, Justin M; Pao, William; Gray, Nathanael S; Chen, Jin
2016-01-15
Despite the success of treating EGFR-mutant lung cancer patients with EGFR tyrosine kinase inhibitors (TKI), all patients eventually acquire resistance to these therapies. Although various resistance mechanisms have been described, there are currently no FDA-approved therapies that target alternative mechanisms to treat lung tumors with acquired resistance to first-line EGFR TKI agents. Here we found that EPHA2 is overexpressed in EGFR TKI-resistant tumor cells. Loss of EPHA2 reduced the viability of erlotinib-resistant tumor cells harboring EGFR(T790M) mutations in vitro and inhibited tumor growth and progression in an inducible EGFR(L858R+T790M)-mutant lung cancer model in vivo. Targeting EPHA2 in erlotinib-resistant cells decreased S6K1-mediated phosphorylation of cell death agonist BAD, resulting in reduced tumor cell proliferation and increased apoptosis. Furthermore, pharmacologic inhibition of EPHA2 by the small-molecule inhibitor ALW-II-41-27 decreased both survival and proliferation of erlotinib-resistant tumor cells and inhibited tumor growth in vivo. ALW-II-41-27 was also effective in decreasing viability of cells with acquired resistance to the third-generation EGFR TKI AZD9291. Collectively, these data define a role for EPHA2 in the maintenance of cell survival of TKI-resistant, EGFR-mutant lung cancer and indicate that EPHA2 may serve as a useful therapeutic target in TKI-resistant tumors. ©2016 American Association for Cancer Research.
Immunotherapy for Prostate Cancer Enters Its Golden Age
Boikos, Sosipatros A.; Antonarakis, Emmanuel S.
2012-01-01
In the United States, prostate cancer is the most frequent malignancy in men and ranks second in terms of mortality. Although recurrent or metastatic disease can be managed initially with androgen ablation, most patients eventually develop castration-resistant disease within a number of years, for which conventional treatments (eg, chemotherapy) provide only modest benefits. In the last few years, immunotherapy has emerged as an exciting therapeutic modality for advanced prostate cancer, and this field is evolving rapidly. Encouragingly, the US Food and Drug Administration (FDA) has recently approved two novel immunotherapy agents for patients with advanced cancer: the antigen presenting cell-based product sipuleucel-T and the anti-CTLA4 (cytotoxic T-lymphocyte antigen 4) antibody ipilimumab, based on improvements in overall survival in patients with castration-resistant prostate cancer and metastatic melanoma, respectively. Currently, a number of trials are investigating the role of various immunological approaches for the treatment of prostate cancer, many of them with early indications of success. As immunotherapy for prostate cancer enters its golden age, the challenge of the future will be to design rational combinations of immunotherapy agents with each other or with other standard prostate cancer treatments in an effort to improve patient outcomes further. PMID:22844202
Muscular Dystrophies at Different Ages: Metabolic and Endocrine Alterations
Cruz Guzmán, Oriana del Rocío; Chávez García, Ana Laura; Rodríguez-Cruz, Maricela
2012-01-01
Common metabolic and endocrine alterations exist across a wide range of muscular dystrophies. Skeletal muscle plays an important role in glucose metabolism and is a major participant in different signaling pathways. Therefore, its damage may lead to different metabolic disruptions. Two of the most important metabolic alterations in muscular dystrophies may be insulin resistance and obesity. However, only insulin resistance has been demonstrated in myotonic dystrophy. In addition, endocrine disturbances such as hypogonadism, low levels of testosterone, and growth hormone have been reported. This eventually will result in consequences such as growth failure and delayed puberty in the case of childhood dystrophies. Other consequences may be reduced male fertility, reduced spermatogenesis, and oligospermia, both in childhood as well as in adult muscular dystrophies. These facts all suggest that there is a need for better comprehension of metabolic and endocrine implications for muscular dystrophies with the purpose of developing improved clinical treatments and/or improvements in the quality of life of patients with dystrophy. Therefore, the aim of this paper is to describe the current knowledge about of metabolic and endocrine alterations in diverse types of dystrophinopathies, which will be divided into two groups: childhood and adult dystrophies which have different age of onset. PMID:22701119
Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains
Boncompain, Carina A.; Amadio, Ariel A.; Carrasco, Soledad; Suárez, Cristian A.
2017-01-01
Staphylococcus aureus is a very successful opportunistic pathogen capable of causing a variety of diseases ranging from mild skin infections to life-threatening sepsis, meningitis and pneumonia. Its ability to display numerous virulence mechanisms matches its skill to display resistance to several antibiotics, including β-lactams, underscoring the fact that new anti-S. aureus drugs are urgently required. In this scenario, the utilization of lytic bacteriophages that kill bacteria in a genus -or even species- specific way, has become an attractive field of study. In this report, we describe the isolation, characterization and sequencing of phages capable of killing S. aureus including methicillin resistant (MRSA) and multi-drug resistant S. aureus local strains from environmental, animal and human origin. Genome sequencing and bio-informatics analysis showed the absence of genes encoding virulence factors, toxins or antibiotic resistance determinants. Of note, there was a high similarity between our set of phages to others described in the literature such as phage K. Considering that reported phages were obtained in different continents, it seems plausible that there is a commonality of genetic features that are needed for optimum, broad host range anti-staphylococcal activity of these related phages. Importantly, the high activity and broad host range of one of our phages underscores its promising value to control the presence of S. aureus in fomites, industry and hospital environments and eventually on animal and human skin. The development of a cocktail of the reported lytic phages active against S. aureus–currently under way- is thus, a sensible strategy against this pathogen. PMID:28742812
Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains.
Abatángelo, Virginia; Peressutti Bacci, Natalia; Boncompain, Carina A; Amadio, Ariel F; Carrasco, Soledad; Suárez, Cristian A; Morbidoni, Héctor R
2017-01-01
Staphylococcus aureus is a very successful opportunistic pathogen capable of causing a variety of diseases ranging from mild skin infections to life-threatening sepsis, meningitis and pneumonia. Its ability to display numerous virulence mechanisms matches its skill to display resistance to several antibiotics, including β-lactams, underscoring the fact that new anti-S. aureus drugs are urgently required. In this scenario, the utilization of lytic bacteriophages that kill bacteria in a genus -or even species- specific way, has become an attractive field of study. In this report, we describe the isolation, characterization and sequencing of phages capable of killing S. aureus including methicillin resistant (MRSA) and multi-drug resistant S. aureus local strains from environmental, animal and human origin. Genome sequencing and bio-informatics analysis showed the absence of genes encoding virulence factors, toxins or antibiotic resistance determinants. Of note, there was a high similarity between our set of phages to others described in the literature such as phage K. Considering that reported phages were obtained in different continents, it seems plausible that there is a commonality of genetic features that are needed for optimum, broad host range anti-staphylococcal activity of these related phages. Importantly, the high activity and broad host range of one of our phages underscores its promising value to control the presence of S. aureus in fomites, industry and hospital environments and eventually on animal and human skin. The development of a cocktail of the reported lytic phages active against S. aureus-currently under way- is thus, a sensible strategy against this pathogen.
Past and current perspective on new therapeutic targets for Type-II diabetes.
Patil, Pradip D; Mahajan, Umesh B; Patil, Kalpesh R; Chaudhari, Sandip; Patil, Chandragouda R; Agrawal, Yogeeta O; Ojha, Shreesh; Goyal, Sameer N
2017-01-01
Loss of pancreatic β-cell function is a hallmark of Type-II diabetes mellitus (DM). It is a chronic metabolic disorder that results from defects in both insulin secretion and insulin action. Recently, United Kingdom Prospective Diabetes Study reported that Type-II DM is a progressive disorder. Although, DM can be treated initially by monotherapy with oral agent; eventually, it may require multiple drugs. Additionally, insulin therapy is needed in many patients to achieve glycemic control. Pharmacological approaches are unsatisfactory in improving the consequences of insulin resistance. Single therapeutic approach in the treatment of Type-II DM is unsuccessful and usually a combination therapy is adopted. Increased understanding of biochemical, cellular and pathological alterations in Type-II DM has provided new insight in the management of Type-II DM. Knowledge of underlying mechanisms of Type-II DM development is essential for the exploration of novel therapeutic targets. Present review provides an insight into therapeutic targets of Type-II DM and their role in the development of insulin resistance. An overview of important signaling pathways and mechanisms in Type-II DM is provided for the better understanding of disease pathology. This review includes case studies of drugs that are withdrawn from the market. The experience gathered from previous studies and knowledge of Type-II DM pathways can guide the anti-diabetic drug development toward the discovery of clinically viable drugs that are useful in Type-II DM.
Ramshankar, Vijayalakshmi; Yegnaswamy, Subha; P, Kumarasamy; Arvind, Krishnamurthy
2014-01-01
Identification of activating mutations in non-small cell lung cancers (NSCLC) has been a focus in recent years. This led to successful evidence of using tyrosine kinase inhibitors (TKIs) over the standard platinum doublet based chemotherapy as the first line treatment in the metastatic setting.The rearrangements of fusion protein EML4-ALK in NSCLC lead to the use of crizotinib for this class of tumors. Preclinical and Phase 1 clinical studies show that ceritinib is more effective against both crizotinib sensitive and resistant tumors. Although robust responses to crizotinib are observed in NSCLC harboring ALK mutations, majority of tumors eventually become resistant, posing a major challenge in treatment course. Thus, there is a need for the identification and development of second-generation of ALK inhibitors. Computer aided molecular docking data show Tivozanib and Lapatinib bind EML4-ALK with high score. Tivozanib is in clinical trials for renal cell cancer and Lapatinib is a known dual tyrosine kinase inhibitor effective in breast cancer patients with HER2 over-expression. Additional data on these compounds for use in EML4-ALK positive NSCLC will provide evidence for use in patients treated with crizotinib. Data shows the importance of computer aided molecular docking in developing candidates with improved activity for further consideration in vitro and in vivo validation.
Ramshankar, Vijayalakshmi; Yegnaswamy, Subha; P, Kumarasamy; Arvind, Krishnamurthy
2014-01-01
Identification of activating mutations in non-small cell lung cancers (NSCLC) has been a focus in recent years. This led to successful evidence of using tyrosine kinase inhibitors (TKIs) over the standard platinum doublet based chemotherapy as the first line treatment in the metastatic setting.The rearrangements of fusion protein EML4-ALK in NSCLC lead to the use of crizotinib for this class of tumors. Preclinical and Phase 1 clinical studies show that ceritinib is more effective against both crizotinib sensitive and resistant tumors. Although robust responses to crizotinib are observed in NSCLC harboring ALK mutations, majority of tumors eventually become resistant, posing a major challenge in treatment course. Thus, there is a need for the identification and development of second-generation of ALK inhibitors. Computer aided molecular docking data show Tivozanib and Lapatinib bind EML4-ALK with high score. Tivozanib is in clinical trials for renal cell cancer and Lapatinib is a known dual tyrosine kinase inhibitor effective in breast cancer patients with HER2 over-expression. Additional data on these compounds for use in EML4-ALK positive NSCLC will provide evidence for use in patients treated with crizotinib. Data shows the importance of computer aided molecular docking in developing candidates with improved activity for further consideration in vitro and in vivo validation. PMID:25489176
Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer
Chang, Kai-Hsiung; Li, Rui; Papari-Zareei, Mahboubeh; Watumull, Lori; Zhao, Yan Daniel; Auchus, Richard J.; Sharifi, Nima
2011-01-01
In the majority of cases, advanced prostate cancer responds initially to androgen deprivation therapy by depletion of gonadal testosterone. The response is usually transient, and metastatic tumors almost invariably eventually progress as castration-resistant prostate cancer (CRPC). The development of CRPC is dependent upon the intratumoral generation of the potent androgen, dihydrotestosterone (DHT), from adrenal precursor steroids. Progression to CRPC is accompanied by increased expression of steroid-5α-reductase isoenzyme-1 (SRD5A1) over SRD5A2, which is otherwise the dominant isoenzyme expressed in the prostate. DHT synthesis in CRPC is widely assumed to require 5α-reduction of testosterone as the obligate precursor, and the increased expression of SRD5A1 is thought to reflect its role in converting testosterone to DHT. Here, we show that the dominant route of DHT synthesis in CRPC bypasses testosterone, and instead requires 5α-reduction of androstenedione by SRD5A1 to 5α-androstanedione, which is then converted to DHT. This alternative pathway is operational and dominant in both human CRPC cell lines and fresh tissue obtained from human tumor metastases. Moreover, CRPC growth in mouse xenograft models is dependent upon this pathway, as well as expression of SRD5A1. These findings reframe the fundamental metabolic pathway that drives CRPC progression, and shed light on the development of new therapeutic strategies. PMID:21795608
Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer.
Chang, Kai-Hsiung; Li, Rui; Papari-Zareei, Mahboubeh; Watumull, Lori; Zhao, Yan Daniel; Auchus, Richard J; Sharifi, Nima
2011-08-16
In the majority of cases, advanced prostate cancer responds initially to androgen deprivation therapy by depletion of gonadal testosterone. The response is usually transient, and metastatic tumors almost invariably eventually progress as castration-resistant prostate cancer (CRPC). The development of CRPC is dependent upon the intratumoral generation of the potent androgen, dihydrotestosterone (DHT), from adrenal precursor steroids. Progression to CRPC is accompanied by increased expression of steroid-5α-reductase isoenzyme-1 (SRD5A1) over SRD5A2, which is otherwise the dominant isoenzyme expressed in the prostate. DHT synthesis in CRPC is widely assumed to require 5α-reduction of testosterone as the obligate precursor, and the increased expression of SRD5A1 is thought to reflect its role in converting testosterone to DHT. Here, we show that the dominant route of DHT synthesis in CRPC bypasses testosterone, and instead requires 5α-reduction of androstenedione by SRD5A1 to 5α-androstanedione, which is then converted to DHT. This alternative pathway is operational and dominant in both human CRPC cell lines and fresh tissue obtained from human tumor metastases. Moreover, CRPC growth in mouse xenograft models is dependent upon this pathway, as well as expression of SRD5A1. These findings reframe the fundamental metabolic pathway that drives CRPC progression, and shed light on the development of new therapeutic strategies.
Severe pediculosis capitus: a case of "crusted lice" with autoeczematization.
Connor, Cody J; Selby, John C; Wanat, Karolyn A
2016-03-16
Pediculosis humanus capitus infestations are common and classically present with intense pruritus of the scalp. Although many treatment options are available, lice are becoming more resistant to conventional therapies and severe clinical presentations are bound to become more prevalent. We present a case of treatment-resistant pediculosis capitus resulting in diffuse autoeczematization of the torso and extremities and severe crusting and scaling of the scalp, which we called "crusted lice." This eruption differs from the well-described id reaction known as "pediculid" and represents a more dramatic manifestation of rampant infestation. This paper provides an up-to-date review of treatment options available for pediculosis humanus capitus, including newer medications like the ones that eventually led to resolution of our patient's extreme infestation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng
While the recent establishment of the role of thermophoresis/diffusion-driven oxygen migration during resistance switching in metal oxide memristors provided critical insights required for memristor modeling, extended investigations of the role of oxygen migration during ageing and failure remain to be detailed. Such detailing will enable failure-tolerant design, which can lead to enhanced performance of memristor-based next-generation storage-class memory. Furthermore, we directly observed lateral oxygen migration using in-situ synchrotron x-ray absorption spectromicroscopy of HfO x memristors during initial resistance switching, wear over millions of switching cycles, and eventual failure, through which we determined potential physical causes of failure. Using this information,more » we reengineered devices to mitigate three failure mechanisms and demonstrated an improvement in endurance of about three orders of magnitude.« less
Ontogeny of the ovary in polycystic ovary syndrome
Dumesic, Daniel A.; Richards, JoAnne S.
2015-01-01
Activation of primordial follicles into the growing pool, selection of the dominant follicle, and its eventual ovulation require complex endocrine and metabolic interactions as well as intraovarian paracrine signals to coordinate granulosa cell proliferation, theca cell differentiation, and oocyte maturation. Early preantral follicle development relies mostly upon mesenchymal-epithelial cell interactions, intraovarian paracrine signals, and oocyte-secreted factors, whereas development of the antral follicle depends on circulating gonadotropins as well as locally derived regulators. In women with polycystic ovary syndrome (PCOS), ovarian hyperandrogenism, hyperinsulinemia from insulin resistance, and altered intrafollicular paracrine signaling perturb the activation, survival, growth, and selection of follicles, causing accumulation of small antral follicles within the periphery of the ovary, giving it a polycystic morphology. Altered adipocyte-ovarian interactions further compound these adverse events on follicle development and also can harm the oocyte, particularly in the presence of increased adiposity. Finally, endocrine antecedents of PCOS occur in female infants born to mothers with PCOS, which suggests that interactions between genes and the maternal-fetal hormonal environment may program ovarian function after birth. PMID:23472949
Effects of Aging and Environmental Conditions on Ammunition/Explosives Storage Magazines - Paper 1
2010-07-01
dropped below 9.5. Corrosion of the Reinforcing Steel: Steel reinforcement is normally placed within a 2 inches of a concrete surface. Under most...alkalinity of the concrete . The steel is also protected by the relatively high electrical resistance of the concrete . Still, corrosion of the...pressures to force the concrete /reinforcement steel bond to break. Corrosion of the steel will cause spalling, section loss of the steel, and eventually
Abdominal wall reconstruction following removal of a chronically infected mid-urethral tape.
Walker, Helen; Brooker, Thomas; Gelman, Wolf
2009-10-01
We report a rare postoperative complication of a mid-urethral tape. The patient presented with a chronic infection resistant to treatment with several weeks of antibiotics, with eventual surgical removal, and the resulting complications of an infected incisional hernia and vesico-cutaneous fistula required reconstruction of the abdominal wall with Permacol and excision of the vesico-cutaneous fistula. We also look briefly at the impact of health tourism on the National Health Service.
López, Camilo E; Acosta, Iván F; Jara, Carlos; Pedraza, Fabio; Gaitán-Solís, Eliana; Gallego, Gerardo; Beebe, Steve; Tohme, Joe
2003-01-01
ABSTRACT A polymerase chain reaction approach using degenerate primers that targeted the conserved domains of cloned plant disease resistance genes (R genes) was used to isolate a set of 15 resistance gene analogs (RGAs) from common bean (Phaseolus vulgaris). Eight different classes of RGAs were obtained from nucleotide binding site (NBS)-based primers and seven from not previously described Toll/Interleukin-1 receptor-like (TIR)-based primers. Putative amino acid sequences of RGAs were significantly similar to R genes and contained additional conserved motifs. The NBS-type RGAs were classified in two subgroups according to the expected final residue in the kinase-2 motif. Eleven RGAs were mapped at 19 loci on eight linkage groups of the common bean genetic map constructed at Centro Internacional de Agricultura Tropical. Genetic linkage was shown for eight RGAs with partial resistance to anthracnose, angular leaf spot (ALS) and Bean golden yellow mosaic virus (BGYMV). RGA1 and RGA2 were associated with resistance loci to anthracnose and BGYMV and were part of two clusters of R genes previously described. A new major cluster was detected by RGA7 and explained up to 63.9% of resistance to ALS and has a putative contribution to anthracnose resistance. These results show the usefulness of RGAs as candidate genes to detect and eventually isolate numerous R genes in common bean.
Rama, Aarti; Kesari, Shreekant; Das, Pradeep; Kumar, Vijay
2017-07-24
Extensive application of routine insecticide i.e., dichlorodiphenyltrichloroethane (DDT) to control Phlebotomus argentipes (Diptera: Psychodidae), the proven vector of visceral leishmaniasis in India, had evoked the problem of resistance/tolerance against DDT, eventually nullifying the DDT dependent strategies to control this vector. Because tolerating an hour-long exposure to DDT is not challenging enough for the resistant P. argentipes, estimating susceptibility by exposing sand flies to insecticide for just an hour becomes a trivial and futile task.Therefore, this bioassay study was carried out to investigate the maximum limit of exposure time to which DDT resistant P. argentipes can endure the effect of DDT for their survival. The mortality rate of laboratory-reared DDT resistant strain P. argentipes exposed to DDT was studied at discriminating time intervals of 60 min and it was concluded that highly resistant sand flies could withstand up to 420 min of exposure to this insecticide. Additionally, the lethal time for female P. argentipes was observed to be higher than for males suggesting that they are highly resistant to DDT's toxicity. Our results support the monitoring of tolerance limit with respect to time and hence points towards an urgent need to change the World Health Organization's protocol for susceptibility identification in resistant P. argentipes.
Activation of RAS family members confers resistance to ROS1 targeting drugs
Cargnelutti, Marilisa; Corso, Simona; Pergolizzi, Margherita; Mévellec, Laurence; Aisner, Dara L.; Dziadziuszko, Rafal; Varella-Garcia, Marileila; Comoglio, Paolo M.; Doebele, Robert C.; Vialard, Jorge; Giordano, Silvia
2015-01-01
The ROS1 tyrosine kinase is activated in lung cancer as a consequence of chromosomal rearrangement. Although high response rates and disease control have been observed in lung cancer patients bearing rearranged ROS1 tumors (ROS1+) treated with the kinase inhibitor crizotinib, many of these patients eventually relapse. To identify mechanisms of resistance to ROS1 inhibitors we generated resistant cells from HCC78 lung cancer cells bearing the SLC34A2-ROS1 rearrangement. We found that activation of the RAS pathway in the HCC78 cell model, due to either KRAS/NRAS mutations or to KRAS amplification, rendered the cells resistant to ROS1 inhibition. These cells were cross-resistant to different ROS1 inhibitors, but sensitive to inhibitors of the RAS signaling pathway. Interestingly, we identified focal KRAS amplification in a biopsy of a tumor from a patient that had become resistant to crizotinib treatment. Altogether our data suggest that the activation of members of the RAS family can confer resistance to ROS1 inhibitors. This has important clinical implications as: (i) RAS genetic alterations in ROS1+ primary tumors are likely negative predictors of efficacy for targeted drugs and (ii) this kind of resistance is unlikely to be overcome by the use of more specific or more potent ROS1 targeting drugs. PMID:25691052
Protecting the normal in order to better kill the cancer
Liu, Bingya; Ezeogu, Lewis; Zellmer, Lucas; Yu, Baofa; Xu, Ningzhi; Joshua Liao, Dezhong
2015-01-01
Chemotherapy is the only option for oncologists when a cancer has widely spread to different body sites. However, almost all currently available chemotherapeutic drugs will eventually encounter resistance after their initial positive effect, mainly because cancer cells develop genetic alterations, collectively coined herein as mutations, to adapt to the therapy. Some patients may still respond to a second chemo drug, but few cases respond to a third one. Since it takes time for cancer cells to develop new mutations and then select those life-sustaining ones via clonal expansion, “run against time for mutations to emerge” should be a crucial principle for treatment of those currently incurable cancers. Since cancer cells constantly change to adapt to the therapy whereas normal cells are stable, it may be a better strategy to shift our focus from killing cancer cells per se to protecting normal cells from chemotherapeutic toxicity. This new strategy requires the development of new drugs that are nongenotoxic and can quickly, in just hours or days, kill cancer cells without leaving the still-alive cells with time to develop mutations, and that should have their toxicities confined to only one or few organs, so that specific protections can be developed and applied. PMID:26177855
Sayyid, Rashid K; Sayyid, Abdallah K; Klaassen, Zachary; Fadaak, Kamel; Goldberg, Hanan; Chandrasekar, Thenappan; Ahmad, Ardalanejaz; Leao, Ricardo; Perlis, Nathan; Chadwick, Karen; Hamilton, Robert J; Kulkarni, Girish S; Finelli, Antonio; Zlotta, Alexandre R; Fleshner, Neil E
2018-01-01
We determined whether men on continuous androgen deprivation therapy who achieve testosterone less than 0.7 nmol/l demonstrate subsequent testosterone elevations during followup and whether such events predict worse oncologic outcomes. We evaluated a random, retrospective sample of 514 patients with prostate cancer treated with continuous androgen deprivation therapy in whom serum testosterone was less than 0.7 nmol/l at University Health Network between 2007 and 2016. Patients were followed from the date of the first testosterone measurement of less than 0.7 nmol/l to progression to castrate resistance, death or study period end. Study outcomes were the development of testosterone elevations greater than 0.7, greater than 1.1 and greater than 1.7 nmol/l, and progression to a castrate resistant state. Survival curves were constructed to determine the rate of testosterone elevations. Multivariate Cox regression analysis was done to assess whether elevations predicted progression to castrate resistance. Median patient age was 74 years and median followup was 20.3 months. Within 5 years of followup 82%, 45% and 18% of patients had subsequent testosterone levels greater than 0.7, greater than 1.1 and greater than 1.7 nmol/l, respectively. In 96% to 100% of these patients levels less than 0.7 nmol/l were subsequently reestablished within 5 years. No patient baseline characteristic was associated with elevations and elevations were not a significant predictor of progression to a castrate resistant state. Men on continuous androgen deprivation therapy in whom initial testosterone is less than 0.7 nmol/l frequently show subsequent elevations in serum testosterone. Such a development should not trigger an immediate response from physicians as these events are prognostically insignificant with regard to oncologic outcomes. Levels are eventually reestablished at less than 0.7 nmol/l. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Self-Test Procedures for Gas Sensors Embedded in Microreactor Systems.
Helwig, Andreas; Hackner, Angelika; Müller, Gerhard; Zappa, Dario; Sberveglieri, Giorgio
2018-02-03
Metal oxide (MOX) gas sensors sensitively respond to a wide variety of combustible, explosive and poisonous gases. However, due to the lack of a built-in self-test capability, MOX gas sensors have not yet been able to penetrate safety-critical applications. In the present work we report on gas sensing experiments performed on MOX gas sensors embedded in ceramic micro-reaction chambers. With the help of an external micro-pump, such systems can be operated in a periodic manner alternating between flow and no-flow conditions, thus allowing repetitive measurements of the sensor resistances under clean air, R 0 , and under gas exposure, R g a s , to be obtained, even under field conditions. With these pairs of resistance values, eventual drifts in the sensor baseline resistance can be detected and drift-corrected values of the relative resistance response R e s p = ( R 0 - R g a s ) / R 0 can be determined. Residual poisoning-induced changes in the relative resistance response can be detected by reference to humidity measurements taken with room-temperature-operated capacitive humidity sensors which are insensitive to the poisoning processes operative on heated MOX gas sensors.
ILT for double exposure lithography with conventional and novel materials
NASA Astrophysics Data System (ADS)
Poonawala, Amyn; Borodovsky, Yan; Milanfar, Peyman
2007-03-01
Multiple paths exists to provide lithography solutions pursuant to Moore's Law for next 3-5 generations of technology, yet each of those paths inevitably leads to solutions eventually requiring patterning at k I < 0.30 and below. In this article, we explore double exposure single development lithography for k I >= 0.25 (using conventional resist) and k1 < 0.25 (using new out-of-sight out-of-mind materials). For the case of k I >= 0.25, we propose a novel double exposure inverse lithography technique (ILT) to split the pattern. Our algorithm is based on our earlier proposed single exposure ILT framework, and works by decomposing the aerial image (instead of the target pattern) into two parts. It also resolves the phase conflicts automatically as part of the decomposition, and the combined aerial image obtained using the estimated masks has a superior contrast. For the case of k I < 0.25, we focus on analyzing the use of various dual patterning techniques enabled by the use of hypothetic materials with properties that allow for the violation of the linear superposition of intensities from the two exposures. We investigate the possible use of two materials: contrast enhancement layer (CEL) and two-photon absorption resists. We propose a mathematical model for CEL, define its characteristic properties, and derive fundamental bounds on the improvement in image log-slope. Simulation results demonstrate that double exposure single development lithography using CEL enables printing 80nm gratings using dry lithography. We also combine ILT, CEL, and DEL to synthesize 2-D patterns with k I = 0.185. Finally, we discuss the viability of two-photon absorption resists for double exposure lithography.
Tuberculosis in Newborns: The Lessons of the “Lübeck Disaster” (1929–1933)
Fox, Gregory J.; Orlova, Marianna; Schurr, Erwin
2016-01-01
In an accident later known as the Lübeck disaster, 251 neonates were orally given three doses of the new Bacille Calmette–Guérin (BCG) antituberculosis (TB) vaccine contaminated with Mycobacterium tuberculosis. A total of 173 infants developed clinical or radiological signs of TB but survived the infection, while 72 died from TB. While some blamed the accident on BCG itself by postulating reversion to full virulence, such a possibility was conclusively disproven. Rather, by combining clinical, microbiological, and epidemiological data, the chief public health investigator Dr. A. Moegling concluded that the BCG vaccine had been contaminated with variable amounts of fully virulent M. tuberculosis. Here, we summarize the conclusions drawn by Moegling and point out three lessons that can be learned. First, while mortality was high (approximately 29%), the majority of neonates inoculated with M. tuberculosis eventually overcame TB disease. This shows the high constitutional resistance of humans to the bacillus. Second, four semiquantitative levels of contamination were deduced by Moegling from the available data. While at low levels of M. tuberculosis there was a large spread of clinical phenotypes reflecting a good degree of innate resistance to TB, at the highest dose, the majority of neonates were highly susceptible to TB. This shows the dominating role of dose for innate resistance to TB. Third, two infants inoculated with the lowest dose nevertheless died of TB, and their median time from inoculation to death was substantially shorter than for those who died after inoculation with higher doses. This suggests that infants who developed disease after low dose inoculation are those who are most susceptible to the disease. We discuss some implications of these lessons for current study of genetic susceptibility to TB. PMID:26794678
Smith-Nonini, Sandy
2005-01-01
This is a qualitative study of the politics of public health surrounding a resurgent tuberculosis epidemic in Lima, Peru during the 1990s. The paper traces the role of debt and neoliberal economics in creating conditions for the epidemic, and the reforms that turned Peru's TB program into a model for treating drug-susceptible disease by 1996. Despite this success, public health officials were blind-sided by the appearance of drug-resistant TB in the late 1990s when their "good" program turned out to be not good enough. The study follows the conflict, and eventual collaboration, that ensued between the Ministry of Health and a local NGO affiliated with Boston-based Partners in Health, which undertook a radical program of community-based directly-observed therapy (DOTS-Plus) to treat drug-resistant patients who otherwise would have died. Lessons from this case are relevant to many international settings where "hot-spots" of drug-resistant TB currently exist and go untreated, posing a threat to the success of national TB control programs.
Cavaco-Silva, Joana; Abecasis, Ana; Miranda, Ana Cláudia; Poças, José; Narciso, Jorge; Águas, Maria João; Maltez, Fernando; Almeida, Isabel; Germano, Isabel; Diniz, António; Gonçalves, Maria de Fátima; Gomes, Perpétua; Cunha, Celso; Camacho, Ricardo Jorge
2014-01-01
To characterize the HIV-2 integrase gene polymorphisms and the pathways to resistance of HIV-2 patients failing a raltegravir-containing regimen, we studied 63 integrase strand transfer inhibitors (INSTI)-naïve patients, and 10 heavily pretreated patients exhibiting virological failure while receiving a salvage raltegravir-containing regimen. All patients were infected by HIV-2 group A. 61.4% of the integrase residues were conserved, including the catalytic motif residues. No INSTI-major resistance mutations were detected in the virus population from naïve patients, but two amino acids that are secondary resistance mutations to INSTIs in HIV-1 were observed. The 10 raltegravir-experienced patients exhibited resistance mutations via three main genetic pathways: N155H, Q148R, and eventually E92Q - T97A. The 155 pathway was preferentially used (7/10 patients). Other mutations associated to raltegravir resistance in HIV-1 were also observed in our HIV-2 population (V151I and D232N), along with several novel mutations previously unreported. Data retrieved from this study should help build a more robust HIV-2-specific algorithm for the genotypic interpretation of raltegravir resistance, and contribute to improve the clinical monitoring of HIV-2-infected patients.
Cavaco-Silva, Joana; Abecasis, Ana; Miranda, Ana Cláudia; Poças, José; Narciso, Jorge; Águas, Maria João; Maltez, Fernando; Almeida, Isabel; Germano, Isabel; Diniz, António; Gonçalves, Maria de Fátima; Gomes, Perpétua; Cunha, Celso; Camacho, Ricardo Jorge
2014-01-01
To characterize the HIV-2 integrase gene polymorphisms and the pathways to resistance of HIV-2 patients failing a raltegravir-containing regimen, we studied 63 integrase strand transfer inhibitors (INSTI)-naïve patients, and 10 heavily pretreated patients exhibiting virological failure while receiving a salvage raltegravir-containing regimen. All patients were infected by HIV-2 group A. 61.4% of the integrase residues were conserved, including the catalytic motif residues. No INSTI-major resistance mutations were detected in the virus population from naïve patients, but two amino acids that are secondary resistance mutations to INSTIs in HIV-1 were observed. The 10 raltegravir-experienced patients exhibited resistance mutations via three main genetic pathways: N155H, Q148R, and eventually E92Q - T97A. The 155 pathway was preferentially used (7/10 patients). Other mutations associated to raltegravir resistance in HIV-1 were also observed in our HIV-2 population (V151I and D232N), along with several novel mutations previously unreported. Data retrieved from this study should help build a more robust HIV-2-specific algorithm for the genotypic interpretation of raltegravir resistance, and contribute to improve the clinical monitoring of HIV-2-infected patients. PMID:24681625
Cohen, Jennifer L; Glickstein, Julie S; Crystal, Matthew A
2017-12-01
A 20-month-old boy with Williams syndrome had undergone multiple surgical and catheter-based interventions for resistant peripheral pulmonary arterial stenoses with eventual bilateral stent placement and conventional balloon angioplasty. He persistently developed suprasystemic right ventricular (RV) pressure. Angioplasty with a drug-coated balloon (DCB) was performed for in-stent restenosis and to remodel his distal pulmonary vessels bilaterally. This resulted in immediate improvement in the in-stent stenosis and resultant decrease in RV pressure. Follow-up catheterization two months later continued to show long-lasting improvement in the in-stent stenosis. We hypothesize that the anti-proliferative effects of DCBs may be of benefit in the arteriopathy associated with Williams syndrome. We report this as a novel use of a DCB in the pulmonary arterial circulation in a patient with Williams syndrome.
Escaping Antiangiogenic Therapy: Strategies Employed by Cancer Cells
Pinto, Mauricio P.; Sotomayor, Paula; Carrasco-Avino, Gonzalo; Corvalan, Alejandro H.; Owen, Gareth I.
2016-01-01
Tumor angiogenesis is widely recognized as one of the “hallmarks of cancer”. Consequently, during the last decades the development and testing of commercial angiogenic inhibitors has been a central focus for both basic and clinical cancer research. While antiangiogenic drugs are now incorporated into standard clinical practice, as with all cancer therapies, tumors can eventually become resistant by employing a variety of strategies to receive nutrients and oxygen in the event of therapeutic assault. Herein, we concentrate and review in detail three of the principal mechanisms of antiangiogenic therapy escape: (1) upregulation of compensatory/alternative pathways for angiogenesis; (2) vasculogenic mimicry; and (3) vessel co-option. We suggest that an understanding of how a cancer cell adapts to antiangiogenic therapy may also parallel the mechanisms employed in the bourgeoning tumor and isolated metastatic cells delivering responsible for residual disease. Finally, we speculate on strategies to adapt antiangiogenic therapy for future clinical uses. PMID:27608016
Escaping Antiangiogenic Therapy: Strategies Employed by Cancer Cells.
Pinto, Mauricio P; Sotomayor, Paula; Carrasco-Avino, Gonzalo; Corvalan, Alejandro H; Owen, Gareth I
2016-09-06
Tumor angiogenesis is widely recognized as one of the "hallmarks of cancer". Consequently, during the last decades the development and testing of commercial angiogenic inhibitors has been a central focus for both basic and clinical cancer research. While antiangiogenic drugs are now incorporated into standard clinical practice, as with all cancer therapies, tumors can eventually become resistant by employing a variety of strategies to receive nutrients and oxygen in the event of therapeutic assault. Herein, we concentrate and review in detail three of the principal mechanisms of antiangiogenic therapy escape: (1) upregulation of compensatory/alternative pathways for angiogenesis; (2) vasculogenic mimicry; and (3) vessel co-option. We suggest that an understanding of how a cancer cell adapts to antiangiogenic therapy may also parallel the mechanisms employed in the bourgeoning tumor and isolated metastatic cells delivering responsible for residual disease. Finally, we speculate on strategies to adapt antiangiogenic therapy for future clinical uses.
Vaccines to Accelerate Malaria Elimination and Eventual Eradication.
Healer, Julie; Cowman, Alan F; Kaslow, David C; Birkett, Ashley J
2017-09-01
Remarkable progress has been made in coordinated malaria control efforts with substantial reductions in malaria-associated deaths and morbidity achieved through mass administration of drugs and vector control measures including distribution of long-lasting insecticide-impregnated bednets and indoor residual spraying. However, emerging resistance poses a significant threat to the sustainability of these interventions. In this light, the malaria research community has been charged with the development of a highly efficacious vaccine to complement existing malaria elimination measures. As the past 40 years of investment in this goal attests, this is no small feat. The malaria parasite is a highly complex organism, exquisitely adapted for survival under hostile conditions within human and mosquito hosts. Here we review current vaccine strategies to accelerate elimination and the potential for novel and innovative approaches to vaccine design through a better understanding of the host-parasite interaction. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
HIV/AIDS infection: The beginning of the end for today's greatest pandemic?
Gutiérrez, F
2017-11-01
Recently, there have been significant advances in the fight against human immunodeficiency virus, which have increased the hopes of definitively halting its dissemination and of starting the decline of the epidemic it has caused. Transmission of the infection was drastically reduced when infected patients were given antiretroviral treatments, which boosted the diffusion of treatments to middle- and low-income countries. Global therapy coverage has doubled in recent years; meanwhile the incidence of new infections has decreased. Various curative strategies are also actively being investigated, including those aiming to induce cell resistance to the infection through gene therapy and the elimination of latent virus reservoirs. This article reviews the current situation and future developments in terms of controlling the pandemic and, eventually, curing the infection. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.
The roles of muscle stem cells in muscle injury, atrophy and hypertrophy.
Fukada, So-Ichiro
2018-05-01
Skeletal muscle is composed of multinuclear cells called myofibers. Muscular dystrophy (a genetic muscle disorder) induces instability in the cell membrane of myofibers and eventually causes myofibre damage. Non-genetic muscle disorders, including sarcopenia, diabetes, bedridden immobility and cancer cachexia, lead to atrophy of myofibres. In contrast, resistance training induces myofibre hypertrophy. Thus, myofibres exhibit a plasticity that is strongly affected by both intrinsic and extrinsic factors. There is no doubt that muscle stem cells (MuSCs, also known as muscle satellite cells) are indispensable for muscle repair/regeneration, but their contributions to atrophy and hypertrophy are still controversial. The present review focuses on the relevance of MuSCs to (i) muscle diseases and (ii) hypertrophy. Further, this review addresses fundamental questions about MuSCs to clarify the onset or progression of these diseases and which might lead to development of a MuSC-based therapy.
Takegawa, Naoki; Nonagase, Yoshikane; Yonesaka, Kimio; Sakai, Kazuko; Maenishi, Osamu; Ogitani, Yusuke; Tamura, Takao; Nishio, Kazuto; Nakagawa, Kazuhiko; Tsurutani, Junji
2017-10-15
Anti-HER2 therapies are beneficial for patients with HER2-positive breast or gastric cancer. T-DM1 is a HER2-targeting antibody-drug conjugate (ADC) comprising the antibody trastuzumab, a linker, and the tubulin inhibitor DM1. Although effective in treating advanced breast cancer, all patients eventually develop T-DM1 resistance. DS-8201a is a new ADC incorporating an anti-HER2 antibody, a newly developed, enzymatically cleavable peptide linker, and a novel, potent, exatecan-derivative topoisomerase I inhibitor (DXd). DS-8201a has a drug-to-antibody-ratio (DAR) of 8, which is higher than that of T-DM1 (3.5). Owing to these unique characteristics and unlike T-DM1, DS-8201a is effective against cancers with low-HER2 expression. In the present work, T-DM1-resistant cells (N87-TDMR), established using the HER2-positive gastric cancer line NCI-N87 and continuous T-DM1 exposure, were shown to be susceptible to DS-8201a. The ATP-binding cassette (ABC) transporters ABCC2 and ABCG2 were upregulated in N87-TDMR cells, but HER2 overexpression was retained. Furthermore, inhibition of ABCC2 and ABCG2 by MK571 restored T-DM1 sensitivity. Therefore, resistance to T-DM1 is caused by efflux of its payload DM1, due to aberrant expression of ABC transporters. In contrast to DM1, DXd payload of DS-8201a inhibited the growth of N87-TDMR cells in vitro. This suggests that either DXd may be a poor substrate of ABCC2 and ABCG2 in comparison to DM1, or the high DAR of DS-8201a relative to T-DM1 compensates for increased efflux. Notably, N87-TDMR xenograft tumor growth was prevented by DS-8201a. In conclusion, the efficacy of DS-8201a as a treatment for patients with T-DM1-resistant breast or gastric cancer merits investigation. © 2017 UICC.
NASA Astrophysics Data System (ADS)
Osés, J.; Fuentes, G. G.; Santo Domingo, S.; Miguel, I.; Gimeno, S.; Carreras, L.; Peyre, P.; Gorny, C.
2017-05-01
100Cr6 steel (AISI 52100) is one of the most used steel grades in the manufacturing of through hardening bearings mainly due to its properties: controlled impurities during steel making process, high hardenability and well known mechanical properties such as wear and fatigue resistance on clean environments. These characteristics play an important role on the performance of a bearing together with the bearing design, loads and environment. However, there is an increasing set of demanding applications where the above mentioned steel does not fulfil the required needs and thus, bearing manufacturers continuously work on the development of technologies to improve the bearing performance. Nowadays thermochemical treatments (TCT), such as carbonitriding are being applied to this steel in order to enhance the performance of such pieces in contaminated environment, where particles can produce defects on the raceway, increasing the onset of defects that eventually lead to premature fail. These treatments induce the formation of carbides and nitrides which are directly related to the enhancement of the wear resistance and also to increasing the amount of Retained Austenite (RA) in the surface which may have a beneficial effect as it delays the crack propagation on subsurface regions, then increasing bearing fatigue life. In this work, different TCTs have been applied to 100Cr6 steel flat samples. Using a tribometer (ball-on-disc configuration) and a grinding machine, surface and in-depth wear resistance measurements have been carried out, obtaining wear resistance profiles that have been correlated with the microstructure, microhardness profiles and RA content. The most promising TCT has been combined either with Laser Shock Peening (LSP) treatments or carbonaceous Physical Vapour Deposition (PVD) coatings with the aim of improving not only the wear resistance but also the CoF of the duplex treated sample. The results obtained on flat samples are promising; the combination of treatments produces long-lasting low CoF and a reduction of 60% in the wear rate. However, the treatments should be applied on real pieces and tested in a test bench in order to obtain more appropriate data about the lifespan of duplex treated bearings.
Genetic Pathway of HIV-1 Resistance to Novel Fusion Inhibitors Targeting the Gp41 Pocket
Su, Yang; Chong, Huihiui; Xiong, Shengwen; Qiao, Yuanyuan; Qiu, Zonglin
2015-01-01
ABSTRACT The peptide drug enfuvirtide (T20) is the only HIV-1 fusion inhibitor in clinical use, but it easily induces drug resistance, calling for new strategies for developing effective drugs. On the basis of the M-T hook structure, we recently developed highly potent short-peptide HIV-1 fusion inhibitors (MTSC22 and HP23), which mainly target the conserved gp41 pocket and possess high genetic barriers to resistance. Here, we focused on the selection and characterization of HIV-1 escape mutants of MTSC22, which revealed new resistance pathways and mechanisms. Two mutations (E49K and L57R) located at the inhibitor-binding site and two mutations (N126K and E136G) located at the C-terminal heptad repeat region of gp41 were identified as conferring high resistance either singly or in combination. While E49K reduced the C-terminal binding of inhibitors via an electrostatic repulsion, L57R dramatically disrupted the N-terminal binding of M-T hook structure and pocket-binding domain. Unlike E49K and N126K, which enhanced the stability of the endogenous viral six-helical bundle core (6-HB), L57R and E136G conversely destabilized the 6-HB structure. We also demonstrated that both primary and secondary mutations caused the structural changes in 6-HB and severely impaired the capability for HIV-1 entry. Collectively, our data provide novel insights into the mechanisms of short-peptide fusion inhibitors targeting the gp41 pocket site and help increase our understanding of the structure and function of gp41 and HIV-1 evolution. IMPORTANCE The deep pocket on the N-trimer of HIV-1 gp41 has been considered an ideal drug target because of its high degree of conservation and essential role in viral entry. Short-peptide fusion inhibitors, which contain an M-T hook structure and mainly target the pocket site, show extremely high binding and inhibitory activities as well as high genetic barriers to resistance. In this study, the HIV-1 mutants resistant to MTSC22 were selected and characterized, which revealed that the E49K and L57R substitutions at the inhibitor-binding site and the N126K and E136G substitutions at the C-terminal heptad repeat region of gp41 critically determine the resistance phenotype. The data provide novel insights into the mechanisms of action of the M-T hook structure-based fusion inhibitors which will help further our understanding of the structure-function relationship of gp41 and molecular pathways of HIV-1 evolution and eventually facilitate the development of new anti-HIV drugs. PMID:26446597
Resistance of Titanium Aluminide to Domestic Object Damage Assessed
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Draper, Susan L.; Pereira, J. Michael; Nathal, Michael V.; Austin, Curt
1999-01-01
A team consisting of GE Aircraft Engines, Precision Cast Parts, Oremet, and Chromalloy were awarded a NASA-sponsored Aerospace Industry Technology Program (AITP) to develop a design and manufacturing capability that will lead to the engine test demonstration and eventual implementation of a ?-Ti-47Al-2Nb-2Cr (at. %) titanium aluminide (TiAl) low-pressure turbine blade into commercial service. One of the main technical risks of implementing TiAl low-pressure turbine blades is the poor impact resistance of TiAl in comparison to the currently used nickel-based superalloy. The impact resistance of TiAl is being investigated at the NASA Lewis Research Center as part of the Aerospace Industry Technology Program and the Advanced High Temperature Engine Materials Program (HITEMP). The overall objective of this work is to determine the influence of impact damage on the high cycle fatigue life of TiAl-simulated low-pressure turbine blades. To this end, impact specimens were cast to size in a dog-bone configuration and given a typical processing sequence followed by an exposure to 650 degrees Celsius for 20 hours to simulate embrittlement at service conditions. Then, the specimens were impacted at 260 degrees Celsius under a 69-MPa load. Steel projectiles with diameters 1.6 and 3.2 mm were used to impact the specimens at 90 degrees Celsius to the leading edge. Two different impact energies (0.74 and 1.5 joules) were used to simulate fairly severe domestic object damage on a low-pressure turbine blade.
The U.S. and Japanese amorphous silicon technology programs A comparison
NASA Technical Reports Server (NTRS)
Shimada, K.
1984-01-01
The U.S. Department of Energy/Solar Energy Research Institute Amorphous Silicon (a-Si) Solar Cell Program performs R&D on thin-film hydrogenated amorphous silicon for eventual development of stable amorphous silicon cells with 12 percent efficiency by 1988. The Amorphous Silicon Solar Cell Program in Japan is sponsored by the Sunshine Project to develop an alternate energy technology. While the objectives of both programs are to eventually develop a-Si photovoltaic modules and arrays that would produce electricity to compete with utility electricity cost, the U.S. program approach is research oriented and the Japanese is development oriented.
Vitamin D deficiency: a new risk factor for type 2 diabetes?.
Mezza, T; Muscogiuri, G; Sorice, G P; Prioletta, A; Salomone, E; Pontecorvi, A; Giaccari, A
2012-01-01
Recent compelling evidence suggests a role of vitamin D deficiency in the pathogenesis of insulin resistance and insulin secretion derangements, with a consequent possible interference with type 2 diabetes mellitus. The mechanism of this link is incompletely understood. In fact, vitamin D deficiency is usually detected in obesity in which insulin resistance is also a common finding. The coexistence of insulin resistance and vitamin D deficiency has generated several hypotheses. Some cross-sectional and prospective studies have suggested that vitamin D deficiency may play a role in worsening insulin resistance; others have identified obesity as a risk factor predisposing individuals to exhibit both vitamin D deficiency and insulin resistance. The available data from intervention studies are largely confounded, and inadequate considerations of seasonal effects on 25(OH)D concentrations are also a common design flaw in many studies. On the contrary, there is strong evidence that obesity might cause both vitamin D deficiency and insulin resistance, leaving open the possibility that vitamin D and diabetes are not related at all. Although it might seem premature to draw firm conclusions on the role of vitamin D supplementation in reducing insulin resistance and preventing type 2 diabetes, this manuscript will review the circumstances leading to vitamin D deficiency and how such a deficiency can eventually independently affect insulin sensitivity. Copyright © 2012 S. Karger AG, Basel.
Resistance of a northwestern crayfish, Pacifastacus leniusculus (Dana), to elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, C.D.; Genoway, R.G.; Merrill, J.A.
1975-04-01
Pacifastacus leniusculus from two populations in Washington State, the central Columbia River and a small tributary, were acclimated at 5/sup 0/C intervals and exposed to elevated temperatures in 48 hour thermal bioassays. The upper lethal temperature for both crayfish populations increased relatively slightly, from about 28.5 to 31.5/sup 0/C, over the entire acclimation range. A rise of 1/sup 0/C in test temperature often represented the difference between zero and total mortality when lethal limits were approached. The ultimate upper lethal temperature was near 32 to 33/sup 0/C. Statistically significant differences in thermal resistance patterns (slope and spacing of regression lines)more » occurred between the two crayfish populations at all acclimation levels, but resistance in terms of eventual mortality was similar for practical purposes. Moulting individuals were particularly susceptible to high temperature stress. Mature, pre-breeding female crayfish from the Columbia River during fall appeared less resistant, and egg-bearing females during winter more resistant, than other individuals. Larger crayfish from the Columbia River were slightly less resistant to elevated temperatures than smaller ones, and females were more resistant than males. The upper temperature triangle for P. leniusculus encompasses an area of 424/sup 0/C/sup 2/. This freshwater decapod is more tolerant of elevated temperatures than native salmonids, but less tolerant than some introduced ''warmwater'' fish.« less
2009-01-01
Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves. PMID:19939265
Obesity, metabolic syndrome and diabetic retinopathy: Beyond hyperglycemia
Mbata, Osinakachukwu; Abo El-Magd, Nada Fawzy; El-Remessy, Azza Bahram
2017-01-01
Diabetic retinopathy (DR) is the most feared ocular manifestation of diabetes. DR is characterized by progressive retinal damage that may eventually result in blindness. Clinically, this blindness is caused by progressive damage to the retinal microvasculature, which leads to ischemia, retinal swelling, and neovascularization. Retinopathy is associated with both type 1 and type 2 diabetes, with DR being the leading cause of new onset blindness in United States adults. Despite this strong association with diabetes, it must be noted that the development of retinopathy lesions is multifactorial and may occur in individuals without an established history of diabetes. Metabolic syndrome is a multifactorial condition of central obesity, hypertriglyceridemia, dyslipidemia, hypertension, fasting hyperglycemia, and insulin resistance. Although several studies examined the individual components observed in the metabolic syndrome in relation to the development of DR, there is conflicting data as to the association of the metabolic syndrome with the development of retinopathy lesions in non-diabetic subjects. This review will summarize the current literature on the evidence of the metabolic syndrome on retinopathy in subjects with and without an established history of diabetes. This review will also discuss some of the mechanisms through which metabolic syndrome can contribute to the development of retinopathy. PMID:28751954
AC losses and stability on large cable-in-conduit superconductors
NASA Astrophysics Data System (ADS)
Bruzzone, Pierluigi
1998-12-01
The cable-in-conduit superconductors are preferred for applications where the AC losses and stability are a major concern, e.g., fusion magnets and SMES. A review of coupling currents loss results for both NbTi and Nb 3Sn cable-in-conduit conductors (CICC) is presented and the AC loss relevant features are listed, with special emphasis for the role of the interstrand resistance and strand coating. The transient stability approach for CICCs is discussed and the analytical models are quoted as well as the relevant experimental database. The likely spectrum of transient disturbance in CICC is reviewed and the need to account for interstrand current sharing in the design is outlined. Eventually a practical criterion for the interstrand resistance is proposed to link the stability and AC loss design.
Management of complicated urinary tract infections in a referral center in Mexico.
Cornejo-Dávila, Victor; Palmeros-Rodríguez, Mario A; Uberetagoyena-Tello de Meneses, Israel; Mayorga-Gómez, Edgar; Garza-Sáinz, Gerardo; Osornio-Sánchez, Victor; Trujillo-Ortiz, Luis; Sedano-Basilio, Jorge E; Cantellano-Orozco, Mauricio; Martínez-Arroyo, Carlos; Morales-Montor, Jorge G; Pacheco-Gahbler, Carlos
2015-02-01
Urinary tract infections are a common problem encountered by primary care, emergency physicians and urologists. A complicated urinary tract infection (CUTI) responds less effectively to the standard treatment. E. coli is the most common pathogen (40-70 %). In Mexico, there are ciprofloxacin resistance rates of 8-73 %, to trimethoprim/sulfamethoxazole 53-71 % and cephalosporins 5-18 %, with an ESBL E. coli prevalence of 10 %. For infections producing gas or purulent material, the percutaneous or endoscopic drainage is the standard. To describe the management of patients with CUTIs, their specifically clinical course and eventual culture results determining the most common isolated microorganisms and their resistance. The clinical records of patients hospitalized with CUTIs from January 2012 to July 2013 were reviewed. One hundred and seventy-three patients were included. Acute pyelonephritis was the most common presentation (53.2 %). The most common microorganism was E. coli (83 %), with ESBL prevalence of 71.4 % and a resistance to quinolone, cephalosporin and trimethoprim of 89.7, 64.7 and 60.3 %, respectively. The most common factors associated with development of CUTIs were recent use of antibiotics (95.3 %) and obstructive uropathy (73.4 %). A total of 41 % received carbapenems and 40.5 % received minimally invasive treatments. Overall mortality was 2.9 %. There were a greater ESBL-producing pathogen prevalence and an over 50 % resistance to classically first-choice antibiotics. The minimally invasive treatments for complicated infections are fundamental; however, nephrectomy still has a role. Wide-spectrum antimicrobial therapy and minimally invasive approaches are the most common treatments for CUTIs in our center, and a reevaluation regarding antibiotic use in Mexico needs to be done.
Hidden reservoir of resistant parasites: the missing link in the elimination of falciparum malaria.
Abdul-Ghani, Rashad; Mahdy, Mohammed A K; Beier, John C; Basco, Leonardo K
2017-02-06
To successfully eliminate malaria, an integrated system that includes a number of approaches and interventions-aimed at overcoming the threat of antimalarial drug resistance-is required. Significant progress has been made in reducing malaria incidence through large-scale use of artemisinin-based combination therapies and insecticide-treated nets. To consolidate these gains, attention should be paid to the missing links in the elimination of malaria. One of these gaps is the residual reservoir of submicroscopic resistant parasites, which remains after case management or other control measures have been carried out. Therefore, the present opinion piece highlights the importance of exploring the role that submicroscopic resistant parasites could play in hindering malaria elimination by allowing the persistence of transmission, particularly in areas of low transmission or in the pre-elimination and/or elimination phase. If malaria elimination interventions are to be effective, the relative role of the hidden reservoir of resistant parasites needs to be assessed, particularly in regions that are low-transmission settings and/or in pre-elimination and/or elimination phases. Various ongoing studies are focusing on the role of submicroscopic malaria infections in malaria transmission but overlook the possible build-up of resistance to antimalarial drugs among submicroscopic parasite populations. This is an important factor as it may eventually limit the effectiveness of malaria elimination strategies. An evidence-based estimation of the "true" reservoir of resistant parasites can help target the existing and emerging foci of resistant parasites before they spread. Emergence and spread of artemisinin-resistant Plasmodium falciparum malaria in Southeast Asia underline the need to contain drug resistance.
NASA Astrophysics Data System (ADS)
Baba, Masaaki; Makita, Kikuo; Mizuno, Hidenori; Takato, Hidetaka; Sugaya, Takeyoshi; Yamada, Noboru
2017-12-01
This paper describes a method that remarkably reduces the bonding resistance of mechanically stacked two-terminal GaAs/Si and InGaP/Si tandem solar cells, where the top and bottom cells are bonded using a Pd nanoparticle array. A transparent conductive oxide (TCO) layer, which partially covers the surface of the Si bottom cell below the electrodes of the III-V top cell, significantly enhances the fill factor (FF) and cell conversion efficiency. The partial TCO layer reduces the bonding resistance and thus, increases the FF and efficiency of InGaP/Si by factors of 1.20 and 1.11, respectively. Eventually, the efficiency exceeds 15%. Minimizing the optical losses at the bonding interfaces of the TCO layer is important in the fabrication of high-efficiency solar cells. To help facilitate this, the optical losses in the tandem solar cells are thoroughly characterized through optical simulations and experimental verifications.
Shah, Sayed Asmat Ali; Akhter, Najeeb; Auckloo, Bibi Nazia; Khan, Ishrat; Lu, Yanbin; Wang, Kuiwu; Wu, Bin
2017-01-01
Nowadays, various drugs on the market are becoming more and more resistant to numerous diseases, thus declining their efficacy for treatment purposes in human beings. Antibiotic resistance is one among the top listed threat around the world which eventually urged the discovery of new potent drugs followed by an increase in the number of deaths caused by cancer due to chemotherapy resistance as well. Accordingly, marine cyanobacteria, being the oldest prokaryotic microorganisms belonging to a monophyletic group, have proven themselves as being able to generate pharmaceutically important natural products. They have long been known to produce distinct and structurally complex secondary metabolites including peptides, polyketides, alkaloids, lipids, and terpenes with potent biological properties and applications. As such, this review will focus on recently published novel compounds isolated from marine cyanobacteria along with their potential bioactivities such as antibacterial, antifungal, anticancer, anti-tuberculosis, immunosuppressive and anti-inflammatory capacities. Moreover, various structural classes, as well as their technological uses will also be discussed. PMID:29125580
Smith, M E; Eller, N L; McFarland, H F; Racke, M K; Raine, C S
1999-10-01
A prominent feature of the clinical spectrum of multiple sclerosis (MS) is its high incidence of onset in the third decade of life and the relative rarity of clinical manifestations during childhood and adolescence, features suggestive of age-related restriction of clinical expression. Experimental allergic encephalomyelitis (EAE), a model of central nervous system (CNS) autoimmune demyelination with many similarities to MS, has a uniform rapid onset and a high incidence of clinical and pathological disease in adult (mature) animals. Like MS, EAE is most commonly seen and studied in female adults. In this study, age-related resistance to clinical EAE has been examined with the adoptive transfer model of EAE in SJL mice that received myelin basic protein-sensitized cells from animals 10 days (sucklings) to 12 weeks (young adults) of age. A variable delay before expression of clinical EAE was observed between the different age groups. The preclinical period was longest in the younger (<14 days of age) animals, and shortest in animals 6 to 8 weeks old at time of transfer. Young animals initially resistant to EAE eventually expressed well-developed clinical signs by 6 to 7 weeks of age. This was followed by a remitting, relapsing clinical course. For each age at time of sensitization, increased susceptibility of females compared to males was observed. Examination of the CNS of younger animal groups during the preclinical period showed lesions of acute EAE. Older age groups developed onset of signs coincident with acute CNS lesions. This age-related resistance to clinical EAE in developing mice is reminiscent of an age-related characteristic of MS previously difficult to study in vivo. The associated subclinical CNS pathology and age-related immune functions found in young animals may be relevant to the increasing clinical expression of MS with maturation, and may allow study of factors associated with the known occasional poor correlation of CNS inflammation and demyelination and clinical changes in this disease.
Hamdoun, Safae; Gao, Min; Gill, Manroop; Kwon, Ashley; Norelli, John L; Lu, Hua
2018-05-01
Erwinia amylovora is the causal agent of the fire blight disease in some plants of the Rosaceae family. The non-host plant Arabidopsis serves as a powerful system for the dissection of mechanisms of resistance to E. amylovora. Although not yet known to mount gene-for-gene resistance to E. amylovora, we found that Arabidopsis activated strong defence signalling mediated by salicylic acid (SA), with kinetics and amplitude similar to that induced by the recognition of the bacterial effector avrRpm1 by the resistance protein RPM1. Genetic analysis further revealed that SA signalling, but not signalling mediated by ethylene (ET) and jasmonic acid (JA), is required for E. amylovora resistance. Erwinia amylovora induces massive callose deposition on infected leaves, which is independent of SA, ET and JA signalling and is necessary for E. amylovora resistance in Arabidopsis. We also observed tumour-like growths on E. amylovora-infected Arabidopsis leaves, which contain enlarged mesophyll cells with increased DNA content and are probably a result of endoreplication. The formation of such growths is largely independent of SA signalling and some E. amylovora effectors. Together, our data reveal signalling requirements for E. amylovora-induced disease resistance, callose deposition and cell fate change in the non-host plant Arabidopsis. Knowledge from this study could facilitate a better understanding of the mechanisms of host defence against E. amylovora and eventually improve host resistance to the pathogen. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Matzrafi, Maor; Gerson, Ofri; Rubin, Baruch; Peleg, Zvi
2017-01-01
Various mutations altering the herbicide target site (TS), can lead to structural modifications that decrease binding efficiency and results in herbicide resistant weed. In most cases, such a mutation will be associated with ecological fitness penalty under herbicide free environmental conditions. Here we describe the effect of various mutations, endowing resistance to acetyl-CoA carboxylase (ACCase) inhibitors, on the ecological fitness penalty of Lolium rigidum populations. The TS resistant populations, MH (substitution of isoleucine 1781 to leucine) and NO (cysteine 2088 to arginine), were examined and compared to a sensitive population (AL). Grain weight (GW) characterization of individual plants from both MH and NO populations, showed that resistant individuals had significantly lower GW compared with sensitive ones. Under high temperatures, both TS resistant populations exhibited lower germination rate as compared with the sensitive (AL) population. Likewise, early vigor of plants from both TS resistant populations was significantly lower than the one measured in plants of the sensitive population. Under crop-weed intra-species competition, we found an opposite trend in the response of plants from different populations. Relatively to inter-population competition conditions, plants of MH population were less affected and presented higher reproduction abilities compared to plants from both AL and NO populations. On the basis of our results, a non-chemical approach can be taken to favor the sensitive individuals, eventually leading to a decline in resistant individuals in the population. PMID:28690621
UniDrug-target: a computational tool to identify unique drug targets in pathogenic bacteria.
Chanumolu, Sree Krishna; Rout, Chittaranjan; Chauhan, Rajinder S
2012-01-01
Targeting conserved proteins of bacteria through antibacterial medications has resulted in both the development of resistant strains and changes to human health by destroying beneficial microbes which eventually become breeding grounds for the evolution of resistances. Despite the availability of more than 800 genomes sequences, 430 pathways, 4743 enzymes, 9257 metabolic reactions and protein (three-dimensional) 3D structures in bacteria, no pathogen-specific computational drug target identification tool has been developed. A web server, UniDrug-Target, which combines bacterial biological information and computational methods to stringently identify pathogen-specific proteins as drug targets, has been designed. Besides predicting pathogen-specific proteins essentiality, chokepoint property, etc., three new algorithms were developed and implemented by using protein sequences, domains, structures, and metabolic reactions for construction of partial metabolic networks (PMNs), determination of conservation in critical residues, and variation analysis of residues forming similar cavities in proteins sequences. First, PMNs are constructed to determine the extent of disturbances in metabolite production by targeting a protein as drug target. Conservation of pathogen-specific protein's critical residues involved in cavity formation and biological function determined at domain-level with low-matching sequences. Last, variation analysis of residues forming similar cavities in proteins sequences from pathogenic versus non-pathogenic bacteria and humans is performed. The server is capable of predicting drug targets for any sequenced pathogenic bacteria having fasta sequences and annotated information. The utility of UniDrug-Target server was demonstrated for Mycobacterium tuberculosis (H37Rv). The UniDrug-Target identified 265 mycobacteria pathogen-specific proteins, including 17 essential proteins which can be potential drug targets. UniDrug-Target is expected to accelerate pathogen-specific drug targets identification which will increase their success and durability as drugs developed against them have less chance to develop resistances and adverse impact on environment. The server is freely available at http://117.211.115.67/UDT/main.html. The standalone application (source codes) is available at http://www.bioinformatics.org/ftp/pub/bioinfojuit/UDT.rar.
Effects of ammonium sulfate aerosols on vegetation—II. Mode of entry and responses of vegetation
NASA Astrophysics Data System (ADS)
Gmur, Nicholas F.; Evans, Lance S.; Cunningham, Elizabeth A.
These experiments were designed to provide information on the rates of aerosol deposition, mode of entry, and effects of deposition of submicrometer ammonium sulfate aerosols on foliage of Phaseolus vulgaris L. A deposition velocity of 3.2 × 10 3cms-1 was constant during 3-week exposures of plants to aerosol concentrations of 26mg m -3 (i.e. about two orders of magnitude above ambient episode concentrations). Mean deposition rate on foliage was 4.1 × 10 -11 μg cm -2s -1. Visible injury symptoms included leaf chlorosis, necrosis and loss of turgor. Chlorosis was most frequent near leaf margins causing epinasty and near major veins. Internal injury occurred initially in spongy mesophyll cells. Eventually abaxial epidermal and palisade parenchyma cells were injured. These results suggest that submicrometer aerosols enter abaxial stomata and affect more internal cells before affecting leaf surface cells. Exposure to aerosols decreased both abaxial and adaxial leaf resistances markedly. Although visible injury to foliage occurred, no changes in dry mass of roots and shoots or leaf area occurred. These results suggest that for the plant developmental stage studied, while leaf resistances decreased and cellular injury occurred in foliage, these factors were not significantly related to plant growth and development.
Low, Wan-Li; Kenward, Ken; Britland, Stephen T; Amin, Mohd Cim; Martin, Claire
2017-04-01
The increasing occurrence of hospital-acquired infections and the emerging problems posed by antibiotic-resistant microbial strains have both contributed to the escalating cost of treatment. The presence of infection at the wound site can potentially stall the healing process at the inflammatory stage, leading to the development of a chronic wound. Traditional wound treatment regimes can no longer cope with the complications posed by antibiotic-resistant strains; hence, there is a need to explore the use of alternative antimicrobial agents. Pre-antibiotic compounds, including heavy metal ions and essential oils, have been re-investigated for their potential use as effective antimicrobial agents. Essential oils have potent antimicrobial, antifungal, antiviral, anti-inflammatory, antioxidant and other beneficial therapeutic properties. Similarly, heavy metal ions have also been used as disinfecting agents because of their broad spectrum activities. Both of these alternative antimicrobials interact with many different intracellular components, thereby resulting in the disruption of vital cell functions and eventually cell death. This review will discuss the application of essential oils and heavy metal ions, particularly tea tree oil and silver ions, as alternative antimicrobial agents for the treatment of chronic, infected wounds. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Steinolfson, R. S.
1993-01-01
2D electromagnetic particle simulations are used to investigate the dynamics of the tail during development of substorms under the influence of the pressure in the magnetospheric boundary layer and the dawn-to-dusk electric field. It is shown that pressure pulses result in thinning of the tail current sheet as the magnetic field becomes pinched near the region where the pressure pulse is applied. The pinching leads to the tailward flow of the current sheet plasma and the eventual formation and injection of a plasmoid. Surges in the dawn-to-dusk electric field cause plasma on the flanks to convect into the center of the current sheet, thereby thinning the current sheet. The pressure in the magnetospheric boundary laser is coupled to the dawn-to-dusk electric field through the conductivity of the tail. Changes in the predicted evolution of the magnetosphere during substorms due to changes in the resistivity are investigated under the assumption that MHD theory provides a suitable representation of the global or large-scale evolution of the magnetotail to changes in the solar wind and to reconnection at the dayside magnetopause. It is shown that the overall evolution of the magnetosphere is about the same for three different resistivity distributions with plasmoid formation and ejection in each case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Ted W.; Richardson, Paul F.; Bailey, Simon
2014-06-12
Although crizotinib demonstrates robust efficacy in anaplastic lymphoma kinase (ALK)-positive non-small-cell lung carcinoma patients, progression during treatment eventually develops. Resistant patient samples revealed a variety of point mutations in the kinase domain of ALK, including the L1196M gatekeeper mutation. In addition, some patients progress due to cancer metastasis in the brain. Using structure-based drug design, lipophilic efficiency, and physical-property-based optimization, highly potent macrocyclic ALK inhibitors were prepared with good absorption, distribution, metabolism, and excretion (ADME), low propensity for p-glycoprotein 1-mediated efflux, and good passive permeability. These structurally unusual macrocyclic inhibitors were potent against wild-type ALK and clinically reported ALK kinasemore » domain mutations. Significant synthetic challenges were overcome, utilizing novel transformations to enable the use of these macrocycles in drug discovery paradigms. This work led to the discovery of 8k (PF-06463922), combining broad-spectrum potency, central nervous system ADME, and a high degree of kinase selectivity.« less
Zhu, Yuan Xiao; Kortuem, K. Martin; Stewart, A. Keith
2014-01-01
Although several mechanisms have been proposed to explain the activity of thalidomide, lenalidomide and pomalidomide in multiple myeloma (MM), including demonstrable anti-angiogenic, anti-proliferative and immunomodulatory effects, the precise cellular targets and molecular mechanisms have only recently become clear. A landmark study recently identified cereblon (CRBN) as a primary target of thalidomide teratogenicity. Subsequently it was demonstrated that CRBN is also required for the anti-myeloma activity of thalidomide and related drugs, the so-called immune-modulatory drugs (IMiDs). Low CRBN expression was found to correlate with drug resistance in MM cell lines and primary MM cells. One of the downstream targets of CRBN identified is interferon regulatory factor 4 (IRF4), which is critical for myeloma cell survival and is down-regulated by IMiD treatment. CRBN is also implicated in several effects of IMiDs, such as down-regulation of tumor necrosis factor-α (TNF-α) and T cell immunomodulatory activity, demonstrating that the pleotropic actions of the IMiDs are initiated by binding to CRBN. Future dissection of CRBN downstream signaling will help to delineate the underlying mechanisms for IMiD action and eventually lead to development of new drugs with more specific anti-myeloma activities. It may also provide a biomarker to predict IMiD response and resistance. PMID:22966948
SWEET sugar transporters for phloem transport and pathogen nutrition.
Chen, Li-Qing
2014-03-01
Many intercellular solute transport processes require an apoplasmic step, that is, efflux from one cell and subsequent uptake by an adjacent cell. Cellular uptake transporters have been identified for many solutes, including sucrose; however, efflux transporters have remained elusive for a long time. Cellular efflux of sugars plays essential roles in many processes, such as sugar efflux as the first step in phloem loading, sugar efflux for nectar secretion, and sugar efflux for supplying symbionts such as mycorrhiza, and maternal efflux for filial tissue development. Furthermore, sugar efflux systems can be hijacked by pathogens for access to nutrition from hosts. Mutations that block recruitment of the efflux mechanism by the pathogen thus cause pathogen resistance. Until recently, little was known regarding the underlying mechanism of sugar efflux. The identification of sugar efflux carriers, SWEETs (Sugars Will Eventually be Exported Transporters), has shed light on cellular sugar efflux. SWEETs appear to function as uniporters, facilitating diffusion of sugars across cell membranes. Indeed, SWEETs probably mediate sucrose efflux from putative phloem parenchyma into the phloem apoplasm, a key step proceeding phloem loading. Engineering of SWEET mutants using transcriptional activator-like effector nuclease (TALEN)-based genomic editing allowed the engineering of pathogen resistance. The widespread expression of the SWEET family promises to provide insights into many other cellular efflux mechanisms.
Molina, Luis; Figueroa, Carlos D; Bhoola, Kanti D; Ehrenfeld, Pamela
2017-08-01
Breast cancer is clinically classified as 'estrogen-positive' when at least 1% of cancer cells stain for the estrogen receptor alpha (ERα). However, recent research on both basic and clinical aspects of breast cancer suggests that GPER-1 (G protein-coupled estrogen receptor-1) may have an important role in breast cancer. Areas covered: This review provides a comprehensive and systematic literature search on GPER-1. We have focused on the role of GPER-1 in breast cancer and on resistance to endocrine therapy, an unsolved clinical issue still under discussion. Expert opinion: The discovery of GPER-1 as a novel estrogen receptor is unique and the signaling pathways activated by its stimulation, when compared to the classical nuclear ERα, indicate a potential role of GPER-1 in the genesis and mechanisms of drug resistance in breast cancer. Tumors expressing ERα represent the largest group of breast cancer patients indicating that more women eventually die from ERα-positive breast tumors than from other more malignant breast cancer subtypes such as HER2-positive and the triple negative groups. It is important to develop new strategies on endocrine therapy with regard to ERα and GPER-1 receptors to achieve innovative successful therapeutic tools.
Insulin resistance and the metabolism of branched-chain amino acids in humans.
Adeva, María M; Calviño, Jesús; Souto, Gema; Donapetry, Cristóbal
2012-07-01
Peripheral resistance to insulin action is the major mechanism causing the metabolic syndrome and eventually type 2 diabetes mellitus. The metabolic derangement associated with insulin resistance is extensive and not restricted to carbohydrates. The branched-chain amino acids (BCAAs) are particularly responsive to the inhibitory insulin action on amino acid release by skeletal muscle and their metabolism is profoundly altered in conditions featuring insulin resistance, insulin deficiency, or both. Obesity, the metabolic syndrome and diabetes mellitus display a gradual increase in the plasma concentration of BCAAs, from the obesity-related low-grade insulin-resistant state to the severe deficiency of insulin action in diabetes ketoacidosis. Obesity-associated hyperinsulinemia succeeds in maintaining near-normal or slightly elevated plasma concentration of BCAAs, despite the insulin-resistant state. The low circulating levels of insulin and/or the deeper insulin resistance occurring in diabetes mellitus are associated with more marked elevation in the plasma concentration of BCAAs. In diabetes ketoacidosis, the increase in plasma BCAAs is striking, returning to normal when adequate metabolic control is achieved. The metabolism of BCAAs is also disturbed in other situations typically featuring insulin resistance, including kidney and liver dysfunction. However, notwithstanding the insulin-resistant state, the plasma level of BCAAs in these conditions is lower than in healthy subjects, suggesting that these organs are involved in maintaining BCAAs blood concentration. The pathogenesis of the decreased BCAAs plasma level in kidney and liver dysfunction is unclear, but a decreased afflux of these amino acids into the blood stream has been observed.
Lupini, Laura; Bassi, Cristian; Mlcochova, Jitka; Musa, Gentian; Russo, Marta; Vychytilova-Faltejskova, Petra; Svoboda, Marek; Sabbioni, Silvia; Nemecek, Radim; Slaby, Ondrej; Negrini, Massimo
2015-10-27
The anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (moAbs) cetuximab or panitumumab are administered to colorectal cancer (CRC) patients who harbor wild-type RAS proto-oncogenes. However, a percentage of patients do not respond to this treatment. In addition to mutations in the RAS genes, mutations in other genes, such as BRAF, PI3KCA, or PTEN, could be involved in the resistance to anti-EGFR moAb therapy. In order to develop a comprehensive approach for the detection of mutations and to eventually identify other genes responsible for resistance to anti-EGFR moAbs, we investigated a panel of 21 genes by parallel sequencing on the Ion Torrent Personal Genome Machine platform. We sequenced 65 CRCs that were treated with cetuximab or panitumumab. Among these, 37 samples were responsive and 28 were resistant. We confirmed that mutations in EGFR-pathway genes (KRAS, NRAS, BRAF, PI3KCA) were relevant for conferring resistance to therapy and could predict response (p = 0.001). After exclusion of KRAS, NRAS, BRAF and PI3KCA combined mutations could still significantly associate to resistant phenotype (p = 0.045, by Fisher exact test). In addition, mutations in FBXW7 and SMAD4 were prevalent in cases that were non-responsive to anti-EGFR moAb. After we combined the mutations of all genes (excluding KRAS), the ability to predict response to therapy improved significantly (p = 0.002, by Fisher exact test). The combination of mutations at KRAS and at the five gene panel demonstrates the usefulness and feasibility of multigene sequencing to assess response to anti-EGFR moAbs. The application of parallel sequencing technology in clinical practice, in addition to its innate ability to simultaneously examine the genetic status of several cancer genes, proved to be more accurate and sensitive than the presently in use traditional approaches.
Molecular principles behind Boceprevir resistance due to mutations in hepatitis C NS3/4A protease.
Nagpal, Neha; Goyal, Sukriti; Wahi, Divya; Jain, Ritu; Jamal, Salma; Singh, Aditi; Rana, Preeti; Grover, Abhinav
2015-10-01
The hepatitis C virus (HCV) infection is a primary cause of chronic hepatitis which eventually progresses to cirrhosis and in some instances might advance to hepatocellular carcinoma. According to the WHO report, HCV infects 130-150 million people globally and every year 350,000 to 500,000 people die from hepatitis C virus infection. Great achievement has been made in viral treatment evolution, after the development of HCV NS3/4A protease inhibitor (Boceprevir). However, efficacy of Boceprevir is compromised by the emergence of drug resistant variants. The molecular principle behind drug resistance of the protease mutants such as (V36M, T54S and R155K) is still poorly understood. Therefore in this study, we employed a series of computational strategies to analyze the binding of antiviral drug, Boceprevir to HCV NS3/4A protease mutants. Our results clearly demonstrate that the point mutations (V36M, T54S and R155K) in protease are associated with lowering of its binding affinity with Boceprevir. Exhaustive analysis of the simulated Boceprevir-bound wild and mutant complexes revealed variations in hydrophobic interactions, hydrogen bond occupancy and salt bridge interactions. Also, substrate envelope analysis scrutinized that the studied mutations reside outside the substrate envelope which may affect the Boceprevir affinity towards HCV protease but not the protease enzymatic activity. Furthermore, structural analyses of the binding site volume and flexibility show impairment in flexibility and stability of the binding site residues in mutant structures. In order to combat Boceprevir resistance, renovation of binding interactions between the drug and protease may be valuable. The structural insight from this study reveals the mechanism of the Boceprevir resistance and the results can be valuable for the design of new PIs with improved efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.
Open-Lattice Composite Design Strengthens Structures
NASA Technical Reports Server (NTRS)
2007-01-01
Advanced composite materials and designs could eventually be applied as the framework for spacecraft or extraterrestrial constructions for long-term space habitation. One such structure in which NASA has made an investment is the IsoTruss grid structure, an extension of a two-dimensional "isogrid" concept originally developed at McDonnell Douglas Astronautics Company, under contract to NASA's Marshall Space Flight Center in the early 1970s. IsoTruss is a lightweight and efficient alternative to monocoque composite structures, and can be produced in a manner that involves fairly simple techniques. The technology was developed with support from NASA to explore space applications, and is garnering global attention because it is extremely lightweight; as much as 12 times stronger than steel; inexpensive to manufacture, transport, and install; low-maintenance; and is fully recyclable. IsoTruss is expected to see application as utility poles and meteorological towers, for the aforementioned reasons and because its design offers superior wind resistance and is less susceptible to breaking and woodpeckers. Other applications, such as reinforcement for concrete structures, stand-alone towers, sign supports, prostheses, irrigation equipment, and sporting goods are being explored
Resistance of upland-rice lines to root-knot nematode, Meloidogyne incognita.
Souza, D C T; Botelho, F B S; Rodrigues, C S; Furtini, I V; Smiderle, E C; de Matos, D L; Bruzi, A T
2015-12-21
Despite the benefits of crop rotation, occurrence of nematodes is a common problem for almost all crops within the Cerrado biome, especially for rice. The use of resistant cultivars is one of the main methods for control of nematodes. Thus, the present study aimed to evaluate the reaction of 36 upland-rice lines, with desirable agronomic characteristics, according to their resistance to root-knot nematodes (Meloidogyne incognita). The experimental design was entirely randomized with four replications. Each plot of land consisted of two rice plants in a 3-L vase. The plants were inoculated with 1000 eggs and eventual juveniles of the respective nematodes. Fifty-five days after the inoculation, the roots and the aerial part of the plant were weighed and the egg mass (EM) as well as the reproduction factor (Rf) were estimated. It was determined that the isolated use of EM was not beneficial in selecting rice lines resistant to the root-knot nematode. This procedure must, therefore, take into account the egg counting and the Rf, in order to improve the reliability of the selection. In our study, 30 evaluated lines were observed to be resistant. Among the recommended cultivars, only BRS Monarca had its performance susceptible to the studied nematode species.
Herrera, Melina; Di Gregorio, Sabrina; Fernandez, Silvina; Posse, Graciela; Mollerach, Marta; Di Conza, José
2016-03-08
Tigecycline (TIG) is an antibiotic belonging to the glycylcyclines class and appears to be a good choice to fight infections caused by Staphylococcus aureus. To date, TIG exhibits good activity against this microorganism. The aim of this work was to obtain in vitro mutants of S. aureus resistant to TIG and evaluate possible changes in their susceptibility patterns to other antibiotics. Two mutants of S. aureus resistant to TIG (MIC = 16 µg/mL) were selected in vitro from clinical isolates of methicillin-resistant S. aureus. In both mutants, corresponding to different lineage (ST5 and ST239), an increase of efflux activity against TIG was detected. One mutant also showed a reduced susceptibility to vancomycin, corresponding to the VISA phenotype (MIC = 4 µg/mL), with a loss of functionality of the agr locus. The emergence of the VISA phenotype was accompanied by an increase in oxacillin and cefoxitin MICs. This study demonstrates that, under selective pressure, the increase of efflux activity in S. aureus is one of the mechanisms that may be involved in the emergence of tigecycline resistance. The emergence of this phenotype may eventually be associated to changes in susceptibility to other antibiotics such oxacillin and vancomycin.
Properties of resistant cells generated from lung cancer cell lines treated with EGFR inhibitors.
Ghosh, Gargi; Lian, Xiaojun; Kron, Stephen J; Palecek, Sean P
2012-03-20
Epidermal growth factor receptor (EGFR) signaling plays an important role in non-small cell lung cancer (NSCLC) and therapeutics targeted against EGFR have been effective in treating a subset of patients bearing somatic EFGR mutations. However, the cancer eventually progresses during treatment with EGFR inhibitors, even in the patients who respond to these drugs initially. Recent studies have identified that the acquisition of resistance in approximately 50% of cases is due to generation of a secondary mutation (T790M) in the EGFR kinase domain. In about 20% of the cases, resistance is associated with the amplification of MET kinase. In the remaining 30-40% of the cases, the mechanism underpinning the therapeutic resistance is unknown. An erlotinib resistant subline (H1650-ER1) was generated upon continuous exposure of NSCLC cell line NCI-H1650 to erlotinib. Cancer stem cell like traits including expression of stem cell markers, enhanced ability to self-renew and differentiate, and increased tumorigenicity in vitro were assessed in erlotinib resistant H1650-ER1 cells. The erlotinib resistant subline contained a population of cells with properties similar to cancer stem cells. These cells were found to be less sensitive towards erlotinib treatment as measured by cell proliferation and generation of tumor spheres in the presence of erlotinib. Our findings suggest that in cases of NSCLC accompanied by mutant EGFR, treatment targeting inhibition of EGFR kinase activity in differentiated cancer cells may generate a population of cancer cells with stem cell properties.
Perfluorooctane sulfonate-induced insulin resistance is mediated by protein kinase B pathway.
Qiu, Tianming; Chen, Min; Sun, Xiance; Cao, Jun; Feng, Chang; Li, Dandan; Wu, Wei; Jiang, Liping; Yao, Xiaofeng
2016-09-02
Perfluorooctane sulfonate (PFOS), a persistent organic pollutant, is blamed to be associated with the incidence of insulin resistance in the general human population. In this study, we found that PFOS inhibited the phosphorylation and activation of protein kinase B (AKT), a key mediator of cellular insulin sensitivity, in human hepatoma HepG2 cells. The mRNA level of the gluconeogenic gene PEPCK, a downstream target gene of AKT, was increased in PFOS-treated cells. Due to stimulated gluconeogenesis, insulin-stimulated glucose uptake was decreased in HepG2 cells. In our previous study, we found that PFOS disturbed autophagy in HepG2 cells. We proposed that PFOS could inhibit the activation of AKT through inhibiting mTORC2, a key regulator of autophagy. In this study, we found that the levels of triglyceride were increased in HepG2 cells. PFOS-induced accumulation of hepatic lipids also contributed to the inhibition of AKT. Eventually, the inhibition of AKT led to insulin resistance in PFOS-treated cells. Our data would provide new mechanistic insights into PFOS-induced hepatic insulin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Gui-Xue; Shen, Yang; Zhang, He; Quan, Xue-Jun; Yu, Qing-Song
2008-06-15
Two different surface modification techniques were used to change the surface morphology and roughness of stents at the micrometer level, and eventually improve their surface adhesion properties with respect to endothelial cells. One was chemical erosion followed by sol-gel TiO(2) coating, and the other was low temperature gas plasma deposition. After surface modification, the biocompatibility including the anticoagulation properties, hydrophilicity, and corrosion resistance of these stents was evaluated. It was found that both techniques could change the surface morphology of the stents with microroughness. In comparison with the control, the treated NiTi alloy intravascular stents showed increased surface hydrophilicity and enhanced anticoagulation properties. However, the corrosion properties of the stents were not improved significantly.
Pan, Mei-Ren; Hsu, Ming-Chuan; Luo, Chi-Wen; Chen, Li-Tzong; Shan, Yan-Shen; Hung, Wen-Chun
2016-01-01
Gemcitabine (GEM) resistance is a critical issue for pancreatic cancer treatment. The involvement of epigenetic modification in GEM resistance is still unclear. We established a GEM-resistant subline PANC-1-R from the parental PANC-1 pancreatic cancer cells and found the elevation of various chromatin-modifying enzymes including G9a in GEM-resistant cells. Ectopic expression of G9a in PANC-1 cells increased GEM resistance while inactivation of G9a in PANC-1-R cells reduced it. Challenge of PANC-1 cells with GEM increased the expression of stemness markers including CD133, nestin and Lgr5 and promoted sphere forming activity suggesting chemotherapy enriched cancer cells with stem-like properties. Inhibition of G9a in PANC-1-R cells reduced stemness and invasiveness and sensitized the cells to GEM. We revealed interleukin-8 (IL-8) is a downstream effector of G9a to increase GEM resistance. G9a-overexpressing PANC-1-R cells exhibited autocrine IL-8/CXCR1/2 stimulation to increase GEM resistance which could be decreased by anti-IL-8 antibody and G9a inhibitor. IL-8 released by cancer cells also activated pancreatic stellate cell (PSC) to increase GEM resistance. In orthotopic animal model, GEM could not suppress tumor growth of PANC-1-R cells and eventually promoted tumor metastasis. Combination with G9a inhibitor and GEM reduced tumor growth, metastasis, IL-8 expression and PSC activation in animals. Finally, we showed that overexpression of G9a correlated with poor survival and early recurrence in pancreatic cancer patients. Collectively, our results suggest G9a is a therapeutic target to override GEM resistance in the treatment of pancreatic cancer. PMID:27531902
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenzi, Tommaso; Chisholm, Rebecca H.; Lorz, Alexander
We formulate an individual-based model and a population model of phenotypic evolution, under cytotoxic drugs, in a cancer cell population structured by the expression levels of survival-potential and proliferation-potential. We apply these models to a recently studied experimental system. Our results suggest that mechanisms based on fundamental laws of biology can reversibly push an actively-proliferating, and drug-sensitive, cell population to transition into a weakly-proliferative and drug-tolerant state, which will eventually facilitate the emergence of more potent, proliferating and drug-tolerant cells.
1986-12-01
IS. SUPPLEMENTARY NOTfS This report is Volume II of six volumes which will eventually be published as a tri-service design manual and was sponsored by...CLASSIFICAT ION OF THIS PAGE(When Date Entered) TABLE OF CONTENTS PAGE INTRODUCTION 2-I Purpose 1 2-2 Objective 1 2 3 Background 1 2-4 Scope of Manual ...2 2-5 Format of Manual 3 VOLUME CONTENTS 2-6 General EXPLOSION EFFECTS 2-7 Effects of Explosive Output 4 BLAST LOADS 2-8 Blast Phenomena 5 2-8.1
Barbosa, Eduardo J Mortani; Lanclus, Maarten; Vos, Wim; Van Holsbeke, Cedric; De Backer, William; De Backer, Jan; Lee, James
2018-02-19
Long-term survival after lung transplantation (LTx) is limited by bronchiolitis obliterans syndrome (BOS), defined as a sustained decline in forced expiratory volume in the first second (FEV 1 ) not explained by other causes. We assessed whether machine learning (ML) utilizing quantitative computed tomography (qCT) metrics can predict eventual development of BOS. Paired inspiratory-expiratory CT scans of 71 patients who underwent LTx were analyzed retrospectively (BOS [n = 41] versus non-BOS [n = 30]), using at least two different time points. The BOS cohort experienced a reduction in FEV 1 of >10% compared to baseline FEV 1 post LTx. Multifactor analysis correlated declining FEV 1 with qCT features linked to acute inflammation or BOS onset. Student t test and ML were applied on baseline qCT features to identify lung transplant patients at baseline that eventually developed BOS. The FEV 1 decline in the BOS cohort correlated with an increase in the lung volume (P = .027) and in the central airway volume at functional residual capacity (P = .018), not observed in non-BOS patients, whereas the non-BOS cohort experienced a decrease in the central airway volume at total lung capacity with declining FEV 1 (P = .039). Twenty-three baseline qCT parameters could significantly distinguish between non-BOS patients and eventual BOS developers (P < .05), whereas no pulmonary function testing parameters could. Using ML methods (support vector machine), we could identify BOS developers at baseline with an accuracy of 85%, using only three qCT parameters. ML utilizing qCT could discern distinct mechanisms driving FEV 1 decline in BOS and non-BOS LTx patients and predict eventual onset of BOS. This approach may become useful to optimize management of LTx patients. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Peer Review Documents Related to the Evaluation of ...
BMDS is one of the Agency's premier tools for estimating risk assessments, therefore the validity and reliability of its statistical models are of paramount importance. This page provides links to peer review and expert summaries of the BMDS application and its models as they were developed and eventually released documenting the rigorous review process taken to provide the best science tools available for statistical modeling. This page provides links to peer reviews and expert summaries of the BMDS applications and its models as they were developed and eventually released.
Baquero, Fernando; Coque, Teresa M.; de la Cruz, Fernando
2011-01-01
In recent years, the explosive spread of antibiotic resistance determinants among pathogenic, commensal, and environmental bacteria has reached a global dimension. Classical measures trying to contain or slow locally the progress of antibiotic resistance in patients on the basis of better antibiotic prescribing policies have clearly become insufficient at the global level. Urgent measures are needed to directly confront the processes influencing antibiotic resistance pollution in the microbiosphere. Recent interdisciplinary research indicates that new eco-evo drugs and strategies, which take ecology and evolution into account, have a promising role in resistance prevention, decontamination, and the eventual restoration of antibiotic susceptibility. This minireview summarizes what is known and what should be further investigated to find drugs and strategies aiming to counteract the “four P's,” penetration, promiscuity, plasticity, and persistence of rapidly spreading bacterial clones, mobile genetic elements, or resistance genes. The term “drug” is used in this eco-evo perspective as a tool to fight resistance that is able to prevent, cure, or decrease potential damage caused by antibiotic resistance, not necessarily only at the individual level (the patient) but also at the ecological and evolutionary levels. This view offers a wealth of research opportunities for science and technology and also represents a large adaptive challenge for regulatory agencies and public health officers. Eco-evo drugs and interventions constitute a new avenue for research that might influence not only antibiotic resistance but the maintenance of a healthy interaction between humans and microbial systems in a rapidly changing biosphere. PMID:21576439
Broglia, Ricardo A; Tiana, Guido; Sutto, Ludovico; Provasi, Davide; Simona, Fabio
2005-10-01
The main problems found in designing drugs are those of optimizing the drug-target interaction and of avoiding the insurgence of resistance. We suggest a scheme for the design of inhibitors that can be used as leads for the development of a drug and that do not face either of these problems, and then apply it to the case of HIV-1-PR. It is based on the knowledge that the folding of single-domain proteins, such as each of the monomers forming the HIV-1-PR homodimer, is controlled by local elementary structures (LES), stabilized by local contacts among hydrophobic, strongly interacting, and highly conserved amino acids that play a central role in the folding process. Because LES have evolved over many generations to recognize and strongly interact with each other so as to make the protein fold fast and avoid aggregation with other proteins, highly specific (and thus little toxic) as well as effective folding-inhibitor molecules suggest themselves: short peptides (or eventually their mimetic molecules) displaying the same amino acid sequence of that of LES (p-LES). Aside from being specific and efficient, these inhibitors are expected not to induce resistance; in fact, mutations in HIV-1-PR that successfully avoid the action of p-LES imply the destabilization of one or more LES and thus should lead to protein denaturation. Making use of Monte Carlo simulations, we first identify the LES of the HIV-1-PR and then show that the corresponding p-LES peptides act as effective inhibitors of the folding of the protease.
Han, Yangyang; Huang, Weiwei; Liu, Jiakuan; Liu, Dandan; Cui, Yangyan; Huang, Ruimin; Yan, Jun; Lei, Ming
2017-01-01
Enzalutamide is a second-generation androgen receptor (AR) antagonist for the treatment of metastatic castration-resistant prostate cancer (mCRPC). Unfortunately, AR dysfunction means that resistance to enzalutamide will eventually develop. Thus, novel agents are urgently needed to treat this devastating disease. Triptolide (TPL), a key active compound extracted from the Chinese herb Thunder God Vine ( Tripterygium wilfordii Hook F.), possesses anti-cancer activity in human prostate cancer cells. However, the effects of TPL against CRPC cells and the underlying mechanism of any such effect are unknown. In this study, we found that TPL at low dose inhibits the transactivation activity of both full-length and truncated AR without changing their protein levels. Interestingly, TPL inhibits phosphorylation of AR and its CRPC-associated variant AR-V7 at Ser515 through XPB/CDK7. As a result, TPL suppresses the binding of AR to promoter regions in AR target genes along with reduced TFIIH and RNA Pol II recruitment. Moreover, TPL at low dose reduces the viability of prostate cancer cells expressing AR or AR-Vs. Low-dose TPL also shows a synergistic effect with enzalutamide to inhibit CRPC cell survival in vitro , and enhances the anti-cancer effect of enzalutamide on CRPC xenografts with minimal side effects. Taken together, our data demonstrate that TPL targets the transactivation activity of both full-length and truncated ARs. Our results also suggest that TPL is a potential drug for CRPC, and can be used in combination with enzalutamide to treat CRPC.
Han, Yangyang; Huang, Weiwei; Liu, Jiakuan; Liu, Dandan; Cui, Yangyan; Huang, Ruimin; Yan, Jun; Lei, Ming
2017-01-01
Enzalutamide is a second-generation androgen receptor (AR) antagonist for the treatment of metastatic castration-resistant prostate cancer (mCRPC). Unfortunately, AR dysfunction means that resistance to enzalutamide will eventually develop. Thus, novel agents are urgently needed to treat this devastating disease. Triptolide (TPL), a key active compound extracted from the Chinese herb Thunder God Vine (Tripterygium wilfordii Hook F.), possesses anti-cancer activity in human prostate cancer cells. However, the effects of TPL against CRPC cells and the underlying mechanism of any such effect are unknown. In this study, we found that TPL at low dose inhibits the transactivation activity of both full-length and truncated AR without changing their protein levels. Interestingly, TPL inhibits phosphorylation of AR and its CRPC-associated variant AR-V7 at Ser515 through XPB/CDK7. As a result, TPL suppresses the binding of AR to promoter regions in AR target genes along with reduced TFIIH and RNA Pol II recruitment. Moreover, TPL at low dose reduces the viability of prostate cancer cells expressing AR or AR-Vs. Low-dose TPL also shows a synergistic effect with enzalutamide to inhibit CRPC cell survival in vitro, and enhances the anti-cancer effect of enzalutamide on CRPC xenografts with minimal side effects. Taken together, our data demonstrate that TPL targets the transactivation activity of both full-length and truncated ARs. Our results also suggest that TPL is a potential drug for CRPC, and can be used in combination with enzalutamide to treat CRPC. PMID:28638477
Abe, Mariko; Pelus, Louis M.; Singh, Pratibha; Hirade, Tomohiro; Onishi, Chie; Purevsuren, Jamiyan; Taketani, Takeshi; Yamaguchi, Seiji; Fukuda, Seiji
2016-01-01
Internal tandem duplication (ITD) mutations in the Fms-related tyrosine kinase 3 (FLT3) gene (FLT3-ITD) are associated with poor prognosis in patients with acute myeloid leukemia (AML). Due to the development of drug resistance, few FLT3-ITD inhibitors are effective against FLT3-ITD+ AML. In this study, we show that FLT3-ITD activates a novel pathway involving p21Cdkn1a (p21) and pre-B cell leukemia transcription factor 1 (Pbx1) that attenuates FLT3-ITD cell proliferation and is involved in the development of drug resistance. FLT3-ITD up-regulated p21 expression in both mouse bone marrow c-kit+-Sca-1+-Lin- (KSL) cells and Ba/F3 cells. The loss of p21 expression enhanced growth factor-independent proliferation and sensitivity to cytarabine as a consequence of concomitantly enriching the S+G2/M phase population and significantly increasing the expression of Pbx1, but not Evi-1, in FLT3-ITD+ cells. This enhanced cell proliferation following the loss of p21 was partially abrogated when Pbx1 expression was silenced in FLT3-ITD+ primary bone marrow colony-forming cells and Ba/F3 cells. When FLT3-ITD was antagonized with AC220, a selective inhibitor of FLT3-ITD, p21 expression was decreased coincident with Pbx1 mRNA up-regulation and a rapid decline in the number of viable FLT3-ITD+ Ba/F3 cells; however, the cells eventually became refractory to AC220. Overexpressing p21 in FLT3-ITD+ Ba/F3 cells delayed the emergence of cells that were refractory to AC220, whereas p21 silencing accelerated their development. These data indicate that FLT3-ITD is capable of inhibiting FLT3-ITD+ cell proliferation through the p21/Pbx1 axis and that treatments that antagonize FLT3-ITD contribute to the subsequent development of cells that are refractory to a FLT3-ITD inhibitor by disrupting p21 expression. PMID:27387666
Yang, S S; Fliakas-Boltz, V; Bader, J P; Buckheit, R W
1995-10-01
Current thrust in controlling the Acquired Immune Deficiency Syndrome (AIDS) focuses on antiviral drug development targeting the infection and replication of the human immunodeficiency virus (HIV), the causative agent of AIDS. To date, treatment of AIDS has relied on nucleoside reverse transcriptase inhibitors such as AZT, ddI, and ddC, which eventually become ineffective upon the emergence of resistant mutants bearing specific nucleotide substitutions. The Anti-AIDS Drug Screening Program of the NCI conducts and coordinates a high-capacity semi-robotic in vitro screening of synthetic or natural compounds submitted by academic, research and pharmaceutical institutions world-wide. About 10,000 synthetic compounds are screened annually for anti-HIV activity. Confirmed active agents are subjected to in-depth studies on range and mechanism of action. Emerging from this intense screening activity were a number of potentially promising categories of nonnucleoside reverse transcriptase inhibitors (NNRTI) with structural diversity but strong and reproducible anti-HIV activity. Over 2500 active compounds were evaluated for their inhibitory activity against a panel of both laboratory and clinical virus isolates in the appropriate established cell line or fresh human peripheral blood leukocyte and macrophage preparations. Out of these, 40 agents could be placed structurally in nine categories with an additional 16 unique compounds that share the characteristics of NNRTI. These NNRTIs were shown to inhibit reverse transcriptase enzymatically using homopolymeric or ribosomal RNA as templates. NNRTIs demonstrated similarity in their inhibitory pattern against the HIV-1 laboratory strains IIIB and RF, and an AZT-resistant strain; all were inactive against HIV-2. These compounds were further tested against NNRTI-resistant HIV-1 isolates. NNRTI-resistant HIV-1 isolates were selected and characterized with respect to the change(s) in the viral reverse transcriptase nucleotide sequence. Also, differential cross-resistance or sensitivity patterns to NNRTIs were studied in detail among NNRTI-resistant mutants. When tested in combination with AZT, all of the NNRTI's uniformly exhibited synergistic inhibition of HIV-1, suggesting that combination antiviral therapy of NNRTIs with AZT may be therapeutically promising for AIDS treatment.
Effects of Aging and Environmental Conditions on Ammunition/Explosives Storage Magazines - Paper 2
2010-07-01
characterized as destructive. The destructive category is apparently limited to reactions with impure dolomitic aggregates and are a result of either...extreme pressures that eventually overcome the tensile strength of the structure. These pressures will cause spalling, map cracking, discoloration, or...fill with this gel and expand to create extreme tensile pressures . These pressures cause micro-scale cracking and eventually develop into
Kotagiri, Nalinikanth; Kim, Jin-Woo
2014-01-01
Carbon nanotubes (CNTs) have recently been in the limelight for their potential role in disease diagnostics and therapeutics, as well as in tissue engineering. Before these medical applications can be realized, there is a need to address issues like opsonization, phagocytosis by macrophages, and sequestration to the liver and spleen for eventual elimination from the body; along with equally important issues such as aqueous solubility, dispersion, biocompatibility, and biofunctionalization. CNTs have not been shown to be able to evade such biological obstacles, which include their nonspecific attachments to cells and other biological components in the bloodstream, before reaching target tissues and cells in vivo. This will eventually determine their longevity in circulation and clearance rate from the body. This review article discusses the current status, challenges, practical strategies, and implementations of coating CNTs with biocompatible and opsonin-resistant moieties, rendering CNTs transparent to opsonins and deceiving the innate immune response to make believe that the CNTs are not foreign. A holistic approach to the development of such “stealth” CNTs is presented, which encompasses not only several biophysicochemical factors that are not limited to surface treatment of CNTs, but also extraneous biological factors such as the protein corona formation that inevitably controls the in vivo fate of the particles. This review also discusses the present and potential applications, along with the future directions, of CNTs and their hybrid-based nanotheranostic agents for multiplex, multimodal molecular imaging and therapy, as well as in other applications, such as drug delivery and tissue engineering. PMID:24872705
Frost, S D; McLean, A R
1994-03-01
To investigate the roles of mutation, competition and population dynamics in the emergence of drug resistant mutants during zidovudine therapy. A mathematical model of the population dynamics of the viral quasispecies during zidovudine therapy was investigated. The model was used to simulate changes in the numbers of uninfected and infected cells and the composition of the viral quasispecies in the years following initiation of therapy. Resulting scenarios in asymptomatic and AIDS patients were compared. The model was also used to investigate the efficacy of a treatment regimen involving alternating zidovudine and dideoxyinosine therapy. The behaviour of the model can be divided into three stages. Before therapy, mutation maintains a small pool of resistant mutants, outcompeted to very low levels by sensitive strains. When therapy begins there is a dramatic fall in the total viral load and resistant strains suddenly have the competitive advantage. Thus, it is resistant strains that infect the rising number of uninfected CD4+ cells. During this second stage the rapid effects of population dynamics swamp any effects of mutation between strains. When the populations of infected and uninfected cells approach their treatment equilibrium levels, mutation again becomes important in the slow generation of highly resistant strains. The short-term reduction in viral replication at the initiation of therapy generates a pool of uninfected cells which cause the eventual increase in viral burden. This increase is associated with (but not caused by) a rise in frequency of resistant strains which are at a competitive advantage in the presence of the drug. When therapy is ceased, reversion of resistance is slow as resistant strains are nearly as fit as sensitive strains in the absence of drug.
Tumour resistance to cisplatin: a modelling approach
NASA Astrophysics Data System (ADS)
Marcu, L.; Bezak, E.; Olver, I.; van Doorn, T.
2005-01-01
Although chemotherapy has revolutionized the treatment of haematological tumours, in many common solid tumours the success has been limited. Some of the reasons for the limitations are: the timing of drug delivery, resistance to the drug, repopulation between cycles of chemotherapy and the lack of complete understanding of the pharmacokinetics and pharmacodynamics of a specific agent. Cisplatin is among the most effective cytotoxic agents used in head and neck cancer treatments. When modelling cisplatin as a single agent, the properties of cisplatin only have to be taken into account, reducing the number of assumptions that are considered in the generalized chemotherapy models. The aim of the present paper is to model the biological effect of cisplatin and to simulate the consequence of cisplatin resistance on tumour control. The 'treated' tumour is a squamous cell carcinoma of the head and neck, previously grown by computer-based Monte Carlo techniques. The model maintained the biological constitution of a tumour through the generation of stem cells, proliferating cells and non-proliferating cells. Cell kinetic parameters (mean cell cycle time, cell loss factor, thymidine labelling index) were also consistent with the literature. A sensitivity study on the contribution of various mechanisms leading to drug resistance is undertaken. To quantify the extent of drug resistance, the cisplatin resistance factor (CRF) is defined as the ratio between the number of surviving cells of the resistant population and the number of surviving cells of the sensitive population, determined after the same treatment time. It is shown that there is a supra-linear dependence of CRF on the percentage of cisplatin-DNA adducts formed, and a sigmoid-like dependence between CRF and the percentage of cells killed in resistant tumours. Drug resistance is shown to be a cumulative process which eventually can overcome tumour regression leading to treatment failure.
Chiu, Christopher W; Nozawa, Hiroaki; Hanahan, Douglas
2010-10-10
Pancreatic neuroendocrine tumors (PNETs), although rare, often metastasize, such that surgery, the only potentially curative therapy, is not possible. There is no effective systemic therapy for patients with advanced PNETs. Therefore, new strategies are needed. Toward that end, we investigated the potential benefit of dual therapeutic targeting of the epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (mTOR) kinases, using a preclinical mouse model of PNET. Rapamycin and erlotinib, inhibitors of mTOR and EGFR, respectively, were used to treat RIP-Tag2 transgenic mice bearing advanced multifocal PNET. Tumor growth and survival were monitored, and tumors were surveyed for potential biomarkers of response to the therapeutics. Rapamycin monotherapy was notably efficacious, prolonging survival concomitant with tumor stasis (stable disease). However, the tumors developed resistance, as evidenced by eventual relapse to progressive tumor growth. Erlotinib monotherapy slowed tumor growth and elicited a marginal survival benefit. In combination, there was an unprecedented survival benefit in the face of this aggressive multifocal cancer and, in contrast to either monotherapy, the development of adaptive resistance was not apparent. Additionally, the antiapoptotic protein survivin was implicated as a biomarker of sensitivity and beneficial responses to the dual targeted therapy. Preclinical trials in a mouse model of endogenous PNET suggest that combined targeting of the mTOR and EGFR signaling pathways could have potential clinical benefit in treating PNET. These results have encouraged development of an ongoing phase II clinical trial aimed to evaluate the efficacy of this treatment regimen in human neuroendocrine tumors.
Xu, Defeng; Chen, Qiulu; Liu, Yalin; Wen, Xingqiao
2017-12-01
Androgen receptor (AR) plays a critical role in prostate cancer (PCa) development and progression. Androgen deprivation therapy with antiandrogens to reduce androgen biosynthesis or prevent androgens from binding to AR are widely used to suppress AR-mediated PCa growth. However, most of ADT may eventually fail with development of the castration resistance after 12-24 months. Here we found that a natural product baicalein can effectively suppress the PCa progression via targeting the androgen-induced AR transactivation with little effect to AR protein expression. PCa cells including LNCaP, CWR22Rv1, C4-2, PC-3, and DU145, were treated with baicalein and luciferase assay was used to evaluate their effect on the AR transactivation. Cell growth and IC 50 were determined by MTT assay after 48 hrs treatment. RT-PCR was used to evaluate the mRNA levels of AR target genes including PSA, TMPRSS2, and TMEPA1. Western blot was used to determine AR and PSA protein expression. The natural product of baicalein can selectively inhibit AR transactivation with little effect on the other nuclear receptors, including ERα, and GR. At a low concentration, 2.5 μM of baicalein effectively suppresses the growth of AR-positive PCa cells, and has little effect on AR-negative PCa cells. Mechanism dissection suggest that baicalein can suppress AR target genes (PSA, TMPRSS2, and TMEPA1) expression in both androgen responsive LNCaP cells and castration resistant CWR22Rv1 cells, that may involve the inhibiting the AR N/C dimerization and AR-coactivators interaction. Baicalein may be developed as an effective anti-AR therapy via its ability to inhibit AR transactivation and AR-mediated PCa cell growth.
NASA Astrophysics Data System (ADS)
Horvath, D.; Brutovsky, B.
2018-06-01
Reversibility of state transitions is intensively studied topic in many scientific disciplines over many years. In cell biology, it plays an important role in epigenetic variation of phenotypes, known as phenotypic plasticity. More interestingly, the cell state reversibility is probably crucial in the adaptation of population phenotypic heterogeneity to environmental fluctuations by evolving bet-hedging strategy, which might confer to cancer cells resistance to therapy. In this article, we propose a formalization of the evolution of highly reversible states in the environments of periodic variability. Two interrelated models of heterogeneous cell populations are proposed and their behavior is studied. The first model captures selection dynamics of the cell clones for the respective levels of phenotypic reversibility. The second model focuses on the interplay between reversibility and drug resistance in the particular case of cancer. Overall, our results show that the threshold dependencies are emergent features of the investigated model with eventual therapeutic relevance. Presented examples demonstrate importance of taking into account cell to cell heterogeneity within a system of clones with different reversibility quantified by appropriately chosen genetic and epigenetic entropy measures.
NASA Technical Reports Server (NTRS)
Moxson, V. S.; Moracz, D. J.; Bhat, B. N.; Dolan, F. J.; Thom, R.
1987-01-01
Traditionally, vacuum melted 440C stainless steel is used for high performance bearings for aerospace cryogenic systems where corrosion due to condensation is a major concern. For the Space Shuttle Main Engine (SSME), however, 440C performance in the high-pressure turbopumps has been marginal. A basic assumption of this study was that powder metallurgy, rather than cast/wrought, processing would provide the finest, most homogeneous bearing alloy structure. Preliminary testing of P/M alloys (hardness, corrosion resistance, wear resistance, fatigue resistance, and fracture toughness) was used to 'de-select' alloys which did perform as well as baseline 440C. Five out of eleven candidate materials (14-4/6V, X-405, MRC-2001, T-440V, and D-5) based on preliminary screening were selected for the actual rolling-sliding five-ball testing. The results of this test were compared with high-performance vacuum-melted M50 bearing steel. The results of the testing indicated outstanding performance of two P/M alloys, X-405 and MRC-2001, which eventually will be further evaluated by full-scale bearing testing.
NASA Astrophysics Data System (ADS)
Mitra, Abhas
2013-04-01
It is widely believed that though pressure resists gravitational collapse in Newtonian gravity, it aids the same in general relativity (GR) so that GR collapse should eventually be similar to the monotonous free fall case. But we show that, even in the context of radiationless adiabatic collapse of a perfect fluid, pressure tends to resist GR collapse in a manner which is more pronounced than the corresponding Newtonian case and formation of trapped surfaces is inhibited. In fact there are many works which show such collapse to rebound or become oscillatory implying a tug of war between attractive gravity and repulsive pressure gradient. Furthermore, for an imperfect fluid, the resistive effect of pressure could be significant due to likely dramatic increase of tangential pressure beyond the "photon sphere." Indeed, with inclusion of tangential pressure, in principle, there can be static objects with surface gravitational redshift z → ∞. Therefore, pressure can certainly oppose gravitational contraction in GR in a significant manner in contradiction to the idea of Roger Penrose that GR continued collapse must be unstoppable.
Bryan, J; Redden, P; Traba, C
2016-02-01
The interaction between antibiotic-resistant Staphylococcus aureus and antibiotic-sensitive Escherichia coli biofilm-forming bacteria and Russian propolis ethanol extracts was evaluated. In this study, bacterial cell death occurred when the cell membranes of bacteria interacted specifically with the antibacterial compounds found in propolis. In order to understand the Russian propolis ethanol extract mechanism of action, microscopy and bacterial lysis studies were conducted. Results uncovered from these experiments imply that the mechanism of action of Russian propolis ethanol extracts is structural rather than functional. The results obtained throughout this study demonstrate cell membrane damage, resulting in cell lysis and eventually bacterial death. Most strains of bacteria and subsequently biofilms, have evolved and have altered their chemical composition in an attempt to protect themselves from antibiotics. The resistant nature of bacteria stems from the chemical rather than the physical means of inactivation of antibiotics. The results uncovered in this work demonstrate the potential application of Russian propolis ethanol extracts as a very efficient and effective method for bacterial and biofilm inactivation. © 2015 The Society for Applied Microbiology.
Risitano, Salvatore; Sabatini, Luigi; Atzori, Francesco; Massè, Alessandro; Indelli, Pier Francesco
2018-06-01
Periprosthetic joint infection (PJI) is a serious complication in total knee arthroplasty (TKA) and represents one of the most common causes of revision. The challenge for surgeons treating an infected TKA is to quickly obtain an infection-free joint in order to re-implant, when possible, a new TKA. Recent literature confirms the role of local antibiotic-loaded beads as a strong bactericidal, allowing higher antibiotic elution when compared with antibiotic loaded spacers only. Unfortunately, classical Polymethylmethacrylate (PMMA) beads might allow bacteria adhesion, secondary development of antibiotic resistance and eventually surgical removal once antibiotics have eluted. This article describes a novel surgical technique using static, custom-made antibiotic loaded spacers augmented by calcium sulphate antibiotic-impregnated beads to improve the success rate of revision TKA in a setting of PJI. The use of calcium sulphate beads has several potential benefits, including a longer sustained local antibiotic release when compared with classical PMMA beads and, being resorbable, not requiring accessory surgical interventions.
Functional electronic inversion layers at ferroelectric domain walls
NASA Astrophysics Data System (ADS)
Mundy, J. A.; Schaab, J.; Kumagai, Y.; Cano, A.; Stengel, M.; Krug, I. P.; Gottlob, D. M.; Doğanay, H.; Holtz, M. E.; Held, R.; Yan, Z.; Bourret, E.; Schneider, C. M.; Schlom, D. G.; Muller, D. A.; Ramesh, R.; Spaldin, N. A.; Meier, D.
2017-06-01
Ferroelectric domain walls hold great promise as functional two-dimensional materials because of their unusual electronic properties. Particularly intriguing are the so-called charged walls where a polarity mismatch causes local, diverging electrostatic potentials requiring charge compensation and hence a change in the electronic structure. These walls can exhibit significantly enhanced conductivity and serve as a circuit path. The development of all-domain-wall devices, however, also requires walls with controllable output to emulate electronic nano-components such as diodes and transistors. Here we demonstrate electric-field control of the electronic transport at ferroelectric domain walls. We reversibly switch from resistive to conductive behaviour at charged walls in semiconducting ErMnO3. We relate the transition to the formation--and eventual activation--of an inversion layer that acts as the channel for the charge transport. The findings provide new insight into the domain-wall physics in ferroelectrics and foreshadow the possibility to design elementary digital devices for all-domain-wall circuitry.
Lampson, Benjamin L.; Davids, Matthew S.
2017-01-01
The BCL-2 family of proteins integrates pro- and anti-apoptotic signals within the cell and is responsible for initiation of caspase-dependent apoptosis. Chronic lymphocytic leukemia (CLL) cells are particularly dependent on the anti-apoptotic protein BCL-2 for their survival, making this an attractive therapeutic target in CLL. Several early efforts to create inhibitors of the anti-apoptotic family members faced significant challenges, but eventually the BCL-2 specific inhibitor venetoclax moved forward in CLL. Overall and complete response rates to venetoclax monotherapy in relapsed, refractory CLL are approximately 80% and 20%, respectively, even in patients with high risk 17p deletion. Toxicities have been manageable and include neutropenia, diarrhea, and nausea. The risk of tumor lysis syndrome (TLS), seen in early experience with the drug, has been mitigated by the use of appropriate TLS risk assessment, prophylaxis, and management. Future studies of venetoclax will focus on combination approaches, predictive biomarker discovery, and mechanisms of resistance. PMID:28116634
NASA Astrophysics Data System (ADS)
Mei, Hui
2012-06-01
The effect of preoxidation on the thermal shock of air plasma sprayed thermal barrier coatings (TBCs) was completely investigated in a combustion gas environment by burning jet fuel with high speed air. Results show that with increasing cycles, the as-oxidized TBCs lost more weight and enlarged larger spallation area than the as-sprayed ones. Thermally grown oxide (TGO) growth and thermal mismatch stress were proven to play critical roles on the as-oxidized TBC failure. Two types of significant cracks were identified: the type I crack was vertical to the TGO interface and the type II crack was parallel to the TGO interface. The former accelerated the TGO growth to develop the latter as long as the oxidizing gas continuously diffused inward and then oxidized the more bond coat (BC). The preoxidation treatment directly increased the TGO thickness, formed the parallel cracks earlier in the TGO during the thermal shocks, and eventually resulted in the worse thermal shock resistance.
Maskless micro/nanofabrication on GaAs surface by friction-induced selective etching
2014-01-01
In the present study, a friction-induced selective etching method was developed to produce nanostructures on GaAs surface. Without any resist mask, the nanofabrication can be achieved by scratching and post-etching in sulfuric acid solution. The effects of the applied normal load and etching period on the formation of the nanostructure were studied. Results showed that the height of the nanostructure increased with the normal load or the etching period. XPS and Raman detection demonstrated that residual compressive stress and lattice densification were probably the main reason for selective etching, which eventually led to the protrusive nanostructures from the scratched area on the GaAs surface. Through a homemade multi-probe instrument, the capability of this fabrication method was demonstrated by producing various nanostructures on the GaAs surface, such as linear array, intersecting parallel, surface mesas, and special letters. In summary, the proposed method provided a straightforward and more maneuverable micro/nanofabrication method on the GaAs surface. PMID:24495647
NASA Astrophysics Data System (ADS)
Jiang, Dongdong; Du, Jinmei; Gu, Yan; Feng, Yujun
2012-03-01
The shock wave induced depoling current of Pb0.99[(Zr0.90Sn0.10)0.96Ti0.04]0.98Nb0.02O3 ceramics was investigated with a system composed of a resistive load and an unpoled ceramic. Disparity in the depoling current was explained by considering the drawing charge effect of unpoled ceramic. The drawing effect for poled ceramics was analysed by developing a model incorporating a time- and electric-field-dependent repolarization. This model predicts that the high-impedance current eventually becomes higher than the short-circuit current, which is consistent with the experimental results in the literature. This work indicates that both the repolarization of uncompressed ceramics caused by the self-generated electric field and depolarization of compressed ceramics caused by the shock wave govern the output current.
Paratransgenic Control of Vector Borne Diseases
Hurwitz, Ivy; Fieck, Annabeth; Read, Amber; Hillesland, Heidi; Klein, Nichole; Kang, Angray; Durvasula, Ravi
2011-01-01
Conventional methodologies to control vector borne diseases with chemical pesticides are often associated with environmental toxicity, adverse effects on human health and the emergence of insect resistance. In the paratransgenic strategy, symbiotic or commensal microbes of host insects are transformed to express gene products that interfere with pathogen transmission. These genetically altered microbes are re-introduced back to the insect where expression of the engineered molecules decreases the host's ability to transmit the pathogen. We have successfully utilized this strategy to reduce carriage rates of Trypanosoma cruzi, the causative agent of Chagas disease, in the triatomine bug, Rhodnius prolixus, and are currently developing this methodology to control the transmission of Leishmania donovani by the sand fly Phlebotomus argentipes. Several effector molecules, including antimicrobial peptides and highly specific single chain antibodies, are currently being explored for their anti-parasite activities in these two systems. In preparation for eventual field use, we are actively engaged in risk assessment studies addressing the issue of horizontal gene transfer from the modified bacteria to environmental microbes. PMID:22110385
ERIC Educational Resources Information Center
Reznick, J. Steven; Baranek, Grace T.; Reavis, Shaye; Watson, Linda R.; Crais, Elizabeth R.
2007-01-01
A parent-report instrument, the First Year Inventory (FYI), was developed to assess behaviors in 12-month-old infants that suggest risk for an eventual diagnosis of autism. The target behaviors were identified from retrospective and prospective studies. FYIs were mailed to 5,941 families and 25% (N = 1,496) were returned, with higher return rates…
NASA Astrophysics Data System (ADS)
Nagasundaram, N.; George Priya Doss, C.; Chakraborty, Chiranjib; Karthick, V.; Thirumal Kumar, D.; Balaji, V.; Siva, R.; Lu, Aiping; Ge, Zhang; Zhu, Hailong
2016-07-01
Artemisinin resistance in Plasmodium falciparum threatens global efforts in the elimination or eradication of malaria. Several studies have associated mutations in the PfATP6 gene in conjunction with artemisinin resistance, but the underlying molecular mechanism of the resistance remains unexplored. Associated mutations act as a biomarker to measure the artemisinin efficacy. In the proposed work, we have analyzed the binding affinity and efficacy between PfATP6 and artemisinin in the presence of L263D, L263E and L263K mutations. Furthermore, we performed virtual screening to identify potential compounds to inhibit the PfATP6 mutant proteins. In this study, we observed that artemisinin binding affinity with PfATP6 gets affected by L263D, L263E and L263K mutations. This in silico elucidation of artemisinin resistance enhanced the identification of novel compounds (CID: 10595058 and 10625452) which showed good binding affinity and efficacy with L263D, L263E and L263K mutant proteins in molecular docking and molecular dynamics simulations studies. Owing to the high propensity of the parasite to drug resistance the need for new antimalarial drugs will persist until the malarial parasites are eventually eradicated. The two compounds identified in this study can be tested in in vitro and in vivo experiments as possible candidates for the designing of new potential antimalarial drugs.
Sex differences in the association between dietary restraint, insulin resistance and obesity.
Jastreboff, Ania M; Gaiser, Edward C; Gu, Peihua; Sinha, Rajita
2014-04-01
Restrained food consumption may alter metabolic function and contribute to eventual weight gain; however, sex differences in these relationships have not been assessed. The objective of this study was to examine the relationship between restrained eating and insulin resistance and the influence of body mass index and sex on this relationship in a large community sample of both men and women. We hypothesized that restrained eating would be related to insulin resistance and this relationship would be influenced by sex and body mass index. In this cross-sectional, observational study, we studied 487 individuals from the community (men N = 222, women N = 265), who ranged from lean (body mass index 18.5-24.9 kg/m(2), N = 173), overweight (body mass index 25-29.9 kg/m(2), N = 159) to obese (body mass index >30 kg/m(2), N = 155) weight categories. We assessed restrained eating using the Dutch Eating Behavior Questionnaire and obtained fasting morning plasma insulin and glucose on all subjects. In men, but not in women, restrained eating was related to homeostatic model assessment of insulin resistance (HOMA-IR) (p < 0.0001). Furthermore, HOMA-IR was significantly higher in men who were high- versus low-restrained eaters (p = 0.0006). This study is the first to report sex differences with regard to the relationship between restrained eating and insulin resistance. Our results suggest that high restrained eating is associated with insulin resistance in men but not in women. Copyright © 2014 Elsevier Ltd. All rights reserved.
Novel approaches against epidermal growth factor receptor tyrosine kinase inhibitor resistance
Heydt, Carina; Michels, Sebastian; Thress, Kenneth S.; Bergner, Sven; Wolf, Jürgen; Buettner, Reinhard
2018-01-01
Background The identification and characterization of molecular biomarkers has helped to revolutionize non-small-cell lung cancer (NSCLC) management, as it transitions from target-focused to patient-based treatment, centered on the evolving genomic profile of the individual. Determination of epidermal growth factor receptor (EGFR) mutation status represents a critical step in the diagnostic process. The recent emergence of acquired resistance to “third-generation” EGFR tyrosine kinase inhibitors (TKIs) via multiple mechanisms serves to illustrate the important influence of tumor heterogeneity on prognostic outcomes in patients with NSCLC. Design This literature review examines the emergence of TKI resistance and the course of disease progression and, consequently, the clinical decision-making process in NSCLC. Results Molecular markers of acquired resistance, of which T790M and HER2 or MET amplifications are the most common, help to guide ongoing treatment past the point of progression. Although tissue biopsy techniques remain the gold standard, the emergence of liquid biopsies and advances in analytical techniques may eventually allow “real-time” monitoring of tumor evolution and, in this way, help to optimize targeted treatment approaches. Conclusions The influence of inter- and intra-tumor heterogeneity on resistance mechanisms should be considered when treating patients using resistance-specific therapies. New tools are necessary to analyze changes in heterogeneity and clonal composition during drug treatment. The refinement and standardization of diagnostic procedures and increased accessibility to technology will ultimately help in personalizing the management of NSCLC. PMID:29632655
The role of neratinib in HER2-driven breast cancer.
Cherian, Mathew A; Ma, Cynthia X
2017-06-30
Up to 25% of patients with early-stage HER2+ breast cancer relapse despite adjuvant trastuzumab-based regimens and virtually all patients with metastatic disease eventually die from resistance to existing treatment options. In addition, recent studies indicate that activating HER2 mutations without gene amplification could drive tumor growth in a subset of HER2-ve breast cancer that is not currently eligible for HER2-targeted agents. Neratinib is an irreversible HER kinase inhibitor with activity as extended adjuvant therapy following standard trastuzumab-based adjuvant treatment in a Phase III trial. Phase II trials of neratinib demonstrate promising activity in combination with cytotoxic agents in trastuzumab resistant metastatic HER2+ breast cancer, and either as monotherapy or in combination with fulvestrant for HER2-mutated breast cancers. We anticipate a potential role for neratinib in the therapy of these patient populations.
Mechanism of Rifampicin Inactivation in Nocardia farcinica
Abdelwahab, Heba; Martin Del Campo, Julia S.; Dai, Yumin; Adly, Camelia; El-Sohaimy, Sohby; Sobrado, Pablo
2016-01-01
A novel mechanism of rifampicin (Rif) resistance has recently been reported in Nocardia farcinica. This new mechanism involves the activity of rifampicin monooxygenase (RifMO), a flavin-dependent monooxygenase that catalyzes the hydroxylation of Rif, which is the first step in the degradation pathway. Recombinant RifMO was overexpressed and purified for biochemical analysis. Kinetic characterization revealed that Rif binding is necessary for effective FAD reduction. RifMO exhibits only a 3-fold coenzyme preference for NADPH over NADH. RifMO catalyzes the incorporation of a single oxygen atom forming an unstable intermediate that eventually is converted to 2′-N-hydroxy-4-oxo-Rif. Stable C4a-hydroperoxyflavin was not detected by rapid kinetics methods, which is consistent with only 30% of the activated oxygen leading to product formation. These findings represent the first reported detailed biochemical characterization of a flavin-monooxygenase involved in antibiotic resistance. PMID:27706151
Zhu, Jinlong; Yang, Liuxiang; Wang, Hsiu -Wen; ...
2015-12-16
Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni 1/2Ti 1/2)O 3 perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. Wemore » find, consistent with PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa.« less
Zhu, Jinlong; Yang, Liuxiang; Wang, Hsiu-Wen; Zhang, Jianzhong; Yang, Wenge; Hong, Xinguo; Jin, Changqing; Zhao, Yusheng
2015-12-16
Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni1/2Ti1/2)O3 perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. Consistent with PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa.
Does scavenging extend the host range of entomopathogenic nematodes (Nematoda: Steinernematidae)?
Půza, Vladimír; Mrácek, Zdenĕk
2010-05-01
Living and freeze-killed natural and laboratory hosts, with different susceptibility to entomopathogenic nematodes, were exposed to the larvae of Steinernema affine and Steinernema kraussei in two different experimental arenas (Eppendorf tubes, Petri dishes), and the success of the colonisation and eventual progeny production were observed. Both nematodes were able to colonise both living and dead larvae of Galleria mellonella (Lepidoptera) and adult Blatella germanica (Blattodea) even though the progeny production in dead hosts was lower on average. Living carabid beetles, Poecilus cupreus, and elaterid larvae (Coleoptera) were resistant to the infection, however, both nematodes were able to colonise and multiply in several dead P. cupreus and in a majority of dead elaterid larvae. By scavenging, EPNs can utilise cadavers of insects that are naturally resistant to EPN infection, and so broaden their host range. (c) 2010 Elsevier Inc. All rights reserved.
Pressure-induced superconductivity in semimetallic 1 T -TiTe2 and its persistence upon decompression
NASA Astrophysics Data System (ADS)
Dutta, U.; Malavi, P. S.; Sahoo, S.; Joseph, B.; Karmakar, S.
2018-02-01
Pristine 1 T -TiTe2 single crystal has been studied for resistance and magnetoresistance behavior under quasihydrostatic and nonhydrostatic compressions. While the semimetallic state is retained in nearly hydrostatic pressures, small nonhydrostatic compression leads to an abrupt change in low-temperature resistance, a signature of possible charge density wave (CDW) ordering, that eventually collapses above 6.2 GPa. Superconductivity emerges at ˜5 GPa, rapidly increasing to a critical temperature (Tc) of 5.3 K at 12 GPa, irrespective of pressure condition. Pressure studies thus evidence that 1 T -TiTe2 exhibits superconductivity irrespective of the formation of the CDW-like state, implying the existence of phase-separated domains. Most surprisingly, the superconducting state persists upon decompression, establishing a novel phase diagram with suppressed P scale. The pressure quenchable superconductivity, of multiband nature and relatively high upper critical field, makes 1 T -TiTe2 unique among other layered dichalcogenides.
Destabilization of low-n peeling modes by trapped energetic particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, G. Z.; Wang, A. K.; Mou, Z. Z.
2013-06-15
The kinetic effect of trapped energetic particles (EPs), arising from perpendicular neutral beam injection, on the stable low-n peeling modes in tokamak plasmas is investigated, through numerical solution of the mode's dispersion relation derived from an energy principle. A resistive-wall peeling mode with m/n=6/1, with m and n being the poloidal and toroidal mode numbers, respectively, is destabilized by trapped EPs as the EPs' pressure exceeds a critical value β{sub c}{sup *}, which is sensitive to the pitch angle of trapped EPs. The dependence of β{sub c}{sup *} on the particle pitch angle is eventually determined by the bounce averagemore » of the mode eigenfunction. Peeling modes with higher m and n numbers can also be destabilized by trapped EPs. Depending on the wall distance, either a resistive-wall peeling mode or an ideal-kink peeling mode can be destabilized by EPs.« less
van der Hiel, Bernies; Haanen, John B A G; Stokkel, Marcel P M; Peeper, Daniel S; Jimenez, Connie R; Beijnen, Jos H; van de Wiel, Bart A; Boellaard, Ronald; van den Eertwegh, Alfons J M
2017-09-15
In patients with BRAFV600 mutated unresectable stage IIIc or metastatic melanoma, molecular targeted therapy with combined BRAF/MEK-inhibitor vemurafenib plus cobimetinib has shown a significantly improved progression-free survival and overall survival compared to treatment with vemurafenib alone. Nevertheless, the majority of BRAFV600 mutation-positive melanoma patients will eventually develop resistance to treatment. Molecular imaging with 18 F-Fluorodeoxyglucose ( 18 F-FDG) PET has been used to monitor response to vemurafenib in some BRAFV600 mutated metastatic melanoma patients, showing a rapid decline of 18 F-FDG uptake within 2 weeks following treatment. Furthermore, preliminary results suggest that metabolic alterations might predict the development of resistance to treatment. 18 F-Fluoro-3'-deoxy-3'L-fluorothymidine ( 18 F-FLT), a PET-tracer visualizing proliferation, might be more suitable to predict response or resistance to therapy than 18 F-FDG. This phase II, open-label, multicenter study evaluates whether metabolic response to treatment with vemurafenib plus cobimetinib in the first 7 weeks as assessed by 18F-FDG/18F-FLT PET can predict progression-free survival and whether early changes in 18F-FDG/18F-FLT can be used for early detection of treatment response compared to standard response assessment with RECISTv1.1 ceCT at 7 weeks. Ninety patients with BRAFV600E/K mutated unresectable stage IIIc/IV melanoma will be included. Prior to and during treatment all patients will undergo 18 F-FDG PET/CT and in 25 patients additional 18 F-FLT PET/CT is performed. Histopathological tumor characterization is assessed in a subset of 40 patients to unravel mechanisms of resistance. Furthermore, in all patients, blood samples are taken for pharmacokinetic analysis of vemurafenib/cobimetinib. Outcomes are correlated with PET/CT-imaging and therapy response. The results of this study will help in linking PET measured metabolic alterations induced by targeted therapy of BRAFV600 mutated melanoma to molecular changes within the tumor. We will be able to correlate both 18 F-FDG and 18 F-FLT PET to outcome and decide on the best modality to predict long-term remissions to combined BRAF/MEK-inhibitors. Results coming from this study may help in identifying responders from non-responders early after the initiation of therapy and reveal early development of resistance to vemurafenib/cobimetinib. Furthermore, we believe that the results can be fundamental for further optimizing individual patient treatment. Clinicaltrials.gov identifier: NCT02414750. Registered 10 April 2015, retrospectively registered.
YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage.
Ciamporcero, E; Shen, H; Ramakrishnan, S; Yu Ku, S; Chintala, S; Shen, L; Adelaiye, R; Miles, K M; Ullio, C; Pizzimenti, S; Daga, M; Azabdaftari, G; Attwood, K; Johnson, C; Zhang, J; Barrera, G; Pili, R
2016-03-24
Current standard of care for muscle-invasive urothelial cell carcinoma (UCC) is surgery along with perioperative platinum-based chemotherapy. UCC is sensitive to cisplatin-based regimens, but acquired resistance eventually occurs, and a subset of tumors is intrinsically resistant. Thus, there is an unmet need for new therapeutic approaches to target chemotherapy-resistant UCC. Yes-associated protein (YAP) is a transcriptional co-activator that has been associated with bladder cancer progression and cisplatin resistance in ovarian cancer. In contrast, YAP has been shown to induce DNA damage associated apoptosis in non-small cell lung carcinoma. However, no data have been reported on the YAP role in UCC chemo-resistance. Thus, we have investigated the potential dichotomous role of YAP in UCC response to chemotherapy utilizing two patient-derived xenograft models recently established. Constitutive expression and activation of YAP inversely correlated with in vitro and in vivo cisplatin sensitivity. YAP overexpression protected while YAP knockdown sensitized UCC cells to chemotherapy and radiation effects via increased accumulation of DNA damage and apoptosis. Furthermore, pharmacological YAP inhibition with verteporfin inhibited tumor cell proliferation and restored sensitivity to cisplatin. In addition, nuclear YAP expression was associated with poor outcome in UCC patients who received perioperative chemotherapy. In conclusion, these results suggest that YAP activation exerts a protective role and represents a pharmacological target to enhance the anti-tumor effects of DNA damaging modalities in the treatment of UCC.
Auxiliary Components for Kilopixel Transition Edge Sensor Arrays
NASA Technical Reports Server (NTRS)
Brown, Ari-David; Chervenak, James A.; Chuss, David; Hilton Gene C.; Mikula, Vilem; Henry, ROss; Wollack, Edward; Zhao, Yue
2007-01-01
We have fabricated transition edge sensor bolometer focal plane arrays sensitive to mm-submillimeter (0.1-3 THz) radiation for the Atacama Cosmology Telescope (ACT), which will probe the cosmic microwave background at 0.147,0.215, and 0.279 GHz. Central to the performance of these bolometers is a set of auxiliary resistive components. Here we discuss shunt resistors, which allow for tight optimization of bolometer time constant and sensitivity. Our shunt resistors consist of AuPd strips grown atop of interdigitated superconducting MoN, wires. We can tailor the shunt resistance by altering the dimensions of the AuPd strips and the pitch and width of the MoN, wires and can fabricate over 1000 shunts on a single 4" wafer. By modeling the resistance dependence of these parameters, a variety of different 0.77 +I-0.13 mOhm shunt resistors have been fabricated. This variety includes different shunts possessing MoN, wires with wire width equal to 1.5 and 10 microns and pitch equal to 4.5 and 26 microns, respectively. Our ability to set the resistance of the shunts hints at the scalability of our design. We have also integrated a Si02 capping layer into our shunt resistor fabrication scheme, which inhibits metal corrosion and eventual degradation of the shunt. Consequently, their robustness coupled with their high packing density makes these resistive components attractive for future kilopixel detector arrays.
Peer Review of EPA's Draft BMDS Document: Exponential ...
BMDS is one of the Agency's premier tools for estimating risk assessments, therefore the validity and reliability of its statistical models are of paramount importance. This page provides links to peer review of the BMDS applications and its models as they were developed and eventually released documenting the rigorous review process taken to provide the best science tools available for statistical modeling. This page provides links to peer review of the BMDS applications and its models as they were developed and eventually released documenting the rigorous review process taken to provide the best science tools available for statistical modeling.
SEX DIFFERENCES IN THE ASSOCIATION BETWEEN DIETARY RESTRAINT, INSULIN RESISTANCE AND OBESITY
Jastreboff, Ania M.; Gaiser, Edward C.; Gu, Peihua; Sinha, Rajita
2014-01-01
Background & Aims Restrained food consumption may alter metabolic function and contribute to eventual weight gain; however, sex differences in these relationships have not been assessed. The objective of this study was to examine the relationship between restrained eating and insulin resistance and the influence of body mass index and sex on this relationship in a large community sample of both men and women. We hypothesized that restrained eating would be related to insulin resistance and this relationship would be influenced by sex and body mass index. Methods In this cross-sectional, observational study, we studied 487 individuals from the community (men N=222, women N=265), who ranged from lean (body mass index 18.5–24.9kg/m2, N=173), overweight (body mass index 25–29.9kg/m2, N=159) and obese (body mass index >30kg/m2, N=155) weight categories. We assessed restrained eating using the Dutch Eating Behavior Questionnaire and obtained fasting morning plasma insulin and glucose on all subjects. Results In men, but not in women, restrained eating was related to homeostatic model assessment of insulin resistance (HOMA-IR) (p<0.0001). Furthermore, homeostatic model assessment of insulin resistance levels were significantly higher in men who were high-versus low-restrained eaters (p=0.0006). Conclusions This study is the first to report sex differences with regard to the relationship between restrained eating and insulin resistance. Our results suggest that high restraint eating is associated with insulin resistance in men but not in women. PMID:24854820
Ewing’s Sarcoma: Overcoming the Therapeutic Plateau
Subbiah, Vivek; Kurzrock, Razelle
2013-01-01
The hallmark of Ewing’s sarcoma (EWS) is a translocation -- t(11;22)(q24;q12) -- that most frequently results in the EWS/FLI1 aberrant chimeric gene. Because EWS afflicts young patients, it stands out among the diverse sarcoma subtypes. The frontline, standard-of-care cytotoxic chemotherapy regimens produce minimal benefit in patients with metastases at presentation or those with relapsed disease. While the outcomes of chemorefractory EWS patients are poor, recent developments have led to the promising use of targeted therapy. Specifically, inhibition of insulin-like growth factor 1 receptor (IGF1R) signaling and the mammalian target of rapamycin (mTOR) pathways has emerged as a targeted therapy in EWS, with select patients experiencing dramatic therapeutic responses. However, targeted therapies in general, and these responders in particular, are faced with the ultimate conundrum of eventual resistance. To optimize response, combining IGF1R and mTOR inhibitor-based regimens with chemotherapy in the upfront setting in newly diagnosed high-risk EWS may clarify the true benefit of IGF1R inhibitors in these patients. Another option is to explore novel targeted multikinase inhibitors and poly(ADP-ribose) polymerase (PARP) inhibitors, which have experienced a surge in supporting preclinical data. Drugs inhibiting the downstream targets of EWS/FLI1 are also in preclinical development. However, ultimately, the underlying biomarker correlates of resistance and response must be delineated along with ways to overcome them. Novel agents, together with integration of advances in multimodal approaches (including surgery and radiation), as well as offering targeted therapies early in the disease course represent new strategies for confronting the challenges of EWS. PMID:22742646
Modi, Shrey; Kir, Devika; Giri, Bhuwan; Majumder, Kaustav; Arora, Nivedita; Dudeja, Vikas; Banerjee, Sulagna; Saluja, Ashok K
2016-01-01
Oxaliplatin is part of pancreatic cancer therapy in the FOLFIRINOX or GEMOX/XELOX regimen. DNA damage repair is one of the factors responsible for oxaliplatin resistance that eventually develops in this cancer. Triptolide/Minnelide has been shown to be effective against pancreatic cancer in preclinical trials. In this study, we evaluated the efficacy of combination of triptolide and oxaliplatin against pancreatic cancer. Highly aggressive pancreatic cancer cells (MIA PaCa-2 and PANC-1) were treated with oxaliplatin (0-10 μM), low-dose triptolide (50 nM), or a combination of both for 24-48 h. Cell viability, apoptosis, and DNA damage were evaluated by appropriate methods. Nucleotide excision repair pathway components were quantitated using qPCR and Western blot. Combination of low doses of Minnelide and oxaliplatin was tested in an orthotopic murine model of pancreatic cancer. Proliferation of pancreatic cancer cells was markedly inhibited by combination treatment. Triptolide potentiated apoptotic cell death induced by oxaliplatin and sensitized cancer cells towards oxaliplatin-induced DNA damage by suppressing the oxaliplatin-induced DNA damage repair pathway. Combination of low doses of Minnelide and oxaliplatin inhibited tumor progression by inducing significant apoptotic cell death in these tumors. Combination of low doses of Minnelide and oxaliplatin has immense potential to emerge as a novel therapeutic strategy against pancreatic cancer.
McEwen, Hayden J. L.; Inglis, Megan A.; Quennell, Janette H.; Grattan, David R.
2016-01-01
The cellular processes that cause high caloric diet (HCD)-induced infertility are poorly understood but may involve upregulation of suppressor of cytokine signaling (SOCS-3) proteins that are associated with hypothalamic leptin resistance. Deletion of SOCS-3 from brain cells is known to protect mice from diet-induced obesity, but the effects on HCD-induced infertility are unknown. We used neuron-specific SOCS3 knock-out mice to elucidate this and the effects on regional hypothalamic leptin resistance. As expected, male and female neuron-specific SOCS3 knock-out mice were protected from HCD-induced obesity. While female wild-type mice became infertile after 4 months of HCD feeding, infertility onset in knock-out females was delayed by 4 weeks. Similarly, knock-out mice had delayed leptin resistance development in the medial preoptic area and anteroventral periventricular nucleus, regions important for generation of the surge of GnRH and LH that induces ovulation. We therefore tested whether the suppressive effects of HCD on the estradiol-induced GnRH/LH surge were overcome by neuron-specific SOCS3 knock-out. Although only 20% of control HCD-mice experienced a preovulatory-like LH surge, LH surges could be induced in almost all neuron-specific SOCS3 knock-out mice on this diet. In contrast to females, HCD-fed male mice did not exhibit any fertility decline compared with low caloric diet-fed males despite their resistance to the satiety effects of leptin. These data show that deletion of SOCS3 delays the onset of leptin resistance and infertility in HCD-fed female mice, but given continued HCD feeding this state does eventually occur, presumably in response to other mechanisms inhibiting leptin signal transduction. SIGNIFICANCE STATEMENT Obesity is commonly associated with infertility in humans and other animals. Treatments for human infertility show a decreased success rate with increasing body mass index. A hallmark of obesity is an increase in circulating leptin levels; despite this, the brain responds as if there were low levels of leptin, leading to increased appetite and suppressed fertility. Here we show that leptin resistant infertility is caused in part by the leptin signaling molecule SOCS3. Deletion of SOCS3 from brain neurons delays the onset of diet-induced infertility. PMID:27383590
McEwen, Hayden J L; Inglis, Megan A; Quennell, Janette H; Grattan, David R; Anderson, Greg M
2016-07-06
The cellular processes that cause high caloric diet (HCD)-induced infertility are poorly understood but may involve upregulation of suppressor of cytokine signaling (SOCS-3) proteins that are associated with hypothalamic leptin resistance. Deletion of SOCS-3 from brain cells is known to protect mice from diet-induced obesity, but the effects on HCD-induced infertility are unknown. We used neuron-specific SOCS3 knock-out mice to elucidate this and the effects on regional hypothalamic leptin resistance. As expected, male and female neuron-specific SOCS3 knock-out mice were protected from HCD-induced obesity. While female wild-type mice became infertile after 4 months of HCD feeding, infertility onset in knock-out females was delayed by 4 weeks. Similarly, knock-out mice had delayed leptin resistance development in the medial preoptic area and anteroventral periventricular nucleus, regions important for generation of the surge of GnRH and LH that induces ovulation. We therefore tested whether the suppressive effects of HCD on the estradiol-induced GnRH/LH surge were overcome by neuron-specific SOCS3 knock-out. Although only 20% of control HCD-mice experienced a preovulatory-like LH surge, LH surges could be induced in almost all neuron-specific SOCS3 knock-out mice on this diet. In contrast to females, HCD-fed male mice did not exhibit any fertility decline compared with low caloric diet-fed males despite their resistance to the satiety effects of leptin. These data show that deletion of SOCS3 delays the onset of leptin resistance and infertility in HCD-fed female mice, but given continued HCD feeding this state does eventually occur, presumably in response to other mechanisms inhibiting leptin signal transduction. Obesity is commonly associated with infertility in humans and other animals. Treatments for human infertility show a decreased success rate with increasing body mass index. A hallmark of obesity is an increase in circulating leptin levels; despite this, the brain responds as if there were low levels of leptin, leading to increased appetite and suppressed fertility. Here we show that leptin resistant infertility is caused in part by the leptin signaling molecule SOCS3. Deletion of SOCS3 from brain neurons delays the onset of diet-induced infertility. Copyright © 2016 the authors 0270-6474/16/367142-12$15.00/0.
Dual Targeting of Insulin Receptor and KIT in Imatinib-Resistant Gastrointestinal Stromal Tumors.
Chen, Weicai; Kuang, Ye; Qiu, Hai-Bo; Cao, Zhifa; Tu, Yuqing; Sheng, Qing; Eilers, Grant; He, Quan; Li, Hai-Long; Zhu, Meijun; Wang, Yuexiang; Zhang, Rongqing; Wu, Yeqing; Meng, Fanguo; Fletcher, Jonathan A; Ou, Wen-Bin
2017-09-15
Oncogenic KIT or PDGFRA receptor tyrosine kinase (RTK) mutations are compelling therapeutic targets in gastrointestinal stromal tumors (GIST), and treatment with the KIT/PDGFRA inhibitor imatinib is the standard of care for patients with metastatic GIST. Most GISTs eventually acquire imatinib resistance due to secondary mutations in the KIT kinase domain, but it is unclear whether these genomic resistance mechanisms require other cellular adaptations to create a clinically meaningful imatinib-resistant state. Using phospho-RTK and immunoblot assays, we demonstrate activation of KIT and insulin receptor (IR) in imatinib-resistant GIST cell lines (GIST430 and GIST48) and biopsies with acquisition of KIT secondary mutations, but not in imatinib-sensitive GIST cells (GIST882 and GIST-T1). Treatment with linsitinib, a specific IR inhibitor, inhibited IR and downstream intermediates AKT, MAPK, and S6 in GIST430 and GIST48, but not in GIST882, exerting minimal effect on KIT phosphorylation in these cell lines. Additive effects showing increased apoptosis, antiproliferative effects, cell-cycle arrest, and decreased pAKT and pS6 expression, tumor growth, migration, and invasiveness were observed in imatinib-resistant GIST cells with IR activation after coordinated inhibition of IR and KIT by linsitinib (or IR shRNA) and imatinib, respectively, compared with either intervention alone. IGF2 overexpression was responsible for IR activation in imatinib-resistant GIST cells, whereas IR activation did not result from IR amplification, IR mutation, or KIT phosphorylation. Our findings suggest that combinatorial inhibition of IR and KIT warrants clinical evaluation as a novel therapeutic strategy in imatinib-resistant GISTs. Cancer Res; 77(18); 5107-17. ©2017 AACR . ©2017 American Association for Cancer Research.
Young, Suzanne; Nayak, Bina; Sun, Shan; Badgley, Brian D; Rohr, Jason R; Harwood, Valerie J
2016-09-15
Sewage spills can release antibiotic-resistant bacteria into surface waters, contributing to environmental reservoirs and potentially impacting human health. Vancomycin-resistant enterococci (VRE) are nosocomial pathogens that have been detected in environmental habitats, including soil, water, and beach sands, as well as wildlife feces. However, VRE harboring vanA genes that confer high-level resistance have infrequently been found outside clinical settings in the United States. This study found culturable Enterococcus faecium harboring the vanA gene in water and sediment for up to 3 days after a sewage spill, and the quantitative PCR (qPCR) signal for vanA persisted for an additional week. Culturable levels of enterococci in water exceeded recreational water guidelines for 2 weeks following the spill, declining about five orders of magnitude in sediments and two orders of magnitude in the water column over 6 weeks. Analysis of bacterial taxa via 16S rRNA gene sequencing showed changes in community structure through time following the sewage spill in sediment and water. The spread of opportunistic pathogens harboring high-level vancomycin resistance genes beyond hospitals and into the broader community and associated habitats is a potential threat to public health, requiring further studies that examine the persistence, occurrence, and survival of VRE in different environmental matrices. Vancomycin-resistant enterococci (VRE) are harmful bacteria that are resistant to the powerful antibiotic vancomycin, which is used as a last resort against many infections. This study followed the release of VRE in a major sewage spill and their persistence over time. Such events can act as a means of spreading vancomycin-resistant bacteria in the environment, which can eventually impact human health. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Young, Suzanne; Nayak, Bina; Sun, Shan; Badgley, Brian D.; Rohr, Jason R.
2016-01-01
ABSTRACT Sewage spills can release antibiotic-resistant bacteria into surface waters, contributing to environmental reservoirs and potentially impacting human health. Vancomycin-resistant enterococci (VRE) are nosocomial pathogens that have been detected in environmental habitats, including soil, water, and beach sands, as well as wildlife feces. However, VRE harboring vanA genes that confer high-level resistance have infrequently been found outside clinical settings in the United States. This study found culturable Enterococcus faecium harboring the vanA gene in water and sediment for up to 3 days after a sewage spill, and the quantitative PCR (qPCR) signal for vanA persisted for an additional week. Culturable levels of enterococci in water exceeded recreational water guidelines for 2 weeks following the spill, declining about five orders of magnitude in sediments and two orders of magnitude in the water column over 6 weeks. Analysis of bacterial taxa via 16S rRNA gene sequencing showed changes in community structure through time following the sewage spill in sediment and water. The spread of opportunistic pathogens harboring high-level vancomycin resistance genes beyond hospitals and into the broader community and associated habitats is a potential threat to public health, requiring further studies that examine the persistence, occurrence, and survival of VRE in different environmental matrices. IMPORTANCE Vancomycin-resistant enterococci (VRE) are harmful bacteria that are resistant to the powerful antibiotic vancomycin, which is used as a last resort against many infections. This study followed the release of VRE in a major sewage spill and their persistence over time. Such events can act as a means of spreading vancomycin-resistant bacteria in the environment, which can eventually impact human health. PMID:27422829
Peña-Vargas, Edgar Rafael; Vega-Sánchez, Vicente; Morales-Erasto, Vladimir; Trujillo-Ruíz, Héctor Hugo; Talavera-Rojas, Martín; Soriano-Vargas, Edgardo
2016-09-01
The bacterium Ornithobacterium rhinotracheale is associated with respiratory disease and septicemia in poultry. In this study, 9 reference strains and a total of 23 isolates of O. rhinotracheale from respiratory diseased poultry from Mexico were serotyped and genotyped. Furthermore, the antimicrobial susceptibility of isolates and reference strains of O. rhinotracheale were determined. All isolates belong to serotype A and showed a clonal relationship. All reference strains and isolates were resistant to colistin, fosfomycin, gentamicin, kanamycin, streptomycin, and trimethoprim-sulfamethoxazole. These results should eventually be helpful in planning strategies for the control of O. rhinotracheale infections in poultry in Mexico.
Current-driven orbital order-disorder transition in LaMnO3
NASA Astrophysics Data System (ADS)
Mondal, Parthasarathi; Bhattacharya, Dipten; Mandal, P.
2011-08-01
We report a significant influence of electric current on the orbital order-disorder transition in LaMnO3. The transition temperature TOO, thermal hysteresis in the resistivity ρ versus temperature T plot around TOO, and latent heat L associated with the transition decrease with an increase in current density. Eventually, at a critical current density, L reaches zero. The transition zone, on the other hand, broadens with an increase in current density. The states at ordered, disordered, and transition zones are all found to be stable within the time window from ˜10-3 to ˜104 s.
Weisser, Maja; Schoenfelder, Sonja M K; Orasch, Christina; Arber, Caroline; Gratwohl, Alois; Frei, Reno; Eckart, Martin; Flückiger, Ursula; Ziebuhr, Wilma
2010-07-01
We report on a leukemic patient who suffered from a persistent, generalized, and eventually fatal Staphylococcus epidermidis infection during prolonged aplasia. Over a 6-week period, we isolated a genetically and phenotypically unstable S. epidermidis strain related to an epidemic clone associated with hospital infections worldwide. Strikingly, the strain showed a remarkable degree of variability, with evidence of selection and increasing predominance of biofilm-producing and oxacillin-resistant variants over time. Thus, in the early stages of the infection, the strain was found to generate subpopulations which had spontaneously lost the biofilm-mediating ica locus along with the oxacillin resistance-conferring mecA gene. These deletion mutants were obviously outcompeted by the ica- and mecA-positive wild-type genotype, with the selection and predominance of strongly biofilm-forming and oxacillin-resistant variants in the later stages of the infection. Also, a switch from protein- to polysaccharide intercellular adhesin/poly-N-acetylglucosamine (PIA/PNAG)-mediated-biofilm production was detected among ica-positive variants in the course of the infection. The data highlight the impact of distinct S. epidermidis clonal lineages as serious nosocomial pathogens that, through the generation and selection of highly pathogenic variants, may critically determine disease progression and outcome.
Maraolo, Alberto Enrico; Cascella, Marco; Corcione, Silvia; Cuomo, Arturo; Nappa, Salvatore; Borgia, Guglielmo; De Rosa, Francesco Giuseppe; Gentile, Ivan
2017-09-01
Pseudomonas aeruginosa (PA) is one of the most important causes of healthcare-related infections among Gram-negative bacteria. The best therapeutic approach is controversial, especially for multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains as well as in the setting of most severe patients, such as in the intensive care unit (ICU). Areas covered: This article addresses several points. First, the main microbiological aspects of PA, focusing on its wide array of resistance mechanisms. Second, risk factors and the worse outcome linked to MDR-PA infection. Third, the pharmacological peculiarity of ICU patients, that makes the choice of a proper antimicrobial therapy difficult. Eventually, the current therapeutic options against MDR-PA are reviewed, taking into account the main variables that drive antimicrobial optimization in critically ill patients. Literature search was carried out using Pubmed and Web of Science. Expert commentary: Methodologically rigorous studies are urgently needed to clarify crucial aspects of the treatment against MDR-PA, namely monotherapy versus combination therapy in empiric and targeted settings. In the meanwhile, useful options are represented by newly approved drugs, such as ceftolozane/tazobactam and ceftazidime/avibactam. In critically ill patients, at least as empirical approach, a combination therapy is a prudent choice when a MDR-PA strain is suspected.
Vaz-Moreira, Ivone; Nunes, Olga C; Manaia, Célia M
2014-07-01
Water is one of the most important bacterial habitats on Earth. As such, water represents also a major way of dissemination of bacteria between different environmental compartments. Human activities led to the creation of the so-called urban water cycle, comprising different sectors (waste, surface, drinking water), among which bacteria can hypothetically be exchanged. Therefore, bacteria can be mobilized between unclean water habitats (e.g. wastewater) and clean or pristine water environments (e.g. disinfected and spring drinking water) and eventually reach humans. In addition, bacteria can also transfer mobile genetic elements between different water types, other environments (e.g. soil) and humans. These processes may involve antibiotic resistant bacteria and antibiotic resistance genes. In this review, the hypothesis that some bacteria may share different water compartments and be also hosted by humans is discussed based on the comparison of the bacterial diversity in different types of water and with the human-associated microbiome. The role of such bacteria as potential disseminators of antibiotic resistance and the inference that currently only a small fraction of the clinically relevant antibiotic resistome may be known is discussed. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Mapara, Nikunj; Sharma, Mansi; Shriram, Varsha; Bharadwaj, Renu; Mohite, K C; Kumar, Vinay
2015-12-01
Pseudomonas aeruginosa is a leading opportunistic pathogen and its expanding drug resistance is a growing menace to public health. Its ubiquitous nature and multiple resistance mechanisms make it a difficult target for antimicrobial chemotherapy and require a fresh approach for developing new antimicrobial agents against it. The broad-spectrum antibacterial effects of silver nanoparticles (SNPs) make them an excellent candidate for use in the medical field. However, attempts made to check their potency against extensively drug-resistant (XDR) microbes are meager. This study describes the biosynthesis and biostabilization of SNPs by Helicteres isora aqueous fruit extract and their characterization by ultraviolet-visible spectroscopy, transmission electron microscopy, dynamic light scattering, X-ray diffraction, and Fourier transform infrared spectroscopy. Majority of SNPs synthesized were of 8--20-nm size. SNPs exhibited dose-dependent antibacterial activities against four XDR P. aeruginosa (XDR-PA) clinical isolates as revealed by growth curves, with a minimum inhibitory concentration of 300 μg/ml. The SNPs exhibited antimicrobial activity against all strains, with maximum zone of inhibition (16.4 mm) in XRD-PA-2 at 1000 μg/ml. Amongst four strains, their susceptibilities to SNPs were in the following order: XDR-PA-2 > XDR-PA-4 > XDR-PA-3 > XDR-PA-1. The exposure of bacterial cells to 300 μg/ml SNPs resulted into a substantial leakage of reducing sugars and proteins, inactivation of respiratory chain dehydrogenases, and eventual cell death. SNPs also induced lipid peroxidation, a possible underlying factor to membrane porosity. The effects were more pronounced in XDR-PA-2 which may be correlated with its higher susceptibility to SNPs. These results are indicative of SNP-induced turbulence of membranous permeability as an important causal factor in XDR-PA growth inhibition and death.
Epidemiology and treatment approaches in management of invasive fungal infections
Kriengkauykiat, Jane; Ito, James I; Dadwal, Sanjeet S
2011-01-01
Over the past 20 years, the number of invasive fungal infections has continued to persist, due primarily to the increased numbers of patients subjected to severe immunosuppression. Despite the development of more active, less toxic antifungal agents and the standard use of antifungal prophylaxis, invasive fungal infections (especially invasive mold infections) continue to be a significant factor in hematopoietic cell and solid organ transplantation outcomes, resulting in high mortality rates. Since the use of fluconazole as standard prophylaxis in the hematopoietic cell transplantation setting, invasive candidiasis has come under control, but no mold-active antifungal agent (except for posaconazole in the setting of acute myelogenous leukemia and myelodysplastic syndrome) has been shown to improve the survival rate over fluconazole. With the advent of new azole and echinocandin agents, we have seen the emergence of more azole-resistant and echinocandin-resistant fungi. The recent increase in zygomycosis seen in the hematopoietic cell transplantation setting may be due to the increased use of voriconazole. This has implications for the empiric approach to pulmonary invasive mold infections when zygomycosis cannot be ruled out. It is imperative that an amphotericin B product, an antifungal that has never developed resistance in over 50 years, be initiated. The clinical presentations of invasive mold infections and invasive candidiasis can be nonspecific and the diagnostic tests insensitive, so a high index of suspicion and immediate initiation of empiric therapy is required. Unfortunately, our currently available serologic tests do not predict infection ahead of disease, and, therefore cannot be used to initiate “preemptive” therapy. Also, the Aspergillus galactomannan test gives a false negative result in patients receiving antimold prophylaxis, ie, virtually all of our patients with hematologic malignancy and hematopoietic cell transplant recipients. We may eventually be able to select patients at highest risk for invasive fungal infections for prophylaxis by genetic testing. However, with our current armamentarium of antifungal agents and widespread use of prophylaxis in high-risk groups (hematologic malignancy, hematopoietic cell transplantation), we continue to see high incidence and mortality rates, and our future hope lies in reversing the immunosuppression or augmenting the immune system of these severely immunocompromised hosts by developing and utilizing immunotherapy, immunoprophylaxis, and vaccines. PMID:21750627
NASA Astrophysics Data System (ADS)
Noor, Noorashikin Md.; Das, Simon Kumar; Cob, Zaidi Che; Ghaffar, Mazlan Abd.
2018-04-01
The newly developed hybrid grouper: tiger grouper (Epinephelus fuscoguttatus) × giant grouper (Epinephelus fuscoguttatus) (TG×GG), has a high resistance towards different environmental condition (eg. in euryhaline environment) due to its genetic improvement. This study aims to investigate the effects of different salinities (10, 15, 20, 25 and 30 ppt) on the gastric emptying time (GET) of the TG×GG hybrid grouper juveniles. The fish were fed with commercial pellet over a 30 days experimental period under controlled laboratory conditions. The GET was determined by X-radiographic method, using barium sulfate (BaSO4) as an inert food marker. The X-radiography images showed that the shortest GET (12 h) was observed in the 15 ppt group, whereas the longest GET (18 h) in 30 ppt group. The results suggests to culture TG×GG hybrid grouper juveniles in 15 ppt with commercial pellet diet as this salinity proliferates faster digestion process which may contribute faster growth rate of this important fish species. Overall, these findings would be useful for the betterment of TG×GG hybrid grouper aquaculture which will eventually boost up the production of this newly developed hybrid grouper species.
Recent advances in tropical medicine.
Solomon, Anthony W; Nayagam, Shevanthi; Pasvol, Geoffrey
2009-07-01
There have been significant advances in both the classical and neglected tropical diseases, with Guinea worm looking set to be the next disease after smallpox to be eradicated. Aided by a combination of enhanced understanding of the biology of the pathogens, intensification of immunisation activities or mass drug administration, together with the development of synergies with control programmes for co-endemic tropical diseases, polio, lymphatic filariasis, trachoma and onchocerciasis all appear to be in global decline, with good prospects for eventual successful elimination. While the global incidence of new cases of leprosy continues to decrease, the focus of leprosy control efforts has shifted following more widespread recognition that cure of infection does not necessarily prevent disability. Expansion in funding for HIV/AIDS and malaria provides some grounds for optimism about the control of these diseases. However, ongoing education and access remain essential to increasing the uptake of HIV testing and decreasing transmission. Meanwhile, the rise of drug-resistant tuberculosis and malaria is concerning, and the emergence of the highly pathogenic avian influenza A and re-emergence of viruses such as chikungunya and West Nile virus, without significant recent progress in vaccine development, pose additional ongoing challenges to tropical medicine physicians worldwide.
Leaky gut and diabetes mellitus: what is the link?
de Kort, S; Keszthelyi, D; Masclee, A A M
2011-06-01
Diabetes mellitus is a chronic disease requiring lifelong medical attention. With hundreds of millions suffering worldwide, and a rapidly rising incidence, diabetes mellitus poses a great burden on healthcare systems. Recent studies investigating the underlying mechanisms involved in disease development in diabetes point to the role of the dys-regulation of the intestinal barrier. Via alterations in the intestinal permeability, intestinal barrier function becomes compromised whereby access of infectious agents and dietary antigens to mucosal immune elements is facilitated, which may eventually lead to immune reactions with damage to pancreatic beta cells and can lead to increased cytokine production with consequent insulin resistance. Understanding the factors regulating the intestinal barrier function will provide important insight into the interactions between luminal antigens and immune response elements. This review analyses recent advances in the mechanistic understanding of the role of the intestinal epithelial barrier function in the development of type 1 and type 2 diabetes. Given our current knowledge, we may assume that reinforcing the intestinal barrier can offer and open new therapeutic horizons in the treatment of type 1 and type 2 diabetes. © 2011 The Authors. obesity reviews © 2011 International Association for the Study of Obesity.
Saad, Nibal; Poudel, Aarati; Basnet, Alina; Gajra, Ajeet
2017-01-01
Adenocarcinoma is the most common type of non-small-cell lung cancer (NSCLC). Adenocarcinoma with epidermal growth factor receptor (EGFR) mutations accounts for 8%–30% of all cases of NSCLC depending on the geography and ethnicity. EGFR-mutated NSCLC usually responds to first-line therapy with EGFR tyrosine kinase inhibitors (TKIs). However, there is eventual loss of efficacy to TKIs due to development of resistance. The most frequent cause for resistance is a second EGFR mutation in exon 20 (T790M), which is encountered in up to 62% of patients. Osimertinib is one of the third-generation EGFR TKIs with a high selective potency against T790M mutants. In Phase I trial of osimertinib in advanced lung cancer after progression on EGFR TKIs, the response rate and disease control rate were 61% and 95%, respectively. A subsequent Phase II (AURA2) trial demonstrated a disease control rate of 92%, a response rate of 71%, a median duration of response of 7.8 months, and a median progression-free survival of 8.6 months. Osimertinib was approved by the US Food & Drug Administration in November 2015 for patients whose tumors exhibited T790M mutation and for those with progressive disease on other EGFR TKIs. In this review, we address the role of EGFR TKIs in the management of EGFR mutation lung cancer and the mechanisms of resistance to TKIs with a focus on the role of osimertinib. Data from completed trials of osimertinib, ongoing trials, as well as novel diagnostic methods to detect EGFR T790M mutation are reviewed. PMID:28367058
Saad, Nibal; Poudel, Aarati; Basnet, Alina; Gajra, Ajeet
2017-01-01
Adenocarcinoma is the most common type of non-small-cell lung cancer (NSCLC). Adenocarcinoma with epidermal growth factor receptor (EGFR) mutations accounts for 8%-30% of all cases of NSCLC depending on the geography and ethnicity. EGFR-mutated NSCLC usually responds to first-line therapy with EGFR tyrosine kinase inhibitors (TKIs). However, there is eventual loss of efficacy to TKIs due to development of resistance. The most frequent cause for resistance is a second EGFR mutation in exon 20 (T790M), which is encountered in up to 62% of patients. Osimertinib is one of the third-generation EGFR TKIs with a high selective potency against T790M mutants. In Phase I trial of osimertinib in advanced lung cancer after progression on EGFR TKIs, the response rate and disease control rate were 61% and 95%, respectively. A subsequent Phase II (AURA2) trial demonstrated a disease control rate of 92%, a response rate of 71%, a median duration of response of 7.8 months, and a median progression-free survival of 8.6 months. Osimertinib was approved by the US Food & Drug Administration in November 2015 for patients whose tumors exhibited T790M mutation and for those with progressive disease on other EGFR TKIs. In this review, we address the role of EGFR TKIs in the management of EGFR mutation lung cancer and the mechanisms of resistance to TKIs with a focus on the role of osimertinib. Data from completed trials of osimertinib, ongoing trials, as well as novel diagnostic methods to detect EGFR T790M mutation are reviewed.
Gordon, Chad R; Santiago, Gabriel F; Huang, Judy; Bergey, Gregory K; Liu, Shuya; Armand, Mehran; Brem, Henry; Anderson, William S
2017-10-06
Neuromodulation devices have the potential to transform modern day treatments for patients with medicine-resistant neurological disease. For instance, the NeuroPace System (NeuroPace Inc, Mountain View, California) is a Food and Drug Administration (FDA)-approved device developed for closed-loop direct brain neurostimulation in the setting of drug-resistant focal epilepsy. However, current methods require placement either above or below the skull in nonanatomic locations. This type of positioning has several drawbacks including visible deformities and scalp pressure from underneath leading to eventual wound healing difficulties, micromotion of hardware with infection, and extrusion leading to premature explantation. To introduce complete integration of a neuromodulation device within a customized cranial implant for biocompatibility optimization and prevention of visible deformity. We report a patient with drug-resistant focal epilepsy despite previous seizure surgery and maximized medical therapy. Preoperative imaging demonstrated severe resorption of previous bone flap causing deformity and risk for injury. She underwent successful responsive neurostimulation device implantation via complete integration within a clear customized cranial implant. The patient has recovered well without complication and has been followed closely for 180 d. Device interrogation with electrocorticographic data transmission has been successfully performed through the clear implant material for the first time with no evidence of any wireless transmission interference. Cranial contour irregularities, implant site infection, and bone flap resorption/osteomyelitis are adverse events associated with implantable neurotechnology. This method represents a novel strategy to incorporate all future neuromodulation devices within the confines of a low-profile, computer-designed cranial implant and the newfound potential to eliminate contour irregularities, improve outcomes, and optimize patient satisfaction. Copyright © 2017 by the Congress of Neurological Surgeons
Hao, Panlong; Liang, Dongmei; Cao, Lijie; Qiao, Bin; Wu, Hao; Caiyin, Qinggele; Zhu, Hongji; Qiao, Jianjun
2017-08-01
Nisin fermentation by Lactococcus lactis requires a low pH to maintain a relatively higher nisin activity. However, the acidic environment will result in cell arrest, and eventually decrease the relative nisin production. Hence, constructing an acid-resistant L. lactis is crucial for nisin harvest in acidic nisin fermentation. In this paper, the first discovery of the relationship between D-Asp amidation-associated gene (asnH) and acid resistance was reported. Overexpression of asnH in L. lactis F44 (F44A) resulted in a sevenfold increase in survival capacity during acid shift (pH 3) and enhanced nisin desorption capacity compared to F44 (wild type), which subsequently contributed to higher nisin production, reaching 5346 IU/mL, 57.0% more than that of F44 in the fed-batch fermentation. Furthermore, the engineered F44A showed a moderate increase in D-Asp amidation level (from 82 to 92%) compared to F44. The concomitant decrease of the negative charge inside the cell wall was detected by a newly developed method based on the nisin adsorption amount onto cell surface. Meanwhile, peptidoglycan cross-linkage increased from 36.8% (F44) to 41.9% (F44A), and intracellular pH can be better maintained by blocking extracellular H + due to the maintenance of peptidoglycan integrity, which probably resulted from the action of inhibiting hydrolases activity. The inference was further supported by the acmC-overexpression strain F44C, which was characterized by uncontrolled peptidoglycan hydrolase activity. Our results provided a novel strategy for enhancing nisin yield through cell wall remodeling, which contributed to both continuous nisin synthesis and less nisin adsorption in acidic fermentation (dual enhancement).
Systems biology of cisplatin resistance: past, present and future.
Galluzzi, L; Vitale, I; Michels, J; Brenner, C; Szabadkai, G; Harel-Bellan, A; Castedo, M; Kroemer, G
2014-05-29
The platinum derivative cis-diamminedichloroplatinum(II), best known as cisplatin, is currently employed for the clinical management of patients affected by testicular, ovarian, head and neck, colorectal, bladder and lung cancers. For a long time, the antineoplastic effects of cisplatin have been fully ascribed to its ability to generate unrepairable DNA lesions, hence inducing either a permanent proliferative arrest known as cellular senescence or the mitochondrial pathway of apoptosis. Accumulating evidence now suggests that the cytostatic and cytotoxic activity of cisplatin involves both a nuclear and a cytoplasmic component. Despite the unresolved issues regarding its mechanism of action, the administration of cisplatin is generally associated with high rates of clinical responses. However, in the vast majority of cases, malignant cells exposed to cisplatin activate a multipronged adaptive response that renders them less susceptible to the antiproliferative and cytotoxic effects of the drug, and eventually resume proliferation. Thus, a large fraction of cisplatin-treated patients is destined to experience therapeutic failure and tumor recurrence. Throughout the last four decades great efforts have been devoted to the characterization of the molecular mechanisms whereby neoplastic cells progressively lose their sensitivity to cisplatin. The advent of high-content and high-throughput screening technologies has accelerated the discovery of cell-intrinsic and cell-extrinsic pathways that may be targeted to prevent or reverse cisplatin resistance in cancer patients. Still, the multifactorial and redundant nature of this phenomenon poses a significant barrier against the identification of effective chemosensitization strategies. Here, we discuss recent systems biology studies aimed at deconvoluting the complex circuitries that underpin cisplatin resistance, and how their findings might drive the development of rational approaches to tackle this clinically relevant problem.
Ju, Xingyan; Yu, Hongsheng; Liang, Donghai; Jiang, Tao; Liu, Yuanwei; Chen, Ling; Dong, Qing; Liu, Xiaoran
2018-06-01
Ovarian cancer is the most frequent cause of death resulting from malignant gynecological tumors. After surgical intervention, cisplatin (DDP) is a major chemotherapy drug for ovarian cancer, but the ovarian cancer cells tend to develop DDP resistance in the clinical setting. Tumor cells are sensitive to low-dose radiation (LDR). However, how the LDR therapy improves the effects of chemotherapy drugs on ovarian cancer is not well understood. This study aimed to explore this issue. The SKOV3/DDP cells were divided into 3 groups, including low-dose group, conventional-dose group, and control group (no radiation). Cell counting kit-8 assay was performed to measure cell proliferation. Flow cytometric analysis was then utilized to quantify the apoptosis with classical Annexin V/propidium iodide co-staining. And Real-time quantitative PCR and western blot were eventually used to analyze the mRNA and protein levels of excision repair cross complementing-group 1 (ERCC1), B-cell lymphoma 2 (Bcl-2), Survivin and Caspase-3, respectively. The IC50 value of DDP in the low-dose group was significantly lower compared with the other two groups. Compared with the conventional-dose group and control group, LDR treatment resulted in significantly more apoptosis. Besides, LDR treatment significantly decreased the mRNA and protein expression of ERCC1, Bcl-2, and Survivin, and enhanced the mRNA and protein expression of Caspase-3 compared with the other two groups. LDR reversed DDP resistance in SKOV3/DDP cells possibly by suppressing ERCC1, Bcl-2, and Survivin expressions, and increasing Caspase-3 expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Tago, Kanako; Kikuchi, Yoshitomo; Nakaoka, Sinji; Katsuyama, Chie; Hayatsu, Masahito
2015-07-01
Some soil Burkholderia strains are capable of degrading the organophosphorus insecticide, fenitrothion, and establish symbiosis with stinkbugs, making the host insects fenitrothion-resistant. However, the ecology of the symbiotic degrading Burkholderia adapting to fenitrothion in the free-living environment is unknown. We hypothesized that fenitrothion applications affect the dynamics of fenitrothion-degrading Burkholderia, thereby controlling the transmission of symbiotic degrading Burkholderia from the soil to stinkbugs. We investigated changes in the density and diversity of culturable Burkholderia (i.e. symbiotic and nonsymbiotic fenitrothion degraders and nondegraders) in fenitrothion-treated soil using microcosms. During the incubation with five applications of pesticide, the density of the degraders increased from less than the detection limit to around 10(6)/g of soil. The number of dominant species among the degraders declined with the increasing density of degraders; eventually, one species predominated. This process can be explained according to the competitive exclusion principle using V(max) and K(m) values for fenitrothion metabolism by the degraders. We performed a phylogenetic analysis of representative strains isolated from the microcosms and evaluated their ability to establish symbiosis with the stinkbug Riptortus pedestris. The strains that established symbiosis with R. pedestris were assigned to a cluster including symbionts commonly isolated from stinkbugs. The strains outside the cluster could not necessarily associate with the host. The degraders in the cluster predominated during the initial phase of degrader dynamics in the soil. Therefore, only a few applications of fenitrothion could allow symbiotic degraders to associate with their hosts and may cause the emergence of symbiont-mediated insecticide resistance. © 2015 John Wiley & Sons Ltd.
Systems biology of cisplatin resistance: past, present and future
Galluzzi, L; Vitale, I; Michels, J; Brenner, C; Szabadkai, G; Harel-Bellan, A; Castedo, M; Kroemer, G
2014-01-01
The platinum derivative cis-diamminedichloroplatinum(II), best known as cisplatin, is currently employed for the clinical management of patients affected by testicular, ovarian, head and neck, colorectal, bladder and lung cancers. For a long time, the antineoplastic effects of cisplatin have been fully ascribed to its ability to generate unrepairable DNA lesions, hence inducing either a permanent proliferative arrest known as cellular senescence or the mitochondrial pathway of apoptosis. Accumulating evidence now suggests that the cytostatic and cytotoxic activity of cisplatin involves both a nuclear and a cytoplasmic component. Despite the unresolved issues regarding its mechanism of action, the administration of cisplatin is generally associated with high rates of clinical responses. However, in the vast majority of cases, malignant cells exposed to cisplatin activate a multipronged adaptive response that renders them less susceptible to the antiproliferative and cytotoxic effects of the drug, and eventually resume proliferation. Thus, a large fraction of cisplatin-treated patients is destined to experience therapeutic failure and tumor recurrence. Throughout the last four decades great efforts have been devoted to the characterization of the molecular mechanisms whereby neoplastic cells progressively lose their sensitivity to cisplatin. The advent of high-content and high-throughput screening technologies has accelerated the discovery of cell-intrinsic and cell-extrinsic pathways that may be targeted to prevent or reverse cisplatin resistance in cancer patients. Still, the multifactorial and redundant nature of this phenomenon poses a significant barrier against the identification of effective chemosensitization strategies. Here, we discuss recent systems biology studies aimed at deconvoluting the complex circuitries that underpin cisplatin resistance, and how their findings might drive the development of rational approaches to tackle this clinically relevant problem. PMID:24874729
Anti-mycobacterial peptides: made to order with delivery included.
Carroll, James; O' Mahony, Jim
2011-01-01
"TB is too often a death sentence. It does not have to be this way,"- Nelson Mandela. Despite the success of anti-mycobacterial drugs over the past 70 years, mycobacterial disease, particularly tuberculosis is still responsible for millions of annual deaths worldwide. Additionally, the emergence of Multidrug Resistant (MDR-TB) and Extensively Drug Resistant (XDR-TB) Tuberculosis has motivated calls by the World Health Organization (WHO) for novel drugs, vaccines and diagnostic tests. Consequently, the identification and evaluation of a range of anti-mycobacterial compounds against pathogenic mycobacterial species is of paramount importance. My colleagues and I at Cork Institute of Technology (CIT) and University College Cork (UCC) have tackled this issue through the initial optimization of the rapid, robust and inexpensive microtitre alamarBlue assay (MABA) and subsequent employment of this assay to facilitate the rapid assessment of a new wave of potential therapeutic compounds, namely bacteriocins, in particular type 1 bacteriocins known as lantibiotics. The gene encoded nature of these peptides facilitates their genetic manipulation and consequent activities as anti-microbial agents. In this regard, it may be possible to one day develop diverse populations of anti-mycobacterial bacteriocins with species specific activities. This may in turn provide more targeted therapies, resulting in less side effects, shorter treatment times and thus better patient compliance. Although current drug regimes are effective in the interim, previous lessons have taught us not to be complacent. In the words of the Intel founder Andrew Grove, 'Success breeds complacency. Complacency breeds failure. Only the paranoid survive'. Armed with knowledge of previous failures, it is the duty of the scientific community to anticipate future bacterial resistance and have an arsenal of compounds standing by in such an eventuality.
Ruiz-Núñez, Begoña; Pruimboom, Leo; Dijck-Brouwer, D A Janneke; Muskiet, Frits A J
2013-07-01
In this review, we focus on lifestyle changes, especially dietary habits, that are at the basis of chronic systemic low grade inflammation, insulin resistance and Western diseases. Our sensitivity to develop insulin resistance traces back to our rapid brain growth in the past 2.5 million years. An inflammatory reaction jeopardizes the high glucose needs of our brain, causing various adaptations, including insulin resistance, functional reallocation of energy-rich nutrients and changing serum lipoprotein composition. The latter aims at redistribution of lipids, modulation of the immune reaction, and active inhibition of reverse cholesterol transport for damage repair. With the advent of the agricultural and industrial revolutions, we have introduced numerous false inflammatory triggers in our lifestyle, driving us to a state of chronic systemic low grade inflammation that eventually leads to typically Western diseases via an evolutionary conserved interaction between our immune system and metabolism. The underlying triggers are an abnormal dietary composition and microbial flora, insufficient physical activity and sleep, chronic stress and environmental pollution. The disturbance of our inflammatory/anti-inflammatory balance is illustrated by dietary fatty acids and antioxidants. The current decrease in years without chronic disease is rather due to "nurture" than "nature," since less than 5% of the typically Western diseases are primary attributable to genetic factors. Resolution of the conflict between environment and our ancient genome might be the only effective manner for "healthy aging," and to achieve this we might have to return to the lifestyle of the Paleolithic era as translated to the 21st century culture. Copyright © 2013 Elsevier Inc. All rights reserved.
Early treatment resistance in a Latin-American cohort of patients with schizophrenia.
Mena, Cristian; Gonzalez-Valderrama, Alfonso; Iruretagoyena, Barbara; Undurraga, Juan; Crossley, Nicolas A
2018-03-08
Failure to respond to antipsychotic medication in schizophrenia is a common clinical scenario with significant morbidity. Recent studies have highlighted that many patients present treatment-resistance from disease onset. We here present an analysis of clozapine prescription patterns, used as a real-world proxy marker for treatment-resistance, in a cohort of 1195 patients with schizophrenia from a Latin-American cohort, to explore the timing of emergence of treatment resistance and possible subgroup differences. Survival analysis from national databases of clozapine monitoring system, national disease notification registers, and discharges from an early intervention ward. Echoing previous studies, we found that around 1 in 5 patients diagnosed with schizophrenia were eventually prescribed clozapine, with an over-representation of males and those with a younger onset of psychosis. The annual probability of being prescribed clozapine was highest within the first year (probability of 0.11, 95% confidence interval of 0.093-0.13), compared to 0.018 (0.012-0.024) between years 1 and 5, and 0.006 (0-0.019) after 5years. Age at psychosis onset, gender, dose of clozapine used, and compliance with hematological monitoring at 12months, was not related to the onset of treatment resistance. A similar pattern was observed in a subgroup of 230 patients discharged from an early intervention ward with a diagnosis of non-affective first episode of psychosis. Our results highlight that treatment resistance is frequently present from the onset of psychosis. Future studies will shed light on the possible different clinical and neurobiological characteristics of this subtype of psychosis. Copyright © 2018. Published by Elsevier B.V.
Sabnis, Gauri J.; Goloubeva, Olga G.; Kazi, Armina A.; Shah, Preeti; Brodie, Angela H.
2013-01-01
We previously showed that in innately resistant tumors, silencing of the estrogen receptor (ER) could be reversed by treatment with a histone deacetylase (HDAC) inhibitor entinostat (ENT). Tumors were then responsive to aromatase inhibitor (AIs) letrozole. Here, we investigated whether ER in the acquired letrozole resistant tumors could be restored with ENT. Ovariectomized athymic mice were inoculated with MCF-7Ca cells, supplemented with androstenedione (Δ4A), the aromatizable substrate. When the tumors reached ~300mm3, the mice were treated with letrozole. After initial response to letrozole, the tumors eventually became resistant (doubled their initial volume). The mice then were grouped to receive letrozole, exemestane (250μg/day), ENT (50μg/day) or the combination of ENT with letrozole or exemestane for 26 weeks. The growth rates of tumors of mice treated with the combination of ENT with letrozole or exemestane were significantly slower than with the single agent (p<0.05). Analysis of the letrozole resistant tumors showed ENT increased ERα expression and aromatase activity but downregulated Her-2, p-Her-2, p-MAPK and p-Akt. However, the mechanism of action of ENT in reversing acquired resistance did not involve epigenetic silencing, but rather included post-translational as well as transcriptional modulation of Her-2. ENT treatment reduced the association of the Her-2 protein with HSP-90, possibly by reducing the stability of Her-2 protein. In addition, ENT also reduced Her-2 mRNA levels and its stability. Our results suggest that the HDAC inhibitor may reverse letrozole resistance in cells and tumors by modulating Her-2 expression and activity. PMID:24092810
Circular RNA Signature Predicts Gemcitabine Resistance of Pancreatic Ductal Adenocarcinoma.
Shao, Feng; Huang, Mei; Meng, Futao; Huang, Qiang
2018-01-01
Gemcitabine resistance is currently the main problem of chemotherapy for advanced pancreatic cancer patients. The resistance is thought to be caused by altered drug metabolism or reduced apoptosis of cancer cells. However, the underlying mechanism of Gemcitabine resistance in pancreatic cancer remains unclear. In this study, we established Gemcitabine resistant PANC-1 (PANC-1-GR) cell lines and compared the circular RNAs (circRNAs) profiles between PANC-1 cells and PANC-1-GR cells by RNA sequencing. Differentially expressed circRNAs were demonstrated using scatter plot and cluster heatmap analysis. Gene ontology and pathway analysis were performed to systemically map the genes which are functionally associated to those differentially expressed circRNAs identified from our data. The expression of the differentially expressed circRNAs picked up by RNAseq in PANC-1-GR cells was further validated by qRT-PCR and two circRNAs were eventually identified as the most distinct targets. Consistently, by analyzing plasma samples form pancreatic ductal adenocarcinoma (PDAC) patients, the two circRNAs showed more significant expression in the Gemcitabine non-responsive patients than the responsive ones. In addition, we found that silencing of the two circRNAs could restore the sensitivity of PANC-1-GR cells to Gemcitabine treatment, while over-expression of them could increase the resistance of normal PANC-1 and MIA PACA-2 cells, suggesting that they might serve as drug targets for Gemcitabine resistance. Furthermore, the miRNA interaction networks were also explored based on the correlation analysis of the target microRNAs of these two circRNAs. In conclusion, we successfully established new PANC-1-GR cells, systemically characterized the circRNA and miRNA profiles, and identified two circRNAs as novel biomarkers and potential therapeutic targets for Gemcitabine non-responsive PDAC patients.
Control of Pyrethroid-Resistant Chagas Disease Vectors with Entomopathogenic Fungi
Pedrini, Nicolás; Mijailovsky, Sergio J.; Girotti, Juan R.; Stariolo, Raúl; Cardozo, Rubén M.; Gentile, Alberto; Juárez, M. Patricia
2009-01-01
Background Triatoma infestans-mediated transmission of Tripanosoma cruzi, the causative agent of Chagas disease, remains as a major health issue in southern South America. Key factors of T. infestans prevalence in specific areas of the geographic Gran Chaco region—which extends through northern Argentina, Bolivia, and Paraguay—are both recurrent reinfestations after insecticide spraying and emerging pyrethroid-resistance over the past ten years. Among alternative control tools, the pathogenicity of entomopathogenic fungi against triatomines is already known; furthermore, these fungi have the ability to fully degrade hydrocarbons from T. infestans cuticle and to utilize them as fuel and for incorporation into cellular components. Methodology and Findings Here we provide evidence of resistance-related cuticle differences; capillary gas chromatography coupled to mass spectrometry analyses revealed that pyrethroid-resistant bugs have significantly larger amounts of surface hydrocarbons, peaking 56.2±6.4% higher than susceptible specimens. Also, a thicker cuticle was detected by scanning electron microscopy (32.1±5.9 µm and 17.8±5.4 µm for pyrethroid-resistant and pyrethroid-susceptible, respectively). In laboratory bioassays, we showed that the virulence of the entomopathogenic fungi Beauveria bassiana against T. infestans was significantly enhanced after fungal adaptation to grow on a medium containing insect-like hydrocarbons as the carbon source, regardless of bug susceptibility to pyrethroids. We designed an attraction-infection trap based on manipulating T. infestans behavior in order to facilitate close contact with B. bassiana. Field assays performed in rural village houses infested with pyrethroid-resistant insects showed 52.4% bug mortality. Using available mathematical models, we predicted that further fungal applications could eventually halt infection transmission. Conclusions This low cost, low tech, ecologically friendly methodology could help in controlling the spread of pyrethroid-resistant bugs. PMID:19434231
A Handheld Point-of-Care Genomic Diagnostic System
Myers, Frank B.; Henrikson, Richard H.; Bone, Jennifer; Lee, Luke P.
2013-01-01
The rapid detection and identification of infectious disease pathogens is a critical need for healthcare in both developed and developing countries. As we gain more insight into the genomic basis of pathogen infectivity and drug resistance, point-of-care nucleic acid testing will likely become an important tool for global health. In this paper, we present an inexpensive, handheld, battery-powered instrument designed to enable pathogen genotyping in the developing world. Our Microfluidic Biomolecular Amplification Reader (µBAR) represents the convergence of molecular biology, microfluidics, optics, and electronics technology. The µBAR is capable of carrying out isothermal nucleic acid amplification assays with real-time fluorescence readout at a fraction of the cost of conventional benchtop thermocyclers. Additionally, the µBAR features cell phone data connectivity and GPS sample geotagging which can enable epidemiological surveying and remote healthcare delivery. The µBAR controls assay temperature through an integrated resistive heater and monitors real-time fluorescence signals from 60 individual reaction chambers using LEDs and phototransistors. Assays are carried out on PDMS disposable microfluidic cartridges which require no external power for sample loading. We characterize the fluorescence detection limits, heater uniformity, and battery life of the instrument. As a proof-of-principle, we demonstrate the detection of the HIV-1 integrase gene with the µBAR using the Loop-Mediated Isothermal Amplification (LAMP) assay. Although we focus on the detection of purified DNA here, LAMP has previously been demonstrated with a range of clinical samples, and our eventual goal is to develop a microfluidic device which includes on-chip sample preparation from raw samples. The µBAR is based entirely around open source hardware and software, and in the accompanying online supplement we present a full set of schematics, bill of materials, PCB layouts, CAD drawings, and source code for the µBAR instrument with the goal of spurring further innovation toward low-cost genetic diagnostics. PMID:23936402
Tics, Tourette Syndrome, and OCD
... AAP Find a Pediatrician Health Issues Conditions Abdominal ADHD Allergies & Asthma Autism Cancer Chest & Lungs Chronic Conditions ... In children who eventually develop tic disorders and ADHD, the ADHD usually develops 2 to 3 years ...
Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer.
Eritja, Núria; Chen, Bo-Juen; Rodríguez-Barrueco, Ruth; Santacana, Maria; Gatius, Sònia; Vidal, August; Martí, Maria Dolores; Ponce, Jordi; Bergadà, Laura; Yeramian, Andree; Encinas, Mario; Ribera, Joan; Reventós, Jaume; Boyd, Jeff; Villanueva, Alberto; Matias-Guiu, Xavier; Dolcet, Xavier; Llobet-Navàs, David
2017-03-04
Targeted therapies in endometrial cancer (EC) using kinase inhibitors rarely result in complete tumor remission and are frequently challenged by the appearance of refractory cell clones, eventually resulting in disease relapse. Dissecting adaptive mechanisms is of vital importance to circumvent clinical drug resistance and improve the efficacy of targeted agents in EC. Sorafenib is an FDA-approved multitarget tyrosine and serine/threonine kinase inhibitor currently used to treat hepatocellular carcinoma, advanced renal carcinoma and radioactive iodine-resistant thyroid carcinoma. Unfortunately, sorafenib showed very modest effects in a multi-institutional phase II trial in advanced uterine carcinoma patients. Here, by leveraging RNA-sequencing data from the Cancer Cell Line Encyclopedia and cell survival studies from compound-based high-throughput screenings we have identified the lysosomal pathway as a potential compartment involved in the resistance to sorafenib. By performing additional functional biology studies we have demonstrated that this resistance could be related to macroautophagy/autophagy. Specifically, our results indicate that sorafenib triggers a mechanistic MAPK/JNK-dependent early protective autophagic response in EC cells, providing an adaptive response to therapeutic stress. By generating in vivo subcutaneous EC cell line tumors, lung metastatic assays and primary EC orthoxenografts experiments, we demonstrate that targeting autophagy enhances sorafenib cytotoxicity and suppresses tumor growth and pulmonary metastasis progression. In conclusion, sorafenib induces the activation of a protective autophagic response in EC cells. These results provide insights into the unopposed resistance of advanced EC to sorafenib and highlight a new strategy for therapeutic intervention in recurrent EC.
YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage
Ciamporcero, Eric; Shen, He; Ramakrishnan, Swathi; Ku, Sheng Yu; Chintala, Sreenivasulu; Shen, Li; Adelaiye, Remi; Miles, Kiersten Marie; Ullio, Chiara; Pizzimenti, Stefania; Daga, Martina; Azabdaftari, Gissou; Attwood, Kris; Johnson, Candace; Zhang, Jianmin; Barrera, Giuseppina; Pili, Roberto
2015-01-01
Current standard of care for muscle-invasive urothelial cell carcinoma (UCC) is surgery along with perioperative platinum-based chemotherapy. UCC is sensitive to cisplatin-based regimens, but acquired resistance eventually occurs, and a subset of tumors is intrinsically resistant. Thus, there is an unmet need for new therapeutic approaches to target chemotherapy-resistant UCC. Yes-associated protein (YAP) is a transcriptional co-activator that has been associated with bladder cancer progression and cisplatin resistance in ovarian cancer. In contrast, YAP has been shown to induce DNA damage associated apoptosis in non-small cell lung carcinoma. However, no data have been reported on the YAP role in UCC chemo-resistance. Thus, we have investigated the potential dichotomous role of YAP in UCC response to chemotherapy utilizing two patient-derived xenograft models recently established. Constitutive expression and activation of YAP inversely correlated with in vitro and in vivo cisplatin sensitivity. YAP overexpression protected while YAP knock-down sensitized UCC cells to chemotherapy and radiation effects via increased accumulation of DNA damage and apoptosis. Furthermore, pharmacological YAP inhibition with verteporfin inhibited tumor cell proliferation and restored sensitivity to cisplatin. In addition, nuclear YAP expression was associated with poor outcome in UCC patients who received perioperative chemotherapy. In conclusion, these results suggest that YAP activation exerts a protective role and represents a pharmacological target to enhance the anti-tumor effects of DNA damaging modalities in the treatment of UCC. PMID:26119935
Neuronal Responses to Physiological Stress
Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger
2012-01-01
Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, due to an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level. PMID:23112806
Thin Films and Inflatable Applications in Exploration Habitat Structures
NASA Technical Reports Server (NTRS)
Frazier, Donald O.; Paley, Mark S.; Strong, Janet D.
2005-01-01
NASA's vision to return to the Moon and then extend human exploration to Mars will benefit from human habitat technology development using new and creative applications of polymer materials and concepts. Thin Film and Inflatable (TFVI) materials are particularly interesting for exploration applications due to their light weight and low volume. Whereas TF/I materials can be launched and carried from Earth to multiple and distant exploration sites without the constraints of upmass limitations, eventually, with recycling and reclamation efforts, these materials may be developed using in-situ resources. These materials can be useful for fabricating, patching and repairing vehicles, replacement parts and even habitat structures, as well as for developing stand-alone habitat structure technologies and for nested and integrated applications. TF/Is can also be ideal environmental containment vessels within lunar or Martian regolith walls or as liners inside caves or raw regolith exterior structures for the provisions of atmosphere containment, debris protection and cleanliness. Further, TFOs can be specialized and matured for various and diverse applications. The desired range of applications will require materials specification for such properties as transparency, elasticity, thermal conductivity, mechanical strength, heat capacity, chemical resistance, and permeability. This paper will discuss Marshall Space Flight Center's plans to analyze and prioritize TF/I materials properties and classifications and to develop applications for these highly desirable materials in human habitat construction projects on the Moon and Mars.
Waltmann, Andreea; Koepfli, Cristian; Tessier, Natacha; Karl, Stephan; Fola, Abebe; Darcy, Andrew W.; Wini, Lyndes; Harrison, G. L. Abby; Barnadas, Céline; Jennison, Charlie; Karunajeewa, Harin; Boyd, Sarah; Whittaker, Maxine; Kazura, James; Bahlo, Melanie; Mueller, Ivo
2018-01-01
The human malaria parasite Plasmodium vivax is more resistant to malaria control strategies than Plasmodium falciparum, and maintains high genetic diversity even when transmission is low. To investigate whether declining P. vivax transmission leads to increasing population structure that would facilitate elimination, we genotyped samples from across the Southwest Pacific region, which experiences an eastward decline in malaria transmission, as well as samples from two time points at one site (Tetere, Solomon Islands) during intensified malaria control. Analysis of 887 P. vivax microsatellite haplotypes from hyperendemic Papua New Guinea (PNG, n = 443), meso-hyperendemic Solomon Islands (n = 420), and hypoendemic Vanuatu (n = 24) revealed increasing population structure and multilocus linkage disequilibrium yet a modest decline in diversity as transmission decreases over space and time. In Solomon Islands, which has had sustained control efforts for 20 years, and Vanuatu, which has experienced sustained low transmission for many years, significant population structure was observed at different spatial scales. We conclude that control efforts will eventually impact P. vivax population structure and with sustained pressure, populations may eventually fragment into a limited number of clustered foci that could be targeted for elimination. PMID:29373596
Waltmann, Andreea; Koepfli, Cristian; Tessier, Natacha; Karl, Stephan; Fola, Abebe; Darcy, Andrew W; Wini, Lyndes; Harrison, G L Abby; Barnadas, Céline; Jennison, Charlie; Karunajeewa, Harin; Boyd, Sarah; Whittaker, Maxine; Kazura, James; Bahlo, Melanie; Mueller, Ivo; Barry, Alyssa E
2018-01-01
The human malaria parasite Plasmodium vivax is more resistant to malaria control strategies than Plasmodium falciparum, and maintains high genetic diversity even when transmission is low. To investigate whether declining P. vivax transmission leads to increasing population structure that would facilitate elimination, we genotyped samples from across the Southwest Pacific region, which experiences an eastward decline in malaria transmission, as well as samples from two time points at one site (Tetere, Solomon Islands) during intensified malaria control. Analysis of 887 P. vivax microsatellite haplotypes from hyperendemic Papua New Guinea (PNG, n = 443), meso-hyperendemic Solomon Islands (n = 420), and hypoendemic Vanuatu (n = 24) revealed increasing population structure and multilocus linkage disequilibrium yet a modest decline in diversity as transmission decreases over space and time. In Solomon Islands, which has had sustained control efforts for 20 years, and Vanuatu, which has experienced sustained low transmission for many years, significant population structure was observed at different spatial scales. We conclude that control efforts will eventually impact P. vivax population structure and with sustained pressure, populations may eventually fragment into a limited number of clustered foci that could be targeted for elimination.
Suppressors of dGTP Starvation in Escherichia coli
Itsko, Mark
2017-01-01
ABSTRACT dGTP starvation, a newly discovered phenomenon in which Escherichia coli cells are starved specifically for the DNA precursor dGTP, leads to impaired growth and, ultimately, cell death. Phenomenologically, it represents an example of nutritionally induced unbalanced growth: cell mass amplifies normally as dictated by the nutritional status of the medium, but DNA content growth is specifically impaired. The other known example of such a condition, thymineless death (TLD), involves starvation for the DNA precursor dTTP, which has been found to have important chemotherapeutic applications. Experimentally, dGTP starvation is induced by depriving an E. coli gpt optA1 strain of its required purine source, hypoxanthine. In our studies of this phenomenon, we noted the emergence of a relatively high frequency of suppressor mutants that proved resistant to the treatment. To study such suppressors, we used next-generation sequencing on a collection of independently obtained mutants. A significant fraction was found to carry a defect in the PurR transcriptional repressor, controlling de novo purine biosynthesis, or in its downstream purEK operon. Thus, upregulation of de novo purine biosynthesis appears to be a major mode of overcoming the lethal effects of dGTP starvation. In addition, another large fraction of the suppressors contained a large tandem duplication of a 250- to 300-kb genomic region that included the purEK operon as well as the acrAB-encoded multidrug efflux system. Thus, the suppressive effects of the duplications could potentially involve beneficial effects of a number of genes/operons within the amplified regions. IMPORTANCE Concentrations of the four precursors for DNA synthesis (2′-deoxynucleoside-5′-triphosphates [dNTPs]) are critical for both the speed of DNA replication and its accuracy. Previously, we investigated consequences of dGTP starvation, where the DNA precursor dGTP was specifically reduced to a low level. Under this condition, E. coli cells continued cell growth but eventually developed a DNA replication defect, leading to cell death due to formation of unresolvable DNA structures. Nevertheless, dGTP-starved cultures eventually resumed growth due to the appearance of resistant mutants. Here, we used whole-genome DNA sequencing to identify the responsible suppressor mutations. We show that the majority of suppressors can circumvent death by upregulating purine de novo biosynthesis, leading to restoration of dGTP to acceptable levels. PMID:28373271
Oncolytic activities of host defense peptides.
Al-Benna, Sammy; Shai, Yechiel; Jacobsen, Frank; Steinstraesser, Lars
2011-01-01
Cancer continues to be a leading source of morbidity and mortality worldwide in spite of progress in oncolytic therapies. In addition, the incidence of cancers affecting the breast, kidney, prostate and skin among others continue to rise. Chemotherapeutic drugs are widely used in cancer treatment but have the serious drawback of nonspecific toxicity because these agents target any rapidly dividing cell without discriminating between healthy and malignant cells. In addition, many neoplasms eventually become resistant to conventional chemotherapy due to selection for multidrug-resistant variants. The limitations associated with existing chemotherapeutic drugs have stimulated the search for new oncolytic therapies. Host defense peptides (HDPs) may represent a novel family of oncolytic agents that can avoid the shortcomings of conventional chemotherapy because they exhibit selective cytotoxicity against a broad spectrum of malignant human cells, including multi-drug-resistant neoplastic cells. Oncolytic activity by HDPs is usually via necrosis due to cell membrane lysis, but some HDPs can trigger apoptosis in cancer cells via mitochondrial membrane disruption. In addition, certain HDPs are anti-angiogenic which may inhibit cancer progression. This paper reviews oncolytic HDP studies in order to address the suitability of selected HDPs as oncolytic therapies.
Tribology of nitrided-coated steel-a review
NASA Astrophysics Data System (ADS)
Bhaskar, Santosh V.; Kudal, Hari N.
2017-01-01
Surface engineering such as surface treatment, coating, and surface modification are employed to increase surface hardness, minimize adhesion, and hence, to reduce friction and improve resistance to wear. To have optimal tribological performance of Physical Vapor Deposition (PVD) hard coating to the substrate materials, pretreatment of the substrate materials is always advisable to avoid plastic deformation of the substrate, which may result in eventual coating failure. The surface treatment results in hardening of the substrate and increase in load support effect. Many approaches aim to improve the adhesion of the coatings onto the substrate and nitriding is the one of the best suitable options for the same. In addition to tribological properties, nitriding leads to improved corrosion resistance. Often corrosion resistance is better than that obtainable with other surface engineering processes such as hard-chrome and nickel plating. Ability of this layer to withstand thermal stresses gives stability which extends the surface life of tools and other components exposed to heat. Most importantly, the nitrogen picked-up by the diffusion layer increases the rotating-bending fatigue strength in components. The present article reviews mainly the tribological advancement of different nitrided-coated steels based on the types of coatings, structure, and the tribo-testing parameters, in recent years.
Impact of immigration on HIV-1 molecular epidemiology in West Africa, Maghreb and Southern Europe.
Miri, Lamia; Wakrim, Lahcen; Kassar, Hassène; Hemminki, Kari; Khyatti, Meriem
2014-01-01
There is global concern about the relation between international migration and the course of the AIDS epidemic. Maghreb is a North African region, which lies between sub-Saharan Africa and Europe. It has been turned recently into a region of immigration, since there are more and more flows of West African migrants hoping to reach European countries. Here we provide an overview on HIV-1 molecular epidemiology particularly in West African countries, Maghreb (Morocco, Algeria, Tunisia) and southern European countries (Spain, France, and Italy). The studies conducted in several countries of the region revealed different features of HIV-1 molecular epidemiology, especially for the distribution of viral subtypes and for transmitted drug resistance profiles. Furthermore, migration from West Africa to Europe seems to be a potential source of non-B subtype mobility to Maghreb and eventually to southern Europe, where HIV-1 non-B variants significantly increased in the last 10 to 15 years. As genetic differences between subtypes might impact the drug resistance pathways, it is important to provide continuous surveillance programs for the early detection of new variants spreading in the population before they become more prevalent, and to identify resistance profiles in different infected populations, especially migrants.
Consumer antibacterial soaps: effective or just risky?
Aiello, Allison E; Larson, Elaine L; Levy, Stuart B
2007-09-01
Much has been written recently about the potential hazards versus benefits of antibacterial (biocide)-containing soaps. The purpose of this systematic literature review was to assess the studies that have examined the efficacy of products containing triclosan, compared with that of plain soap, in the community setting, as well as to evaluate findings that address potential hazards of this use--namely, the emergence of antibiotic-resistant bacteria. The PubMed database was searched for English-language articles, using relevant keyword combinations for articles published between 1980 and 2006. Twenty-seven studies were eventually identified as being relevant to the review. Soaps containing triclosan within the range of concentrations commonly used in the community setting (0.1%-0.45% wt/vol) were no more effective than plain soap at preventing infectious illness symptoms and reducing bacterial levels on the hands. Several laboratory studies demonstrated evidence of triclosan-adapted cross-resistance to antibiotics among different species of bacteria. The lack of an additional health benefit associated with the use of triclosan-containing consumer soaps over regular soap, coupled with laboratory data demonstrating a potential risk of selecting for drug resistance, warrants further evaluation by governmental regulators regarding antibacterial product claims and advertising. Further studies of this issue are encouraged.
RT-SHIV subpopulation dynamics in infected macaques during anti-HIV therapy
2009-01-01
Background To study the dynamics of wild-type and drug-resistant HIV-1 RT variants, we developed a methodology that follows the fates of individual genomes over time within the viral quasispecies. Single genome sequences were obtained from 3 pigtail macaques infected with a recombinant simian immunodeficiency virus containing the RT coding region from HIV-1 (RT-SHIV) and treated with short-course efavirenz monotherapy 13 weeks post-infection followed by daily combination antiretroviral therapy (ART) beginning at week 17. Bioinformatics tools were constructed to trace individual genomes from the beginning of infection to the end of the treatment. Results A well characterized challenge RT-SHIV inoculum was used to infect three monkeys. The RT-SHIV inoculum had 9 variant subpopulations and the dominant subpopulation accounted for 80% of the total genomes. In two of the three monkeys, the inoculated wild-type virus was rapidly replaced by new wild type variants. By week 13, the original dominant subpopulation in the inoculum was replaced by new dominant subpopulations, followed by emergence of variants carrying known NNRTI resistance mutations. However, during ART, virus subpopulations containing resistance mutations did not outgrow the wide-type subpopulations until a minor subpopulation carrying linked drug resistance mutations (K103N/M184I) emerged. We observed that persistent viremia during ART is primarily made up of wild type subpopulations. We also found that subpopulations carrying the V75L mutation, not known to be associated with NNRTI resistance, emerged initially in week 13 in two macaques. Eventually, all subpopulations from these two macaques carried the V75L mutation. Conclusion This study quantitatively describes virus evolution and population dynamics patterns in an animal model. The fact that wild type subpopulations remained as dominant subpopulations during ART treatment suggests that the presence or absence of at least some known drug resistant mutations may not greatly affect virus replication capacity in vivo. Additionally, the emergence and prevalence of V75L indicates that this mutation may provide the virus a selective advantage, perhaps escaping the host immure system surveillance. Our new method to quantitatively analyze viral population dynamics enabled us to observe the relative competitiveness and adaption of different viral variants and provided a valuable tool for studying HIV subpopulation emergence, persistence, and decline during ART. PMID:19889213
NASA Astrophysics Data System (ADS)
Harrer, S.; Kim, S. C.; Schieber, C.; Kannam, S.; Gunn, N.; Moore, S.; Scott, D.; Bathgate, R.; Skafidas, S.; Wagner, J. M.
2015-05-01
Employing integrated nano- and microfluidic circuits for detecting and characterizing biological compounds through resistive pulse sensing technology is a vibrant area of research at the interface of biotechnology and nanotechnology. Resistive pulse sensing platforms can be customized to study virtually any particle of choice which can be threaded through a fluidic channel and enable label-free single-particle interrogation with the primary read-out signal being an electric current fingerprint. The ability to perform label-free molecular screening with single-molecule and even single binding site resolution makes resistive pulse sensing technology a powerful tool for analyzing the smallest units of biological systems and how they interact with each other on a molecular level. This task is at the core of experimental systems biology and in particular ‘omics research which in combination with next-generation DNA-sequencing and next-generation drug discovery and design forms the foundation of a novel disruptive medical paradigm commonly referred to as personalized medicine or precision medicine. DNA-sequencing has approached the 1000-Dollar-Genome milestone allowing for decoding a complete human genome with unmatched speed and at low cost. Increased sequencing efficiency yields massive amounts of genomic data. Analyzing this data in combination with medical and biometric health data eventually enables understanding the pathways from individual genes to physiological functions. Access to this information triggers fundamental questions for doctors and patients alike: what are the chances of an outbreak for a specific disease? Can individual risks be managed and if so how? Which drugs are available and how should they be applied? Could a new drug be tailored to an individual’s genetic predisposition fast and in an affordable way? In order to provide answers and real-life value to patients, the rapid evolvement of novel computing approaches for analyzing big data in systems genomics has to be accompanied by an equally strong effort to develop next-generation DNA-sequencing and next-generation drug screening and design platforms. In that context lab-on-a-chip devices utilizing nanopore- and nanochannel based resistive pulse-sensing technology for DNA-sequencing and protein screening applications occupy a key role. This paper describes the status quo of resistive pulse sensing technology for these two application areas with a special focus on current technology trends and challenges ahead.
Harrer, S; Kim, S C; Schieber, C; Kannam, S; Gunn, N; Moore, S; Scott, D; Bathgate, R; Skafidas, S; Wagner, J M
2015-05-08
Employing integrated nano- and microfluidic circuits for detecting and characterizing biological compounds through resistive pulse sensing technology is a vibrant area of research at the interface of biotechnology and nanotechnology. Resistive pulse sensing platforms can be customized to study virtually any particle of choice which can be threaded through a fluidic channel and enable label-free single-particle interrogation with the primary read-out signal being an electric current fingerprint. The ability to perform label-free molecular screening with single-molecule and even single binding site resolution makes resistive pulse sensing technology a powerful tool for analyzing the smallest units of biological systems and how they interact with each other on a molecular level. This task is at the core of experimental systems biology and in particular 'omics research which in combination with next-generation DNA-sequencing and next-generation drug discovery and design forms the foundation of a novel disruptive medical paradigm commonly referred to as personalized medicine or precision medicine. DNA-sequencing has approached the 1000-Dollar-Genome milestone allowing for decoding a complete human genome with unmatched speed and at low cost. Increased sequencing efficiency yields massive amounts of genomic data. Analyzing this data in combination with medical and biometric health data eventually enables understanding the pathways from individual genes to physiological functions. Access to this information triggers fundamental questions for doctors and patients alike: what are the chances of an outbreak for a specific disease? Can individual risks be managed and if so how? Which drugs are available and how should they be applied? Could a new drug be tailored to an individual's genetic predisposition fast and in an affordable way? In order to provide answers and real-life value to patients, the rapid evolvement of novel computing approaches for analyzing big data in systems genomics has to be accompanied by an equally strong effort to develop next-generation DNA-sequencing and next-generation drug screening and design platforms. In that context lab-on-a-chip devices utilizing nanopore- and nanochannel based resistive pulse-sensing technology for DNA-sequencing and protein screening applications occupy a key role. This paper describes the status quo of resistive pulse sensing technology for these two application areas with a special focus on current technology trends and challenges ahead.
Iweriebor, Benson Chuks; Gaqavu, Sisipho; Obi, Larry Chikwelu; Nwodo, Uchechukwu U.; Okoh, Anthony I.
2015-01-01
Background: Antimicrobial resistance in microorganisms are on the increase worldwide and are responsible for substantial cases of therapeutic failures. Resistance of species of Enterococcus to antibiotics is linked to their ability to acquire and disseminate antimicrobial resistance determinants in nature, and wastewater treatment plants (WWTPs) are considered to be one of the main reservoirs of such antibiotic resistant bacteria. We therefore determined the antimicrobial resistance and virulence profiles of some common Enterococcus spp that are known to be associated with human infections that were recovered from hospital wastewater and final effluent of the receiving wastewater treatment plant in Alice, Eastern Cape. Methods: Wastewater samples were simultaneously collected from two sites (Victoria hospital and final effluents of a municipal WWTP) in Alice at about one to two weeks interval during the months of July and August 2014. Samples were screened for the isolation of enterococci using standard microbiological methods. The isolates were profiled molecularly after targeted generic identification and speciation for the presence of virulence and antibiotic resistance genes. Results: Out of 66 presumptive isolates, 62 were confirmed to belong to the Enterococcus genusof which 30 were identified to be E. faecalis and 15 E. durans. The remaining isolates were not identified by the primers used in the screening procedure. Out of the six virulence genes that were targeted only three of them; ace, efaA, and gelE were detected. There was a very high phenotypic multiple resistance among the isolates and these were confirmed by genetic analyses. Conclusions: Analyses of the results obtained indicated that hospital wastewater may be one of the sources of antibiotic resistant bacteria to the receiving WWTP. Also, findings revealed that the final effluent discharged into the environment was contaminated with multi-resistant enterococci species thus posing a health hazard to the receiving aquatic environment as these could eventually be transmitted to humans and animals that are exposed to it. PMID:25893999
Ulrich, Craig; Hubbard, Susan S.; Florsheim, Joan; Rosenberry, Donald O.; Borglin, Sharon; Trotta, Marcus; Seymour, Donald
2015-01-01
An experimental field study was performed to investigate riverbed clogging processes and associated monitoring approaches near a dam-controlled riverbank filtration facility in Northern California. Motivated by previous studies at the site that indicated riverbed clogging plays an important role in the performance of the riverbank filtration system, we investigated the spatiotemporal variability and nature of the clogging. In particular, we investigated whether the clogging was due to abiotic or biotic mechanisms. A secondary aspect of the study was the testing of different methods to monitor riverbed clogging and related processes, such as seepage. Monitoring was conducted using both point-based approaches and spatially extensive geophysical approaches, including: grain-size analysis, temperature sensing, electrical resistivity tomography, seepage meters, microbial analysis, and cryocoring, along two transects. The point monitoring measurements suggested a substantial increase in riverbed biomass (2 orders of magnitude) after the dam was raised compared to the small increase (∼2%) in fine-grained sediment. These changes were concomitant with decreased seepage. The decreased seepage eventually led to the development of an unsaturated zone beneath the riverbed, which further decreased infiltration capacity. Comparison of our time-lapse grain-size and biomass datasets suggested that biotic processes played a greater role in clogging than did abiotic processes. Cryocoring and autonomous temperature loggers were most useful for locally monitoring clogging agents, while electrical resistivity data were useful for interpreting the spatial extent of a pumping-induced unsaturated zone that developed beneath the riverbed after riverbed clogging was initiated. The improved understanding of spatiotemporally variable riverbed clogging and monitoring approaches is expected to be useful for optimizing the riverbank filtration system operations.
Dudek, Aleksandra M; van Kampen, Jasmijn G M; Witjes, J Alfred; Kiemeney, Lambertus A L M; Verhaegh, Gerald W
2018-06-01
Approximately 20% of patients with bladder cancer are diagnosed with muscle-invasive disease (MIBC). The treatment involves radical cystectomy, but almost 50% of patients with MIBC eventually relapse and develop metastasis. The use of platinum-based chemotherapy in the neoadjuvant setting or for metastatic patients has been shown to improve the overall survival in a subset of patients. Unfortunately, no biomarkers are available to select patients with MIBC who will benefit from chemotherapy or to monitor the efficacy of the treatment. Recently, long noncoding RNAs (lncRNAs) were shown to regulate a variety of processes involved in the development and progression of cancer, including bladder cancer. Moreover, several lncRNAs have been shown to play a role in chemotherapy resistance. Here, we analyzed lncRNA expression associated with response to platinum-based chemotherapy in metastatic MIBC using data from the MiTranscriptome lncRNA expression database. Expression of the lncRNA, LINC00857, was found to be upregulated in tumors from patients that did not respond to platinum-based chemotherapy. Moreover, high expression of LINC00857 is correlated with shorter recurrence-free and overall survival of patients with MIBC. Knockdown of LINC00857 significantly decreased cell viability of bladder cancer cell lines through the induction of apoptosis. Furthermore, LINC00857 knockdown sensitized UM-UC-3 and T24 bladder cancer cells to cisplatin, via the negative regulation of the LMAN1 gene. Our data indicate that LINC00857 plays an important role in the regulation of response to platinum-based chemotherapy. LINC00857 potentially could serve as a novel prognostic and predictive biomarker and might be a therapeutic target to overcome cisplatin resistance in patients with MIBC. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Folliculitis decalvans--response to rifampin.
Brozena, S J; Cohen, L E; Fenske, N A
1988-12-01
Folliculitis decalvans is a rare follicular inflammatory disease of the scalp. It is characterized by initial perifollicular inflammatory changes followed by peripheral extension and eventual circumscribed patches of cicatricial alopecia. The disease is known for its resistance to treatment, resulting in an unfavorable prognosis. The cause of the disease is unknown, although a bacterial etiology is postulated. We report a classic case that was temporized with various antibiotics and only subsequently resolved after ten weeks of therapy with rifampin. The patient has remained free of disease for more than one year. We present a brief review of the cicatricial alopecias and discuss rifampin therapy for this condition.
Ethical and legal challenges of vaccines and vaccination: Reflections.
Jesani, Amar; Johari, Veena
2017-01-01
Vaccines and vaccination have emerged as key medical scientific tools for prevention of certain diseases. Documentation of the history of vaccination shows that the initial popular resistance to universal vaccination was based on false assumptions and eventually gave way to acceptance of vaccines and trust in their ability to save lives. The successes of the global eradication of smallpox, and now of polio, have only strengthened the premier position occupied by vaccines in disease prevention. However, the success of vaccines and public trust in their ability to eradicate disease are now under challenge, as increasing numbers of people refuse vaccination, questioning the effectiveness of vaccines and the need to vaccinate.
NASA Technical Reports Server (NTRS)
Willis, N. C., Jr.; Neel, J. M.
1972-01-01
Design concepts and test philosophies which may contribute to the development of a low-cost maintainable environmental control/life support system are examined. It is shown that the concept of producing flight prototype equipment during a developmental program can reduce the eventual cost of a flight system by incorporating realistic flight-type design requirements without imposing exacting design features and stringent controls. A flight prototype design is one that can be converted readily into an actual flight design without any conceptual change. Modularity of subsystems provides the system and the program a degree of flexibility relative to the eventual vehicle configuration and technological improvements.
Oswald, I P; Lantier, F; Moutier, R; Bertrand, M F; Skamene, E
1992-01-01
The aim of the present study was to determine whether the Ity gene, which controls the resistance to S. typhimurium infection in mice, also governs the resistance to S. abortusovis, a serotype specific for goat and sheep. During either i.v. or i.p. infection, BALB/c mice (Itys) were not able to control the growth of S. abortusovis and eventually died from infection. In contrast CBA (Ityr) or (C.CB)F1 (Ityr/s) mice were able to control the growth of these bacteria. Using congenic C.D2 Ityr mice, we found that the gene controlling resistance to S. abortusovis was tightly linked to the Ity gene on chromosome 1. Furthermore, in the spleen and the liver of backcross BALB/c x (CBA x BALB/c) mice, the S. abortusovis resistance phenotype cosegregated with the two alleles of the Len-1 gene, a gene tightly linked to the Ity gene. By contrast, in these backcross mice, the level of infection of the peritoneal cavity, the site of inoculation, did not correlated with the Len-1 phenotype of the animal. These results provide evidence that after i.p. inoculation the control of S. abortusovis growth in the spleen and the liver is controlled by the Ity gene, but also suggest that additional gene(s) regulate the number of bacteria at the site of inoculation. PMID:1544222
Kelschenbach, Jennifer L; Saini, Manisha; Hadas, Eran; Gu, Chao-Jiang; Chao, Wei; Bentsman, Galina; Hong, Jessie P; Hanke, Tomas; Sharer, Leroy R; Potash, Mary Jane; Volsky, David J
2012-06-01
Infection by some viruses induces immunity to reinfection, providing a means to identify protective epitopes. To investigate resistance to reinfection in an animal model of HIV disease and its control, we employed infection of mice with chimeric HIV, EcoHIV. When immunocompetent mice were infected by intraperitoneal (IP) injection of EcoHIV, they resisted subsequent secondary infection by IP injection, consistent with a systemic antiviral immune response. To investigate the potential role of these responses in restricting neurotropic HIV infection, we established a protocol for efficient EcoHIV expression in the brain following intracranial (IC) inoculation of virus. When mice were inoculated by IP injection and secondarily by IC injection, they also controlled EcoHIV replication in the brain. To investigate their role in EcoHIV antiviral responses, CD8+ T lymphocytes were isolated from spleens of EcoHIV infected and uninfected mice and adoptively transferred to isogenic recipients. Recipients of EcoHIV primed CD8+ cells resisted subsequent EcoHIV infection compared to recipients of cells from uninfected donors. CD8+ spleen cells from EcoHIV-infected mice also mounted modest but significant interferon-γ responses to two HIV Gag peptide pools. These findings suggest EcoHIV-infected mice may serve as a useful system to investigate the induction of anti-HIV protective immunity for eventual translation to human beings.
Spaceflight and Development of Immune Responses
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
1996-01-01
Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. The number of flight experiments has been small, and the full breadth of immunological alterations occurring after space flight remains to be established. Among the major effects on immune responses after space flight that have been reported are: alterations in lymphocyte blastogenesis and natural killer cell activity, alterations in production of cytokines, changes in leukocyte sub-population distribution, and decreases in the ability of bone marrow cells to respond to colony stimulating factors. Changes have been reported in immunological parameters of both humans and rodents. The significance of these alterations in relation to resistance to infection remains to be established. The objective of the studies contained in this project was to determine the effects of space flight on immune responses of pregnant rats and their offspring. The hypothesis was that space flight and the attendant period of microgravity will result in alteration of immunological parameters of both the pregnant rats as well as their offspring carried in utero during the flight. The parameters tested included: production of cytokines, composition of leukocyte sub- populations, response of bone marrow/liver cells to granulocyte/monocyte colony stimulating factor, and leukocyte blastogenesis. Changes in immune responses that could yield alterations in resistance to infection were determined. This yielded useful information for planning studies that could contribute to crew health. Additional information that could eventually prove useful to determine the potential for establishment of a permanent colony in space was obtained.
Evidence-based best practices for EGFR T790M testing in lung cancer in Canada.
Stockley, T; Souza, C A; Cheema, P K; Melosky, B; Kamel-Reid, S; Tsao, M S; Spatz, A; Karsan, A
2018-04-01
Epidermal growth factor receptor (egfr) tyrosine kinase inhibitors (tkis) are recommended as first-line systemic therapy for patients with non-small-cell lung cancer (nsclc) having mutations in the EGFR gene. Resistance to tkis eventually occurs in all nsclc patients treated with such drugs. In patients with resistance to tkis caused by the EGFR T790M mutation, the third-generation tki osimertinib is now the standard of care. For optimal patient management, accurate EGFR T790M testing is required. A multidisciplinary working group of pathologists, laboratory medicine specialists, medical oncologists, a respirologist, and a thoracic radiologist from across Canada was convened to discuss best practices for EGFR T790M mutation testing in Canada. The group made recommendations in the areas of the testing algorithm and the pre-analytic, analytic, and post-analytic aspects of clinical testing for both tissue testing and liquid biopsy circulating tumour dna testing. The recommendations aim to improve EGFR T790M testing in Canada and to thereby improve patient care.
Citral induced apoptosis in MDA-MB-231 spheroid cells.
Nigjeh, Siyamak Ebrahimi; Yeap, Swee Keong; Nordin, Norshariza; Kamalideghan, Behnam; Ky, Huynh; Rosli, Rozita
2018-02-13
Breast cancer remains a leading cause of death in women worldwide. Although breast cancer therapies have greatly advanced in recent years, many patients still develop tumour recurrence and metastasis, and eventually succumb to the disease due to chemoresistance. Citral has been reported to show cytotoxic effect on various cancer cell lines. However, the potential of citral to specifically target the drug resistant breast cancer cells has not yet been tested, which was the focus of our current study. The cytotoxic activity of citral was first tested on MDA-MB-231 cells in vitro by MTT assay. Subsequently, spheroids of MDA-MB-231 breast cancer cells were developed and treated with citral at different concentrations. Doxorubicin, cisplatin and tamoxifen were used as positive controls to evaluate the drug resistance phenotype of MDA-MB-231 spheroids. In addition, apoptosis study was performed using AnnexinV/7AAD flowcytometry. Aldefluor assay was also carried out to examine whether citral could inhibit the ALDH-positive population, while the potential mechanism of the effect of citral was carried out by using quantitative real time- PCR followed by western blotting analysis. Citral was able to inhibit the growth of the MDA-MB-231 spheroids when compared to a monolayer culture of MDA-MB-231 cells at a lower IC 50 value. To confirm the inhibition of spheroid self-renewal capacity, the primary spheroids were then cultured to additional passages in the absence of citral. A significant reduction in the number of secondary spheroids were formed, suggesting the reduction of self-renewal capacity of these aldehyde dehydrogenase positive (ALDH + ) drug resistant spheroids. Moreover, the AnnexinV/7AAD results demonstrated that citral induced both early and late apoptotic changes in a dose-dependent manner compared to the vehicle control. Furthermore, citral treated spheroids showed lower cell renewal capacity compared to the vehicle control spheroids in the mammosphere formation assay. Gene expression studies using quantitative real time PCR and Western blotting assays showed that citral was able to suppress the self-renewal capacity of spheroids and downregulate the Wnt/β-catenin pathway. The results suggest that citral could be a potential new agent which can eliminate drug-resistant breast cancer cells in a spheroid model via inducing apoptosis.
Measles Virus Fusion Protein: Structure, Function and Inhibition
Plattet, Philippe; Alves, Lisa; Herren, Michael; Aguilar, Hector C.
2016-01-01
Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options. PMID:27110811
NASA Astrophysics Data System (ADS)
Przybytek, J.; Fink-Finowicki, J.; Puźniak, R.; Shames, A.; Markovich, V.; Mogilyansky, D.; Jung, G.
2017-03-01
Robust random telegraph conductivity fluctuations have been observed in La0.86Ca0.14MnO3 manganite single crystals. At room temperatures, the spectra of conductivity fluctuations are featureless and follow a 1 /f shape in the entire experimental frequency and bias range. Upon lowering the temperature, clear Lorentzian bias-dependent excess noise appears on the 1 /f background and eventually dominates the spectral behavior. In the time domain, fully developed Lorentzian noise appears as pronounced two-level random telegraph noise with a thermally activated switching rate, which does not depend on bias current and applied magnetic field. The telegraph noise is very robust and persists in the exceptionally wide temperature range of more than 50 K. The amplitude of the telegraph noise decreases exponentially with increasing bias current in exactly the same manner as the sample resistance increases with the current, pointing out the dynamic current redistribution between percolation paths dominated by phase-separated clusters with different conductivity as a possible origin of two-level conductivity fluctuations.
Simple Model of Macroscopic Instability in XeCl Discharge Pumped Lasers
NASA Astrophysics Data System (ADS)
Ahmed, Belasri; Zoheir, Harrache
2003-10-01
The aim of this work is to study the development of the macroscopic non uniformity of the electron density of high pressure discharge for excimer lasers and eventually its propagation because of the medium kinetics phenomena. This study is executed using a transverse mono-dimensional model, in which the plasma is represented by a set of resistance's in parallel. This model was employed using a numerical code including three strongly coupled parts: electric circuit equations, electron Boltzmann equation, and kinetics equations (chemical kinetics model). The time variations of the electron density in each plasma element are obtained by solving a set of ordinary differential equations describing the plasma kinetics and external circuit. The use of the present model allows a good comprehension of the halogen depletion phenomena, which is the principal cause of laser ending and allows a simple study of a large-scale non uniformity in preionization density and its effects on electrical and chemical plasma properties. The obtained results indicate clearly that about 50consumed at the end of the pulse. KEY WORDS Excimer laser, XeCl, Modeling, Cold plasma, Kinetic, Halogen depletion, Macroscopic instability.
Coherent current-carrying filaments during nonlinear reconnecting ELMs and VDEs
NASA Astrophysics Data System (ADS)
Ebrahimi, Fatima
2017-10-01
We have examined plasmoid-mediated reconnection in a spherical tokamak using global nonlinear three-dimensional resistive MHD simulations with NIMROD. We have shown that physical current sheets/layers develop near the edge as a peeling component of ELMs or during vertical displacement events (associated with the scrape-off layer currents - halo currents), can become unstable to nonaxisymmetric 3-D current-sheet instabilities (peeling- or tearing-like) and nonlinearly form edge coherent current-carrying filaments. Time-evolving edge current sheets with reconnecting nature in NSTX and NSTX-U configurations are identified. In the case of peeling-like edge localized modes, the longstanding problem of quasiperiodic ELMs cycles is explained through the relaxation of edge current via direct numerical calculations of reconnecting emf terms. For the VDEs during disruption, we show that as the plasma is vertically displaced, edge halo current sheet becomes MHD unstable and forms coherent edge current filament structures, which would eventually bleed into the walls. Our model explains some essential asymmetric physics relevant to the experimental observations. Supported by DOE Grants DE-SC0010565, DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Smart, Matthew; Rajagopal, Aruna; Liu, Wing-Ki; Ha, Bae-Yeun
2017-10-01
The permeability of the bacterial outer membrane, enclosing Gram-negative bacteria, depends on the interactions of the outer, lipopolysaccharide (LPS) layer, with surrounding ions and molecules. We present a coarse-grained model for describing how cationic amphiphilic molecules (e.g., antimicrobial peptides) interact with and perturb the LPS layer in a biologically relevant medium, containing monovalent and divalent salt ions (e.g., Mg2+). In our approach, peptide binding is driven by electrostatic and hydrophobic interactions and is assumed to expand the LPS layer, eventually priming it for disruption. Our results suggest that in parameter ranges of biological relevance (e.g., at micromolar concentrations) the antimicrobial peptide magainin 2 effectively disrupts the LPS layer, even though it has to compete with Mg2+ for the layer. They also show how the integrity of LPS is restored with an increasing concentration of Mg2+. Using the approach, we make a number of predictions relevant for optimizing peptide parameters against Gram-negative bacteria and for understanding bacterial strategies to develop resistance against cationic peptides.
Measles Virus Fusion Protein: Structure, Function and Inhibition.
Plattet, Philippe; Alves, Lisa; Herren, Michael; Aguilar, Hector C
2016-04-21
Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options.
Kameyama, Koji; Horie, Kengo; Mizutani, Kosuke; Kato, Taku; Fujita, Yasunori; Kawakami, Kyojiro; Kojima, Toshio; Miyazaki, Tatsuhiko; Deguchi, Takashi; Ito, Masafumi
2017-01-01
Advanced bladder cancer is treated mainly with gemcitabine and cisplatin, but most patients eventually become resistance. Androgen receptor (AR) signaling has been implicated in bladder cancer as well as other types of cancer including prostate cancer. In this study, we investigated the expression and role of AR in gemcitabine-resistant bladder cancer cells and also the potential of enzalutamide, an AR inhibitor, as a therapeutic for the chemoresistance. First of all, we established gemcitabine-resistant T24 cells (T24GR) from T24 bladder cancer cells and performed gene expression profiling. Microarray analysis revealed upregulation of AR expression in T24GR cells compared with T24 cells. AR mRNA and protein expression was confirmed to be increased in T24GR cells, respectively, by quantitative RT-PCR and western blot analysis, which was associated with more potent AR transcriptional activity as measured by luciferase reporter assay. The copy number of AR gene in T24GR cells determined by PCR was twice as many as that of T24 cells. AR silencing by siRNA transfection resulted in inhibition of proliferation of T24GR cells. Cell culture in charcoal-stripped serum and treatment with enzalutamide inhibited growth of T24GR cells, which was accompanied by cell cycle arrest. AR transcriptional activity was found to be reduced in T24GR cells by enzalutamide treatment. Lastly, enzalutamide also inhibited cell proliferation of HTB5 bladder cancer cells that express AR and possess intrinsic resistance to gemcitabine. Our results suggest that enzalutamide may have the potential to treat patients with advanced gemcitabine-resistant bladder cancer with increased AR expression.
NASA Astrophysics Data System (ADS)
Luo, Feixiang
The semiconductor industry has witnessed a continuous decrease in the size of logic, memory and other computer chip components since its birth over half a century ago. The shrinking (scaling) of components has to a large extent been enabled by the development of micro- and now nano-lithographic techniques. This thesis focuses on one central component of lithography, the resist, which is essentially a thin film that when appropriately exposed enables a pattern to be printed onto a surface. Smaller features require an ever more precisely focused photon, electron or ion beam with which to expose the resist. The likely next generation source of radiation that will enable sub-20nm features to be written will employ extreme ultraviolet radiation (EUV), 92eV (13.5nm). The work discussed here involves a novel class of inorganic resists (including a solution processed Hf-based resist called HafSOx), as the organic resists that have dominated the microlithography industry for the past few decades have approached fundamental scaling limits. In order to maintain the high throughput required by high volume semiconductor manufacturing, metal oxide resists have been proposed and developed to meet the resolution and sensitivity in EUV lithography. One can think of our resists as the nano-lithographic analog to the silver halide film that dominated the photographic print industry for a century. In this thesis, we mainly describe our work on HafSOx, a "first generation" metal oxide EUV resist system. HafSOx thin films can be deposited by spin-coating a mixed solution of HfOCl2, H2O 2, and H2SO4. Various materials characterization techniques have been employed to achieve a comprehensive understanding of film composition and structure at both surface and bulk level, as well as a mechanistic understanding of the film radiation chemistry. Taking advantage of the high energy x-rays used in the XPS experiment, we developed an experiment to dynamically monitor the photochemistry within the HafSOx films. Based on this experiment, we found that an insoluble Hf-O-Hf network is eventually formed after film exposure and development by the removal of SOx, OH, and H2O, and the cross-linking of HfxOy nanoparticles. Using photoemission and complementary Raman results, and knowing that both free and bound peroxide co-exist in the precursor solution, we confirmed that there is a specific peroxide stoichiometry needed in the film to chelate to Hf. Sulfate groups were found to act as the spacers between metal oxide nanoparticles to prevent early stage nanoparticle aggregation in the as-deposited films. Too much sulfate sacrifices resist sensitivity, while too little promotes undesired nanoparticle cross-linking during film preparation. In EUV lithography, low energy secondary electron activation had been suggested as a mechanism explaining how film exposure to EUV photons through a mask can result in a patterned film, but this hypothesis lacked experimental evidence. We constructed a low energy electron beam exposure system, exposed HafSOx resists with electrons with energy ranging from 2 eV to 100 eV, and then characterized the film changes after the exposure. Surprisingly, we found electrons with an energy as low as 2 eV can activate the film if given a sufficient electron dose. Electrons with a lower energy require higher doses to fully activate the resist. Our results strongly support the hypothesis that relatively low energy secondary electrons are central in the mechanism responsible for patterning, in this case by interacting with peroxyl species bound to Hf in the films. With the recent arrival of a state-of-art Zeiss-Orion helium ion beam microscope at Rutgers, we also tested the patterning performance of a HafSOx resist with 30 keV He+ ions. (HIBL = helium ion beam lithography). 30 keV He ions were found to be 50-100 more sensitive than 30 keV electrons at patterning HafSOx, and this boost was attributed to the higher stopping power of helium ions compared with electrons. Sub-10 nm critical dimensions were achieved with fairly good line edge roughness (a key metric in assessing lithographic performance). Additionally, Monte Carlo simulations were conducted to compare the ion and electron trajectories in the solid films and to investigate energy loss in the HafSOx films. In summary, a systematic approach has been developed to understand the mechanism behind HafSOx as an EUV resist. Our work helps lead to a more comprehensive mechanistic understanding of how metal oxide EUV photoresists work in general, and suggests ways to optimize their performance.
Advances in Age-related Macular Degeneration Understanding and Therapy
Miller, Joan W; Bagheri, Saghar; Vavvas, Demetrios G
2017-01-01
While the development of anti-vascular endothelial growth factor (anti-VEGF) as a therapy for neovascular age-related macular degeneration (AMD) was a great success, the pathologic processes underlying dry AMD that eventually leads to photoreceptor dysfunction, death, and vision loss remain elusive to date, with a lack of effective therapies and increasing prevalence of the disease. There is an overwhelming need to improve the classification system of AMD, to increase our understanding of cell death mechanisms involved in both neovascular and non-neovascular AMD, and to develop better biomarkers and clinical endpoints to eventually be able to identify better therapeutic targets—especially early in the disease process. There is no doubt that it is a matter of time before progress will be made and better therapies will be developed for non-neovascular AMD. PMID:29142592
IDENTIFYING AND TARGETING TUMOR-INITIATING CELLS IN THE TREATMENT OF BREAST CANCER
Wei, Wei; Lewis, Michael T.
2015-01-01
Breast cancer is the most common cancer in women (exclusive of skin cancer), and is the second leading cause of cancer-related deaths. Although conventional and targeted therapies have improved survival rates, there are still considerable challenges in treating breast cancer, including treatment resistance, disease recurrence, and metastasis. Treatment resistance can be either de novo - due to traits that tumor cells possess prior to treatment, or acquired, - due to traits that tumor cells gain in response to treatment. A recently proposed mechanism of de novo resistance invokes existence of a specialized subset of cancer cells defined as tumor-initiating cells (TICs), or cancer stem cells (CSC). TICs have the capacity to self-renew and regenerate new tumors that consist of all clonally-derived cell types present in the parental tumor. There are data to suggest that TICs are resistant to many conventional cancer therapies, and survive treatment in spite of dramatic shrinkage of the tumor. Residual TICs can then eventually regrow resulting in disease relapse. It is also hypothesized that TIC may be responsible for metastatic disease. If these hypotheses are correct, targeting TICs may be imperative to achieve cure. In this review, we discuss evidence for breast TICs and their apparent resistance to conventional chemotherapy and radiotherapy, as well as to various targeted therapies. We also address the potential impact of breast TIC plasticity and metastatic potential on therapeutic strategies. Finally, we describe several genes and signaling pathways that appear important for TIC function that may represent promising therapeutic targets. PMID:25876646
Glioblastoma entities express subtle differences in molecular composition and response to treatment
Balça-Silva, Joana; Matias, Diana; Do Carmo, Anália; Dubois, Luiz Gustavo; Gonçalves, Ana Cristina; Girão, Henrique; Silva Canedo, Nathalie Henriques; Correia, Ana Helena; De Souza, Jorge Marcondes; Sarmento-Ribeiro, Ana Bela; Lopes, Maria Celeste; Moura-Neto, Vivaldo
2017-01-01
Glioblastoma (GBM) is a grade IV astrocytoma. GBM patients show resistance to chemotherapy such as temozolomide (TMZ), the gold standard treatment. In order to simulate the molecular mechanisms behind the different chemotherapeutic responses in GBM patients we compared the cellular heterogeneity and chemotherapeutic resistance mechanisms in different GBM cell lines. We isolated and characterized a human GBM cell line obtained from a GBM patient, named GBM11. We studied the GBM11 behaviour when treated with Tamoxifen (TMX) that, among other functions, is a protein kinase C (PKC) inhibitor, alone and in combination with TMZ in comparison with the responses of U87 and U118 human GBM cell lines. We evaluated the cell death, cell cycle arrest and cell proliferation, mainly through PKC expression, by flow cytometry and western blot analysis and, ultimately, cell migration capability and F-actin filament disorganization by fluorescence microscopy. We demonstrated that the constitutive activation of p-PKC seems to be one of the main metabolic implicated on GBM malignancy. Despite of its higher resistance, possibly due to the overexpression of P-glycoprotein and stem-like cell markers, GBM11 cells presented a subtle different chemotherapeutic response compared to U87 and U118 cells. The GBM11, U87, U118 cell lines show subtle molecular differences, which clearly indicate the characterization of GBM heterogeneity, one of the main reasons for tumor resistance. The adding of cellular heterogeneity in molecular behaviour constitutes a step closer in the understanding of resistant molecular mechanisms in GBM, and can circumvents the eventual impaired therapy. PMID:28714013
Tran, Simon D; Sugito, Takayuki; Dipasquale, Giovanni; Cotrim, Ana P; Bandyopadhyay, Bidhan C; Riddle, Kathryn; Mooney, David; Kok, Marc R; Chiorini, John A; Baum, Bruce J
2006-10-01
There is no satisfactory conventional treatment for patients who experience irreversible salivary gland damage after therapeutic radiation for head and neck cancer or because of Sjögren's syndrome. Additionally, if most parenchyma is lost, these patients also are not candidates for evolving gene transfer strategies. To help such patients, several years ago we began to develop an artificial salivary gland. In the present study, we used a non-human primate tissue source, parotid glands from rhesus monkeys, to obtain potential autologous graft cells for development of a prototype device for in situ testing. Herein, we present 3 major findings. First, we show that primary cultures of rhesus parotid gland (RPG) cells are capable of attaining a polarized orientation, with Na(+)/K(+)-adenosine triphosphatase, zonula occludens-1, and claudin-1 distributed in specific domains appropriate for epithelial cells. Second, we show that RPG cells exhibit 2 essential epithelial functions required for graft cells in an artificial salivary gland device (i.e., an effective barrier to paracellular water flow and the generation of a moderate transepithelial electrical resistance). Third, we show that RPG cells can express functional water channels, capable of mediating directional fluid movement, after transduction by adenoviral and adeno-associated virus type 2 vectors. Together these results demonstrate that it is feasible to individually prepare RPG cells for eventual use in a prototype artificial salivary gland.
Bowe, Constance M; Lahey, Lisa; Armstrong, Elizabeth; Kegan, Robert
2003-08-01
The ultimate success of recent medical curriculum reforms is, in large part, dependent upon the faculty's ability to adopt and sustain new attitudes and behaviors. However, like many New Year's resolutions, sincere intent to change may be short lived and followed by a discouraging return to old behaviors. Failure to sustain the initial resolve to change can be misinterpreted as a lack of commitment to one's original goals and eventually lead to greater effort expended in rationalizing the status quo rather than changing it. The present article outlines how a transformative process that has proven to be effective in managing personal change, Questioning the Big Assumptions, was successfully used in an international faculty development program for medical educators to enhance individual personal satisfaction and professional effectiveness. This process systematically encouraged participants to explore and proactively address currently operative mechanisms that could stall their attempts to change at the professional level. The applications of the Big Assumptions process in faculty development helped individuals to recognize and subsequently utilize unchallenged and deep rooted personal beliefs to overcome unconscious resistance to change. This approach systematically led participants away from circular griping about what was not right in their current situation to identifying the actions that they needed to take to realize their individual goals. By thoughtful testing of personal Big Assumptions, participants designed behavioral changes that could be broadly supported and, most importantly, sustained.
New players for advanced prostate cancer and the rationalisation of insulin-sensitising medication.
Gunter, Jennifer H; Sarkar, Phoebe L; Lubik, Amy A; Nelson, Colleen C
2013-01-01
Obesity and type 2 diabetes are recognised risk factors for the development of some cancers and, increasingly, predict more aggressive disease, treatment failure, and cancer-specific mortality. Many factors may contribute to this clinical observation. Hyperinsulinaemia, dyslipidaemia, hypoxia, ER stress, and inflammation associated with expanded adipose tissue are thought to be among the main culprits driving malignant growth and cancer advancement. This observation has led to the proposal of the potential utility of "old players" for the treatment of type 2 diabetes and metabolic syndrome as new cancer adjuvant therapeutics. Androgen-regulated pathways drive proliferation, differentiation, and survival of benign and malignant prostate tissue. Androgen deprivation therapy (ADT) exploits this dependence to systemically treat advanced prostate cancer resulting in anticancer response and improvement of cancer symptoms. However, the initial therapeutic response from ADT eventually progresses to castrate resistant prostate cancer (CRPC) which is currently incurable. ADT rapidly induces hyperinsulinaemia which is associated with more rapid treatment failure. We discuss current observations of cancer in the context of obesity, diabetes, and insulin-lowering medication. We provide an update on current treatments for advanced prostate cancer and discuss whether metabolic dysfunction, developed during ADT, provides a unique therapeutic window for rapid translation of insulin-sensitising medication as combination therapy with antiandrogen targeting agents for the management of advanced prostate cancer.
Chen, RuiQi; Yu, Yue; Dong, Xuesen
2017-02-01
Advanced prostate cancer undergoing androgen receptor pathway inhibition (ARPI) eventually progresses to castrate-resistant prostate cancer (CRPC), suggesting that (i) androgen receptor (AR) blockage is incomplete, and (ii) there are other critical molecular pathways contributing to prostate cancer (PCa) progression. Although most PCa occurs in the epithelium, prostate stroma is increasingly believed to play a crucial role in promoting tumorigenesis and facilitating tumor progression. In the stroma, sex steroid hormone receptors such as AR and estrogen receptor-α are implicated to have important functions, whereas the progesterone receptor (PR) remains largely under-investigated despite the high sequence and structural similarities between PR and AR. Stromal progesterone/PR signaling may play a critical role in PCa development and progression because not only progesterone is a critical precursor for de novo androgen steroidogenesis and an activator of mutant androgen receptors, but also PR functions in a ligand-independent manner in various important pathways. In fact, recent progress in our understanding of stromal PR function suggests that this receptor may exert an inhibitory effect on benign prostatic hyperplasia (BPH), reactive stroma development, and PCa progression. These early findings of stromal PR warrant further investigations as this receptor could be a potential biomarker and therapeutic target in PCa management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biobehavioral Development. From Cells to Selves.
ERIC Educational Resources Information Center
National Inst. of Child Health and Human Development (NIH), Bethesda, MD.
Key to the mission of the National Institute of Child Health and Human Development (NICHD) is answering fundamental questions about how a single fertilized cell eventually develops into a fully functional adult human being and how a multitude of genetic and environmental factors influence that process. This document details part of NICHD's…
USDA-ARS?s Scientific Manuscript database
Peach flower bud development undergoes a long, complex and temperature-dependent regulation process with cessation of growth in response to cool temperatures in late fall, a slow but gradual development during the chilling period in winter, and eventually blooming in early spring. It has been demon...
Delsere, Mirco; Campogiani, Vincenzo; Carletti, Vincenzo; Mancini, Stefania; Piccinini, Nadia; Castelli, Paolo; Sopranzi, Franco
2015-01-01
We report the case of a woman presenting the recent onset of multiple seizure and epilepsy episodes combined with other neurological symptoms (e.g. vertigo, dizziness, vomiting, headache). She was resistant to antiepileptic and symptomatic therapy, having been first admitted to the neurology ward and subsequently to the general medicine ward. In this case, several patient assessments and imaging exams were not conclusive evidence of specific etiopathogenesis, or definitive neurological illness; however, the patient showed laboratory indexes compatible with Gitelmans Syndrome. The correction of the electrolytic imbalances of tubulopathy (including low magnesium and potassium levels) led to the progressive improvement of clinical manifestations and the eventual interruption of the antiepileptic therapy.
The effect of zeolite and diatomite on the corrosion of reinforcement steel in 1 M HCl solution
NASA Astrophysics Data System (ADS)
Gerengi, Husnu; Kurtay, Mine; Durgun, Hatice
The greatest disadvantage of reinforced concrete structures is the corrosion occurring in the reinforcement which, over time, causes a reduction in the reinforcement-concrete adherence and eventual sectional loss. The purpose of this study was to reveal the corrosion mechanism of ribbed reinforcement inside additive-free (reference), 20% zeolite-doped and 20% diatomite-doped concrete samples after exposure to 1 M HCl over 240 days. Electrochemical impedance spectroscopy (EIS) measurements were made every 10 days. Consequently, it was determined that the 20% zeolite-doped concrete samples had higher concrete and reinforcement resistance compared to the 20% diatomite-doped and the reference concrete, i.e. they exhibited less corrosion.
Intrinsic Nano-Ductility of Glasses: The Critical Role of Composition
NASA Astrophysics Data System (ADS)
Wang, Bu; Yu, Yingtian; Lee, Young; Bauchy, Mathieu
2015-02-01
Understanding, predicting and eventually improving the resistance to fracture for silicate materials is of primary importance to design tougher new glasses suitable for advanced applications. However, the fracture mechanism at the atomic level in amorphous silicate materials is still a topic of debate. In particular, there are some controversies about the existence of ductility at the nanoscale during crack propagation. Here, we present simulations of fracture of three archetypical silicate glasses, using molecular dynamics. The simulations clearly show that, depending on their composition, silicate glasses can exhibit different degrees of ductility at the nanoscale. Additionally, we show that the methodology used in the present work can provide realistic predictions of fracture energy and toughness.
NASA Astrophysics Data System (ADS)
Jorgensen, David John
High pressure turbine blades in gas turbine engines rely on thermal barrier coating (TBC) systems for protection from the harsh combustion environment. These coating systems consist of a ceramic topcoat for thermal protection, a thermally grown oxide (TGO) for oxidation passivation, and an intermetallic bond coat to provide compatibility between the substrate and ceramic over-layers while supplying aluminum to sustain Al2O 3 scale growth. As turbine engines are pushed to higher operating temperatures in pursuit of better thermal efficiency, the strength of industry-standard bond coats limits the lifetime of these coating systems. Bond coat creep deformation during thermal cycling leads to a failure mechanism termed rumpling. The interlayer thermal expansion differences, combined with TGO-imposed growth stresses, lead to the development of periodic undulations in the bond coat. The ceramic topcoat has low out-of-plane compliance and thus detaches and spalls from the substrate, resulting in a loss of thermal protection and subsequent degradation of mechanical properties. New creep resistant Ni3Al bond coats were designed with improved high-temperature strength to inhibit this type of premature failure at elevated temperatures. These coatings resist rumpling deformation while maintaining compatibility with the other layers in the system. Characterization methods are developed to quantify rumpling and assess the TGO-bond coat interface toughness of experimental systems. Cyclic oxidation experiments at 1163 °C show that the Ni3Al bond coats do not experience rumpling but have faster oxide growth rates and are quicker to spall TGO than the (Pt,Ni)Al benchmark. However, the Ni 3Al coatings outperformed the benchmark by over threefold in TBC system life due to a higher resistance to rumpling (mechanical degradation) while maintaining adequate oxidation passivation. The Ni3Al coatings eventually grow spinel NiAl2O4 on top of the protective Al2O3 layer, which leads to the detachment of the ceramic topcoat. Furthermore, bilayer Ni3Al+NiAl architectures have been investigated to improve the oxidation performance of the monolithic Ni 3Al coatings while maintaining their high strength. These bilayer architectures are shown to improve the cyclic oxidation performance of the monolithic layers and increase the TBC system life. The design, characterization, and experimentation of these coatings is discussed and related to the development of high-strength coatings.
NASA Astrophysics Data System (ADS)
Wang, Ziyang; Fiorini, Paolo; Leonov, Vladimir; Van Hoof, Chris
2009-09-01
This paper presents the material characterization methods, characterization results and the optimization scheme for polycrystalline Si70%Ge30% (poly-SiGe) from the perspective of its application in a surface micromachined thermopile. Due to its comparative advantages, such as lower thermal conductivity and ease of processing, over other materials, poly-SiGe is chosen to fabricate a surface micromachined thermopile and eventually a wearable thermoelectric generator (TEG) to be used on a human body. To enable optimal design of advanced thermocouple microstructures, poly-SiGe sample materials prepared by two different techniques, namely low-pressure chemical vapor deposition (LPCVD) with in situ doping and rapid thermal chemical vapor deposition (RTCVD) with ion implantation, have been characterized. Relevant material properties, including electrical resistivity, Seebeck coefficient, thermal conductivity and specific contact resistance, have been reported. For the determination of thermal conductivity, a novel surface-micromachined test structure based on the Seebeck effect is designed, fabricated and measured. Compared to the traditional test structures, it is more advantageous for sample materials with a relatively large Seebeck coefficient, such as poly-SiGe. Based on the characterization results, a further optimization scheme is suggested to allow independent respective optimization of the figure of merit and the specific contact resistance.
Akasaka, Kazuyuki; Maeno, Akihiro; Murayama, Taichi; Tachibana, Hideki; Fujita, Yuzo; Yamanaka, Hitoki; Nishida, Noriyuki; Atarashi, Ryuichiro
2014-01-01
The crucial step for the fatal neurodegenerative prion diseases involves the conversion of a normal cellular protein, PrP(C), into a fibrous pathogenic form, PrP(Sc), which has an unusual stability against heat and resistance against proteinase K digestion. A successful challenge to reverse the reaction from PrP(Sc) into PrP(C) is considered valuable, as it would give a key to dissolving the complex molecular events into thermodynamic and kinetic analyses and may also provide a means to prevent the formation of PrP(Sc) from PrP(C) eventually in vivo. Here we show that, by applying pressures at kbar range, the "proteinase K-resistant" fibrils (rHaPrP(res)) prepared from hamster prion protein (rHaPrP [23-231]) by seeding with brain homogenate of scrapie-infected hamster, becomes easily digestible. The result is consistent with the notion that rHaPrP(res) fibrils are dissociated into rHaPrP monomers under pressure and that the formation of PrP(Sc) from PrP(C) is thermodynamically controlled. Moreover, the efficient degradation of prion fibrils under pressure provides a novel means of eliminating infectious PrP(Sc) from various systems of pathogenic concern.
Huang, Kaipeng; Chen, Cheng; Hao, Jie; Huang, Junying; Wang, Shaogui; Liu, Peiqing; Huang, Heqing
2015-01-05
Sirt1 and nuclear factor-E2 related factor 2 (Nrf2)-anti-oxidant response element (ARE) anti-oxidative pathway play important regulatory roles in the pathological progression of diabetic nephropathy (DN) induced by advanced glycation-end products (AGEs). Polydatin (PD), a glucoside of resveratrol, has been shown to possess strong anti-oxidative bioactivity. Our previous study demonstrated that PD markedly resists the progression of diabetic renal fibrosis and thus, inhibits the development of DN. Whereas, whether PD could resist DN through regulating Sirt1 and consequently promoting Nrf2-ARE pathway needs further investigation. Here, we found that concomitant with decreasing RAGE (the specific receptor for AGEs) expression, PD significantly reversed the downregulation of Sirt1 in terms of protein expression and deacetylase activity and attenuated FN and TGF-β1 expression in GMCs exposed to AGEs. Under AGEs-treatment condition, PD could decrease Keap1 expression and promote the nuclear content, ARE-binding ability, and transcriptional activity of Nrf2. In addition, PD increased the protein levels of heme oxygenase 1 (HO-1) and superoxide dismutase 1 (SOD1), two target genes of Nrf2. The activation of Nrf2-ARE pathway by PD eventually led to the quenching of ROS overproduction sharply boosted by AGEs. Depletion of Sirt1 blocked Nrf2-ARE pathway activation and reversed FN and TGF-β1 downregulation induced by PD in GMCs challenged with AGEs. Along with reducing HO-1 and SOD1 expression, silencing of Nrf2 increased FN and TGF-β1 levels. PD treatment elevated Sirt1 and Nrf2 levels in the kidney tissues of diabetic rats, then improved the anti-oxidative capacity and renal dysfunction of diabetic models, and finally reversed the upregulation of FN and TGF-β1. Taken together, the resistance of PD on upregulated FN and TGF-β1 induced by AGEs via oxidative stress in GMCs is closely associated with its activation of Sirt1-Nrf2-ARE pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jeong-Eun; Woo, Seon Rang; Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705
Research highlights: {yields} Paclitaxel serves as a stimulator of chromosomal fusion in cells in which telomeres are dysfunctional. {yields} Typical fusions involve p-arms, but paclitaxel-induced fusions occur between both q- and p-arms. {yields} Paclitaxel-stimulated fusions in cells in which telomeres are dysfunctional evoke prolonged G2/M cell cycle arrest and delay multinucleation. {yields} Upon telomere erosion, paclitaxel promotes chromosomal instability and subsequent apoptosis. {yields} Chromosomal fusion enhances paclitaxel chemosensitivity under telomere dysfunction. -- Abstract: The anticancer effect of paclitaxel is attributable principally to irreversible promotion of microtubule stabilization and is hampered upon development of chemoresistance by tumor cells. Telomere shortening, andmore » eventual telomere erosion, evoke chromosomal instability, resulting in particular cellular responses. Using telomerase-deficient cells derived from mTREC-/-p53-/- mice, here we show that, upon telomere erosion, paclitaxel propagates chromosomal instability by stimulating chromosomal end-to-end fusions and delaying the development of multinucleation. The end-to-end fusions involve both the p- and q-arms in cells in which telomeres are dysfunctional. Paclitaxel-induced chromosomal fusions were accompanied by prolonged G2/M cell cycle arrest, delayed multinucleation, and apoptosis. Telomere dysfunctional cells with mutlinucleation eventually underwent apoptosis. Thus, as telomere erosion proceeds, paclitaxel stimulates chromosomal fusion and instability, and both apoptosis and chemosensitization eventually develop.« less
Monitoring an artificial tracer test within streambed sediments with time lapse underwater 3D ERT
NASA Astrophysics Data System (ADS)
Clémence, Houzé; Marc, Pessel; Véronique, Durand; Toihir, Ali
2017-04-01
The stream-aquifer interface is considered a hotspot for environmental and ecological issues. Due to their complexity, the exchange mechanisms occurring between groundwater and surface water at this interface are not yet fully understood. Many studies have focused on the characterization of the two-dimensional distribution of an artificial tracer (generally injected into the stream) within and outside the streambed, but there is insufficient information about the 3D spatial distribution of the tracer fluxes and their temporal variations. We monitored the transport of an artificial solute tracer transport with 3D electrical resistivity tomography (ERT) in order to improve the 3D spatial resolution in the imaging of the first tens of centimeters of streambed sediments and propose an innovative approach of the three-dimensional and temporal observation of the water fluxes. The hydro-geophysical field measurements were made on a small stream located within the Orgeval watershed (Seine et Marne, France). Using a resistivimeter connected to 180 electrodes, 3D electrical resistivity tomograms were made on a riverbed section, as a brine tracer was injected directly into the hyporheic zone. Before the tracer monitoring, the static 3D resistivity tomograms were consistent with the lithological heterogeneities identified at the site. However, this study defines some prerequisites to high-resolution 3D underwater resistivity measurements: for instance, a precise knowledge of an eventual weak electrode contact and a spatial resolution identical in every spatial direction. First results show a rapid development and persistence of a conductive plume around the injection point which disappears progressively after the injection. Within the sediments top layer, preferential flowpaths were highlighted due to the highly heterogeneous medium and hydraulic conductivity. The riverbed topography showed some pool-riffle sequences which conduct the formation of local entering and exiting zones. It seems clear that riverbed heterogeneities drive some local exchanges between surface water and pore water, despite the gaining condition of the stream. Moreover, inversion and data processing appear very sensitive to the boundary condition variations, such as the thickness and the resistivity of the water layer. This makes a quantitative interpretation of tracer fluxes within the hyporheic zone difficult. We demonstrate that for this type of study, knowledge of these conditions and precise monitoring of their fluctuations in time are required.
Axially engineered metal-insulator phase transition by graded doping VO2 nanowires.
Lee, Sangwook; Cheng, Chun; Guo, Hua; Hippalgaonkar, Kedar; Wang, Kevin; Suh, Joonki; Liu, Kai; Wu, Junqiao
2013-03-27
The abrupt first-order metal-insulator phase transition in single-crystal vanadium dioxide nanowires (NWs) is engineered to be a gradual transition by axially grading the doping level of tungsten. We also demonstrate the potential of these NWs for thermal sensing and actuation applications. At room temperature, the graded-doped NWs show metal phase on the tips and insulator phase near the center of the NW, and the metal phase grows progressively toward the center when the temperature rises. As such, each individual NW acts as a microthermometer that can be simply read out with an optical microscope. The NW resistance decreases gradually with the temperature rise, eventually reaching 2 orders of magnitude drop, in stark contrast to the abrupt resistance change in undoped VO2 wires. This novel phase transition yields an extremely high temperature coefficient of resistivity ~10%/K, simultaneously with a very low resistivity down to 0.001 Ω·cm, making these NWs promising infrared sensing materials for uncooled microbolometers. Lastly, they form bimorph thermal actuators that bend with an unusually high curvature, ~900 m(-1)·K(-1) over a wide temperature range (35-80 °C), significantly broadening the response temperature range of previous VO2 bimorph actuators. Given that the phase transition responds to a diverse range of stimuli-heat, electric current, strain, focused light, and electric field-the graded-doped NWs may find wide applications in thermo-opto-electro-mechanical sensing and energy conversion.
Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells
Oh, Se Jin; Noh, Kyung Hee; Lee, Young-Ho; Hong, Soon-Oh; Song, Kwon-Ho; Lee, Hyo-Jung; Kim, Soyeon; Kim, Tae Min; Jeon, Ju-Hong; Seo, Jae Hong; Kim, Dong-Wan; Kim, Tae Woo
2015-01-01
The fusion between anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) is a causative factor in a unique subset of patients with non-small cell lung carcinoma (NSCLC). Although the inhibitor crizotinib, as it blocks the kinase activity of the resulting EML4-ALK fusion protein, displays remarkable initial responses, a fraction of NSCLC cases eventually become resistant to crizotinib by acquiring mutations in the ALK domain or activating bypass pathways via EGFR, KIT, or KRAS. Cancer stem cell (CSC) theory provides a plausible explanation for acquisition of tumorigenesis and resistance. However, the question as to whether EML4-ALK-driven tumorigenesis is linked with the stem-like property and whether the stemness is an effective target in controlling EML4-ALK+ NSCLC including crizotinib-resistant NSCLC cells has not been addressed. Here, we report that stem-like properties stem from ALK activity in EML4-ALK+ NSCLC cells. Notably, treatment with rapamycin, a CSC targeting agent, attenuates stem-like phenotypes of the EML4-ALK+ cells, which increased capability of tumor formation and higher expression of stemness-associated molecules such as ALDH, NANOG, and OCT4. Importantly, combinational treatment with rapamycin and crizotinib leads to synergistic anti-tumor effects on EML4-ALK+ NSCLC cells as well as on those resistant to crizotinib. Thus, we provide a proof of principle that targeting stemness would be a novel strategy to control intractable EML4-ALK+ NSCLC. PMID:26517679
Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells.
Oh, Se Jin; Noh, Kyung Hee; Lee, Young-Ho; Hong, Soon-Oh; Song, Kwon-Ho; Lee, Hyo-Jung; Kim, Soyeon; Kim, Tae Min; Jeon, Ju-Hong; Seo, Jae Hong; Kim, Dong-Wan; Kim, Tae Woo
2015-11-24
The fusion between anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) is a causative factor in a unique subset of patients with non-small cell lung carcinoma (NSCLC). Although the inhibitor crizotinib, as it blocks the kinase activity of the resulting EML4-ALK fusion protein, displays remarkable initial responses, a fraction of NSCLC cases eventually become resistant to crizotinib by acquiring mutations in the ALK domain or activating bypass pathways via EGFR, KIT, or KRAS. Cancer stem cell (CSC) theory provides a plausible explanation for acquisition of tumorigenesis and resistance. However, the question as to whether EML4-ALK-driven tumorigenesis is linked with the stem-like property and whether the stemness is an effective target in controlling EML4-ALK+ NSCLC including crizotinib-resistant NSCLC cells has not been addressed. Here, we report that stem-like properties stem from ALK activity in EML4-ALK+ NSCLC cells. Notably, treatment with rapamycin, a CSC targeting agent, attenuates stem-like phenotypes of the EML4-ALK+ cells, which increased capability of tumor formation and higher expression of stemness-associated molecules such as ALDH, NANOG, and OCT4. Importantly, combinational treatment with rapamycin and crizotinib leads to synergistic anti-tumor effects on EML4-ALK+ NSCLC cells as well as on those resistant to crizotinib. Thus, we provide a proof of principle that targeting stemness would be a novel strategy to control intractable EML4-ALK+ NSCLC.
... cause any symptoms other than skin changes. Eventually, dark, velvety skin with very visible markings and creases ... your provider if you develop areas of thick, dark, velvety skin. Alternative Names AN; Skin pigment disorder - ...
ERIC Educational Resources Information Center
Bowes, John E.; Stamm, Keith R.
This paper presents a progress report from a research program aimed at elucidating communication problems which arise among citizens and government agencies during the development of regional environmental policy. The eventual objective of the program is to develop a paradigm for evaluative research in communication that will provide for the…
ERIC Educational Resources Information Center
Örnek, Funda; Turkey, Kocaeli
2014-01-01
Current approaches in Science Education attempt to enable students to develop an understanding of the nature of science, develop fundamental scientific concepts, and develop the ability to structure, analyze, reason, and communicate effectively. Students pose, solve, and interpret scientific problems, and eventually set goals and regulate their…
Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Hyeon-Ok; Hong, Sung-Eun; Kim, Chang Soon
2015-08-15
Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drugmore » alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.« less
Young, Robert L.; Malcolm, Kenneth C.; Kret, Jennifer E.; Caceres, Silvia M.; Poch, Katie R.; Nichols, David P.; Taylor-Cousar, Jennifer L.; Saavedra, Milene T.; Randell, Scott H.; Vasil, Michael L.; Burns, Jane L.; Moskowitz, Samuel M.; Nick, Jerry A.
2011-01-01
The inability of neutrophils to eradicate Pseudomonas aeruginosa within the cystic fibrosis (CF) airway eventually results in chronic infection by the bacteria in nearly 80 percent of patients. Phagocytic killing of P. aeruginosa by CF neutrophils is impaired due to decreased cystic fibrosis transmembrane conductance regulator (CFTR) function and virulence factors acquired by the bacteria. Recently, neutrophil extracellular traps (NETs), extracellular structures composed of neutrophil chromatin complexed with granule contents, were identified as an alternative mechanism of pathogen killing. The hypothesis that NET-mediated killing of P. aeruginosa is impaired in the context of the CF airway was tested. P. aeruginosa induced NET formation by neutrophils from healthy donors in a bacterial density dependent fashion. When maintained in suspension through continuous rotation, P. aeruginosa became physically associated with NETs. Under these conditions, NETs were the predominant mechanism of killing, across a wide range of bacterial densities. Peripheral blood neutrophils isolated from CF patients demonstrated no impairment in NET formation or function against P. aeruginosa. However, isogenic clinical isolates of P. aeruginosa obtained from CF patients early and later in the course of infection demonstrated an acquired capacity to withstand NET-mediated killing in 8 of 9 isolates tested. This resistance correlated with development of the mucoid phenotype, but was not a direct result of the excess alginate production that is characteristic of mucoidy. Together, these results demonstrate that neutrophils can kill P. aeruginosa via NETs, and in vitro this response is most effective under non-stationary conditions with a low ratio of bacteria to neutrophils. NET-mediated killing is independent of CFTR function or bacterial opsonization. Failure of this response in the context of the CF airway may occur, in part, due to an acquired resistance against NET-mediated killing by CF strains of P. aeruginosa. PMID:21909403
Hsp90: A Global Regulator of the Genotype-to-Phenotype Map in Cancers.
Jarosz, Daniel
2016-01-01
Cancer cells have the unusual capacity to limit the cost of the mutation load that they harbor and simultaneously harness its evolutionary potential. This property fuels drug resistance, a key failure mode in oncogene-directed therapy. However, the factors that regulate this capacity might also provide an Achilles' heel that could be exploited therapeutically. Recently, insight has come from a seemingly distant field: protein folding. It is now clear that protein homeostasis broadly supports malignancy and fuels the rapid evolution of drug resistance. Among protein homeostatic mechanisms that influence cancer biology, the essential ATP-driven molecular chaperone heat-shock protein 90 (Hsp90) is especially important. Hsp90 catalyzes folding of many proteins that regulate growth and development. These "client" kinases, transcription factors, and ubiquitin ligases often play critical roles in human disease, especially cancer. Studies in a wide range of systems-from single-celled organisms to human tumor samples-suggest that Hsp90 can broadly reshape the map between genotype and phenotype, acting as a "capacitor" and "potentiator" of genetic variation. Indeed, it has likely done so to such a degree that it has left an impress on diverse genome sequences. Hsp90 can constitute as much as 5% of total protein in transformed cells and increased levels of heat-shock activation correlate with poor prognosis in breast cancer. These findings and others have motivated a flurry of interest in Hsp90 inhibitors as cancer therapeutics, which have met with rather limited success as single agents, but may eventually prove invaluable in limiting the emergence of resistance to other chemotherapeutics, both genotoxic and molecularly targeted. Here, we provide an overview of Hsp90 function, review its relationship to genetic variation and the evolution of new traits, and discuss the importance of these findings for cancer biology and future efforts to drug this pathway. © 2016 Elsevier Inc. All rights reserved.
Marcinkiewicz, Ashley L; Kraiczy, Peter; Lin, Yi-Pin
2017-01-01
Lyme disease and relapsing fever are caused by various Borrelia species. Lyme disease borreliae , the most common vector-borne pathogens in both the U.S. and Europe, are transmitted by Ixodes ticks and disseminate from the site of tick bites to tissues leading to erythema migrans skin rash, arthritis, carditis, and neuroborreliosis. Relapsing fever borreliae , carried by ticks and lice, trigger reoccurring fever episodes. Following transmission, spirochetes survive in the blood to induce bacteremia at the early stages of infection, which is thought to promote evasion of the host complement system. The complement system acts as an important innate immune defense mechanism in humans and vertebrates. Upon activation, the cleaved complement components form complexes on the pathogen surface to eventually promote bacteriolysis. The complement system is negatively modulated by a number of functionally diverse regulators to avoid tissue damage. To evade and inhibit the complement system, spirochetes are capable of binding complement components and regulators. Complement inhibition results in bacterial survival in serum (serum resistance) and is thought to promote bloodstream survival, which facilitates spirochete dissemination and disease manifestations. In this review, we discuss current methodologies to elucidate the mechanisms of Borrelia spp. that promote serum resistance and bloodstream survival, as well as novel methods to study factors responsible for bloodstream survival of Lyme disease borreliae that can be applied to relapsing fever borreliae . Understanding the mechanisms these pathogens utilize to evade the complement system will ultimately aid in the development of novel therapeutic strategies and disease prevention to improve human health.
Wilkinson, Samuel T.; Wright, DaShaun; Fasula, Madonna K.; Fenton, Lisa; Griepp, Matthew; Ostroff, Robert B.; Sanacora, Gerard
2017-01-01
Introduction Ketamine has shown rapid though short-lived antidepressant effects. The possibility of concerning neurobiological changes following repeated exposure to the drug motivate the development of strategies that obviate or minimize the need for longer-term treatment with ketamine. In this open-label trial, we investigated whether cognitive behavioral therapy (CBT) can sustain or extend ketamine's antidepressant effects. Methods Patients who were pursuing ketamine infusion therapy for treatment-resistant depression (TRD) were invited to participate in the study. If enrolled, the subjects initiated a 12-session, 10-week course of CBT concurrently with a short 4-treatment, 2-week course of intravenous ketamine (0.5mg/kg infused over 40 mins) provided under a standardized clinical protocol. Results Sixteen participants initiated the protocol, with 8 (50%) attaining a response to the ketamine and 7 (43.8%) achieving remission during the first two weeks of protocol. Among ketamine responders, the relapse rate at the end of the CBT course (8 weeks following the last ketamine exposure) was 25% (2/8). On longer-term follow up, 5 of 8 subjects eventually relapsed, the median time-to-relapse being 12 weeks following ketamine exposure. Among ketamine remitters, 3 of 7 retained remission until at least 4 weeks following the last ketamine exposure, with 2 retaining remission through 8 weeks following ketamine exposure. Ketamine non-responders did not appear to benefit from CBT. Conclusions CBT may sustain the antidepressant effects of ketamine in TRD. Well-powered randomized controlled trials are warranted to further investigate this treatment combination as a way to sustain ketamine's antidepressant effects. PMID:28490030
NASA Astrophysics Data System (ADS)
Kato, T.; Arafune, T.; Washio, T.; Nakagawa, A.; Ogawa, Y.; Tominaga, T.; Sakuma, I.; Kobayashi, E.
2014-08-01
Recently, fluid jets have become widely used in medical devices and have been created and evaluated in clinical environments. Such devices are classified into two broad groups; those adopting continuous jets and those adopting discrete (or pulsed) jets. We developed a discrete jet device for brain cancer treatment, called a laser-induced liquid jet (LILJ) system. Although several studies have evaluated the availability and described the treatment mechanisms of fluid jet devices, the mechanisms of the fluid and injected material remain under-investigated. In this paper, we report the mechanism of frequent pulsejet injections into a viscoelastic biological material; namely, simulated gelatin brain tissue. The mechanism is evaluated by the injection depth, an easily measured parameter. To explain the injection mechanism, we propose that the pulsejet is pressured by forces introduced by resistance on the side surface of the hole and the reaction force proportionate to the injection depth. The pulsejet generated and propagated cracks in the gelatin, and the resistance eventually fractured the side surface of the hole. We evaluated the proposed model by measuring the behavior of pulsejets injected into gelatin by the LILJ. From the results, the following conclusions were obtained. First, the proposed model accurately describes the behavior of the injected pulsejet. Second, whether the hole or crack growth largely increases the final injection depth can be evaluated from differences in the decay constant. Finally, crack growth increases the final injection depth when the number of the injected pulsejets is greater than the inverse of the decay constant.
Myers, Kenneth A; Bello-Espinosa, Luis E; Symonds, Joseph D; Zuberi, Sameer M; Clegg, Robin; Sadleir, Lynette G; Buchhalter, Jeffrey; Scheffer, Ingrid E
2018-06-06
Sudden unexpected death in epilepsy (SUDEP) is a tragic and devastating event for which the underlying pathophysiology remains poorly understood; this study investigated whether abnormalities in heart rate variability (HRV) are linked to SUDEP in patients with epilepsy due to mutations in sodium channel (SCN) genes. We retrospectively evaluated HRV in epilepsy patients using electroencephalographic studies to study the potential contribution of autonomic dysregulation to SUDEP risk. We extracted HRV data, in wakefulness and sleep, from 80 patients with drug-resistant epilepsy, including 40 patients with mutations in SCN genes and 40 control patients with non-SCN drug-resistant epilepsy. From the SCN group, 10 patients had died of SUDEP. We compared HRV between SUDEP and non-SUDEP groups, specifically studying awake HRV and sleep:awake HRV ratios. The SUDEP patients had the most severe autonomic dysregulation, showing lower awake HRV and either extremely high or extremely low ratios of sleep-to-awake HRV in a subgroup analysis. A secondary analysis comparing the SCN and non-SCN groups indicated that autonomic dysfunction was slightly worse in the SCN epilepsy group. These findings suggest that autonomic dysfunction is associated with SUDEP risk in patients with epilepsy due to sodium channel mutations. The relationship of HRV to SUDEP merits further study; HRV may eventually have potential as a biomarker of SUDEP risk, which would allow for more informed counseling of patients and families, and also serve as a useful outcome measure for research aimed at developing therapies and interventions to reduce SUDEP risk. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.
Mahmud, Hafij Al; Seo, Hoonhee; Kim, Sukyung; Islam, Md Imtiazul; Nam, Kung-Woo; Cho, Hyun-Deuk; Song, Ho-Yeon
2017-05-25
Human tuberculosis, which is caused by the pathogen Mycobacterium tuberculosis, remains a major public health concern. Increasing drug resistance poses a threat of disease resurgence and continues to cause considerable mortality worldwide, which necessitates the development of new drugs with improved efficacy. Thymoquinone (TQ), an essential compound of Nigella sativa, was previously reported as an active anti-tuberculosis agent. In this study, the effects of TQ on intracellular mycobacterial replication are examined in macrophages. In addition, its effect on mycobacteria-induced NO production and pro-inflammatory responses were investigated in Mycobacterium tuberculosis (MTB)-infected Type II human alveolar and human myeloid cell lines. TQ at concentrations ranging from 12.5 to 25 μg/mL and 6.25 to 12.5 μg/mL reduced intracellular M. tuberculosis H37Rv and extensively drug-resistant tuberculosis (XDR-TB) 72 h post-infection in RAW 264.7 cells. TQ treatment also produced a concentration-dependent reduction in nitric oxide production in both H37Rv and XDR-TB infected RAW 264.7 cells. Furthermore, TQ reduced the expression of inducible nitric oxide synthase (iNOS) and pro-inflammatory molecules such as tumor necrosis factor-alpha (TNF-α) and interlukin-6 (IL-6) in H37Rv-infected cells and eventually reduced pathogen-derived stress in host cells. TQ inhibits intracellular H37Rv and XDR-TB replication and MTB-induced production of NO and pro-inflammatory molecules. Therefore, along with its anti-inflammatory effects, TQ represents a prospective treatment option to combat Mycobacterium tuberculosis infection.
A Virtual Screen Discovers Novel, Fragment-Sized Inhibitors of Mycobacterium tuberculosis InhA
Perryman, Alexander L.; Yu, Weixuan; Wang, Xin; Ekins, Sean; Forli, Stefano; Li, Shao-Gang; Freundlich, Joel S.; Tonge, Peter J.; Olson, Arthur J.
2015-01-01
Isoniazid (INH) is usually administered to treat latent Mycobacterium tuberculosis (Mtb) infections, and is used in combination therapy to treat active tuberculosis disease (TB). Unfortunately, resistance to this drug is hampering its clinical effectiveness. INH is a prodrug that must be activated by Mtb catalase peroxidase (KatG) before it can inhibit InhA (Mtb enoyl-acyl-carrier-protein reductase). Isoniazid-resistant cases of TB found in clinical settings usually involve mutations in or deletion of katG, which abrogate INH activation. Compounds that inhibit InhA without requiring prior activation by KatG would not be affected by this resistance mechanism and hence would display continued potency against these drug-resistant isolates of Mtb. Virtual screening experiments versus InhA in the GO Fight Against Malaria project (GO FAM) were designed to discover new scaffolds that display base stacking interactions with the NAD cofactor. GO FAM experiments included targets from other pathogens, including Mtb, when they had structural similarity to a malaria target. Eight of the sixteen soluble compounds identified by docking against InhA plus visual inspection were modest inhibitors and did not require prior activation by KatG. The best two inhibitors discovered are both fragment-sized compounds and displayed Ki values of 54 and 59 μM, respectively. Importantly, the novel inhibitors discovered have low structural similarity to known InhA inhibitors and, thus, help expand the number of chemotypes on which future medicinal chemistry efforts can be focused. These new fragment hits could eventually help advance the fight against INH-resistant Mtb strains, which pose a significant global health threat. PMID:25636146
Giuliano, Sandy; Cormerais, Yann; Dufies, Maeva; Grépin, Renaud; Colosetti, Pascal; Belaid, Amine; Parola, Julien; Martin, Anthony; Lacas-Gervais, Sandra; Mazure, Nathalie M; Benhida, Rachid; Auberger, Patrick; Mograbi, Baharia; Pagès, Gilles
2015-01-01
Metastatic renal cell carcinomas (mRCC) are highly vascularized tumors that are a paradigm for the treatment with antiangiogenesis drugs targeting the vascular endothelial growth factor (VEGF) pathway. The available drugs increase the time to progression but are not curative and the patients eventually relapse. In this study we have focused our attention on the molecular mechanisms leading to resistance to sunitinib, the first line treatment of mRCC. Because of the anarchic vascularization of tumors the core of mRCC tumors receives only suboptimal concentrations of the drug. To mimic this in vivo situation, which is encountered in a neoadjuvant setting, we exposed sunitinib-sensitive mRCC cells to concentrations of sunitinib below the concentration of the drug that gives 50% inhibition of cell proliferation (IC50). At these concentrations, sunitinib accumulated in lysosomes, which downregulated the activity of the lysosomal protease CTSB (cathepsin B) and led to incomplete autophagic flux. Amino acid deprivation initiates autophagy enhanced sunitinib resistance through the amplification of autolysosome formation. Sunitinib stimulated the expression of ABCB1 (ATP-binding cassette, sub-family B [MDR/TAP], member 1), which participates in the accumulation of the drug in autolysosomes and favor its cellular efflux. Inhibition of this transporter by elacridar or the permeabilization of lysosome membranes with Leu-Leu-O-methyl (LLOM) resensitized mRCC cells that were resistant to concentrations of sunitinib superior to the IC50. Proteasome inhibitors also induced the death of resistant cells suggesting that the ubiquitin-proteasome system compensates inhibition of autophagy to maintain a cellular homeostasis. Based on our results we propose a new therapeutic approach combining sunitinib with molecules that prevent lysosomal accumulation or inhibit the proteasome. PMID:26312386
A selective sweep in a Varroa destructor resistant honeybee (Apis mellifera) population.
Lattorff, H Michael G; Buchholz, Josephine; Fries, Ingemar; Moritz, Robin F A
2015-04-01
The mite Varroa destructor is one of the most dangerous parasites of the Western honeybee (Apis mellifera) causing enormous colony losses worldwide. Various chemical treatments for the control of the Varroa mite are currently in use, which, however, lead to residues in bee products and often to resistance in mites. This facilitated the exploration of alternative treatment methods and breeding for mite resistant honeybees has been in focus for breeders in many parts of the world with variable results. Another approach has been applied to a honeybee population on Gotland (Sweden) that was exposed to natural selection and survived Varroa-infestation for more than 10years without treatment. Eventually this population became resistant to the parasite by suppressing the reproduction of the mite. A previous QTL mapping study had identified a region on chromosome 7 with major loci contributing to the mite resistance. Here, a microsatellite scan of the significant candidate QTL regions was used to investigate potential footprints of selection in the original population by comparing the study population on Gotland before (2000) and after selection (2007). Genetic drift had caused an extreme loss of genetic diversity in the 2007 population for all genetic markers tested. In addition to this overall reduction of heterozygosity, two loci on chromosome 7 showed an even stronger and significant reduction in diversity than expected from genetic drift alone. Within the selective sweep eleven genes are annotated, one of them being a putative candidate to interfere with reduced mite reproduction. A glucose-methanol-choline oxidoreductase (GMCOX18) might be involved in changing volatiles emitted by bee larvae that might be essential to trigger oogenesis in Varroa. Copyright © 2015 Elsevier B.V. All rights reserved.
Dhar, Deepanshi; Deep, Gagan; Kumar, Sushil; Wempe, Michael F; Raina, Komal; Agarwal, Chapla; Agarwal, Rajesh
2018-05-04
Pancreatic cancer (PanC) is one of the deadliest malignancies worldwide and frontline treatment with gemcitabine becomes eventually ineffective due to increasing PanC resistance, suggesting additional approaches are needed to manage PanC. Recently, we have shown the efficacy of bitter melon juice (BMJ) against PanC cells, including those resistant to gemcitabine. Since cancer stem cells (CSCs) are actively involved in PanC initiation, progression, relapse and drug-resistance, here we assessed BMJ ability in targeting pancreatic cancer-associated cancer stem cells (PanC-CSCs). We found BMJ efficacy against CD44 + /CD24 + /EpCAM high enriched PanC-CSCs in spheroid assays; BMJ also increased the sensitivity of gemcitabine-resistant PanC-CSCs. Exogenous addition of BMJ to PanC-CSC generated spheroids (not pre-exposed to BMJ) also significantly reduced spheroid number and size. Mechanistically, BMJ effects were associated with a decrease in the expression of genes and proteins involved in PanC-CSC renewal and proliferation. Specifically, immunofluorescence staining showed that BMJ decreases protein expression/nuclear localization of CSC-associated transcription factors SOX2, OCT4 and NANOG, and CSC marker CD44. Immunohistochemical analysis of MiaPaCa2 xenografts from BMJ treated animals also showed a significant decrease in the levels of CSC-associated transcription factors. Together, these results show BMJ potential in targeting PanC-CSC pool and associated regulatory pathways, suggesting the need for further investigation of its efficacy against PanC growth and progression including gemcitabine-resistant PanC. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Investigation of Hafnium oxide/Copper resistive memory for advanced encryption applications
NASA Astrophysics Data System (ADS)
Briggs, Benjamin D.
The Advanced Encryption Standard (AES) is a widely used encryption algorithm to protect data and communications in today's digital age. Modern AES CMOS implementations require large amounts of dedicated logic and must be tuned for either performance or power consumption. A high throughput, low power, and low die area AES implementation is required in the growing mobile sector. An emerging non-volatile memory device known as resistive memory (ReRAM) is a simple metal-insulator-metal capacitor device structure with the ability to switch between two stable resistance states. Currently, ReRAM is targeted as a non-volatile memory replacement technology to eventually replace flash. Its advantages over flash include ease of fabrication, speed, and lower power consumption. In addition to memory, ReRAM can also be used in advanced logic implementations given its purely resistive behavior. The combination of a new non-volatile memory element ReRAM along with high performance, low power CMOS opens new avenues for logic implementations. This dissertation will cover the design and process implementation of a ReRAM-CMOS hybrid circuit, built using IBM's 10LPe process, for the improvement of hardware AES implementations. Further the device characteristics of ReRAM, specifically the HfO2/Cu memory system, and mechanisms for operation are not fully correlated. Of particular interest to this work is the role of material properties such as the stoichiometry, crystallinity, and doping of the HfO2 layer and their effect on the switching characteristics of resistive memory. Material properties were varied by a combination of atomic layer deposition and reactive sputtering of the HfO2 layer. Several studies will be discussed on how the above mentioned material properties influence switching parameters, and change the underlying physics of device operation.
Androgen receptor splice variants circumvent AR blockade by microtubule-targeting agents
Zhang, Guanyi; Liu, Xichun; Li, Jianzhuo; Ledet, Elisa; Alvarez, Xavier; Qi, Yanfeng; Fu, Xueqi; Sartor, Oliver; Dong, Yan; Zhang, Haitao
2015-01-01
Docetaxel-based chemotherapy is established as a first-line treatment and standard of care for patients with metastatic castration-resistant prostate cancer. However, half of the patients do not respond to treatment and those do respond eventually become refractory. A better understanding of the resistance mechanisms to taxane chemotherapy is both urgent and clinical significant, as taxanes (docetaxel and cabazitaxel) are being used in various clinical settings. Sustained signaling through the androgen receptor (AR) has been established as a hallmark of CRPC. Recently, splicing variants of AR (AR-Vs) that lack the ligand-binding domain (LBD) have been identified. These variants are constitutively active and drive prostate cancer growth in a castration-resistant manner. In taxane-resistant cell lines, we found the expression of a major variant, AR-V7, was upregulated. Furthermore, ectopic expression of two clinically relevant AR-Vs (AR-V7 and ARV567es), but not the full-length AR (AR-FL), reduced the sensitivities to taxanes in LNCaP cells. Treatment with taxanes inhibited the transcriptional activity of AR-FL, but not those of AR-Vs. This could be explained, at least in part, due to the inability of taxanes to block the nuclear translocation of AR-Vs. Through a series of deletion constructs, the microtubule-binding activity was mapped to the LBD of AR. Finally, taxane-induced cytoplasm sequestration of AR-FL was alleviated when AR-Vs were present. These findings provide evidence that constitutively active AR-Vs maintain the AR signaling axis by evading the inhibitory effects of microtubule-targeting agents, suggesting that these AR-Vs play a role in resistance to taxane chemotherapy. PMID:26160840
Garnier, Delphine; Meehan, Brian; Kislinger, Thomas; Daniel, Paul; Sinha, Ankit; Abdulkarim, Bassam; Nakano, Ichiro; Rak, Janusz
2018-01-22
Glioblastoma (GBM) is almost invariably fatal due to failure of standard therapy. The relapse of GBM following surgery, radiation, and systemic temozolomide (TMZ) is attributed to the ability of glioma stem cells (GSCs) to survive, evolve, and repopulate the tumor mass, events on which therapy exerts a poorly understood influence. Here we explore the molecular and cellular evolution of TMZ resistance as it emerges in vivo (xenograft models) in a series of human GSCs with either proneural (PN) or mesenchymal (MES) molecular characteristics. We observed that the initial response of GSC-initiated intracranial xenografts to TMZ is eventually replaced by refractory growth pattern. Individual tumors derived from the same isogenic GSC line expressed divergent and complex profiles of TMZ resistance markers, with a minor representation of O6-methylguanine DNA methyltransferase (MGMT) upregulation. In several independent TMZ-resistant tumors originating from MES GSCs we observed a consistent diminution of mesenchymal features, which persisted in cell culture and correlated with increased expression of Nestin, decline in transglutaminase 2 and sensitivity to radiation. The corresponding mRNA expression profiles reflective of TMZ resistance and stem cell phenotype were recapitulated in the transcriptome of exosome-like extracellular vesicles (EVs) released by GSCs into the culture medium. Intrinsic changes in the tumor-initiating cell compartment may include loss of subtype characteristics and reciprocal alterations in sensitivity to chemo- and radiation therapy. These observations suggest that exploiting therapy-induced changes in the GSC phenotype and alternating cycles of therapy may be explored to improve GBM outcomes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Kim, Min Soo; Kim, Young Deuk; Hong, Sung Sik; Park, Kwangseo; Ko, Kwan Soo
2014-01-01
In this study, we isolated a bacteriophage T7-resistant mutant strain of Escherichia coli (named S3) and then proceeded to characterize it. The mutant bacterial colonies appeared to be mucoid. Microarray analysis revealed that genes related to colanic acid production were upregulated in the mutant. Increases in colanic acid production by the mutant bacteria were observed when l-fucose was measured biochemically, and protective capsule formation was observed under an electron microscope. We found a point mutation in the lon gene promoter in S3, the mutant bacterium. Overproduction of colanic acid was observed in some phage-resistant mutant bacteria after infection with other bacteriophages, T4 and lambda. Colanic acid overproduction was also observed in clinical isolates of E. coli upon phage infection. The overproduction of colanic acid resulted in the inhibition of bacteriophage adsorption to the host. Biofilm formation initially decreased shortly after infection but eventually increased after 48 h of incubation due to the emergence of the mutant bacteria. Bacteriophage PBECO4 was shown to infect the colanic acid-overproducing mutant strains of E. coli. We confirmed that the gene product of open reading frame 547 (ORF547) of PBECO4 harbored colanic acid-degrading enzymatic (CAE) activity. Treatment of the T7-resistant bacteria with both T7 and PBECO4 or its purified enzyme (CAE) led to successful T7 infection. Biofilm formation decreased with the mixed infection, too. This procedure, using a phage cocktail different from those exploiting solely receptor differences, represents a novel strategy for overcoming phage resistance in mutant bacteria. PMID:25416767
p53 Reactivation by PRIMA-1(Met) (APR-246) sensitises (V600E/K)BRAF melanoma to vemurafenib.
Krayem, Mohammad; Journe, Fabrice; Wiedig, Murielle; Morandini, Renato; Najem, Ahmad; Salès, François; van Kempen, Leon C; Sibille, Catherine; Awada, Ahmad; Marine, Jean-Christophe; Ghanem, Ghanem
2016-03-01
Intrinsic and acquired resistance of metastatic melanoma to (V600E/K)BRAF and/or MEK inhibitors, which is often caused by activation of the PI3K/AKT survival pathway, represents a major clinical challenge. Given that p53 is capable of antagonising PI3K/AKT activation we hypothesised that pharmacological restoration of p53 activity may increase the sensitivity of BRAF-mutant melanoma to MAPK-targeted therapy and eventually delay and/or prevent acquisition of drug resistance. To test this possibility we exposed a panel of vemurafenib-sensitive and resistant (innate and acquired) (V600E/K)BRAF melanomas to a (V600E/K)BRAF inhibitor (vemurafenib) alone or in combination with a direct p53 activator (PRIMA-1(Met)/APR-246). Strikingly, PRIMA-1(Met) synergised with vemurafenib to induce apoptosis and suppress proliferation of (V600E/K)BRAF melanoma cells in vitro and to inhibit tumour growth in vivo. Importantly, this drug combination decreased the viability of both vemurafenib-sensitive and resistant melanoma cells irrespectively of the TP53 status. Notably, p53 reactivation was invariably accompanied by PI3K/AKT pathway inhibition, the activity of which was found as a dominant resistance mechanism to BRAF inhibition in our lines. From all various combinatorial modalities tested, targeting the MAPK and PI3K signalling pathways through p53 reactivation or not, the PRIMA-1(Met)/vemurafenib combination was the most cytotoxic. We conclude that PRIMA-1(Met) through its ability to directly reactivate p53 regardless of the mechanism causing its deactivation, and thereby dampen PI3K signalling, sensitises (V600E/K)BRAF-positive melanoma to BRAF inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong
2013-08-06
This report intends to support Department of Energy’s Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in termsmore » of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nation’s energy security.« less
Erickson, Keesha E; Otoupal, Peter B; Chatterjee, Anushree
2017-01-01
Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment through stress response processes known as adaptive resistance. Adaptive resistance fosters transient tolerance increases and the emergence of mutations conferring heritable drug resistance. In order to extend the applicable lifetime of new antibiotics, we must seek to hinder the occurrence of bacterial adaptive resistance; however, the regulation of adaptation is difficult to identify due to immense heterogeneity emerging during evolution. This study specifically seeks to generate heterogeneity by adapting bacteria to different stresses and then examines gene expression trends across the disparate populations in order to pinpoint key genes and pathways associated with adaptive resistance. The targets identified here may eventually inform strategies for impeding adaptive resistance and prolonging the effectiveness of antibiotic treatment.
Ganapathy-Kanniappan, Shanmugasundaram; Geschwind, Jean-Francois H; Kunjithapatham, Rani; Buijs, Manon; Syed, Labiq H; Rao, Pramod P; Ota, Shinichi; Kwak, Byung Kook; Loffroy, Romaric; Vali, Mustafa
2010-03-01
Autophagy, a cellular response to stress, plays a role in resistance to chemotherapy in cancer cells. Resistance renders systemic chemotherapy generally ineffective against human hepatocellular carcinoma (HCC). Recently, we reported that the pyruvate analog 3-bromopyruvate (3-BrPA) promoted tumor cell death by targeting GAPDH. In continuance, we investigated the intracellular response of two human HCC cell lines (Hep3B and SK-Hep1) that differ in their status of key apoptotic regulators, p53 and Fas. 3-BrPA treatment induced endoplasmic reticulum (ER) stress, translation inhibition and apoptosis based on Western blot and qPCR, pulse labeling, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and active caspase-3 in both the cell lines. However, electron microscopy revealed that 3-BrPA treated SK-Hep1 cells underwent classical apoptotic cell death while Hep3B cells initially responded with the protective autophagy that failed to prevent eventual apoptosis. 3-BrPA treatment promotes apoptosis in human HCC cell lines, irrespective of the intracellular response.
A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures
Wang, Yuan; Liu, Lixin; Meng, Chuanmin; Zhou, Yun; Gao, Zhao; Li, Xuhai; Cao, Xiuxia; Xu, Liang; Zhu, Wenjun
2016-01-01
Much greater surface-to-volume ratio of hierarchical nanostructures renders them attract considerable interest as prototypical gas sensors. In this work, a novel resistive gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures is fabricated by a facile one-step synthetic process and the ethanol sensing performance of this device is characterized systematically, which shows faster response/recovery behavior, better selectivity, and higher sensitivity of about 9 times as compared to the pure TiO2 nanofibers. The enhanced sensitivity of the TiO2/Ag0.35V2O5 branched nanoheterostructures should be attributed to the extraordinary branched hierarchical structures and TiO2/Ag0.35V2O5 heterojunctions, which can eventually result in an obvious change of resistance upon ethanol exposure. This study not only indicates the gas sensing mechanism for performance enhancement of branched nanoheterostructures, but also proposes a rational approach to design nanostructure based chemical sensors with desirable performance. PMID:27615429
Tokamak Operation with Safety Factor q 95 < 2 via Control of MHD Stability
Piovesan, Paolo; Hanson, Jeremy M.; Martin, Piero; ...
2014-07-24
Magnetic feedback control of the resistive-wall mode has enabled DIII-D to access stable operation at safety factor q95 = 1:9 in divertor plasmas for 150 instability growth times. Magnetohydrodynamic stability sets a hard, disruptive limit on the minimum edge safety factor achievable in a tokamak, or on the maximum plasma current at given toroidal magnetic eld. In tokamaks with a divertor, the limit occurs at q95 = 2, as con rmed in DIII-D. Since the energy con cement time scales linearly with current, this also bounds the performance of a fusion reactor. DIII-D has overcome this limit, opening a wholemore » new high-current regime not accessible before. This result brings signi cant possible bene ts in terms of fusion performance, but it also extends resistive wall mode physics and its control to conditions never explored before. In present experiments, q95 < 2 operation is eventually halted by voltage limits reached in the feedback power supplies, not by intrinsic physics issues. Improvements to power supplies and to control algorithms have the potential to further extend this regime.« less
Storage effects on the Cole-Cole parameters of erythrocyte suspensions.
Sezdi, M; Bayik, M; Ulgen, Y
2006-07-01
Chemical alterations of red blood cells (RBCs) during storage eventually affect the electrical properties of blood. In this study, the physiological parameters such as extracellular (SAGM + CPD + residual plasma) Na(+), K(+), Cl(-), pH, 2,3-DPG and ATP together with the Cole-Cole parameters were measured using erythrocyte suspensions from 51 male donors (31 donors form the training set and 20 donors are used for testing), on the 0th, 10th, 21st, 35th and 42nd days of storage. During storage, while the surrounding fluid resistance (R(e)) and the effective cell membrane capacitance (C(m)) increased progressively with time, the intracellular fluid resistance (R(i)) has decreased. Storage of RBCs resulted in a rise in K(+) and a fall in Na(+), Cl(-), pH, 2,3-DPG and ATP. Accordingly, electrical parameters were all correlated with Na(+), K(+), Cl(-), pH and ATP at varying levels. By applying multi-regression analysis, it is concluded that R(i), R(e) and C(m) are appropriate for modeling Na(+), K(+), Cl(-), pH and ATP during storage.
Resistive Wall Modes Identification and Control in RFX-mod low qedge tokamak discharges
NASA Astrophysics Data System (ADS)
Baruzzo, Matteo; Bolzonella, Tommaso; Cavazzana, Roberto; Marchiori, Giuseppe; Marrelli, Lionello; Martin, Piero; Paccagnella, Roberto; Piovesan, Paolo; Piron, Lidia; Soppelsa, Anton; Zanca, Paolo; in, Yongkyoon; Liu, Yueqiang; Okabayashi, Michio; Takechi, Manabu; Villone, Fabio
2011-10-01
In this work the MHD stability of RFX mode tokamak discharges with qedge < 3 will be studied. The target plasma scenario is characterized by a plasma current 100kA
A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures
NASA Astrophysics Data System (ADS)
Wang, Yuan; Liu, Lixin; Meng, Chuanmin; Zhou, Yun; Gao, Zhao; Li, Xuhai; Cao, Xiuxia; Xu, Liang; Zhu, Wenjun
2016-09-01
Much greater surface-to-volume ratio of hierarchical nanostructures renders them attract considerable interest as prototypical gas sensors. In this work, a novel resistive gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures is fabricated by a facile one-step synthetic process and the ethanol sensing performance of this device is characterized systematically, which shows faster response/recovery behavior, better selectivity, and higher sensitivity of about 9 times as compared to the pure TiO2 nanofibers. The enhanced sensitivity of the TiO2/Ag0.35V2O5 branched nanoheterostructures should be attributed to the extraordinary branched hierarchical structures and TiO2/Ag0.35V2O5 heterojunctions, which can eventually result in an obvious change of resistance upon ethanol exposure. This study not only indicates the gas sensing mechanism for performance enhancement of branched nanoheterostructures, but also proposes a rational approach to design nanostructure based chemical sensors with desirable performance.
NASA Astrophysics Data System (ADS)
Pezeshkpour, Parsa
The requirements of environmental assessments and of understanding and monitoring in-situ mass and heat processes in porous media have led to the development of geophysical methods for remote mapping and monitoring of contaminant plumes and fluid migration. With the possible exception of seismic approaches, electrical methods known as Electrical Resistivity Tomography (ERT) have become the most widely studied and used for these purposes. Wherever a sufficient contrast in ground resistivity is generated by human or natural processes, monitoring the resistivity structure over time may give insight into these processes. ERT has monitoring applications in processes such as Enhanced Oil Recovery (EOR), Slurry Fracture Injection (SFI), and monitoring transport processes in hydrogeology. A permanent electrode arrangement for long term monitoring removes the effects of Earth's heterogeneity and anisotropy when a process is analyzed as a function of time. As a starting point on the work described in this thesis, ERT data were collected from a Cambridge, Ontario, sand pit before, immediately after and one week following a 11000 liters slurry injection. These measurements verified that ERT could detect changes caused by the injection and later movement of this conductive mixture in the ground. The commercial equipment used for these measurements was not well suited to the tasks, mainly because it was extremely slow. Further, there was a lack of robust and user-friendly three-dimensional modeling software to use as a means of predicting response and---eventually---as the engine of an inversion routine. Finally, it was difficult to analyze the injection situation in terms of how best to place a limited number of surface and borehole electrodes to most effectively monitor the injection fluids. The remainder of the thesis addresses these problems. The first objective was to design and construct a more suitable ERT measurement system. The second objective was to adapt SALTFLOW as a platform for both the resistivity and hydrogeological modeling of the saline groundwater flow resulting from waste injection. The third objective was to develop methods of sensitivity analysis that will allow a more efficient examination of the electrode arrays that could be effectively used in a given situation. The fourth objective was to demonstrate the ERT method and the improvements undertaken by the author on the data collected at the Cambridge injection site. The thesis has not, in fact, met all these objectives, but has made substantial progress towards them. The complete design of the measurement system and the construction of its potential measurement components were achieved. A lack of capacity in the science shops, however, resulted in the power (current) supply not being constructed in time for field evaluation of the injection or its aftermath. (Abstract shortened by UMI.)
Development of the Next Generation Air Quality Modeling System
A next generation air quality modeling system is being developed at the U.S. EPA to enable modeling of air quality from global to regional to (eventually) local scales. We envision that the system will have three configurations: 1. Global meteorology with seamless mesh refinemen...
The HPV Vaccine | Center for Cancer Research
Two researchers leveraged CCR’s unique environment of investigator-driven inquiry to pursue studies of two cancer-causing genes that eventually led to the development of a vaccine against two forms of human papillomavirus.
Fingernails Yield Clues to Limb Regeneration
... in mice. The findings, published in the journal Nature, could eventually lead to the development of novel ... Nail Epithelium Couples Nail Growth to Digit Regeneration. Nature 2013 Jul 11;499(7457):228-32. doi: ...
ERIC Educational Resources Information Center
Ansbro, Thomas M.
This is the first in a series of reports describing the origin, development, and applications of the Naval Enlisted Professional Development Information System (NEPDIS). The NEPDIS was designed to be a fully computerized information assembly and analysis system that would eventually support manpower, personnel, and training management. This report…
DOT National Transportation Integrated Search
2017-02-01
As a burgeoning literature on high-speed rail development indicates, good station-area planning is a very important prerequisite for the eventual successful operation of a high-speed rail station; it can also trigger opportunities for economic develo...
This task supports the Agency's efforts on developing a proper risk assessment tools to address Ecological and eventually Human exposures. The Agency needs to be able to identify, measure and estimate ecosystem exposure to multiple stressors. The research under this task suppor...
ERTS-A: a new apogee for mineral finding
Carter, William D.
1971-01-01
The EROS Program will continue investigations to select or develop optimum, economical airborne and space systems that will expand man's ability to observe and profit from natural resources. It is to be hoped that several of these systems will eventually prove useful supplements to current and developing mineral exploration technology.
Cooney, Matthew M; Remick, Scot C; Vogelzang, Nicholas J
2004-02-01
Metastatic renal cell carcinoma is highly resistant to systemic therapy. Although interleukin-2 and interferon remain the most active agents for this disease, long-term survival rates remain poor. Two phase 3 trials, European Organization Research and Treatment of Cancer 30947 and Southwest Oncology Group 8949, have demonstrated a survival benefit of nephrectomy followed by interferon versus interferon alone in patients having an excellent performance status (PS 0 and 1). Removal of the primary tumor followed by interferon is not recommended for patients with a moderate or poor PS (PS 2-4). Even with this aggressive approach, most patients eventually will die from their kidney cancer; therefore, every patient with metastatic disease should be considered for enrollment into clinical trials.
Minerals and design of new waste forms for conditioning nuclear waste
NASA Astrophysics Data System (ADS)
Montel, Jean-Marc
2011-02-01
Safe storage of radioactive waste is a major challenge for the nuclear industry. Mineralogy is a good basis for designing ceramics, which could eventually replace nuclear glasses. This requires a new storage concept: separation-conditioning. Basic rules of crystal chemistry allow one to select the most suitable structures and natural occurrences allow assessing the long-term performance of ceramics in a geological environment. Three criteria are of special interest: compatibility with geological environment, resistance to natural fluids, and effects of self-irradiation. If mineralogical information is efficient for predicting the behaviour of common, well-known minerals, such as zircon, monazite or apatite, more research is needed to rationalize the long-term behaviour of uncommon waste form analogs.
NASA Astrophysics Data System (ADS)
Haţiegan, C.; Răduca, E.; Popescu, C.; Hamat, C. O.; Băra, A.; Anghel, D.; Pîrşan, D. A.
2018-01-01
The paper presents a determining and evaluating method from an experimental point of view of the partial discharges level from the insulation of the stator of a synchronous hydro-generator of high power that appear at different temperatures. The temperature is measured directly on the coil with placed thermo-resistant elements between the superior and inferior bars. Also, the level of partial discharges with the coil age in a cold state, at the temperature level of the surrounding environment from within the stator, but also in a warm state at different temperatures, is measured. Through this method there is created the possibility of highlighting some eventual degradations of the coil insulation of a hydro-generator.
Ceritinib for treatment of ALK-rearranged advanced non-small-cell lung cancer.
Vansteenkiste, Johan F
2014-10-01
The anaplastic lymphoma kinase (ALK) gene plays a key role in the pathogenesis of selected tumors, including non-small-cell lung cancer (NSCLC). Patients with ALK-rearranged NSCLC are initially sensitive to the ALK inhibitor crizotinib but eventually become resistant, limiting its therapeutic potential. Ceritinib is an oral second-generation ALK inhibitor with greater preclinical antitumor potency than crizotinib in ALK-positive NSCLC. A Phase I trial of ceritinib in ALK-positive tumors demonstrated good activity in patients with advanced NSCLC, including those who had progressed on crizotinib. Adverse events are similar to those seen with other ALK tyrosine kinase inhibitors and are generally manageable. Ongoing trials are evaluating ceritinib in patients with ALK-rearranged NSCLC treated with prior chemotherapy and/or crizotinib.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Xu, Wei; Stephens, Elizabeth
Metallic cell interconnects (IC) made of ferritic stainless steels, i.e., iron-based alloys, have been increasingly favored in the recent development of planar solid oxide fuel cells (SOFCs) because of their advantages in excellent imperviousness, low electrical resistance, ease in fabrication, and cost effectiveness. Typical SOFC operating conditions inevitably lead to the formation of oxide scales on the surface of ferritic stainless steel, which could cause delamination, buckling, and spallation resulting from the mismatch of the coefficient of thermal expansion and eventually reduce the lifetime of the interconnect components. Various protective coating techniques have been applied to alleviate these drawbacks. Inmore » the present work, a fracture-mechanics-based quantitative modeling framework has been established to predict the mechanical reliability and lifetime of the spinel-coated, surface-modified specimens under an isothermal cooling cycle. Analytical solutions have been formulated to evaluate the scale/substrate interfacial strength and determine the critical oxide thickness in terms of a variety of design factors, such as coating thickness, material properties, and uncertainties. In conclusion, the findings then are correlated with the experimentally measured oxide scale growth kinetics to quantify the predicted lifetime of the metallic interconnects.« less
NASA Astrophysics Data System (ADS)
Ghanbari, Azadeh; Dehghany, Jaber; Schwebs, Timo; Müsken, Mathias; Häussler, Susanne; Meyer-Hermann, Michael
2016-09-01
Pseudomonas aeruginosa often colonises immunocompromised patients and the lungs of cystic fibrosis patients. It exhibits resistance to many antibiotics by forming biofilms, which makes it hard to eliminate. P. aeruginosa biofilms form mushroom-shaped structures under certain circumstances. Bacterial motility and the environment affect the eventual mushroom morphology. This study provides an agent-based model for the bacterial dynamics and interactions influencing bacterial biofilm shape. Cell motility in the model relies on recently published experimental data. Our simulations show colony formation by immotile cells. Motile cells escape from a single colony by nutrient chemotaxis and hence no mushroom shape develops. A high number density of non-motile colonies leads to migration of motile cells onto the top of the colonies and formation of mushroom-shaped structures. This model proposes that the formation of mushroom-shaped structures can be predicted by parameters at the time of bacteria inoculation. Depending on nutrient levels and the initial number density of stalks, mushroom-shaped structures only form in a restricted regime. This opens the possibility of early manipulation of spatial pattern formation in bacterial colonies, using environmental factors.
Marine floc strength and breakup response in turbulent flow
NASA Astrophysics Data System (ADS)
Rau, Matthew; Ackleson, Steven; Smith, Geoffrey
2017-11-01
The effect of turbulence on marine floc formation and breakup is studied experimentally using a recirculating breakup facility. Flocs of bentonite clay particles are grown in a large, stirred aggregation tank of salt water (salinity of 10 ppt) before being subjected to fully-developed pipe flow. Pipe flow conditions range from laminar to turbulent with dissipation rates up to 2.1 m2/s3. Particle size distributions are measured through in-situ sampling of the small-angle forward volume scattering function and through microscopic imaging. Floc size is compared before and after exposure to turbulence and found to be a strong function of the dissipation rate of turbulent kinetic energy. Hydrodynamic conditions within the aggregation tank have a large influence on overall floc strength; flocs formed with stirred aggregation resist breakup compared to flocs formed without stirring. Floc shape and structure statistics are quantified through image analysis and the results are discussed in relation to the measured floc breakup response. Finally, the relevance of these findings to quantifying and predicting marine floc dynamics and the eventual fate of particles in the ocean is presented. The authors thank the National Research Council Postdoctoral Program for their support of this work.
The impact of "ancient pathogen" studies on the practice of public health.
Greenblatt, Charles; Spigelman, Mark; Vernon, Kim
2003-01-01
A new field of "ancient pathogens" is making an impact on our concepts of the evolution of infectious diseases, and it will eventually alter the practice of public health in their control. It has begun to answer important questions regarding past epidemics of influenza and tuberculosis by recovering the genetic sequences of the ancient causative agents. Vaccination strategics will have to study these microbial variants in order to develop tomorrow's vaccines. It may also be possible to examine the role of past and present reservoirs in the dynamics of emerging diseases. In unraveling the evolution of pathogens, insights into the mechanisms of drug and antibiotic resistance are possible. As "genome projects" of more and more pathogens are being completed. Targets for chemotherapy are being revealed which are totally different from the metabolic processes of the mammalian host. Signal molecules are being identified which alter the virulence of the microbe. Focussing on these mechanisms without attempting to kill the pathogen may in some cases drive it into a benign state. These and other aspects of the evolution of pathogens are discussed which may lead to innovative approaches to the control of infectious diseases.
Ghanbari, Azadeh; Dehghany, Jaber; Schwebs, Timo; Müsken, Mathias; Häussler, Susanne; Meyer-Hermann, Michael
2016-09-09
Pseudomonas aeruginosa often colonises immunocompromised patients and the lungs of cystic fibrosis patients. It exhibits resistance to many antibiotics by forming biofilms, which makes it hard to eliminate. P. aeruginosa biofilms form mushroom-shaped structures under certain circumstances. Bacterial motility and the environment affect the eventual mushroom morphology. This study provides an agent-based model for the bacterial dynamics and interactions influencing bacterial biofilm shape. Cell motility in the model relies on recently published experimental data. Our simulations show colony formation by immotile cells. Motile cells escape from a single colony by nutrient chemotaxis and hence no mushroom shape develops. A high number density of non-motile colonies leads to migration of motile cells onto the top of the colonies and formation of mushroom-shaped structures. This model proposes that the formation of mushroom-shaped structures can be predicted by parameters at the time of bacteria inoculation. Depending on nutrient levels and the initial number density of stalks, mushroom-shaped structures only form in a restricted regime. This opens the possibility of early manipulation of spatial pattern formation in bacterial colonies, using environmental factors.
Xu, Zhijie; Xu, Wei; Stephens, Elizabeth; ...
2017-07-03
Metallic cell interconnects (IC) made of ferritic stainless steels, i.e., iron-based alloys, have been increasingly favored in the recent development of planar solid oxide fuel cells (SOFCs) because of their advantages in excellent imperviousness, low electrical resistance, ease in fabrication, and cost effectiveness. Typical SOFC operating conditions inevitably lead to the formation of oxide scales on the surface of ferritic stainless steel, which could cause delamination, buckling, and spallation resulting from the mismatch of the coefficient of thermal expansion and eventually reduce the lifetime of the interconnect components. Various protective coating techniques have been applied to alleviate these drawbacks. Inmore » the present work, a fracture-mechanics-based quantitative modeling framework has been established to predict the mechanical reliability and lifetime of the spinel-coated, surface-modified specimens under an isothermal cooling cycle. Analytical solutions have been formulated to evaluate the scale/substrate interfacial strength and determine the critical oxide thickness in terms of a variety of design factors, such as coating thickness, material properties, and uncertainties. In conclusion, the findings then are correlated with the experimentally measured oxide scale growth kinetics to quantify the predicted lifetime of the metallic interconnects.« less
The structural diversity of artificial genetic polymers
Anosova, Irina; Kowal, Ewa A.; Dunn, Matthew R.; Chaput, John C.; Van Horn, Wade D.; Egli, Martin
2016-01-01
Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeguard synthetic biology organisms by storing genetic information in orthogonal chromosomes. XNA polymers are also under active investigation as a source of nuclease resistant affinity reagents (aptamers) and catalysts (xenozymes) with practical applications in disease diagnosis and treatment. In this review, we provide a structural perspective on known antiparallel duplex structures in which at least one strand of the Watson–Crick duplex is composed entirely of XNA. Currently, only a handful of XNA structures have been archived in the Protein Data Bank as compared to the more than 100 000 structures that are now available. Given the growing interest in xenobiology projects, we chose to compare the structural features of XNA polymers and discuss their potential to access new regions of nucleic acid fold space. PMID:26673703
Nonlinear Acoustics in Ultrasound Metrology and other Selected Applications.
Lewin, Peter A
2010-01-01
A succinct background explaining why, initially, both the scientific community and industry were skeptical about the existence of the nonlinear (NL) wave propagation in tissue will be given and the design of an adequately wideband piezoelectric polymer hydrophone probe that was eventually used to verify that the 1-5 MHz probing wave then used in diagnostic ultrasound imaging was undergoing nonlinear distortion and generated harmonics in tissue will be discussed. The far-reaching implications of the advent of the piezoelectric PVDF polymer material will be reviewed and the advances in ultrasound metrology prompted by the regulatory agencies such as US Food and Drug Administration (FDA) and International Electrotechnical Commission (IEC) will be presented. These advances include the development of absolute calibration techniques for hydrophones along with the methods of accounting for spatial averaging corrections up to 100 MHz and the development of "point-receiver" hydrophone probes utilizing acousto-optic sensors. Next, selected therapeutic applications of nonlinear ultrasonics (NLU), including lithotripters will be briefly discussed. Also, the use of shock waves as pain relief tool and in abating penicillin resistant bacteria that develop rock hard "biofilm" that can be shattered by the finite amplitude wave will also be mentioned. The growing applications of NLU in cosmetic industry where it is used for redistribution and reduction of fatty tissue within the body will be briefly reviewed, and, finally, selected examples of NLU applications in retail and entertainment industry will also be pointed out.
Nonlinear acoustics in ultrasound metrology and other selected applications
NASA Astrophysics Data System (ADS)
Lewin, Peter A.
2010-01-01
A succinct background explaining why, initially, both the scientific community and industry were skeptical about the existence of the nonlinear (NL) wave propagation in tissue will be given and the design of an adequately wideband piezoelectric polymer hydrophone probe that was eventually used to verify that the 1-5 MHz probing wave then used in diagnostic ultrasound imaging was undergoing nonlinear distortion and generated harmonics in tissue will be discussed. The far-reaching implications of the advent of the piezoelectric PVDF polymer material will be reviewed and the advances in ultrasound metrology prompted by the regulatory agencies such as US Food and Drug Administration (FDA) and International Electrotechnical Commission (IEC) will be presented. These advances include the development of absolute calibration techniques for hydrophones along with the methods of accounting for spatial averaging corrections up to 100 MHz and the development of 'point-receiver' hydrophone probes utilizing acousto-optic sensors. Next, selected therapeutic applications of nonlinear ultrasonics (NLU), including lithotripters will be briefly discussed. Also, the use of shock waves as pain relief tool and in abating penicillin resistant bacteria that develop rock hard 'biofilm' that can be shattered by the finite amplitude wave will also be mentioned. The growing applications of NLU in cosmetic industry where it is used for redistribution and reduction of fatty tissue within the body will be briefly reviewed, and, finally, selected examples of NLU applications in retail and entertainment industry will also be pointed out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofman, Jakub; Malcekova, Beata; Skarka, Adam
2014-08-01
Pharmacokinetic drug resistance is a serious obstacle that emerges during cancer chemotherapy. In this study, we investigated the possible role of aldo-keto reductase 1C3 (AKR1C3) in the resistance of cancer cells to anthracyclines. First, the reducing activity of AKR1C3 toward anthracyclines was tested using incubations with a purified recombinant enzyme. Furthermore, the intracellular reduction of daunorubicin and idarubicin was examined by employing the transfection of A549, HeLa, MCF7 and HCT 116 cancer cells with an AKR1C3 encoding vector. To investigate the participation of AKR1C3 in anthracycline resistance, we conducted MTT cytotoxicity assays with these cells, and observed that AKR1C3 significantlymore » contributes to the resistance of cancer cells to daunorubicin and idarubicin, whereas this resistance was reversible by the simultaneous administration of 2′-hydroxyflavanone, a specific AKR1C3 inhibitor. In the final part of our work, we tracked the changes in AKR1C3 expression after anthracycline exposure. Interestingly, a reciprocal correlation between the extent of induction and endogenous levels of AKR1C3 was recorded in particular cell lines. Therefore, we suggest that the induction of AKR1C3 following exposure to daunorubicin and idarubicin, which seems to be dependent on endogenous AKR1C3 expression, eventually might potentiate an intrinsic resistance given by the normal expression of AKR1C3. In conclusion, our data suggest a substantial impact of AKR1C3 on the metabolism of daunorubicin and idarubicin, which affects their pharmacokinetic and pharmacodynamic behavior. In addition, we demonstrate that the reduction of daunorubicin and idarubicin, which is catalyzed by AKR1C3, contributes to the resistance of cancer cells to anthracycline treatment. - Highlights: • Metabolism of anthracyclines by AKR1C3 was studied at enzyme and cellular levels. • Anthracycline resistance mediated by AKR1C3 was demonstrated in cancer cells. • Induction of AKR1C3 after anthracycline exposure was investigated in cancer cells. • AKR1C3 confers resistance of cancer cells to daunorubicin and idarubicin. • AKR1C3 can be induced by the exposure to anthracyclines in some cell lines.« less
Czekalski, Nadine; Sigdel, Radhika; Birtel, Julia; Matthews, Blake; Bürgmann, Helmut
2015-08-01
Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lev, Avital; Lulla, Amriti R; Ross, Brian C; Ralff, Marie D; Makhov, Petr B; Dicker, David T; El-Deiry, Wafik S
2018-05-01
Androgen receptor (AR) signaling plays a key role in prostate cancer progression, and androgen deprivation therapy (ADT) is a mainstay clinical treatment regimen for patients with advanced disease. Unfortunately, most prostate cancers eventually become androgen-independent and resistant to ADT with patients progressing to metastatic castration-resistant prostate cancer (mCRPC). Constitutively activated AR variants (AR-V) have emerged as mediators of resistance to AR-targeted therapy and the progression of mCRPC, and they represent an important therapeutic target. Out of at least 15 AR-Vs described thus far, AR-V7 is the most abundant, and its expression correlates with ADT resistance. ONC201/TIC10 is the founding member of the imipridone class of small molecules and has shown anticancer activity in a broad range of tumor types. ONC201 is currently being tested in phase I/II clinical trials for advanced solid tumors, including mCRPC, and hematologic malignancies. There has been promising activity observed in patients in early clinical testing. This study demonstrates preclinical single-agent efficacy of ONC201 using in vitro and in vivo models of prostate cancer. ONC201 has potent antiproliferative and proapoptotic effects in both castration-resistant and -sensitive prostate cancer cells. Furthermore, the data demonstrate that ONC201 downregulates the expression of key drivers of prostate cancer such as AR-V7 and downstream target genes including the clinically used biomarker PSA (KLK3). Finally, the data also provide a preclinical rationale for combination of ONC201 with approved therapeutics for prostate cancer such as enzalutamide, everolimus (mTOR inhibitor), or docetaxel. Implications: The preclinical efficacy of ONC201 as a single agent or in combination, in hormone-sensitive or castration-resistant prostate cancer, suggests the potential for immediate clinical translation. Mol Cancer Res; 16(5); 754-66. ©2018 AACR . ©2018 American Association for Cancer Research.
Viedma-Rodríguez, Rubí; Ruiz Esparza-Garrido, Ruth; Baiza-Gutman, Luis Arturo; Velázquez-Flores, Miguel Ángel; García-Carrancá, Alejandro; Salamanca-Gómez, Fabio; Arenas-Aranda, Diego
2015-09-01
Majority of women with estrogen receptor (ER)-positive breast cancers initially respond to hormone therapies such as tamoxifen (TAM; antagonist of estrogen). However, many tumors eventually become resistant to TAM. Therefore, understanding the various cellular components involved in causing resistance to TAM is of paramount importance in designing novel entities for efficacious hormone therapy. Previously, we found that suppression of BIK gene expression induced TAM resistance in MCF-7 breast cancer cells. In order to understand the response of these cells to TAM and its association with resistance, a microarray analysis of gene expression was performed in the BIK-suppressed MCF-7 cells and compared it to the TAM-only-treated cells (controls). Several genes participating in various cellular pathways were identified. Molecules identified in the drug resistance pathway were 14-3-3z or YWHAZ, WEE1, PRKACA, NADK, and HSP90AA 1. Further, genes involved in cell cycle control, apoptosis, and cell proliferation were also found differentially expressed in these cells. Transcriptional and translational analysis of key molecules such as STAT2, AKT 3, and 14-3-3z revealed similar changes at the messenger RNA (mRNA) as well as at the protein level. Importantly, there was no cytotoxic effect of TAM on BIK-suppressed MCF-7 cells. Further, these cells were not arrested at the G0-G1 phase of the cell cycle although 30 % of BIK-suppressed cells were arrested at the G2 phase of the cycle on TAM treatment. Furthermore, we found a relevant interaction between 14-3-3z and WEE1, suggesting that the cytotoxic effect of TAM was prevented in BIK-suppressed cells because this interaction leads to transitory arrest in the G2 phase leading to the repair of damaged DNA and allowing the cells to proliferate.
Bypass Mechanisms of the Androgen Receptor Pathway in Therapy-Resistant Prostate Cancer Cell Models
Marques, Rute B.; Dits, Natasja F.; Erkens-Schulze, Sigrun; van Weerden, Wytske M.; Jenster, Guido
2010-01-01
Background Prostate cancer is initially dependent on androgens for survival and growth, making hormonal therapy the cornerstone treatment for late-stage tumors. However, despite initial remission, the cancer will inevitably recur. The present study was designed to investigate how androgen-dependent prostate cancer cells eventually survive and resume growth under androgen-deprived and antiandrogen supplemented conditions. As model system, we used the androgen-responsive PC346C cell line and its therapy-resistant sublines: PC346DCC, PC346Flu1 and PC346Flu2. Methodology/Principal Findings Microarray technology was used to analyze differences in gene expression between the androgen-responsive and therapy-resistant PC346 cell lines. Microarray analysis revealed 487 transcripts differentially-expressed between the androgen-responsive and the therapy-resistant cell lines. Most of these genes were common to all three therapy-resistant sublines and only a minority (∼5%) was androgen-regulated. Pathway analysis revealed enrichment in functions involving cellular movement, cell growth and cell death, as well as association with cancer and reproductive system disease. PC346DCC expressed residual levels of androgen receptor (AR) and showed significant down-regulation of androgen-regulated genes (p-value = 10−7). Up-regulation of VAV3 and TWIST1 oncogenes and repression of the DKK3 tumor-suppressor was observed in PC346DCC, suggesting a potential AR bypass mechanism. Subsequent validation of these three genes in patient samples confirmed that expression was deregulated during prostate cancer progression. Conclusions/Significance Therapy-resistant growth may result from adaptations in the AR pathway, but androgen-independence may also be achieved by alternative survival mechanisms. Here we identified TWIST1, VAV3 and DKK3 as potential players in the bypassing of the AR pathway, making them good candidates as biomarkers and novel therapeutical targets. PMID:20976069
Immortality of Cu damascene interconnects
NASA Astrophysics Data System (ADS)
Hau-Riege, Stefan P.
2002-04-01
We have studied short-line effects in fully-integrated Cu damascene interconnects through electromigration experiments on lines of various lengths and embedded in different dielectric materials. We compare these results with results from analogous experiments on subtractively-etched Al-based interconnects. It is known that Al-based interconnects exhibit three different behaviors, depending on the magnitude of the product of current density, j, and line length, L: For small values of (jL), no void nucleation occurs, and the line is immortal. For intermediate values, voids nucleate, but the line does not fail because the current can flow through the higher-resistivity refractory-metal-based shunt layers. Here, the resistance of the line increases but eventually saturates, and the relative resistance increase is proportional to (jL/B), where B is the effective elastic modulus of the metallization system. For large values of (jL/B), voiding leads to an unacceptably high resistance increase, and the line is considered failed. By contrast, we observed only two regimes for Cu-based interconnects: Either the resistance of the line stays constant during the duration of the experiment, and the line is considered immortal, or the line fails due to an abrupt open-circuit failure. The absence of an intermediate regime in which the resistance saturates is due to the absence of a shunt layer that is able to support a large amount of current once voiding occurs. Since voids nucleate much more easily in Cu- than in Al-based interconnects, a small fraction of short Cu lines fails even at low current densities. It is therefore more appropriate to consider the probability of immortality in the case of Cu rather than assuming a sharp boundary between mortality and immortality. The probability of immortality decreases with increasing amount of material depleted from the cathode, which is proportional to (jL2/B) at steady state. By contrast, the immortality of Al-based interconnects is described by (jL) if no voids nucleate, and (jL/B) if voids nucleate.
New Players for Advanced Prostate Cancer and the Rationalisation of Insulin-Sensitising Medication
Gunter, Jennifer H.; Sarkar, Phoebe L.; Lubik, Amy A.; Nelson, Colleen C.
2013-01-01
Obesity and type 2 diabetes are recognised risk factors for the development of some cancers and, increasingly, predict more aggressive disease, treatment failure, and cancer-specific mortality. Many factors may contribute to this clinical observation. Hyperinsulinaemia, dyslipidaemia, hypoxia, ER stress, and inflammation associated with expanded adipose tissue are thought to be among the main culprits driving malignant growth and cancer advancement. This observation has led to the proposal of the potential utility of “old players” for the treatment of type 2 diabetes and metabolic syndrome as new cancer adjuvant therapeutics. Androgen-regulated pathways drive proliferation, differentiation, and survival of benign and malignant prostate tissue. Androgen deprivation therapy (ADT) exploits this dependence to systemically treat advanced prostate cancer resulting in anticancer response and improvement of cancer symptoms. However, the initial therapeutic response from ADT eventually progresses to castrate resistant prostate cancer (CRPC) which is currently incurable. ADT rapidly induces hyperinsulinaemia which is associated with more rapid treatment failure. We discuss current observations of cancer in the context of obesity, diabetes, and insulin-lowering medication. We provide an update on current treatments for advanced prostate cancer and discuss whether metabolic dysfunction, developed during ADT, provides a unique therapeutic window for rapid translation of insulin-sensitising medication as combination therapy with antiandrogen targeting agents for the management of advanced prostate cancer. PMID:23573093
Gecgel, Karaca Kaan; Muduroglu, Mustafa; Erdogan, Suat
2017-01-01
Androgen deprivation therapy (ADT) is one of the main strategies to treat prostate cancer (PCa) at various stages of its development. Androgen receptor (AR) antagonists such as enzalutamide are mainstay treatments for castration-sensitive prostate cancer. Though, a majority of patients initially respond to ADT, most will eventually progress to castrate-resistant, due to the development of different mutations on the AR. PCa cells express high telomerase activity, and there is a correlation between the total activity of telomerase and the Gleason score. Therefore, we hypothesized that the combination of enzalutamide plus a telomerase inhibitor could be more effective than enzalutamide alone in decreasing cell survival. In this study MTT test, RT-qPCR and imagebased cytometry were used to investigate cell viability, apoptosis and cell cycle progression of androgen-responsive human prostate cancer LNCaP cells. The cells were treated with 5 μM enzalutamide and 40 μM telomerase inhibitor BIBR 1532, or with their combinations for 72 hrs. Enzalutamide and BIBR 1532 alone inhibited cell proliferation in a dose-dependent manner. The combinations of the two agents could synergistically induce apoptotic and necrotic cell death. Either inhibition of telomerase by BIBR 1532 or AR blockages by enzalutamide decreased prostate-specific antigen (PSA) and the catalytic component of telomerase, hTERT, expression. These results suggest that telomerase inhibition therapy may contribute to the efficacy of enzalutamide in the androgen-sensitive PCa model.
The Treatment of Obesity in Cardiac Rehabilitation
Ades, Philip A.; Savage, Patrick D.; Harvey-Berino, Jean
2010-01-01
Obesity is an independent risk factor for the development of coronary heart disease (CHD). At entry into cardiac rehabilitation (CR) over 80% of patients are overweight and over 50% have the metabolic syndrome. Yet, CR programs do not generally include weight loss programs as a programmatic component and weight loss outcomes in CR have been abysmal. A recently published study outlines a template for weight reduction based upon a combination of behavioral weight loss counseling and an approach to exercise that maximized exercise-related caloric expenditure. This approach to exercise optimally includes walking as the primary exercise modality and eventually requires almost daily longer distance exercise to maximize caloric expenditure. Additionally, lifestyle exercise such as stair climbing and avoidance of energy-saving devices should be incorporated into the daily routine. Risk factor benefits of weight loss and exercise training in overweight patients with coronary heart disease are broad and compelling. Improvements in insulin resistance, lipid profiles, blood pressure, clotting abnormalities, endothelial-dependent vasodilatory capacity, and measures of inflammation such as C-reactive protein have all been demonstrated. CR/secondary prevention programs can no longer ignore the challenge of obesity management in patients with CHD. Individual programs need to develop clinically effective and culturally sensitive approaches to weight control. Finally, multicenter randomized clinical trials of weight loss in CHD patients with assessment of long-term clinical outcomes need to be performed. PMID:20436355
MAGNETIC BRAIDING AND PARALLEL ELECTRIC FIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilmot-Smith, A. L.; Hornig, G.; Pontin, D. I.
2009-05-10
The braiding of the solar coronal magnetic field via photospheric motions-with subsequent relaxation and magnetic reconnection-is one of the most widely debated ideas of solar physics. We readdress the theory in light of developments in three-dimensional magnetic reconnection theory. It is known that the integrated parallel electric field along field lines is the key quantity determining the rate of reconnection, in contrast with the two-dimensional case where the electric field itself is the important quantity. We demonstrate that this difference becomes crucial for sufficiently complex magnetic field structures. A numerical method is used to relax a braided magnetic field towardmore » an ideal force-free equilibrium; the field is found to remain smooth throughout the relaxation, with only large-scale current structures. However, a highly filamentary integrated parallel current structure with extremely short length-scales is found in the field, with the associated gradients intensifying during the relaxation process. An analytical model is developed to show that, in a coronal situation, the length scales associated with the integrated parallel current structures will rapidly decrease with increasing complexity, or degree of braiding, of the magnetic field. Analysis shows the decrease in these length scales will, for any finite resistivity, eventually become inconsistent with the stability of the coronal field. Thus the inevitable consequence of the magnetic braiding process is a loss of equilibrium of the magnetic field, probably via magnetic reconnection events.« less
Ebrahem, Quteba; Mahfouz, Reda Z; Ng, Kwok Peng; Saunthararajah, Yogen
2012-10-01
We document for the first time that sanctuary in an organ which expresses high levels of the enzyme cytidine deaminase (CDA) is a mechanism of cancer cell resistance to cytidine analogues. This mechanism could explain why historically, cytidine analogues have not been successful chemotherapeutics against hepatotropic cancers, despite efficacy in vitro. Importantly, this mechanism of resistance can be readily reversed, without increasing toxicity to sensitive organs, by combining a cytidine analogue with an inhibitor of cytidine deaminase (tetrahydrouridine). Specifically, CDA rapidly metabolizes cytidine analogues into inactive uridine counterparts. Hence, to determine if sheltering/protection of cancer cells in organs which express high levels of CDA (e.g., liver) is a mechanism of resistance, we utilized a murine xenotransplant model of myeloid cancer that is sensitive to epigenetic therapeutic effects of the cytidine analogue decitabine in vitro and hepato-tropic in vivo. Treatment of tumor-bearing mice with decitabine (subcutaneous 0.2mg/kg 2X/week) doubled median survival and significantly decreased extra-hepatic tumor burden, but hepatic tumor burden remained substantial, to which the animals eventually succumbed. Combining a clinically-relevant inhibitor of CDA (tetrahydrouridine) with a lower dose of decitabine (subcutaneous 0.1mg/kg 2X/week) markedly decreased liver tumor burden without blood count or bone marrow evidence of myelotoxicity, and with further improvement in survival. In conclusion, sanctuary in a CDA-rich organ is a mechanism by which otherwise susceptible cancer cells can resist the effects of decitabine epigenetic therapy. This protection can be reversed without increasing myelotoxicity by combining tetrahydrouridine with a lower dose of decitabine.
Insulin, cognition, and dementia
Cholerton, Brenna; Baker, Laura D.; Craft, Suzanne
2015-01-01
Cognitive disorders of aging represent a serious threat to the social and economic welfare of current society. It is now widely recognized that pathology related to such conditions, particularly Alzheimer’s disease, likely begins years or decades prior to the onset of clinical dementia symptoms. This revelation has led researchers to consider candidate mechanisms precipitating the cascade of neuropathological events that eventually lead to clinical Alzheimer’s disease. Insulin, a hormone with potent effects in the brain, has recently received a great deal of attention for its potential beneficial and protective role in cognitive function. Insulin resistance, which refers to the reduced sensitivity of target tissues to the favorable effects of insulin, is related to multiple chronic conditions known to impact cognition and increase dementia risk. With insulin resistance-associated conditions reaching epidemic proportions, the prevalence of Alzheimer’s disease and other cognitive disorders will continue to rise exponentially. Fortunately, these chronic insulin-related conditions are amenable to pharmacological intervention. As a result, novel therapeutic strategies that focus on increasing insulin sensitivity in the brain may be an important target for protecting or treating cognitive decline. The following review will highlight our current understanding of the role of insulin in brain, potential mechanisms underlying the link between insulin resistance and dementia, and current experimental therapeutic strategies aimed at improving cognitive function via modifying the brain’s insulin sensitivity. PMID:24070815
BTK suppresses myeloma cellular senescence through activating AKT/P27/Rb signaling.
Gu, Chunyan; Peng, Hailin; Lu, Yue; Yang, Hongbao; Tian, Zhidan; Yin, Gang; Zhang, Wen; Lu, Sicheng; Zhang, Yi; Yang, Ye
2017-08-22
We previously explored the role of BTK in maintaining multiple myeloma stem cells (MMSCs) self-renewal and drug-resistance. Here we investigated the elevation of BTK suppressing MM cellular senescence, a state of irreversible cellular growth arrest. We firstly discovered that an increased expression of BTK in MM samples compared to normal controls by immunohistochemistry (IHC), and significant chromosomal gain in primary samples. In addition, BTK high-expressing MM patients are associated with poor outcome in both Total Therapy 2 (TT2) and TT3 cohorts. Knockdown BTK expression by shRNA induced MM cellular senescence using β-galactosidase (SA-b-gal) staining, cell growth arrest by cell cycle staining and decreased clonogenicity while forcing BTK expression in MM cells abrogated these characteristics. We also validated this feature in mouse embryonic fibroblast cells (MEFs), which showed that elevated BTK expression was resistant to MEF senescence after serial cultivation in vitro . Further mechanism study revealed that BTK activated AKT signaling leading to down-regulation of P27 expression and hindered RB activity while AKT inhibitor, LY294002, overcame BTK-overexpression induced cellular senescence resistance. Eventually we demonstrated that BTK inhibitor, CGI-1746, induced MM cellular senescence, colony reduction and tumorigenecity inhibition in vivo . Summarily, we designate a novel mechanism of BTK in mediating MM growth, and BTK inhibitor is of great potential in vivo and in vitro suggesting BTK is a promising therapeutic target for MM.
Synchrotron powder diffraction on Aztec blue pigments
NASA Astrophysics Data System (ADS)
Sánchez Del Río, M.; Gutiérrez-León, A.; Castro, G. R.; Rubio-Zuazo, J.; Solís, C.; Sánchez-Hernández, R.; Robles-Camacho, J.; Rojas-Gaytán, J.
2008-01-01
Some samples of raw blue pigments coming from an archaeological rescue mission in downtown Mexico City have been characterized using different techniques. The samples, some recovered as a part of a ritual offering, could be assigned to the late Aztec period (XVth century). The striking characteristic of these samples is that they seem to be raw pigments prior to any use in artworks, and it was possible to collect a few μg of pigment after manual grain selection under a microscopy monitoring. All pigments are made of indigo, an organic colorant locally known as añil or xiuhquilitl. The colorant is always found in combination with an inorganic matrix, studied by powder diffraction. In one case the mineral base is palygorskite, a rare clay mineral featuring micro-channels in its structure, well known as the main ingredient of the Maya blue pigment. However, other samples present the minerals sepiolite (a clay mineral of the palygorskite family) and calcite. Another sample contains barite, a mineral never reported in prehispanic paints. We present the results of characterization using high resolution powder diffraction recorded at the European Synchrotron Radiation Facility (BM25A, SpLine beamline) complemented with other techniques. All of them gave consistent results on the composition. A chemical test on resistance to acids was done, showing a high resistance for the palygorskite and eventually sepiolite compounds, in good agreement with the excellent resistance of the Maya blue.
NASA Astrophysics Data System (ADS)
Yannas, I. V.; Lee, E.; Orgill, D. P.; Skrabut, E. M.; Murphy, G. F.
1989-02-01
Regeneration of the dermis does not occur spontaneously in the adult mammal. The epidermis is regenerated spontaneously provided there is a dermal substrate over which it can migrate. Certain highly porous, crosslinked collagen--glycosaminoglycan copolymers have induced partial morphogenesis of skin when seeded with dermal and epidermal cells and then grafted on standard, full-thickness skin wounds in the adult guinea pig. A mature epidermis and a nearly physiological dermis, which lacked hair follicles but was demonstrably different from scar, were regenerated over areas as large as 16 cm2. These chemical analogs of extracellular matrices were morphogenetically active provided that the average pore diameter ranged between 20 and 125 μ m, the resistance to degradation by collagenase exceeded a critical limit, and the density of autologous dermal and epidermal cells inoculated therein was >5 × 104 cells per cm2 of wound area. Unseeded copolymers with physical structures that were within these limits delayed the onset of wound contraction by about 10 days but did not eventually prevent it. Seeded copolymers not only delayed contraction but eventually arrested and reversed it while new skin was being regenerated. The data identify a model extracellular matrix that acts as if it were an insoluble growth factor with narrowly specified physicochemical structure, functioning as a transient basal lamina during morphogenesis of skin.
Novel Corrosion Sensor for Vision 21 Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heng Ban; Bharat Soni
2007-03-31
Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indicationmore » of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall goal of this project is to develop a technology for on-line fireside corrosion monitoring. This objective is achieved by the laboratory development of sensors and instrumentation, testing them in a laboratory muffle furnace, and eventually testing the system in a coal-fired furnace. This project successfully developed two types of sensors and measurement systems, and successful tested them in a muffle furnace in the laboratory. The capacitance sensor had a high fabrication cost and might be more appropriate in other applications. The low-cost resistance sensor was tested in a power plant burning eastern bituminous coals. The results show that the fireside corrosion measurement system can be used to determine the corrosion rate at waterwall and superheater locations. Electron microscope analysis of the corroded sensor surface provided detailed picture of the corrosion process.« less
New-onset neonatal pulmonary hypertension associated with a rhinovirus infection.
Patel, Nishit; The, Tiong G
2012-01-01
A 3.5-week-old male neonate who developed an upper and lower respiratory tract rhinovirus infection that was temporally associated with the development of severe pulmonary hypertension is described. Rhinovirus has not previously been associated with pulmonary hypertension. This child developed severe pulmonary hypertension with right ventricular failure, requiring mechanical ventilation, nitric oxide inhalation and, eventually, extracorporeal membrane oxygenation.
DOT National Transportation Integrated Search
2017-02-01
As a burgeoning literature on high-speed rail development indicates, good station-area planning is a very important prerequisite for the : eventual successful operation of a high-speed rail station; it can also trigger opportunities for economic deve...
Discovering Geography: Teacher Created Activities for High School and Middle School.
ERIC Educational Resources Information Center
Petersen, James F., Ed.
This guide contains 20 classroom activities designed by teachers to study topics in geography with the eventual goal of aiding in the development of geographic literacy in students. The various activities involve map reading skills, climatology, current events, urban development, and community planning. Each activity presentation includes an event…
Plant Development and Genetics Experiment
NASA Technical Reports Server (NTRS)
2003-01-01
Aboard the International Space Station (ISS), the Russian Lada greenhouse provides home to an experiment that investigates plant development and genetics. Space grown peas have dried and 'gone to seed.' The crew of the ISS will soon harvest the seeds. Eventually some will be replanted onboard the ISS, and some will be returned to Earth for further study.
Design, development, test, and evaluation of an automated analytical electrophoresis apparatus
NASA Technical Reports Server (NTRS)
Bartels, P. A.; Bier, M.
1977-01-01
An Automated Analytical Electrophoresis Apparatus (AAEA) was designed, developed, assembled, and preliminarily tested. The AAEA was demonstrated to be a feasible apparatus for automatically acquiring, displaying, and storing (and eventually analyzing) electrophoresis mobility data from living blood cells. The apparatus and the operation of its major assemblies are described in detail.
Commerical Crew Astronauts Evaluate Crew Dragon Controls
2017-01-10
Astronaut Bob Behnken, work in a mock-up of the SpaceX Crew Dragon flight deck at the company's Hawthorne, California, headquarters as development of the crew systems continues for eventual missions to the International Space Station.
The Development of Trade Unionism.
ERIC Educational Resources Information Center
Parker, Ronald W.
1979-01-01
Traces the growth and evolution of the British labor union movement, troubles between the national officials and the local shop stewards, class differences and conflict between the artisans and laborers, violence between unions, and eventual transition to peaceful constitutionalism. (MF)
Incorporating Research Findings into Standards and Requirements for Space Medicine
NASA Technical Reports Server (NTRS)
Duncan, J. Michael
2006-01-01
The Vision for Exploration has been the catalyst for NASA to refocus its life sciences research. In the future, life sciences research funded by NASA will be focused on answering questions that directly impact setting physiological standards and developing effective countermeasures to the undesirable physiological and psychological effects of spaceflight for maintaining the health of the human system. This, in turn, will contribute to the success of exploration class missions. We will show how research will impact setting physiologic standards, such as exposure limits, outcome limits, and accepted performance ranges. We will give examples of how a physiologic standard can eventually be translated into an operational requirement, then a functional requirement, and eventually spaceflight hardware or procedures. This knowledge will be important to the space medicine community as well as to vehicle contractors who, for the first time, must now consider the human system in developing and constructing a vehicle that can achieve the goal of success.
Modeling the Arrest of Tissue Growth in Epithelia
NASA Astrophysics Data System (ADS)
Golden, Alexander; Lubensky, David
The mechanisms of control and eventual arrest of growth of tissues is an area that has received considerable attention, both experimentally and in the development of quantitative models. In particular, the Drosophila wing disc epithelium appears to robustly arrive at a unique final size. One mechanism that has the potential to play a role in the eventual cessation of growth is mechanical feedback from stresses induced by nonuniform growth. There is experimental support for an effect on the tissue growth rate by such mechanical stresses, and a number of numerical or cell-based models have been proposed that show that the arrest of growth can be achieved by mechanical feedback. We introduce an analytic framework that allows us to understand different coarse-grained feedback mechanisms on the same terms. We use the framework to distinguish between families of models that do not have a unique final size and those that do and give rough estimates for how much variability in the eventual organ size can be expected in models that do not have a unique final size. NSF Grant DMR-1056456.
A Study of Religious Faith and the Ethical Decision Making Process
2007-09-01
Piaget , 1965; and Rest, 1986) leading to the stage models of moral development . Moral development is the change in how people think about ethical...the environment (Coleman & Wilkins, 2004, p. 512). Jean Piaget (1965) showed how young boys developed morally in stages through observing them...decisions” (Kohlberg, 1981, p. 412). Kohlberg continued with his stage development theory to eventually include a Stage 7 (Kohlberg, 1981, p. 310
Imamura, Fumio; Uchida, Junji; Kukita, Yoji; Kumagai, Toru; Nishino, Kazumi; Inoue, Takako; Kimura, Madoka; Oba, Shigeyuki; Kato, Kikuya
2016-04-01
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have dramatic effects on EGFR-mutant non-small-cell lung cancer (NSCLC). However, most patients experience disease recurrences, approximately half of which are T790M-mediated. Monitoring EGFR status with re-biopsy has spatiotemporal limitations. EGFR circulating tumor DNA (ctDNA) in serial plasma samples was amplified and 10(5) of them were sequenced with a next-generation sequencer. Plasma mutation (PM) score was defined as the number of reads containing deletions/substitutions in 10(5)EGFR cell free DNA (cfDNA). PM scores of various EGFR mutations showed dynamic, case-specific changes during EGFR-TKI treatments in 52 patients. The effects of the treatment on EGFR ctDNA were evaluated in 38 patients with elevated pre-treatment PM scores. The ctDNA responses correlated well with radiologic responses in radiologic good responders, whereas correlation was poor in non-responders. In addition to the peaks for the most prevalent ctDNA, small peaks of ctDNA with different types of activating EGFR mutations or the T790M mutation (early T790M ctDNA) appeared transiently in 10.5% and 26.3%, respectively. Early T790M ctDNA disappeared in all patients, including 7 who eventually developed acquired resistance accompanied by elevated levels of T790M ctDNA. Monitoring ctDNA is useful in evaluating treatment responses and monitoring driver oncogene status in NSCLC. ctDNA revealed clonal heterogeneity and genetic processes of cancer evolution in individual patients. The simple presence of the T790M mutation may be insufficient to confer EGFR-TKI resistance to tumor cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sun, Xiang; Xu, Yang; Wang, Yi; Chen, Qian; Liu, Liu; Bao, Yangyi
2018-05-15
BACKGROUND Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have been widely used in the treatment of non-small cell lung cancer (NSCLC) patients with sensitive EGFR mutations. However, the survival of patients with EGFR-TKI administration is limited by the inevitable development of acquired drug resistance. Recently, multi-targeted drugs combination has been shown to be a promising strategy to improve the efficacy of EGFR-TKI treatment and enable the reduction of drug resistance in NSCLC. MATERIAL AND METHODS Humanized NSCLC cell lines PC9 and A549 were co-cultured with thalidomide and/or icotinib to test for anti-tumor efficiency. Cell proliferation was measured by MTT assay, cell apoptosis by flow cytometry and cell migration by wound healing assay. Western blot was performed to determine the expression of caspase-3, -8, -9, Bax, EGFR, VEGF-R, AKT, ERK, MMP2, MMP9, and NF-κB. The xenograft mouse model was used to explore the effects of thalidomide and icotinib in vivo. Immunohistochemical testing was used to determine the expression of Ki-67 and TUNEL staining in tumor tissues. RESULTS Treatments of thalidomide and/or icotinib reduced cell viability, induced apoptosis, and suppressed migration. Attenuation of pEGFR and pVEGF-R resulted in deactivation of ERK and AKT pathways, which eventually increased the anti-proliferative response. In PC9 xenograft model, combined administration of thalidomide and icotinib restrained tumor growth with remarkable reduced Ki-67 index and increased TUNEL positive cells. CONCLUSIONS Thalidomide sensitizes icotinib to increase apoptosis and prevent migration, and it may be a potentially promising anti-tumor drug in lung cancer multi-modality therapy.
[(18)F]FDG PET Neuroimaging Predicts Pentylenetetrazole (PTZ) Kindling Outcome in Rats.
Bascuñana, Pablo; Javela, Julián; Delgado, Mercedes; Fernández de la Rosa, Rubén; Shiha, Ahmed Anis; García-García, Luis; Pozo, Miguel Ángel
2016-10-01
Epileptogenesis, i.e., development of epilepsy, involves a number of processes that alter the brain function in the way that triggers spontaneous seizures. Kindling is one of the most used animal models of temporal lobe epilepsy (TLE) and epileptogenesis, although chemical kindling suffers from high inter-assay success unpredictability. This study was aimed to analyze the eventual regional brain metabolic changes during epileptogenesis in the pentylenetetrazole (PTZ) kindling model in order to obtain a predictive kindling outcome parameter. In vivo longitudinal positron emission tomography (PET) scans with 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) along the PTZ kindling protocol (35 mg/kg intraperitoneally (i.p.), 18 sessions) in adult male rats were performed in order to evaluate the regional brain metabolism. The half of the PTZ-injected rats reached the kindled state. In addition, a significant decrease of [(18)F]FDG uptake at the end of the protocol in most of the brain structures of kindled animals was found, reflecting the characteristic epilepsy-associated hypometabolism. However, PTZ-injected animals but not reaching the kindled state did not show this widespread brain hypometabolism. Retrospective analysis of the data revealed that hippocampal [(18)F]FDG uptake normalized to pons turned out to be a predictive index of the kindling outcome. Thus, a 19.06 % reduction (p = 0.008) of the above parameter was found in positively kindled rats compared to non-kindled ones just after the fifth PTZ session. Non-invasive PET neuroimaging was a useful tool for discerning epileptogenesis progression in this animal model. Particularly, the [(18)F]FDG uptake of the hippocampus proved to be an early predictive parameter to differentiate resistant and non-resistant animals to the PTZ kindling.
New-onset neonatal pulmonary hypertension associated with a rhinovirus infection
Patel, Nishit; The, Tiong G
2012-01-01
A 3.5-week-old male neonate who developed an upper and lower respiratory tract rhinovirus infection that was temporally associated with the development of severe pulmonary hypertension is described. Rhinovirus has not previously been associated with pulmonary hypertension. This child developed severe pulmonary hypertension with right ventricular failure, requiring mechanical ventilation, nitric oxide inhalation and, eventually, extracorporeal membrane oxygenation. PMID:22332130
Constraints in cancer evolution.
Venkatesan, Subramanian; Birkbak, Nicolai J; Swanton, Charles
2017-02-08
Next-generation deep genome sequencing has only recently allowed us to quantitatively dissect the extent of heterogeneity within a tumour, resolving patterns of cancer evolution. Intratumour heterogeneity and natural selection contribute to resistance to anticancer therapies in the advanced setting. Recent evidence has also revealed that cancer evolution might be constrained. In this review, we discuss the origins of intratumour heterogeneity and subsequently focus on constraints imposed upon cancer evolution. The presence of (1) parallel evolution, (2) convergent evolution and (3) the biological impact of acquiring mutations in specific orders suggest that cancer evolution may be exploitable. These constraints on cancer evolution may help us identify cancer evolutionary rule books, which could eventually inform both diagnostic and therapeutic approaches to improve survival outcomes. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Advanced Measurement Devices for the Microgravity Electromagnetic Levitation Facility EML
NASA Technical Reports Server (NTRS)
Brillo, Jurgen; Fritze, Holger; Lohofer, Georg; Schulz, Michal; Stenzel, Christian
2012-01-01
This paper reports on two advanced measurement devices for the microgravity electromagnetic levitation facility (EML), which is currently under construction for the use onboard the "International Space Station (ISS)": the "Sample Coupling Electronics (SCE)" and the "Oxygen Sensing and Control Unit (OSC)". The SCE measures by a contactless, inductive method the electrical resistivity and the diameter of a spherical levitated metallic droplet by evaluating the voltage and electrical current applied to the levitation coil. The necessity of the OSC comes from the insight that properties like surface tension or, eventually, viscosity cannot seriously be determined by the oscillating drop method in the EML facility without knowing the conditions of the surrounding atmosphere. In the following both measurement devices are explained and laboratory test results are presented.
Electronic and magneto-transport in chirality sorted carbon nanotube films
NASA Astrophysics Data System (ADS)
Janas, Dawid; Czechowski, Nikodem; Adamus, Zbigniew; GiŻewski, Tomasz
2018-01-01
This research details electronic and magneto-transport in unsorted and chirality-enriched carbon nanotube (CNT) films. By measuring the electrical conductivity from 4 K to 297 K, we were able to assign the governing mechanism of electronic transport. Fluctuation-induced tunnelling was in accordance with the obtained data and very well matched the underlying physics. We demonstrated how a change in the type of CNT to make the film affects its electrical performance. As the temperature was decreased down to cryogenic conditions, up to a 56-fold increase in resistance was noted. Moreover, the measurement of magnetoresistance (MR) revealed a non-monotonic dependence on the applied magnetic field. The initial negative component of MR was eventually overpowered by the positive MR component as the field strength was increased beyond a certain threshold.
Evidence for a Finite-Temperature Insulator.
Ovadia, M; Kalok, D; Tamir, I; Mitra, S; Sacépé, B; Shahar, D
2015-08-27
In superconductors the zero-resistance current-flow is protected from dissipation at finite temperatures (T) by virtue of the short-circuit condition maintained by the electrons that remain in the condensed state. The recently suggested finite-T insulator and the "superinsulating" phase are different because any residual mechanism of conduction will eventually become dominant as the finite-T insulator sets-in. If the residual conduction is small it may be possible to observe the transition to these intriguing states. We show that the conductivity of the high magnetic-field insulator terminating superconductivity in amorphous indium-oxide exhibits an abrupt drop, and seem to approach a zero conductance at T < 0.04 K. We discuss our results in the light of theories that lead to a finite-T insulator.
Disentangling the influence of cell phone usage in the dilemma zone: An econometric approach.
Eluru, Naveen; Yasmin, Shamsunnahar
2016-11-01
This paper focuses on developing an analysis framework to study the impact of cell phone treatment (cell phone type and call status) on driver behavior in the presence of a dilemma zone. Specifically, we examine how the treatment influences the driver maneuver decision at the intersection (stop or cross) and the eventual success of the maneuver. For a stop maneuver, success is defined as stopping before the stop line. Similarly, for a cross maneuver, success is defined as clearing the intersection safely before the light turns red. The eventual success or failure of the driver's decision process is dependent on the factors that affected the maneuver decision. Hence it is important to recognize the interconnectedness of the stop or cross decision with its eventual success (or failure). Toward this end, we formulate and estimate a joint framework to analyze the stop/cross decision with its eventual success (or failure) simultaneously. The study is conducted based on driving simulator data provided online for the 2014 Transportation Research Board Data Contest at http://depts.washington.edu/hfsm/upload.php. The model is estimated to analyze drivers' behavior at the onset of yellow by employing exogenous variables from three broad categories: driver characteristics, cell phone attributes and driving attributes. We also generate probability surfaces to identify dilemma zone distribution associated with different cell phone treatment types. The plots clearly illustrate the impact of various cellphone treatments on driver dilemma zone behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modifications developed to improve x-ray detection devices
NASA Technical Reports Server (NTRS)
1994-01-01
Improvements in the development of x-ray detection devices are described. Emphasis is placed on lowering the temperature in order to achieve better x-ray response. A simplified charge integrator schematic is presented along with supporting tables. By using cryogenic operating temperatures, these x-ray detectors may eventually surpass the performance of the best semiconductor detectors.
ERIC Educational Resources Information Center
Kartal, Günizi; Terziyan, Treysi
2016-01-01
The major goal of this study was to develop a game-like software application for phonological awareness training and to evaluate its role in improving phonological awareness skills at the kindergarten level, with the intention to eventually help reading acquisition in Turkish. The participants of the study came from two kindergarten classrooms in…
Enabling National Security Through Dual-Use Technology
2014-04-30
Aersopace, 2014) Human Universal Load Carrier (HULC) The Human Universal Load Carrier (HULC) is an exoskeleton developed by Lockheed Martin for dismounted...HULC (Army-Technology.com, 2014). HULC is an un-tethered, hydraulic-powered, anthropomorphic exoskeleton designed specifically to fit around the...currently designed for military use, exoskeleton technology development will eventually provide civilian capabilities by enhancing firefighting
First, You Have to Hear It! ESL Oral Language Practice
ERIC Educational Resources Information Center
LeLoup, Jean W.; Ponterio, Robert
2005-01-01
There is no question that the development of oral language skills in second (as well as first) language learners is of prime importance. Language learners must focus on oral language proficiency because it is eventually the skill they will most use. But oracy in second language learners does not develop in a vacuum. It is inextricably intertwined…
Can oncology recapitulate paleontology? Lessons from species extinctions
Walther, Viola; Hiley, Crispin T.; Shibata, Darryl; Swanton, Charles; Turner, Paul E.; Maley, Carlo C.
2015-01-01
Although we can treat cancers with cytotoxic chemotherapies, target them with molecules that bind to oncogenic drivers, and induce substantial cell death with radiation, local and metastatic tumours recur, resulting in extensive morbidity and mortality. It is difficult to drive a tumour to extinction. Geographically dispersed species are perhaps equally resistant to extinction, but >99.9% of species that have ever existed have become extinct. By contrast, we are nowhere near that level of success in cancer therapy. The phenomena are broadly analogous. In both cases, a genetically diverse population mutates and evolves through natural selection. The goal of cancer therapy is to cause cancer cell population extinction or at least to limit any further increase in population size, so the tumour burden does not overwhelm the patient. However, despite available treatments, complete responses are rare, and partial responses are limited in duration. Many patients eventually relapse with tumours that evolve from cells that survive therapy. Similarly, species are remarkably resilient to environmental change. Paleontology can show us the conditions that lead to extinction and the characteristics of species that make them resistant to extinction. These lessons could be translated to improve cancer therapy and prognosis. PMID:25687908
ROCK1 is a potential combinatorial drug target for BRAF mutant melanoma
Smit, Marjon A; Maddalo, Gianluca; Greig, Kylie; Raaijmakers, Linsey M; Possik, Patricia A; van Breukelen, Bas; Cappadona, Salvatore; Heck, Albert JR; Altelaar, AF Maarten; Peeper, Daniel S
2014-01-01
Treatment of BRAF mutant melanomas with specific BRAF inhibitors leads to tumor remission. However, most patients eventually relapse due to drug resistance. Therefore, we designed an integrated strategy using (phospho)proteomic and functional genomic platforms to identify drug targets whose inhibition sensitizes melanoma cells to BRAF inhibition. We found many proteins to be induced upon PLX4720 (BRAF inhibitor) treatment that are known to be involved in BRAF inhibitor resistance, including FOXD3 and ErbB3. Several proteins were down-regulated, including Rnd3, a negative regulator of ROCK1 kinase. For our genomic approach, we performed two parallel shRNA screens using a kinome library to identify genes whose inhibition sensitizes to BRAF or ERK inhibitor treatment. By integrating our functional genomic and (phospho)proteomic data, we identified ROCK1 as a potential drug target for BRAF mutant melanoma. ROCK1 silencing increased melanoma cell elimination when combined with BRAF or ERK inhibitor treatment. Translating this to a preclinical setting, a ROCK inhibitor showed augmented melanoma cell death upon BRAF or ERK inhibition in vitro. These data merit exploration of ROCK1 as a target in combination with current BRAF mutant melanoma therapies. PMID:25538140
Defects and device performance
NASA Technical Reports Server (NTRS)
Storti, G.; Armstrong, R.; Johnson, S.; Lin, H. C.; Regnault, W.; Yoo, K. C.
1985-01-01
The necessity for a low-cost crystalline silicon sheet material for photovoltaics has generated a number of alternative crystal growth techniques that would replace Czochralski (Cz) and float-zone (FZ) technologies. Efficiencies of devices fabricated from low resistivity FZ silicon are approaching 20%, and it is highly likely that this value will be superseded in the near future. However, FZ silicon is expensive, and is unlikely ever to be used for photovoltaics. Cz silicon has many of the desirable qualities of FZ except that minority-carrier lifetimes at lower resistivities are significantly less than those of FZ silicon. Even with Cz silicon, it is unlikely that cost goals can be met because of the poor-material yield that results from sawing and other aspects of the crystal rowth. Although other silicon sheet technologies have been investigated, almost all have characteristics that limit efficiency to approx. 16%. In summary, 20% efficient solar cells can likely be fabricated from both FZ and Cz silicon, but costs are likely to be ultimately unacceptable. Alternate silicon technologies are not likely to achieve this goal, but cost per watt figures may be eventually better than either of the single crystal technologies and may rival any thin-film technology.
An OMIC approach to elaborate the antibacterial mechanisms of different alkaloids.
Avci, Fatma Gizem; Sayar, Nihat Alpagu; Sariyar Akbulut, Berna
2018-05-01
Plant-derived substances have regained interest in the fight against antibiotic resistance owing to their distinct antimicrobial mechanisms and multi-target properties. With the recent advances in instrumentation and analysis techniques, OMIC approaches are extensively used for target identification and elucidation of the mechanism of phytochemicals in drug discovery. In the current study, RNA sequencing based transcriptional profiling together with global differential protein expression analysis was used to comparatively elaborate the activities and the effects of the plant alkaloids boldine, bulbocapnine, and roemerine along with the well-known antimicrobial alkaloid berberine in Bacillus subtilis cells. The transcriptomic findings were validated by qPCR. Images from scanning electron microscope were obtained to visualize the effects on the whole-cells. The results showed that among the three selected alkaloids, only roemerine possessed antibacterial activity. Unlike berberine, which is susceptible to efflux through multidrug resistance pumps, roemerine accumulated in the cells. This in turn resulted in oxidative stress and building up of reactive oxygen species, which eventually deregulated various pathways such as iron uptake. Treatment with boldine or bulbocapnine slightly affected various metabolic pathways but has not changed the growth patterns at all. Copyright © 2018 Elsevier Ltd. All rights reserved.
Commerical Crew Astronauts Evaluate Crew Dragon Controls
2017-01-10
Astronauts Eric Boe, right, and Bob Behnken work in a mock-up of the SpaceX Crew Dragon flight deck at the company's Hawthorne, California, headquarters as development of the crew systems continues for eventual missions to the International Space Station.
Commerical Crew Astronauts Evaluate Crew Dragon Controls
2017-01-10
Astronauts Bob Behnken, left, and Eric Boe work in a mock-up of the SpaceX Crew Dragon flight deck at the company's Hawthorne, California, headquarters as development of the crew systems continues for eventual missions to the International Space Station.
New Jersey's Thomas Edison and the fluoroscope.
Tselos, G D
1995-11-01
Thomas Edison played a major role in the development of early x-ray technology in 1896, notably increasing tube power and reliability and making the fluoroscope a practical instrument. Eventually, Edison would move x-ray technology from the laboratory to the marketplace.
Varying Paths for Learning to Revise.
ERIC Educational Resources Information Center
Zellermayer, Michal; Cohen, Judith
1996-01-01
Studied how preacademic students acquired revision strategies based upon their individual cognitive abilities. Revision Cuing Devices, teacher intervention and student reaction, peer support and collaboration, think-aloud protocols, and holistic assessments were used to develop individual strategies. Eventually revision support faded without signs…
AN OPERATIONAL EVALUATION OF THE ETA-CMAQ AIR QUALITY FORECAST MODEL
The National Oceanic and Atmospheric Administration (NOAA), in collaboration with the Environmental Protection Agency (EPA), are developing an Air Quality Forecasting Program that will eventually result in an operational Nationwide Air Quality Forecasting System. The initial pha...
Greco, Rita; Li, Zhifang; Sun, Fangxian; Barberis, Claude; Tabart, Michel; Patel, Vinod; Schio, Laurent; Hurley, Raelene; Chen, Bo; Cheng, Hong; Lengauer, Christoph; Pollard, Jack; Watters, James; Garcia-Echeverria, Carlos; Wiederschain, Dmitri; Adrian, Francisco; Zhang, JingXin
2014-01-01
Inhibitors of JAK2 kinase are emerging as an important treatment modality for myeloproliferative neoplasms (MPN). However, similar to other kinase inhibitors, resistance to JAK2 inhibitors may eventually emerge through a variety of mechanisms. Effective drug combination is one way to enhance therapeutic efficacy and combat resistance against JAK2 inhibitors. To identify potential combination partners for JAK2 compounds in MPN cell lines, we performed pooled shRNA screen targeting 5,000 genes in the presence or absence of JAK2 blockade. One of the top hits identified was MYC, an oncogenic transcription factor that is difficult to inhibit directly, but could be targeted by modulation of upstream regulatory elements such as kinases. We demonstrate herein that PIM kinase inhibitors efficiently suppress MYC protein levels in MPN cell lines. Overexpression of MYC restores the viability of PIM inhibitor-treated cells, revealing causal relationship between MYC down-regulation and cell growth inhibition by PIM compounds. Combination of various PIM inhibitors with a JAK2 inhibitor results in significant synergistic growth inhibition of multiple MPN cancer cell lines and induction of apoptosis. Mechanistic studies revealed strong downregulation of phosphorylated forms of S6 and 4EBP1 by JAK2/PIM inhibitor combination treatment. Finally, such combination was effective in eradicating in vitro JAK2 inhibitor-resistant MPN clones, where MYC is consistently up-regulated. These findings demonstrate that simultaneous suppression of JAK2 and PIM kinase activity by small molecule inhibitors is more effective than either agent alone in suppressing MPN cell growth. Our data suggest that JAK2 and PIM combination might warrant further investigation for the treatment of JAK2-driven hematologic malignancies. PMID:24830942
Extinction of aversive classically conditioned human sexual response.
Brom, Mirte; Laan, Ellen; Everaerd, Walter; Spinhoven, Philip; Both, Stephanie
2015-04-01
Research has shown that acquired subjective likes and dislikes are quite resistant to extinction. Moreover, studies on female sexual response demonstrated that diminished genital arousal and positive affect toward erotic stimuli due to aversive classical conditioning did not extinguish during an extinction phase. Possible resistance to extinction of aversive conditioned sexual responses may have important clinical implications. However, resistance to extinction of aversive conditioned human sexual response has not been studied using extensive extinction trials. This article aims to study resistance to extinction of aversive conditioned sexual responses in sexually functional men and women. A differential conditioning experiment was conducted, with two erotic pictures as conditioned stimulus (CSs) and a painful stimulus as unconditioned stimuli (USs). Only one CS (the CS+) was followed by the US during the acquisition phase. Conditioned responses were assessed during the extinction phase. Penile circumference and vaginal pulse amplitude were assessed, and ratings of affective value and subjective sexual arousal were obtained. Also, a stimulus response compatibility task was included to assess automatic approach and avoidance tendencies. Men and women rated the CS+ more negative as compared with the CS-. During the first trials of the extinction phase, vaginal pulse amplitude was lower in response to the CS+ than in response to the CS-, and on the first extinction trial women rated the CS+ as less sexually arousing. Intriguingly, men did not demonstrate attenuated genital and subjective sexual response. Aversive conditioning, by means of painful stimuli, only affects sexual responses in women, whereas it does not in men. Although conditioned sexual likes and dislikes are relatively persistent, conditioned affect eventually does extinguish. © 2014 International Society for Sexual Medicine.
NASA Astrophysics Data System (ADS)
Zeng, R. Q.; Meng, X. M.; Zhang, F. Y.; Wang, S. Y.; Cui, Z. J.; Zhang, M. S.; Zhang, Y.; Chen, G.
2016-10-01
From the perspective of engineering geology, loess has long been considered as a homogeneous and porous material. It is commonly believed that water penetrates loess via pores and in some cases causing mass movements. However, several researchers have expressed doubts about this mechanism as a cause of slope failures in loess, and moreover the actual hydrological processes operating in loess deposits and their effect on slope failures have not been fully investigated. Here we present the results of an electrical resistivity survey of the Heifangtai loess terrace in northwestern China, designed to characterize the hydrological processes in loess slopes and their relationship with slope failures. The Heifangtai loess terrace is located on the fourth terrace of the Yellow River and consists of 57-m-thickness of aeolian loess. 2D and 3D electrical resistivity tomography (ERT) was used to monitor the movement of ground water before and after irrigation and rainfall events and the evolution of a sink hole in the toe of the landslide deposits. Our main findings are as follows: (1) Based on the 2D ERT results, the depth of infiltration into the thick unsaturated loess is not more than 5 m in the profile at the top of the landslide. (2) Electrical resistivity decreased as a result of water infiltration through sinkholes, and this process can increase the soil water content and induce soil liquefaction which can eventually result in land sliding. (3) Landslide deposits block the groundwater drainage channels through the loess, which results in the concentration of water in the toe of the landslide. Consequently, groundwater together with rainfall, triggers the failure of sinkholes or cracks, which may induce a continuing process of new slope failures at the sites of past landslide.
Long-term 4D Geoelectrical Imaging of Moisture Dynamics in an Active Landslide
NASA Astrophysics Data System (ADS)
Uhlemann, S.; Chambers, J. E.; Wilkinson, P. B.; Maurer, H.; Meldrum, P.; Gunn, D.; Smith, A.; Dijkstra, T.
2016-12-01
Landslides are a major natural hazard, endangering communities and infrastructure worldwide. Mitigating landslide risk relies on understanding causes and triggering processes, which are often linked to moisture dynamics in slopes causing material softening and elevated pore water pressures. Geoelectrical monitoring is frequently applied to study landslide hydrology. However, its sensitivity to sensor movements has been a challenge for long-term studies on actively failing slopes. Although 2D data acquisition has previously been favoured, it provides limited resolution and relatively poor representation of important 3D landslide structures. We present a novel methodology to incorporate electrode movements into a time-lapse 3D inversion workflow, resulting in a virtually artefact-free time-series of resistivity models. Using temperature correction and laboratory hydro-geophysical relationships, resistivity models are translated into models of moisture content. The data span more than three years, enabling imaging of processes pre- and post landslide reactivation. In the two years before reactivation, the models showed surficial wetting and drying, drainage pathways, and deeper groundwater dynamics. During reactivation, exceptionally high moisture contents were imaged throughout the slope, which was confirmed by independent measurements. Preferential flow was imaged that stabilized parts of the landslide by diverting moisture, and thus dissipating pore pressures, from the slip surface. The results highlight that moisture levels obtained from resistivity monitoring may provide a better activity threshold than rainfall intensity. Based on this work, pro-active remediation measures could be designed and effective early-warning systems implemented. Eventually, resistivity monitoring that can account for moving electrodes may provide a new means for pro-active mitigation of landslide risk, especially for communities and critical infrastructure.
BTK suppresses myeloma cellular senescence through activating AKT/P27/Rb signaling
Lu, Yue; Yang, Hongbao; Tian, Zhidan; Yin, Gang; Zhang, Wen; Lu, Sicheng; Zhang, Yi; Yang, Ye
2017-01-01
We previously explored the role of BTK in maintaining multiple myeloma stem cells (MMSCs) self-renewal and drug-resistance. Here we investigated the elevation of BTK suppressing MM cellular senescence, a state of irreversible cellular growth arrest. We firstly discovered that an increased expression of BTK in MM samples compared to normal controls by immunohistochemistry (IHC), and significant chromosomal gain in primary samples. In addition, BTK high-expressing MM patients are associated with poor outcome in both Total Therapy 2 (TT2) and TT3 cohorts. Knockdown BTK expression by shRNA induced MM cellular senescence using β-galactosidase (SA-b-gal) staining, cell growth arrest by cell cycle staining and decreased clonogenicity while forcing BTK expression in MM cells abrogated these characteristics. We also validated this feature in mouse embryonic fibroblast cells (MEFs), which showed that elevated BTK expression was resistant to MEF senescence after serial cultivation in vitro. Further mechanism study revealed that BTK activated AKT signaling leading to down-regulation of P27 expression and hindered RB activity while AKT inhibitor, LY294002, overcame BTK-overexpression induced cellular senescence resistance. Eventually we demonstrated that BTK inhibitor, CGI-1746, induced MM cellular senescence, colony reduction and tumorigenecity inhibition in vivo. Summarily, we designate a novel mechanism of BTK in mediating MM growth, and BTK inhibitor is of great potential in vivo and in vitro suggesting BTK is a promising therapeutic target for MM. PMID:28915637
Stopping treatment can reverse acquired resistance to letrozole
Sabnis, Gauri J; Macedo, Luciana F; Goloubeva, Olga; Schayowitz, Adam; Brodie, Angela MH
2008-01-01
Using the intra tumoral aromatase xenograft model, we have observed that despite long lasting growth inhibition tumors eventually begin to grow during continued letrozole treatment. In cells isolated from these Long Term Letrozole Treated tumors (LTLT-Ca), ERα levels were decreased whereas signaling proteins in the MAPK cascade were upregulated along with Her-2. In the current study we evaluated the effect of discontinuing the letrozole treatment on the growth of letrozole resistant cells and tumors. The cells formed tumors equally well in the absence or presence of letrozole and had similar growth rates. After treatment was discontinued for six weeks, letrozole was administered again. Marked tumor regression was observed with this second course of letrozole treatment. Similarly in MCF-7Ca xenografts, a six-week break in letrozole treatment prolonged the responsiveness of the tumors to letrozole. To understand the mechanisms of this effect, LTLT-Ca cells were cultured in the absence of letrozole for 16 weeks. The resulting cell line (RLT-Ca) exhibited properties similar to MCF-7Ca cells. The cell growth was inhibited by letrozole and stimulated by estradiol. The expression of p-MAPK was reduced and ERα and aromatase increased compared to levels in LTLT-Ca cells and were similar to the levels in MCF-7Ca cells. These results indicate that discontinuing treatment can reverse letrozole resistance. This could be a beneficial strategy to prolong responsiveness to AIs for breast cancer patients. PMID:18559495
Blasco-Baque, Vincent; Garidou, Lucile; Pomié, Céline; Escoula, Quentin; Loubieres, Pascale; Le Gall-David, Sandrine; Lemaitre, Mathieu; Nicolas, Simon; Klopp, Pascale; Waget, Aurélie; Azalbert, Vincent; Colom, André; Bonnaure-Mallet, Martine; Kemoun, Philippe; Serino, Matteo; Burcelin, Rémy
2017-01-01
Objective To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. Design We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis (Pg), Fusobacterium nucleatum and Prevotella intermedia. The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. Results Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. Conclusions We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis. PMID:26838600
A genetic map of mouse chromosome 1 near the Lsh-Ity-Bcg disease resistance locus.
Mock, B; Krall, M; Blackwell, J; O'Brien, A; Schurr, E; Gros, P; Skamene, E; Potter, M
1990-05-01
Isozyme and restriction fragment length polymorphism (RFLP) analyses of backcross progeny, recombinant inbred strains, and congenic strains of mice positioned eight genetic markers with respect to the Lsh-Ity-Bcg disease resistance locus. Allelic isoforms of Idh-1 and Pep-3 and RFLPs detected by Southern hybridization for Myl-1, Cryg, Vil, Achrg, bcl-2, and Ren-1,2, between BALB/cAnPt and DBA/2NPt mice, were utilized to examine the cosegregation of these markers with the Lsh-Ity-Bcg resistance phenotype in 103 backcross progeny. An additional 47 backcross progeny from a cross between C57BL/10ScSn and B10.L-Lshr/s mice were examined for the cosegregation of Myl-1 and Vil RFLPs with Lsh phenotypic differences. Similarly, BXD recombinant inbred strains were typed for RFLPs upon hybridization with Vil and Achrg. Recombination frequencies generated in the different test systems were statistically similar, and villin (Vil) was identified as the molecular marker closest (1.7 +/- 0.8 cM) to the Lsh-Ity-Bcg locus. Two other DNA sequences, nebulin (Neb) and an anonymous DNA fragment (D2S3), which map to a region of human chromosome 2q that is homologous to proximal mouse chromosome 1, were not closely linked to the Lsh-Ity-Bcg locus. This multipoint linkage analysis of chromosome 1 surrounding the Lsh-Ity-Bcg locus provides a basis for the eventual isolation of the disease gene.
Stem-Cell-Based Tumorigenesis in Adult Drosophila.
Hou, S X; Singh, S R
2017-01-01
Recent studies suggest that a small subset of cells within a tumor, the so-called cancer stem cells (CSCs), are responsible for tumor propagation, relapse, and the eventual death of most cancer patients. CSCs may derive from a few tumor-initiating cells, which are either transformed normal stem cells or reprogrammed differentiated cells after acquiring initial cancer-causing mutations. CSCs and normal stem cells share some properties, but CSCs differ from normal stem cells in their tumorigenic ability. Notably, CSCs are usually resistant to chemo- and radiation therapies. Despite the apparent roles of CSCs in human cancers, the biology underlying their behaviors remains poorly understood. Over the past few years, studies in Drosophila have significantly contributed to this new frontier of cancer research. Here, we first review how stem-cell tumors are initiated and propagated in Drosophila, through niche appropriation in the posterior midgut and through stem-cell competition for niche occupancy in the testis. We then discuss the differences between normal and tumorigenic stem cells, revealed by studying Ras V12 -transformed stem-cell tumors in the Drosophila kidney. Finally, we review the biology behind therapy resistance, which has been elucidated through studies of stem-cell resistance and sensitivity to death inducers using female germline stem cells and intestinal stem cells of the posterior midgut. We expect that screens using adult Drosophila neoplastic stem-cell tumor models will be valuable for identifying novel and effective compounds for treating human cancers. © 2017 Elsevier Inc. All rights reserved.
Zwitterionic Antifouling Coatings for the Purification of High-Salinity Shale Gas Produced Water.
Yang, Rong; Goktekin, Esma; Gleason, Karen K
2015-11-03
Fouling refers to the undesirable attachment of organic molecules and microorganisms to submerged surfaces. It is an obstacle to the purification of shale gas produced water and is currently without an effective solution due to the highly contaminated nature of produced water. Here, we demonstrate the direct vapor application of a robust zwitterionic coating to a variety of substrates. The coating remains unprecedentedly hydrophilic, smooth, and effectively antifouling in extremely high salinity solutions (with salt concentration of 200,000 ppm). The fouling resistance is assessed rapidly and quantitatively with a molecular force spectroscopy-based method and corroborated using quartz crystal microbalance system with dissipation monitoring. Grazing angle attenuated total reflectance Fourier transform infrared is used in combination with X-ray photoelectron spectroscopy, atomic force microscope, and in situ spectroscopic ellipsometry to lend insight into the underlying mechanism for the exceptional stability and effectiveness of the zwitterionic coating under high-salinity conditions. A unique coating architecture, where the surface is concentrated with mobile zwitterionic moieties while the bulk is cross-linked to enhance coating durability, was discovered to be the origin of its stable fouling resistance under high salinity. Combined with previously reported exceptional stability in highly oxidative environments and strong fouling resistance to oil and grease, the zwitterionic surface here has the potential to enable low-cost, membrane-based techniques for the purification of produced water and to eventually balance the favorable economics and the concerning environmental impacts of the hydraulic fracturing industry.
Aquifer Characterization from Surface Geo-electrical Method, western coast of Maharashtra, India
NASA Astrophysics Data System (ADS)
DAS, A.; Maiti, D. S.
2017-12-01
Knowledge of aquifer parameters are necessary for managing groundwater amenity. These parameters are evaluated through pumping tests bring off from bore wells. But it is quite expensive as well as time consuming to carry out pumping tests at various sites and sometimes it is difficult to find bore hole at every required site. Therefore, an alternate method is put forward in which the aquifer parameters are evaluated from surface geophysical method. In this method, vertical electrical sounding (VES) with Schlumberger configuration were accomplished in 85 stations over Sindhudurg district. Sindhudurg district is located in the Konkan region of Maharashtra state, India. The district is located between north latitude 15°37' and 16° 40' and east longitude 73° 19' and 74° 13'. The area is having hard rock and acute groundwater problem. In this configuration, we have taken the maximum current electrode spacing of 200 m for every vertical electrical sounding (VES). Geo-electrical sounding data (true resistivity and thickness) is interpreted through resistivity inversion approach. The required parameters are achieved through resistivity inversion technique from which the aquifer variables (D-Z parameters, mean resistivity, hydraulic conductivity, transmissivity, and coefficient of anisotropy) are calculated by using some empirical formulae. Cross-correlation investigation has been done between these parameters, which eventually used to characterize the aquifer over the study area. At the end, the contour plot for these aquifer parameters has been raised which reveals the detailed distribution of aquifer parameters throughout the study area. From contour plot, high values of longitudinal conductance, hydraulic conductivity and transmissivity are demarcate over Kelus, Vengurle, Mochemar and Shiroda villages. This may be due to intrusion of saline water from Arabian sea. From contour trends, the aquifers are characterized from which the groundwater resources could be assess and manage properly in western Maharashtra. The current method which include DC resistivity inversion could be applicable further in hydrological characterization in tangled coastal parts of India.
Saranathan, Rajagopalan; Pagal, Sudhakar; Sawant, Ajit R; Tomar, Archana; Madhangi, M; Sah, Suresh; Satti, Annapurna; Arunkumar, K P; Prashanth, K
2017-10-03
Acinetobacter baumannii is an important human pathogen and considered as a major threat due to its extreme drug resistance. In this study, the genome of a hyper-virulent MDR strain PKAB07 of A. baumannii isolated from an Indian patient was sequenced and analyzed to understand its mechanisms of virulence, resistance and evolution. Comparative genome analysis of PKAB07 revealed virulence and resistance related genes scattered throughout the genome, instead of being organized as an island, indicating the highly mosaic nature of the genome. Many intermittent horizontal gene transfer events, insertion sequence (IS) element insertions identified were augmenting resistance machinery and elevating the SNP densities in A. baumannii eventually aiding in their swift evolution. ISAba1, the most widely distributed insertion sequence in A. baumannii was found in multiple sites in PKAB07. Out of many ISAba1 insertions, we identified novel insertions in 9 different genes wherein insertional inactivation of adeN (tetR type regulator) was significant. To assess the significance of this disruption in A. baumannii, adeN mutant and complement strains were constructed in A. baumannii ATCC 17978 strain and studied. Biofilm levels were abrogated in the adeN knockout when compared with the wild type and complemented strain of adeN knockout. Virulence of the adeN knockout mutant strain was observed to be high, which was validated by in vitro experiments and Galleria mellonella infection model. The overexpression of adeJ, a major component of AdeIJK efflux pump observed in adeN knockout strain could be the possible reason for the elevated virulence in adeN mutant and PKB07 strain. Knocking out of adeN in ATCC strain led to increased resistance and virulence at par with the PKAB07. Disruption of tetR type regulator adeN by ISAba1 consequently has led to elevated virulence in this pathogen.
C-Jun N-terminal kinase signalling pathway in response to cisplatin.
Yan, Dong; An, GuangYu; Kuo, Macus Tien
2016-11-01
Cisplatin (cis diamminedichloroplatinum II, cDDP) is one of the most effective cancer chemotherapeutic agents and is used in the treatment of many types of human malignancies. However, inherent tumour resistance is a major barrier to effective cisplatin therapy. So far, the mechanism of cDDP resistance has not been well defined. In general, cisplatin is considered to be a cytotoxic drug, for damaging DNA and inhibiting DNA synthesis, resulting in apoptosis via the mitochondrial death pathway or plasma membrane disruption. cDDP-induced DNA damage triggers signalling pathways that will eventually decide between cell life and death. As a member of the mitogen-activated protein kinases family, c-Jun N-terminal kinase (JNK) is a signalling pathway in response to extracellular stimuli, especially drug treatment, to modify the activity of numerous proteins locating in the mitochondria or the nucleus. Recent studies suggest that JNK signalling pathway plays a major role in deciding the fate of the cell and inducing resistance to cDDP-induced apoptosis in human tumours. c-Jun N-terminal kinase regulates several important cellular functions including cell proliferation, differentiation, survival and apoptosis while activating and inhibiting substrates for phosphorylation transcription factors (c-Jun, ATF2: Activating transcription factor 2, p53 and so on), which subsequently induce pro-apoptosis and pro-survival factors expression. Therefore, it is suggested that JNK signal pathway is a double-edged sword in cDDP treatment, simultaneously being a significant pro-apoptosis factor but also being associated with increased resistance to cisplatin-based chemotherapy. This review focuses on current knowledge concerning the role of JNK in cell response to cDDP, as well as their role in cisplatin resistance. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Teachers as Assessors and Assistors.
ERIC Educational Resources Information Center
Dalton, Stephanie
According to the cognitive development theory of Lev Vygotsky, learning is formed, and thinking is transformed as a result of participation in purposeful activity with others. Through joint activity, social problem solving is learned and eventually internalized into intrapsychological processes. This paper describes an experimental teacher…
Constraint-Based Scheduling System
NASA Technical Reports Server (NTRS)
Zweben, Monte; Eskey, Megan; Stock, Todd; Taylor, Will; Kanefsky, Bob; Drascher, Ellen; Deale, Michael; Daun, Brian; Davis, Gene
1995-01-01
Report describes continuing development of software for constraint-based scheduling system implemented eventually on massively parallel computer. Based on machine learning as means of improving scheduling. Designed to learn when to change search strategy by analyzing search progress and learning general conditions under which resource bottleneck occurs.
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.; Dean, W. C., II
1975-01-01
The concept of a flight experiment physical phenomena experiment chest, to be used eventually for investigating and demonstrating ice pack heat sink subsystem physical phenomena during a zero gravity flight experiment, is described.
ERIC Educational Resources Information Center
Douds, M. Jay
This summary describes the development of the Appalachian Community Service Network (ACSN), an educational cable television network that was originally launched as an experimental demonstration in the use of the latest telecommunications for the delivery of educational services. In describing how the stage was set for the eventual development of…
Modular Engine Instrumentation System
NASA Technical Reports Server (NTRS)
Rice, W. J.; Birchenough, A. G.
1982-01-01
System that provides information and measurements never obtained before in real time has been developed. System shows not only real-time measurements but also results of computations of key combustion parameters in meaningful and easily understood display. Standard commercially-available shaft encoder plus data from pressure transducer act as principal drivers to device. Eventually, modular system could be developed into onboard controller for automobile engines.
Preschools for Science: The Child Study Centre at the University of British Columbia, 1960-1997
ERIC Educational Resources Information Center
Clark, Penney; Gleason, Mona; Petrina, Stephen
2012-01-01
The development of the Child Study Centre (CSC) at University of British Columbia (UBC) provides a unique perspective on the complex and often contradictory relationship between child study and preschool education in postwar Canada. In this article, the authors detail the development and eventual closure of the CSC at UBC, focusing on the uneasy…
A next generation air quality modeling system is being developed at the U.S. EPA to enable modeling of air quality from global to regional to (eventually) local scales. We envision that the system will have three configurations: 1. Global meteorology with seamless mesh refinemen...
ERIC Educational Resources Information Center
Hough, Heather J.; Loeb, Susanna
2009-01-01
This case study will serve primarily as an historical account detailing the development of Quality Teacher and Education Act (QTEA). QTEA and the most salient details that led to its eventual passage, serving as an information source for San Francisco Unified School District (SFUSD) and other districts when they take on potentially controversial…
Neratinib for the treatment of HER2-positive early stage breast cancer.
Echavarria, Isabel; López-Tarruella, Sara; Márquez-Rodas, Iván; Jerez, Yolanda; Martin, Miguel
2017-08-01
Despite the advances in the treatment of HER2-positive breast cancer, resistance to actual chemotherapeutic regimens eventually occurs. Neratinib, an orally available pan-inhibitor of the ERBB family, represents an interesting new option for early-stage HER2-positive breast cancer. Areas covered: In this article, the development of neratinib, with a special focus on its potential value in the treatment of early-stage HER2-positive breast cancer, has been reviewed. For this purpose, a literature search was conducted, including preclinical studies, early-phase trials in advanced cancer with neratinib in monotherapy and in combination, and phase II and large phase III trials in the early setting. Management of neratinib-induced toxicity, future perspectives for the drug, and ongoing trials are also discussed in this review. Expert commentary: Neratinib is emerging as a promising oral drug for the treatment of HER2-positive breast cancer. Although FDA and EMA approval is derived from the extended adjuvant treatment, this setting may not be the ideal scenario to obtain the beneficial effects of neratinib. Confirmatory data in the neoadjuvant setting and subgroup analysis from the ExTENET trial might bring some light into the best setting for neratinib therapy. Data from confirmatory trials in the metastatic setting are also required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southam, B.J.; Coe, E.L. Jr.
1995-12-01
Many relatively small electrostatic precipitators (ESP`s) exist which collect fly ash at remarkably high efficiencies and have been tested consistently at correspondingly high migration velocities. But the majority of the world`s coal supplies produce ashes which are collected at much lower migration velocities for a given efficiency and therefore require correspondingly large specific collection areas to achieve acceptable results. Early trials of flue gas conditioning (FGC) showed benefits in maximizing ESP performance and minimizing expense which justified continued experimentation. Trials of several dozen ways of doing it wrong eventually developed a set of reliable rules for doing it right. Onemore » result is that the use of sulfur trioxide (SO{sub 3}) for adjustment of the resistivity of fly ash from low sulfur coal has been widely applied and has become an automatically accepted part of the option of burning low sulfur coal for compliance with the Clean Air Act of l990 in the U.S.A. Currently, over 100,000 MW of generating capacity is using FGC, and it is estimated that approximately 45,800 MW will utilize coal-switching with FGC for Clean Air Act emission compliance. Guarantees that this equipment will be available to operate at least 98 percent of the time it is called upon are routinely fulfilled.« less
Discovering the route from inflammation to pancreatic cancer
MOMI, N.; KAUR, S.; KRISHN, S. R.; BATRA, S. K.
2013-01-01
Pancreatic cancer (PC) remains a complex malignancy with the worst prognosis, lack of early diagnostic symptoms and resistance to conventional chemo- and radiotherapies. A better understanding of the etiology and early developmental events of PC requires profound attention. The evolution of fully blown PC from initial pancreatic injury is a multi-factorial phenomenon with a series of sequential events. The initial acute infection or tissue damage triggers inflammation that, in conjunction with innate immunity, establishes a state of homeostasis to limit harm to the body. Recurrent pancreatic injuries due to genetic susceptibility, smoking, unhealthy diet, and alcohol abuse induces a pro-inflammatory milieu, consisting of various types of immune cells, cytokines, chemokines, growth factors and restructured extracellular matrix, leading to prolonged inflammatory/chronic conditions. Cells having sustained DNA damage and/or mutagenic assault take advantage of this prolonged inflammatory response and aid in the initiation and development of neoplastic/fibrotic events. Eventually, many tumor-stromal interactions result in a chaotic environment accompanied by a loss of immune surveillance and repair response, thereby leading to PC. A better understanding of the inflammatory markers defining this “injury-inflammation-cancer” pathway would help to identify novel molecular targets for early screening and therapeutic intervention for this lethal malignancy. PMID:23207606
Innate Immunity and Resistance to Tolerogenesis in Allotransplantation
Benichou, Gilles; Tonsho, Makoto; Tocco, Georges; Nadazdin, Ognjenka; Madsen, Joren C.
2012-01-01
The development of immunosuppressive drugs to control adaptive immune responses has led to the success of transplantation as a therapy for end-stage organ failure. However, these agents are largely ineffective in suppressing components of the innate immune system. This distinction has gained in clinical significance as mounting evidence now indicates that innate immune responses play important roles in the acute and chronic rejection of whole organ allografts. For instance, whereas clinical interest in natural killer (NK) cells was once largely confined to the field of bone marrow transplantation, recent findings suggest that these cells can also participate in the acute rejection of cardiac allografts and prevent tolerance induction. Stimulation of Toll-like receptors (TLRs), another important component of innate immunity, by endogenous ligands released in response to ischemia/reperfusion is now known to cause an inflammatory milieu favorable to graft rejection and abrogation of tolerance. Emerging data suggest that activation of complement is linked to acute rejection and interferes with tolerance. In summary, the conventional wisdom that the innate immune system is of little importance in whole organ transplantation is no longer tenable. The addition of strategies that target TLRs, NK cells, complement, and other components of the innate immune system will be necessary to eventually achieve long-term tolerance to human allograft recipients. PMID:22566954
Delayed innocent bystander cell death following hypoxia in Caenorhabditis elegans
Sun, C-L; Kim, E; Crowder, C M
2014-01-01
After hypoxia, cells may die immediately or have a protracted course, living or dying depending on an incompletely understood set of cell autonomous and nonautonomous factors. In stroke, for example, some neurons are thought to die from direct hypoxic injury by cell autonomous primary mechanisms, whereas other so called innocent bystander neurons die from factors released from the primarily injured cells. A major limitation in identifying these factors is the inability of current in vivo models to selectively target a set of cells for hypoxic injury so that the primarily injured cells and the innocent bystanders are clearly delineated. In order to develop such a model, we generated transgenic Caenorhabditis elegans strains where 2–3% of somatic cells were made selectively sensitive to hypoxia. This was accomplished by cell type-specific wild-type rescue in either pharyngeal myocytes or GABAergic neurons of a hypoxia resistance-producing translation factor mutation. Surprisingly, hypoxic targeting of these relatively small subsets of non-essential cells produced widespread innocent bystander cell injury, behavioral dysfunction and eventual organismal death. The hypoxic injury phenotypes of the myocyte or neuron sensitized strains were virtually identical. Using this model, we show that the C. elegans insulin receptor/FOXO transcription factor pathway improves survival when activated only after hypoxic injury and blocks innocent bystander death. PMID:24317200
Delayed innocent bystander cell death following hypoxia in Caenorhabditis elegans.
Sun, C-L; Kim, E; Crowder, C M
2014-04-01
After hypoxia, cells may die immediately or have a protracted course, living or dying depending on an incompletely understood set of cell autonomous and nonautonomous factors. In stroke, for example, some neurons are thought to die from direct hypoxic injury by cell autonomous primary mechanisms, whereas other so called innocent bystander neurons die from factors released from the primarily injured cells. A major limitation in identifying these factors is the inability of current in vivo models to selectively target a set of cells for hypoxic injury so that the primarily injured cells and the innocent bystanders are clearly delineated. In order to develop such a model, we generated transgenic Caenorhabditis elegans strains where 2-3% of somatic cells were made selectively sensitive to hypoxia. This was accomplished by cell type-specific wild-type rescue in either pharyngeal myocytes or GABAergic neurons of a hypoxia resistance-producing translation factor mutation. Surprisingly, hypoxic targeting of these relatively small subsets of non-essential cells produced widespread innocent bystander cell injury, behavioral dysfunction and eventual organismal death. The hypoxic injury phenotypes of the myocyte or neuron sensitized strains were virtually identical. Using this model, we show that the C. elegans insulin receptor/FOXO transcription factor pathway improves survival when activated only after hypoxic injury and blocks innocent bystander death.
Myosin-X functions in polarized epithelial cells
Liu, Katy C.; Jacobs, Damon T.; Dunn, Brian D.; Fanning, Alan S.; Cheney, Richard E.
2012-01-01
Myosin-X (Myo10) is an unconventional myosin that localizes to the tips of filopodia and has critical functions in filopodia. Although Myo10 has been studied primarily in nonpolarized, fibroblast-like cells, Myo10 is expressed in vivo in many epithelia-rich tissues, such as kidney. In this study, we investigate the localization and functions of Myo10 in polarized epithelial cells, using Madin-Darby canine kidney II cells as a model system. Calcium-switch experiments demonstrate that, during junction assembly, green fluorescent protein–Myo10 localizes to lateral membrane cell–cell contacts and to filopodia-like structures imaged by total internal reflection fluorescence on the basal surface. Knockdown of Myo10 leads to delayed recruitment of E-cadherin and ZO-1 to junctions, as well as a delay in tight junction barrier formation, as indicated by a delay in the development of peak transepithelial electrical resistance (TER). Although Myo10 knockdown cells eventually mature into monolayers with normal TER, these monolayers do exhibit increased paracellular permeability to fluorescent dextrans. Importantly, knockdown of Myo10 leads to mitotic spindle misorientation, and in three-dimensional culture, Myo10 knockdown cysts exhibit defects in lumen formation. Together these results reveal that Myo10 functions in polarized epithelial cells in junction formation, regulation of paracellular permeability, and epithelial morphogenesis. PMID:22419816
Insights into molecular therapy of glioma: current challenges and next generation blueprint
Rajesh, Y; Pal, Ipsita; Banik, Payel; Chakraborty, Sandipan; Borkar, Sachin A; Dey, Goutam; Mukherjee, Ahona; Mandal, Mahitosh
2017-01-01
Glioma accounts for the majority of human brain tumors. With prevailing treatment regimens, the patients have poor survival rates. In spite of current development in mainstream glioma therapy, a cure for glioma appears to be out of reach. The infiltrative nature of glioma and acquired resistance substancially restrict the therapeutic options. Better elucidation of the complicated pathobiology of glioma and proteogenomic characterization might eventually open novel avenues for the design of more sophisticated and effective combination regimens. This could be accomplished by individually tailoring progressive neuroimaging techniques, terminating DNA synthesis with prodrug-activating genes, silencing gliomagenesis genes (gene therapy), targeting miRNA oncogenic activity (miRNA-mRNA interaction), combining Hedgehog-Gli/Akt inhibitors with stem cell therapy, employing tumor lysates as antigen sources for efficient depletion of tumor-specific cancer stem cells by cytotoxic T lymphocytes (dendritic cell vaccination), adoptive transfer of chimeric antigen receptor-modified T cells, and combining immune checkpoint inhibitors with conventional therapeutic modalities. Thus, the present review captures the latest trends associated with the molecular mechanisms involved in glial tumorigenesis as well as the limitations of surgery, radiation and chemotherapy. In this article we also critically discuss the next generation molecular therapeutic strategies and their mechanisms for the successful treatment of glioma. PMID:28317871
Detection and drug delivery from superhydrophobic materials
NASA Astrophysics Data System (ADS)
Falde, Eric John
The wetting of a rough material is controlled by surface chemistry and morphology, the liquid phase, solutes, and surfactants that affect the surface tension with the gas phase, and environmental conditions such as temperature and pressure. Materials with high (>150°) apparent contact angles are known as superhydrophobic and are very resistant to wetting. However, in complex biological mixtures eventually protein adsorbs, fouling the surface and facilitating wetting on time scales from seconds to months. The work here uses the partially-wetted (Cassie-Baxter) to fully-wetted (Wenzel) state transition to control drug delivery and to perform surfactant detection via surface tension using hydrophobic and superhydrophobic materials. First there is an overview of the physics of the non-wetting state and the transition to wetting. Then there is a review of how wetting can be controlled by outside stimuli and applications of these materials. Next there is work presented on controlling drug release using superhydrophobic materials with controlled wetting rates, with both in vitro and in vivo results. Then there is work on developing a sensor based on this wetting state transition and its applications toward detecting solute levels in biological fluids for point-of-care diagnosis. Finally, there is work presented on using these sensors for detecting the alcohol content in wine and spirits.
van der Borden, Arnout J; Maathuis, Patrick G M; Engels, Eefje; Rakhorst, Gerhard; van der Mei, Henny C; Busscher, Henk J; Sharma, Prashant Kumar
2007-04-01
Pin tract infections of external fixators used in orthopaedic reconstructive bone surgery are serious complications that can eventually lead to periostitis and osteomyelitis. In vitro experiments have demonstrated that bacteria adhering to stainless steel in a biofilm mode of growth detach under the influence of small electric currents, while remaining bacteria become less viable upon current application. Therefore, we have investigated whether a 100microA electric current can prevent signs of clinical infection around percutaneous pins, implanted in the tibia of goats. Three pins were inserted into the lateral right tibia of nine goats, of which one served for additional frame support. Two pins were infected with a Staphylococcus epidermidis strain of which one pin was subjected to electric current, while the other pin was used as control. Pin sites were examined daily. The wound electrical resistance decreased with worsening of the infection from a dry condition to a purulent stage. After 21 days, animals were sacrificed and the pins taken out. Infection developed in 89% of the control pin sites, whereas only 11% of the pin sites in the current group showed infection. These results show that infection of percutaneous pin sites of external fixators in reconstructive bone surgery can be prevented by the application of a small DC electric current.
Lee, Jin-Woong; Chung, Jiyong; Cho, Min-Young; Timilsina, Suman; Sohn, Keemin; Kim, Ji Sik; Sohn, Kee-Sun
2018-06-20
An extremely simple bulk sheet made of a piezoresistive carbon nanotube (CNT)-Ecoflex composite can act as a smart keypad that is portable, disposable, and flexible enough to be carried crushed inside the pocket of a pair of trousers. Both a rigid-button-imbedded, rollable (or foldable) pad and a patterned flexible pad have been introduced for use as portable keyboards. Herein, we suggest a bare, bulk, macroscale piezoresistive sheet as a replacement for these complex devices that are achievable only through high-cost fabrication processes such as patterning-based coating, printing, deposition, and mounting. A deep-learning technique based on deep neural networks (DNN) enables this extremely simple bulk sheet to play the role of a smart keypad without the use of complicated fabrication processes. To develop this keypad, instantaneous electrical resistance change was recorded at several locations on the edge of the sheet along with the exact information on the touch position and pressure for a huge number of random touches. The recorded data were used for training a DNN model that could eventually act as a brain for a simple sheet-type keypad. This simple sheet-type keypad worked perfectly and outperformed all of the existing portable keypads in terms of functionality, flexibility, disposability, and cost.
Stem cells as the root of pancreatic ductal adenocarcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balic, Anamaria; Dorado, Jorge; Alonso-Gomez, Mercedes
2012-04-01
Emerging evidence suggests that stem cells play a crucial role not only in the generation and maintenance of different tissues, but also in the development and progression of malignancies. For the many solid cancers, it has now been shown that they harbor a distinct subpopulation of cancer cells that bear stem cell features and therefore, these cells are termed cancer stem cells (CSC) or tumor-propagating cells. CSC are exclusively tumorigenic and essential drivers for tumor progression and metastasis. Moreover, it has been shown that pancreatic ductal adenocarcinoma does not only contain one homogeneous population of CSC rather than diverse subpopulationsmore » that may have evolved during tumor progression. One of these populations is called migrating CSC and can be characterized by CXCR4 co-expression. Only these cells are capable of evading the primary tumor and traveling to distant sites such as the liver as the preferred site of metastatic spread. Clinically even more important, however, is the observation that CSC are highly resistant to chemo- and radiotherapy resulting in their relative enrichment during treatment and rapid relapse of disease. Many laboratories are now working on the further in-depth characterization of these cells, which may eventually allow for the identification of their Achilles heal and lead to novel treatment modalities for fighting this deadly disease.« less
Effective GTP-replacing FtsZ inhibitors and antibacterial mechanism of action.
Artola, Marta; Ruiz-Avila, Laura B; Vergoñós, Albert; Huecas, Sonia; Araujo-Bazán, Lidia; Martín-Fontecha, Mar; Vázquez-Villa, Henar; Turrado, Carlos; Ramírez-Aportela, Erney; Hoegl, Annabelle; Nodwell, Matthew; Barasoain, Isabel; Chacón, Pablo; Sieber, Stephan A; Andreu, Jose M; López-Rodríguez, María L
2015-03-20
Essential cell division protein FtsZ is considered an attractive target in the search for antibacterials with novel mechanisms of action to overcome the resistance problem. FtsZ undergoes GTP-dependent assembly at midcell to form the Z-ring, a dynamic structure that evolves until final constriction of the cell. Therefore, molecules able to inhibit its activity will eventually disrupt bacterial viability. In this work, we report a new series of small molecules able to replace GTP and to specifically inhibit FtsZ, blocking the bacterial division process. These new synthesized inhibitors interact with the GTP-binding site of FtsZ (Kd = 0.4-0.8 μM), display antibacterial activity against Gram-positive pathogenic bacteria, and show selectivity against tubulin. Biphenyl derivative 28 stands out as a potent FtsZ inhibitor (Kd = 0.5 μM) with high antibacterial activity [MIC (MRSA) = 7 μM]. In-depth analysis of the mechanism of action of compounds 22, 28, 33, and 36 has revealed that they act as effective inhibitors of correct FtsZ assembly, blocking bacterial division and thus leading to filamentous undivided cells. These findings provide a compelling rationale for the development of compounds targeting the GTP-binding site as antibacterial agents and open the door to antibiotics with novel mechanisms of action.
Mukandiwa, Lillian; Eloff, Jacobus Nicolaas; Naidoo, Vinny
2016-06-01
Mosquitoes are rapidly developing resistance to insecticides that millions of people relied on to protect themselves from the diseases they carry, thereby creating a need to develop new insecticides. Clausena anisata is used traditionally as an insect repellent by various communities in Africa and Asia. For this study, the repellency and adulticidal activities of leaf extracts and compounds isolated from this plant species were evaluated against the yellow fever mosquito, Aedes aegypti. In the topical application assays, using total bites as an indicator, repellency was dose dependent, with the acetone crude extract (15 %) having 93 % repellence and the hexane fraction (7.5 %) 67 % repellence after 3 h. Fractionation resulted in a loss of total repellence. As mosquito-net treating agents, the acetone and hexane extracts of C. anisata, both at 15 %, had average repellences of 46.89 ± 2.95 and 50.13 ± 2.02 %, respectively, 3 h after exposure. The C. anisata acetone extract and its hexane fraction caused mosquito knockdown and eventually death when nebulised into the testing chamber, with an EC50 of 78.9 mg/ml (7.89 %) and 71.6 mg/ml (7.16 %) in the first 15 min after spraying. C. anisata leaf extracts have potential to be included in protection products against mosquitoes due to the repellent and cidal compounds contained therein.
NASA Astrophysics Data System (ADS)
Sung, Z.-H.; Wang, M.; Polyanskii, A. A.; Santosh, C.; Balachandran, S.; Compton, C.; Larbalestier, D. C.; Bieler, T. R.; Lee, P. J.
2017-05-01
This study shows that low angle grain boundaries (LAGBs) can be created by small 5% strains in high purity (residual resistivity ratio ≥ 200) superconducting radio frequency (SRF)-grade single crystalline niobium (Nb) and that these boundaries act as hydrogen traps as indicated by the distribution of niobium hydrides (Nb1-xHx). Nb1-xHx is detrimental to SRF Nb cavities due to its normal conducting properties at cavity operating temperatures. By designing a single crystal tensile sample extracted from a large grain (>5 cm) Nb ingot slice for preferred slip on one slip plane, LAGBs and dense dislocation boundaries developed. With chemical surface treatments following standard SRF cavity fabrication practice, Nb1-xHx phases were densely precipitated at the LAGBs upon cryogenic cooling (8-10 K/min). Micro-crystallographic analysis confirmed heterogeneous hydride precipitation, which included significant hydrogen atom accumulation in LAGBs. Magneto-optical imaging analysis showed that these sites can then act as sites for both premature flux penetration and eventually flux trapping. However, this hydrogen related degradation at LAGBs did not completely disappear even after an 800 °C/2 h anneal typically used for hydrogen removal in SRF Nb cavities. These findings suggest that hydride precipitation at an LAGB is facilitated by a non-equilibrium concentration of vacancy-hydrogen (H) complexes aided by mechanical deformation and the hydride phase interferes with the recovery process under 800 °C annealing.
NASA Astrophysics Data System (ADS)
Aguiar, Maíra
2015-12-01
Caused by micro-organisms that are pathogenic to the host, infectious diseases have caused debilitation and premature death to large portions of the human population, leading to serious social-economic concerns. The persistence and increase in the occurrence of infectious diseases as well the emergence or resurgence of vector-borne diseases are closely related with demographic factors such as the uncontrolled urbanization and remarkable population growth, political, social and economical changes, deforestation, development of resistance to insecticides and drugs and increased human travel. In recent years, mathematical modeling became an important tool for the understanding of infectious disease epidemiology and dynamics, addressing ideas about the components of host-pathogen interactions. Acting as a possible tool to understand, predict the spread of infectious diseases these models are also used to evaluate the introduction of intervention strategies like vector control and vaccination. Many scientific papers have been published recently on these topics, and most of the models developed try to incorporate factors focusing on several different aspects of the disease (and eventually biological aspects of the vector), which can imply rich dynamic behavior even in the most basic dynamical models. As one example to be cited, there is a minimalistic dengue model that has shown rich dynamic structures, with bifurcations (Hopf, pitchfork, torus and tangent bifurcations) up to chaotic attractors in unexpected parameter regions [1,2], which was able to describe the large fluctuations observed in empirical outbreak data [3,4].
NASA Astrophysics Data System (ADS)
Mohd Janib, Siti Najila
The two main problems currently stalling the efficient treatment of cancer has been detecting cancer early enough in the disease process for successful treatment, and treating cancer cells while avoiding excessive toxicity to normal tissues. Arguably the most important factor in the fight against cancer, besides prevention is early detection because the cancer will be easier to treat and less likely to have drug resistance. The work highlighted in this thesis attempts to address the issues related to the effective treatment and management of cancer. The objective of this work is to develop new materials and methods for co-assembly of drugs and imaging agents that permit quantitative imaging of drug delivery and disease progression. By using molecular imaging technique to non-invasively study and detect various molecular markers of diseases can allow for much earlier diagnosis, earlier treatment, and better prognosis that will eventually lead to personalized medicine. Exploration of particulates and polymeric carriers is gaining momentum in diagnostic imaging, initiated by successful therapies using long circulating liposomes. However, liposomes are challenging pharmaceuticals, which include many chemical components, require complex drug encapsulation strategies, and must be physically sheared to control their particle diameter and polydispersity. Polymeric nanocarriers have emerged as an alternative to liposomes as carriers of drugs and imaging agents. Co-inclusion of therapeutic and imaging agents, into these carriers might be advantageous because they increase solubility of hydrophobic agents, may enhance permeability across physiological barriers, alter drug biodistribution, increase local bioavailability and reduce of side effects.
A Changing Information Environment Challenges Public Administrations.
ERIC Educational Resources Information Center
Otten, Klaus W.
1989-01-01
Describes ways in which information handling techniques will eventually be used in public administration, focusing on technologies that automate routine administrative processes and support decision making. The need to develop a long range concept for continued full employment of administrative staff is discussed. (two references) (CLB)
CALS Baseline Architecture Analysis of Weapons System. Technical Information: Army, Draft. Volume 8
DOT National Transportation Integrated Search
1989-09-01
This effort was performed to provide a common framework for analysis and planning of CALS initiatives across the military services, leading eventually to the development of a common DoD-wide architecture for CALS. This study addresses Army technical ...