A simple algorithm for large-scale mapping of evergreen forests in tropical America, Africa and Asia
Xiangming Xiao; Chandrashekhar M. Biradar; Christina Czarnecki; Tunrayo Alabi; Michael Keller
2009-01-01
The areal extent and spatial distribution of evergreen forests in the tropical zones are important for the study of climate, carbon cycle and biodiversity. However, frequent cloud cover in the tropical regions makes mapping evergreen forests a challenging task. In this study we developed a simple and novel mapping algorithm that is based on the temporal profile...
Satellite-Observed Vertical Structures of Clouds over the Amazon Basin
NASA Astrophysics Data System (ADS)
Wu, M.; Lee, J. E.
2017-12-01
The long wet season of the Amazon basin currently plays a critical role in the terrestrial ecosystem, regulating carbon balance and supporting high biodiversity. It has been argued that the land surface processes are important in maintaining high precipitation; yet, how the land-atmosphere interactions modulate the atmospheric processes are not completely understood. As a first step toward solving this problem, here we examine the vertical structures of clouds and the thermodynamics of the atmosphere over the entire basin at the different time of the year. We combine the vertical distribution of cloud water content from CloudSat, and the atmospheric thermodynamic conditions from the ECMWF ERA-interim reanalysis to compare and contrast the atmospheric condition at different time of the year-the wet, dry, and dry-to-wet transition seasons-and in different regions-ever-wet evergreen broadleaf forests, wet evergreen broadleaf forests with a dry season, and dry wooded grasslands/woodlands-following water stress gradient. In the ever-wet and wet regions, a large amount of cloud ice water is present in the upper atmosphere (above 11km) and convective available potential energy (CAPE) is high during the transition season, supporting the claim that the convective activity is strongest during the transition season. In the dry region, there are more cloud water above 8km over woodlands than over wooded grasslands during the dry and transition seasons, indicating the influence of the land cover. We also classified our data following the large-scale circulation pattern, and the CloudSat data support more deep convective activities in the wet and dry regions when the wind blows from the east during the wet and transition seasons. As a next step, we will focus more on linking the cloud structure to the large-scale circulation and surface processes.
García, Franger J; Delgado-Jaramillo, Mariana; Machado, Marjorie; Aular, Luis
2012-03-01
In Venezuela, mammals represent an important group of wildlife with high anthropogenic pressures that threaten their permanence. Focused on the need to generate baseline information that allows us to contribute to document and conserve the richness of local wildlife, we conducted a mammalogical inventory in Yurubí National Park, located in Yaracuy State in Venezuela. We carried out fieldworks in three selected vegetation types: an evergreen forest at 197m, a semi-deciduous forest ranging between 100-230m, and a cloud forest at 1 446m. We used Victor, Sherman, Havahart and pitfall traps for the capture of small non-volant mammals and mist nets for bats. In addition, we carried out interviews with local residents and direct-indirect observations for medium-large sized mammals. At least 79 species inhabit the area, representing 28% of the species recorded for the North side of the country. Chiroptera (39 spp.), Carnivora (13 spp.) and Rodentia (9 spp.) were the orders with the highest richness, as expected for the Neotropics. The evergreen forest had the greatest species richness (n=68), with a sampling effort of 128 net-hours, 32 bucket-days, 16 hours of observations, and three persons interviewed, followed by cloud forest (n=45) with 324 net-hours, 790 traps-night, 77 bucket-days, 10 hours of observations, and one person interviewed. The lowest richness value was in the semi-deciduous forest (n=41), with 591 traps-night, 15 net-hours, 10 hours of observations and three persons interviewed. Data and observations obtained in this inventory (e.g., endemism, species known as "surrogate species" threatened in Venezuela) give an important role at the Yurubí National Park in the maintenance and conservation of local ecosystems and wildlife, threatened by human pressures in the Cordillera de la Costa.
Forest type influences transmission of Phytophthora ramorum in California oak woodlands.
Davidson, Jennifer M; Patterson, Heather A; Wickland, Allison C; Fichtner, Elizabeth J; Rizzo, David M
2011-04-01
The transmission ecology of Phytophthora ramorum from bay laurel (Umbellularia californica) leaves was compared between mixed-evergreen and redwood forest types throughout winter and summer disease cycles in central, coastal California. In a preliminary multisite study, we found that abscission rates of infected leaves were higher at mixed-evergreen sites. In addition, final infection counts were slightly higher at mixed-evergreen sites or not significantly different than at redwood sites, in part due to competition from other foliar pathogens at redwood sites. In a subsequent, detailed study of paired sites where P. ramorum was the main foliar pathogen, summer survival of P. ramorum in bay laurel leaves was lower in mixed-evergreen forest due to lower recovery from infected attached leaves and higher abscission rates of infected leaves. Onset of inoculum production and new infections of bay laurel leaves occurred later in mixed-evergreen forest. Mean inoculum levels in rainwater and final infection counts on leaves were higher in redwood forest. Based on these two studies, lower summer survival of reservoir inoculum in bay laurel leaves in mixed-evergreen forest may result in delayed onset of both inoculum production and new infections, leading to slower disease progress in the early rainy season compared with redwood forest. Although final infection counts also will depend on other foliar pathogens and disease history, in sites where P. ramorum is the main foliar pathogen, these transmission patterns suggest higher rates of disease spread in redwood forests during rainy seasons of short or average length.
Lü, Na; Ni, Jian
2013-01-01
By using spatially explicit landscape model (LANDIS 6.0 PRO), and parameterized this model with the long-term research and observation data of Tiantong National Station of Forest Eco-system Observation and Research, this paper simulated the natural succession of evergreen broad-leaved forest in Tiantong National Forest park, Zhejiang Province in the future 500 years, analyzed the spatial distribution and age structure of dominant species and major landscapes, and explored the succession pattern of the evergreen broad-leaved forest. In the park, the species alternation mostly occurred before the stage of evergreen broad-leaved forest. Pinus massoniana, Quercus fabric, and Liquidambar formosana occupied a large proportion during the early succession, but gradually disappeared with the succession process. Schima superba and Castanopsis fargesii took the main advantage in late succession, and developed to the climax community. Under the conditions without disturbances, the community was mainly composed of young forests in the early succession, and of mature or over-mature forests in the late succession, implying the insufficient regeneration ability of the community. LANDIS model could be used for simulating the landscape dynamics of evergreen broad-leaved forest in eastern China. In the future research, both the model structure and the model parameters should be improved, according to the complexity and diversity of subtropical evergreen broad-leaved forest.
Xu, Guolian; Mo, Jiangming; Zhou, Guoyi
2005-07-01
In this paper, simulated N deposition addition (0, 50, 100 and 150 kg x hm(-2) x yr(-1)) by spreading water or NH4NO3 was conducted to study the early responses of soil fauna in three typical native forests (monsoon evergreen broadleaf forest, pine forest, and broadleaf-pine mixed forest) of subtropical China. The results showed that in monsoon evergreen broadleaf forest, N deposition addition had an obviously negative effect on the three indexes for soil fauna, but in pine forest, the positive effect was significant (P < 0. 05), and the soil fauna community could reach the level in mixed forest, even that in monsoon evergreen broadleaf forest at sometime. The responses in mixed forest were not obvious. In monsoon evergreen broadleaf forest, the negative effects were significant (P < 0.05) under medium N deposition, but not under low N deposition. In pine forest, the positive effect was significant (P < 0.05) under high N deposition, especially for the number of soil fauna groups. The results obtained might imply the N saturation-response mechanisms of forest ecosystems in subtropical China, and the conclusions from this study were also consisted with some related researches.
Impact of a drier Early-Mid-Holocene climate upon Amazonian forests.
Mayle, Francis E; Power, Mitchell J
2008-05-27
This paper uses a palaeoecological approach to examine the impact of drier climatic conditions of the Early-Mid-Holocene (ca 8000-4000 years ago) upon Amazonia's forests and their fire regimes. Palaeovegetation (pollen data) and palaeofire (charcoal) records are synthesized from 20 sites within the present tropical forest biome, and the underlying causes of any emergent patterns or changes are explored by reference to independent palaeoclimate data and present-day patterns of precipitation, forest cover and fire activity across Amazonia. During the Early-Mid-Holocene, Andean cloud forest taxa were replaced by lowland tree taxa as the cloud base rose while lowland ecotonal areas, which are presently covered by evergreen rainforest, were instead dominated by savannahs and/or semi-deciduous dry forests. Elsewhere in the Amazon Basin there is considerable spatial and temporal variation in patterns of vegetation disturbance and fire, which probably reflects the complex heterogeneous patterns in precipitation and seasonality across the basin, and the interactions between climate change, drought- and fire susceptibility of the forests, and Palaeo-Indian land use. Our analysis shows that the forest biome in most parts of Amazonia appears to have been remarkably resilient to climatic conditions significantly drier than those of today, despite widespread evidence of forest burning. Only in ecotonal areas is there evidence of biome replacement in the Holocene. From this palaeoecological perspective, we argue against the Amazon forest 'dieback' scenario simulated for the future.
Prasad, V Krishna; Anuradha, E; Badarinath, K V S
2005-09-01
Ten-day advanced very high resolution radiometer images from 1990 to 2000 were used to examine spatial patterns in the normalized difference vegetation index (NDVI) and their relationships with climatic variables for four contrasting forest types in India. The NDVI signal has been extracted from homogeneous vegetation patches and has been found to be distinct for deciduous and evergreen forest types, although the mixed-deciduous signal was close to the deciduous ones. To examine the decadal response of the satellite-measured vegetation phenology to climate variability, seven different NDVI metrics were calculated using the 11-year NDVI data. Results suggested strong spatial variability in forest NDVI metrics. Among the forest types studied, wet evergreen forests of north-east India had highest mean NDVI (0.692) followed by evergreen forests of the Western Ghats (0.529), mixed deciduous forests (0.519) and finally dry deciduous forests (0.421). The sum of NDVI (SNDVI) and the time-integrated NDVI followed a similar pattern, although the values for mixed deciduous forests were closer to those for evergreen forests of the Western Ghats. Dry deciduous forests had higher values of inter-annual range (RNDVI) and low mean NDVI, also coinciding with a high SD and thus a high coefficient of variation (CV) in NDVI (CVNDVI). SNDVI has been found to be high for wet evergreen forests of north-east India, followed by evergreen forests of the Western Ghats, mixed deciduous forests and dry deciduous forests. Further, the maximum NDVI values of wet evergreen forests of north-east India (0.624) coincided with relatively high annual total precipitation (2,238.9 mm). The time lags had a strong influence in the correlation coefficients between annual total rainfall and NDVI. The correlation coefficients were found to be comparatively high (R2=0.635) for dry deciduous forests than for evergreen forests and mixed deciduous forests, when the precipitation data with a lag of 30 days was correlated against NDVI. Using multiple regression approach models were developed for individual forest types using 16 different climatic indices. A high proportion of the temporal variance (>90%) has been accounted for by three of the precipitation parameters (maximum precipitation, precipitation of the wettest quarter and driest quarter) and two of the temperature parameters (annual mean temperature and temperature of the coldest quarter) for mixed deciduous forests. Similarly, in the case of deciduous forests, four precipitation parameters and three temperature parameters explained nearly 83.6% of the variance. These results suggest differences in the relationship between NDVI and climatic variables based upon the time of growing season, time interval and climatic indices over which they were summed. These results have implications for forest cover mapping and monitoring in tropical regions of India.
An Old-Growth Definition for Evergreen Bay Forests and Related Seral Communities
Martha R. McKevlin
1996-01-01
This document describes old-growth conditions in an evergreen bay forest stand. Bay forests occur throughout the Atlantic and Gulf Coastal Plains. However, they are considered rare and are present across the landscape in a patchwork mosaic with other forest types in various stages of succession. Bay forests can be found associated with pocosins, Carolina bays and...
NASA Astrophysics Data System (ADS)
Wang, Rong; Chen, Jing M.; Pavlic, Goran; Arain, Altaf
2016-09-01
Winter leaf area index (LAI) of evergreen coniferous forests exerts strong control on the interception of snow, snowmelt and energy balance. Simulation of winter LAI and associated winter processes in land surface models is challenging. Retrieving winter LAI from remote sensing data is difficult due to cloud contamination, poor illumination, lower solar elevation and higher radiation reflection by snow background. Underestimated winter LAI in evergreen coniferous forests is one of the major issues limiting the application of current remote sensing LAI products. It has not been fully addressed in past studies in the literature. In this study, we used needle lifespan to correct winter LAI in a remote sensing product developed by the University of Toronto. For the validation purpose, the corrected winter LAI was then used to calculate land surface albedo at five FLUXNET coniferous forests in Canada. The RMSE and bias values for estimated albedo were 0.05 and 0.011, respectively, for all sites. The albedo map over coniferous forests across Canada produced with corrected winter LAI showed much better agreement with the GLASS (Global LAnd Surface Satellites) albedo product than the one produced with uncorrected winter LAI. The results revealed that the corrected winter LAI yielded much greater accuracy in simulating land surface albedo, making the new LAI product an improvement over the original one. Our study will help to increase the usability of remote sensing LAI products in land surface energy budget modeling.
Evergreen understory dynamics in Coweeta forest, North Carolina
M.M. Dobbs; Albert J. Parker
2004-01-01
A number of studies have elucidated the distributional patterns of various components of Southern Appalachian forests. The evergreen understory here is composed largely of a dominant ericaceous shrub, Rhododendron maximum L., which is believed to be expanding and inhibiting the development of other species with consequent impacts on overall forest...
Ge, Jielin; Xie, Zongqiang
2017-06-01
Understanding climatic influences on the proportion of evergreen versus deciduous broad-leaved tree species in forests is of crucial importance when predicting the impact of climate change on broad-leaved forests. Here, we quantified the geographical distribution of evergreen versus deciduous broad-leaved tree species in subtropical China. The Relative Importance Value index (RIV) was used to examine regional patterns in tree species dominance and was related to three key climatic variables: mean annual temperature (MAT), minimum temperature of the coldest month (MinT), and mean annual precipitation (MAP). We found the RIV of evergreen species to decrease with latitude at a lapse rate of 10% per degree between 23.5 and 25°N, 1% per degree at 25-29.1°N, and 15% per degree at 29.1-34°N. The RIV of evergreen species increased with: MinT at a lapse rate of 10% per °C between -4.5 and 2.5°C and 2% per °C at 2.5-10.5°C; MAP at a lapse rate of 10% per 100 mm between 900 and 1,600 mm and 4% per 100 mm between 1,600 and 2,250 mm. All selected climatic variables cumulatively explained 71% of the geographical variation in dominance of evergreen and deciduous broad-leaved tree species and the climatic variables, ranked in order of decreasing effects were as follows: MinT > MAP > MAT. We further proposed that the latitudinal limit of evergreen and deciduous broad-leaved mixed forests was 29.1-32°N, corresponding with MAT of 11-18.1°C, MinT of -2.5 to 2.51°C, and MAP of 1,000-1,630 mm. This study is the first quantitative assessment of climatic correlates with the evergreenness and deciduousness of broad-leaved forests in subtropical China and underscores that extreme cold temperature is the most important climatic determinant of evergreen and deciduous broad-leaved tree species' distributions, a finding that confirms earlier qualitative studies. Our findings also offer new insight into the definition and distribution of the mixed forest and an accurate assessment of vulnerability of mixed forests to future climate change.
Ecology of Phytophthora nemorosa and Phytophthora pseudosyringae in mixed-evergreen forests
Allison C. Wickland; David M. Rizzo
2006-01-01
Recent research has shown that Phytophthora ramorum is a major threat to Californiaâs coast live oak (Quercus agrifolia) dominated, mixed-evergreen forests (Rizzo and Garbelotto 2003). However, the role that diseases caused by other Phytophthora species play in the ecology of these forest communities is less...
NASA Astrophysics Data System (ADS)
Weng, E.; Farrior, C.; Dybzinski, R.; Pacala, S. W.
2015-12-01
Leaf mass per area (LMA) and leaf lifespan (LL) are two highly correlated plant traits that are key to plant physiological and ecological properties. Usually, low LMA means short LL, high nitrogen (N) content per unit mass, and fast turnover rates of nutrients; high LMA leads to long LL, low N content, and slow turnover rates. Deciduous trees with low LMA and short lifespan leaves have low carbon cost but high nitrogen demand; and evergreen trees, with high LMA and long lifespan leaves, have high carbon cost but low nitrogen demand. These relationships lead to: 1) evergreen trees have higher leaf area index than deciduous trees; 2) evergreen trees' carbon use efficiency is lower than the deciduous trees' because of their thick leaves and therefore high maintenance respiration; 3) the advantage of evergreens trees brought by their extra leaves over deciduous trees diminishes with increase N in ecosystem. These facts determine who will win when trees compete with each other in a N-limited ecosystem. In this study, we formulate a mathematical model according to the relationships between LMA, LL, leaf nitrogen, and leaf building and maintenance cost, where LMA is the fundamental variable determining the other three. We analyze the evolutionarily stable strategies (ESSs) of LMA with this mathematical model by examining the benefits of carbon and nitrogen investments to leaves in ecosystems with different N. The model shows the ESS converges to low LMA at high N and high LMA at low N. At intermediate N, there are two ESSs at low and high ends of LMA, respectively. The ESS also leads to low forest productivity by outcompeting the possible high productive strategies. We design a simulation scheme in an individual-based competition model (LM3-PPA) to simulate forest dynamics as results of the competition between deciduous and evergreen trees in three different biomes, which are temperate deciduous forest, deciduous-evergreen mixed forest, and boreal evergreen forest. The simulated results are consistent with the actual forests. Our model and simulated results indicate the distribution of evergreen and deciduous forests can be explained by one single leaf trait (i.e., LMA) and associated physiological and biogeochemical processes.
Anu, Anto; Sabu, Thomas K.
2007-01-01
The diversity of litter ant assemblages in evergreen, deciduous and Shola evergreen (Shola) forest vegetation types of the Wayanad region of the Western Ghats was assessed employing conventional and taxonomic diversity indices. Non-dependence on quantitative data and the ability to relate the phylogenetic structure of assemblages with ecological conditions of the habitat, and to ascertain priorities for conservation of habitats, makes non-parametric taxonomic diversity measures, such as variation in taxonomic distinctness Λ+ and average taxonomic distinctness Δ+, highly useful tools for assessment of litter ant biodiversity. Although Δ+ values saturated leading to closer values for the 3 litter ant assemblages, Λ+ proved to be a more dependable index. Evenness in taxonomic spread was high in ant assemblages in deciduous forests and low in evergreen forests compared to the regional master list. Low Λ+ of ant assemblage in deciduous forests indicates that among the 3 forest vegetation types, deciduous forests provided the most favorable habitat conditions for litter ants. Low evenness, as is indicated by Λ+ in evergreen forests, was attributed to the presence of a group of taxonomically closely related ant assemblage more adapted to prevail in moist and wet ecological conditions. PMID:20334594
29 CFR 780.1016 - Use of evergreens and forest products.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the purpose for which evergreens may be harvested under section 13(d). Harvesting of these materials... evergreens are used for wreathmaking by persons other than the homeworkers (see Mitchell v. Hunt, 263 F. 2d...
29 CFR 780.1016 - Use of evergreens and forest products.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the purpose for which evergreens may be harvested under section 13(d). Harvesting of these materials... evergreens are used for wreathmaking by persons other than the homeworkers (see Mitchell v. Hunt, 263 F. 2d...
29 CFR 780.1016 - Use of evergreens and forest products.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the purpose for which evergreens may be harvested under section 13(d). Harvesting of these materials... evergreens are used for wreathmaking by persons other than the homeworkers (see Mitchell v. Hunt, 263 F. 2d...
29 CFR 780.1016 - Use of evergreens and forest products.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the purpose for which evergreens may be harvested under section 13(d). Harvesting of these materials... evergreens are used for wreathmaking by persons other than the homeworkers (see Mitchell v. Hunt, 263 F. 2d...
29 CFR 780.1016 - Use of evergreens and forest products.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the purpose for which evergreens may be harvested under section 13(d). Harvesting of these materials... evergreens are used for wreathmaking by persons other than the homeworkers (see Mitchell v. Hunt, 263 F. 2d...
Xiangming Xiao; Stephen Hagen; Qingyuan Zhang; Michael Keller; Berrien Moore III
2006-01-01
Leaf phenology of tropical evergreen forests affects carbon and water fluxes. In an earlier study of a seasonally moist evergreen tropical forest site in the Amazon basin, time series data of Enhanced Vegetation Index (EVI) from the VEGETATION and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors showed an unexpected seasonal pattern, with higher EVI in the...
Ding, Junjun; Zhang, Yuguang; Wang, Mengmeng; Sun, Xin; Cong, Jing; Deng, Ye; Lu, Hui; Yuan, Tong; Van Nostrand, Joy D; Li, Diqiang; Zhou, Jizhong; Yang, Yunfeng
2015-10-01
As two major forest types in the subtropics, broadleaved evergreen and broadleaved deciduous forests have long interested ecologists. However, little is known about their belowground ecosystems despite their ecological importance in driving biogeochemical cycling. Here, we used Illumina MiSeq sequencing targeting 16S rRNA gene and a microarray named GeoChip targeting functional genes to analyse microbial communities in broadleaved evergreen and deciduous forest soils of Shennongjia Mountain of Central China, a region known as 'The Oriental Botanic Garden' for its extraordinarily rich biodiversity. We observed higher plant diversity and relatively richer nutrients in the broadleaved evergreen forest than the deciduous forest. In odds to our expectation that plant communities shaped soil microbial communities, we found that soil organic matter quantity and quality, but not plant community parameters, were the best predictors of microbial communities. Actinobacteria, a copiotrophic phylum, was more abundant in the broadleaved evergreen forest, while Verrucomicrobia, an oligotrophic phylum, was more abundant in the broadleaved deciduous forest. The density of the correlation network of microbial OTUs was higher in the broadleaved deciduous forest but its modularity was smaller, reflecting lower resistance to environment changes. In addition, keystone OTUs of the broadleaved deciduous forest were mainly oligotrophic. Microbial functional genes associated with recalcitrant carbon degradation were also more abundant in the broadleaved deciduous forests, resulting in low accumulation of organic matters. Collectively, these findings revealed the important role of soil organic matter in shaping microbial taxonomic and functional traits. © 2015 John Wiley & Sons Ltd.
Tertiary climates and floristic relationships at high latitudes in the northern hemisphere
Wolfe, J.A.
1980-01-01
During the Paleocene and Eocene, climates were characterized by a low mean annual range of temperature (a maximum of 10-15??C), a moderate to high mean annual temperature (10-20??C), and abundant precipitation; strong broad-leaved evergreen vegetation extended to almost lat. 60??N during the Paleocene and to well above 61??N during the Eocene. Poleward of the broad-leaved evergreen forests were forests that were broad-leaved deciduous; these deciduous forests, however, were unlike extant broad-leaved deciduous forests in general floristic composition and physiognomy. Coniferous forests probably occupied the northernmost latitudes. At the end of the Eocene, a major climatic deterioration resulted in a high (> 30??C) mean annual range of temperature and a low mean annual temperature (< 10??C). Vegetation represented temperate broad-leaved deciduous and coniferous forests. The Oligocene and Neogene climatic trends represent a decrease in both mean annual range of temperature and mean annual temperature. Tundra vegetation did not appear until late in the Neogene. The present distribution of broad-leaved evergreens concomitant with the principles of plant physiology indicates that present winter light conditions at high latitudes could not support broad-leaved evergreen forest. A possible solution to the problem is to increase winter light by lessening the inclination of the earth's rotational axis. ?? 1980.
Zhou, G.; Guan, L.; Wei, X.; Zhang, Dongxiao; Zhang, Q.; Yan, J.; Wen, D.; Liu, J.; Liu, S.; Huang, Z.; Kong, G.; Mo, J.; Yu, Q.
2007-01-01
Evaluation of litterfall production is important for understanding nutrient cycling, forest growth, successional pathways, and interactions with environmental variables in forest ecosystems. Litterfall was intensively studied during the period of 1982-2001 in two subtropical monsoon vegetation gradients in the Dinghushan Biosphere Reserve, Guangdong Province, China. The two gradients include: (1) a successional gradient composed of pine forest (PF), mixed pine and broadleaved forest (MF) and monsoon evergreen broadleaved forest (BF), and (2) an altitudinal gradient composed of Baiyunci ravine rain forest (BRF), Qingyunci ravine rain forest (QRF), BF and mountainous evergreen broadleaved forest (MMF). Mean annual litterfall production was 356, 861 and 849 g m-2 for PF, MF and BF of the successional gradient, and 1016, 1061, 849 and 489 g m-2 for BRF, QRF, BF and MMF of the altitudinal gradient, respectively. As expected, mean annual litterfall of the pioneer forest PF was the lowest, but rapidly increased over the observation period while those in other forests were relatively stable, confirming that forest litterfall production is closely related to successional stages and growth patterns. Leaf proportions of total litterfall in PF, MF, BF, BRF, QRF and MMF were 76.4%, 68.4%, 56.8%, 55.7%, 57.6% and 69.2%, respectively, which were consistent with the results from studies in other evergreen broadleaved forests. Our analysis on litterfall monthly distributions indicated that litterfall production was much higher during the period of April to September compared to other months for all studied forest types. Although there were significant impacts of some climate variables (maximum and effective temperatures) on litterfall production in some of the studied forests, the mechanisms of how climate factors (temperature and rainfall) interactively affect litterfall await further study. ?? 2006 Springer Science+Business Media B.V.
Birds' nesting parameters in four forest types in the Pantanal wetland.
Pinho, J B; Marini, M A
2014-11-01
We tested the heterogeneity/productivity hypothesis with respect to the abundance and richness of birds and the vegetation density hypothesis with respect to birds' nest predation rates, and determined the relative importance of forested vegetation formations for the conservation of birds in the Pantanal. We estimated the apparent nesting success, and the abundance and richness of nesting birds' in four forest types, by monitoring nests during two reproductive seasons in four forested physiognomies (two high productivity/heterogeneity evergreen forests = Cambará and Landi; two low productivity/heterogeneity dry forests = Cordilheira and Carvoeiro) in the Pantanal wetland in Poconé, State of Mato Grosso, Brazil. We found 381 nests of 46 species (35 Passeriformes and 11 non-Passeriformes) in the four forest types. Of these, we monitored 220 active nests belonging to 44 species, 101 during the reproductive season of 2001 and 119 in 2002. We supported the productivity/heterogeneity hypothesis since the two evergreen forests had higher nest abundance and one of them (Cambará) had higher nesting species richness than the dry forests. The number of nests found in each habitat differed with most nests monitored in the Cambará forest (82%), followed by Landi (9%), Cordilheira (6%) and Carvoeiro (3%) forests. The total number of nests monitored was significantly higher in evergreen forests than in dry forests. Also, more species nested in evergreen (37 species) than in dry (16 species) forests. A Correspondence Analysis revealed that only Carvoeiros had a different nesting bird community. The overall apparent nesting success of 220 nests was 26.8%. We did not support the vegetation density hypothesis since nest predation rates were similar between evergreen (73.5%) and dry (70%) forests, and were higher in the Landi (85%) than in the other three forests (69.2 to 72.2%). Our data indicate that Cambará forests seem to be a key nesting habitat for many bird species of the Pantanal. If this local pattern also occurs in other regions of the Pantanal, the use and management of Cambará forests might prove to be important for the conservation of forest birds of this biome. However, conflicting results with other taxonomic groups show that conservation measures for these forests and land use policies should be based on a more complete biodiversity evaluation of the region.
NASA Astrophysics Data System (ADS)
Wong, C. Y.; Arain, M. A.; Ensminger, I.
2015-12-01
Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which characterizes their photosynthetic activity with high activity in the growing season and downregulation during the winter season. Monitoring the timing of the transitions in evergreens is difficult since it's a largely invisible process, unlike deciduous trees that have a visible budding and senescence sequence. Spectral reflectance and the photochemical reflectance index (PRI), often used as a proxy for photosynthetic light-use efficiency, provides a promising tool to track the transition of evergreens between inactive and active photosynthetic states. To better understand the relationship between PRI and photosynthetic activity and to contrast this relationship between plant functional types, the spring recovery of an evergreen forest and mixed deciduous forest was monitored using spectral reflectance, chlorophyll fluorescence and gas exchange. All metrics indicate photosynthetic recovery during the spring season. These findings indicate that PRI can be used to observe the spring recovery of photosynthesis in evergreen conifers but may not be best suited for deciduous trees. These findings have implications for remote sensing, which provides a promising long-term monitoring system of whole ecosystems, which is important since their roles in the carbon cycle may shift in response to climate change.
USDA-ARS?s Scientific Manuscript database
Understanding of differences in carbon and water vapor fluxes of spatially distributed evergreen needle leaf forests (ENFs) is crucial to accurately estimating regional carbon and water budgets and when predicting the responses of ENFs to future climate. We investigated cross-site variability in car...
NASA Astrophysics Data System (ADS)
Welp, L.; Calle, L.; Graven, H. D.; Poulter, B.
2017-12-01
The seasonal amplitude of Northern Hemisphere atmospheric CO2 concentrations has systematically increased over the last several decades, indicating that the timing and amplitude of net CO2 uptake and release by northern terrestrial ecosystems has changed substantially. Remote sensing, dynamic vegetation modeling, and in-situ studies have explored how changes in phenology, expansion of woody vegetation, and changes in species composition and disturbance regimes, among others, are driven by changes in climate and CO2. Despite these efforts, ecosystem models have not been able to reproduce observed atmospheric CO2 changes. Furthermore, the implications for the source/sink balance of northern ecosystems remains unclear. Changing proportions of evergreen and deciduous tree cover in response to climate change could be one of the key mechanisms that have given rise to amplified atmospheric CO2 seasonality. These two different plant functional types (PFTs) have different carbon uptake seasonal patterns and also different sensitivities to climate change, but are often lumped together as one forest type in global ecosystem models. We will demonstrate the potential that shifting distributions of evergreen and deciduous forests can have on the amplitude of atmospheric CO2. We will show phase differences in the net CO2 seasonal uptake using CO2 flux data from paired evergreen/deciduous eddy covariance towers. We will use simulations of evergreen and deciduous PFTs from the LPJ dynamic vegetation model to explore how climate change may influence the abundance and CO2 fluxes of each. Model results show that the area of deciduous forests is predicted to have increased, and the seasonal amplitude of CO2 fluxes has increased as well. The impact of surface flux seasonal variability on atmospheric CO2 amplitude is examined by transporting fluxes from each forest PFT through the TM3 transport model. The timing of the most intense CO2 uptake leads to an enhanced effect of deciduous forests on the atmospheric CO2 amplitude. These results demonstrate the potential significance of evergreen/deciduous forest PFTs on the amplitude of atmospheric CO2. In order to better understand the causes of the increasing amplitude trend, we encourage creating time-varying maps of evergreen/deciduous PFTs from remote sensing observations.
Zhou, G.; Liu, S.; Tang, X.; Ouyang, X.; Zhang, Dongxiao; Liu, J.; Yan, J.; Zhou, C.; Luo, Y.; Guan, L.; Liu, Yajing
2006-01-01
The balance, accumulation rate and temporal dynamics of belowground carbon in the successional series of monsoon evergreen broadleaved forest are obtained in this paper, based on long-term observations to the soil organic matter, input and standing biomass of litter and coarse woody debris, and dissolved organic carbon carried in the hydrological process of subtropical climax forest ecosystem—monsoon evergreen broad-leaved forest, and its two successional forests of natural restoration—coniferous and broad-leaved mixed forest and Pinus massoniana forest, as well as data of root biomass obtained once every five years and respiration measurement of soil, litter and coarse woody debris respiration for 1 year. The major results include: the belowground carbon pools of monsoon evergreen broad-leaved forest, coniferous and broad-leaved mixed forest, and Pinus massoniana forest are 23191 ± 2538 g · m−2, 16889 ± 1936 g · m−2 and 12680 ± 1854 g · m−2, respectively, in 2002. Mean annual carbon accumulation rates of the three forest types during the 24a from 1978 to 2002 are 383 ± 97 g · m−2 · a−1, 193 ± 85 g · m−2 · a−1 and 213 ± 86 g · m−2 · a−1, respectively. The belowground carbon pools in the three forest types keep increasing during the observation period, suggesting that belowground carbon pools are carbon sinks to the atmosphere. There are seasonal variations, namely, they are strong carbon sources from April to June, weak carbon sources from July to September; while they are strong carbon sinks from October to November, weak carbon sinks from December to March.
Colin M. Beier; Jonathan L. Horton; John F. Walker; Barton D. Clinton; Erik T. Nilsen
2005-01-01
Inhibition of canopy tree recruitment beneath thickets of the evergreen shrubs Rhododendron maximum L. and Kalmia latifolia L. has long been observed in South Appalachian forests, yet the mechanisms of this process remain unresolved. We present a first-year account of suppression of oak seedlings in relation to ...
Liujing Huang; Hongfeng Chen; Hai Ren; Jun Wang; Qinfeng Guo
2013-01-01
We investigated the effects of major environmental drivers associated with urbanization on species diversity and plant functional traits (PFTs) in the remnant subtropical evergreen broad-leaved forests in Metropolitan Guangzhou (Guangdong, China). Twenty environmental factors including topography, light, and soil properties were used to quantify the effects of...
NASA Astrophysics Data System (ADS)
Yan, Hao; Wang, Shao-Qiang; da Rocha, Humberto R.; Rap, Alexandru; Bonal, Damien; Butt, Nathalie; Coupe, Natalia Restrepo; Shugart, Herman H.
2017-11-01
Understanding the mechanism of photosynthetic seasonality in Amazonian evergreen forests is critical for its formulation in global climate and carbon cycle models. However, the control of the unexpected photosynthetic seasonality is highly uncertain. Here we use eddy-covariance data across a network of Amazonian research sites and a novel evapotranspiration (E) and two-leaf-photosynthesis-coupled model to investigate links between photosynthetic seasonality and climate factors on monthly scales. It reproduces the GPP seasonality (R2 = 0.45-0.69) with a root-mean-square error (RMSE) of 0.67-1.25 g C m-2 d-1 and a Bias of -0.03-1.04 g C m-2 d-1 for four evergreen forest sites. We find that the proportion of diffuse and direct sunlight governs the photosynthetic seasonality via their interaction with sunlit and shaded leaves, supported by a proof that canopy light use efficiency (LUE) has a strong linear relationship with the fraction of diffuse sunlight for Amazonian evergreen forests. In the transition from dry season to rainy season, incident total radiation (Q) decreased while LUE and diffuse fraction increased, which produced the large seasonal increase ( 34%) in GPP of evergreen forests. We conclude that diffuse radiation is an important environmental driver of the photosynthetic seasonality in tropical Amazon forests yet depending on light utilization by sunlit and shaded leaves. Besides, the GPP model simulates the precipitation-dominated GPP seasonality (R2 = 0.40-0.69) at pasture and savanna sites. These findings present an improved physiological method to relate light components with GPP in tropical Amazon.
Estimation of canopy water interception of a near-tropical montane cloud forest in Taiwan
NASA Astrophysics Data System (ADS)
Apurva, B.; Huang, C. Y.; Zhang, J.
2017-12-01
Tropical and subtropical montane cloud forests are some of the rarest and least studied ecosystems. Due to the frequent immersion of fog water with high humidity, these zones are major water sources for lowland environments and habitats for many fauna and flora. Their dependence on cloud water leaves them highly susceptible to the effects of climate change. Studies have been conducted to quantify the characteristics of the low altitude clouds such as spatial dynamics, cloud top and base heights, occurrence frequency or immersion duration. In this study, we carried out a field measurement to estimate canopy water interception (CWI), which is directly utilized by the ecosystems. The study site was a 61 ha near-tropical hinoki cypress montane cloud forest plantation in northern Taiwan at 1705 m asl. Leaves of CHOB were clipped, air-dried and attached to trees at three different canopy depths from the top to the base of canopies along a high tower. The samples were weighed before and after the occurrence of a fog event. In addition, a cylinder shaped fog gauge was installed at the ground level next to the tower to assess amount of fog water penetrating the canopy layer. After afternoon fog events with the duration of 60 minutes, we found that there was an apparent trend of decline of CWI from top (mean ± standard deviation = 0.023 g ± 0.0015 g), middle (0.021 g ± 0.0015 g) to the bottom (0.013 g ± 0.0015 g) of the canopies. Since the study site is a coniferous evergreen forest plantation with a relatively homogenous surface through seasons, with the background knowledge of the average leaf area index of 4.4, we estimated that this 61 ha site harvested 28.2 Mg of CWI for a daily fog event. We also found that no clear evidence of CWI was observed below the canopies by referring to bi-weekly records from the cylinder shaded fog gauge. Therefore, we can assume that the majority fog water was intercepted by the hinoki cypress canopy layer. This study demonstrates that a substantial amount of fog water can be harvested by the montane cloud forest, and this horizontal precipitation is not negligible and should be taken into account for ecological research.
NASA Astrophysics Data System (ADS)
Wong, C. Y.; Arain, M. A.; Ensminger, I.
2016-12-01
Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which determines their phenology of high photosynthetic activity in the growing season and downregulation during the winter. Monitoring the timing of the transition between summer activity and winter downregulation in evergreens is difficult since this is a largely invisible process, unlike in deciduous trees that have a visible budding and a sequence of leaf unfolding in the spring and leaf abscission in the fall. The light-use efficiency (LUE) model estimates gross primary productivity (GPP) and may be parameterized using remotely sensed vegetation indices. Using spectral reflectance data, we derived the normalized difference vegetation index (NDVI), a measure of leaf "greenness", and the photochemical reflectance index (PRI), a proxy for chlorophyll:carotenoid ratios which is related to photosynthetic activity. To better understand the relationship between these vegetation indices and photosynthetic activity and to contrast this relationship between plant functional types, the phenology of NDVI, PRI and photosynthesis was monitored in an evergreen forest and a mixed deciduous forest at the leaf and canopy scale. Our data indicates that the LUE model can be parameterized by NDVI and PRI to track forest phenology. Differences in the sensitivity of PRI and NDVI will be discussed. These findings have implications to address the phenology of evergreen conifers by using PRI to complement NDVI in the LUE model, potentially improving model productivity estimates in northern hemisphere forests, that are dominated by conifers.
James M. Lenihan; Dominique Bachelet; Ronald P. Neilson; Raymond Drapeck
2008-01-01
The response of vegetation distribution, carbon, and fire to three scenarios of future climate change was simulated for California using the MC1 Dynamic General Vegetation Model. Under all three scenarios, Alpine/Subalpine Forest cover declined, and increases in the productivity of evergreen hardwoods led to the displacement of Evergreen Conifer Forest by Mixed...
Jonatha L. Horton; Barton D. Clinton; John F. Walker; Colin M. Beir; Erik T. Nilsen
2009-01-01
Ericaceous shrubs can influence soil properties in many ecosystems. In this study, we examined how soil and forest floor properties vary among sites with different ericaceous evergreen shrub basal area in the southern Appalachian mountains. We randomly located plots along transects that included open understories and understories with varying amounts of Rhododendron...
Xiaojun Du; Qinfeng Guo; Xianming Gao; Keping Na
2007-01-01
Understanding the seed rain and seed loss dynamics in the natural condition has important significance for revealing the natural regeneration mechanisms.We conducted a 3-year field observation on seed rain, seed loss and natural regeneration of Castanopsis fargesii Franch., a dominant tree species in evergreen broad-leaved forests in Dujiangyan,...
Hasselquist, Niles J; Allen, Michael F; Santiago, Louis S
2010-12-01
Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (Ψ(L)) relative to late-seral trees (-1.01 ± 0.14 and -0.54 ± 0.07 MPa, respectively). Although Ψ(L) did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ(18)O values relative to drought-deciduous trees (-2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar (18)O (∆(18)O(l)) and (13)C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season.
F. Thomas Ledig; Paul D. Hodgskiss; David R. Johnson
2006-01-01
Santa Lucia fir (Abies bracteata), is a unique fir, the sole member of the subgenus Pseudotorreya. It is a relict of the Miocene broadleaved evergreen sclerophyll forest, and is now restricted to a highly fragmented range in the Santa Lucia Mountains of central coastal California. Expected heterozygosity for 30 isozyme loci in 18 enzyme systems...
Fuel treatments alter the effects of wildfire in a mixed-evergreen forest, Oregon, USA.
Crystal L. Raymond; David L. Peterson
2005-01-01
We had the rare opportunity to quantify the relationship between fuels and fire severity using prefire surface and canopy fuel data and fire severity data after a wildfire. The study area is a mixed-evergreen forest of southwestern Oregon with a mixed-severity fire regime. Modeled fire behavior showed that thinning reduced canopy fuels, thereby decreasing the potential...
Lidar observed seasonal variation of vertical canopy structure in the Amazon evergreen forests
NASA Astrophysics Data System (ADS)
Tang, H.; Dubayah, R.
2017-12-01
Both light and water are important environmental factors governing tree growth. Responses of tropical forests to their changes are complicated and can vary substantially across different spatial and temporal scales. Of particular interest is the dry-season greening-up of Amazon forests, a phenomenon undergoing considerable debates whether it is real or a "light illusion" caused by artifacts of passive optical remote sensing techniques. Here we analyze seasonal dynamic patterns of vertical canopy structure in the Amazon forests using lidar observations from NASA's Ice, Cloud, and and land Elevation Satellite (ICESat). We found that the net greening of canopy layer coincides with the wet-to-dry transition period, and its net browning occurs mostly at the late dry season. The understory also shows a seasonal cycle, but with an opposite variation to canopy and minimal correlation to seasonal variations in rainfall or radiation. Our results further suggest a potential interaction between canopy layers in the light regime that can optimize the growth of Amazon forests during the dry season. This light regime variability that exists in both spatial and temporal domains can better reveal the dry-season greening-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.
Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang
2015-04-01
Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations.
Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang
2015-01-01
Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations. PMID:25897387
NASA Astrophysics Data System (ADS)
Wu, J.; Serbin, S.; Xu, X.; Guan, K.; Albert, L.; Hayek, M.; Restrepo-Coupe, N.; Lopes, A. P.; Wiedemann, K. T.; Christoffersen, B. O.; Meng, R.; De Araujo, A. C.; Oliveira Junior, R. C.; Camargo, P. B. D.; Silva, R. D.; Nelson, B. W.; Huete, A. R.; Rogers, A.; Saleska, S. R.
2016-12-01
Tropical evergreen forest photosynthetic metabolism is an important driver of large-scale carbon, water, and energy cycles, generating various climate feedbacks. However, considerable uncertainties remain regarding how best to represent evergreen forest photosynthesis in current terrestrial biosphere models (TBMs), especially its sensitivity to climatic vs. biotic variation. Here, we develop a new approach to partition climatic and biotic controls on tropical forest photosynthesis from hourly to inter-annual timescales. Our results show that climatic factors dominate photosynthesis dynamics at shorter-time scale (i.e. hourly), while biotic factors dominate longer-timescale (i.e. monthly and longer) photosynthetic dynamics. Focusing on seasonal timescales, we combine camera and ecosystem carbon flux observations of forests across a rainfall gradient in Amazonia to show that high dry season leaf turnover shifts canopy composition towards younger more efficient leaves. This seasonal variation in leaf quality (per-area leaf photosynthetic capacity) thus can explain the high photosynthetic seasonality observed in the tropics. Finally, we evaluated the performance of models with different phenological schemes (i.e. leaf quantity versus leaf quality; with and without leaf phenological variation alone the vertical canopy profile). We found that models which represented the phenology of leaf quality and its within-canopy variation performed best in simulating photosynthetic seasonality in tropical evergreen forests. This work highlights the importance of incorporating improved understanding of climatic and biotic controls in next generation TBMs to project future carbon and water cycles in the tropics.
Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests.
Poorter, Lourens
2009-03-01
Shade tolerance is the central paradigm for understanding forest succession and dynamics, but there is considerable debate as to what the salient features of shade tolerance are, whether adult leaves show similar shade adaptations to seedling leaves, and whether the same leaf adaptations are found in forests under different climatic control. Here, adult leaf and metamer traits were measured for 39 tree species from a tropical moist semi-evergreen forest (1580 mm rain yr(-1)) and 41 species from a dry deciduous forest (1160 mm yr(-1)) in Bolivia. Twenty-six functional traits were measured and related to species regeneration light requirements.Adult leaf traits were clearly associated with shade tolerance. Different, rather than stronger, shade adaptations were found for moist compared with dry forest species. Shade adaptations exclusively found in the evergreen moist forest were related to tough and persistent leaves, and shade adaptations in the dry deciduous forest were related to high light interception and water use.These results suggest that, for forests differing in rainfall seasonality, there is a shift in the relative importance of functional leaf traits and performance trade-offs that control light partitioning. In the moist evergreen forest leaf traits underlying the growth-survival trade-off are important, whereas in the seasonally deciduous forest leaf traits underlying the growth trade-off between low and high light might become important.
NASA Astrophysics Data System (ADS)
Younger, S. E.
2015-12-01
This study assessed the relationship between evapotranspiration (ET) and different types of forest for 74 gaged drainage basins in the Southeast United States with at least 29 years of data and greater than 40% forest cover. The objective was to determine if a difference in tree water use was detectible at the USGS gaged basin scale. It was hypothesized that ET rates are higher in Evergreen dominated watershed due to greater annual productivity. Discharge from United States Geological Survey (USGS) gages (D), landcover from the National Landcover Dataset (NLCD), and precipitation (P) from Daymet, Mauer, Observed Gridded, and PRISM. Annual ET was estimated using ET = P - D. To reduce geological influences the study basins were selected from an area of crystalline bedrock within the Piedmont and Southern Blue Ridge physiographic provinces. Correlations between ET and forest type show a significant difference between evergreen and deciduous forest cover. Evergreen forest dominated watersheds had a positive relationship with ET. Deciduous and Mixed forest dominated watersheds had a negative relationship with ET. These findings are similar to other studies looking at the effect of forest type on ET although other land uses in the basins have potentially indiscernible influences on discharge.
Yan, Shaokui; Wang, Silong; Hu, Yalin; Gao, Hong; Zhang, Xiuyong
2004-10-01
In this study, we investigated the response of soil animal communities to the replacement of native secondary forest by Chinese fir plantation forest and successive rotation of Chinese fir in subtropics. Three adjacent forest stands, i.e., native secondary evergreen broad-leaved forest stand (control) and Chinese fir plantation stands of first (20 yr) and second (20 yr) rotations were selected for the comparison of soil fauna. All animals were extracted from the floor litter and 0-15 cm soil layer of the stands in Summer, 2003 by using Tullgren method, wet funnel method and hand-sorting method. Compared to two Chinese fir plantation forests, the native secondary evergreen broad-leaved forest had a higher abundance and a higher taxonomic diversity of animals in soil and litter, but there were no significant differences in the biomass and productivity of soil fauna between all study stands. The abundance or diversity did not differ significantly between the first rotation and second rotation stands, too. The results supported that vegetation cover might be one of the main forces driving the development of soil animal communities, and the effect of successive rotation of Chinese fir on the development of soil fauna was a slow-running process.
Evergreen coniferous forests of the pacific northwest.
Waring, R H; Franklin, J F
1979-06-29
The massive, evergreen coniferous forests in the Pacific Northwest are unique among temperate forest regions of the world. The region's forests escaped decimation during Pleistocene glaciation; they are now dominated by a few broadly distributed and well-adapted conifers that grow to large size and great age. Large trees with evergreen needle- or scale-like leaves have distinct advantages under the current climatic regime. Photosynthesis and nutrient uptake and storage are possible during the relatively warm, wet fall and winter months. High evaporative demand during the warm, dry summer reduces photosynthesis. Deciduous hardwoods are repeatedly at a disadvantage in competing with conifers in the regional climate. Their photosynthesis is predominantly limited to the growing season when evaporative demand is high and water is often limiting. Most nutrients needed are also less available at this time. The large size attained by conifers provides a buffer against environmental stress (especially for nutrients and moisture). The long duration between destructive fires and storms permits conifers to outgrow hardwoods with more limited stature and life spans.
Orihuela, Rodrigo L L; Peres, Carlos A; Mendes, Gabriel; Jarenkow, João A; Tabarelli, Marcelo
2015-01-01
We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.
Orihuela, Rodrigo L. L.; Peres, Carlos A.; Mendes, Gabriel; Jarenkow, João A.; Tabarelli, Marcelo
2015-01-01
We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide. PMID:26309252
Automated Burned Area Delineation Using IRS AWiFS satellite data
NASA Astrophysics Data System (ADS)
Singhal, J.; Kiranchand, T. R.; Rajashekar, G.; Jha, C. S.
2014-12-01
India is endowed with a rich forest cover. Over 21% of country's area is covered by forest of varied composition and structure. Out of 67.5 million ha of Indian forests, about 55% of the forest cover is being subjected to fires each year, causing an economic loss of over 440 crores of rupees apart from other ecological effects. Studies carried out by Forest Survey of India reveals that on an average 53% forest cover of the country is prone to fires and 6.17% of the forests are prone to severe fire damage. Forest Survey of India in a countrywide study in 1995 estimated that about 1.45 million hectares of forest are affected by fire annually. According to Forest Protection Division of the Ministry of Environment and Forest (GOI), 3.73 million ha of forests are affected by fire annually in India. Karnataka is one of the southern states of India extending in between latitude 110 30' and 180 25' and longitudes 740 10' and 780 35'. As per Forest Survey of India's State of Forest Report (SFR) 2009, of the total geographic area of 191791sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Typical forest fire season in the study area is from February-May with a peak during March-April every year, though sporadic fire episodes occur in other parts of the year sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Significant area of the deciduous forests, scrub and grasslands is prone to recurrent forest fires every year. In this study we evaluate the feasibility of burned area mapping over a large area (Karnataka state, India) using a semi-automated detection algorithm applied to medium resolution multi spectral data from the IRS AWiFS sensor. The method is intended to be used by non-specialist users for diagnostic rapid burnt area mapping.
Resource partitioning by evergreen and deciduous species in a tropical dry forest.
Álvarez-Yépiz, Juan C; Búrquez, Alberto; Martínez-Yrízar, Angelina; Teece, Mark; Yépez, Enrico A; Dovciak, Martin
2017-02-01
Niche differentiation can lead to coexistence of plant species by partitioning limiting resources. Light partitioning promotes niche differentiation in tropical humid forests, but it is unclear how niche partitioning occurs in tropical dry forests where both light and soil resources can be limiting. We studied the adult niche of four dominant evergreen (cycad, palm) and drought-deciduous (legume, oak) species co-occurring along environmental gradients. We analyzed light intensity and soil fertility effects on key functional traits related to plant carbon and water economy, how these traits determine species' functional strategies, and how these strategies relate to relative species abundance and spatial patterns. Light intensity was negatively associated with a key trait linked to plant water economy (leaf δ 13 C, a proxy for long-term water-use efficiency-WUE), while soil fertility was negatively associated with a key trait for plant carbon economy (LNC, leaf nitrogen content). Evergreens were highly sclerophyllous and displayed an efficient water economy but poor carbon economy, in agreement with a conservative resource-use strategy (i.e., high WUE but low LNC, photosynthetic rates and stature). Conversely, deciduous species, with an efficient carbon economy but poor water economy, exhibited an exploitative resource-use strategy (i.e., high LNC, photosynthetic rates and stature, but low WUE). Evergreen and deciduous species segregated spatially, particularly at fine-scales, as expected for species with different resource-use strategies. The efficient water economy of evergreens was related to their higher relative abundance, suggesting a functional advantage against drought-deciduous species in water-limited environments within seasonally dry tropical forests.
The affection of boreal forest changes on imbalance of Nature (Invited)
NASA Astrophysics Data System (ADS)
Tana, G.; Tateishi, R.
2013-12-01
Abstract: The balance of nature does not exist, and, perhaps, never has existed [1]. In other words, the Mother Nature is imbalanced at all. The Mother Nature is changing every moment and never returns to previous condition. Because of the imbalance of nature, global climate has been changing gradually. To reveal the imbalance of nature, there is a need to monitor the dynamic changes of the Earth surface. Forest cover and forest cover change have been grown in importance as basic variables for modelling of global biogeochemical cycles as well as climate [2]. The boreal area contains 1/3 of the earth's trees. These trees play a large part in limiting harmful greenhouse gases by aborbing much of the earth's carbon dioxide (CO2) [3]. The boreal area mainly consists of needleleaf evergreen forest and needleleaf deciduous forest. Both of the needleleaf evergreen forest and needleleaf deciduous forest play the important roles on the uptake of CO2. However, because of the dormant period of needleleaf evergreen forest are shorter than that of needleleaf deciduous forest, needleleaf evergreen forest makes a greater contribution to the absorbtion of CO2. Satellite sensor because of its ability to observe the Earth continuously, can provide the opportunity to monitor the dynamic changes of the Earth. In this study, we used the MODerate resolution Imaging Spectroradiometer (MODIS) satellite data to monitor the dynamic change of boreal forest area which are mainly consist from needleleaf evergreen forest and needleleaf deciduous forest during 2003-2012. Three years MODIS data from the year 2003, 2008 and 2012 were used to detect the forest changed area. A hybrid change detection method which combines the threshold method and unsupervised classification method was used to detect the changes of forest area. In the first step, the difference of Normalized Difference Vegetation Index (NDVI) of the three years were calculated and were used to extract the changed areas by the threshold method. In the second step, the unsupervised classification method was used to classify and analyze detected change areas derived from the first step. Finally, the changed area were validated using the traning data collected for the three years. The validation result revealed that the forest in the study area has undergone the area and type changes during 2003-2012. The detailed procedure will be presented in the meeting. References: [1] Elton, C.S. (1930). Animal Ecology and Evolution. New York, Oxford University Press. [2] Potapov, P., Hansen, M. C., Stehman, S. V., Loveland, T. R., Pittman, K. (2008). Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss, Remote Sensing of Environment, 112, 3708-3719. [3] Houghton, R. A. (2003). Why are estimates of the terrestrial carbon balance so different? Global Change Biology, 9, 500-509.
NASA Astrophysics Data System (ADS)
Younger, S. E.; Jackson, C. R.
2017-12-01
In the Southeastern United States, evapotranspiration (ET) typically accounts for 60-70% of precipitation. Watershed and plot scale experiments show that evergreen forests have higher ET rates than hardwood forests and pastures. However, some plot experiments indicate that certain hardwood species have higher ET than paired evergreens. The complexity of factors influencing ET in mixed land cover watersheds makes identifying the relative influences difficult. Previous watershed scale studies have relied on regression to understand the influences or low flow analysis to indicate growing season differences among watersheds. Existing studies in the southeast investigating ET rates for watersheds with multiple forest cover types have failed to identify a significant forest type effect, but these studies acknowledge small sample sizes. Trends of decreasing streamflow have been recognized in the region and are generally attributed to five key factors, 1.) influences from multiple droughts, 2.) changes in distribution of precipitation, 3.) reforestation of agricultural land, 4.) increasing consumptive uses, or 5.) a combination of these and other factors. This study attempts to address the influence of forest type on long term average annual streamflow and on stream low flows. Long term annual ET rates were calculated as ET = P-Q for 46 USGS gaged basins with daily data for the 1982 - 2014 water years, >40% forest cover, and no large reservoirs. Land cover data was regressed against ET to describe the relationship between each of the forest types in the National Land Cover Database. Regression analysis indicates evergreen land cover has a positive relationship with ET while deciduous and total forest have a negative relationship with ET. Low flow analysis indicates low flows tend to be lower in watersheds with more evergreen cover, and that low flows increase with increasing deciduous cover, although these relationships are noisy. This work suggests considering forest cover type improves understanding of watershed scale ET at annual and seasonal levels which is consistent with historic paired watershed experiments and some plot scale data.
NASA Astrophysics Data System (ADS)
Hundera, Kitessa; Aerts, Raf; Fontaine, Alexandre; Van Mechelen, Maarten; Gijbels, Pieter; Honnay, Olivier; Muys, Bart
2013-03-01
The effect of arabica coffee management intensity on composition, structure, and regeneration of moist evergreen Afromontane forests was studied in three traditional coffee-management systems of southwest Ethiopia: semiplantation coffee, semiforest coffee, and forest coffee. Vegetation and environmental data were collected in 84 plots from forests varying in intensity of coffee management. After controlling for environmental variation (altitude, aspect, slope, soil nutrient availability, and soil depth), differences in woody species composition, forest structure, and regeneration potential among management systems were compared using one way analysis of variance. The study showed that intensification of forest coffee cultivation to maximize coffee production negatively affects diversity and structure of Ethiopian moist evergreen Afromontane forests. Intensification of coffee productivity starts with the conversion of forest coffee to semiforest coffee, which has significant negative effects on tree seedling abundance. Further intensification leads to the conversion of semiforest to semiplantation coffee, causing significant diversity losses and the collapse of forest structure (decrease of stem density, basal area, crown closure, crown cover, and dominant tree height). Our study underlines the need for shade certification schemes to include variables other than canopy cover and that the loss of species diversity in intensively managed coffee systems may jeopardize the sustainability of coffee production itself through the decrease of ecosystem resilience and disruption of ecosystem services related to coffee yield, such as pollination and pest control.
He, Jinhong; Tedersoo, Leho; Hu, Ang; Han, Conghai; He, Dan; Wei, Hui; Jiao, Min; Anslan, Sten; Nie, Yanxia; Jia, Yongxia; Zhang, Gengxin; Yu, Guirui; Liu, Shirong; Shen, Weijun
2017-07-01
Whether and how seasonality of environmental variables impacts the spatial variability of soil fungal communities remain poorly understood. We assessed soil fungal diversity and community composition of five Chinese zonal forests along a latitudinal gradient spanning 23°N to 42°N in three seasons to address these questions. We found that soil fungal diversity increased linearly or parabolically with latitude. The seasonal variations in fungal diversity were more distinguishable in three temperate deciduous forests than in two subtropical evergreen forests. Soil fungal diversity was mainly correlated with edaphic factors such as pH and nutrient contents. Both latitude and its interactions with season also imposed significant impacts on soil fungal community composition (FCC), but the effects of latitude were stronger than those of season. Vegetational properties such as plant diversity and forest age were the dominant factors affecting FCC in the subtropical evergreen forests while edaphic properties were the dominant ones in the temperate deciduous forests. Our results indicate that latitudinal variation patterns of soil fungal diversity and FCC may differ among seasons. The stronger effect of latitude relative to that of season suggests a more important influence by the spatial than temporal heterogeneity in shaping soil fungal communities across zonal forests. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
E.T. Nilsen; T.T. Lei; S.W. Semones
2009-01-01
We investigated whether dynamic photosynthesis of understory Quercus rubra L. (Fagaceae) seedlings can acclimate to the altered pattern of sunflecks in forest patches with Rhododendron maximum L. (Ericaceae), an understory evergreen shrub. Maximum photosynthesis (A) and total CO2 accumulated during lightflecks was greatest for 400-s lightflecks, intermediate for 150-s...
Zhou, Guoyi; Peng, Changhui; Li, Yuelin; Liu, Shizhong; Zhang, Qianmei; Tang, Xuli; Liu, Juxiu; Yan, Junhua; Zhang, Deqiang; Chu, Guowei
2013-04-01
Recent studies have suggested that tropical forests may not be resilient against climate change in the long term, primarily owing to predicted reductions in rainfall and forest productivity, increased tree mortality, and declining forest biomass carbon sinks. These changes will be caused by drought-induced water stress and ecosystem disturbances. Several recent studies have reported that climate change has increased tree mortality in temperate and boreal forests, or both mortality and recruitment rates in tropical forests. However, no study has yet examined these changes in the subtropical forests that account for the majority of China's forested land. In this study, we describe how the monsoon evergreen broad-leaved forest has responded to global warming and drought stress using 32 years of data from forest observation plots. Due to an imbalance in mortality and recruitment, and changes in diameter growth rates between larger and smaller trees and among different functional groups, the average DBH of trees and forest biomass have decreased. Sap flow measurements also showed that larger trees were more stressed than smaller trees by the warming and drying environment. As a result, the monsoon evergreen broad-leaved forest community is undergoing a transition from a forest dominated by a cohort of fewer and larger individuals to a forest dominated by a cohort of more and smaller individuals, with a different species composition, suggesting that subtropical forests are threatened by their lack of resilience against long-term climate change. © 2012 Blackwell Publishing Ltd.
Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy
NASA Astrophysics Data System (ADS)
Tinner, Willy; van Leeuwen, Jacqueline F. N.; Colombaroli, Daniele; Vescovi, Elisa; van der Knaap, W. O.; Henne, Paul D.; Pasta, Salvatore; D'Angelo, Stefania; La Mantia, Tommaso
2009-07-01
We used a new sedimentary record to reconstruct the Holocene vegetation and fire history of Gorgo Basso, a coastal lake in south-western Sicily (Italy). Pollen and charcoal data suggest a fire-prone open grassland near the site until ca 10,000 cal yr BP (8050 cal BC), when Pistacia shrubland expanded and fire activity declined, probably in response to increased moisture availability. Evergreen Olea europaea woods expanded ca 8400 to decline abruptly at 8200 cal yr BP, when climatic conditions became drier at other sites in the Mediterranean region. Around 7000 cal yr BP evergreen broadleaved forests ( Quercus ilex, Quercus suber and O. europaea) expanded at the cost of open communities. The expansion of evergreen broadleaved forests was associated with a decline of fire and of local Neolithic ( Ficus carica-Cerealia based) agriculture that had initiated ca 500 years earlier. Vegetational, fire and land-use changes ca 7000 cal yr BP were probably caused by increased precipitation that resulted from (insolation-forced) weakening of the monsoon and Hadley circulation ca 8000-6000 cal yr BP. Low fire activity and dense coastal evergreen forests persisted until renewed human activity (probably Greek, respectively Roman colonists) disrupted the forest ca 2700 cal yr BP (750 BC) and 2100 cal yr BP (150 BC) to gain open land for agriculture. The intense use of fire for this purpose induced the expansion of open maquis, garrigue, and grassland-prairie environments (with an increasing abundance of the native palm Chamaerops humilis). Prehistoric land-use phases after the Bronze Age seem synchronous with those at other sites in southern and central Europe, possibly as a result of climatic forcing. Considering the response of vegetation to Holocene climatic variability as well as human impact we conclude that under (semi-)natural conditions evergreen broadleaved Q. ilex- O. europaea (s.l.) forests would still dominate near Gorgo Basso. However, forecasted climate change and aridification may lead to a situation similar to that before 7000 cal yr BP and thus trigger a rapid collapse of the few relict evergreen broadleaved woodlands in coastal Sicily and elsewhere in the southern Mediterranean region.
Allen, Michael F.; Santiago, Louis S.
2010-01-01
Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (ΨL) relative to late-seral trees (−1.01 ± 0.14 and −0.54 ± 0.07 MPa, respectively). Although ΨL did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ18O values relative to drought-deciduous trees (−2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar 18O (∆18Ol) and 13C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season. PMID:20658152
Leaf ontogeny and demography explain photosynthetic seasonality in Amazon evergreen forests
NASA Astrophysics Data System (ADS)
Wu, J.; Albert, L.; Lopes, A. P.; Restrepo-Coupe, N.; Hayek, M.; Wiedemann, K. T.; Guan, K.; Stark, S. C.; Prohaska, N.; Tavares, J. V.; Marostica, S. F.; Kobayashi, H.; Ferreira, M. L.; Campos, K.; Silva, R. D.; Brando, P. M.; Dye, D. G.; Huxman, T. E.; Huete, A. R.; Nelson, B. W.; Saleska, S. R.
2015-12-01
Photosynthetic seasonality couples the evolutionary ecology of plant leaves to large-scale rhythms of carbon and water exchanges that are important feedbacks to climate. However, the extent, magnitude, and controls on photosynthetic seasonality of carbon-rich tropical forests are poorly resolved, controversial in the remote sensing literature, and inadequately represented in most earth system models. Here we show that ecosystem-scale phenology (measured by photosynthetic capacity), rather than environmental seasonality, is the primary driver of photosynthetic seasonality at four Amazon evergreen forests spanning gradients in rainfall seasonality, forest composition, and flux seasonality. We further demonstrate that leaf ontogeny and demography explain most of this ecosystem phenology at two central Amazon evergreen forests, using a simple leaf-cohort canopy model that integrates eddy covariance-derived CO2 fluxes, novel near-surface camera-detected leaf phenology, and ground observations of litterfall and leaf physiology. The coordination of new leaf growth and old leaf divestment (litterfall) during the dry season shifts canopy composition towards younger leaves with higher photosynthetic efficiency, driving large seasonal increases (~27%) in ecosystem photosynthetic capacity. Leaf ontogeny and demography thus reconciles disparate observations of forest seasonality from leaves to eddy flux towers to satellites. Strategic incorporation of such whole-plant coordination processes as phenology and ontogeny will improve ecological, evolutionary and earth system theories describing tropical forests structure and function, allowing more accurate representation of forest dynamics and feedbacks to climate in earth system models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jin; Serbin, Shawn P.; Xu, Xiangtao
Leaf quantity (i.e., canopy leaf area index, LAI), quality (i.e., per-area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here in this paper, we explored alternative options for the representation of leaf phenology effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of CO 2 assimilation. We developed a two-fraction leaf (sun and shade), two-layer canopy (upper and lower) photosynthesis model to evaluate different modeling approaches and assessed three components of phenological variations (i.e., leafmore » quantity, quality, and within-canopy variation in leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality derived from ground-based measurements within an Amazonian evergreen forest. Modeled photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf quality and its vertical distribution within the canopy, with markedly more sensitivity to upper canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the entire year, implying that seasonal changes in LAI have little impact on total canopy light absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our two-fraction leaf, two-layer canopy model, which accounted for all three phenological components, was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal variation in eddy covariance-derived CO 2 assimilation. This work identifies a parsimonious approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that utilize the FvCB model of CO 2 assimilation and highlights the importance of incorporating more realistic phenological mechanisms in models that seek to improve the projection of future carbon dynamics in tropical evergreen forests.« less
Wu, Jin; Serbin, Shawn P.; Xu, Xiangtao; ...
2017-04-18
Leaf quantity (i.e., canopy leaf area index, LAI), quality (i.e., per-area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here in this paper, we explored alternative options for the representation of leaf phenology effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of CO 2 assimilation. We developed a two-fraction leaf (sun and shade), two-layer canopy (upper and lower) photosynthesis model to evaluate different modeling approaches and assessed three components of phenological variations (i.e., leafmore » quantity, quality, and within-canopy variation in leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality derived from ground-based measurements within an Amazonian evergreen forest. Modeled photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf quality and its vertical distribution within the canopy, with markedly more sensitivity to upper canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the entire year, implying that seasonal changes in LAI have little impact on total canopy light absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our two-fraction leaf, two-layer canopy model, which accounted for all three phenological components, was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal variation in eddy covariance-derived CO 2 assimilation. This work identifies a parsimonious approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that utilize the FvCB model of CO 2 assimilation and highlights the importance of incorporating more realistic phenological mechanisms in models that seek to improve the projection of future carbon dynamics in tropical evergreen forests.« less
Wildfire and forest disease interaction lead to greater loss of soil nutrients and carbon.
Cobb, Richard C; Meentemeyer, Ross K; Rizzo, David M
2016-09-01
Fire and forest disease have significant ecological impacts, but the interactions of these two disturbances are rarely studied. We measured soil C, N, Ca, P, and pH in forests of the Big Sur region of California impacted by the exotic pathogen Phytophthora ramorum, cause of sudden oak death, and the 2008 Basin wildfire complex. In Big Sur, overstory tree mortality following P. ramorum invasion has been extensive in redwood and mixed evergreen forests, where the pathogen kills true oaks and tanoak (Notholithocarpus densiflorus). Sampling was conducted across a full-factorial combination of disease/no disease and burned/unburned conditions in both forest types. Forest floor organic matter and associated nutrients were greater in unburned redwood compared to unburned mixed evergreen forests. Post-fire element pools were similar between forest types, but lower in burned-invaded compared to burned-uninvaded plots. We found evidence disease-generated fuels led to increased loss of forest floor C, N, Ca, and P. The same effects were associated with lower %C and higher PO4-P in the mineral soil. Fire-disease interactions were linear functions of pre-fire host mortality which was similar between the forest types. Our analysis suggests that these effects increased forest floor C loss by as much as 24.4 and 21.3 % in redwood and mixed evergreen forests, respectively, with similar maximum losses for the other forest floor elements. Accumulation of sudden oak death generated fuels has potential to increase fire-related loss of soil nutrients at the region-scale of this disease and similar patterns are likely in other forests, where fire and disease overlap.
Acácio, Vanda; Dias, Filipe S; Catry, Filipe X; Rocha, Marta; Moreira, Francisco
2017-03-01
The Mediterranean region is projected to be extremely vulnerable to global change, which will affect the distribution of typical forest types such as native oak forests. However, our understanding of Mediterranean oak forest responses to future conditions is still very limited by the lack of knowledge on oak forest dynamics and species-specific responses to multiple drivers. We compared the long-term (1966-2006) forest persistence and land cover change among evergreen (cork oak and holm oak) and deciduous oak forests and evaluated the importance of anthropogenic and environmental drivers on observed changes for Portugal. We used National Forest Inventories to quantify the changes in oak forests and explored the drivers of change using multinomial logistic regression analysis and an information theoretical approach. We found distinct trends among oak forest types, reflecting the differences in oak economic value, protection status and management schemes: cork oak forests were the most persistent (62%), changing mostly to pines and eucalypt; holm oak forests were less persistent (53.2%), changing mostly to agriculture; and deciduous oak forests were the least persistent (45.7%), changing mostly to shrublands. Drivers of change had distinct importance across oak forest types, but drivers from anthropogenic origin (wildfires, population density, and land accessibility) were always among the most important. Climatic extremes were also important predictors of oak forest changes, namely extreme temperatures for evergreen oak forests and deficit of precipitation for deciduous oak forests. Our results indicate that under increasing human pressure and forecasted climate change, evergreen oak forests will continue declining and deciduous oak forests will be replaced by forests dominated by more xeric species. In the long run, multiple disturbances may change competitive dominance from oak forests to pyrophytic shrublands. A better understanding of forest dynamics and the inclusion of anthropogenic drivers on models of vegetation change will improve predicting the future of Mediterranean oak forests. © 2016 John Wiley & Sons Ltd.
Bai, Kundong; He, Chengxin; Wan, Xianchong; Jiang, Debing
2015-06-08
The ecophysiological mechanisms underlying the pattern of bimodal elevational distribution of evergreen tree species remain incompletely understood. Here we used leaf economics spectrum (LES) theory to explain such patterns. We measured leaf economic traits and constructed an LES for the co-existing 19 evergreen and 15 deciduous species growing in evergreen broad-leaved forest at low elevation, beech-mixed forest at middle elevation and hemlock-mixed forest at high elevation in Mao'er Mountain, Guangxi, Southern China (25°50'N, 110°49'E). Leaf economic traits presented low but significant phylogenetic signal, suggesting trait similarity between closely related species. After considering the effects of phylogenetic history, deciduous species in general showed a more acquisitive leaf strategy with a higher ratio of leaf water to dry mass, higher leaf nitrogen and phosphorous contents, higher photosynthetic and respiratory rates and greater photosynthetic nitrogen-use efficiency. In contrast, evergreen species exhibited a more conservative leaf strategy with higher leaf mass per area, greater construction costs and longer leaf life span. With the elevation-induced decreases of temperature and soil fertility, both evergreen and deciduous species showed greater resource conservation, suggesting the increasing importance of environmental filtering to community assembly with increasing elevation. We found close inter-specific correlations between leaf economic traits, suggesting that there are strong genetic constraints limiting the independent evolution of LES traits. Phylogenetic signal increased with decreasing evolutionary rate across leaf economic traits, suggesting that genetic constraints are important for the process of trait evolution. We found a significantly positive relationship between primary axis species score (PASS) distance and phylogenetic distance across species pairs and an increasing average PASS distance between evergreen and deciduous species with increasing elevation, implying that the frequency of distantly related evergreen and deciduous pairs with wide spreading of leaf economic values increases with increasing elevation. Our findings thus suggest that elevation acts as an environmental filter to both select the locally adapted evergreen and deciduous species with sufficient phylogenetic variation and regulate their distribution along the elevational gradient based on their coordinated spreading of phylogenetic divergence and leaf economic variation. Published by Oxford University Press on behalf of the Annals of Botany Company.
NASA Astrophysics Data System (ADS)
Zhu, Wenjuan; Xiang, Wenhua; Pan, Qiong; Zeng, Yelin; Ouyang, Shuai; Lei, Pifeng; Deng, Xiangwen; Fang, Xi; Peng, Changhui
2016-07-01
Leaf area index (LAI) is an important parameter related to carbon, water, and energy exchange between canopy and atmosphere and is widely applied in process models that simulate production and hydrological cycles in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have yet to be fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (Pinus massoniana-Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber-Cyclobalanopsis glauca evergreen broadleaved forests) from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs) respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for the three forests measured in January and for the L. glaber-C. glauca forest in April, July, and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stem number, crown coverage, proportion of evergreen conifer species on basal area basis, proportion of deciduous species on basal area basis, and forest types affected the spatial variations in LAI values in January, while stem number and proportion of deciduous species on basal area basis affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity, and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.
Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests
Wu, Jin; Albert, Lauren; Lopes, Aline; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T.; Guan, Kaiyu; Stark, Scott C.; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V.; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Maurocio L.; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M.; Dye, Dennis G.; Huxman, Travis E.; Huete, Alfredo; Nelson, Bruce; Saleska, Scott
2016-01-01
In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.
Analysis on Difference of Forest Phenology Extracted from EVI and LAI Based on PhenoCams
NASA Astrophysics Data System (ADS)
Wang, C.; Jing, L.; Qinhuo, L.
2017-12-01
Land surface phenology can make up for the deficiency of field observation with advantages of capturing the continuous expression of phenology on a large scale. However, there are some variability in phenological metrics derived from different satellite time-series data of vegetation parameters. This paper aims at assessing the difference of phenology information extracted from EVI and LAI time series. To achieve this, some web-camera sites were selected to analyze the characteristics between MODIS-EVI and MODIS-LAI time series from 2010 to 2014 for different forest types, including evergreen coniferous forest, evergreen broadleaf forest, deciduous coniferous forest and deciduous broadleaf forest. At the same time, satellite-based phenological metrics were extracted by the Logistics algorithm and compared with camera-based phenological metrics. Results show that the SOS and EOS that are extracted from LAI are close to bud burst and leaf defoliation respectively, while the SOS and EOS that are extracted from EVI is close to leaf unfolding and leaf coloring respectively. Thus the SOS that is extracted from LAI is earlier than that from EVI, while the EOS that is extracted from LAI is later than that from EVI at deciduous forest sites. Although the seasonal variation characteristics of evergreen forests are not apparent, significant discrepancies exist in LAI time series and EVI time series. In addition, Satellite- and camera-based phenological metrics agree well generally, but EVI has higher correlation with the camera-based canopy greenness (green chromatic coordinate, gcc) than LAI.
Mercury in leaf litter in typical suburban and urban broadleaf forests in China.
Niu, Zhenchuan; Zhang, Xiaoshan; Wang, Zhangwei; Ci, Zhijia
2011-01-01
To study the role of leaf litter in the mercury (Hg) cycle in suburban broadleaf forests and the distribution of Hg in urban forests, we collected leaf litter and soil from suburban evergreen and deciduous broadleaf forests and from urban forests in Beijing. The Hg concentrations in leaf litter from the suburban forests varied from 8.3 to 205.0 ng/g, with an average (avg) of (49.7 +/- 36.9) ng/g. The average Hg concentration in evergreen broadleaf forest leaf litter (50.8 + 39.4) ng/g was higher than that in deciduous broadleaf forest leaf litter (25.8 +/- 10.1) ng/g. The estimated Hg fluxes of leaf litter in suburban evergreen and deciduous broadleaf forests were 179.0 and 83.7 mg/(ha x yr), respectively. The Hg concentration in organic horizons (O horizons) ((263.1 +/- 237.2) ng/g) was higher than that in eluvial horizons (A horizons) ((83.9 +/- 52.0) ng/g). These results indicated that leaf litterfall plays an important role in transporting atmospheric mercury to soil in suburban forests. For urban forests in Beijing, the Hg concentrations in leaf litter ranged from 8.8-119.0 (avg 28.1 +/- 16.6) ng/g, with higher concentrations at urban sites than at suburban sites for each tree. The Hg concentrations in surface soil in Beijing were 32.0-25300.0 ng/g and increased from suburban sites to urban sites, with the highest value from Jingshan (JS) Park at the centre of Beijing. Therefore, the distribution of Hg in Beijing urban forests appeared to be strongly influenced by anthropogenic activities.
Eradication effectiveness monitoring in Oregon tanoak forests
Ellen Michaels Goheen; Alan Kanaskie; Everett Hansen; Wendy Sutton; Paul Reeser; Nancy Osterbauer
2010-01-01
Phytophthora ramorum was first discovered in Oregon forests in July 2001 where it was killing tanoak (Lithocarpus densiflorus) and infecting Pacific rhododendron (Rhododendron macrophyllum) and evergreen huckleberry (Vaccinium ovatum). At that time, nine infested forest sites were...
Walther, Sophia; Voigt, Maximilian; Thum, Tea; Gonsamo, Alemu; Zhang, Yongguang; Köhler, Philipp; Jung, Martin; Varlagin, Andrej; Guanter, Luis
2016-09-01
Mid-to-high latitude forests play an important role in the terrestrial carbon cycle, but the representation of photosynthesis in boreal forests by current modelling and observational methods is still challenging. In particular, the applicability of existing satellite-based proxies of greenness to indicate photosynthetic activity is hindered by small annual changes in green biomass of the often evergreen tree population and by the confounding effects of background materials such as snow. As an alternative, satellite measurements of sun-induced chlorophyll fluorescence (SIF) can be used as a direct proxy of photosynthetic activity. In this study, the start and end of the photosynthetically active season of the main boreal forests are analysed using spaceborne SIF measurements retrieved from the GOME-2 instrument and compared to that of green biomass, proxied by vegetation indices including the Enhanced Vegetation Index (EVI) derived from MODIS data. We find that photosynthesis and greenness show a similar seasonality in deciduous forests. In high-latitude evergreen needleleaf forests, however, the length of the photosynthetically active period indicated by SIF is up to 6 weeks longer than the green biomass changing period proxied by EVI, with SIF showing a start-of-season of approximately 1 month earlier than EVI. On average, the photosynthetic spring recovery as signalled by SIF occurs as soon as air temperatures exceed the freezing point (2-3 °C) and when the snow on the ground has not yet completely melted. These findings are supported by model data of gross primary production and a number of other studies which evaluated in situ observations of CO2 fluxes, meteorology and the physiological state of the needles. Our results demonstrate the sensitivity of space-based SIF measurements to light-use efficiency of boreal forests and their potential for an unbiased detection of photosynthetic activity even under the challenging conditions interposed by evergreen boreal ecosystems. © 2015 John Wiley & Sons Ltd.
Carbohydrate storage and light requirements of tropical moist and dry forest tree species.
Poorter, Lourens; Kitajima, Kaoru
2007-04-01
In many plant communities, there is a negative interspecific correlation between relative growth rates and survival of juveniles. This negative correlation is most likely caused by a trade-off between carbon allocation to growth vs. allocation to defense and storage. Nonstructural carbohydrates (NSC) stored in stems allow plants to overcome periods of stress and should enhance survival. In order to assess how species differ in carbohydrate storage in relation to juvenile light requirements, growth, and survival, we quantified NSC concentrations and pool sizes in sapling stems of 85 woody species in moist semi-evergreen and dry deciduous tropical forests in the rainy season in Bolivia. Moist forest species averaged higher NSC concentrations than dry forest species. Carbohydrate concentrations and pool sizes decreased with the light requirements of juveniles of the species in the moist forest but not in the dry forest. Combined, these results suggest that storage is especially important for species that regenerate in persistently shady habitats, as in the understory of moist evergreen forests. For moist forest species, sapling survival rates increased with NSC concentrations and pool sizes while growth rates declined with the NSC concentrations and pool sizes. No relationships were found for dry forest species. Carbon allocation to storage contributes to the growth-survival trade-off through its positive effect on survival. And, a continuum in carbon storage strategies contributes to a continuum in light requirements among species. The link between storage and light requirements is especially strong in moist evergreen forest where species sort out along a light gradient, but disappears in dry deciduous forest where light is a less limiting resource and species sort out along drought and fire gradients.
Snowy backgrounds enhance the absorption of visible light in forest canopies
NASA Astrophysics Data System (ADS)
Pinty, B.; Widlowski, J.-L.; Verstraete, M. M.; Andredakis, I.; Arino, O.; Clerici, M.; Kaminski, T.; Taberner, M.
2011-03-01
The fraction of radiation absorbed in the canopy depends on the amount and angular distribution of the solar irradiance reaching the top of the canopy as well as the fraction of this irradiance that is transmitted through the canopy gaps and reflected back to the vegetation by the background. This contribution shows that the presence of snow on forest floors enhances the fraction of absorbed Photosynthetically Active Radiation (PAR). A global analysis of satellite-derived products reveals that this enhancement affects evergreen and deciduous forests of the boreal zone. This snow-related effect may usefully contribute to the photosynthesis process in evergreen forests especially during spring time when radiation conditions are marginal but other physiological constraints (such as temperature) permit the necessary biochemical functions to take place.
Forest Restoration in China: Advances, Obstacles, and Perspectives
Hai Ren; Hongfang Lu; Jun Wang; Nan Liu; Qinfeng Guo
2012-01-01
Because of the prolonged history of disturbance caused by intense human activities, restoration in China has been a major task facing many ecologists and land managers. There are six major forest types in China: cold temperate coniferous forest, temperate coniferous and broad-leaved mixed forest, warm temperate deciduous broad-leaved forest, subtropical evergreen broad...
Huang, Liujing; Chen, Hongfeng; Ren, Hai; Wang, Jun; Guo, Qinfeng
2013-06-01
We investigated the effects of major environmental drivers associated with urbanization on species diversity and plant functional traits (PFTs) in the remnant subtropical evergreen broad-leaved forests in Metropolitan Guangzhou (Guangdong, China). Twenty environmental factors including topography, light, and soil properties were used to quantify the effects of urbanization. Vegetation data and soil properties were collected from 30 400-m(2) plots at 6 study sites in urban and rural areas. The difference of plant species diversity and PFTs of remnant forests between urban and rural areas were analyzed. To discern the complex relationships, multivariate statistical analyses (e.g., canonical correspondence analysis and regression analysis) were employed. Pioneer species and stress-tolerant species can survive and vigorously establish their population dominance in the urban environment. The native herb diversity was lower in urban forests than in rural forests. Urban forests tend to prefer the species with Mesophanerophyte life form. In contrast, species in rural forests possessed Chamaephyte and Nanophanerophyte life forms and gravity/clonal growth dispersal mode. Soil pH and soil nutrients (K, Na, and TN) were positively related to herb diversity, while soil heavy metal concentrations (Cu) were negatively correlated with herb diversity. The herb plant species diversity declines and the species in the remnant forests usually have stress-tolerant functional traits in response to urbanization. The factors related to urbanization such as soil acidification, nutrient leaching, and heavy metal pollution were important in controlling the plant diversity in the forests along the urban-rural gradients. Urbanization affects the structure and functional traits of remnant subtropical evergreen broad-leaved forests.
Fu, Pei-Li; Jiang, Yan-Juan; Wang, Ai-Ying; Brodribb, Tim J.; Zhang, Jiao-Lin; Zhu, Shi-Dan; Cao, Kun-Fang
2012-01-01
Background and Aims The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in drought tolerance between leaves and stems. Methods A comparison was made of stem hydraulic conductivity, vulnerability curves, wood anatomy, leaf life span, leaf pressure–volume characteristics and photosynthetic capacity of six evergreen and six deciduous tree species co-occurring in a tropical dry karst forest in south-west China. The correlated evolution of leaf and stem traits was examined using both traditional and phylogenetic independent contrasts correlations. Key Results It was found that the deciduous trees had higher stem hydraulic efficiency, greater hydraulically weighted vessel diameter (Dh) and higher mass-based photosynthetic rate (Am); while the evergreen species had greater xylem-cavitation resistance, lower leaf turgor-loss point water potential (π0) and higher bulk modulus of elasticity. There were evolutionary correlations between leaf life span and stem hydraulic efficiency, Am, and dry season π0. Xylem-cavitation resistance was evolutionarily correlated with stem hydraulic efficiency, Dh, as well as dry season π0. Both wood density and leaf density were closely correlated with leaf water-stress tolerance and Am. Conclusions The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves. PMID:22585930
NASA Astrophysics Data System (ADS)
Xu, X.; Medvigy, D.; Wu, J.; Wright, S. J.; Kitajima, K.; Pacala, S. W.
2016-12-01
Tropical evergreen forests play a key role in the global carbon, water and energy cycles. Despite apparent evergreenness, this biome shows strong seasonality in leaf litter and photosynthesis. Recent studies have suggested that this seasonality is not directly related to environmental variability but is dominated by seasonal changes of leaf development and senescence. Meanwhile, current terrestrial biosphere models (TBMs) can not capture this pattern because leaf life cycle is highly underrepresented. One challenge to model this leaf life cycle is the remarkable diversity in leaf longevity, ranging from several weeks to multiple years. Ecologists have proposed models where leaf longevity is regarded as a strategy to optimize carbon gain. However previous optimality models can not be readily integrated into TBMs because (i) there are still large biases in predicted leaf longevity and (ii) it is never tested whether the carbon optimality model can capture the observed seasonality in leaf demography and canopy photosynthesis. In this study, we develop a new carbon optimality model for leaf demography. The novelty of our approach is two-fold. First, we incorporate a mechanistic photosynthesis model that can better estimate leaf carbon gain. Second, we consider the interspecific variations in leaf senescence rate, which strongly influence the modelled optimal carbon gain. We test our model with a leaf trait database for Panamanian evergreen forests. Then, we apply the model at seasonal scale and compare simulated seasonality of leaf litter and canopy photosynthesis with in-situ observations from several Amazonian forest sites. We find that (i) compared with original optimality model, the regression slope between observed and predicted leaf longevity increases from 0.15 to 1.04 in our new model and (ii) that our new model can capture the observed seasonal variations of leaf demography and canopy photosynthesis. Our results suggest that the phenology in tropical evergreen forests might result from plant adaptation to optimize canopy carbon gain. Finally, this proposed trait-driven prognostic phenology model could potentially be incorporated into next generation TBMs to improve simulation of carbon and water fluxes in the tropics.
Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Poorter, Lourens; Bongers, Frans
2014-01-01
Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest succession and increasing light scarcity during wet forest succession. Although similar trait spectra were observed among dry and wet secondary forest species, the consequences for succession were different resulting from contrasting environmental filters.
Frost and leaf-size gradients in forests: global patterns and experimental evidence.
Lusk, Christopher H; Clearwater, Michael J; Laughlin, Daniel C; Harrison, Sandy P; Prentice, Iain Colin; Nordenstahl, Marisa; Smith, Benjamin
2018-05-16
Explanations of leaf size variation commonly focus on water availability, yet leaf size also varies with latitude and elevation in environments where water is not strongly limiting. We provide the first conclusive test of a prediction of leaf energy balance theory that may explain this pattern: large leaves are more vulnerable to night-time chilling, because their thick boundary layers impede convective exchange with the surrounding air. Seedlings of 15 New Zealand evergreens spanning 12-fold variation in leaf width were exposed to clear night skies, and leaf temperatures were measured with thermocouples. We then used a global dataset to assess several climate variables as predictors of leaf size in forest assemblages. Leaf minus air temperature was strongly correlated with leaf width, ranging from -0.9 to -3.2°C in the smallest- and largest-leaved species, respectively. Mean annual temperature and frost-free period were good predictors of evergreen angiosperm leaf size in forest assemblages, but no climate variable predicted deciduous leaf size. Although winter deciduousness makes large leaves possible in strongly seasonal climates, large-leaved evergreens are largely confined to frost-free climates because of their susceptibility to radiative cooling. Evergreen leaf size data can therefore be used to enhance vegetation models, and to infer palaeotemperatures from fossil leaf assemblages. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.
Meteorological factors associated with abundance of airborne fungal spores over natural vegetation
NASA Astrophysics Data System (ADS)
Crandall, Sharifa G.; Gilbert, Gregory S.
2017-08-01
The abundance of airborne fungal spores in agricultural and urban settings increases with greater air temperature, relative humidity, or precipitation. The same meteorological factors that affect temporal patterns in spore abundance in managed environments also vary spatially across natural habitats in association with differences in vegetation structure. Here we investigated how temporal and spatial variation in aerial spore abundance is affected by abiotic (weather) and biotic (vegetation) factors as a foundation for predicting how fungi may respond to changes in weather and land-use patterns. We measured the phenology of airborne fungal spores across a mosaic of naturally occurring vegetation types at different time scales to describe (1) how spore abundance changes over time, (2) which local meteorological variables are good predictors for airborne spore density, and (3) whether spore abundance differs across vegetation types. Using an air volumetric vacuum sampler, we collected spore samples at 3-h intervals over a 120-h period in a mixed-evergreen forest and coastal prairie to measure diurnal, nocturnal, and total airborne spore abundance across vegetation types. Spore samples were also collected at weekly and monthly intervals in mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types from 12 field sites across two years. We found greater airborne spore densities during the wetter winter months compared to the drier summer months. Mean total spore abundance in the mixed-evergreen forest was twice than in the coastal prairie, but there were no significant differences in total airborne spore abundance among mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types. Weekly and monthly peaks in airborne spore abundance corresponded with rain events and peaks in soil moisture. Overall, temporal patterns in meteorological factors were much more important in determining airborne fungal spore abundance than the vegetation type. This suggests that overall patterns of fungal spore dynamics may be predictable across heterogeneous landscapes based on local weather patterns.
Tautenhahn, Susanne; Lichstein, Jeremy W; Jung, Martin; Kattge, Jens; Bohlman, Stephanie A; Heilmeier, Hermann; Prokushkin, Anatoly; Kahl, Anja; Wirth, Christian
2016-06-01
Fire is a primary driver of boreal forest dynamics. Intensifying fire regimes due to climate change may cause a shift in boreal forest composition toward reduced dominance of conifers and greater abundance of deciduous hardwoods, with potential biogeochemical and biophysical feedbacks to regional and global climate. This shift has already been observed in some North American boreal forests and has been attributed to changes in site conditions. However, it is unknown if the mechanisms controlling fire-induced changes in deciduous hardwood cover are similar among different boreal forests, which differ in the ecological traits of the dominant tree species. To better understand the consequences of intensifying fire regimes in boreal forests, we studied postfire regeneration in five burns in the Central Siberian dark taiga, a vast but poorly studied boreal region. We combined field measurements, dendrochronological analysis, and seed-source maps derived from high-resolution satellite images to quantify the importance of site conditions (e.g., organic layer depth) vs. seed availability in shaping postfire regeneration. We show that dispersal limitation of evergreen conifers was the main factor determining postfire regeneration composition and density. Site conditions had significant but weaker effects. We used information on postfire regeneration to develop a classification scheme for successional pathways, representing the dominance of deciduous hardwoods vs. evergreen conifers at different successional stages. We estimated the spatial distribution of different successional pathways under alternative fire regime scenarios. Under intensified fire regimes, dispersal limitation of evergreen conifers is predicted to become more severe, primarily due to reduced abundance of surviving seed sources within burned areas. Increased dispersal limitation of evergreen conifers, in turn, is predicted to increase the prevalence of successional pathways dominated by deciduous hardwoods. The likely fire-induced shift toward greater deciduous hardwood cover may affect climate-vegetation feedbacks via surface albedo, Bowen ratio, and carbon cycling. © 2015 John Wiley & Sons Ltd.
Phytophthora ramorum in Oregon forests: six years of detection, eradication, and disease spread
Alan Kanaskie; Everett Hansen; Ellen Goheen; Michael McWilliams; Paul Reeser; Wendy Sutton
2009-01-01
Phytophthora ramorum was first discovered in Southwest Oregon forests in 2001, where it was killing tanoak (Lithocarpus densiflorus) and infecting Pacific rhododendron (Rhododendron macrophyllum) and evergreen huckleberry (Vaccinium ovatum). At that time there were nine infested forest...
The Microclimate of a Tropical Evergreen Forest.
1980-08-01
of Human Bioclimate - A Review. World Meteorological Organization Bulletin, Geneva, 56 pp. REFERENCES (con’t) Lee, R., 1978. Forest Micrometeorology...Geophysics, and Bioclimatology , Ser. B 24, 243-251. Pinker, R. (1980): The Microclimate of a dry tropical forest. (Accepted for publication in
NASA Astrophysics Data System (ADS)
Montane, F.; Fox, A. M.; Arellano, A. F.; Alexander, M. R.; Moore, D. J.
2016-12-01
Carbon (C) allocation to different plant tissues (leaves, stem and roots) remains a central challenge for understanding the global C cycle, as it determines C residence time. We used a diverse set of observations (AmeriFlux eddy covariance towers, biomass estimates from tree-ring data, and Leaf Area Index measurements) to compare C fluxes, pools, and Leaf Area Index (LAI) data with the Community Land Model (CLM). We ran CLM for seven temperate forests in North America (including evergreen and deciduous sites) between 1980 and 2013 using different C allocation schemes: i) standard C allocation scheme in CLM, which allocates C to the stem and leaves as a dynamic function of annual net primary productivity (NPP); ii) two fixed C allocation schemes, one representative of evergreen and the other one of deciduous forests, based on Luyssaert et al. 2007; iii) an alternative C allocation scheme, which allocated C to stem and leaves, and to stem and coarse roots, as a dynamic function of annual NPP, based on Litton et al. 2007. At our sites CLM usually overestimated gross primary production and ecosystem respiration, and underestimated net ecosystem exchange. Initial aboveground biomass in 1980 was largely overestimated for deciduous forests, whereas aboveground biomass accumulation between 1980 and 2011 was highly underestimated for both evergreen and deciduous sites due to the lower turnover rate in the sites than the one used in the model. CLM overestimated LAI in both evergreen and deciduous sites because the Leaf C-LAI relationship in the model did not match the observed Leaf C-LAI relationship in our sites. Although the different C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, one of the alternative C allocation schemes used (iii) gave more realistic stem C/leaf C ratios, and highly reduced the overestimation of initial aboveground biomass, and accumulated aboveground NPP for deciduous forests by CLM. Our results would suggest using different C allocation schemes for evergreen and deciduous forests. It is crucial to improve CLM in the near future to minimize data-model mismatches, and to address some of the current model structural errors and parameter uncertainties.
Changes in forest productivity across Alaska consistent with biome shift
Peter S.A. Beck; Glenn P. Juday; Claire Alix; Valerie A. Barber; Stephen E. Winslow; Emily E. Sousa; Patricia Heiser; James D. Herriges; Scott J. Goetz
2011-01-01
Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest...
Minor forest products of the Pacific Northwest.
Elmer W. Shaw
1949-01-01
The evergreen forests of Washington and Oregon are the source of an interesting variety of so-called "minor products," Many of these forest sidelines are not well known. They are generally underestimated and quite often misunderstood. This is partly because the value and significance of these smaller, incidental products of the forest have long been...
Establishing Mixtures of Redcedar In Poor Oak-Hickory Forests
Leon S. Minckler
1966-01-01
Oak-history forests on the poorest sites in the Upper Mississippi Valley have both low productivity and little esthetic appeal. A mixture of the native evergreen redcedar would add bearty and increase wildlife values.
A Regional Simulation to Explore Impacts of Resource Use and Constraints
2007-03-01
mountaintops. (10) Deciduous Forest - This class is composed of forests, which contain at least 75% deciduous trees in the canopy, deciduous ... trees , pine plantations, and evergreen woodlands. (12) Mixed Forest - This class includes forests with mixed deciduous /coniferous canopies, natural...reflective surfaces. Classification of forested wetlands dominated by deciduous trees is probably more accurate than that in areas with 104
Detailed forest formation mapping in the land cover map series for the Caribbean islands
NASA Astrophysics Data System (ADS)
Helmer, E. H.; Schill, S.; Pedreros, D. H.; Tieszen, L. L.; Kennaway, T.; Cushing, M.; Ruzycki, T.
2006-12-01
Forest formation and land cover maps for several Caribbean islands were developed from Landsat ETM+ imagery as part of a multi-organizational project. The spatially explicit data on forest formation types will permit more refined estimates of some forest attributes. The woody vegetation classification scheme relates closely to that of Areces-Malea et al. (1), who classify Caribbean vegetation according to standards of the US Federal Geographic Data Committee (FGDC, 1997), with modifications similar to those in Helmer et al. (2). For several of the islands, we developed image mosaics that filled cloudy parts of scenes with data from other scene dates after using regression tree normalization (3). The regression tree procedure permitted us to develop mosaics for wet and drought seasons for a few of the islands. The resulting multiseason imagery facilitated separation between classes such as seasonal evergreen forest, semi-deciduous forest (including semi-evergreen forest), and drought deciduous forest or woodland formations. We used decision tree classification methods to classify the Landsat image mosaics to detailed forest formations and land cover for Puerto Rico (4), St. Kitts and Nevis, St. Lucia, St. Vincent and the Grenadines and Grenada. The decision trees classified a stack of raster layers for each mapping area that included the Landsat image bands and various ancillary raster data layers. For Puerto Rico, for example, the ancillary data included climate parameters (5). For some islands, the ancillary data included topographic derivatives such as aspect, slope and slope position, SRTM (6) or other topographic data. Mapping forest formations with decision tree classifiers, ancillary geospatial data, and cloud-free image mosaics, accurately distinguished spectrally similar forest formations, without the aid of ecological zone maps, on the islands where the approach was used. The approach resulted in maps of forest formations with comparable or better detail than when IKONOS or Landsat imagery was hand-digitized, as it was for the Dominican Republic (7) and Barbados. 1. T. Kennaway, E. H. Helmer. (Intl Inst of Tropical Forestry, USDA Forest Service, Río Piedras, Puerto Rico, 2006). 2. A. Areces-Mallea et al. (The Nature Conservancy, 1999). 3. E. H. Helmer, O. Ramos, T. Lopez, M. Quiñones, W. Diaz, Carib J Sci 38, 165-183 (2002). 4. C. Daly, E. H. Helmer, M. Quiñones, Int J Climatology 23, 1359-1381 (2003). 5. T. G. Farr, M. Kobrick, Eos Transactions 81, 583-585 (2000). 6. E. H. Helmer, B. Ruefenacht, Photogrammetric Eng Rem Sens 71, 1079-1089 (2005). 7. S. Hernández, M. Pérez. (Secretaría de Estado de Medio Ambiente y Recursos Naturales de la República Dominicana, Santo Domingo, Dominican Republic, 2005).
NASA Astrophysics Data System (ADS)
Delpierre, N.; Dufrêne, E.
2009-04-01
With several sites measuring mass and energy turbulent fluxes for more than ten years, the CarboEurope database appears as a valuable resource for addressing the question of the determinism of the interannual variability of carbon (C) and water balances in forests ecosystems. Apart from major climate-driven anomalies during the anomalous 2003 summer and 2007 spring, little is known about the factors driving interannual variability (IAV) of the C balance in forest ecosystems. We used the CASTANEA process-based model to simulate the C and W fluxes and balances of three European evergreen forests for the 2000-2007 period (FRPue Quercus ilex, 44°N; DETha Picea abies, 51°N; FIHyy Pinus sylvestris, 62°N). The model fairly reproduced the day-to-day variability of measured fluxes, accounting for 70-81%, 77-91% and 59-90% of the daily variance of measured NEP, GPP and TER, respectively. However, the model was challenged in representing the IAV of fluxes integrated on an annual time scale. It reproduced ca. 80% of the interannual variance of measured GPP, but no significant relationship could be established between annual measured and modelled NEP or TER. Accordingly, CASTANEA appeared as a suitable tool for disentangling the influence of climate and biological processes on GPP at mutiple time scales. We show that climate and biological processes relative influences on the modelled GPP vary from year to year in European evergreen forests. Water-stress related and phenological processes (i.e. release of the winter thermal constraint on photosynthesis in evergreens) appear as primary drivers for the particular 2003 and 2007 years, respectively, but the relative influence of other climatic factors widely varies for less remarkable years at all sites. We discuss shortcomings of the method, as related to the influence of compensating errors in the simulated fluxes, and assess the causes of the model poor ability to represent the IAV of the annual sums of NEP and TER.
[Analysis of Camellia rosthorniana populations fecundity].
Cao, Guoxing; Zhong, Zhangcheng; Xie, Deti; Liu, Yun
2004-03-01
With the method of space substituting time, the structure of Camellia rosthorniana populations in three forest communities, i.e., Jiant bamboo forest, coniferous and broad-leaved mixed forest, and evergreen broad-leaved forest in Mt. Jinyun was investigated, and based on static life-tables, the fecundity tables and reproductive value tables of C. rosthorniana populations were constructed. Each reproductive parameter and its relation to bionomic strategies of C. rosthorniana populations were also analyzed. The results indicated that in evergreen broad-leaved forest, C. rosthorniana population had the longest life span and the greatest fitness. The stage of maximum reproductive value increased with increasing stability of the community. The sum of each population's reproductive value, residual reproductive value and total reproductive value for the whole life-history of C. rosthorniana also increased with increasing maturity of the community, showing their inherent relationships with reproductive fitness. As regards to bionomic strategy, C. rosthorniana showed mainly the characteristics of a k-strategies, but in less stable community, the reproductive parameters were greatly changed, showing some characteristics of a r-strategies.
Current conservation status of Germain's langur (Trachypithecus germaini) in Vietnam.
Van Tran, Bang; Nguyen, Minh Anh; Nguyen, Dat Quoc; Truong, Quan Bich Thi; Ang, Andie; Covert, Herbert H; Hoang, Duc Minh
2017-07-01
Following the split of the silvered langurs of Indochina into two species based on molecular and phenotypic data, there is a need to reevaluate their distribution and update their conservation status. Here, we report the distribution and assess the population size of Germain's langur (Trachypithecus germaini) within its known range across Vietnam. We confirmed this species at six of seven survey sites in different habitats within three provinces in the Mekong Delta Region, including semi-evergreen forest at the Seven Mountains of An Giang Province, mangrove forest in Ngoc Hien and Nam Can Districts and Melaleuca forest in U Minh Ha National Park of Ca Mau Province, and limestone forest at Kien Luong Karst Area and semi-evergreen and evergreen forests at Phu Quoc National Park of Kien Giang Province. We found no evidence of this species in Mui Ca Mau National Park, Ca Mau Province where it was previously reported. We conservatively estimate that the total population of Germain's langurs in Vietnam consists of 362-406 individuals, with the largest population found in the Kien Luong Karst Area. Hunting and habitat loss are severely impacting Germain's langur, resulting in the extirpation of the population in Mui Ca Mau National Park and small, isolated populations in the Seven Mountains and Ngoc Hien and Nam Can Districts. However, the ability of this species to inhabit a wide range of forest types, and its increasing population sizes in Phu Quoc National Park and Kien Luong Karst Area, provide signs of hope that continued conservation actions may help in its long-term survival.
Silva, J O; Neves, F S
2014-08-01
Goniorrhachis marginata Taub. (Leguminosae: Caesalpinioideae) is a tree species found in Brazilian tropical dry forests that retain their leaves during the dry season. That being, we addressed the following question: i) How do insect diversity (sap-sucking and chewing), leaf herbivory and defensive traits (tannin and leaf sclerophylly) vary on the evergreen tree species G. marginata between seasons? The abundance of sap-sucking insects was higher in the dry season than in the rainy season. However, we did not verify any difference in the species richness and abundance of chewing insects between seasons. Leaf herbivory was higher in the rainy season, whereas leaf sclerophylly was higher in the dry season. However, herbivory was not related to sclerophylly. Insect herbivores likely decrease their folivory activity during the dry season due to life history patterns or changes in behaviour, possibly entering diapause or inactivity during this period. Therefore, G. marginata acts as a likely keystone species, serving as a moist refuge for the insect fauna during the dry season in tropical dry forest, and the presence of this evergreen species is crucial to conservation strategies of this threatened ecosystem.
Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A.; Poorter, Lourens; Bongers, Frans
2015-01-01
Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a ‘Community-Weighted Mean’ plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest succession and increasing light scarcity during wet forest succession. Although similar trait spectra were observed among dry and wet secondary forest species, the consequences for succession were different resulting from contrasting environmental filters. PMID:25919023
Zhu, Q.; Jiang, H.; Liu, J.; Peng, C.; Fang, X.; Yu, S.; Zhou, G.; Wei, X.; Ju, W.
2011-01-01
The regional carbon budget of the climatic transition zone may be very sensitive to climate change and increasing atmospheric CO2 concentrations. This study simulated the carbon cycles under these changes using process-based ecosystem models. The Integrated Biosphere Simulator (IBIS), a Dynamic Global Vegetation Model (DGVM), was used to evaluate the impacts of climate change and CO2 fertilization on net primary production (NPP), net ecosystem production (NEP), and the vegetation structure of terrestrial ecosystems in Zhejiang province (area 101,800 km2, mainly covered by subtropical evergreen forest and warm-temperate evergreen broadleaf forest) which is located in the subtropical climate area of China. Two general circulation models (HADCM3 and CGCM3) representing four IPCC climate change scenarios (HC3AA, HC3GG, CGCM-sresa2, and CGCM-sresb1) were used as climate inputs for IBIS. Results show that simulated historical biomass and NPP are consistent with field and other modelled data, which makes the analysis of future carbon budget reliable. The results indicate that NPP over the entire Zhejiang province was about 55 Mt C yr-1 during the last half of the 21st century. An NPP increase of about 24 Mt C by the end of the 21st century was estimated with the combined effects of increasing CO2 and climate change. A slight NPP increase of about 5 Mt C was estimated under the climate change alone scenario. Forests in Zhejiang are currently acting as a carbon sink with an average NEP of about 2.5 Mt C yr-1. NEP will increase to about 5 Mt C yr-1 by the end of the 21st century with the increasing atmospheric CO2 concentration and climate change. However, climate change alone will reduce the forest carbon sequestration of Zhejiang's forests. Future climate warming will substantially change the vegetation cover types; warm-temperate evergreen broadleaf forest will be gradually substituted by subtropical evergreen forest. An increasing CO2 concentration will have little contribution to vegetation changes. Simulated NPP shows geographic patterns consistent with temperature to a certain extent, and precipitation is not the limiting factor for forest NPP in the subtropical climate conditions. There is no close relationship between the spatial pattern of NEP and climate condition.
Zhu, Q.; Jiang, H.; Liu, J.; Peng, C.; Fang, X.; Yu, S.; Zhou, G.; Wei, X.; Ju, W.
2011-01-01
The regional carbon budget of the climatic transition zone may be very sensitive to climate change and increasing atmospheric CO 2 concentrations. This study simulated the carbon cycles under these changes using process-based ecosystem models. The Integrated Biosphere Simulator (IBIS), a Dynamic Global Vegetation Model (DGVM), was used to evaluate the impacts of climate change and CO 2 fertilization on net primary production (NPP), net ecosystem production (NEP), and the vegetation structure of terrestrial ecosystems in Zhejiang province (area 101,800 km 2, mainly covered by subtropical evergreen forest and warm-temperate evergreen broadleaf forest) which is located in the subtropical climate area of China. Two general circulation models (HADCM3 and CGCM3) representing four IPCC climate change scenarios (HC3AA, HC3GG, CGCM-sresa2, and CGCM-sresb1) were used as climate inputs for IBIS. Results show that simulated historical biomass and NPP are consistent with field and other modelled data, which makes the analysis of future carbon budget reliable. The results indicate that NPP over the entire Zhejiang province was about 55 Mt C yr -1 during the last half of the 21 st century. An NPP increase of about 24 Mt C by the end of the 21 st century was estimated with the combined effects of increasing CO 2 and climate change. A slight NPP increase of about 5 Mt C was estimated under the climate change alone scenario. Forests in Zhejiang are currently acting as a carbon sink with an average NEP of about 2.5 Mt C yr -1. NEP will increase to about 5 Mt C yr -1 by the end of the 21 st century with the increasing atmospheric CO 2 concentration and climate change. However, climate change alone will reduce the forest carbon sequestration of Zhejiang's forests. Future climate warming will substantially change the vegetation cover types; warm-temperate evergreen broadleaf forest will be gradually substituted by subtropical evergreen forest. An increasing CO 2 concentration will have little contribution to vegetation changes. Simulated NPP shows geographic patterns consistent with temperature to a certain extent, and precipitation is not the limiting factor for forest NPP in the subtropical climate conditions. There is no close relationship between the spatial pattern of NEP and climate condition.
NASA Astrophysics Data System (ADS)
Cheng, M.; Jin, J.
2017-12-01
Vegetation phenology is one of the most sensitive bio-indicators of climate change, and it has received increasing interests in the context of global warming. As one of the most sensitive areas to global change, the Tibetan Plateau is a unique region to study the trends in vegetation phenology in response to climate change because of its unique vegetation composition, climate features and low-level human disturbance. Although some studies have aroused wide controversies about the actual plant phenology patterns in the Tibetan Plateau, yet the reasons remain unclear. In particular, the phenology characteristics of sparse herbaceous or sparse shrub and evergreen forest that are mostly located in the northwest and southeast of the Tibetan Plateau remain less studied. In this study, the spatio-temporal patterns of the start (SOS), end (EOS) and length (LOS) of the vegetation growing season for six vegetation types in the Tibetan Plateau, including evergreen broadleaf forests, evergreen coniferous forests, evergreen shrub, meadow, steppe and sparse herbaceous or sparse shrub, were quantified from 1982 to 2014 using NOAA/AVHRR NDVI data set at a spatial resolution of 0.05°×0.05° and 7-day intervals using NDVI relative change rate threshold and sixth order polynomial fit models. Assisted with the monthly precipitation and temperature data, the relative effects of changing climates on the variability of phenology were also examined. Diverse phenological changes were observed for different land cover types, with an advancing start of growing season (SOS), delaying end of growing season (EOS) and increasing length of growing season (LOS) in the eastern Tibetan Plateau where meadow was the dominant vegetation type, but with the opposite changes in the steppe and sparse herbaceous or sparse shrub regions which are mostly located in the northwestern and western edges of the Tibetan Plateau. Correlation analysis indicated that sufficient preseason precipitation may delay the SOS of evergreen forests in the southeastern Plateau and advance the SOS of steppe and sparse herbaceous or sparse shrub in relatively arid areas, while the advance of SOS in meadow areas could be related to higher preseason temperature.
Age and distribution of an evergreen clonal shrub in the Coweeta basin: Rhododendron maximum L
Katherine J. Elliott; James M. Vose
2012-01-01
Rhododendron maximum L. is an evergreen, clonal shrub that forms a dominant sub-canopy layer and is a key species in southern Appalachian forests. We investigated the age and distribution of R. maximum across the Coweeta Basin, a 1626 ha watershed in western North Carolina. We selected 16 perennial, second-order streams and used a Global Positioning System to establish...
An Old-Growth Definition for Southwestern Subtropical Upland Forests
David D. Diamond
1998-01-01
Mainly evergreen, broad-leaved forests in the Southwestern United States are restricted to the Lower Rio Grande Valley of Texas. The soils and long growing season make this region valuable cropland, and, thus, almost all of the area once occupied by this forest type has been converted to row crops. Remaining old-growth forests are usually dominated by some combination...
F.W. Davis; M.I. Borchert,; R.K. Meentemeyer; A. Flint; D.M. Rizzo
2010-01-01
Mixed-evergreen forests of central coastal California are being severely impacted by the recently introduced plant pathogen, Phytophthora ramorum. We collected forest plot data using a multi-scale sampling design to characterize pre-infestation forest composition and ongoing tree mortality along environmental and time-since-fire gradients. Vegetation pattern was...
Ishida, Atsushi; Harayama, Hisanori; Yazaki, Kenichi; Ladpala, Phanumard; Sasrisang, Amornrat; Kaewpakasit, Kanokwan; Panuthai, Samreong; Staporn, Duriya; Maeda, Takahisa; Gamo, Minoru; Diloksumpun, Sapit; Puangchit, Ladawan; Ishizuka, Moriyoshi
2010-08-01
This study compared leaf gas exchange, leaf hydraulic conductance, twig hydraulic conductivity and leaf osmotic potential at full turgor between two drought-deciduous trees, Vitex peduncularis Wall. and Xylia xylocarpa (Roxb.) W. Theob., and two evergreen trees, Hopea ferrea Lanessan and Syzygium cumini (L.) Skeels, at the uppermost canopies in tropical dry forests in Thailand. The aims were to examine (i) whether leaf and twig hydraulic properties differ in relation to leaf phenology and (ii) whether xylem cavitation is a determinant of leaf shedding during the dry season. The variations in almost all hydraulic traits were more dependent on species than on leaf phenology. Evergreen Hopea exhibited the lowest leaf-area-specific twig hydraulic conductivity (leaf-area-specific K(twig)), lamina hydraulic conductance (K(lamina)) and leaf osmotic potential at full turgor (Ψ(o)) among species, whereas evergreen Syzygium exhibited the highest leaf-area-specific K(twig), K(lamina) and Ψ(o). Deciduous Xylia had the highest sapwood-area-specific K(twig), along with the lowest Huber value (sapwood area/leaf area). More negative osmotic Ψ(o) and leaf osmotic adjustment during the dry season were found in deciduous Vitex and evergreen Hopea, accompanied by low sapwood-area-specific K(twig). Regarding seasonal changes in hydraulics, no remarkable decrease in K(lamina) and K(twig) was found during the dry season in any species. Results suggest that leaf shedding during the dry season is not always associated with extensive xylem cavitation.
Relictual amphibians and old-growth forest
H.H. Welsh
1990-01-01
Terrestrial and aquatic herpetofauna were sampled by pitfall traps, time-constrained searches, and areaconstrained searches (stream sites only) over a three-year period to examine the importance of forest age to amphibians and reptiles. Fifty-four terrestrial and 39 aquatic sites in Douglas-fir-dominated, mixed evergreen forests were located in southwestern Oregon and...
Forest ecosystem changes from annual methane source to sink depending on late summer water balance
Julie K. Shoemaker; Trevor F. Keenan; David Y. Hollinger; Andrew D. Richardson
2014-01-01
Forests dominate the global carbon cycle, but their role in methane (CH4) biogeochemistry remains uncertain. We analyzed whole-ecosystem CH4 fluxes from 2 years, obtained over a lowland evergreen forest in Maine, USA. Gross primary productivity provided the strongest correlation with the CH4 flux in...
Quantification of soil respiration in forest ecosystems across China
NASA Astrophysics Data System (ADS)
Song, Xinzhang; Peng, Changhui; Zhao, Zhengyong; Zhang, Zhiting; Guo, Baohua; Wang, Weifeng; Jiang, Hong; Zhu, Qiuan
2014-09-01
We collected 139 estimates of the annual forest soil CO2 flux and 173 estimates of the Q10 value (the temperature sensitivity) assembled from 90 published studies across Chinese forest ecosystems. We analyzed the annual soil respiration (Rs) rates and the temperature sensitivities of seven forest ecosystems, including evergreen broadleaf forests (EBF), deciduous broadleaf forests (DBF), broadleaf and needleleaf mixed forests (BNMF), evergreen needleleaf forests (ENF), deciduous needleleaf forests (DNF), bamboo forests (BF) and shrubs (SF). The results showed that the mean annual Rs rate was 33.65 t CO2 ha-1 year-1 across Chinese forest ecosystems. Rs rates were significantly different (P < 0.001) among the seven forest types, and were significantly and positively influenced by mean annual temperature (MAT), mean annual precipitation (MAP), and actual evapotranspiration (AET); but negatively affected by latitude and elevation. The mean Q10 value of 1.28 was lower than the world average (1.4-2.0). The Q10 values derived from the soil temperature at a depth of 5 cm varied among forest ecosystems by an average of 2.46 and significantly decreased with the MAT but increased with elevation and latitude. Moreover, our results suggested that an artificial neural network (ANN) model can effectively predict Rs across Chinese forest ecosystems. This study contributes to better understanding of Rs across Chinese forest ecosystems and their possible responses to global warming.
Li, Pin; Feng, Zhaozhong; Catalayud, Vicent; Yuan, Xiangyang; Xu, Yansen; Paoletti, Elena
2017-10-01
The carbon-sink strength of temperate and boreal forests at midlatitudes of the northern hemisphere is decreased by ozone pollution, but knowledge on subtropical evergreen broadleaved forests is missing. Taking the dataset from Chinese studies covering temperate and subtropical regions, effects of elevated ozone concentration ([O 3 ]) on growth, biomass, and functional leaf traits of different types of woody plants were quantitatively evaluated by meta-analysis. Elevated mean [O 3 ] of 116 ppb reduced total biomass of woody plants by 14% compared with control (mean [O 3 ] of 21 ppb). Temperate species from China were more sensitive to O 3 than those from Europe and North America in terms of photosynthesis and transpiration. Significant reductions in chlorophyll content, chlorophyll fluorescence parameters, and ascorbate peroxidase induced significant injury to photosynthesis and growth (height and diameter). Importantly, subtropical species were significantly less sensitive to O 3 than temperate ones, whereas deciduous broadleaf species were significantly more sensitive than evergreen broadleaf and needle-leaf species. These findings suggest that carbon-sink strength of Chinese forests is reduced by present and future [O 3 ] relative to control (20-40 ppb). Given that (sub)-tropical evergreen broadleaved species dominate in Chinese forests, estimation of the global carbon-sink constraints due to [O 3 ] should be re-evaluated. © 2017 John Wiley & Sons Ltd.
[Changes of Forest Canopy Spectral Reflectance with Seasons in Lang Ya Mountains].
Li, Wei-tao; Peng, Dao-li; Zhang, Yan; Wu, Jian; Chen, Tai-sheng
2015-08-01
The physiological mechanism and ecological structure of forest trees can change with the changes of years. In a certain extent, the changes were expressed through the canopy spectral features. The mastery of changing rules about spectral characteristics of trees over the years is benefit to remote sensing interpretation and provide scientific basis for the classification of different trees. The study adopted high-resolution spectrometer to measure the canopy spectral characteristics for seven major deciduous trees and seven evergreen trees to gain the spectrum curve of four different ages and calculate the first derivative curve. The analysis of changing rules about spectral characteristics of different deciduous trees and evergreen trees and the comparison of changes about spectrum of various trees in the visible and infrared band could find the best year and best band for identification of trees. The results showed that the canopy spectral reflectance of deciduous and evergreen trees increases with the increase of age. And the spectral changes of two species were most obvious in the near infrared band.
Smith, Merryn G; Miller, Rebecca E; Arndt, Stefan K; Kasel, Sabine; Bennett, Lauren T
2018-04-01
Non-structural carbohydrates (NSCs) form a fundamental yet poorly quantified carbon pool in trees. Studies of NSC seasonality in forest trees have seldom measured whole-tree NSC stocks and allocation among organs, and are not representative of all tree functional types. Non-structural carbohydrate research has primarily focussed on broadleaf deciduous and coniferous evergreen trees with distinct growing seasons, while broadleaf evergreen trees remain under-studied despite their different growth phenology. We measured whole-tree NSC allocation and temporal variation in Eucalyptus obliqua L'Hér., a broadleaf evergreen tree species typically occurring in mixed-age temperate forests, which has year-round growth and the capacity to resprout after fire. Our overarching objective was to improve the empirical basis for understanding the functional importance of NSC allocation and stock changes at the tree- and organ-level in this tree functional type. Starch was the principal storage carbohydrate and was primarily stored in the stem and roots of young (14-year-old) trees rather than the lignotuber, which did not appear to be a specialized starch storage organ. Whole-tree NSC stocks were depleted during spring and summer due to significant decreases in starch mass in the roots and stem, seemingly to support root and crown growth but potentially exacerbated by water stress in summer. Seasonality of stem NSCs differed between young and mature trees, and was not synchronized with stem basal area increments in mature trees. Our results suggest that the relative magnitude of seasonal NSC stock changes could vary with tree growth stage, and that the main drivers of NSC fluctuations in broadleaf evergreen trees in temperate biomes could be periodic disturbances such as summer drought and fire, rather than growth phenology. These results have implications for understanding post-fire tree recovery via resprouting, and for incorporating NSC pools into carbon models of mixed-age forests.
Persistence of Phytophthora ramorum after eradication treatments in Oregon tanoak forests
Ellen Goheen; Everett Hansen; Alan Kanaskie; Wendy Sutton; Paul Reeser
2009-01-01
Sudden oak death, caused by Phytophthora ramorum, was identified in late July 2001 in forest stands in Curry County on the Southwest Oregon coast where it was killing tanoak (Lithocarpus densiflorus) and infecting Pacific rhododendron (Rhododendron macrophyllum) and evergreen huckleberry (...
Remote sensing-based estimation of annual soil respiration at two contrasting forest sites
Gu, Lianhong; Huang, Ni; Black, T. Andrew; ...
2015-11-23
Soil respiration (R s), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this article, we proposed a methodology for the remote estimation of annual R s at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest).
Kumaran, Navnith K. P.; Padmalal, Damodaran; Nair, Madhavan K.; Limaye, Ruta B.; Guleria, Jaswant S.; Srivastava, Rashmi; Shukla, Anumeha
2014-01-01
The high rainfall and low sea level during Early Holocene had a significant impact on the development and sustenance of dense forest and swamp-marsh cover along the southwest coast of India. This heavy rainfall flooded the coastal plains, forest flourishing in the abandoned river channels and other low-lying areas in midland.The coastline and other areas in lowland of southwestern India supply sufficient evidence of tree trunks of wet evergreen forests getting buried during the Holocene period under varying thickness of clay, silty-clay and even in sand sequences. This preserved subfossil log assemblage forms an excellent proxy for eco-geomorphological and palaeoclimate appraisal reported hitherto from Indian subcontinent, and complements the available palynological data. The bulk of the subfossil logs and partially carbonized wood remains have yielded age prior to the Holocene transgression of 6.5 k yrs BP, suggesting therein that flooding due to heavy rainfall drowned the forest cover, even extending to parts of the present shelf. These preserved logs represent a unique palaeoenvironmental database as they contain observable cellular structure. Some of them can even be compared to modern analogues. As these woods belong to the Late Pleistocene and Holocene, they form a valuable source of climate data that alleviates the lack of contemporaneous meteorological records. These palaeoforests along with pollen proxies depict the warmer environment in this region, which is consistent with a Mid Holocene Thermal Maximum often referred to as Holocene Climate Optimum. Thus, the subfossil logs of tropical evergreen forests constitute new indices of Asian palaeomonsoon, while their occurrence and preservation are attributed to eco-geomorphology and hydrological regimes associated with the intensified Asian Summer Monsoon, as recorded elsewhere. PMID:24727672
Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa
2016-01-01
The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests. PMID:27974832
NASA Astrophysics Data System (ADS)
Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa
2016-12-01
The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests.
Oswald, Patrick; Thura, Myint Kyaw; LaJeunesse Connette, Katherine J.; Grindley, Mark E.; Songer, Melissa; Zug, George R.; Mulcahy, Daniel G.
2017-01-01
Myanmar’s recent transition from military rule towards a more democratic government has largely ended decades of political and economic isolation. Although Myanmar remains heavily forested, increased development in recent years has been accompanied by exceptionally high rates of forest loss. In this study, we document the rapid progression of deforestation in and around the proposed Lenya National Park, which includes some of the largest remaining areas of lowland evergreen rainforest in mainland Southeast Asia. The globally unique forests in this area are rich in biodiversity and remain a critical stronghold for many threatened and endangered species, including large charismatic fauna such as tiger and Asian elephant. We also conducted a rapid assessment survey of the herpetofauna of the proposed national park, which resulted in the discovery of two new species of bent-toed geckos, genus Cyrtodactylus. We describe these new species, C. lenya sp. nov. and C. payarhtanensis sp. nov., which were found in association with karst (i.e., limestone) rock formations within mature lowland wet evergreen forest. The two species were discovered less than 35 km apart and are each known from only a single locality. Because of the isolated nature of the karst formations in the proposed Lenya National Park, these geckos likely have geographical ranges restricted to the proposed protected area and are threatened by approaching deforestation. Although lowland evergreen rainforest has vanished from most of continental Southeast Asia, Myanmar can still take decisive action to preserve one of the most biodiverse places on Earth. PMID:28403189
ERIC Educational Resources Information Center
Goodrich, Jennie; And Others
The monograph describes more than 200 plants growing within the approximately 300 square miles of the original land of the Kashaya Pomo Indians, which lies along the coast of Sonoma County, California. An introduction provides information on the plant communities represented (redwood forest, mixed evergreen forest, oak woodland, Douglas fir…
Green Mansions: The Evergreen Forests of the Pacific Northwest.
ERIC Educational Resources Information Center
Philipek, Frances; Smith, Shelley; Brook, Richard
2000-01-01
Explores the ecosystem in Pacific Northwest Coastal America and investigates land management issues. Discusses the impact of canopy trees on temperature and the forest itself. Explains fungi's relationship with trees and presents activities on stream flow, wood, volcanoes, and plants for the classroom. (YDS)
Ellen Michaels Goheen; Everett Hansen; Alan Kanaskie; Wendy Sutton; Paul Reeser
2008-01-01
Sudden oak death, caused by Phytophthora ramorum, was identified in late July 2001 in forest stands in Curry County on the southwest Oregon coast where it was killing tanoak (Lithocarpus densiflorus) and infecting Pacific rhododendron (Rhododendron macrophyllum) and evergreen huckleberry (Vaccinium...
Heberling, J Mason; Mason, Norman W H
2018-01-01
Recent studies have concluded that native and invasive species share a common set of trait relationships. However, native species in isolated regions might be functionally constrained by their unique evolutionary histories such that they follow different carbon capture strategies than introduced species. We compared leaf traits relating to resource investment, carbon return, and resource-use efficiency in 16 native (endemic) and three non-native (invasive) species in a temperate forest in Canterbury, South Island, New Zealand. Trait differences were more closely associated with leaf habit than nativity. Deciduous species (including invaders) exhibited greater maximum photosynthetic rates at similar resource costs, which resulted in greater nitrogen- and energy-use efficiencies than evergreen natives. Leaf area was the only trait that differed significantly by nativity (over two-fold larger in invaders). Invaders and deciduous natives both occupied the 'fast return' end of the leaf economics spectrum in contrast to the native evergreens which had comparatively slow return on investment. Dominant woody invaders in this forest are physiologically distinct from many New Zealand endemic species, which are overwhelmingly evergreen. It remains unclear whether these trait differences translate to an ecological divergence in plant strategy, but these results suggest that ecophysiological tradeoffs are likely constrained by biogeography.
Lu, Zhiyun; Wang, Xun; Zhang, Yiping; Zhang, Yong-Jiang; Luo, Kang; Sha, Liqing
2016-12-01
Forests play an important role in global mercury (Hg) cycling. To explain the high Hg accumulation in subtropical forest ecosystems, we studied temporal dynamics of Hg, carbon (C), nitrogen (N), and sulfur (S) in forest soil profiles, as well as litterfall flux and precipitation, in an old-growth moist evergreen broadleaf (EB) forest and a mossy coppice (MC) forest from South China over seven years. The mean soil Hg concentration was 257 ± 14 ng g -1 in the O-horizon and 248 ± 15 ng g -1 in the A-horizon for the EB forest, and 94 ± 27 ng g -1 in the O-horizon and 70 ± 11 ng g -1 in the A-horizon for the MC forest. Annual variations in Hg concentration were suggested to be associated with variations in precipitation and litterfall biomass. Significant vertical Hg transport was only observed in the MC forest, which was attributed to its lower organic matter content. Correlation and stoichiometry analyses further suggested that the dynamics in Hg concentration in the forest floor was also closely linked to the variation in S concentration. Additionally, the difference in the soil Hg pool between these two forests was attributed to different litterfall biomass fluxes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010
Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhang, Geli; Roy, Partha Sarathi; Joshi, Pawan Kumar; Gilani, Hammad; Murthy, Manchiraju Sri Ramachandra; Jin, Cui; Wang, Jie; Zhang, Yao; Chen, Bangqian; Menarguez, Michael Angelo; Biradar, Chandrashekhar M.; Bajgain, Rajen; Li, Xiangping; Dai, Shengqi; Hou, Ying; Xin, Fengfei; Moore III, Berrien
2016-01-01
Extensive forest changes have occurred in monsoon Asia, substantially affecting climate, carbon cycle and biodiversity. Accurate forest cover maps at fine spatial resolutions are required to qualify and quantify these effects. In this study, an algorithm was developed to map forests in 2010, with the use of structure and biomass information from the Advanced Land Observation System (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) mosaic dataset and the phenological information from MODerate Resolution Imaging Spectroradiometer (MOD13Q1 and MOD09A1) products. Our forest map (PALSARMOD50 m F/NF) was assessed through randomly selected ground truth samples from high spatial resolution images and had an overall accuracy of 95%. Total area of forests in monsoon Asia in 2010 was estimated to be ~6.3 × 106 km2. The distribution of evergreen and deciduous forests agreed reasonably well with the median Normalized Difference Vegetation Index (NDVI) in winter. PALSARMOD50 m F/NF map showed good spatial and areal agreements with selected forest maps generated by the Japan Aerospace Exploration Agency (JAXA F/NF), European Space Agency (ESA F/NF), Boston University (MCD12Q1 F/NF), Food and Agricultural Organization (FAO FRA), and University of Maryland (Landsat forests), but relatively large differences and uncertainties in tropical forests and evergreen and deciduous forests. PMID:26864143
Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010.
Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhang, Geli; Roy, Partha Sarathi; Joshi, Pawan Kumar; Gilani, Hammad; Murthy, Manchiraju Sri Ramachandra; Jin, Cui; Wang, Jie; Zhang, Yao; Chen, Bangqian; Menarguez, Michael Angelo; Biradar, Chandrashekhar M; Bajgain, Rajen; Li, Xiangping; Dai, Shengqi; Hou, Ying; Xin, Fengfei; Moore, Berrien
2016-02-11
Extensive forest changes have occurred in monsoon Asia, substantially affecting climate, carbon cycle and biodiversity. Accurate forest cover maps at fine spatial resolutions are required to qualify and quantify these effects. In this study, an algorithm was developed to map forests in 2010, with the use of structure and biomass information from the Advanced Land Observation System (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) mosaic dataset and the phenological information from MODerate Resolution Imaging Spectroradiometer (MOD13Q1 and MOD09A1) products. Our forest map (PALSARMOD50 m F/NF) was assessed through randomly selected ground truth samples from high spatial resolution images and had an overall accuracy of 95%. Total area of forests in monsoon Asia in 2010 was estimated to be ~6.3 × 10(6 )km(2). The distribution of evergreen and deciduous forests agreed reasonably well with the median Normalized Difference Vegetation Index (NDVI) in winter. PALSARMOD50 m F/NF map showed good spatial and areal agreements with selected forest maps generated by the Japan Aerospace Exploration Agency (JAXA F/NF), European Space Agency (ESA F/NF), Boston University (MCD12Q1 F/NF), Food and Agricultural Organization (FAO FRA), and University of Maryland (Landsat forests), but relatively large differences and uncertainties in tropical forests and evergreen and deciduous forests.
Ideas and perspectives: how coupled is the vegetation to the boundary layer?
NASA Astrophysics Data System (ADS)
De Kauwe, Martin G.; Medlyn, Belinda E.; Knauer, Jürgen; Williams, Christopher A.
2017-10-01
Understanding the sensitivity of transpiration to stomatal conductance is critical to simulating the water cycle. This sensitivity is a function of the degree of coupling between the vegetation and the atmosphere and is commonly expressed by the decoupling factor. The degree of coupling assumed by models varies considerably and has previously been shown to be a major cause of model disagreement when simulating changes in transpiration in response to elevated CO2. The degree of coupling also offers us insight into how different vegetation types control transpiration fluxes, which is fundamental to our understanding of land-atmosphere interactions. To explore this issue, we combined an extensive literature summary from 41 studies with estimates of the decoupling coefficient estimated from FLUXNET data. We found some notable departures from the values previously reported in single-site studies. There was large variability in estimated decoupling coefficients (range 0.05-0.51) for evergreen needleleaf forests. This is a result that was broadly supported by our literature review but contrasts with the early literature which suggests that evergreen needleleaf forests are generally well coupled. Estimates from FLUXNET indicated that evergreen broadleaved forests were the most tightly coupled, differing from our literature review and instead suggesting that it was evergreen needleleaf forests. We also found that the assumption that grasses would be strongly decoupled (due to vegetation stature) was only true for high precipitation sites. These results were robust to assumptions about aerodynamic conductance and, to a lesser extent, energy balance closure. Thus, these data form a benchmarking metric against which to test model assumptions about coupling. Our results identify a clear need to improve the quantification of the processes involved in scaling from the leaf to the whole ecosystem. Progress could be made with targeted measurement campaigns at flux sites and greater site characteristic information across the FLUXNET network.
Seasonal Trends in Airborne Fungal Spores in Coastal California Ecosystems
NASA Astrophysics Data System (ADS)
Morfin, J.; Crandall, S. G.; Gilbert, G. S.
2014-12-01
Airborne fungal spores cause disease in plants and animals and may trigger respiratory illnesses in humans. In terrestrial systems, fungal sporulation, germination, and persistence are strongly regulated by local meteorological conditions. However, few studies investigate how microclimate affects the spatio-temporal dynamics of airborne spores. We measured fungal aerospora abundance and microclimate at varying spatial and time scales in coastal California in three habitat-types: coast redwood forest, mixed-evergreen forest, and maritime chaparral. We asked: 1) is there a difference in total airborne spore concentration between habitats, 2) when do we see peak spore counts, and 3) do spore densities correlate with microclimate conditions? Fungal spores were caught from the air with a volumetric vacuum air spore trap during the wet season (January - March) in 2013 and 2014, as well as monthly in 2014. Initial results suggest that mixed-evergreen forests exhibit the highest amounts of spore abundance in both years compared to the other habitats. This may be due to either a higher diversity of host plants in mixed-evergreen forests or a rich leaf litter layer that may harbor a greater abundance of saprotrophic fungi. Based on pilot data, we predict that temperature and to a lesser degree, relative humidity, will be important microclimate predictors for high spore densities. These data are important for understanding when and under what weather conditions we can expect to see high levels of fungal spores in the air; this can be useful information for managers who are interested in treating diseased plants with fungicides.
NASA Astrophysics Data System (ADS)
Reichstein, M.; Beer, C.; Kuglitsch, F.; Papale, D.; Soussana, J. A.; Janssens, I.; Ciais, P.; Baldocchi, D.; Buchmann, N.; Verbeeck, H.; Ceulemans, R.; Moors, E.; Köstner, B.; Schulze, D.; Knohl, A.; Law, B. E.
2007-12-01
In this presentation we discuss ways to infer and to interpret water-use efficiency at ecosystem level (WUEe) from eddy covariance flux data and possibilities for scaling these patterns to regional and continental scale. In particular we convey the following: WUEe may be computed as a ratio of integrated fluxes or as the slope of carbon versus water fluxes offering different chances for interpretation. If computed from net ecosystem exchange and evapotranspiration on has to take of counfounding effects of respiration and soil evaporation. WUEe time-series at diurnal and seasonal scale is a valuable ecosystem physiological diagnostic for example about ecosystem-level responses to drought. Most often WUEe decreases during dry periods. The mean growing season ecosystem water-use efficiency of gross carbon uptake (WUEGPP) is highest in temperate broad-leaved deciduous forests, followed by temperate mixed forests, temperate evergreen conifers, Mediterranean broad-leaved deciduous forests, Mediterranean broad-leaved evergreen forests and Mediterranean evergreen conifers and boreal, grassland and tundra ecosystems. Water-use efficiency exhibits a temporally quite conservative relation with atmospheric water vapor pressure deficit (VPD) that is modified between sites by leaf area index (LAI) and soil quality, such that WUEe increases with LAI and soil water holding capacity which is related to texture. This property and tight coupling between carbon and water cycles is used to estimate catchment-scale water-use efficiency and primary productivity by integration of space-borne earth observation and river discharge data.
Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests.
Ishihara, Masae I; Utsugi, Hajime; Tanouchi, Hiroyuki; Aiba, Masahiro; Kurokawa, Hiroko; Onoda, Yusuke; Nagano, Masahiro; Umehara, Toru; Ando, Makoto; Miyata, Rie; Hiura, Tsutom
2015-07-01
Accurate estimation of tree and forest biomass is key to evaluating forest ecosystem functions and the global carbon cycle. Allometric equations that estimate tree biomass from a set of predictors, such as stem diameter and tree height, are commonly used. Most allometric equations are site specific, usually developed from a small number of trees harvested in a small area, and are either species specific or ignore interspecific differences in allometry. Due to lack of site-specific allometries, local equations are often applied to sites for which they were not originally developed (foreign sites), sometimes leading to large errors in biomass estimates. In this study, we developed generic allometric equations for aboveground biomass and component (stem, branch, leaf, and root) biomass using large, compiled data sets of 1203 harvested trees belonging to 102 species (60 deciduous angiosperm, 32 evergreen angiosperm, and 10 evergreen gymnosperm species) from 70 boreal, temperate, and subtropical natural forests in Japan. The best generic equations provided better biomass estimates than did local equations that were applied to foreign sites. The best generic equations included explanatory variables that represent interspecific differences in allometry in addition to stem diameter, reducing error by 4-12% compared to the generic equations that did not include the interspecific difference. Different explanatory variables were selected for different components. For aboveground and stem biomass, the best generic equations had species-specific wood specific gravity as an explanatory variable. For branch, leaf, and root biomass, the best equations had functional types (deciduous angiosperm, evergreen angiosperm, and evergreen gymnosperm) instead of functional traits (wood specific gravity or leaf mass per area), suggesting importance of other traits in addition to these traits, such as canopy and root architecture. Inclusion of tree height in addition to stem diameter improved the performance of the generic equation only for stem biomass and had no apparent effect on aboveground, branch, leaf, and root biomass at the site level. The development of a generic allometric equation taking account of interspecific differences is an effective approach for accurately estimating aboveground and component biomass in boreal, temperate, and subtropical natural forests.
James Grogana; R. Matthew Landisc; Mark S. Ashtona; Jurandir Galva˜od
2005-01-01
Big-leaf mahogany (Swietenia macrophylla) is a valuable neotropical timber species whose seedling survival and growth dynamics in natural forests are poorly understood. To document regeneration dynamics of mahogany in seasonal transitional evergreen forests of southeast Pará, Brazil, we followed naturally established seedlings in the forest understory...
NASA Astrophysics Data System (ADS)
Berecha, Gezahegn; Aerts, Raf; Muys, Bart; Honnay, Olivier
2015-02-01
Coffea arabica is an indigenous understorey shrub of the moist evergreen Afromontane forest of SW Ethiopia. Coffee cultivation here occurs under different forest management intensities, ranging from almost no intervention in the `forest coffee' system to far-reaching interventions that include the removal of competing shrubs and selective thinning of the upper canopy in the `semi-forest coffee' system. We investigated whether increasing forest management intensity and fragmentation result in impacts upon potential coffee pollination services through examining shifts in insect communities that visit coffee flowers. Overall, we netted 2,976 insect individuals on C. arabica flowers, belonging to sixteen taxonomic groups, comprising 10 insect orders. Taxonomic richness of the flower-visiting insects significantly decreased and pollinator community changed with increasing forest management intensity and fragmentation. The relative abundance of honey bees significantly increased with increasing forest management intensity and fragmentation, likely resulting from the introduction of bee hives in the most intensively managed forests. The impoverishment of the insect communities through increased forest management intensity and fragmentation potentially decreases the resilience of the coffee production system as pollination increasingly relies on honey bees alone. This may negatively affect coffee productivity in the long term as global pollination services by managed honey bees are expected to decline under current climate change scenarios. Coffee agroforestry management practices should urgently integrate pollinator conservation measures.
Wagle, Pradeep; Xiao, Xiangming; Kolb, Thomas E.; ...
2016-05-31
Here, understanding the differences in carbon and water vapor fluxes of spatially distributed evergreen needleleaf forests (ENFs) is crucial for accurately estimating regional or global carbon and water budgets and when predicting the responses of ENFs to current and future climate. We compared the fluxes of ten AmeriFlux ENF sites to investigate cross-site variability in net ecosystem exchange of carbon (NEE), gross primary production (GPP), and evapotranspiration (ET). We used wavelet cross-correlation analysis to examine responses of NEE and ET to common climatic drivers over multiple timescales and also determined optimum values of air temperature (T a) and vapor pressuremore » deficit (VPD) for NEE and ET.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagle, Pradeep; Xiao, Xiangming; Kolb, Thomas E.
Here, understanding the differences in carbon and water vapor fluxes of spatially distributed evergreen needleleaf forests (ENFs) is crucial for accurately estimating regional or global carbon and water budgets and when predicting the responses of ENFs to current and future climate. We compared the fluxes of ten AmeriFlux ENF sites to investigate cross-site variability in net ecosystem exchange of carbon (NEE), gross primary production (GPP), and evapotranspiration (ET). We used wavelet cross-correlation analysis to examine responses of NEE and ET to common climatic drivers over multiple timescales and also determined optimum values of air temperature (T a) and vapor pressuremore » deficit (VPD) for NEE and ET.« less
Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data
Xiangming Xiao; Qingyuan Zhang; David Hollinger; John Aber; Berrien, III Moore
2005-01-01
Forest canopies are composed of photosynthetically active vegetation (PAV, chloroplasts) and nonphotosynthetic vegetation (NPV, e.g., cell wall, vein, branch). The fraction of photosynthetically active radiation (PAR) absorbed by the canopy (FAPAR) should be partitioned into FAPARPAV and FAPARNPV. Gross primary production (...
Forest type influences transmission of Phytophthora ramorum in California oak woodlands
J. M. Davidson; H. A. Patterson; A. C. Wickland; E. J. Fichtner; D. M. Rizzo
2011-01-01
The transmission ecology of Phytophthora ramorum from bay laurel (Umbellularia californica) leaves was compared between mixed-evergreen and redwood forest types throughout winter and summer disease cycles in central, coastal California. In a preliminary multisite study, we found that abscission rates of infected leaves were higher at mixed...
Estimating Rhododendron maximum L. (Ericaceae) Canopy Cover Using GPS/GIS Technology
Tyler J. Tran; Katherine J. Elliott
2012-01-01
In the southern Appalachians, Rhododendron maximum L. (Ericaceae) is a key evergreen understory species, often forming a subcanopy in forest stands. Little is known about the significance of R. maximum cover in relation to other forest structural variables. Only recently have studies used Global Positioning System (GPS) technology...
NASA Astrophysics Data System (ADS)
Liu, Chunwei; Sun, Ge; McNulty, Steven G.; Noormets, Asko; Fang, Yuan
2017-01-01
The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient (Kc) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, Kc has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. This study aimed at deriving monthly Kc for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly Kc data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), Kc values had large seasonal variation across all land covers. The spatial variability of Kc was well explained by latitude, suggesting site factors are a major control on Kc. Seasonally, Kc increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly Kc in all land covers, except in EBF. During the peak growing season, forests had the highest Kc values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for Kc by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. The Kc models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chunwei; Sun, Ge; McNulty, Steven G.
The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient ( K c) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, K c has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. Thismore » study aimed at deriving monthly K c for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly K c data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), K c values had large seasonal variation across all land covers. The spatial variability of K c was well explained by latitude, suggesting site factors are a major control on K c. Seasonally, K c increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly K c in all land covers, except in EBF. During the peak growing season, forests had the highest K c values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for K c by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. Here, the K c models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.« less
Liu, Chunwei; Sun, Ge; McNulty, Steven G.; ...
2017-01-18
The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient ( K c) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, K c has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. Thismore » study aimed at deriving monthly K c for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly K c data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), K c values had large seasonal variation across all land covers. The spatial variability of K c was well explained by latitude, suggesting site factors are a major control on K c. Seasonally, K c increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly K c in all land covers, except in EBF. During the peak growing season, forests had the highest K c values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for K c by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. Here, the K c models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.« less
NASA Astrophysics Data System (ADS)
Wong, C. Y.; Bhathena, Y.; Arain, M. A.; Ensminger, I.
2017-12-01
Optically derived vegetation indices have been developed to provide information about plant status including photosynthetic activity. They reflect changes in leaf pigments, which vary seasonally in pigment composition, enabling them to be used as a proxy of photosynthetic phenology. Important pigments in photosynthetic activity are carotenoids and chlorophylls, which are associated with light harvesting and energy dissipation. In temperate forests, which consist of deciduous and evergreen trees, there are difficulties resolving evergreen phenology using the most widely used index, the normalized difference vegetation index (NDVI). NDVI works well in deciduous trees, which exhibit a "visible" phenological process of leaf growth in the spring, and leaf senescence and abscission in the autumn. Evergreen conifers stay green year-round and utilize "invisible" changes of overwintering pigment composition that NDVI cannot resolve, so carotenoid pigment sensitive vegetation indices have been suggested for evergreens. The aim of this study was to evaluate carotenoid based vegetation indices over the chlorophyll sensitive NDVI. For this purpose, we evaluated the greenness index, NDVI, and carotenoid pigment sensitive indices: photochemical reflectance index (PRI) and chlorophyll/carotenoid index (CCI) in red maple, white oak and eastern white pine for two years. We also measured leaf gas exchange and pigment concentrations. We observed that NDVI correlated with photosynthetic activity in deciduous trees, whereas PRI and CCI correlated with photosynthesis across both evergreen and deciduous trees. This pattern was consistent, upscaling from leaf- to canopy-scales indicating that the mechanisms involved in winter acclimation can be resolved at larger spatial scales. PRI and CCI detected seasonal changes in carotenoids and chlorophylls linked to photoprotection and are suitable as a proxy of photosynthetic activity. These findings have implications to improve our use and understanding of remotely sensed vegetation indices as proxies of photosynthetic activity in northern forests for long-term monitoring.
Yang, Zhao; Yang, Xiao-Dong
2011-11-01
By using line transect method, an investigation was conducted on the floor litter and soil arthropod community in a mid mountain wet evergreen broad-leaved forest, a mossy dwarf forest, and a Populus bonatii forest in Ailao Mountain of Yunnan in April (dry and hot season), June (rainy season), and December (dry and cold season), 2005. In both dry and rainy seasons, the existing floor litter mass, C storage, and C/N ratio in the three forests all increased in the order of mossy dwarf forest > P. bonatii forest > evergreen broad-leaved forest, but the N storage had less difference. In the floor litter layer of the forests, Acari and Collembola were the dominant groups of soil arthropod community, while Diptera larvae, Coleoptera, ants, and Homoptera were the common groups. The Sorenson coefficients of soil arthropod community in the three forests were extremely great. No significant differences were observed in the soil arthropod density (ind x m(-2)) in the floor litter layer among the three forests, but the relative density (ind x g(-1)) of soil arthropods was higher in the evergreen broad-leaved forest and P. bonatii forest than in the mossy dwarf forest. In the three forests, the density of soil arthropods was significantly higher in dry season than in rainy season, but the Shannon diversity index had less difference. There were significant positive correlations between the existing floor litter mass and the individual density (ind x m(-2)) and dominant groups of soil arthropod communities in dry and hot season (April), but negative correlations between the existing floor litter mass and the relative density (ind x g(-1)) of soil arthropod communities and Acari in dry and cold season (December). The individual densities of Collembola and Coleoptera also had positive correlations with the N storage of the existing floor litter mass in the three forests. It was considered that the floor litter and the development of soil arthropod community in the litter layer of the subtropical forests in Ailao Mountain had a close relation with the vegetation structure of the forests, and the individual density and the diversity of the soil arthropod community were controlled by the floor litter, whereas the environmental factors such as temperature and moisture in the forests also had obvious effects on the seasonal dynamics of the individual density of the soil arthropods.
Wang, Song; Bao, Fang-yin; Mei, Bai-mao; Ding, Shi-chao
2009-09-01
By the methods of fixed point, line intercept, and random investigation, the vertical distribution and community diversity of butterflies in Yaoluoping National Nature Reserve were investigated from 2005 to 2008. A total of 3681 specimen were collected, belonging to 111 species, 69 genera, and 10 families, among which, Nymphalidae had the higher species number, individual's number, and diversity index than the other families. The butterflies in the study area were a mixture of Oriental and Palaearetic species, with the Oriental species diminished gradually and the Palaearetic components increased gradually with increasing altitude. Among the three vertical zones ( <800 m, 800-1200 m, and >1200 m in elevation), that of 800-1200 m had the most abundant species of butterflies; and among the six habitat types (deciduous broad-leaved forest, evergreen conifer forest, conifer-broad leaf mixed forest, bush and secondary forest, farmland, and residential area), bush and secondary forest had the higher species number, individual's number, and diversity index of butterflies, while farmland had the lowest diversity index. The similarity coefficient of butterfly species between the habitats was mainly dependent on vegetation type, i.e., the more the difference of vegetation type, the lesser the species similarity coefficient between the habitats, which was the highest (0.61) between conifer-broad leaf mixed forest and bush and secondary forest, and the lowest (0. 20) between evergreen conifer forest and bush and secondary forest.
NASA Astrophysics Data System (ADS)
Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.; MacBean, Natasha; Alexander, M. Ross; Dye, Alex; Bishop, Daniel A.; Trouet, Valerie; Babst, Flurin; Hessl, Amy E.; Pederson, Neil; Blanken, Peter D.; Bohrer, Gil; Gough, Christopher M.; Litvak, Marcy E.; Novick, Kimberly A.; Phillips, Richard P.; Wood, Jeffrey D.; Moore, David J. P.
2017-09-01
How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocation schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.-iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m-2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m-2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C-LAI relationship in the model did not match the observed leaf C-LAI relationship at our sites. Although the four C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, D-Litton gave more realistic Cstem / Cleaf ratios and strongly reduced the overestimation of initial aboveground biomass and aboveground NPP for deciduous forests by D-CLM4.5. We identified key structural and parameterization deficits that need refinement to improve the accuracy of LSMs in the near future. These include changing how C is allocated in fixed and dynamic schemes based on data from current forest syntheses and different parameterization of allocation schemes for different forest types. Our results highlight the utility of using measurements of aboveground biomass to evaluate and constrain the C allocation scheme in LSMs, and suggest that stem turnover is overestimated by CLM4.5 for these AmeriFlux sites. Understanding the controls of turnover will be critical to improving long-term C processes in LSMs.
Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.; ...
2017-09-22
How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocationmore » schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.–iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m -2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m -2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C–LAI relationship in the model did not match the observed leaf C–LAI relationship at our sites. Although the four C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, D-Litton gave more realistic C stem/C leaf ratios and strongly reduced the overestimation of initial aboveground biomass and aboveground NPP for deciduous forests by D-CLM4.5. We identified key structural and parameterization deficits that need refinement to improve the accuracy of LSMs in the near future. These include changing how C is allocated in fixed and dynamic schemes based on data from current forest syntheses and different parameterization of allocation schemes for different forest types. Our results highlight the utility of using measurements of aboveground biomass to evaluate and constrain the C allocation scheme in LSMs, and suggest that stem turnover is overestimated by CLM4.5 for these AmeriFlux sites. Understanding the controls of turnover will be critical to improving long-term C processes in LSMs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.
How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocationmore » schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.–iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m -2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m -2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C–LAI relationship in the model did not match the observed leaf C–LAI relationship at our sites. Although the four C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, D-Litton gave more realistic C stem/C leaf ratios and strongly reduced the overestimation of initial aboveground biomass and aboveground NPP for deciduous forests by D-CLM4.5. We identified key structural and parameterization deficits that need refinement to improve the accuracy of LSMs in the near future. These include changing how C is allocated in fixed and dynamic schemes based on data from current forest syntheses and different parameterization of allocation schemes for different forest types. Our results highlight the utility of using measurements of aboveground biomass to evaluate and constrain the C allocation scheme in LSMs, and suggest that stem turnover is overestimated by CLM4.5 for these AmeriFlux sites. Understanding the controls of turnover will be critical to improving long-term C processes in LSMs.« less
LBA-ECO TG-07 Soil Trace Gas Flux and Root Mortality, Tapajos National Forest
R.K. Varner; M.M. Keller
2009-01-01
This data set reports the results of an experiment that tested the short-term effects of root mortality on the soil-atmosphere fluxes of nitrous oxide, nitric oxide, methane, and carbon dioxide in a tropical evergreen forest. Weekly trace gas fluxes are provided for treatment and control plots on sand and clay tropical forest soils in two comma separated ASCII files....
L.B. Brown; B. Allen-Diaz
2009-01-01
Sudden oak death (SOD), caused by the recently discovered non-native invasive pathogen, Phytophthora ramorum, has already killed tens of thousands of native coast live oak and tanoak trees in California. Little is known of potential short and long term impacts of this novel plantâpathogen interaction on forest structure and composition. Coast live...
Paulo C. Olivas; Steven F. Oberbauer; David B. Clark; Deborah A. Clark; Michael G. Ryan; Joseph J. O' Brien; Harlyn Ordonez
2013-01-01
Many functional properties of forests depend on the leaf area; however, measuring leaf area is not trivial in tall evergreen vegetation. As a result, leaf area is generally estimated indirectly by light absorption methods. These indirect methods are widely used, but have never been calibrated against direct measurements in tropical rain forests, either at point or...
Weng, Ensheng; Farrior, Caroline E; Dybzinski, Ray; Pacala, Stephen W
2017-06-01
Earth system models are incorporating plant trait diversity into their land components to better predict vegetation dynamics in a changing climate. However, extant plant trait distributions will not allow extrapolations to novel community assemblages in future climates, which will require a mechanistic understanding of the trade-offs that determine trait diversity. In this study, we show how physiological trade-offs involving leaf mass per unit area (LMA), leaf lifespan, leaf nitrogen, and leaf respiration may explain the distribution patterns of evergreen and deciduous trees in the temperate and boreal zones based on (1) an evolutionary analysis of a simple mathematical model and (2) simulation experiments of an individual-based dynamic vegetation model (i.e., LM3-PPA). The evolutionary analysis shows that these leaf traits set up a trade-off between carbon- and nitrogen-use efficiency at the scale of individual trees and therefore determine competitively dominant leaf strategies. As soil nitrogen availability increases, the dominant leaf strategy switches from one that is high in nitrogen-use efficiency to one that is high in carbon-use efficiency or, equivalently, from high-LMA/long-lived leaves (i.e., evergreen) to low-LMA/short-lived leaves (i.e., deciduous). In a region of intermediate soil nitrogen availability, the dominant leaf strategy may be either deciduous or evergreen depending on the initial conditions of plant trait abundance (i.e., founder controlled) due to feedbacks of leaf traits on soil nitrogen mineralization through litter quality. Simulated successional patterns by LM3-PPA from the leaf physiological trade-offs are consistent with observed successional dynamics of evergreen and deciduous forests at three sites spanning the temperate to boreal zones. © 2016 John Wiley & Sons Ltd.
Natural Forest Biomass Estimation Based on Plantation Information Using PALSAR Data
Avtar, Ram; Suzuki, Rikie; Sawada, Haruo
2014-01-01
Forests play a vital role in terrestrial carbon cycling; therefore, monitoring forest biomass at local to global scales has become a challenging issue in the context of climate change. In this study, we investigated the backscattering properties of Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data in cashew and rubber plantation areas of Cambodia. The PALSAR backscattering coefficient (σ0) had different responses in the two plantation types because of differences in biophysical parameters. The PALSAR σ0 showed a higher correlation with field-based measurements and lower saturation in cashew plants compared with rubber plants. Multiple linear regression (MLR) models based on field-based biomass of cashew (C-MLR) and rubber (R-MLR) plants with PALSAR σ0 were created. These MLR models were used to estimate natural forest biomass in Cambodia. The cashew plant-based MLR model (C-MLR) produced better results than the rubber plant-based MLR model (R-MLR). The C-MLR-estimated natural forest biomass was validated using forest inventory data for natural forests in Cambodia. The validation results showed a strong correlation (R2 = 0.64) between C-MLR-estimated natural forest biomass and field-based biomass, with RMSE = 23.2 Mg/ha in deciduous forests. In high-biomass regions, such as dense evergreen forests, this model had a weaker correlation because of the high biomass and the multiple-story tree structure of evergreen forests, which caused saturation of the PALSAR signal. PMID:24465908
Nationwide classification of forest types of India using remote sensing and GIS.
Reddy, C Sudhakar; Jha, C S; Diwakar, P G; Dadhwal, V K
2015-12-01
India, a mega-diverse country, possesses a wide range of climate and vegetation types along with a varied topography. The present study has classified forest types of India based on multi-season IRS Resourcesat-2 Advanced Wide Field Sensor (AWiFS) data. The study has characterized 29 land use/land cover classes including 14 forest types and seven scrub types. Hybrid classification approach has been used for the classification of forest types. The classification of vegetation has been carried out based on the ecological rule bases followed by Champion and Seth's (1968) scheme of forest types in India. The present classification scheme has been compared with the available global and national level land cover products. The natural vegetation cover was estimated to be 29.36% of total geographical area of India. The predominant forest types of India are tropical dry deciduous and tropical moist deciduous. Of the total forest cover, tropical dry deciduous forests occupy an area of 2,17,713 km(2) (34.80%) followed by 2,07,649 km(2) (33.19%) under tropical moist deciduous forests, 48,295 km(2) (7.72%) under tropical semi-evergreen forests and 47,192 km(2) (7.54%) under tropical wet evergreen forests. The study has brought out a comprehensive vegetation cover and forest type maps based on inputs critical in defining the various categories of vegetation and forest types. This spatially explicit database will be highly useful for the studies related to changes in various forest types, carbon stocks, climate-vegetation modeling and biogeochemical cycles.
Jin, Yi; Qian, Hong; Yu, Mingjian
2015-01-01
Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.
Jin, Yi; Qian, Hong; Yu, Mingjian
2015-01-01
Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate. PMID:26098916
Barton D. Clinton
1995-01-01
Understanding spatial and temporal variation in the understory light regime of southern Appalachian forests is central to understanding regeneration patterns of overstory species. One of the important contributors to this variability is the distribution of evergreen shrub species, primarily Rhododendron maximum L. We measured photosynthetically...
Barton D. Clinton
1995-01-01
Understanding spatial and temporal variation in, the understory light regime of southern Appalachian forests is central to understanding regeneration patterns of overstory species. One of the important contributors to this variability is the distribution of evergreen shrub species, primarily Rhododendrun maximun L, We measured...
NASA Astrophysics Data System (ADS)
Ashwini, Krishna M.; Sridhar, Kandikere R.
2006-01-01
Seasonal occurrence and activity of endemic pill millipedes ( Arthrosphaera magna) were examined in organically managed mixed plantation and semi-evergreen forest reserve in southwest India between November 1996 and September 1998. Abundance and biomass of millipedes were highest in both habitats during monsoon season. Soil moisture, conductivity, organic carbon, phosphate, potassium, calcium and magnesium were higher in plantation than in forest. Millipede abundance and biomass were about 12 and 7 times higher in plantation than in forest, respectively ( P < 0.001). Their biomass increased during post-monsoon, summer and monsoon in the plantation ( P < 0.001), but not in forest ( P > 0.05). Millipede abundance and biomass were positively correlated with rainfall ( P = 0.01). Besides rainfall, millipedes in plantation were positively correlated with soil moisture as well as temperature ( P = 0.001). Among the associated fauna with pill millipedes, earthworms rank first followed by soil bugs in both habitats. Since pill millipedes are sensitive to narrow ecological changes, the organic farming strategies followed in mixed plantation and commonly practiced in South India seem not deleterious for the endangered pill millipedes Arthrosphaera and reduce the risk of local extinctions.
NASA Astrophysics Data System (ADS)
Miles, Victoria V.; Esau, Igor
2016-11-01
Studies of the normalized difference vegetation index (NDVI) have found broad changes in vegetation productivity in high northern latitudes in the past decades, including increases in NDVI (‘greening’) in tundra regions and decreases (‘browning’) in forest regions. The causes of these changes are not well understood but have been attributed to a variety of factors. We use Moderate Resolution Imaging Spectrometer (MODIS) satellite data for 2000-2014 and focus on northern West Siberia—a hot spot of extensive landcover change due to rapid resource development, geomorphic change, climate change and reindeer grazing. The region is relatively little-studied in terms of vegetation productivity patterns and trends. This study examines changes between and within bioclimatic sub-zones and reveals differences between forest and treeless areas and differences in productivity even down to the tree species level. Our results show that only 18% of the total northern West Siberia area had statistically significant changes in productivity, with 8.4% increasing (greening) and 9.6% decreasing (browning). We find spatial heterogeneity in the trends, and contrasting trends both between and within bioclimatic zones. A key finding is the identification of contrasting trends for different species within the same bioclimatic zone. Browning is most prominent in areas of denser tree coverage, and particularly in evergreen coniferous forest with dark (Picea abie, Picea obovata) or light (Pinus sylvestris) evergreen and evergreen-majority mixed forests. In contrast, low density deciduous needle-leaf forest dominated by larch (Larix sibirica), shows a significant increase in productivity, even while neighboring different species show productivity decrease. These results underscore the complexity of the patterns of variability and trends in vegetation productivity, and suggest the need for spatially and thematically detailed studies to better understand the response of different northern forest types and species to climate and environmental change.
Rendering Future Vegetation Change across Large Regions of the US
NASA Astrophysics Data System (ADS)
Sant'Anna Dias, Felipe; Gu, Yuting; Agarwalla, Yashika; Cheng, Yiwei; Patil, Sopan; Stieglitz, Marc; Turk, Greg
2015-04-01
We use two Machine Learning techniques, Decision Trees (DT) and Neural Networks (NN), to provide classified images and photorealistic renderings of future vegetation cover at three large regions in the US. The training data used to generate current vegetation cover include Landsat surface reflectance images, USGS Land Cover maps, 50 years of mean annual temperature and precipitation for the period 1950 - 2000, elevation, aspect and slope data. Present vegetation cover was generated on a 100m grid. Future vegetation cover for the period 2061- 2080 was predicted using the 1 km resolution bias corrected data from the NASA Goddard Institute for Space Studies Global Climate Model E simulation. The three test regions encompass a wide range of climatic gradients, topographic variation, and vegetation cover. The central Oregon site covers 19,182 square km and includes the Ochoco and Malheur National Forest. Vegetation cover is 50% evergreen forest and 50% shrubs and scrubland. The northwest Washington site covers 14,182 square km. Vegetation cover is 60% evergreen forest, 14% scrubs, 7% grassland, and 7% barren land. The remainder of the area includes deciduous forest, perennial snow cover, and wetlands. The third site, the Jemez mountain region of north central New Mexico, covers 5,500 square km. Vegetation cover is 47% evergreen forest, 31% shrubs, 13% grasses, and 3% deciduous forest. The remainder of the area includes developed and cultivated areas and wetlands. Using the above mentioned data sets we first trained our DT and NN models to reproduce current vegetation. The land cover classified images were compared directly to the USGS land cover data. The photorealistic generated vegetation images were compared directly to the remotely sensed surface reflectance maps. For all three sites, similarity between generated and observed vegetation cover was quite remarkable. The three trained models were then used to explore what the equilibrium vegetation would look like for the period 2061 - 2080. The predicted mean annual air temperature change for the three sites ranged from + 1.8°C to + 2.3°C. Precipitation for the three sites changed little. In Oregon, this resulted in a 37% shift of forested areas to shrub vegetation. In New Mexico, shrubs and evergreen vegetation increased by 18% and 5%, respectively. Deciduous and grassland vegetation decreased by 90% and 52%, respectively. In Washington, evergreen vegetation cover decreased by 4.5%. Deciduous vegetation increase by 25%. Shrubs and grasslands increased by 15% and 7%, respectively. Perennial snow cover on mountain tops fell by 46%. Beyond rendering a view of future vegetation cover, we also extracted information regarding the relative controls that climate and topography exert over local vegetation. The three most dominant controls are elevation (most dominant), temperature, and precipitation. In summary, we demonstrate a framework for rendering potential future vegetation in a visually realistic way. Moreover, these machine learning techniques provide a computationally fast framework for exploring the effects of climate change over large-areas and at high-spatial resolution that cannot be accomplished through simulation alone.
Wu, Jin; Kobayashi, Hideki; Stark, Scott C; Meng, Ran; Guan, Kaiyu; Tran, Ngoc Nguyen; Gao, Sicong; Yang, Wei; Restrepo-Coupe, Natalia; Miura, Tomoaki; Oliviera, Raimundo Cosme; Rogers, Alistair; Dye, Dennis G; Nelson, Bruce W; Serbin, Shawn P; Huete, Alfredo R; Saleska, Scott R
2018-03-01
Satellite observations of Amazon forests show seasonal and interannual variations, but the underlying biological processes remain debated. Here we combined radiative transfer models (RTMs) with field observations of Amazon forest leaf and canopy characteristics to test three hypotheses for satellite-observed canopy reflectance seasonality: seasonal changes in leaf area index, in canopy-surface leafless crown fraction and/or in leaf demography. Canopy RTMs (PROSAIL and FLiES), driven by these three factors combined, simulated satellite-observed seasonal patterns well, explaining c. 70% of the variability in a key reflectance-based vegetation index (MAIAC EVI, which removes artifacts that would otherwise arise from clouds/aerosols and sun-sensor geometry). Leaf area index, leafless crown fraction and leaf demography independently accounted for 1, 33 and 66% of FLiES-simulated EVI seasonality, respectively. These factors also strongly influenced modeled near-infrared (NIR) reflectance, explaining why both modeled and observed EVI, which is especially sensitive to NIR, captures canopy seasonal dynamics well. Our improved analysis of canopy-scale biophysics rules out satellite artifacts as significant causes of satellite-observed seasonal patterns at this site, implying that aggregated phenology explains the larger scale remotely observed patterns. This work significantly reconciles current controversies about satellite-detected Amazon phenology, and improves our use of satellite observations to study climate-phenology relationships in the tropics. No claim to original US Government works New Phytologist © 2017 New Phytologist Trust.
Sun, Tao; Ma, Ming; Wang, Ding-yong; Huang, Li-xin
2014-12-01
In order to investigate the dynamics of nitrogen and sulfur wet deposition in subtropical forest ecosystem, one typical forest stand, evergreen broad-leaved forest, at Simian Mountain located in Chongqing was selected in this research. Based on field monitoring, effects of precipitation, throughfall, litterfall, and groundwater runoff of the typical forest stand on the quality of water of Simian Mountain were investigated from September 2012 to August 2013. Results showed that the rainfall of Simian Mountain was apparently acidic, with average pH of 4.89 and maximum pH of 5.14. The soil, canopies and trunks could increase pH of precipitation, with soils having the maximum increment, followed by the forest canopy. Forest canopy had the function of adsorption and purification of NO3-, NO2- and SO4(2-), and the average entrapment rate was 56.68%, 45.84% and 35.51%, respectively. Moreover, the degradation of litter was probably the main reason for the increase of ion concentrations in the surface litter water. Forest soils could absorb and neutralize NO3-, SO2- and NH4+, and release NO2-. The evergreen broad-leaf forest of mid-subtropical region had the function of interception on NO3-, NO2-, NH4+ and SO4(2-), and the total entrapment rate was 92.86%, 57.86%, 87.24% and 87.25%, respectively, and it had a certain buffering function for the acid rain.
Protected areas: mixed success in conserving East Africa's evergreen forests.
Pfeifer, Marion; Burgess, Neil D; Swetnam, Ruth D; Platts, Philip J; Willcock, Simon; Marchant, Robert
2012-01-01
In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs) are intended to conserve habitats and species. Variability in PA effectiveness and 'leakage' (here defined as displacement of deforestation) may lead to different trends in forest loss within, and adjacent to, existing PAs. Here, we quantify spatial variation in trends of evergreen forest coverage in East Africa between 2001 and 2009, and test for correlations with forest accessibility and environmental drivers. We investigate PA effectiveness at local, landscape and national scales, comparing rates of deforestation within park boundaries with those detected in park buffer zones and in unprotected land more generally. Background forest loss (BFL) was estimated at -9.3% (17,167 km(2)), but varied between countries (range: -0.9% to -85.7%; note: no BFL in South Sudan). We document high variability in PA effectiveness within and between PA categories. The most successful PAs were National Parks, although only 26 out of 48 parks increased or maintained their forest area (i.e. Effective parks). Forest Reserves (Ineffective parks, i.e. parks that lose forest from within boundaries: 204 out of 337), Nature Reserves (six out of 12) and Game Parks (24 out of 26) were more likely to lose forest cover. Forest loss in buffer zones around PAs exceeded background forest loss, in some areas indicating leakage driven by Effective National Parks. Human pressure, forest accessibility, protection status, distance to fires and long-term annual rainfall were highly significant drivers of forest loss in East Africa. Some of these factors can be addressed by adjusting park management. However, addressing close links between livelihoods, natural capital and poverty remains a fundamental challenge in East Africa's forest conservation efforts.
Survival and Growth of Oaks Planted for Wildlife in the Flatwoods
William H. Moore
1980-01-01
In the cutover pinelands of south Florida, hammocks of evergreen forests are oases of wildlife habitat, but they are too widely scattered to be effective. The artificial establishment of hammocks in the flatwoods has potential for enhancing forest wildlife. To dqrmmeminimum requirements for the establishment of native oaks in the flatwoods, acomparisonwas made between...
T.T. Lei; E.T. Nilsen; S.W. Semones
2006-01-01
Canopy tree recruitment is inhibited by evergreen shrubs in many forests. In the southern Appalachian mountains of the USA, thickets of Rhododendron maximum L. restrict dominant canopy tree seedling survival and persistence. Using R. maximum as a model system, we examined available light under the thickets and the photosynthetic...
F. D. B. Espirito-Santo; M. M. Keller; E. Linder; R. C. Oliveira Junior; C. Pereira; C. G. Oliveira
2013-01-01
Background: The dynamics of gaps plays a role in the regimes of tree mortality, production of coarse woody debris (CWD) and the variability of light in the forest understory. Aims: To quantify the area affected by, and the carbon fluxes associated with, natural gap-phase disturbances in a tropical lowland evergreen rain forest by use of ground measurements and high-...
Kimberly A. Novick; A. Christopher Oishi; Eric J. Ward; Mario B.S. Siqueira; Jehn-Yih Juang; Paul C. Stoy
2015-01-01
The southeastern United States is experiencing a rapid regional increase in the ratio of pine to deciduous forest ecosystems at the same time it is experiencing changes in climate. This study is focused on exploring how these shifts will affect the carbon sink capacity of southeastern US forests, which we show here are among the strongest carbon sinks in the...
NASA Astrophysics Data System (ADS)
Kim, J.; Ryu, Y.; Dechant, B.; Cho, S.; Kim, H. S.; Yang, K.
2017-12-01
The emerging technique of remotely sensed sun-induced fluorescence (SIF) has advanced our ability to estimate plant photosynthetic activity at regional and global scales. Continuous observations of SIF and gross primary productivity (GPP) at the canopy scale in evergreen needleleaf forests, however, have not yet been presented in the literature so far. Here, we report a time series of near-surface measurements of canopy-scale SIF, hyperspectral reflectance and GPP during the senescence period in an evergreen needleleaf forest in South Korea. Mean canopy height was 30 m and a hyperspectrometer connected with a single fiber and rotating prism, which measures bi-hemispheric irradiance, was installed 20 m above the canopy. SIF was retrieved in the spectral range 740-790 nm at a temporal resolution of 1 min. We tested different SIF retrieval methods, such as Fraunhofer line depth (FLD), spectral fitting method (SFM) and singular vector decomposition (SVD) against GPP estimated by eddy covariance and absorbed photosynthetically active radiation (APAR). We found that the SVD-retrieved SIF signal shows linear relationships with GPP (R2 = 0.63) and APAR (R2 = 0.52) while SFM- and FLD-retrieved SIF performed poorly. We suspect the larger influence of atmospheric oxygen absorption between the sensor and canopy might explain why SFM and FLD methods showed poor results. Data collection will continue and the relationships between SIF, GPP and APAR will be studied during the senescence period.
Zhou, Shi Xing; Zou, Cheng; Xiao, Yong Xiang; Xiang, Yuan Bin; Han, Bo Han; Tang, Jian Dong; Luo, Chao; Huang, Cong de
2017-01-01
To understand the effects of increasing nitrogen deposition on soil microbial biomass carbon (MBC) and nitrogen(MBN), an in situ experiment was conducted in a natural evergreen broad-leaved forest in Ya'an City, Sichuan Province. Four levels of nitrogen deposition were set: i.e., control (CK, 0 g N·m -2 ·a -1 ), low nitrogen (L, 5 g N·m -2 ·a -1 ), medium nitrogen (M, 15 g N·m -2 ·a -1 ), and high nitrogen (H, 30 g N·m -2 ·a -1 ). The results indicated that nitrogen deposition significantly decreased MBC and MBN in the 0-10 cm soil layer, and as N de-position increased, the inhibition effect was enhanced. L and M treatments had no significant effect on MBC and MBN in the 10-20 cm soil layer, while H treatment significantly reduced. The influence of N deposition on MBC and MBN was weakened with the increase of soil depth. MBC and MBN had obvious seasonal dynamic, which were highest in autumn and lowest in summer both in the 0-10 and 10-20 cm soil layers. The fluctuation ranges of soil microbial biomass C/N were respectively 10.58-11.19 and 9.62-12.20 in the 0-10 cm and 10-20 cm soil layers, which indicated that the fungi hold advantage in the soil microbial community in this natural evergreen broad-leaved forest.
Sharma, Ram C; Hara, Keitarou; Hirayama, Hidetake
2017-01-01
This paper presents the performance and evaluation of a number of machine learning classifiers for the discrimination between the vegetation physiognomic classes using the satellite based time-series of the surface reflectance data. Discrimination of six vegetation physiognomic classes, Evergreen Coniferous Forest, Evergreen Broadleaf Forest, Deciduous Coniferous Forest, Deciduous Broadleaf Forest, Shrubs, and Herbs, was dealt with in the research. Rich-feature data were prepared from time-series of the satellite data for the discrimination and cross-validation of the vegetation physiognomic types using machine learning approach. A set of machine learning experiments comprised of a number of supervised classifiers with different model parameters was conducted to assess how the discrimination of vegetation physiognomic classes varies with classifiers, input features, and ground truth data size. The performance of each experiment was evaluated by using the 10-fold cross-validation method. Experiment using the Random Forests classifier provided highest overall accuracy (0.81) and kappa coefficient (0.78). However, accuracy metrics did not vary much with experiments. Accuracy metrics were found to be very sensitive to input features and size of ground truth data. The results obtained in the research are expected to be useful for improving the vegetation physiognomic mapping in Japan.
Barton D. Clinton
2003-01-01
Small canopy openings often alter understory microclimate, leading to changes in forest structure and composition. It is generally accepted that physical changes in the understory (i.e., microclimatic) due to canopy removal drive changes in basic forest processes, particularly seedling recruitment which is intrinsically linked to soil moisture availability, light and,...
Comprehensive national database of tree effects on air quality and human health in the United States
Satoshi Hirabayashi; David J. Nowak
2016-01-01
Trees remove air pollutants through dry deposition processes depending upon forest structure, meteorology, and air quality that vary across space and time. Employing nationally available forest, weather, air pollution and human population data for 2010, computer simulations were performed for deciduous and evergreen trees with varying leaf area index for rural and...
Toyama, Hironori; Kajisa, Tsuyoshi; Tagane, Shuichiro; Mase, Keiko; Chhang, Phourin; Samreth, Vanna; Ma, Vuthy; Sokh, Heng; Ichihashi, Ryuji; Onoda, Yusuke; Mizoue, Nobuya; Yahara, Tetsukazu
2015-01-01
Ecological communities including tropical rainforest are rapidly changing under various disturbances caused by increasing human activities. Recently in Cambodia, illegal logging and clear-felling for agriculture have been increasing. Here, we study the effects of logging, mortality and recruitment of plot trees on phylogenetic community structure in 32 plots in Kampong Thom, Cambodia. Each plot was 0.25 ha; 28 plots were established in primary evergreen forests and four were established in secondary dry deciduous forests. Measurements were made in 1998, 2000, 2004 and 2010, and logging, recruitment and mortality of each tree were recorded. We estimated phylogeny using rbcL and matK gene sequences and quantified phylogenetic α and β diversity. Within communities, logging decreased phylogenetic diversity, and increased overall phylogenetic clustering and terminal phylogenetic evenness. Between communities, logging increased phylogenetic similarity between evergreen and deciduous plots. On the other hand, recruitment had opposite effects both within and between communities. The observed patterns can be explained by environmental homogenization under logging. Logging is biased to particular species and larger diameter at breast height, and forest patrol has been effective in decreasing logging. PMID:25561669
Toyama, Hironori; Kajisa, Tsuyoshi; Tagane, Shuichiro; Mase, Keiko; Chhang, Phourin; Samreth, Vanna; Ma, Vuthy; Sokh, Heng; Ichihashi, Ryuji; Onoda, Yusuke; Mizoue, Nobuya; Yahara, Tetsukazu
2015-02-19
Ecological communities including tropical rainforest are rapidly changing under various disturbances caused by increasing human activities. Recently in Cambodia, illegal logging and clear-felling for agriculture have been increasing. Here, we study the effects of logging, mortality and recruitment of plot trees on phylogenetic community structure in 32 plots in Kampong Thom, Cambodia. Each plot was 0.25 ha; 28 plots were established in primary evergreen forests and four were established in secondary dry deciduous forests. Measurements were made in 1998, 2000, 2004 and 2010, and logging, recruitment and mortality of each tree were recorded. We estimated phylogeny using rbcL and matK gene sequences and quantified phylogenetic α and β diversity. Within communities, logging decreased phylogenetic diversity, and increased overall phylogenetic clustering and terminal phylogenetic evenness. Between communities, logging increased phylogenetic similarity between evergreen and deciduous plots. On the other hand, recruitment had opposite effects both within and between communities. The observed patterns can be explained by environmental homogenization under logging. Logging is biased to particular species and larger diameter at breast height, and forest patrol has been effective in decreasing logging. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Xun; Lin, Che-Jen; Lu, Zhiyun; Zhang, Hui; Zhang, Yiping; Feng, Xinbin
2016-08-01
Forest ecosystems play an important role in the global cycling of mercury (Hg). In this study, we characterized the Hg cycling at a remote evergreen broadleaf (EB) forest site in southwest China (Mount Ailao). The annual Hg input via litterfall is estimated to be 75.0 ± 24.2 µg m-2 yr-1 at Mount Ailao. Such a quantity is up to 1 order of magnitude greater than those observed at remote temperate/boreal (T/B) forest sites. Production of litter biomass is found to be the most influential factor causing the high Hg input to the EB forest. Given their large areal coverage, Hg deposition through litterfall in EB forests is appropriately 9 ± 5 Mg yr-1 in China and 1086 ± 775 Mg yr-1 globally. The observed wet Hg deposition at Mount Ailao is 4.9 ± 4.5 µg m-2 yr-1, falling in the lower range of those observed at 49 T/B forest sites in North America and Europe. Given the data, the Hg deposition flux through litterfall is approximately 15 times higher than the wet Hg deposition at Mount Ailao. Steady Hg accumulation in decomposing litter biomass and Hg uptake from the environment were observed during 25 months of litter decomposition. The size of the Hg pool in the organic horizon of EB forest floors is estimated to be up to 2-10 times the typical pool size in T/B forests. This study highlights the importance of EB forest ecosystems in global Hg cycling, which requires further assessment when more data become available in tropical forests.
Development of national database on long-term deforestation (1930-2014) in Bangladesh
NASA Astrophysics Data System (ADS)
Reddy, C. Sudhakar; Pasha, S. Vazeed; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.
2016-04-01
The aim of the present study is to prepare a nation-wide spatial database on forest cover to assess and monitor the land use changes associated with deforestation in Bangladesh. The multi-source data were interpreted to get the forest cover map of 1930, 1975, 1985, 1995, 2006 and 2014. The spatial information generated on total area under forest cover, rate of deforestation and afforestation, changes across forest types, forest canopy density, replacement land use in deforested area and deforestation hotspots. This spatial analysis has indicated that forest cover is undergoing significant negative change in area and quality. We report that forests in Bangladesh covered an area of 23,140 km2 in 1930 which has decreased to 14,086 km2 in 2014, a net loss of 9054 km2 (39.1%) in eight decades. Analysis of annual rate of gross deforestation for the recent period indicates 0.77% during 2006-2014. During the past eight decades, semi-evergreen forests show loss of 56.4% of forest cover followed by moist deciduous forests (51.5%), dry deciduous forests (43.1%) and mangroves (6.5%). The loss of 23.5% of dense forest cover was found from 1975 to 2014. Dense semi-evergreen forests shows more negative change (36.9%) followed by dense moist deciduous forest (32.7%) from 1975 to 2014. Annual rate of deforestation is higher in dense forests compared to open forests from 2006 to 2014 and indicates increased threat due to anthropogenic pressures. The spatial analysis of forest cover change in mangroves has shown a lower rate of deforestation. Most of the forest conversions have led to the degradation of forests to scrub and transition to agriculture and plantation. The study has identified the 'deforestation hotspots' can help in strategic planning for conservation and management of forest resources.
Choat, Brendan; Ball, Marilyn C; Luly, Jon G; Donnelly, Christine F; Holtum, Joseph A M
2006-05-01
Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.
Taxonomy, Traits, and Environment Determine Isoprenoid Emission from an Evergreen Tropical forest.
NASA Astrophysics Data System (ADS)
Taylor, T.; Alves, E. G.; Tota, J.; Oliveira Junior, R. C.; Camargo, P. B. D.; Saleska, S. R.
2016-12-01
Volatile isoprenoid emissions from the leaves of tropical forest trees significantly affects atmospheric chemistry, aerosols, and cloud dynamics, as well as the physiology of the emitting leaves. Emission is associated with plant tolerance to heat and drought stress. Despite a potentially central role of isoprenoid emissions in tropical forest-climate interactions, we have a poor understanding of the relationship between emissions and ecological axes of forest function. We used a custom instrument to quantify leaf isoprenoid emission rates from over 200 leaves and 80 trees at a site in the eastern Brazilian Amazon. We related standardized leaf emission capacity (EC: leaf emission rate at 1000 PAR) to tree taxonomy, height, light environment, wood traits, and leaf traits. Taxonomy was the strongest predictor of EC, and non-emitters could be found throughout the canopy. But we found that environment and leaf carbon economics constrained the upper bound of EC. For example, the relationship between EC and specific leaf area (SLA; fresh leaf area / dry mass) is described by an envelope with a decreasing upper bound on EC as SLA increases (quantile regression: 85th quantile, p<0.01). That result suggests a limitation on emissions related to leaf carbon investment strategies. EC was highest in the mid-canopy, and in leaves growing under less direct light. While inferences of ecosystem emissions focus on environmental conditions in the canopy, our results suggest that sub-canopy leaves are more responsive. This work is allowing us to develop an ecological understanding of isoprenoid emissions from forests, the basis for a predictive model of emissions that depends on both environmental factors and biological emission capacity that is grounded in plant traits and phylogeny.
Ecological-niche modeling and prioritization of conservation-area networks for Mexican herpetofauna.
Urbina-Cardona, J Nicolás; Flores-Villela, Oscar
2010-08-01
One of the most important tools in conservation biology is information on the geographic distribution of species and the variables determining those patterns. We used maximum-entropy niche modeling to run distribution models for 222 amphibian and 371 reptile species (49% endemics and 27% threatened) for which we had 34,619 single geographic records. The planning region is in southeastern Mexico, is 20% of the country's area, includes 80% of the country's herpetofauna, and lacks an adequate protected-area system. We used probabilistic data to build distribution models of herpetofauna for use in prioritizing conservation areas for three target groups (all species and threatened and endemic species). The accuracy of species-distribution models was better for endemic and threatened species than it was for all species. Forty-seven percent of the region has been deforested and additional conservation areas with 13.7% to 88.6% more native vegetation (76% to 96% of the areas are outside the current protected-area system) are needed. There was overlap in 26 of the main selected areas in the conservation-area network prioritized to preserve the target groups, and for all three target groups the proportion of vegetation types needed for their conservation was constant: 30% pine and oak forests, 22% tropical evergreen forest, 17% low deciduous forest, and 8% montane cloud forests. The fact that different groups of species require the same proportion of habitat types suggests that the pine and oak forests support the highest proportion of endemic and threatened species and should therefore be given priority over other types of vegetation for inclusion in the protected areas of southeastern Mexico.
NASA Astrophysics Data System (ADS)
Hao, Y.
2017-12-01
The study of root biomass distribution provides a good insight into the role of the root system, their structure and function at the ecosystem level. Therefore, many studies of root distribution and root dynamics e have been carried out. In the sub-tropical area of South China, monsoon evergreen broad-leaved forest is one of the most characteristic and most valuable zonal vegetation with stand age of 400 years in Dinghushan, where we choose the 4 typical communities (Com.1 Pinus massoniana community; Com.2 Pinus massoniana + Castanopsis chinensis + Schima superba community; Com.3 Castanopsis fissa community; Com.4 Cryptocarya concinna + Castanopsis chinensis + Cryptocarya chinensis + Schima superba community) to study the species diversity and roots distribution. Root systems of representative communities were examined systemically with regard to their structure, underground stratification and biomass distribution, by the method of root biological measure and ecological technique, Excavation of skeleton roots and observation of fine roots were carried out. The conclusions mainly including: The root biomass was increased with the species diversity and evenness of the communities improved in lower sub-tropical evergreen broad-leaved forest in course of succession. The main reason is that the diversity increase resulted in the great increase of total individuals. The individual number is 93 in Com.1 and increase to 7024 in Com.4, and the number of species and total population of individual were fast increased 32 and 2680 after 25 years when man-made needle forest was founded. In a set of successional stages, the amount of tree roots linearly increased in communities series. In monsoon evergreen broad-leaved forest, the total tree root biomass amounted to 115.70 ton/ha, Needle and broad-leaved mixed forest dominated by coniferous 50.61ton/ ha, Broad-and needle-leaved mixed forest dominated by broad-leaved heliophytes 64.20 ton/ha. Root biomass of community in later successional stage tended to distribute in the upper soil layers with the succession process, and this trend became slower in the later successional stage of the forest. 35% of total root biomass distributed in 0-10 cm layer in Com.2 but it increase to 61% in Com.4. Furthermore, more diversity of the vegetation has more clearly layers roots.
The potential negative impacts of global climate change on tropical montane cloud forests
NASA Astrophysics Data System (ADS)
Foster, Pru
2001-10-01
Nearly every aspect of the cloud forest is affected by regular cloud immersion, from the hydrological cycle to the species of plants and animals within the forest. Since the altitude band of cloud formation on tropical mountains is limited, the tropical montane cloud forest occurs in fragmented strips and has been likened to island archipelagoes. This isolation and uniqueness promotes explosive speciation, exceptionally high endemism, and a great sensitivity to climate. Global climate change threatens all ecosystems through temperature and rainfall changes, with a typical estimate for altitude shifts in the climatic optimum for mountain ecotones of hundreds of meters by the time of CO 2 doubling. This alone suggests complete replacement of many of the narrow altitude range cloud forests by lower altitude ecosystems, as well as the expulsion of peak residing cloud forests into extinction. However, the cloud forest will also be affected by other climate changes, in particular changes in cloud formation. A number of global climate models suggest a reduction in low level cloudiness with the coming climate changes, and one site in particular, Monteverde, Costa Rica, appears to already be experiencing a reduction in cloud immersion. The coming climate changes appear very likely to upset the current dynamic equilibrium of the cloud forest. Results will include biodiversity loss, altitude shifts in species' ranges and subsequent community reshuffling, and possibly forest death. Difficulties for cloud forest species to survive in climate-induced migrations include no remaining location with a suitable climate, no pristine location to colonize, migration rates or establishment rates that cannot keep up with climate change rates and new species interactions. We review previous cloud forest species redistributions in the paleo-record in light of the coming changes. The characteristic epiphytes of the cloud forest play an important role in the light, hydrological and nutrient cycles of the cloud forest and are especially sensitive to atmospheric climate change, especially humidity, as the epiphytes can occupy incredibly small eco-niches from the canopy to crooks to trunks. Even slight shifts in climate can cause wilting or death to the epiphyte community. Similarly, recent cloud forest animal redistributions, notably frog and lizard disappearances, may be driven by climate changes. Death of animals or epiphytes may have cascading effects on the cloud forest web of life. Aside from changes in temperature, precipitation, and cloudiness, other climate changes may include increasing dry seasons, droughts, hurricanes and intense rain storms, all of which might increase damage to the cloud forest. Because cloud forest species occupy such small areas and tight ecological niches, they are not likely to colonize damaged regions. Fire, drought and plant invasions (especially non-native plants) are likely to increase the effects of any climate change damage in the cloud forest. As has frequently been suggested in the literature, all of the above factors combine to make the cloud forest a likely site for observing climate change effects in the near future.
Sonia Wharton; Matt Schroeder; Kyaw Tha Paw U; Matthias Falk; Ken Bible
2009-01-01
Carbon dioxide (CO2), water vapor, and energy fluxes were measured using eddy covariance (EC) methodology over three adjacent evergreen forests in southern Washington State to identify stand-level age-effects on ecosystem exchange. The sites represent Douglas-fir forest ecosystems at two contrasting successional stages: old-growth (OG) and early...
Barton D. Clinton; Lindsay R. Boring; Wayne T. Swank
1994-01-01
Canopy gaps in southern Appalachian mixed-oak forests were assessed for the effects of topographic, gap and stand variables on density of wood seedlings. Seedling density was significantly correlated with percent slope and positively with gap age (l-5 yr). Density varied substantially among topographic positions and increased with gap size. Species richness...
Joseph B. Fontaine; Daniel C. Donato; W. Douglas Robinson; Beverly E. Law; J. Boone Kauffman
2009-01-01
Fire is a widespread natural disturbance agent in most conifer-dominated forests. In light of climate change and the effects of fire exclusion, single and repeated high-severity (stand-replacement) fires have become prominent land management issues. We studied bird communities using point counting in the Klamath-Siskiyou ecoregion of Oregon, USA at various points in...
Regional Distribution of Forest Height and Biomass from Multisensor Data Fusion
NASA Technical Reports Server (NTRS)
Yu, Yifan; Saatchi, Sassan; Heath, Linda S.; LaPoint, Elizabeth; Myneni, Ranga; Knyazikhin, Yuri
2010-01-01
Elevation data acquired from radar interferometry at C-band from SRTM are used in data fusion techniques to estimate regional scale forest height and aboveground live biomass (AGLB) over the state of Maine. Two fusion techniques have been developed to perform post-processing and parameter estimations from four data sets: 1 arc sec National Elevation Data (NED), SRTM derived elevation (30 m), Landsat Enhanced Thematic Mapper (ETM) bands (30 m), derived vegetation index (VI) and NLCD2001 land cover map. The first fusion algorithm corrects for missing or erroneous NED data using an iterative interpolation approach and produces distribution of scattering phase centers from SRTM-NED in three dominant forest types of evergreen conifers, deciduous, and mixed stands. The second fusion technique integrates the USDA Forest Service, Forest Inventory and Analysis (FIA) ground-based plot data to develop an algorithm to transform the scattering phase centers into mean forest height and aboveground biomass. Height estimates over evergreen (R2 = 0.86, P < 0.001; RMSE = 1.1 m) and mixed forests (R2 = 0.93, P < 0.001, RMSE = 0.8 m) produced the best results. Estimates over deciduous forests were less accurate because of the winter acquisition of SRTM data and loss of scattering phase center from tree ]surface interaction. We used two methods to estimate AGLB; algorithms based on direct estimation from the scattering phase center produced higher precision (R2 = 0.79, RMSE = 25 Mg/ha) than those estimated from forest height (R2 = 0.25, RMSE = 66 Mg/ha). We discuss sources of uncertainty and implications of the results in the context of mapping regional and continental scale forest biomass distribution.
Effects of LiDAR point density and landscape context on the retrieval of urban forest biomass
NASA Astrophysics Data System (ADS)
Singh, K. K.; Chen, G.; McCarter, J. B.; Meentemeyer, R. K.
2014-12-01
Light Detection and Ranging (LiDAR), as an alternative to conventional optical remote sensing, is being increasingly used to accurately estimate aboveground forest biomass ranging from individual tree to stand levels. Recent advancements in LiDAR technology have resulted in higher point densities and better data accuracies, which however pose challenges to the procurement and processing of LiDAR data for large-area assessments. Reducing point density cuts data acquisition costs and overcome computational challenges for broad-scale forest management. However, how does that impact the accuracy of biomass estimation in an urban environment containing a great level of anthropogenic disturbances? The main goal of this study is to evaluate the effects of LiDAR point density on the biomass estimation of remnant forests in the rapidly urbanizing regions of Charlotte, North Carolina, USA. We used multiple linear regression to establish the statistical relationship between field-measured biomass and predictor variables (PVs) derived from LiDAR point clouds with varying densities. We compared the estimation accuracies between the general Urban Forest models (no discrimination of forest type) and the Forest Type models (evergreen, deciduous, and mixed), which was followed by quantifying the degree to which landscape context influenced biomass estimation. The explained biomass variance of Urban Forest models, adjusted R2, was fairly consistent across the reduced point densities with the highest difference of 11.5% between the 100% and 1% point densities. The combined estimates of Forest Type biomass models outperformed the Urban Forest models using two representative point densities (100% and 40%). The Urban Forest biomass model with development density of 125 m radius produced the highest adjusted R2 (0.83 and 0.82 at 100% and 40% LiDAR point densities, respectively) and the lowest RMSE values, signifying the distance impact of development on biomass estimation. Our evaluation suggests that reducing LiDAR point density is a viable solution to regional-scale forest biomass assessment without compromising the accuracy of estimation, which may further be improved using development density.
2016-05-01
In order to detect the effects of simulated nitrogen deposition on litter decomposition and degradation of lignin and cellulose, a one-year field experiment of simulated nitrogen deposition has been conducted using litter bag method from November 2013 to November 2014 in an evergreen broad-leaved forest, Rainy Area of West China. Four levels of nitrogen deposition were set, i.e., control (0 g N·m -2 ·a -1 ), low (5 g N·m -2 ·a -1 ), medium (15 g N·m -2 ·a -1 ) and high (30 g N·m -2 ·a -1 ) nitrogen deposition. The results indicated that foliar litter decomposed faster in summer, obviously faster than in the other seasons. N deposition significantly inhibited the decomposition of foliar litter in this evergreen broad-leaved forest. As N deposition increased, the inhibition effect was enhanced. The time of 95% mass loss (T 95% ) of foliar litter due to simulated N deposition was increased by 0.53-1.88 years compared with T 95% of control (4.81 years). N deposition significantly inhibited the degradation of lignin and cellulose. The mass remaining after one year of decomposition of lignin and cellulose in the medium and high nitrogen deposition treatments were significantly higher than that in the control. There was a significant positive linear relationship among mass remaining rate and lignin and cellulose remaining rates. The inhibiting effects of inorga-nic N on degradation of lignin and cellulose explained the inhibitory effect of N on foliar litter decomposition.
Nithaniyal, Stalin; Newmaster, Steven G; Ragupathy, Subramanyam; Krishnamoorthy, Devanathan; Vassou, Sophie Lorraine; Parani, Madasamy
2014-01-01
India is rich with biodiversity, which includes a large number of endemic, rare and threatened plant species. Previous studies have used DNA barcoding to inventory species for applications in biodiversity monitoring, conservation impact assessment, monitoring of illegal trading, authentication of traded medicinal plants etc. This is the first tropical dry evergreen forest (TDEF) barcode study in the World and the first attempt to assemble a reference barcode library for the trees of India as part of a larger project initiated by this research group. We sampled 429 trees representing 143 tropical dry evergreen forest (TDEF) species, which included 16 threatened species. DNA barcoding was completed using rbcL and matK markers. The tiered approach (1st tier rbcL; 2nd tier matK) correctly identified 136 out of 143 species (95%). This high level of species resolution was largely due to the fact that the tree species were taxonomically diverse in the TDEF. Ability to resolve taxonomically diverse tree species of TDEF was comparable among the best match method, the phylogenetic method, and the characteristic attribute organization system method. We demonstrated the utility of the TDEF reference barcode library to authenticate wood samples from timber operations in the TDEF. This pilot research study will enable more comprehensive surveys of the illegal timber trade of threatened species in the TDEF. This TDEF reference barcode library also contains trees that have medicinal properties, which could be used to monitor unsustainable and indiscriminate collection of plants from the wild for their medicinal value.
Nithaniyal, Stalin; Newmaster, Steven G.; Ragupathy, Subramanyam; Krishnamoorthy, Devanathan; Vassou, Sophie Lorraine; Parani, Madasamy
2014-01-01
Background India is rich with biodiversity, which includes a large number of endemic, rare and threatened plant species. Previous studies have used DNA barcoding to inventory species for applications in biodiversity monitoring, conservation impact assessment, monitoring of illegal trading, authentication of traded medicinal plants etc. This is the first tropical dry evergreen forest (TDEF) barcode study in the World and the first attempt to assemble a reference barcode library for the trees of India as part of a larger project initiated by this research group. Methodology/Principal Findings We sampled 429 trees representing 143 tropical dry evergreen forest (TDEF) species, which included 16 threatened species. DNA barcoding was completed using rbcL and matK markers. The tiered approach (1st tier rbcL; 2nd tier matK) correctly identified 136 out of 143 species (95%). This high level of species resolution was largely due to the fact that the tree species were taxonomically diverse in the TDEF. Ability to resolve taxonomically diverse tree species of TDEF was comparable among the best match method, the phylogenetic method, and the characteristic attribute organization system method. Conclusions We demonstrated the utility of the TDEF reference barcode library to authenticate wood samples from timber operations in the TDEF. This pilot research study will enable more comprehensive surveys of the illegal timber trade of threatened species in the TDEF. This TDEF reference barcode library also contains trees that have medicinal properties, which could be used to monitor unsustainable and indiscriminate collection of plants from the wild for their medicinal value. PMID:25259794
Meng, Fengqun; Cao, Rui; Yang, Dongmei; Niklas, Karl J; Sun, Shucun
2013-07-01
In theory, plants can alter the distribution of leaves along the lengths of their twigs (i.e., within-twig leaf distribution patterns) to optimize light interception in the context of the architectures of their leaves, branches and canopies. We hypothesized that (i) among canopy tree species sharing similar light environments, deciduous trees will have more evenly spaced within-twig leaf distribution patterns compared with evergreen trees (because deciduous species tend to higher metabolic demands than evergreen species and hence require more light), and that (ii) shade-adapted evergreen species will have more evenly spaced patterns compared with sun-adapted evergreen ones (because shade-adapted species are generally light-limited). We tested these hypotheses by measuring morphological traits (i.e., internode length, leaf area, lamina mass per area, LMA; and leaf and twig inclination angles to the horizontal) and physiological traits (i.e., light-saturated net photosynthetic rates, Amax; light saturation points, LSP; and light compensation points, LCP), and calculated the 'evenness' of within-twig leaf distribution patterns as the coefficient of variation (CV; the higher the CV, the less evenly spaced leaves) of within-twig internode length for 9 deciduous canopy tree species, 15 evergreen canopy tree species, 8 shade-adapted evergreen shrub species and 12 sun-adapted evergreen shrub species in a subtropical broad-leaved rainforest in eastern China. Coefficient of variation was positively correlated with large LMA and large leaf and twig inclination angles, which collectively specify a typical trait combination adaptive to low light interception, as indicated by both ordinary regression and phylogenetic generalized least squares analyses. These relationships were also valid within the evergreen tree species group (which had the largest sample size). Consistent with our hypothesis, in the canopy layer, deciduous species (which were characterized by high LCP, LSP and Amax) had more even leaf distribution patterns than evergreen species (which had low LCP, LSP and Amax); shade-adapted evergreen species had more even leaf distribution patterns than sun-adapted evergreen species. We propose that the leaf distribution pattern (i.e., 'evenness' CV, which is an easily measured functional trait) can be used to distinguish among life-forms in communities similar to the one examined in this study.
Regional Application of an Ecosystem Production Model for Studies of Biogeochemistry in the...
NASA Technical Reports Server (NTRS)
Potter, C. S.; Klooster, S.; Brooks, V.; Peterson, David L. (Technical Monitor)
1997-01-01
The degree to which primary production, soil carbon, and trace gas fluxes in tropical forests of the Amazon are limited by moisture availability and other environmental factors was examined using an ecosystem modeling application for the country of Brazil. A regional geographic information system (GIS) serves as the data source of climate drivers, satellite images, land cover, and soil properties for input to the NASA Ames-CASA (Carnegie-Ames-Stanford Approach) model over a 8-km grid resolution. Simulation results supports the hypothesis that net primary production (NPP) is limited by cloud interception of solar radiation over the humid northwestern portion of the region. Peak annual rates for NPP of nearly 1.4 kg C m-2yr -1are localized in the seasonally dry eastern Amazon in areas that we assume are primarily deep-rooted evergreen forest cover. Regional effects of forest conversion on NPP and soil carbon content are indicated in the model results, especially in seasonally dry areas. Comparison of model flux predictions along selected eco-climatic transects reveal moisture, soil, and land use controls on gradients of ecosystem production and soil trace gas emissions (CO2, N2O, and NO). These results are used to formulate a series of research hypotheses for testing in the next phase of regional modeling, which includes recalibration of the light-use efficiency term in CASA using field measurements of NPP, and refinements of vegetation index and soil property (texture and potential rooting depth) maps for the region.
Constructing seasonal LAI trajectory by data-model fusion for global evergreen needle-leaf forests
NASA Astrophysics Data System (ADS)
Wang, R.; Chen, J.; Mo, G.
2010-12-01
For decades, advancements in optical remote sensors made it possible to produce maps of a biophysical parameter--the Leaf Area Index (LAI), which is critically necessary in regional and global modeling of exchanges of carbon, water, energy and other substances, across large areas in a fast way. Quite a few global LAI products have been generated since 2000, e.g. GLOBCARBON (Deng et al., 2006), MODIS Collection 5 (Shabanov et al., 2007), CYCLOPES (Baret et al., 2007), etc. Albeit these progresses, the basic physics behind the technology restrains it from accurate estimation of LAI in winter, especially for northern high-latitude evergreen needle-leaf forests. Underestimation of winter LAI in these regions has been reported in literature (Yang et al., 2000; Cohen et al., 2003; Tian et al., 2004; Weiss et al., 2007; Pisek et al., 2007), and the distortion is usually attributed to the variations of canopy reflectance caused by understory change (Weiss et al., 2007) as well as by the presence of ice and snow on leaves and ground (Cohen, 2003; Tian et al., 2004). Seasonal changes in leaf pigments can also be another reason for low LAI retrieved in winter. Low conifer LAI values in winter retrieved from remote sensing make them unusable for surface energy budget calculations. To avoid these drawbacks of remote sensing approaches, we attempt to reconstruct the seasonal LAI trajectory through model-data fusion. A 1-degree LAI map of global evergreen needle-leaf forests at 10-day interval is produced based on the carbon allocation principle in trees. With net primary productivity (NPP) calculated by the Boreal Ecosystems Productivity Simulator (BEPS) (Chen et al., 1999), carbon allocated to needles is quantitatively evaluated and then can be further transformed into LAI using the specific leaf area (SLA). A leaf-fall scheme is developed to mimic the carbon loss caused by falling needles throughout the year. The seasonally maximum LAI from remote sensing data for each pixel is used as an anchor point of the LAI trajectory. Ground data are used for validation. The resulting LAI does not show strong seasonality within a year, which is reasonable for evergreen needle-leaf forests with known leaf longevity.
Protected Areas: Mixed Success in Conserving East Africa’s Evergreen Forests
Pfeifer, Marion; Burgess, Neil D.; Swetnam, Ruth D.; Platts, Philip J.; Willcock, Simon; Marchant, Robert
2012-01-01
In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs) are intended to conserve habitats and species. Variability in PA effectiveness and ‘leakage’ (here defined as displacement of deforestation) may lead to different trends in forest loss within, and adjacent to, existing PAs. Here, we quantify spatial variation in trends of evergreen forest coverage in East Africa between 2001 and 2009, and test for correlations with forest accessibility and environmental drivers. We investigate PA effectiveness at local, landscape and national scales, comparing rates of deforestation within park boundaries with those detected in park buffer zones and in unprotected land more generally. Background forest loss (BFL) was estimated at −9.3% (17,167 km2), but varied between countries (range: −0.9% to −85.7%; note: no BFL in South Sudan). We document high variability in PA effectiveness within and between PA categories. The most successful PAs were National Parks, although only 26 out of 48 parks increased or maintained their forest area (i.e. Effective parks). Forest Reserves (Ineffective parks, i.e. parks that lose forest from within boundaries: 204 out of 337), Nature Reserves (six out of 12) and Game Parks (24 out of 26) were more likely to lose forest cover. Forest loss in buffer zones around PAs exceeded background forest loss, in some areas indicating leakage driven by Effective National Parks. Human pressure, forest accessibility, protection status, distance to fires and long-term annual rainfall were highly significant drivers of forest loss in East Africa. Some of these factors can be addressed by adjusting park management. However, addressing close links between livelihoods, natural capital and poverty remains a fundamental challenge in East Africa’s forest conservation efforts. PMID:22768074
Fajardo, Alex; Piper, Frida I; Hoch, Günter
2013-08-01
The most plausible explanation for treeline formation so far is provided by the growth limitation hypothesis (GLH), which proposes that carbon sinks are more restricted by low temperatures than by carbon sources. Evidence supporting the GLH has been strong in evergreen, but less and weaker in deciduous treeline species. Here a test is made of the GLH in deciduous-evergreen mixed species forests across elevational gradients, with the hypothesis that deciduous treeline species show a different carbon storage trend from that shown by evergreen species across elevations. Tree growth and concentrations of non-structural carbohydrates (NSCs) in foliage, branch sapwood and stem sapwood tissues were measured at four elevations in six deciduous-evergreen treeline ecotones (including treeline) in the southern Andes of Chile (40°S, Nothofagus pumilio and Nothofagus betuloides; 46°S, Nothofagus pumilio and Pinus sylvestris) and in the Swiss Alps (46°N, Larix decidua and Pinus cembra). Tree growth (basal area increment) decreased with elevation for all species. Regardless of foliar habit, NSCs did not deplete across elevations, indicating no shortage of carbon storage in any of the investigated tissues. Rather, NSCs increased significantly with elevation in leaves (P < 0·001) and branch sapwood (P = 0·012) tissues. Deciduous species showed significantly higher NSCs than evergreens for all tissues; on average, the former had 11 % (leaves), 158 % (branch) and 103 % (sapwood) significantly (P < 0·001) higher NSCs than the latter. Finally, deciduous species had higher NSC (particularly starch) increases with elevation than evergreens for stem sapwood, but the opposite was true for leaves and branch sapwood. Considering the observed decrease in tree growth and increase in NSCs with elevation, it is concluded that both deciduous and evergreen treeline species are sink limited when faced with decreasing temperatures. Despite the overall higher requirements of deciduous tree species for carbon storage, no indication was found of carbon limitation in deciduous species in the alpine treeline ecotone.
Nam, Vu Thanh; van Kuijk, Marijke; Anten, Niels P R
2016-01-01
Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB) and root biomass (RB) based on 300 (of 45 species) and 40 (of 25 species) sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH) and tree height (H), wood density (WD) was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam.
Nam, Vu Thanh; van Kuijk, Marijke; Anten, Niels P. R.
2016-01-01
Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB) and root biomass (RB) based on 300 (of 45 species) and 40 (of 25 species) sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH) and tree height (H), wood density (WD) was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam. PMID:27309718
Hu, Guang; Xu, Xuehong; Wang, Yuling; Lu, Gao; Feeley, Kenneth J; Yu, Mingjian
2012-01-01
Pine wilt disease is a severe threat to the native pine forests in East Asia. Understanding the natural regeneration of the forests disturbed by pine wilt disease is thus critical for the conservation of biodiversity in this realm. We studied the dynamics of composition and structure within different plant functional types (PFTs) in Masson pine forests affected by pine wilt disease (PWD). Based on plant traits, all species were assigned to four PFTs: evergreen woody species (PFT1), deciduous woody species (PFT2), herbs (PFT3), and ferns (PFT4). We analyzed the changes in these PFTs during the initial disturbance period and during post-disturbance regeneration. The species richness, abundance and basal area, as well as life-stage structure of the PFTs changed differently after pine wilt disease. The direction of plant community regeneration depended on the differential response of the PFTs. PFT1, which has a higher tolerance to disturbances, became dominant during the post-disturbance regeneration, and a young evergreen-broad-leaved forest developed quickly after PWD. Results also indicated that the impacts of PWD were dampened by the feedbacks between PFTs and the microclimate, in which PFT4 played an important ecological role. In conclusion, we propose management at the functional type level instead of at the population level as a promising approach in ecological restoration and biodiversity conservation.
Observational evidence for cloud cover enhancement over western European forests.
Teuling, Adriaan J; Taylor, Christopher M; Meirink, Jan Fokke; Melsen, Lieke A; Miralles, Diego G; van Heerwaarden, Chiel C; Vautard, Robert; Stegehuis, Annemiek I; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau
2017-01-11
Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas.
Observational evidence for cloud cover enhancement over western European forests
Teuling, Adriaan J.; Taylor, Christopher M.; Meirink, Jan Fokke; Melsen, Lieke A.; Miralles, Diego G.; van Heerwaarden, Chiel C.; Vautard, Robert; Stegehuis, Annemiek I.; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau
2017-01-01
Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas. PMID:28074840
NASA Astrophysics Data System (ADS)
Burbridge, Rachel E.; Mayle, Francis E.; Killeen, Timothy J.
2004-03-01
Pollen and charcoal records from two large, shallow lakes reveal that throughout most of the past 50,000 yr Noel Kempff Mercado National Park, in northeastern lowland Bolivia (southwestern Amazon Basin), was predominantly covered by savannas and seasonally dry semideciduous forests. Lowered atmospheric CO 2 concentrations, in combination with a longer dry season, caused expansion of dry forests and savannas during the last glacial period, especially at the last glacial maximum. These ecosystems persisted until the mid-Holocene, although they underwent significant species reassortment. Forest communities containing a mixture of evergreen and semideciduous species began to expand between 6000 and 3000 14C yr B.P. Humid evergreen rain forests expanded to cover most of the area within the past 2000 14C yr B.P., coincident with a reduction in fire frequencies. Comparisons between modern pollen spectra and vegetation reveal that the Moraceae-dominated rain forest pollen spectra likely have a regional source area at least 2-3 km beyond the lake shore, whereas the grass- and sedge-dominated savanna pollen spectra likely have a predominantly local source area. The Holocene vegetation changes are consistent with independent paleoprecipitation records from the Bolivian Altiplano and paleovegetation records from other parts of southwestern Amazonia. The progressive expansion in rain forests through the Holocene can be largely attributed to enhanced convective activity over Amazonia, due to greater seasonality of insolation in the Southern Hemisphere tropics driven by the precession cycle according to the Milankovitch Astronomical Theory.
Dai, Erfu; Wu, Zhuo; Ge, Quansheng; Xi, Weimin; Wang, Xiaofan
2016-11-01
In the past three decades, our global climate has been experiencing unprecedented warming. This warming has and will continue to significantly influence the structure and function of forest ecosystems. While studies have been conducted to explore the possible responses of forest landscapes to future climate change, the representative concentration pathways (RCPs) scenarios under the framework of the Coupled Model Intercomparison Project Phase 5 (CMIP5) have not been widely used in quantitative modeling research of forest landscapes. We used LANDIS-II, a forest dynamic landscape model, coupled with a forest ecosystem process model (PnET-II), to simulate spatial interactions and ecological succession processes under RCP scenarios, RCP2.6, RCP4.5 and RCP8.5, respectively. We also modeled a control scenario of extrapolating current climate conditions to examine changes in distribution and aboveground biomass (AGB) among five different forest types for the period of 2010-2100 in Taihe County in southern China, where subtropical coniferous plantations dominate. The results of the simulation show that climate change will significantly influence forest distribution and AGB. (i) Evergreen broad-leaved forests will expand into Chinese fir and Chinese weeping cypress forests. The area percentages of evergreen broad-leaved forests under RCP2.6, RCP4.5, RCP8.5 and the control scenarios account for 18.25%, 18.71%, 18.85% and 17.46% of total forest area, respectively. (ii) The total AGB under RCP4.5 will reach its highest level by the year 2100. Compared with the control scenarios, the total AGB under RCP2.6, RCP4.5 and RCP8.5 increases by 24.1%, 64.2% and 29.8%, respectively. (iii) The forest total AGB increases rapidly at first and then decreases slowly on the temporal dimension. (iv) Even though the fluctuation patterns of total AGB will remain consistent under various future climatic scenarios, there will be certain responsive differences among various forest types. © 2016 John Wiley & Sons Ltd.
New country records of reptiles from Laos
2013-01-01
Abstract Four species of reptiles, of which one is represented by one of its subspecies, are recorded for the first time from Laos: Cyrtodactylus phongnhakebangensis, Lycodon futsingensis, and Lycodon ruhstrati, as Lycodon ruhstrati abditus, from limestone forests in Khammouane Province and Cyrtodactylus pseudoquadrivirgatus from hill evergreen forest in Salavan Province. These discoveries of lizards and snakes bring the total species number of reptiles to 189 in Laos. PMID:24723754
J. Wang; L. Huang; H. Ren; Z. Sun; Q. Guo
2015-01-01
Soil seed banks can act as an important source in forest regeneration, and the information on the seed bank composition is vital for determining the resilience of plant communities under severe environments such as urban settings. In this study, we examined the seed bank density and functional composition, and their relationships with aboveground vegetation in three...
Tang, Hao; Dubayah, Ralph
2017-03-07
Light-regime variability is an important limiting factor constraining tree growth in tropical forests. However, there is considerable debate about whether radiation-induced green-up during the dry season is real, or an apparent artifact of the remote-sensing techniques used to infer seasonal changes in canopy leaf area. Direct and widespread observations of vertical canopy structures that drive radiation regimes have been largely absent. Here we analyze seasonal dynamic patterns between the canopy and understory layers in Amazon evergreen forests using observations of vertical canopy structure from a spaceborne lidar. We discovered that net leaf flushing of the canopy layer mainly occurs in early dry season, and is followed by net abscission in late dry season that coincides with increasing leaf area of the understory layer. Our observations of understory development from lidar either weakly respond to or are not correlated to seasonal variations in precipitation or insolation, but are strongly related to the seasonal structural dynamics of the canopy layer. We hypothesize that understory growth is driven by increased light gaps caused by seasonal variations of the canopy. This light-regime variability that exists in both spatial and temporal domains can better reveal the drought-induced green-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.
Semiquantitative color profiling of soils over a land degradation gradient in Sakaerat, Thailand.
Doi, Ryoichi; Wachrinrat, Chongrak; Teejuntuk, Sakhan; Sakurai, Katsutoshi; Sahunalu, Pongsak
2010-11-01
In this study, we attempted multivariate color profiling of soils over a land degradation gradient represented by dry evergreen forest (original vegetation), dry deciduous forest (moderately disturbed by fire), and bare ground (severely degraded) in Sakaerat, Thailand. The soils were sampled in a dry-to-wet seasonal transition. Values of the red-green-blue (RGB), cyan-magenta-yellow-key black (CMYK), L*a*b*, and hue-intensity-saturation (HIS) color models were determined using the digital software Adobe Photoshop. Land degradation produced significant variations (p<0.05) in R, C, Y, L*, a*, b*, S, and I values (p<0.05). The seasonal transition produced significant variations (p<0.05) in R, G, B, C, M, K, L*, b*, and I values. In discriminating the soils, the color models did not differ in discriminatory power, while discriminatory power was affected by seasonal changes. Most color variation patterns had nonlinear relationships with the intensity of the land degradation gradient, due to effects of fire that darkened the deciduous forest soil, masking the nature of the soil as the intermediate between the evergreen forest and the bare ground soils. Taking these findings into account, the utilization of color profiling of soils in land conservation and rehabilitation is discussed.
Early snowmelt significantly enhances boreal springtime carbon uptake
Pulliainen, Jouni; Aurela, Mika; Laurila, Tuomas; Aalto, Tuula; Takala, Matias; Salminen, Miia; Kulmala, Markku; Barr, Alan; Heimann, Martin; Lindroth, Anders; Laaksonen, Ari; Derksen, Chris; Mäkelä, Annikki; Markkanen, Tiina; Lemmetyinen, Juha; Susiluoto, Jouni; Dengel, Sigrid; Mammarella, Ivan; Tuovinen, Juha-Pekka; Vesala, Timo
2017-01-01
We determine the annual timing of spring recovery from space-borne microwave radiometer observations across northern hemisphere boreal evergreen forests for 1979–2014. We find a trend of advanced spring recovery of carbon uptake for this period, with a total average shift of 8.1 d (2.3 d/decade). We use this trend to estimate the corresponding changes in gross primary production (GPP) by applying in situ carbon flux observations. Micrometeorological CO2 measurements at four sites in northern Europe and North America indicate that such an advance in spring recovery would have increased the January–June GPP sum by 29 g⋅C⋅m−2 [8.4 g⋅C⋅m−2 (3.7%)/decade]. We find this sensitivity of the measured springtime GPP to the spring recovery to be in accordance with the corresponding sensitivity derived from simulations with a land ecosystem model coupled to a global circulation model. The model-predicted increase in springtime cumulative GPP was 0.035 Pg/decade [15.5 g⋅C⋅m−2 (6.8%)/decade] for Eurasian forests and 0.017 Pg/decade for forests in North America [9.8 g⋅C⋅m−2 (4.4%)/decade]. This change in the springtime sum of GPP related to the timing of spring snowmelt is quantified here for boreal evergreen forests. PMID:28973918
Causes and consequences of variation in conifer leaf life-span
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reich, P.B.; Koike, T.; Gower, S.T.
1995-07-01
Species with mutually supporting traits, such as high N{sub mass}, SLA, and A{sub mass}, and short leaf life-span, tend to inhabit either generally resource-rich environments or spatial and/or temporal microhabitats that are resource-rich in otherwise more limited habitats (e.g., {open_quotes}precipitation{close_quotes} ephemerals in warm deserts or spring ephemerals in the understory of temperate deciduous forests). In contrast, species with long leaf life-span often support foliage with low SLA, N{sub mass}, and A{sub mass}, and often grow in low-temperature limited, dry, and/or nutrient-poor environments. The contrast between evergreen and deciduous species, and the implications that emerge from such comparisons, can be consideredmore » a paradigm of modern ecological theory. However, based on the results of Reich et al. (1992) and Gower et al. (1993), coniferous species with foliage that persists for 9-10 years are likely to assimilate and allocate carbon and nutrients differently than other evergreen conifers that retain foliage for 2-3 years. Thus, attempts to contrast ecophysiological or ecosystem characteristics of evergreen versus deciduous life forms may be misleading, and pronounced differences among evergreen conifers may be ignored. Clearly, the deciduous-evergreen contrast, although useful in several ways, should be viewed from the broader perspective of a gradient in leaf life-span.« less
NASA Astrophysics Data System (ADS)
Lawton, R.; Nair, U. S.
2011-12-01
Cloud forests stand at the core of the complex of montane ecosystems that provide the backbone to the multinational Mesoamerican Biological Corridor, which seeks to protect a biodiversity conservation "hotspot" of global significance in an area of rapidly changing land use. Although cloud forests are generally defined by frequent and prolonged immersion in cloud, workers differ in their feelings about "frequent" and "prolonged", and quantitative assessments are rare. Here we focus on the dry season, in which the cloud and mist from orographic cloud plays a critical role in forest water relations, and discuss remote sensing of orographic clouds, and regional and atmospheric modeling at several scales to quantitatively examine the distribution of the atmospheric conditions that characterize cloud forests. Remote sensing using data from GOES reveals diurnal and longer scale patterns in the distribution of dry season orographic clouds in Central America at both regional and local scales. Data from MODIS, used to calculate the base height of orographic cloud banks, reveals not only the geographic distributon of cloud forest sites, but also striking regional variation in the frequency of montane immersion in orographic cloud. At a more local scale, wind is known to have striking effects on forest structure and species distribution in tropical montane ecosystems, both as a general mechanical stress and as the major agent of ecological disturbance. High resolution regional atmospheric modeling using CSU RAMS in the Monteverde cloud forests of Costa Rica provides quantitative information on the spatial distribution of canopy level winds, insight into the spatial structure and local dynamics of cloud forest communities. This information will be useful in not only in local conservation planning and the design of the Mesoamerican Biological Corridor, but also in assessments of the sensitivity of cloud forests to global and regional climate changes.
Do evergreen and deciduous trees have different effects on net N mineralization in soil?
Mueller, Kevin E; Hobbie, Sarah E; Oleksyn, Jacek; Reich, Peter B; Eissenstat, David M
2012-06-01
Evergreen and deciduous plants are widely expected to have different impacts on soil nitrogen (N) availability because of differences in leaf litter chemistry and ensuing effects on net N mineralization (N(min)). We evaluated this hypothesis by compiling published data on net N(min) rates beneath co-occurring stands of evergreen and deciduous trees. The compiled data included 35 sets of co-occurring stands in temperate and boreal forests. Evergreen and deciduous stands did not have consistently divergent effects on net N(min) rates; net N(min) beneath deciduous trees was higher when comparing natural stands (19 contrasts), but equivalent to evergreens in plantations (16 contrasts). We also compared net N(min) rates beneath pairs of co-occurring genera. Most pairs of genera did not differ consistently, i.e., tree species from one genus had higher net N(min) at some sites and lower net N(min) at other sites. Moreover, several common deciduous genera (Acer, Betula, Populus) and deciduous Quercus spp. did not typically have higher net N(min) rates than common evergreen genera (Pinus, Picea). There are several reasons why tree effects on net N(min) are poorly predicted by leaf habit and phylogeny. For example, the amount of N mineralized from decomposing leaves might be less than the amount of N mineralized from organic matter pools that are less affected by leaf litter traits, such as dead roots and soil organic matter. Also, effects of plant traits and plant groups on net N(min) probably depend on site-specific factors such as stand age and soil type.
Modeling forest dynamics along climate gradients in Bolivia
NASA Astrophysics Data System (ADS)
Seiler, C.; Hutjes, R. W. A.; Kruijt, B.; Quispe, J.; Añez, S.; Arora, V. K.; Melton, J. R.; Hickler, T.; Kabat, P.
2014-05-01
Dynamic vegetation models have been used to assess the resilience of tropical forests to climate change, but the global application of these modeling experiments often misrepresents carbon dynamics at a regional level, limiting the validity of future projections. Here a dynamic vegetation model (Lund Potsdam Jena General Ecosystem Simulator) was adapted to simulate present-day potential vegetation as a baseline for climate change impact assessments in the evergreen and deciduous forests of Bolivia. Results were compared to biomass measurements (819 plots) and remote sensing data. Using regional parameter values for allometric relations, specific leaf area, wood density, and disturbance interval, a realistic transition from the evergreen Amazon to the deciduous dry forest was simulated. This transition coincided with threshold values for precipitation (1400 mm yr-1) and water deficit (i.e., potential evapotranspiration minus precipitation) (-830 mm yr-1), beyond which leaf abscission became a competitive advantage. Significant correlations were found between modeled and observed values of seasonal leaf abscission (R2 = 0.6, p <0.001) and vegetation carbon (R2 = 0.31, p <0.01). Modeled Gross Primary Productivity (GPP) and remotely sensed normalized difference vegetation index showed that dry forests were more sensitive to rainfall anomalies than wet forests. GPP was positively correlated to the El Niño-Southern Oscillation index in the Amazon and negatively correlated to consecutive dry days. Decreasing rainfall trends were simulated to reduce GPP in the Amazon. The current model setup provides a baseline for assessing the potential impacts of climate change in the transition zone from wet to dry tropical forests in Bolivia.
Forest discrimination with multipolarization imaging radar
NASA Technical Reports Server (NTRS)
Ford, J. P.; Wickland, D. E.
1985-01-01
The use of radar polarization diversity for discriminating forest canopy variables on airborne synthetic-aperture radar (SAR) images is evaluated. SAR images were acquired at L-Band (24.6 cm) simultaneously in four linear polarization states (HH, HV, VH, and VV) in South Carolina on March 1, 1984. In order to relate the polarization signatures to biophysical properties, false-color composite images were compared to maps of forest stands in the timber compartment. In decreasing order, the most useful correlative forest data are stand basal area, forest age, site condition index, and forest management type. It is found that multipolarization images discriminate variation in tree density and difference in the amount of understory, but do not discriminate between evergreen and deciduous forest types.
Assessment of Provisional MODIS-derived Surfaces Related to the Global Carbon Cycle
NASA Astrophysics Data System (ADS)
Cohen, W. B.; Maiersperger, T. K.; Turner, D. P.; Gower, S. T.; Kennedy, R. E.; Running, S. W.
2002-12-01
The global carbon cycle is one of the most important foci of an emerging global biosphere monitoring system. A key component of such a system is the MODIS sensor, onboard the Terra satellite platform. Biosphere monitoring requires an integrated program of satellite observations, Earth-system models, and in situ data. Related to the carbon cycle, MODIS science teams routinely develop a variety of global surfaces such as land cover, leaf area index, and net primary production using MODIS data and functional algorithms. The quality of these surfaces must be evaluated to determine their effectiveness for global biosphere monitoring. A project called BigFoot (http://www.fsl.orst.edu/larse/bigfoot/) is an organized effort across nine biomes to assess the quality of the abovementioned surfaces: (1) Arctic tundra; (2) boreal evergreen needle-leaved forest; temperate (3) cropland, (4) grassland, (5) evergreen needle-leaved forest, and (6) deciduous broad-leaved forest; desert (7) grassland and (8) shrubland; and (9) tropical evergreen broad-leaved forest. Each biome is represented by a site that has an eddy-covariance flux tower that measures water vapor and CO2 fluxes. Flux tower footprints are relatively small-approximately 1 km2. BigFoot characterizes 25 km2 around each tower, using field data, Landsat ETM+ image data, and ecosystem process models. Our innovative field sampling design incorporates a nested spatial series to facilitate geostatistical analyses, samples the ecological variability at a site, and is logistically efficient. Field data are used both to develop site-specific algorithms for mapping/modeling the variables of interest and to characterize the errors in derived BigFoot surfaces. Direct comparisons of BigFoot- and MODIS-derived surfaces are made to help understand the sources of error in MODIS-derived surfaces and to facilitate improvements to MODIS algorithms. Results from four BigFoot sites will be presented.
NASA Astrophysics Data System (ADS)
Moreaux, V.; Ceschia, E.; Delpierre, N.; Dufrêne, E.; Joffre, R.; Klumpp, K.; Berveiller, D.; Loustau, D.; Limousin, J. M.; Ourcival, J. M.; Brut, A.; Darsonville, O.; Lafont, S.; Piquemal, K.; Longdoz, B.
2017-12-01
The attribution of the significant inter-annual variability of long lived greenhouse gas (GHG) fluxes, between edaphic, meteorological variables and ecosystem management parameters - independently or in interaction, evolving as a long term drift or as extreme events - remains uncertain. Our research aims to quantify the potential impact of climatic drifts or anthropogenic and meteorological events on ecosystem-atmosphere exchanges of French sites by analyzing the long series (at least continuous 9 years, between 1996 and 2015) of eddy covariance (EC) fluxes. We firstly performed a homogeneously repost-processing of the raw EC data across 5 sites: three forest ecosystems (deciduous broad-leaved FR-Fon, evergreen broadleaved FR-Pue, and evergreen coniferous FR-Br), one extensive grassland (FR-Lq2) and one cropland (FR-Aur). These data, in terms of net ecosystem exchanges (NEE), gross primary production (GPP) and ecosystem respiration (Reco) were put together with the corresponding climatic and edaphic data and with the carbon stock inventory for an homogeneous statistical analysis and comparative interpretations. The standard protocol, excluding any Nakai's corrections, helped to reduce the influence of the methodology and experimental design on the temporal and spatial variability. The methodology adopted finally used 35% on average of flux data for all sites. Based on the first analysis of reprocessed data from the forests, no significant long term evolution of NEE, Reco and GPP through the studied periods despite [CO2] increase and long term change observed in environmental parameters. Combining all years, a respiration limitation at high air temperature was observed on the forest sites, with a LAI dependency for deciduous ecosystems, and REW dependency for evergreen southern sites. A dominant effect of air vapor stress, compared to edaphic stress was observed on GPP response to PPFD in the deciduous northern forest, significantly decreasing with VPD increase.
Vegetation survey in Amazonia using LANDSAT data. [Brazil
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Shimabukuro, Y. E.; Dossantos, J. R.; Deaquino, L. C. S.
1982-01-01
Automatic Image-100 analysis of LANDSAT data was performed using the MAXVER classification algorithm. In the pilot area, four vegetation units were mapped automatically in addition to the areas occupied for agricultural activities. The Image-100 classified results together with a soil map and information from RADAR images, permitted the establishment of the final legend with six classes: semi-deciduous tropical forest; low land evergreen tropical forest; secondary vegetation; tropical forest of humid areas, predominant pastureland and flood plains. Two water types were identified based on their sediments indicating different geological and geomorphological aspects.
NASA Astrophysics Data System (ADS)
Takahara, Hikaru; Igarashi, Yaeko; Hayashi, Ryoma; Kumon, Fujio; Liew, Ping-Mei; Yamamoto, Masanobu; Kawai, Sayuri; Oba, Tadamichi; Irino, Tomohisa
2010-10-01
High-resolution pollen records from Taiwan, Japan and Sakhalin document regional vegetation changes during Dansgaard-Oeschger (D-O) cycles during the last glacial. During the period from the cold phase (GS 18/19) to warm phase (D-O 19), the biome shift from temperate conifer forest to cold/cool conifer forest in Japan and from subtropical forest to temperate deciduous/conifer forest in Taiwan. The vegetation in D-O 17, cool mixed forest in central Japan, temperate deciduous broadleaf forest in western Japan and subtropical forest in Taiwan, indicates warm condition but not wet in all area. These vegetation changes lead to biome shift from MIS (Marine Isotope Stage) 4 to MIS 3. The abundance of Cryptomeria japonica and Fagus crenata in D-O 12 and D-O 8 indicates wet conditions brought by the strong summer monsoon through the Islands and high snowfall brought by the inflow of the Tsushima Warm Current into the Sea of Japan. The registration of other D-O warming events in MIS 3, although reflected by shifts in the abundance of key species, is not sufficient to produce changes in biomes. Development of cold deciduous forest in HS (Heinrich events) 1 in Sakhalin, Hokkaido and central Japan was conspicuous and was much larger than that in YD. Vegetation response in YD was small scale and within the same biome in the East Asian Islands. In D-O 1 at the termination of the last glacial, the same taxa that developed in the early Holocene, cold evergreen needleleaf trees in northern region, temperate deciduous broadleaf trees in central and western Japan, and warm-temperate evergreen trees in Taiwan, increased.
Lynam, Antony J; Tantipisanuh, Naruemon; Chutipong, Wanlop; Ngoprasert, Dusit; Baker, Megan C; Cutter, Passanan; Gale, George; Kitamura, Shumpei; Steinmetz, Robert; Sukmasuang, Ronglarp; Thunhikorn, Somying
2012-12-01
Southeast Asia's tropical forests suffer the highest rates of deforestation and disturbance of any on Earth, with poorly understood impacts on native fauna. Asian tapirs (Tapirus indicus) are among the least studied of the large mammals in these forests. Using records from 9 camera trap surveys in 7 of the largest (>1000 km(2) ) protected area complexes, we assessed the influence of environmental variation and human-induced disturbance on tapir occurrence. Tapirs were detected at 13% of locations sampled, significantly associated with evergreen forest (P < 0.001). A multiple logistic regression model predicted tapir presence 87% of the time. According to this model, tapir occurrence was positively influenced by annual rainfall and proximity to the forest edge. However, tapirs may not avoid edges but instead prefer wetter evergreen forest, a habitat type that tended to occur further from the forest edge at higher elevations in our particular study sites (P < 0.001). By comparison, 4 other wild ungulate species that share habitats with tapirs showed a range of differing responses. Tapirs are expected to be less sensitive to disturbance because they are not targets for hunting and trade, and are almost entirely active at night, so avoid peak traffic periods in parks. Tapir populations in Thailand may be more stable than in other parts of their global range because rates of forest loss have decreased >40% over the past 20 years. We recommend surveys to fill gaps in the understanding of the status in lesser-known protected areas, research to better understand the fine-scale environmental influences on behavior and habitats of tapirs, and other forest ungulates, and continued legal status for tapirs in the highest category of protection. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.
Rodríguez-Nevado, Cristina; Montes, Nuria; Pagán, Israel
2017-01-01
Increasing evidence indicates that there is ample diversity of plant virus species in wild ecosystems. The vast majority of this diversity, however, remains uncharacterized. Moreover, in these ecosystems the factors affecting plant virus infection risk and population genetic diversity, two traits intrinsically linked to virus emergence, are largely unknown. Along 3 years, we have analyzed the prevalence and diversity of plant virus species from the genus Potyvirus in evergreen oak forests of the Iberian Peninsula, the main wild ecosystem in this geographic region and in the entire Mediterranean basin. During this period, we have also measured plant species diversity, host density, plant biomass, temperature, relative humidity, and rainfall. Results indicated that potyviruses were always present in evergreen oak forests, with a novel virus species explaining the largest fraction of potyvirus-infected plants. We determined the genomic sequence of this novel virus and we explored its host range in natural and greenhouse conditions. Natural host range was limited to the perennial plant mountain rue ( Ruta montana ), commonly found in evergreen oak forests of the Iberian Peninsula. In this host, the virus was highly prevalent and was therefore provisionally named mediterranean ruda virus (MeRV). Focusing in this natural host-virus interaction, we analyzed the ecological factors affecting MeRV infection risk and population genetic diversity in its native wild ecosystem. The main predictor of virus infection risk was the host density. MeRV prevalence was the major factor determining genetic diversity and selection pressures in the virus populations. This observation supports theoretical predictions assigning these two traits a key role in parasite epidemiology and evolution. Thus, our analyses contribute both to characterize viral diversity and to understand the ecological determinants of virus population dynamics in wild ecosystems.
Zhou, Xiao Guo; Wen, Yuan Guang; Zhu, Hong Guang; Wang, Lei; Li, Xiao Qiong
2017-02-01
In order to reveal the dynamics of canopy vertical structure and its effects on understory regeneration, we built 24 permanent plots (20 m×20 m) on the upslope, midslopeand downslope, respectively, in a typical evergreen broadleaved forest in Damingshan, Guangxi, China. We measured the crown area of each tree with diameter at breast height (DBH)≥1.0 cm, and surveyed the understory regeneration in growing season from 2009 to 2011. The results showed that the total canopy cover significantly increased from 54.0% in 2009 to 67.4% in 2011 after the frozen disaster in 2008. A significant difference existed in the cover and increment of different canopy layers. The canopy cover in the upper layers was markedly higher than that in the middle and lower layers. The increment of canopy coverage in the middle and lower layers was significantly higher than that in the upper layer. There were 55 regenerated woody plant species, and the dominant families and species of regenerated plants were in accord with those in the evergreen broadleaved forest. Biodiversity index of regenerated plants in the same slope position was significantly different among different years, and no significant difference was observed among different slope positions in the same year. The correlation between the coverage at different canopy layers and the species richness and abundance of regenerated plants was not significant. Total canopy cover and canopy coverage at the middle and lower layers were significantly negatively correlated with the Shannon index, Simpson index, and Pielou evenness index of the understory regenerated plants. It indicated that canopy coverage had a significant influence on the regeneration of understory, and the middle and lower layers had a stronger influence on the biodiversity of regenerated plants.
NASA Astrophysics Data System (ADS)
Vico, Giulia; Dralle, David; Feng, Xue; Thompson, Sally; Manzoni, Stefano
2017-06-01
Drought-deciduous and evergreen species are both common in tropical forests, where there is the need to cope with water shortages during periodic dry spells and over the course of the dry season. Which phenological strategy is favored depends on the long-term balance of carbon costs and gains that leaf phenology imposes as a result of the alternation of wet and dry seasons and the unpredictability of rainfall events. This study integrates a stochastic eco-hydrological framework with key plant economy traits to derive the long-term average annual net carbon gain of trees exhibiting different phenological strategies in tropical forests. The average net carbon gain is used as a measure of fitness to assess which phenological strategies are more productive and more evolutionarily stable (i.e. not prone to invasion by species with a different strategy). The evergreen strategy results in a higher net carbon gain and more evolutionarily stable communities with increasing wet season lengths. Reductions in the length of the wet season or the total rainfall, as predicted under climate change scenarios, should promote a shift towards more drought-deciduous communities, with ensuing implications for ecosystem functioning.
Vowles, Tage; Gunnarsson, Bengt; Molau, Ulf; Hickler, Thomas; Klemedtsson, Leif; Björk, Robert G
2017-11-01
One of the most palpable effects of warming in Arctic ecosystems is shrub expansion above the tree line. However, previous studies have found that reindeer can influence plant community responses to warming and inhibit shrubification of the tundra.We revisited grazed (ambient) and ungrazed study plots (exclosures), at the southern as well as the northern limits of the Swedish alpine region, to study long-term grazing effects and vegetation changes in response to increasing temperatures between 1995 and 2011, in two vegetation types (shrub heath and mountain birch forest).In the field layer at the shrub heath sites, evergreen dwarf shrubs had increased in cover from 26% to 49% but were unaffected by grazing. Deciduous dwarf and tall shrubs also showed significant, though smaller, increases over time. At the birch forest sites, the increase was similar for evergreen dwarf shrubs (20-48%) but deciduous tall shrubs did not show the same consistent increase over time as in the shrub heath.The cover and height of the shrub layer were significantly greater in exclosures at the shrub heath sites, but no significant treatment effects were found on species richness or diversity.July soil temperatures and growing season thawing degree days (TDD) were higher in exclosures at all but one site, and there was a significant negative correlation between mean shrub layer height and soil TDD at the shrub heath sites. Synthesis . This study shows that shrub expansion is occurring rapidly in the Scandes mountain range, both above and below the tree line. Tall, deciduous shrubs had benefitted significantly from grazing exclosure, both in terms of cover and height, which in turn lowered summer soil temperatures. However, the overriding vegetation shift across our sites was the striking increase in evergreen dwarf shrubs, which were not influenced by grazing. As the effects of an increase in evergreen dwarf shrubs and more recalcitrant plant litter may to some degree counteract some of the effects of an increase in deciduous tall shrubs, herbivore influence on shrub interactions is potentially of great importance for shaping arctic shrub expansion and its associated ecosystem effects.
Mapping the Distribution of Cloud Forests Using MODIS Imagery
NASA Astrophysics Data System (ADS)
Douglas, M. W.; Mejia, J.; Murillo, J.; Orozco, R.
2007-05-01
Tropical cloud forests - those forests that are frequently immersed in clouds or otherwise very humid, are extremely difficult to map from the ground, and are not easily distinguished in satellite imagery from other forest types, but they have a very different flora and fauna than lowland rainforest. Cloud forests, although found in many parts of the tropics, have a very restricted vertical extent and thus are also restricted horizontally. As a result, they are subject to both human disturbance (coffee growing for example) and the effects of possible climate change. Motivated by a desire to seek meteorological explanations for the distribution of cloud forests, we have begun to map cloudiness using MODIS Terra and Aqua visible imagery. This imagery, at ~1030 LT and 1330 LT, is an approximation for mid-day cloudiness. In tropical regions the amount of mid-day cloudiness strongly controls the shortwave radiation and thus the potential for evaporation (and aridity). We have mapped cloudiness using a simple algorithm that distinguishes between the cloud-free background brightness and the generally more reflective clouds to separate clouds from the underlying background. A major advantage of MODIS imagery over many other sources of satellite imagery is its high spatial resolution (~250m). This, coupled with precisely navigated images, means that detailed maps of cloudiness can be produced. The cloudiness maps can then be related to the underlying topography to further refine the location of the cloud forests. An advantage of this technique is that we are mapping the potential cloud forest, based on cloudiness, rather than the actual cloud forest, which are commonly based on forest estimates from satellite and digital elevation data. We do not derive precipitation, only estimates of daytime cloudiness. Although only a few years of MODIS imagery has been used in our studies, we will show that this is sufficient to describe the climatology of cloudiness with acceptable accuracy for its intended purposes. Even periods as short as one month are sufficient for depicting the location of most cloud forest environments. However, we are proceeding to distinguish different characteristics of cloud forests, depending on the overall frequency of cloudiness, the seasonality of cloudiness, and the interannual variability of cloudiness. These results should be useful to those seeking to describe relationships between the physical characteristics of the cloud forests and their biological environment.
NASA Astrophysics Data System (ADS)
Meuth, J. A.; Dominguez, F.
2011-12-01
Evapotranspiration partitioning into transpiration and evaporation is an important step in understanding the relative contribution of the vegetated land surface to total atmospheric moisture in an area. This type of study has rarely been done over long time periods focusing on small time scales of variation. The relative contributions of whole canopy transpiration and soil evaporation to total evapotranspiration were determined in a mid-latitude semi arid evergreen forest using stable isotope measurements of atmospheric water vapor. We used a cavity ringdown spectrometer to collect continuous 5-second average isotopic and water vapor measurements throughout the ecosystem boundary layer. In addition, we analyzed the isotopic composition of liquid water extracted from soil, leaf and stem samples to obtain relative contributions of transpiration and evaporation to whole canopy evapotranspriation. The results from this method provided many time periods throughout the day with statistically significant data. This method can be used to follow daily, monthly, or yearly cycles of evapotranspiration partitioning with relative ease and accuracy.
Berry, Z Carter; Johnson, Daniel M; Reinhardt, Keith
2015-09-01
Many studies have demonstrated linkages between the occurrence of fog and ecophysiological functioning in cloud forests, but few have investigated hydraulic functioning as a determining factor that explains sharp changes in vegetation. The objective of this study was to compare the plant water status during cloud-immersed and non-immersed conditions and hydraulic vulnerability in branches and roots of species across a temperate, mountain fog ecotone. Because cloud forests are often dark, cool and very moist, we expected cloud forest species to have less drought-tolerant characteristics (i.e., lower Pe and P50-the pressures required to induce a 12 and 50% loss in hydraulic conductivity, respectively) relative to non-cloud forest species in adjacent (lower elevation) forests. Additionally, due to the ability of cloud forest species to absorb cloud-fog water, we predicted greater improvements in hydraulic functioning during fog in cloud forest species relative to non-cloud forest species. Across the cloud forest ecotone, most species measured were very resistant to losses in conductivity with branch P50 values from -4.5 to -6.0 MPa, hydraulic safety margins (Ψmin - P50) >1.5 MPa and low calculated hydraulic conductivity losses. Roots had greater vulnerabilities, with P50 values ranging from -1.4 to -2.5 MPa, leading to greater predicted losses in conductivity (∼20%). Calculated values suggested strong losses of midday leaf hydraulic conductance in three of the four species, supporting the hydraulic segmentation hypothesis. In both cloud forest and hardwood species, Ψs were greater on foggy days than sunny days, demonstrating the importance of fog periods to plant water balance across fog regimes. Thus, frequent fog did not result in systemic changes in hydraulic functioning or vulnerability to embolism across our temperate cloud forest ecotone. Finally, roots functioned with lower hydraulic conductivity than branches, suggesting that they may serve as more sensitive indicators of hydraulic functioning in these mesic, foggy ecosystems. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Li, Xuejian; Mao, Fangjie; Du, Huaqiang; Zhou, Guomo; Xu, Xiaojun; Han, Ning; Sun, Shaobo; Gao, Guolong; Chen, Liang
2017-04-01
Subtropical forest ecosystems play essential roles in the global carbon cycle and in carbon sequestration functions, which challenge the traditional understanding of the main functional areas of carbon sequestration in the temperate forests of Europe and America. The leaf area index (LAI) is an important biological parameter in the spatiotemporal simulation of the carbon cycle, and it has considerable significance in carbon cycle research. Dynamic retrieval based on remote sensing data is an important method with which to obtain large-scale high-accuracy assessments of LAI. This study developed an algorithm for assimilating LAI dynamics based on an integrated ensemble Kalman filter using MODIS LAI data, MODIS reflectance data, and canopy reflectance data modeled by PROSAIL, for three typical types of subtropical forest (Moso bamboo forest, Lei bamboo forest, and evergreen and deciduous broadleaf forest) in China during 2014-2015. There were some errors of assimilation in winter, because of the bad data quality of the MODIS product. Overall, the assimilated LAI well matched the observed LAI, with R2 of 0.82, 0.93, and 0.87, RMSE of 0.73, 0.49, and 0.42, and aBIAS of 0.50, 0.23, and 0.03 for Moso bamboo forest, Lei bamboo forest, and evergreen and deciduous broadleaf forest, respectively. The algorithm greatly decreased the uncertainty of the MODIS LAI in the growing season and it improved the accuracy of the MODIS LAI. The advantage of the algorithm is its use of biophysical parameters (e.g., measured LAI) in the LAI assimilation, which makes it possible to assimilate long-term MODIS LAI time series data, and to provide high-accuracy LAI data for the study of carbon cycle characteristics in subtropical forest ecosystems.
Fajardo, Alex; Piper, Frida I.; Hoch, Günter
2013-01-01
Background and Aims The most plausible explanation for treeline formation so far is provided by the growth limitation hypothesis (GLH), which proposes that carbon sinks are more restricted by low temperatures than by carbon sources. Evidence supporting the GLH has been strong in evergreen, but less and weaker in deciduous treeline species. Here a test is made of the GLH in deciduous–evergreen mixed species forests across elevational gradients, with the hypothesis that deciduous treeline species show a different carbon storage trend from that shown by evergreen species across elevations. Methods Tree growth and concentrations of non-structural carbohydrates (NSCs) in foliage, branch sapwood and stem sapwood tissues were measured at four elevations in six deciduous–evergreen treeline ecotones (including treeline) in the southern Andes of Chile (40°S, Nothofagus pumilio and Nothofagus betuloides; 46°S, Nothofagus pumilio and Pinus sylvestris) and in the Swiss Alps (46°N, Larix decidua and Pinus cembra). Key Results Tree growth (basal area increment) decreased with elevation for all species. Regardless of foliar habit, NSCs did not deplete across elevations, indicating no shortage of carbon storage in any of the investigated tissues. Rather, NSCs increased significantly with elevation in leaves (P < 0·001) and branch sapwood (P = 0·012) tissues. Deciduous species showed significantly higher NSCs than evergreens for all tissues; on average, the former had 11 % (leaves), 158 % (branch) and 103 % (sapwood) significantly (P < 0·001) higher NSCs than the latter. Finally, deciduous species had higher NSC (particularly starch) increases with elevation than evergreens for stem sapwood, but the opposite was true for leaves and branch sapwood. Conclusions Considering the observed decrease in tree growth and increase in NSCs with elevation, it is concluded that both deciduous and evergreen treeline species are sink limited when faced with decreasing temperatures. Despite the overall higher requirements of deciduous tree species for carbon storage, no indication was found of carbon limitation in deciduous species in the alpine treeline ecotone. PMID:23788748
ASSESSMENT OF MODIS LAI (W4) IN LOBLOLLY PINE (P. TAEDA) FOREST TYPE, APPOMATTOX, VIRGINIA
The United States Environmental Protection Agency initiated MODIS MODI5A2LAI validation research (2002) in the evergreen needle leaf biome, as defined in the MOD12 classification, in a regional study located in the southeastern United States.
Forest Dynamics in the Eastern Ghats of Tamil Nadu, India
NASA Astrophysics Data System (ADS)
Jayakumar, S.; Ramachandran, A.; Bhaskaran, G.; Heo, J.
2009-02-01
The primary deciduous forests in the Eastern Ghats (EG) of Tamil Nadu (TN) India have undergone many changes owing to various need-based forest managements, such as timber extraction for industry, railway sleepers, charcoal, and forest clearance for hydroelectric projects and agriculture, during preindependence and postindependence periods (i.e., from 1800 to 1980). The enactment of a forest conservation act during the 1980s changed the perception of forest managers from utilization to conservation. This study was taken up to assess the forests dynamics in the EG of TN spatially between 1990 and 2003 and nonspatially between 1900 and the 1980s. Landsat Thematic Mapper (TM) and Indian Remote Sensing satellite (IRS) 1D Linear Imaging and Self Scanning (LISS III) data were used to assess forests during 1990 and 2003, respectively. Field floristic survey and secondary data (such as published literature, floras, books, and forest working plans) were used to assess the forest dynamics in terms of forest type and species composition among the preindependence period, the postindependence period, and the present (i.e., before and after 1980). The satellite data analysis revealed a considerable amount of changes in all forest types during the 13 years. The comparison of species composition and forest types between the past and present revealed that need-based forest management along with anthropogenic activity have altered the primary deciduous forest in to secondary and postextraction secondary forests such as southern thorn and southern thorn scrub forests in the middle [400-900 m above mean sea level (MSL)] and lower slopes (<400 m MSL). However, the evergreen forests present at the upper slope (>900 m MSL) and plateau seemed not to be much affected by the forest management. The changes estimated by the satellite data processing in the major forest types such as evergreen, deciduous, southern thorn, and southern thorn scrub are really alarming because these changes have occurred after the implementation of a forest conservation act. The dependence of local people on forests for various purposes in this region is also considerably high, which might be a key factor for the changes in the forests. The results of this study not only provide an outlook on the present status of the forests and the change trends but also provide the basis for further studies on forests in the EG of TN.
Forest dynamics in the Eastern Ghats of Tamil Nadu, India.
Jayakumar, S; Ramachandran, A; Bhaskaran, G; Heo, J
2009-02-01
The primary deciduous forests in the Eastern Ghats (EG) of Tamil Nadu (TN) India have undergone many changes owing to various need-based forest managements, such as timber extraction for industry, railway sleepers, charcoal, and forest clearance for hydroelectric projects and agriculture, during preindependence and postindependence periods (i.e., from 1800 to 1980). The enactment of a forest conservation act during the 1980s changed the perception of forest managers from utilization to conservation. This study was taken up to assess the forests dynamics in the EG of TN spatially between 1990 and 2003 and nonspatially between 1900 and the 1980s. Landsat Thematic Mapper (TM) and Indian Remote Sensing satellite (IRS) 1D Linear Imaging and Self Scanning (LISS III) data were used to assess forests during 1990 and 2003, respectively. Field floristic survey and secondary data (such as published literature, floras, books, and forest working plans) were used to assess the forest dynamics in terms of forest type and species composition among the preindependence period, the postindependence period, and the present (i.e., before and after 1980). The satellite data analysis revealed a considerable amount of changes in all forest types during the 13 years. The comparison of species composition and forest types between the past and present revealed that need-based forest management along with anthropogenic activity have altered the primary deciduous forest in to secondary and postextraction secondary forests such as southern thorn and southern thorn scrub forests in the middle [400-900 m above mean sea level (MSL)] and lower slopes (<400 m MSL). However, the evergreen forests present at the upper slope (>900 m MSL) and plateau seemed not to be much affected by the forest management. The changes estimated by the satellite data processing in the major forest types such as evergreen, deciduous, southern thorn, and southern thorn scrub are really alarming because these changes have occurred after the implementation of a forest conservation act. The dependence of local people on forests for various purposes in this region is also considerably high, which might be a key factor for the changes in the forests. The results of this study not only provide an outlook on the present status of the forests and the change trends but also provide the basis for further studies on forests in the EG of TN.
Jennifer L. R. Jensen; Karen S. Humes; Andrew T. Hudak; Lee A. Vierling; Eric Delmelle
2011-01-01
This study presents an alternative assessment of the MODIS LAI product for a 58,000 ha evergreen needleleaf forest located in the western Rocky Mountain range in northern Idaho by using lidar data to model (R2=0.86, RMSE=0.76) and map LAI at higher resolution across a large number of MODIS pixels in their entirety. Moderate resolution (30 m) lidar-based LAI estimates...
Drought Stress Response of Dry Forest Trees of the Brazilian Caatinga
NASA Astrophysics Data System (ADS)
Menezes, R.; Worbes, M.
2015-12-01
Martin Worbes and Romulo Menezes In the frame of the "Tropi-Dry" network we studied drought response strategies of six tree species in a Caatinga forest at the Fazenda Tamandua near Patos in Paraiba, NE Brazil. We selected the tree species as representatives of the different phenological ecotypes: evergreen, deciduous and stem succulent. The deciduous group comprised N-fixing as well as non N-fixing Leguminosae. Over an entire vegetation period (dry and wet-season) we monitored their phenological behaviour, photosynthesis rates, stomata conductance and water potential, measured if leaves were present and we estimated seasonal variations in stable carbon and N15 content of the leaves. The major results are: Evergreen species (e.g. Capparis) may compensate low carbon-fixing rates in the wet season with a much longer vegetation period as the deciduous species. Stem succulents (Jatropha) do not fulfill the expectations of being high productive species under drought stress conditions, while the N-fixing Mimosa performed in particular at the end and the beginning of the dry period better than the rest of the investigated species. In general the results may help to understand different strategies of tree species in respect to extended dry periods of at least six months as in our study area and their role in carbon sequestration of tropical dry forests. The variety of observed strategies may contribute to the resilience of the ecosystem tropical dry forests.
Albert, Loren P; Wu, Jin; Prohaska, Neill; de Camargo, Plinio Barbosa; Huxman, Travis E; Tribuzy, Edgard S; Ivanov, Valeriy Y; Oliveira, Rafael S; Garcia, Sabrina; Smith, Marielle N; Oliveira Junior, Raimundo Cosme; Restrepo-Coupe, Natalia; da Silva, Rodrigo; Stark, Scott C; Martins, Giordane A; Penha, Deliane V; Saleska, Scott R
2018-03-04
Satellite and tower-based metrics of forest-scale photosynthesis generally increase with dry season progression across central Amazônia, but the underlying mechanisms lack consensus. We conducted demographic surveys of leaf age composition, and measured the age dependence of leaf physiology in broadleaf canopy trees of abundant species at a central eastern Amazon site. Using a novel leaf-to-branch scaling approach, we used these data to independently test the much-debated hypothesis - arising from satellite and tower-based observations - that leaf phenology could explain the forest-scale pattern of dry season photosynthesis. Stomatal conductance and biochemical parameters of photosynthesis were higher for recently mature leaves than for old leaves. Most branches had multiple leaf age categories simultaneously present, and the number of recently mature leaves increased as the dry season progressed because old leaves were exchanged for new leaves. These findings provide the first direct field evidence that branch-scale photosynthetic capacity increases during the dry season, with a magnitude consistent with increases in ecosystem-scale photosynthetic capacity derived from flux towers. Interactions between leaf age-dependent physiology and shifting leaf age-demographic composition are sufficient to explain the dry season photosynthetic capacity pattern at this site, and should be considered in vegetation models of tropical evergreen forests. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Loren P.; Wu, Jin; Prohaska, Neill
Satellite and tower-based metrics of forest-scale photosynthesis generally increase with dry season progression across central Amazônia, but the underlying mechanisms lack consensus. We conducted demographic surveys of leaf age composition, and measured age-dependence of leaf physiology in broadleaf canopy trees of abundant species at a central eastern Amazon site. Using a novel leaf-to-branch scaling approach, we used this data to independently test the much-debated hypothesis—arising from satellite and tower-based observations—that leaf phenology could explain the forest-scale pattern of dry season photosynthesis. Stomatal conductance and biochemical parameters of photosynthesis were higher for recently mature leaves than for old leaves. Most branchesmore » had multiple leaf age categories simultaneously present, and the number of recently mature leaves increased as the dry season progressed because old leaves were exchanged for new leaves. These findings provide the first direct field evidence that branch-scale photosynthetic capacity increases during the dry season, with a magnitude consistent with increases in ecosystem-scale photosynthetic capacity derived from flux towers. In conclusion, interaction between leaf age-dependent physiology and shifting leaf age-demographic composition are sufficient to explain the dry season photosynthetic capacity pattern at this site, and should be considered in vegetation models of tropical evergreen forests.« less
Albert, Loren P.; Wu, Jin; Prohaska, Neill; ...
2018-03-04
Satellite and tower-based metrics of forest-scale photosynthesis generally increase with dry season progression across central Amazônia, but the underlying mechanisms lack consensus. We conducted demographic surveys of leaf age composition, and measured age-dependence of leaf physiology in broadleaf canopy trees of abundant species at a central eastern Amazon site. Using a novel leaf-to-branch scaling approach, we used this data to independently test the much-debated hypothesis—arising from satellite and tower-based observations—that leaf phenology could explain the forest-scale pattern of dry season photosynthesis. Stomatal conductance and biochemical parameters of photosynthesis were higher for recently mature leaves than for old leaves. Most branchesmore » had multiple leaf age categories simultaneously present, and the number of recently mature leaves increased as the dry season progressed because old leaves were exchanged for new leaves. These findings provide the first direct field evidence that branch-scale photosynthetic capacity increases during the dry season, with a magnitude consistent with increases in ecosystem-scale photosynthetic capacity derived from flux towers. In conclusion, interaction between leaf age-dependent physiology and shifting leaf age-demographic composition are sufficient to explain the dry season photosynthetic capacity pattern at this site, and should be considered in vegetation models of tropical evergreen forests.« less
Geospatial monitoring and prioritization of forest fire incidences in Andhra Pradesh, India.
Manaswini, G; Sudhakar Reddy, C
2015-10-01
Forest fire has been identified as one of the key environmental issue for long-term conservation of biodiversity and has impact on global climate. Spatially multiple observations are necessary for monitoring of forest fires in tropics for understanding conservation efficacy and sustaining biodiversity in protected areas. The present work was carried out to estimate the spatial extent of forest burnt areas and fire frequency using Resourcesat Advanced Wide Field Sensor (AWiFS) data (2009, 2010, 2012, 2013 and 2014) in Andhra Pradesh, India. The spatio-temporal analysis shows that an area of 7514.10 km(2) (29.22% of total forest cover) has been affected by forest fires. Six major forest types are distributed in Andhra Pradesh, i.e. semi-evergreen, moist deciduous, dry deciduous, dry evergreen, thorn and mangroves. Of the total forest burnt area, dry deciduous forests account for >75%. District-wise analysis shows that Kurnool, Prakasam and Cuddapah have shown >100 km(2) of burnt area every year. The total forest burnt area estimate covering protected areas ranges between 6.9 and 22.3% during the study period. Spatial burnt area analysis for protected areas in 2014 indicates 37.2% of fire incidences in the Nagarjunasagar Srisailam Tiger Reserve followed by 20.2 % in the Sri Lankamalleswara Wildlife Sanctuary, 20.1% in the Sri Venkateswara Wildlife Sanctuary and 17.4% in the Gundla Brahmeswaram Wildlife Sanctuary. The analysis of cumulative fire occurrences from 2009 to 2014 has helped in delineation of conservation priority hotspots using a spatial grid cell approach. Conservation priority hotspots I and II are distributed in major parts of study area including protected areas of the Nagarjunasagar Srisailam Tiger Reserve and Gundla Brahmeswaram Wildlife Sanctuary. The spatial database generated will be useful in studies related to influence of fires on species adaptability, ecological damage assessment and conservation planning.
The Sensitivity of West African Squall Line Water Budgets to Land Cover
NASA Technical Reports Server (NTRS)
Mohr, Karen I.; Baker, R. David; Tao, Wei-Kuo; Famiglietti, James S.; Starr, David OC. (Technical Monitor)
2001-01-01
This study used a two-dimensional coupled land/atmosphere (cloud-resolving) model to investigate the influence of land cover on the water budgets of squall lines in the Sahel. Study simulations used the same initial sounding and one of three different land covers, a sparsely vegetated semi-desert, a grassy savanna, and a dense evergreen broadleaf forest. All simulations began at midnight and ran for 24 hours to capture a full diurnal cycle. In the morning, the latent heat flux, boundary layer mixing ratio, and moist static energy in the boundary layer exhibited notable variations among the three land covers. The broadleaf forest had the highest latent heat flux, the shallowest, moistest, slowest growing boundary layer, and significantly more moist static energy per unit area than the savanna and semi-desert. Although all simulations produced squall lines by early afternoon, the broadleaf forest had the most intense, longest-lived squall lines with 29% more rainfall than the savanna and 37% more than the semi-desert. The sensitivity of the results to vegetation density, initial sounding humidity, and grid resolution was also assessed. There were greater differences in rainfall among land cover types than among simulations of the same land cover with varying amounts of vegetation. Small changes in humidity were equivalent in effect to large changes in land cover, producing large changes in the condensate and rainfall. Decreasing the humidity had a greater effect on rainfall volume than increasing the humidity. Reducing the grid resolution from 1.5 km to 0.5 km decreased the temperature and humidity of the cold pools and increased the rain volume.
Ritter, Axel; Regalado, Carlos M; Aschan, Guido
2009-04-01
The ecophysiologic role of fog in the evergreen heath-laurel 'laurisilva' cloud forests of the Canary Islands has not been unequivocally demonstrated, although it is generally assumed that fog water is important for the survival and the distribution of this relict paleoecosystem of the North Atlantic Macaronesian archipelagos. To determine the role of fog in this ecosystem, we combined direct transpiration measurements of heath-laurel tree species, obtained with Granier's heat dissipation probes, with micrometeorological and artificial fog collection measurements carried out in a 43.7-ha watershed located in the Garajonay National Park (La Gomera, Canary Islands, Spain) over a 10-month period. Median ambient temperature spanned from 7 to 15 degrees C under foggy conditions whereas higher values, ranging from 9 to 21 degrees C, were registered during fog-free periods. Additionally, during the periods when fog water was collected, global solar radiation values were linearly related (r2=0.831) to those under fog-free conditions, such that there was a 75+/-1% reduction in median radiation in response to fog. Fog events greatly reduced median diurnal tree transpiration, with rates about 30 times lower than that during fog-free conditions and approximating the nighttime rates in both species studied (the needle-like leaf Erica arborea L. and the broadleaf Myrica faya Ait.). This large decrease in transpiration in response to fog was independent of the time of the day, tree size and species and micrometeorological status, both when expressed on a median basis and in cumulative terms for the entire 10-month measuring period. We conclude that, in contrast to the turbulent deposition of fog water droplets on the heath-laurel species, which may be regarded as a localized hydrological phenomenon that is important for high-altitude wind-exposed E. arborea trees, the cooler, wetter and shaded microenvironment provided by the cloud immersion belt represents a large-scale effect that is crucial for reducing the transpirational water loss of trees that have profligate water use, such as those of the 'laurisilva'.
The herpetofauna of the cloud forests of Honduras
2003-01-01
The cloud forest amphibians and reptiles constitute the most important herpetofaunal segment in Honduras, due to the prevalence of endemic and Nuclear Middle American-restricted species. This segment, however, is subject to severe environmental threats due to the actions of humans. Of the 334 species of amphibians and reptiles currently known from Honduras, 122 are known to be distributed in cloud forest habitats. Cloud forest habitats are found throughout the mountainous interior of Honduras. They are subject to a Highland Wet climate, which features annual precipitation of >1500 mm and a mean annual temperature of <18°C. Cloud forest vegetation falls into two Holdridge formations, the Lower Montane Wet Forest and Lower Montane Moist Forest. The Lower Montane Wet Forest formation generally occurs at elevations in excess of 1500 m, although it may occur as low as 1300+ m at some localities. The Lower Montane Moist Forest formation generally occurs at 1700+ m elevation. Of the 122 cloud forest species, 18 are salamanders, 38 are anurans, 27 are lizards, and 39 are snakes. Ninety-eight of these 122 species are distributed in the Lower Montane Wet Forest formation and 45 in the Lower Montane Moist Forest formation. Twenty species are distributed in both formations. The cloud forest species are distributed among restricted, widespread, and peripheral distributional categories. The restricted species range as a group in elevation from 1340 to 2700 m, the species that are widespread in at least one of the two cloud forest formations range as a group from sea level to 2744 m, and the peripheral species range as a group from sea level to 1980 m. The 122 cloud forest species exemplify ten broad distributional patterns ranging from species whose northern and southern range termini are in the United States (or Canada) and South America, respectively, to those species that are endemic to Honduras. The largest segment of the herpetofauna falls into the endemic category, with the next largest segment being restricted in distribution to Nuclear Middle America, but not endemic to Honduras. Cloud forest species are distributed among eight ecophysiographic areas, with the largest number being found in the Northwestern Highlands, followed by the North-Central Highlands and the Southwestern Highlands. The greatest significance of the Honduran herpetofauna lies in its 125 species that are either Honduran endemics or otherwise Nuclear Middle American-restricted species, of which 83 are distributed in the country's cloud forests. This segment of the herpetofauna is seriously endangered as a consequence of exponentially increasing habitat destruction resulting from deforestation, even given the existence of several biotic reserves established in cloud forest. Other, less clearly evident environmental factors also appear to be implicated. As a consequence, slightly over half of these 83 species (50.6%) have populations that are in decline or that have disappeared from Honduran cloud forests. These species possess biological, conservational, and economic significance, all of which appear in danger of being lost. PMID:15029253
NASA Astrophysics Data System (ADS)
Harper, Anna B.; Cox, Peter M.; Friedlingstein, Pierre; Wiltshire, Andy J.; Jones, Chris D.; Sitch, Stephen; Mercado, Lina M.; Groenendijk, Margriet; Robertson, Eddy; Kattge, Jens; Bönisch, Gerhard; Atkin, Owen K.; Bahn, Michael; Cornelissen, Johannes; Niinemets, Ülo; Onipchenko, Vladimir; Peñuelas, Josep; Poorter, Lourens; Reich, Peter B.; Soudzilovskaia, Nadjeda A.; van Bodegom, Peter
2016-07-01
Dynamic global vegetation models are used to predict the response of vegetation to climate change. They are essential for planning ecosystem management, understanding carbon cycle-climate feedbacks, and evaluating the potential impacts of climate change on global ecosystems. JULES (the Joint UK Land Environment Simulator) represents terrestrial processes in the UK Hadley Centre family of models and in the first generation UK Earth System Model. Previously, JULES represented five plant functional types (PFTs): broadleaf trees, needle-leaf trees, C3 and C4 grasses, and shrubs. This study addresses three developments in JULES. First, trees and shrubs were split into deciduous and evergreen PFTs to better represent the range of leaf life spans and metabolic capacities that exists in nature. Second, we distinguished between temperate and tropical broadleaf evergreen trees. These first two changes result in a new set of nine PFTs: tropical and temperate broadleaf evergreen trees, broadleaf deciduous trees, needle-leaf evergreen and deciduous trees, C3 and C4 grasses, and evergreen and deciduous shrubs. Third, using data from the TRY database, we updated the relationship between leaf nitrogen and the maximum rate of carboxylation of Rubisco (Vcmax), and updated the leaf turnover and growth rates to include a trade-off between leaf life span and leaf mass per unit area.Overall, the simulation of gross and net primary productivity (GPP and NPP, respectively) is improved with the nine PFTs when compared to FLUXNET sites, a global GPP data set based on FLUXNET, and MODIS NPP. Compared to the standard five PFTs, the new nine PFTs simulate a higher GPP and NPP, with the exception of C3 grasses in cold environments and C4 grasses that were previously over-productive. On a biome scale, GPP is improved for all eight biomes evaluated and NPP is improved for most biomes - the exceptions being the tropical forests, savannahs, and extratropical mixed forests where simulated NPP is too high. With the new PFTs, the global present-day GPP and NPP are 128 and 62 Pg C year-1, respectively. We conclude that the inclusion of trait-based data and the evergreen/deciduous distinction has substantially improved productivity fluxes in JULES, in particular the representation of GPP. These developments increase the realism of JULES, enabling higher confidence in simulations of vegetation dynamics and carbon storage.
Ashley E. Van Beusekom; Grizelle Gonzalez; Martha A. Scholl
2017-01-01
The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline...
J.M. Vose; B.D. Clinton; W.T. Swank
1993-01-01
Establishment and maintenance of pitch pine/hardwood ecosystems in the southern Appalachians depends on intense wildfire. These ecosystems typically have a substantial evergreen shrub component (Kalmia latifolia) which limits regeneration of future overstory species. Wildfires provide microsite conditions conducive to pine regeneration and reduce...
NASA Technical Reports Server (NTRS)
Potter, Christopher
2015-01-01
Results from Landsat satellite image times series analysis since 1983 of this study area showed gradual, statistically significant increases in the normalized difference vegetation index (NDVI) in more than 90% of the (predominantly second-growth) evergreen forest locations sampled.
NASA Astrophysics Data System (ADS)
Langner, Andreas; Miettinen, Jukka; Stibig, Hans-Jurgen
2016-08-01
We use a Normalized Burned Ratio (NBR) differential approach for detecting forest canopy disturbance caused by selective logging in evergreen tropical moist forests of central Cambodia. The general disturbance pattern obtained from Landsat 8 (30 m) imagery is largely compatible to Sentinel-2 (10 m), showing good conformity to high resolution RapidEye reference data. However, the 10 m spatial resolution of Sentinel-2 provides notably higher spatial detail and purer pixel values, increasing the potential for detecting fine and subtle forest canopy changes as indicators for potential forest degradation. We can expect further improvement for detecting short-lived disturbance signals in tropical forest canopies due to an increased revisit frequency (5 days) after the Sentinel-2B launch.
Relationships Between Fire and Land Use Change in the Brazilian Amazon Based on Satellite Data
NASA Astrophysics Data System (ADS)
Fanin, T.; van der Werf, G.
2014-12-01
Fires are used as a tool in the process of deforestation. The relationship between fire and deforestation varies temporally and spatially according to the type of deforestation and climatic conditions. This study evaluates spatiotemporal variability between fire and deforestation over the 2002-2012 period in the Brazilian Legal Amazon (BLA). We based our study on four datasets: deforestation estimates from PRODES (Amazon Deforestation Monitoring Project) and forest cover loss from the Global Forest Change (GFC) project based on Landsat data, and burned area and land cover based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. While GFC and PRODES supported similar findings on spatial and temporal dynamics, the Landsat-scale comparison also highlighted a number of differences. Both datasets show a decrease after 2004 in forest loss or deforestation extent mainly from decreasing clearing rates in evergreen broadleaf forest, mostly in the states of Mato Grosso and Rondonia. However, the drop is larger and more gradual in PRODES than in GFC, with the former having less than half the forest loss of the latter. GFC indicates anomalous high forest loss in the years 2007 and 2010 not seen in PRODES. Rescaling these forest dynamics datasets to 500-meter resolution, allowed for a comparison against the MODIS datasets. The burned area data indicates that the mismatch between PRODES and GFC is largely related to increased fire occurrence during these dry years, mainly in Para. In addition it indicates that the time interval between deforestation and fire differs according to land cover, which is important when estimating the atmospheric impact of forest loss. We found that evergreen broadleaf forests are burned shortly after deforestation due to slash and burn techniques, while croplands have longer intervals depending on the crop variety. As a final step, we used these insights to better quantify carbon emissions from this region.
Carbon Cycling Studies in Forest and Rangeland Ecosystems of Northern and Central Coastal California
NASA Astrophysics Data System (ADS)
Potter, C.; Klooster, S.; Gross, P.; Hiatt, S.; Genovese, V.
2008-12-01
The varied topography and micro-climates of northern and central coastal California result in high biodiversity and many different levels of primary production driving regional carbon cycles. Coastal mountains trap moisture from low clouds and fog in summer to supplement rainfall in winter. This creates a favorable micro-environment for coniferous forests, including the southernmost habitat of the coast redwood (Sequoia sempervirens), which grows mainly on lower north-facing slopes in Big Sur. In rain shadows, forests transition to open oak woodland, and then into the more fire-tolerant chaparral and coast scrub. Field sites for our on-going climate change studies on the California northern and central coasts currently include the University of California Santa Cruz Campus Natural Reserve, the US Forest Service Brazil Ranch, and the University of California Big Creek Reserve. We are conducting research at each of these sites to better understand possible impacts of climate change, including: (1) biological and physical capacity of soils to capture carbon and retain plant-essential nutrients; (2) rates of plant-soil water and carbon cycling and energy flow; and (3) recovery mechanisms for disturbances such as invasive weed species, grazing, and wildfire. The NASA-CASA simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate carbon cycling for much of the central coast as far north as Mendocino County. Net primary production (NPP) of all vegetation cover was mapped at 30-meter resolution for selected years by combining MODIS and Landsat images across the region. Results show annual NPP predictions of between 200-400 grams C per square meter for coastal scrub and 800-1200 grams C per square meter for coastal evergreen forests, Net ecosystem fluxes of carbon will be presented for the region based on NASA-CASA modeling and field measurements of soil respiration fluxes.
Zuo, Shu-di; Ren, Yin; Weng, Xian; Ding, Hong-feng; Luo, Yun-jian
2015-02-01
Biomass allometric equation (BAE) considered as a simple and reliable method in the estimation of forest biomass and carbon was used widely. In China, numerous studies focused on the BAEs for coniferous forest and pure broadleaved forest, and generalized BAEs were frequently used to estimate the biomass and carbon of mixed broadleaved forest, although they could induce large uncertainty in the estimates. In this study, we developed the species-specific and generalized BAEs using biomass measurement for 9 common broadleaved trees (Castanopsis fargesii, C. lamontii, C. tibetana, Lithocarpus glaber, Sloanea sinensis, Daphniphyllum oldhami, Alniphyllum fortunei, Manglietia yuyuanensis, and Engelhardtia fenzlii) of subtropical evergreen broadleaved forest, and compared differences in species-specific and generalized BAEs. The results showed that D (diameter at breast height) was a better independent variable in estimating the biomass of branch, leaf, root, aboveground section and total tree than a combined variable (D2 H) of D and H (tree height) , but D2H was better than D in estimating stem biomass. R2 (coefficient of determination) values of BAEs for 6 species decreased when adding H as the second independent variable into D- only BAEs, where R2 value for S. sinensis decreased by 5.6%. Compared with generalized D- and D2H-based BAEs, standard errors of estimate (SEE) of BAEs for 8 tree species decreased, and similar decreasing trend was observed for different components, where SEEs of the branch decreased by 13.0% and 20.3%. Therefore, the biomass carbon storage and its dynamic estimates were influenced largely by tree species and model types. In order to improve the accuracy of the estimates of biomass and carbon, we should consider the differences in tree species and model types.
Meta-analysis of radiocesium contamination data in Japanese forest trees over the period 2011-2013.
Gonze, M-A; Calmon, P
2017-12-01
The fate and dispersion of radiocesium in forests affected by the Fukushima atmospheric fallouts have been efficiently characterized by Japanese scientists thanks to monitoring surveys of radioactive contents in contaminated soil, water, and vegetation samples at numerous sites. In this paper, we carry out a meta-analysis of the field surveys conducted over the period 2011-2013 in evergreen coniferous and deciduous broadleaf forests of Fukushima or neighboring prefectures. The review focuses on contamination data acquired in tree vegetation - about 1500 spatio-temporal measurements of concentrations, inventories and depuration fluxes - with a particular interest for organs that were directly exposed to the atmospheric fallouts and subjected to depuration mechanisms (foliage, branches and outer bark). To reduce the spatial variability between the sites, radioactive data were normalized by the total deposit estimated at each site. Our analysis highlights the overall consistency of field observations despite the variety of experimental protocols, disparate sampling periods, differences in the forest stand characteristics and variability of the atmospheric deposition conditions. Assuming that the sites conformed to the same dynamics (within the range of residual variability), we then derive, discuss, and compare the mean representative evolutions of radiocesium contamination in the two categories of forest. Thanks to a simple mass balance approach, we finally demonstrate that: (i) about 90% of the radiocesium deposit was intercepted by evergreen coniferous vegetation, (ii) 80% of the deposit was gradually transferred to the forest floor in 3years, according to a well characterized depuration kinetics, and (iii) about 4% was readily absorbed by the foliage and translocated to internal organs (inner bark, stem wood and roots) at a rate of about 10 -4 d -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
Steele, Sarah J.; Gower, Stith T.; Vogel, Jason G.; Norman, John M.
1997-01-01
Root biomass, net primary production and turnover were studied in aspen, jack pine and black spruce forests in two contrasting climates. The climate of the Southern Study Area (SSA) near Prince Albert, Saskatchewan is warmer and drier in the summer and milder in the winter than the Northern Study Area (NSA) near Thompson, Manitoba, Canada. Ingrowth soil cores and minirhizotrons were used to quantify fine root net primary production (NPPFR). Average daily fine root growth (m m(-2) day(-1)) was positively correlated with soil temperature at 10-cm depth (r(2) = 0.83-0.93) for all three species, with black spruce showing the strongest temperature effect. At both study areas, fine root biomass (measured from soil cores) and fine root length (measured from minirhizotrons) were less for jack pine than for the other two species. Except for the aspen stands, estimates of NPPFR from minirhizotrons were significantly greater than estimates from ingrowth cores. The core method underestimated NPPFR because it does not account for simultaneous fine root growth and mortality. Minirhizotron NPPFR estimates ranged from 59 g m(-2) year(-1) for aspen stands at SSA to 235 g m(-2) year(-1) for black spruce at NSA. The ratio of NPPFR to total detritus production (aboveground litterfall + NPPFR) was greater for evergreen forests than for deciduous forests, suggesting that carbon allocation patterns differ between boreal evergreen and deciduous forests. In all stands, NPPFR consistently exceeded annual fine root turnover and the differences were larger for stands in the NSA than for stands in the SSA, whereas the difference between study areas was only significant for black spruce. The imbalance between NPPFR and fine root turnover is sufficient to explain the net accumulation of carbon in boreal forest soils.
NASA Astrophysics Data System (ADS)
Griebel, Anne; Bennett, Lauren T.; Arndt, Stefan K.
2016-04-01
Evergreen forests have the potential to sequester carbon year-round due to the presence of leaves with a multi-year lifespan. Eucalypt forests occur in warmer climates where temperature and radiation are not imposing a strong seasonality. Thus, unlike deciduous or many coniferous trees, many eucalypts grow opportunistically as conditions allow. As such, many eucalypts do not produce distinct growth rings, which present challenges to the implementation of standard methods and data interpretation approaches for monitoring and explaining carbon allocation dynamics in response to climatic stress. As a consequence, there is a lack of detailed understanding of seasonal growth dynamics of evergreen forests as a whole, and, in particular, of the influence of climatic drivers on carbon allocation to the various biomass pools. We used a multi-instrument approach in a mixed species eucalypt forest to investigate the influence of climatic drivers on the seasonal growth dynamics of a predominantly temperate and moisture-regulated environment in south-eastern Australia. Ecosystem scale observations of net ecosystem exchange (NEE) from a flux tower in the Wombat forest near Melbourne indicated that the ecosystem is a year-round carbon sink, but that intra-annual variations in temperature and moisture along with prolonged heat waves and dry spells resulted in a wide range of annual sums over the past three years (NEE ranging from ~4 to 12 t C ha-1 yr-1). Dendrometers were used to monitor stem increments of the three dominant eucalypt species. Stem expansion was generally opportunistic with the greatest increments under warm but moist conditions (often in spring and autumn), and the strongest indicators of stem growth dynamics being radiation, vapour pressure deficit and a combined heat-moisture index. Differences in the seasonality of stem increments between species were largely due to differences in the canopy position of sampled individuals. The greatest stem increments were recorded in the years with highest NEE, but NEE was not a strong seasonal driver of stem increment. Recently developed terrestrial lidar scanners (VEGNET) monitored the daily changes in canopy dynamics with a comparable temporal resolution to dendrometer and eddy covariance measurements. Growth of each canopy stratum was distinctly seasonal, and we detected contrasting responses to climatic stress along the canopy height gradient. Leaf turnover was predominantly in summer and was initiated by prolonged heat stress and isolated storm events. Leaf shedding and replacement happened concurrently, with leaves being mainly discarded from the middle stratum and replaced in the top stratum. Due to our novel multi-instrument approach and the high temporal resolution of tree to ecosystem-scale growth dynamics we were able to demonstrate that above ground carbon allocation to stem and crown pools followed separate seasonal dynamics that did not necessarily follow the same seasonality as ecosystem scale carbon sequestration. Our findings will ultimately improve our understanding of the effects of short- and long-term variability in temperature and moisture stress on carbon allocation dynamics to the above ground biomass pools for broadleaf evergreen ecosystems.
Nancy L. Shaw; Stephen B. Monsen; Richard Stevens
2004-01-01
Important shrubs of the Rose Family (Rosaceae) in the Intermountain region are distributed from blackbrush and salt desert shrub communities through high elevation forests and meadows. Growth habits of this group vary from trailing brambles to upright shrubs and small trees. Some species are evergreen while others are deciduous. Many of these species are highly valued...
Thomas T. Lei; Shawn W. Semones; John F. Walker; Barton D. Clinton; Erik T. Nilsen
2002-01-01
In the southern Appalachian forests, the regeneration of canopy trees is severely inhibited by Rhododendron maximum L., an evergreen understory shrub producing dense rhickets. While light availability is a major cause, other factors may also contribute to the absence of tree seedlings under R. maximum. We examined the effects of...
C. Plomion; D. Chagne; D. Pot; S. Kumar; P.L. Wilcox; R.D. Burdon; D. Prat; D.G. Peterson; J. Paiva; P. Chaumeil; G.G. Vendramin; F. Sebastiani; C.D. Nelson; C.S. Echt; O. Savolainen; T.L. Kubisiak; M.T. Cervera; N. de Maria; M.N. Islam-Faridi
2007-01-01
Pinus is the most important genus within the Family Pinaceae and also within the gymnosperms by the number of species (109 species recognized by Farjon 2001) and by its contribution to forest ecosystems. All pine species are evergreen trees or shrubs. They are widely distributed in the northern hemisphere, from tropical areas to northern areas in America and Eurasia....
Northwest California oak woodlands: environment, species composition, and ecological status
Thomas M. Jimerson; Sydney K. Carothers
2002-01-01
This paper describes the oak woodland plant communities of Northwest California and their ecological status using data from 446 ecology plots collected on federal lands in Humboldt, Trinity, Siskiyou, Mendocino, Tehama, Glenn, Colusa and Lake Counties. Geographically, oak woodlands lie between the coastal mixed evergreen forests and the valley grasslands of the Central...
Impact of riparian land use on stream insects of Kudremukh National Park, Karnataka state, India.
Subramanian, K A; Sivaramakrishnan, K G; Gadgil, Madhav
2005-12-31
The impact of riparian land use on the stream insect communities was studied at Kudremukh National Park located within Western Ghats, a tropical biodiversity hotspot in India. The diversity and community composition of stream insects varied across streams with different riparian land use types. The rarefied family and generic richness was highest in streams with natural semi evergreen forests as riparian vegetation. However, when the streams had human habitations and areca nut plantations as riparian land use type, the rarefied richness was higher than that of streams with natural evergreen forests and grasslands. The streams with scrub lands and iron ore mining as the riparian land use had the lowest rarefied richness. Within a landscape, the streams with the natural riparian vegetation had similar community composition. However, streams with natural grasslands as the riparian vegetation, had low diversity and the community composition was similar to those of paddy fields. We discuss how stream insect assemblages differ due to varied riparian land use patterns, reflecting fundamental alterations in the functioning of stream ecosystems. This understanding is vital to conserve, manage and restore tropical riverine ecosystems.
NASA Astrophysics Data System (ADS)
Galletti, Christopher S.
The Dhofar Cloud Forest is one of the most diverse ecosystems on the Arabian Peninsula. As part of the South Arabian Cloud Forest that extends from southern Oman to Yemen, the cloud forest is an important center of endemism and provides valuable ecosystem services to those living in the region. There have been various claims made about the health of the cloud forest and its surrounding region, the most prominent of which are: 1) variability of the Indian Summer Monsoon threatens long-term vegetation health, and 2) human encroachment is causing deforestation and land degradation. This dissertation uses three independent studies to test these claims and bring new insight about the biodiversity of the cloud forest. Evidence is presented that shows that the vegetation dynamics of the cloud forest are resilient to most of the variability in the monsoon. Much of the biodiversity in the cloud forest is dominated by a few species with high abundance and a moderate number of species at low abundance. The characteristic tree species include Anogeissus dhofarica and Commiphora spp. These species tend to dominate the forested regions of the study area. Grasslands are dominated by species associated with overgrazing (Calotropis procera and Solanum incanum). Analysis from a land cover study conducted between 1988 and 2013 shows that deforestation has occurred to approximately 8% of the study area and decreased vegetation fractions are found throughout the region. Areas around the city of Salalah, located close to the cloud forest, show widespread degradation in the 21st century based on an NDVI time series analysis. It is concluded that humans are the primary driver of environmental change. Much of this change is tied to national policies and development priorities implemented after the Dhofar War in the 1970's.
James Grogana; Mark S. Ashtona; Galv& atilde; Jurandir oc
2003-01-01
Adult populations of big-leaf mahogany (Swietenia macrophylla) occur in aggregations along seasonal streams in transitional evergreen forests of southeast Pará, Brazil. To test whether variable seedling survival and growth across topography may underlie this observed distribution pattern, we planted nursery-grown seedlings in the...
The present study compares the dynamics in carbon (C) allocation of adult deciduous beech (Fagus sylvatica) and evergreen spruce (Picea abies) during summer and in response to seven-year-long exposure with twice-ambient ozone (O3) concentrations (2 × O3). Focus was on the respira...
Composition and Digestibility of Deer Browse in Southern Forests
Henry L. Short; Robert M. Blair; E.A. Epps
1975-01-01
Twigs were most nutritious and digestible during early growth in spring; they were high in fiber content and low in digestibility during summer, autumn, and winter. Evergreen leaves did not vary substantially in nutrient content and digestibility throughout the year. By contrast, leaves of deciduous species were reduced in quality and digestibility after leaf-fall....
Carbon allocation and accumulation in conifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gower, S.T.; Isebrands, J.G.; Sheriff, D.W.
1995-07-01
Forests cover approximately 33% of the land surface of the earth, yet they are responsible for 65% of the annual carbon (C) accumulated by all terrestrial biomes. In general, total C content and net primary production rates are greater for forests than for other biomes, but C budgets differ greatly among forests. Despite several decades of research on forest C budgets, there is still an incomplete understanding of the factors controlling C allocation. Yet, if we are to understand how changing global events such as land use, climate change, atmospheric N deposition, ozone, and elevated atmospheric CO{sub 2} affect themore » global C budget, a mechanistic understanding of C assimilation, partitioning, and allocation is necessary. The objective of this chapter is to review the major factors that influence C allocation and accumulation in conifer trees and forests. In keeping with the theme of this book, we will focus primarily on evergreen conifers. However, even among evergreen conifers, leaf, canopy, and stand-level C and nutrient allocation patterns differ, often as a function of leaf development and longevity. The terminology related to C allocation literature is often inconsistent, confusing and inadequate for understanding and integrating past and current research. For example, terms often used synonymously to describe C flow or movement include translocation, transport, distribution, allocation, partitioning, apportionment, and biomass allocation. A common terminology is needed because different terms have different meanings to readers. In this paper we use C allocation, partitioning, and accumulation according to the definitions of Dickson and Isebrands (1993). Partitioning is the process of C flow into and among different chemical, storage, and transport pools. Allocation is the distribution of C to different plant parts within the plant (i.e., source to sink). Accumulation is the end product of the process of C allocation.« less
NASA Astrophysics Data System (ADS)
Lu, H.; Song, Q. N.; Wang, W.
2016-12-01
Background and Aims The bamboo (Phyllostachys pubescens) expansion into adjacent forests is a widespread phenomenon in subtropical region, and it has imposed great effects on the species compositions and community structures of cloned ecosystems. This shift in dominant plant life form, from trees to bamboos, may be accompanied by changes in the productivity, standing accumulation of biomass and nutrients and biogeochemical cycles. Methods We compared the net primary production (NPP) and major pools and fluxes of nitrogen (N) in bamboo-dominant forest (BDF) and neighboring secondary evergreen broadleaved forest (EBF) in South China using the space-for-time substitution method. Results The mean annual NPP of BDF was 30.0 t ha-1 a-1, which was 51.5 % greater than that of the EBF (19.8 t ha-1 a-1), with fine root contributed more than 8.2 kg ha-1. The plant N pool for BDF was 37.5% larger than that of the EBF, because of higher N content in P. pubescens tissues relative to that in trees, whereas the soil inorganic N pool significantly decreased in the EBF by 31.2 % compared with that in the BDF. Additionally, the ratio of N return to N uptake was 0.69 in the BDF and 0.88 in the EBF because of the lower litter N return of the BDF compared with that of the EBF. Conclusion These results indicated that the expansion of P. pubescens significantly increased the NPP and plant N accumulation but reduced the soil N available pool and slowed the N cycling rate, which could lead to soil degradation. These findings have great additional information for the assessment of P. pubescens expansion, and enrich our understanding of bamboo expansion into neighboring forests in subtropical China.
Chen, Hao; Gurmesa, Geshere A.; Liu, Lei; Zhang, Tao; Fu, Shenglei; Liu, Zhanfeng; Dong, Shaofeng; Ma, Chuan; Mo, Jiangming
2014-01-01
Global changes such as increasing CO2, rising temperature, and land-use change are likely to drive shifts in litter inputs to forest floors, but the effects of such changes on litter decomposition remain largely unknown. We initiated a litter manipulation experiment to test the response of litter decomposition to litter removal/addition in three successional forests in southern China, namely masson pine forest (MPF), mixed coniferous and broadleaved forest (MF) and monsoon evergreen broadleaved forest (MEBF). Results showed that litter removal decreased litter decomposition rates by 27%, 10% and 8% and litter addition increased litter decomposition rates by 55%, 36% and 14% in MEBF, MF and MPF, respectively. The magnitudes of changes in litter decomposition were more significant in MEBF forest and less significant in MF, but not significant in MPF. Our results suggest that change in litter quantity can affect litter decomposition, and this impact may become stronger with forest succession in tropical forest ecosystem. PMID:24901698
Markesteijn, Lars; Poorter, Lourens; Bongers, Frans; Paz, Horacio; Sack, Lawren
2011-07-01
Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K(s) ) and leaf (K(l) ) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of K(l) with drought tolerance, we found a strong, negative correlation between K(l) and species' shade tolerance. Across species, K(s) and K(l) were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Tsujimoto, K.; Kato, T.; Hirano, T.; Saitoh, T. M.; Nagai, S.; Akitsu, T.; Nasahara, K. N.
2015-12-01
Chlorophyll fluorescence (ChlF) is emitted from chlorophyll a and b to release the excess sun-light energy. Recently, ChlF has been utilized to represent the ecosystem photosynthetic activity, i.e. gross primary production (GPP), by the satellite remote-sensing studies (e.g. Frankenberg et al., 2011). Despite its high expectation, small number of ecosystem-level ChlF observation at the ground reduces its availability. The aim of this study is to clarify the relationships between ChlF, and photosynthesis and light use efficiency (LUE) by the ground based measurement in the forest. The observations were carried out in the evergreen coniferous forest in Takayama, Japan, from March 2008 to February 2009. Downward and upward spectral radiances were measured with hemispherical spectroradiometer (MS-700, Eko Instruments, Japan) mounted at 30m-high above the ground surface. We calculated Sun-Induced fluorescence (FS) around the O2-A band (760 nm) from the spectral data with the Fraunhofer Line Depth method. The GPP was calculated from the carbon fluxes measured with eddy covariance at the top of the tower. FS showed the strong correlation to GPP linearly in the diurnal course (sunny day (8 August, 2008): r2 = 0.81, cloudy day (28 July, 2008): r2 = 0.87). In addition, GPP was fitted against FS by rectangular hyperbolic curve. (r2 = 0.87 (daily)). We also investigated the relationship between FS and LUE in daily averages. The FS-LUE relationship could be regressed by logarithm curve for each month (r2 = 0.46 ˜0.95). The seasonal changes in the regression coefficients for FS-GPP and FS-LUE curves were thought to be induced by the seasonal variation in the temperature-dependency of photosynthesis and the phenology. We conclude that FS can be utilized to estimate GPP and LUE in evergreen forest, and that relationship between FS and GPP is influenced by environmental factors such as PAR and air temperature.Chlorophyll fluorescence (ChlF) is emitted from chlorophyll a and b to release the excess sun-light energy. Recently, ChlF has been utilized to represent the ecosystem photosynthetic activity, i.e. gross primary production (GPP), by the satellite remote-sensing studies (e.g. Frankenberg et al., 2011). Despite its high expectation, small number of ecosystem-level ChlF observation at the ground reduces its availability. The aim of this study is to clarify the relationships between ChlF, and photosynthesis and light use efficiency (LUE) by the ground based measurement in the forest. The observations were carried out in the evergreen coniferous forest in Takayama, Japan, from March 2008 to February 2009. Downward and upward spectral radiances were measured with hemispherical spectroradiometer (MS-700, Eko Instruments, Japan) mounted at 30m-high above the ground surface. We calculated Sun-Induced fluorescence (FS) around the O2-A band (760 nm) from the spectral data with the Fraunhofer Line Depth method. The GPP was calculated from the carbon fluxes measured with eddy covariance at the top of the tower. FS showed the strong correlation to GPP linearly in the diurnal course (sunny day (8 August, 2008): r2 = 0.81, cloudy day (28 July, 2008): r2 = 0.87). In addition, GPP was fitted against FS by rectangular hyperbolic curve. (r2 = 0.87 (daily)). We also investigated the relationship between FS and LUE in daily averages. The FS-LUE relationship could be regressed by logarithm curve for each month (r2 = 0.46 ˜0.95). The seasonal changes in the regression coefficients for FS-GPP and FS-LUE curves were thought to be induced by the seasonal variation in the temperature-dependency of photosynthesis and the phenology. We conclude that FS can be utilized to estimate GPP and LUE in evergreen forest, and that relationship between FS and GPP is influenced by environmental factors such as PAR and air temperature.
Correa Ayram, Camilo A; Mendoza, Manuel E; Etter, Andrés; Pérez Salicrup, Diego R
2017-07-01
Landscape connectivity is essential in biodiversity conservation because of its ability to reduce the effect of habitat fragmentation; furthermore is a key property in adapting to climate change. Potential distribution models and landscape connectivity studies have increased with regard to their utility to prioritizing areas for conservation. The objective of this study was to model the potential distribution of Mountain cloud forests in the Transversal Volcanic System, Michoacán and to analyze the role of these areas in maintaining landscape connectivity. Potential distribution was modeled for the Mountain cloud forests based on the maximum entropy approach using 95 occurrence points and 17 ecological variables at 30 m spatial resolution. Potential connectivity was then evaluated by using a probability of connectivity index based on graph theory. The percentage of variation (dPCk) was used to identify the individual contribution of each potential area of Mountain cloud forests in overall connectivity. The different ways in which the potential areas of Mountain cloud forests can contribute to connectivity were evaluated by using the three fractions derived from dPCk (dPCintrak, dPCfluxk, and dPCconnectork). We determined that 37,567 ha of the TVSMich are optimal for the presence of Mountain cloud forests. The contribution of said area in the maintenance of connectivity was low. The conservation of Mountain cloud forests is indispensable, however, in providing or receiving dispersal flows through TVSMich because of its role as a connector element between another habitat types. The knowledge of the potential capacity of Mountain cloud forests to promote structural and functional landscape connectivity is key in the prioritization of conservation areas.
Duminil, Jerome; Brown, Richard P; Ewédjè, Eben-Ezer B K; Mardulyn, Patrick; Doucet, Jean-Louis; Hardy, Olivier J
2013-09-12
The evolutionary events that have shaped biodiversity patterns in the African rainforests are still poorly documented. Past forest fragmentation and ecological gradients have been advocated as important drivers of genetic differentiation but their respective roles remain unclear. Using nuclear microsatellites (nSSRs) and chloroplast non-coding sequences (pDNA), we characterised the spatial genetic structure of Erythrophleum (Fabaceae) forest trees in West and Central Africa (Guinea Region, GR). This widespread genus displays a wide ecological amplitude and taxonomists recognize two forest tree species, E. ivorense and E. suaveolens, which are difficult to distinguish in the field and often confused. Bayesian-clustering applied on nSSRs of a blind sample of 648 specimens identified three major gene pools showing no or very limited introgression. They present parapatric distributions correlated to rainfall gradients and forest types. One gene pool is restricted to coastal evergreen forests and corresponds to E. ivorense; a second one is found in gallery forests from the dry forest zone of West Africa and North-West Cameroon and corresponds to West-African E. suaveolens; the third gene pool occurs in semi-evergreen forests and corresponds to Central African E. suaveolens. These gene pools have mostly unique pDNA haplotypes but they do not form reciprocally monophyletic clades. Nevertheless, pDNA molecular dating indicates that the divergence between E. ivorense and Central African E. suaveolens predates the Pleistocene. Further Bayesian-clustering applied within each major gene pool identified diffuse genetic discontinuities (minor gene pools displaying substantial introgression) at a latitude between 0 and 2°N in Central Africa for both species, and at a longitude between 5° and 8°E for E. ivorense. Moreover, we detected evidence of past population declines which are consistent with historical habitat fragmentation induced by Pleistocene climate changes. Overall, deep genetic differentiation (major gene pools) follows ecological gradients that may be at the origin of speciation, while diffuse differentiation (minor gene pools) are tentatively interpreted as the signature of past forest fragmentation induced by past climate changes.
2013-01-01
Background The evolutionary events that have shaped biodiversity patterns in the African rainforests are still poorly documented. Past forest fragmentation and ecological gradients have been advocated as important drivers of genetic differentiation but their respective roles remain unclear. Using nuclear microsatellites (nSSRs) and chloroplast non-coding sequences (pDNA), we characterised the spatial genetic structure of Erythrophleum (Fabaceae) forest trees in West and Central Africa (Guinea Region, GR). This widespread genus displays a wide ecological amplitude and taxonomists recognize two forest tree species, E. ivorense and E. suaveolens, which are difficult to distinguish in the field and often confused. Results Bayesian-clustering applied on nSSRs of a blind sample of 648 specimens identified three major gene pools showing no or very limited introgression. They present parapatric distributions correlated to rainfall gradients and forest types. One gene pool is restricted to coastal evergreen forests and corresponds to E. ivorense; a second one is found in gallery forests from the dry forest zone of West Africa and North-West Cameroon and corresponds to West-African E. suaveolens; the third gene pool occurs in semi-evergreen forests and corresponds to Central African E. suaveolens. These gene pools have mostly unique pDNA haplotypes but they do not form reciprocally monophyletic clades. Nevertheless, pDNA molecular dating indicates that the divergence between E. ivorense and Central African E. suaveolens predates the Pleistocene. Further Bayesian-clustering applied within each major gene pool identified diffuse genetic discontinuities (minor gene pools displaying substantial introgression) at a latitude between 0 and 2°N in Central Africa for both species, and at a longitude between 5° and 8°E for E. ivorense. Moreover, we detected evidence of past population declines which are consistent with historical habitat fragmentation induced by Pleistocene climate changes. Conclusions Overall, deep genetic differentiation (major gene pools) follows ecological gradients that may be at the origin of speciation, while diffuse differentiation (minor gene pools) are tentatively interpreted as the signature of past forest fragmentation induced by past climate changes. PMID:24028582
Forest on the edge: Seasonal cloud forest in Oman creates its own ecological niche
NASA Astrophysics Data System (ADS)
Hildebrandt, Anke; Eltahir, Elfatih A. B.
2006-06-01
Cloud forests usually grow in the moist tropics where water is not a limiting factor to plant growth. Here, for the first time, we describe the hydrology of a water limited seasonal cloud forest in the Dhofar mountains of Oman. This ecosystem is under significant stress from camels feeding on tree canopies. The Dhofar forests are the remnants of a moist vegetation belt, which once spread across the Arabian Peninsula. According to our investigation the process of cloud immersion during the summer season creates within this desert a niche for moist woodland vegetation. Woodland vegetation survives in this ecosystem, sustained through enhanced capture of cloud water by their canopies (horizontal precipitation). Degraded land lacks this additional water source, which inhibits re-establishment of trees. Our modeling results suggest that cattle feeding may lead to irreversible destruction of one of the most diverse ecosystems in Arabia.
Olivero, Jesús; Ferri, Francisco; Acevedo, Pelayo; Lobo, Jorge M; Fa, John E; Farfán, Miguel Á; Romero, David; Real, Raimundo
2016-12-01
Remote sensing and traditional ecological knowledge (TEK) can be combined to advance conservation of remote tropical regions, e.g. Amazonia, where intensive in situ surveys are often not possible. Integrating TEK into monitoring and management of these areas allows for community participation, as well as for offering novel insights into sustainable resource use. In this study, we developed a 250 m resolution land-cover map of the Western Guyana Shield (Venezuela) based on remote sensing, and used TEK to validate its relevance for indigenous livelihoods and land uses. We first employed a hyper-temporal remotely sensed vegetation index to derive a land classification system. During a 1 300 km, eight day fluvial expedition in roadless areas in the Amazonas State (Venezuela), we visited six indigenous communities who provided geo-referenced data on hunting, fishing and farming activities. We overlaid these TEK data onto the land classification map, to link land classes with indigenous use. We characterized land classes using patterns of greenness temporal change and topo-hydrological information, and proposed 12 land-cover types, grouped into five main landscapes: 1) water bodies; 2) open lands/forest edges; 3) evergreen forests; 4) submontane semideciduous forests, and 5) cloud forests. Each land cover class was identified with a pulsating profile describing temporal changes in greenness, hence we labelled our map as "The Forest Pulse". These greenness profiles showed a slightly increasing trend, for the period 2000 to 2009, in the land classes representing grassland and scrubland, and a slightly decreasing trend in the classes representing forests. This finding is consistent with a gain in carbon in grassland as a consequence of climate warming, and also with some loss of vegetation in the forests. Thus, our classification shows potential to assess future effects of climate change on landscape. Several classes were significantly connected with agriculture, fishing, overall hunting, and more specifically the hunting of primates, Mazama americana, Dasyprocta fuliginosa, and Tayassu pecari. Our results showed that TEK-based approaches can serve as a basis for validating the livelihood relevance of landscapes in high-value conservation areas, which can form the basis for furthering the management of natural resources in these regions.
Liu, Juxiu; Zhou, Guoyi; Zhang, Deqiang
2007-03-01
Acid deposition has become a concern in south China in recent years. This phenomenon has increased to a dramatic extent with the large use of cars and coal-fueled power plants. As a consequence, soils are becoming acidified and their element dynamics will change. A decrease in the nutrient availability will lead to slower plant growth and maybe to a change in the forest type with current species being replaced by new ones with less nutrient requirements. Because of these reasons, it is important to understand how the dynamics of elements will change and what mechanism is part of the process. This knowledge is important for modeling the acidification process and either finding ways to counter it or to predict its consequences. The primary purpose of this study was to provide information about how the dynamics of K, Na, Ca, Mg and P are affected by acid deposition in a typical forest in southern China. Experimental soils and saplings were collected directly from the monsoon evergreen broad-leaved forest in Dinghushan. All saplings were transplanted individually into ceramic pots in August 2000 and placed in an open area near their origin site. Pot soils were treated weekly from October 2000 to July 2002 with an acidic solution at pH 3.05, pH 3.52, pH 4.00 or pH 4.40, or with tap water as a control. The concentrations of SO4(2-), NO3-, K+, Na+, Ca2+, Mg2+ and available P and the pH were measured in soil and leachate samples taken at different times. The sapling leaves were collected and their element concentrations were measured at the end of the experiment. Concentrations of soil exchangeable Ca and Mg decreased quickly over time, although only Ca showed changes with the acidic solution treatment and soil exchangeable K was stable because of soil weathering. Leaching of K, Mg and Ca was dependent upon the treatment acidity. Soil available P decreased slowly without any correlation with the acidity of the treatment. All the NO3- added by the treatment was taken up by the plants, but the SO4(2-) added accumulated in the soil. Amongst the plant species, Schima superba was little affected by the treatment, the leaf P content was affected in Acmena acuminatissima plants and Cryptocarya concinna was the most susceptible species to soil acidification, with a marked decrease of, the leaf K, Ca and Mg concentrations when the treatment acidity increased. Simulated acid deposition affected the dynamics of K, Ca and Mg in the monsoon evergreen broad-leaved forest. The dynamics of Ca in the soil and of K, Mg and Ca in the soil leachates were affected by the acidic solution treatment. If such a soil acidification occurs, Cryptocarya concinna will be amongst the first affected species, but Schima superba will be able to sustain a good growth and mineral nutrition. Acid deposition will lead to imbalance the nutrient elements in the evergreen broad-leaved forest because of accelerated leaching losses of soil exchangeable Ca and Mg. Measures should be developed to slow down soil acidification or nutrient decrease.
NASA Astrophysics Data System (ADS)
Thomas, R. Q.; Williams, M.
2014-04-01
Carbon (C) and nitrogen (N) cycles are coupled in terrestrial ecosystems through multiple processes including photosynthesis, tissue allocation, respiration, N fixation, N uptake, and decomposition of litter and soil organic matter. Capturing the constraint of N on terrestrial C uptake and storage has been a focus of the Earth System modelling community. However there is little understanding of the trade-offs and sensitivities of allocating C and N to different tissues in order to optimize the productivity of plants. Here we describe a new, simple model of ecosystem C-N cycling and interactions (ACONITE), that builds on theory related to plant economics in order to predict key ecosystem properties (leaf area index, leaf C : N, N fixation, and plant C use efficiency) using emergent constraints provided by marginal returns on investment for C and/or N allocation. We simulated and evaluated steady-state ecosystem stocks and fluxes in three different forest ecosystems types (tropical evergreen, temperate deciduous, and temperate evergreen). Leaf C : N differed among the three ecosystem types (temperate deciduous < tropical evergreen < temperature evergreen), a result that compared well to observations from a global database describing plant traits. Gross primary productivity (GPP) and net primary productivity (NPP) estimates compared well to observed fluxes at the simulation sites. Simulated N fixation at steady-state, calculated based on relative demand for N and the marginal return on C investment to acquire N, was an order of magnitude higher in the tropical forest than in the temperate forest, consistent with observations. A sensitivity analysis revealed that parameterization of the relationship between leaf N and leaf respiration had the largest influence on leaf area index and leaf C : N. Also, a widely used linear leaf N-respiration relationship did not yield a realistic leaf C : N, while a more recently reported non-linear relationship performed better. A parameter governing how photosynthesis scales with day length had the largest influence on total vegetation C, GPP, and NPP. Multiple parameters associated with photosynthesis, respiration, and N uptake influenced the rate of N fixation. Overall, our ability to constrain leaf area index and have spatially and temporally variable leaf C : N helps address challenges for ecosystem and Earth System models. Furthermore, the simple approach with emergent properties based on coupled C-N dynamics has potential for use in research that uses data-assimilation methods to integrate data on both the C and N cycles to improve C flux forecasts.
NASA Astrophysics Data System (ADS)
Thomas, R. Q.; Williams, M.
2014-09-01
Carbon (C) and nitrogen (N) cycles are coupled in terrestrial ecosystems through multiple processes including photosynthesis, tissue allocation, respiration, N fixation, N uptake, and decomposition of litter and soil organic matter. Capturing the constraint of N on terrestrial C uptake and storage has been a focus of the Earth System Modeling community. However, there is little understanding of the trade-offs and sensitivities of allocating C and N to different tissues in order to optimize the productivity of plants. Here we describe a new, simple model of ecosystem C-N cycling and interactions (ACONITE), that builds on theory related to plant economics in order to predict key ecosystem properties (leaf area index, leaf C : N, N fixation, and plant C use efficiency) based on the outcome of assessments of the marginal change in net C or N uptake associated with a change in allocation of C or N to plant tissues. We simulated and evaluated steady-state ecosystem stocks and fluxes in three different forest ecosystems types (tropical evergreen, temperate deciduous, and temperate evergreen). Leaf C : N differed among the three ecosystem types (temperate deciduous < tropical evergreen < temperature evergreen), a result that compared well to observations from a global database describing plant traits. Gross primary productivity (GPP) and net primary productivity (NPP) estimates compared well to observed fluxes at the simulation sites. Simulated N fixation at steady-state, calculated based on relative demand for N and the marginal return on C investment to acquire N, was an order of magnitude higher in the tropical forest than in the temperate forest, consistent with observations. A sensitivity analysis revealed that parameterization of the relationship between leaf N and leaf respiration had the largest influence on leaf area index and leaf C : N. A parameter governing how photosynthesis scales with day length had the largest influence on total vegetation C, GPP, and NPP. Multiple parameters associated with photosynthesis, respiration, and N uptake influenced the rate of N fixation. Overall, our ability to constrain leaf area index and allow spatially and temporally variable leaf C : N can help address challenges simulating these properties in ecosystem and Earth System models. Furthermore, the simple approach with emergent properties based on coupled C-N dynamics has potential for use in research that uses data-assimilation methods to integrate data on both the C and N cycles to improve C flux forecasts.
Characteristics of fog and fogwater fluxes in a Puerto Rican elfin cloud forest.
Werner Eugster; Reto Burkard; Friso Holwerda; Frederick N. Scatena; L.A.(Sampurno) Bruijnzeel
2006-01-01
The Luquillo Mountains of northeastern Puerto Rico harbours important fractions of tropical montane cloud forests. Although it is well known that the frequent occurrence of dense fog is a common climatic characteristic of cloud forests around the world, it is poorly understood how fog processes shape and influence these ecosystems. Our study focuses on the physical...
NASA Astrophysics Data System (ADS)
Thomas, R. Q.; Williams, M.
2014-12-01
Carbon (C) and nitrogen (N) cycles are coupled in terrestrial ecosystems through multiple processes including photosynthesis, tissue allocation, respiration, N fixation, N uptake, and decomposition of litter and soil organic matter. Capturing the constraint of N on terrestrial C uptake and storage has been a focus of the Earth System modelling community. Here we explore the trade-offs and sensitivities of allocating C and N to different tissues in order to optimize the productivity of plants using a new, simple model of ecosystem C-N cycling and interactions (ACONITE). ACONITE builds on theory related to plant economics in order to predict key ecosystem properties (leaf area index, leaf C:N, N fixation, and plant C use efficiency) based on the optimization of the marginal change in net C or N uptake associated with a change in allocation of C or N to plant tissues. We simulated and evaluated steady-state and transient ecosystem stocks and fluxes in three different forest ecosystems types (tropical evergreen, temperate deciduous, and temperate evergreen). Leaf C:N differed among the three ecosystem types (temperate deciduous < tropical evergreen < temperature evergreen), a result that compared well to observations from a global database describing plant traits. Gross primary productivity (GPP) and net primary productivity (NPP) estimates compared well to observed fluxes at the simulation sites. A sensitivity analysis revealed that parameterization of the relationship between leaf N and leaf respiration had the largest influence on leaf area index and leaf C:N. Also, a widely used linear leaf N-respiration relationship did not yield a realistic leaf C:N, while a more recently reported non-linear relationship simulated leaf C:N that compared better to the global trait database than the linear relationship. Overall, our ability to constrain leaf area index and allow spatially and temporally variable leaf C:N can help address challenges simulating these properties in ecosystem and Earth System models. Furthermore, the simple approach with emergent properties based on coupled C-N dynamics has potential for use in research that uses data-assimilation methods to integrate data on both the C and N cycles to improve C flux forecasts.
Arnold Krochmal; Connie Krochmal
1979-01-01
The forests and open fields of the Blue Ridge provide ideal growing conditions for a number of ferns. Since some of these are evergreen, ferns can be seen in the area during every month of the year. Ferns are old members of the plant kingdom, and fossil ancestors are common in slate, shale, and coal. All ferns belong to the Pteridophytes, a group that also includes...
Satellite-based modeling of gross primary production in an evergreen needleleaf forest
Xiangming Xiao; David Hollinger; John Aber; Mike Goltz; Eric A. Davidson; Qingyuan Zhang; Berrien Moore III
2004-01-01
The eddy covariance technique provides valuable information on net ecosystem exchange (NEE) of CO2, between the atmosphere and terrestrial ecosystems, ecosystem respiration, and gross primary production (GPP) at a variety of C02 eddy flux tower sites. In this paper, we develop a new, satellite-based Vegetation Photosynthesis Model (VPM) to estimate the seasonal dynamcs...
Marianne Elliott; Gary A. Chastagner; Gil Dermott; Alan Kanaskie; Richard A. Sniezko; Jim Hamlin
2012-01-01
Pacific madrone (Arbutus menziesii Pursh, Ericaceae) is an important evergreen hardwood species in Pacific Northwest (PNW) forests that provides food and habitat for wildlife and has high value in urban environments. Reeves (2007) indicates that Pacific madrone provides habitat for numerous wildlife species, especially cavity-nesting birds. Its...
Vegetation response to a short interval between high-severity wildfires in a mixed-evergreen forest
Daniel C. Donato; Joseph B. Fontaine; W. Douglas Robinson; J. Boone Kauffman; Beverly E. Law
2009-01-01
Variations in disturbance regime strongly influence ecosystem structure and function. A prominent form of such variation is when multiple high-severity wildfires occur in rapid succession (i.e. short-interval (SI) severe fires, or âre-burnsâ). These events have been proposed as key mechanisms altering successional rates and pathways....
Quantity and quality of Japanese honeysuckle on Arkansas Ozark food plots
Charles A. Segelquist; Mitch Rogers; Fred D. Ward
1971-01-01
In the spring of 1968 Japanese honeysuckle was planted on four wildlife food plots in the Arkansas Ozarks. Two years later, with moderate fertilization and occasional mowing, this evergreen species produced 239 ovendry pounds of winter forage per acre, 12 times more than the surrounding forest. The nutrient quality of leaves was consistently high throughout the year....
Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright; Geoffrey B. Seymour
2007-01-01
A series of single and stereo photographs display a range of natural conditions and fuel loadings in evergreen and deciduous oak/juniper woodland and savannah ecosystems in southern Arizona and New Mexico. This group of photos includes inventory data summarizing vegetation composition, structure, and loading; woody material loading and density by size class; forest...
Biochemical and Molecular Characterization of a Laccase from Marasmius quercophilus
Dedeyan, Boghos; Klonowska, Agnieszka; Tagger, Simone; Tron, Thierry; Iacazio, Gilles; Gil, Gérard; Le Petit, Jean
2000-01-01
The basidiomycete Marasmius quercophilus is commonly found during autumn on the decaying litter of the evergreen oak (Quercus ilex L.), a plant characteristic of Mediterranean forest. This white-rot fungus colonizes the leaf surface with rhizomorphs, causing a total bleaching of the leaf. In synthetic liquid media, this white-rot fungus has strong laccase activity. From a three-step chromatographic procedure, we purified a major isoform to homogeneity. The gene encodes a monomeric glycoprotein of approximately 63 kDa, with a 3.6 isoelectric point, that contains 12% carbohydrate. Spectroscopic analysis of the purified enzyme (UV/visible and electron paramagnetic resonance, atomic absorption) confirmed that it belongs to the “blue copper oxidase” family. With syringaldazine as the substrate, the enzyme's pH optimum was 4.5, the optimal temperature was 75°C, and the Km was 7.1 μM. The structural gene, lac1, was cloned and sequenced. This gene encodes a 517-amino-acid protein 99% identical to a laccase produced by PM1, an unidentified basidiomycete previously isolated from wastewater from a paper factory in Spain. This similarity may be explained by the ecological distribution of the evergreen oak in Mediterranean forest. PMID:10698753
Impact of riparian land use on stream insects of Kudremukh National Park, Karnataka state, India
Subramanian, K.A.; Sivaramakrishnan, K.G.; Gadgil, Madhav
2005-01-01
The impact of riparian land use on the stream insect communities was studied at Kudremukh National Park located within Western Ghats, a tropical biodiversity hotspot in India. The diversity and community composition of stream insects varied across streams with different riparian land use types. The rarefied family and generic richness was highest in streams with natural semi evergreen forests as riparian vegetation. However, when the streams had human habitations and areca nut plantations as riparian land use type, the rarefied richness was higher than that of streams with natural evergreen forests and grasslands. The streams with scrub lands and iron ore mining as the riparian land use had the lowest rarefied richness. Within a landscape, the streams with the natural riparian vegetation had similar community composition. However, streams with natural grasslands as the riparian vegetation, had low diversity and the community composition was similar to those of paddy fields. We discuss how stream insect assemblages differ due to varied riparian land use patterns, reflecting fundamental alterations in the functioning of stream ecosystems. This understanding is vital to conserve, manage and restore tropical riverine ecosystems. PMID:17119631
Johnson, Daniel M; Smith, William K
2008-03-01
The high altitude spruce-fir (Abies fraseri (Pursh) Poiret.-Picea rubens Sarg.) forests of the southern Appalachian Mountains, USA, experience frequent cloud immersion. Recent studies indicate that cloud bases may have risen over the past 30 years, resulting in less frequent forest cloud immersion, and that further increases in cloud base height are likely in the event of continued climate warming. To assess the impact of this trend on the regeneration of high altitude spruce-fir forests and the migration of plant communities, in particular the encroachment of spruce-fir forests and Rhododendron catawbiense Michx. islands into adjacent grass bald communities, we investigated effects of cloud immersion on photosynthetic parameters of seedlings of Abies fraseri and R. catawbiense in a grass bald site and A. fraseri in a forest understory. Although photosynthetic photon flux was 4.2 to 19.4-fold greater during clear conditions, cloud immersion had no effect on photosynthesis in A. fraseri at either site, whereas it reduced photosynthesis of R. catawbiense by about 40%. However, cloud immersion increased mean leaf fluorescence by 7.1 to 12.8% in both species at both sites. Cloud immersion increased mean relative humidity from 65 to 96%, reduced transpiration by 95% and reduced mean leaf-to-air temperature difference from 6.6 to 0.5 degrees C.
Daniel M. Johnson; William K. Smith
2008-01-01
The high altitude spruce-fir (Abies fraseri (Pursh) Poiret.-Picea rubens Sarg.) forests of the southern Appalachian Mountains, USA, experience frequent cloud immersion. Recent studies indicate that cloud bases may have risen over the past 30 years, resulting in less frequent forest cloud immersion, and that further increases in cloud base height are...
Yang, Jiang-Ke; Zhang, Jing-Jing; Yu, Heng-Yu; Cheng, Jian-Wen; Miao, Li-Hong
2014-02-01
Cellulolytic bacteria in forest soil provide carbon sources to improve the soil fertility and sustain the nutrient balance of the forest ecological system through the decomposition of cellulosic remains. These bacteria can also be utilized for the biological conversion of biomass into renewable biofuels. In this study, the community compositions and activities of cellulolytic bacteria in the soils of forests planted with broad-leaved deciduous (Chang Qing Garden, CQG) and broad-leaved evergreen (Forest Park, FP) trees in Wuhan, China were resolved through restriction fragment length polymorphism (RFLP) and sequencing analysis of the 16S rRNA gene. All of the isolates exhibited 35 RFLP fingerprint patterns and were clustered into six groups at a similarity level of 50 %. The phylogeny analysis based on the 16S rRNA gene sequence revealed that these RFLP groups could be clustered into three phylogenetic groups and further divided into six subgroups at a higher resolution. Group I consists of isolates from Bacillus cereus, Bacillus subtilis complex (I-A) and from Paenibacillus amylolyticus-related complex (I-B) and exhibited the highest cellulase activity among all of the cellulolytic bacteria isolates. Cluster II consists of isolates belonging to Microbacterium testaceum (II-A), Chryseobacterium indoltheticum (II-B), and Flavobacterium pectinovorum and the related complex (II-C). Cluster III consists of isolates belonging to Pseudomonas putida-related species. The community shift with respect to the plant species and the soil properties was evidenced by the phylogenetic composition of the communities. Groups I-A and I-B, which account for 36.0 % of the cellulolytic communities in the CQG site, are the dominant groups (88.4 %) in the FP site. Alternatively, the ratio of the bacteria belonging to group III (P. putida-related isolates) shifted from 28.0 % in CQG to 4.0 % in FP. The soil nutrient analysis revealed that the CQG site planted with deciduous broad-leaved trees has a richer organic nutrient (total organic carbon and total nitrogen) than the FP site planted with evergreen broad-leaved trees. Against this background, the population density and the diversity of cellulolytic bacteria in the CQG site are clearly higher than those in the FP site, and the latter was dominated with high-cellulase-activity Bacillus- and Paenibacillus-related bacteria. The canonical correspondence analysis further indicated that the distribution of these groups is correlated with the FP site, whereas groups II and III are correlated with the organic nutrient-rich CQG site.
NASA Astrophysics Data System (ADS)
Van Beusekom, Ashley E.; González, Grizelle; Scholl, Martha A.
2017-06-01
The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline for quantifying future changes in cloud base, we installed a ceilometer at 100 m altitude in the forest upwind of the TMCF that occupies an altitude range from ˜ 600 m to the peaks at 1100 m in the Luquillo Mountains of eastern Puerto Rico. Airport Automated Surface Observing System (ASOS) ceilometer data, radiosonde data, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite data were obtained to investigate seasonal cloud base dynamics, altitude of the trade-wind inversion (TWI), and typical cloud thickness for the surrounding Caribbean region. Cloud base is rarely quantified near mountains, so these results represent a first look at seasonal and diurnal cloud base dynamics for the TMCF. From May 2013 to August 2016, cloud base was lowest during the midsummer dry season, and cloud bases were lower than the mountaintops as often in the winter dry season as in the wet seasons. The lowest cloud bases most frequently occurred at higher elevation than 600 m, from 740 to 964 m. The Luquillo forest low cloud base altitudes were higher than six other sites in the Caribbean by ˜ 200-600 m, highlighting the importance of site selection to measure topographic influence on cloud height. Proximity to the oceanic cloud system where shallow cumulus clouds are seasonally invariant in altitude and cover, along with local trade-wind orographic lifting and cloud formation, may explain the dry season low clouds. The results indicate that climate change threats to low-elevation TMCFs are not limited to the dry season; changes in synoptic-scale weather patterns that increase frequency of drought periods during the wet seasons (periods of higher cloud base) may also impact ecosystem health.
Van Beusekom, Ashley E.; González, Grizelle; Scholl, Martha A.
2017-01-01
The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline for quantifying future changes in cloud base, we installed a ceilometer at 100 m altitude in the forest upwind of the TMCF that occupies an altitude range from ∼ 600 m to the peaks at 1100 m in the Luquillo Mountains of eastern Puerto Rico. Airport Automated Surface Observing System (ASOS) ceilometer data, radiosonde data, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite data were obtained to investigate seasonal cloud base dynamics, altitude of the trade-wind inversion (TWI), and typical cloud thickness for the surrounding Caribbean region. Cloud base is rarely quantified near mountains, so these results represent a first look at seasonal and diurnal cloud base dynamics for the TMCF. From May 2013 to August 2016, cloud base was lowest during the midsummer dry season, and cloud bases were lower than the mountaintops as often in the winter dry season as in the wet seasons. The lowest cloud bases most frequently occurred at higher elevation than 600 m, from 740 to 964 m. The Luquillo forest low cloud base altitudes were higher than six other sites in the Caribbean by ∼ 200–600 m, highlighting the importance of site selection to measure topographic influence on cloud height. Proximity to the oceanic cloud system where shallow cumulus clouds are seasonally invariant in altitude and cover, along with local trade-wind orographic lifting and cloud formation, may explain the dry season low clouds. The results indicate that climate change threats to low-elevation TMCFs are not limited to the dry season; changes in synoptic-scale weather patterns that increase frequency of drought periods during the wet seasons (periods of higher cloud base) may also impact ecosystem health.
Water transport dynamics in trees and stands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pallardy, S.G.; Cermak, J.; Ewers, F.W.
1995-07-01
Water transport dynamics in trees and stands of conifers have certain features that are characteristic of this group and are at least rare among angiosperms. Among these features is the xylem transport system that is dependent on tracheids for long-distance water transport. Tracheid-containing xylem is relatively inefficient, a property that can reduce submaximum allowable rates of gas exchange, but tracheids also offer substantial capacity for water storage and high resistance to freezing-induced dysfunction. Thus, they are quite compatible with the typical evergreen habit and long transpiration season of conifers. At the stand level, canopy transpiration in conifers is primarily controlledmore » by stomatal conductance. In contrast, in dense canopies of angio-sperms, particularly those of tropical forests with limited air mixing, stand transpiration is limited by radiation input rather than by stomatal control. Because of their evergreen habit a greater proportion of evapotranspiration in conifer forests is associated with evaporation of water intercepted by the tree crowns. Other features of transport dynamics are characteristic of most conifers, but are not unique to this group. Among these features are typically shallow root systems that often must supply water in winter to replace transpiration needs of evergreen species, common occurrence of mycorrhizae that enhance mineral and water uptake, and drought tolerance adaptations that include elements of both dehydration avoidance (e.g., stomatal closure under water stress, shifts in allocation of dry matter to below-ground sinks) and dehydration tolerance (e.g., capacity for acclimation of photosynthetic apparatus to drought, osmotic adjustment). Transpiration rates from conifer foliage often are lower than those of deciduous angiosperms, probably because of the lower maximum capacity of tracheid-bearing xylem to transport water.« less
Holocene vegetation and fire history of the mountains of northern Sicily (Italy)
Tinner, Willy; Vescovi, Elisa; Van Leeuwen, Jacqueline; Colombaroli, Daniele; Henne, Paul; Kaltenrieder, Petra; Morales-Molino, Cesar; Beffa, Giorgia; Gnaegi, Bettina; Van der Knaap, Pim W O; La Mantia, Tommaso; Pasta, Salvatore
2016-01-01
Knowledge about vegetation and fire history of the mountains of Northern Sicily is scanty. We analysed five sites to fill this gap and used terrestrial plant macrofossils to establish robust radiocarbon chronologies. Palynological records from Gorgo Tondo, Gorgo Lungo, Marcato Cixé, Urgo Pietra Giordano and Gorgo Pollicino show that under natural or near natural conditions, deciduous forests (Quercus pubescens, Q. cerris, Fraxinus ornus, Ulmus), that included a substantial portion of evergreen broadleaved species (Q. suber, Q. ilex, Hedera helix), prevailed in the upper meso-mediterranean belt. Mesophilous deciduous and evergreen broadleaved trees (Fagus sylvatica, Ilex aquifolium) dominated in the natural or quasi-natural forests of the oro-mediterranean belt. Forests were repeatedly opened for agricultural purposes. Fire activity was closely associated with farming, providing evidence that burning was a primary land use tool since Neolithic times. Land use and fire activity intensified during the Early Neolithic at 5000 bc, at the onset of the Bronze Age at 2500 bc and at the onset of the Iron Age at 800 bc. Our data and previous studies suggest that the large majority of open land communities in Sicily, from the coastal lowlands to the mountain areas below the thorny-cushion Astragalus belt (ca. 1,800 m a.s.l.), would rapidly develop into forests if land use ceased. Mesophilous Fagus-Ilex forests developed under warm mid Holocene conditions and were resilient to the combined impacts of humans and climate. The past ecology suggests a resilience of these summer-drought adapted communities to climate warming of about 2 °C. Hence, they may be particularly suited to provide heat and drought-adaptedFagus sylvatica ecotypes for maintaining drought-sensitive Central European beech forests under global warming conditions.
Worldwide Historical Estimates of Leaf Area Index, 1932-2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scurlock, JMO
2002-02-06
Approximately 1000 published estimates of leaf area index (LAI) from nearly 400 unique field sites, covering the period 1932-2000, have been compiled into a single data set. LA1 is a key parameter for global and regional models of biosphere/atmosphere exchange of carbon dioxide, water vapor, and other materials. It also plays an integral role in determining the energy balance of the land surface. This data set provides a benchmark of typical values and ranges of LA1 for a variety of biomes and land cover types, in support of model development and validation of satellite-derived remote sensing estimates of LA1 andmore » other vegetation parameters. The LA1 data are linked to a bibliography of over 300 original source references. These historic LA1 data are mostly from natural and seminatural (managed) ecosystems, although some agricultural estimates are also included. Although methodologies for determining LA1 have changed over the decades, it is useful to represent the inconsistencies (e.g., in maximum value reported for a particular biome) that are actually found in the scientific literature. Needleleaf (coniferous) forests are by far the most commonly measured biome/land cover types in this compilation, with 22% of the measurements from temperate evergreen needleleaf forests, and boreal evergreen needleleaf forests and crops the next most common (about 9% each). About 40% of the records in the data set were published in the past 10 years (1991-2000), with a further 20% collected between 1981 and 1990. Mean LAI ({+-} standard deviation), distributed between 15 biome/land cover classes, ranged from 1.31 {+-} 0.85 for deserts to 8.72 {+-} 4.32 for tree plantations, with evergreen forests (needleleaf and broadleaf) displaying the highest LA1 among the natural terrestrial vegetation classes. We have identified statistical outliers in this data set, both globally and according to the different biome/land cover classes, but despite some decreases in mean LA1 values reported, our overall conclusions remained the same. This report documents the development of this data set, its contents, and its availability on the Internet from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics. Caution is advised in using these data, which were collected using a wide range of methodologies and assumptions that may not allow comparisons among sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick Gonzalez; Antonio Lara; Jorge Gayoso
Deforestation of temperate rainforests in Chile has decreased the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation can restore those ecosystem services. Greenhouse gas policies that offer financing for the carbon emissions avoided by preventing deforestation require a projection of future baseline carbon emissions for an area if no forest conservation occurs. For a proposed 570 km{sup 2} conservation area in temperate rainforest around the rural community of Curinanco, Chile, we compared three methods to project future baseline carbon emissions: extrapolation from Landsat observations, Geomod, and Forest Restoration Carbon Analysis (FRCA). Analyses of forestmore » inventory and Landsat remote sensing data show 1986-1999 net deforestation of 1900 ha in the analysis area, proceeding at a rate of 0.0003 y{sup -1}. The gross rate of loss of closed natural forest was 0.042 y{sup -1}. In the period 1986-1999, closed natural forest decreased from 20,000 ha to 11,000 ha, with timber companies clearing natural forest to establish plantations of non-native species. Analyses of previous field measurements of species-specific forest biomass, tree allometry, and the carbon content of vegetation show that the dominant native forest type, broadleaf evergreen (bosque siempreverde), contains 370 {+-} 170 t ha{sup -1} carbon, compared to the carbon density of non-native Pinus radiata plantations of 240 {+-} 60 t ha{sup -1}. The 1986-1999 conversion of closed broadleaf evergreen forest to open broadleaf evergreen forest, Pinus radiata plantations, shrublands, grasslands, urban areas, and bare ground decreased the carbon density from 370 {+-} 170 t ha{sup -1} carbon to an average of 100 t ha{sup -1} (maximum 160 t ha{sup -1}, minimum 50 t ha{sup -1}). Consequently, the conversion released 1.1 million t carbon. These analyses of forest inventory and Landsat remote sensing data provided the data to evaluate the three methods to project future baseline carbon emissions. Extrapolation from Landsat change detection uses the observed rate of change to estimate change in the near future. Geomod is a software program that models the geographic distribution of change using a defined rate of change. FRCA is an integrated spatial analysis of forest inventory, biodiversity, and remote sensing that produces estimates of forest biodiversity and forest carbon density, spatial data layers of future probabilities of reforestation and deforestation, and a projection of future baseline forest carbon sequestration and emissions for an ecologically-defined area of analysis. For the period 1999-2012, extrapolation from Landsat change detection estimated a loss of 5000 ha and 520,000 t carbon from closed natural forest; Geomod modeled a loss of 2500 ha and 250 000 t; FRCA projected a loss of 4700 {+-} 100 ha and 480,000 t (maximum 760,000 t, minimum 220,000 t). Concerning labor time, extrapolation for Landsat required 90 actual days or 120 days normalized to Bachelor degree level wages; Geomod required 240 actual days or 310 normalized days; FRCA required 110 actual days or 170 normalized days. Users experienced difficulties with an MS-DOS version of Geomod before turning to the Idrisi version. For organizations with limited time and financing, extrapolation from Landsat change provides a cost-effective method. Organizations with more time and financing could use FRCA, the only method where that calculates the deforestation rate as a dependent variable rather than assuming a deforestation rate as an independent variable. This research indicates that best practices for the projection of baseline carbon emissions include integration of forest inventory and remote sensing tasks from the beginning of the analysis, definition of an analysis area using ecological characteristics, use of standard and widely used geographic information systems (GIS) software applications, and the use of species-specific allometric equations and wood densities developed for local species.« less
Brantley, Steven; Ford, Chelcy R; Vose, James M
2013-06-01
Infestation of eastern hemlock (Tsuga canadensis (L.) Carr.) with hemlock woolly adelgid (HWA, Adelges tsugae) has caused widespread mortality of this key canopy species throughout much of the southern Appalachian Mountains in the past decade. Because eastern hemlock is heavily concentrated in riparian habitats, maintains a dense canopy, and has an evergreen leaf habit, its loss is expected to have a major impact on forest processes, including transpiration (E(t)). Our goal was to estimate changes in stand-level E(t) since HWA infestation, and predict future effects of forest regeneration on forest E(t) in declining eastern hemlock stands where hemlock represented 50-60% of forest basal area. We used a combination of community surveys, sap flux measurements, and empirical models relating sap flux-scaled leaf-level transpiration (E(L)) to climate to estimate the change in E(t) after hemlock mortality and forecast how forest E(t) will change in the future in response to eastern hemlock loss. From 2004 to 2011, eastern hemlock mortality reduced annual forest E(t) by 22% and reduced winter E(t) by 74%. As hemlock mortality increased, growth of deciduous tree species--especially sweet birch (Betula lenta L.), red maple (Acer rubrum L.), yellow poplar (Liriodendron tulipifera L.), and the evergreen understory shrub rosebay rhododendron (Rhododendron maximum L.)--also increased, and these species will probably dominate post-hemlock riparian forests. All of these species have higher daytime E(L) rates than hemlock, and replacement of hemlock with species that have less conservative transpiration rates will result in rapid recovery of annual stand E(t). Further, we predict that annual stand E(t) will eventually surpass E(t) levels observed before hemlock was infested with HWA. This long-term increase in forest E(t) may eventually reduce stream discharge, especially during the growing season. However, the dominance of deciduous species in the canopy will result in a permanent reduction in winter E(t) and possible increase in winter stream discharge. The effects of hemlock die-off and replacement with deciduous species will have a significant impact on the hydrologic flux of forest transpiration, especially in winter. These results highlight the impact that invasive species can have on landscape-level ecosystem fluxes.
Ornelas, Juan Francisco; Sosa, Victoria; Soltis, Douglas E.; Daza, Juan M.; González, Clementina; Soltis, Pamela S.; Gutiérrez-Rodríguez, Carla; de los Monteros, Alejandro Espinosa; Castoe, Todd A.; Bell, Charles; Ruiz-Sanchez, Eduardo
2013-01-01
Comparative phylogeography can elucidate the influence of historical events on current patterns of biodiversity and can identify patterns of co-vicariance among unrelated taxa that span the same geographic areas. Here we analyze temporal and spatial divergence patterns of cloud forest plant and animal species and relate them to the evolutionary history of naturally fragmented cloud forests–among the most threatened vegetation types in northern Mesoamerica. We used comparative phylogeographic analyses to identify patterns of co-vicariance in taxa that share geographic ranges across cloud forest habitats and to elucidate the influence of historical events on current patterns of biodiversity. We document temporal and spatial genetic divergence of 15 species (including seed plants, birds and rodents), and relate them to the evolutionary history of the naturally fragmented cloud forests. We used fossil-calibrated genealogies, coalescent-based divergence time inference, and estimates of gene flow to assess the permeability of putative barriers to gene flow. We also used the hierarchical Approximate Bayesian Computation (HABC) method implemented in the program msBayes to test simultaneous versus non-simultaneous divergence of the cloud forest lineages. Our results show shared phylogeographic breaks that correspond to the Isthmus of Tehuantepec, Los Tuxtlas, and the Chiapas Central Depression, with the Isthmus representing the most frequently shared break among taxa. However, dating analyses suggest that the phylogeographic breaks corresponding to the Isthmus occurred at different times in different taxa. Current divergence patterns are therefore consistent with the hypothesis of broad vicariance across the Isthmus of Tehuantepec derived from different mechanisms operating at different times. This study, coupled with existing data on divergence cloud forest species, indicates that the evolutionary history of contemporary cloud forest lineages is complex and often lineage-specific, and thus difficult to capture in a simple conservation strategy. PMID:23409165
Changes in forest productivity across Alaska consistent with biome shift.
Beck, Pieter S A; Juday, Glenn P; Alix, Claire; Barber, Valerie A; Winslow, Stephen E; Sousa, Emily E; Heiser, Patricia; Herriges, James D; Goetz, Scott J
2011-04-01
Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal-tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline. © 2011 Blackwell Publishing Ltd/CNRS.
Wilson, Sarah Jane; Rhemtulla, Jeanine M
2016-01-01
Community-based tropical forest restoration projects, often promoted as a win-win solution for local communities and the environment, have increased dramatically in number in the past decade. Many such projects are underway in Andean cloud forests, which, given their extremely high biodiversity and history of extensive clearing, are understudied. This study investigates the efficacy of community-based tree-planting projects to accelerate cloud forest recovery, as compared to unassisted natural regeneration. This study takes place in northwest Andean Ecuador, where the majority of the original, highly diverse cloud forests have been cleared, in five communities that initiated tree-planting projects to restore forests in 2003. In 2011, we identified tree species along transects in planted forests (n = 5), naturally regenerating forests (n = 5), and primary forests (n = 5). We also surveyed 120 households about their restoration methods, tree preferences, and forest uses. We found that tree diversity was higher in planted than in unplanted secondary forest, but both were less diverse than primary forests. Ordination analysis showed that all three forests had distinct species compositions, although planted forests shared more species with primary forests than did unplanted forests. Planted forests also contained more animal-dispersed species in both the planted canopy and in the unplanted, regenerating understory than unplanted forests, and contained the highest proportion of species with use value for local people. While restoring forest increased biodiversity and accelerated forest recovery, restored forests may also represent novel ecosystems that are distinct from the region's previous ecosystems and, given their usefulness to people, are likely to be more common in the future.
Satellite-based estimation of evapotranspiration in typical forests of China
NASA Astrophysics Data System (ADS)
Wang, Y.; Li, R.
2017-12-01
Evapotranspiration (ET) is the key process affecting the interaction between land surface and atmosphere. Satellite remote sensing is the only feasible technique to monitor the terrestrial ET on large scale. Microwave Emissivity Difference Vegetation Index (EDVI) indicates vegetation water content and can be retrieved under both clear and cloudy sky. Based on EDVI, a quantitative algorithm for ET estimation in China was developed. In this study, we improved the EDVI-based ET algorithm by using the datasets from multiple platforms, including Moderate-Resolution Imaging Spectroradiometer (MODIS), Clouds and Earth's Radiation energy system (CERES) and European Centre for Medium-Range Weather Forecasts (ECMWF). As primary inputs of the algorithm, they are all independent from ground-based measurements. The improved algorithm was tested in three ChinaFlux forest sites, Dinghushan(DHS) subtropical evergreen broad-leaved forest site, Qianyanzhou(QYZ) subtropical man-planted forest site and Changbaishan(CBS) temperate deciduous broad-leaved coniferous mixed forest site. Validations against the in-situ measured ETobs from 2003 to 2005 showed that the EDVI-based algorithm has the capability to simulate midday ET within reasonable accuracies. In terms of the magnitude and seasonal cycle, the estimated ETcal are in very good agreement with the ETobs. The correlation coefficients(R) between ETcal and ETobs during midday vary from 0.51 to 0.80 over the study years, with the annual mean bias (relative bias) ranging from -53.02 Wm-2 (-26.46%) to 34.02 Wm-2 (+23.69%). At monthly scale, the R of monthly mean ETcal and ETobs can reach to 0.83, 0.93 and 0.82 at DHS, QYZ and CBS, with bias of +3.0%, -22.3% and -9.7%, respectively. Contamination from precipitation can partly affect the performances of this algorithm. Validation results generally become better after removing those samples in rainy days. The results indicate that this EDVI-based algorithm, driven completely by using satellite and reanalysis datasets, has a great potential for monitoring terrestrial ET in large spatial scale and under both clear and cloudy sky.
Assal, Timothy J.; Anderson, Patrick J.; Sibold, Jason
2015-01-01
The availability of land cover data at local scales is an important component in forest management and monitoring efforts. Regional land cover data seldom provide detailed information needed to support local management needs. Here we present a transferable framework to model forest cover by major plant functional type using aerial photos, multi-date Système Pour l’Observation de la Terre (SPOT) imagery, and topographic variables. We developed probability of occurrence models for deciduous broad-leaved forest and needle-leaved evergreen forest using logistic regression in the southern portion of the Wyoming Basin Ecoregion. The model outputs were combined into a synthesis map depicting deciduous and coniferous forest cover type. We evaluated the models and synthesis map using a field-validated, independent data source. Results showed strong relationships between forest cover and model variables, and the synthesis map was accurate with an overall correct classification rate of 0.87 and Cohen’s kappa value of 0.81. The results suggest our method adequately captures the functional type, size, and distribution pattern of forest cover in a spatially heterogeneous landscape.
[Variations of soil labile organic carbon along an altitude gradient in Wuyi Mountain].
Xu, Xia; Chen, Yue-Qin; Wang, Jia-She; Fang, Yan-Hong; Quan, Wei; Ruan, Hong-Hua; Xu, Zi-Kun
2008-03-01
By using sequential fumigation-incubation method, this paper determined the soil labile organic carbon (LOC) content under evergreen broadleaf forest, coniferous forest, sub-alpine dwarf forest, and alpine meadow along an altitude gradient in Wuyi Mountain National Nature Reserve in Fujian Province of China, with its relations to soil microbial biomass carbon (MBC), total organic carbon (TOC), total nitrogen (TN), and fine root biomass (FRB) analyzed. The results showed that soil LOC occupied 3.40%-7.46% of soil TOC, and soil MBC occupied 26.87%-80.38% of the LOC. The LOC under different forest stands increased significantly with altitude, and decreased with soil depth. Soil LOC had very significant correlations with soil MBC, TOC, TN and FRB, and its content was obviously higher at higher altitudes than at lower altitudes.
Boreal forests, aerosols and the impacts on clouds and climate.
Spracklen, Dominick V; Bonn, Boris; Carslaw, Kenneth S
2008-12-28
Previous studies have concluded that boreal forests warm the climate because the cooling from storage of carbon in vegetation and soils is cancelled out by the warming due to the absorption of the Sun's heat by the dark forest canopy. However, these studies ignored the impacts of forests on atmospheric aerosol. We use a global atmospheric model to show that, through emission of organic vapours and the resulting condensational growth of newly formed particles, boreal forests double regional cloud condensation nuclei concentrations (from approx. 100 to approx. 200 cm(-3)). Using a simple radiative model, we estimate that the resulting change in cloud albedo causes a radiative forcing of between -1.8 and -6.7 W m(-2) of forest. This forcing may be sufficiently large to result in boreal forests having an overall cooling impact on climate. We propose that the combination of climate forcings related to boreal forests may result in an important global homeostasis. In cold climatic conditions, the snow-vegetation albedo effect dominates and boreal forests warm the climate, whereas in warmer climates they may emit sufficiently large amounts of organic vapour modifying cloud albedo and acting to cool climate.
Lopes, S F; Vale, V S; Prado Júnior, J A; Schiavini, I
2015-08-01
Dams are of paramount importance to a wide variety of human services and many of their environmental problems are known; however, there are few studies in the world addressing the impacts on the native vegetation previously distant from water bodies which became close to the lakeshore created by a dam. Thus, this paper aims to analyze the responses of a dry forest to a dam after 15 years. For this, 20 random samples of 40 trees were made, 10 close to the lakeshore and 10 distant from it, by applying the central square point method. Close to the dam, we found higher values regarding basal area, number of trees, number of evergreen trees, and zoochoric syndrome, but there were lower values of Shannon's diversity index. Therefore, the impacts of the dam after 15 years caused several changes to the tree community. The greater basal area close to the dam suggests that water deficit during the dry season was decreased and plants have thicker trunks. On the other hand, this sector had much more zoochoric syndrome and a larger number of evergreen trees than plots which are distant from water, suggesting changes with regard to the community's ecological functions. Furthermore, structural floristic data shows that the sector close to the dam is less similar to other deciduous forests within the same geographical region than the sector distant from water, thus providing evidence of the impacts of dams on the tree community.
Keith Reinhardt; William K. Smith
2010-01-01
The red spruce-Fraser fir ecosystem (Picea rubens Sarg.-Abies fraseri [Pursh] Poir.) of the southern Appalachian mountains is a temperate zone cloud forest immersed in clouds for 30 to 40 percent of a typical summer day, and experiencing immersion on about 65 percent of all days annually. We compared the microclimate,...
Daniel M. Johnson; William K. Smith
2008-01-01
The high altitude spruce-fir (Abies fraseri (Pursh) Poiret.-Picea rubens Sarg.) forests of the southern Appalachian Mountains, USA, experience frequent cloud immersion. Recent studies indicate that cloud bases may have risen over the past 30 years, resulting in less frequent forest cloud immersion, and that further increases in...
[Organic carbon and carbon mineralization characteristics in nature forestry soil].
Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui
2014-03-01
Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.
2005-11-07
KENNEDY SPACE CENTER, FLA. - A Long-Eared Owl is spotted on Launch Complex 41 at Cape Canaveral Air Force Station in Florida. This one holds a typical stance for protecting its young. These owls range from Alaska and Canada to the Gulf states and Mexico, as far east as Central Florida. Their habitat is deciduous and evergreen forests. They nest in deserted nests of crows, hawks or squirrels.
2005-11-07
KENNEDY SPACE CENTER, FLA. - A Long-Eared Owl is spotted on Launch Complex 41 at Cape Canaveral Air Force Station in Florida. This one holds a typical stance for protecting its young. These owls range from Alaska and Canada to the Gulf states and Mexico, as far east as Central Florida. Their habitat is deciduous and evergreen forests. They nest in deserted nests of crows, hawks or squirrels.
Richard S Dodd; Alejandro Nettel; Jessica W. Wright; Zara Afzal-Rafii
2013-01-01
Tanoak, Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S. H. Oh (Fagaceae), is an important component of mixed-evergreen forests and woodlands in coastal California and Oregon, with incursions into the Sierra Nevada and the Klamath Ranges. Sudden Oak Death (SOD) is causing severe dieback and mortality in tanoak and could...
A new species of Stigmatomma from Taiwan (Hymenoptera, Formicidae, Amblyoponinae)
Hsu, Feng-Chuan; Esteves, Flavia A.; Chou, Lien-Siang; Lin, Chung-Chi
2017-01-01
Abstract Stigmatomma is the most speciose ant genus in the subfamily Amblyoponinae. In the present paper, the worker caste of a new species is described, S. luyiae sp. n., which was collected from a soil sample in a subtropical evergreen broad-leaved forest in Taiwan. An identification key to the females of Stigmatomma species with 11 antennomeres occurring in Asia is also provided. PMID:29118613
Howard S. Neufeld; Derick B Poindexter; Paula F. Murakami; Paul G. Schaberg
2011-01-01
Galax urceolata (Diapensiaceae) is a common evergreen herb of southern Appalachian forests. During the fall and winter, leaves of plants in high light produce substantial amounts of anthocyanins. Oddly, rhizomes in these plants also accumulate anthocyanins. The purpose of this observational study was to identify seasonal trends in anthocyanin...
Foster, Jane R
2017-09-01
Defoliation outbreaks are biological disturbances that alter tree growth and mortality in temperate forests. Trees respond to defoliation in many ways; some recover rapidly, while others decline gradually or die. Functional traits such as xylem anatomy, growth phenology or non-structural carbohydrate (NSC) storage could explain these responses, but idiosyncratic measures used by defoliation studies have frustrated efforts to generalize among species. Here, I test for functional differences with published growth and mortality data from 37 studies, including 24 tree species and 11 defoliators from North America and Eurasia. I synthesized data into standardized variables suitable for numerical models and used linear mixed-effects models to test the hypotheses that responses to defoliation vary among species and functional groups. Standardized data show that defoliation responses vary in shape and degree. Growth decreased linearly or curvilinearly, least in ring-porous Quercus and deciduous conifers (by 10-40% per 100% defoliation), whereas growth of diffuse-porous hardwoods and evergreen conifers declined by 40-100%. Mortality increased exponentially with defoliation, most rapidly for evergreen conifers, then diffuse-porous, then ring-porous species and deciduous conifers (Larix). Goodness-of-fit for functional-group models was strong (R2c = 0.61-0.88), if lower than species-specific mixed-models (R2c = 0.77-0.93), providing useful alternatives when species data are lacking. These responses are consistent with functional differences in leaf longevity, wood growth phenology and NSC storage. When defoliator activity lags behind wood-growth, either because xylem-growth precedes budburst (Quercus) or defoliator activity peaks later (sawflies on Larix), impacts on annual wood-growth will always be lower. Wood-growth phenology of diffuse-porous species and evergreen conifers coincides with defoliation and responds more drastically, and lower axial NSC storage makes them more vulnerable to mortality as stress accumulates. These functional differences in response apply in general to disturbances that cause spring defoliation and provide a framework that should be incorporated into forest growth and vegetation models. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Montane and cloud forest specialists among neotropical Xylaria species
D. Jean Lodge; Thomas L& #230; ss& #248; e; M. Catherine Aime; Terry W. Henkel; M. Catherine Aime; Terry W. Henkel
2008-01-01
We compared recored of neotropical Xylaria species among Belize, Ecuador, the Guianas, Mexico, Puerto Rico and Venezuela to determine if there were neotropical taxa consistently found only in cloud forest or high montane forests that might be endangered by climate change.
Wang, Shaoqiang; Zhou, Lei; Chen, Jingming; Ju, Weimin; Feng, Xianfeng; Wu, Weixing
2011-06-01
Affected by natural and anthropogenic disturbances such as forest fires, insect-induced mortality and harvesting, forest stand age plays an important role in determining the distribution of carbon pools and fluxes in a variety of forest ecosystems. An improved understanding of the relationship between net primary productivity (NPP) and stand age (i.e., age-related increase and decline in forest productivity) is essential for the simulation and prediction of the global carbon cycle at annual, decadal, centurial, or even longer temporal scales. In this paper, we developed functions describing the relationship between national mean NPP and stand age using stand age information derived from forest inventory data and NPP simulated by the BEPS (Boreal Ecosystem Productivity Simulator) model in 2001. Due to differences in ecobiophysical characteristics of different forest types, NPP-age equations were developed for five typical forest ecosystems in China (deciduous needleleaf forest (DNF), evergreen needleleaf forest in tropic and subtropical zones (ENF-S), deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), and mixed broadleaf forest (MBF)). For DNF, ENF-S, EBF, and MBF, changes in NPP with age were well fitted with a common non-linear function, with R(2) values equal to 0.90, 0.75, 0.66, and 0.67, respectively. In contrast, a second order polynomial was best suitable for simulating the change of NPP for DBF, with an R(2) value of 0.79. The timing and magnitude of the maximum NPP varied with forest types. DNF, EBF, and MBF reached the peak NPP at the age of 54, 40, and 32 years, respectively, while the NPP of ENF-S maximizes at the age of 13 years. The highest NPP of DBF appeared at 122 years. NPP was generally lower in older stands with the exception of DBF, and this particular finding runs counter to the paradigm of age-related decline in forest growth. Evaluation based on measurements of NPP and stand age at the plot-level demonstrates the reliability and applicability of the fitted NPP-age relationships. These relationships were used to replace the normalized NPP-age relationship used in the original InTEC (Integrated Terrestrial Ecosystem Carbon) model, to improve the accuracy of estimated carbon balance for China's forest ecosystems. With the revised NPP-age relationship, the InTEC model simulated a larger carbon source from 1950-1980 and a larger carbon sink from 1985-2001 for China's forests than the original InTEC model did because of the modification to the age-related carbon dynamics in forests. This finding confirms the importance of considering the dynamics of NPP related to forest age in estimating regional and global terrestrial carbon budgets. Copyright © 2011 Elsevier Ltd. All rights reserved.
Loope, Lloyd L.; Giambelluca, Thomas W.
1998-01-01
Island tropical montane cloud forests may be among the most sensitive of the world's ecosystems to global climate change. Measurements in and above a montane cloud forest on East Maui, Hawaii, document steep microclimatic gradients. Relatively small climate-driven shifts in patterns of atmospheric circulation are likely to trigger major local changes in rainfall, cloud cover, and humidity. Increased interannual variability in precipitation and hurricane incidence would provide additional stresses on island biota that are highly vulnerable to disturbance-related invasion of non-native species. Because of the exceptional sensitivity of these microclimates and forests to change, they may provide valuable ‘listening posts’ for detecting the onset of human-induced global climate change.
Biogeography, Cloud Base Heights and Cloud Immersion in Tropical Montane Cloud Forests
NASA Astrophysics Data System (ADS)
Welch, R. M.; Asefi, S.; Zeng, J.; Nair, U. S.; Lawton, R. O.; Ray, D. K.; Han, Q.; Manoharan, V. S.
2007-05-01
Tropical Montane Cloud Forests (TMCFs) are ecosystems characterized by frequent and prolonged immersion within orographic clouds. TMCFs often lie at the core of the biological hotspots, areas of high biodiversity, whose conservation is necessary to ensure the preservation of a significant amount of the plant and animal species in the world. TMCFs support islands of endemism dependent on cloud water interception that are extremely susceptible to environmental and climatic changes at regional or global scales. Due to the ecological and hydrological importance of TMCFs it is important to understand the biogeographical distribution of these ecosystems. The best current list of TMCFs is a global atlas compiled by the United Nations Environmental Program (UNEP). However, this list is incomplete, and it does not provide information on cloud immersion, which is the defining characteristic of TMCFs and sorely needed for ecological and hydrological studies. The present study utilizes MODIS satellite data both to determine orographic cloud base heights and then to quantify cloud immersion statistics over TMCFs. Results are validated from surface measurements over Northern Costa Rica for the month of March 2003. Cloud base heights are retrieved with approximately 80m accuracy, as determined at Monteverde, Costa Rica. Cloud immersion derived from MODIS data is also compared to an independent cloud immersion dataset created using a combination of GOES satellite data and RAMS model simulations. Comparison against known locations of cloud forests in Northern Costa Rica shows that the MODIS-derived cloud immersion maps successfully identify these cloud forest locations, including those not included in the UNEP data set. Results also will be shown for cloud immersion in Hawaii. The procedure appears to be ready for global mapping.
Zhou, Haoran; Xu, Ming; Pan, Hongli; Yu, Xiubo
2015-11-01
Temperature responses and sensitivity of photosynthesis (A(n_)T) and respiration for leaves at different ages are crucial to modeling ecosystem carbon (C) cycles and productivity of evergreen forests. Understanding the mechanisms and processes of temperature sensitivity may further shed lights on temperature acclimation of photosynthesis and respiration with leaf aging. The current study examined temperature responses of photosynthesis and respiration of young leaves (YLs) (fully expanded in current growth season) and old leaves (OLs) (fully expanded in last growth season) of Quercus aquifolioides Rehder and E.H. Wilson in an alpine oak forest, southwestern China. Temperature responses of dark respiration (R(dark)), net assimilation (A(n)), maximal velocity of carboxylation (V(cmax)) and maximum rate of electron transport (J(max)) were significantly different between the two leaf ages. Those differences implied different temperature response parameters should be used for leaves of different ages in modeling vegetation productivity and ecosystem C cycles in Q. aquifolioides forests and other evergreen forests. We found that RuBP carboxylation determined the downward shift of A(n_)T in OLs, while RuBP regeneration and the balance between Rubisco carboxylation and RuBP regeneration made little contribution. Sensitivity of stomatal conductance to vapor pressure deficit changed in OLs and compensated part of the downward shift. We also found that OLs of Q. aquifolioides had lower An due to lower stomatal conductance, higher stomatal conductance limitation and deactivation of the biochemical processes. In addition, the balance between R(dark) and A(n) changed between OLs and YLs, which was represented by a higher R(dark)/A(n) ratio for OLs. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Geological Substrates Shape Tree Species and Trait Distributions in African Moist Forests
Fayolle, Adeline; Engelbrecht, Bettina; Freycon, Vincent; Mortier, Frédéric; Swaine, Michael; Réjou-Méchain, Maxime; Doucet, Jean-Louis; Fauvet, Nicolas; Cornu, Guillaume; Gourlet-Fleury, Sylvie
2012-01-01
Background Understanding the factors that shape the distribution of tropical tree species at large scales is a central issue in ecology, conservation and forest management. The aims of this study were to (i) assess the importance of environmental factors relative to historical factors for tree species distributions in the semi-evergreen forests of the northern Congo basin; and to (ii) identify potential mechanisms explaining distribution patterns through a trait-based approach. Methodology/Principal Findings We analyzed the distribution patterns of 31 common tree species in an area of more than 700,000 km2 spanning the borders of Cameroon, the Central African Republic, and the Republic of Congo using forest inventory data from 56,445 0.5-ha plots. Spatial variation of environmental (climate, topography and geology) and historical factors (human disturbance) were quantified from maps and satellite records. Four key functional traits (leaf phenology, shade tolerance, wood density, and maximum growth rate) were extracted from the literature. The geological substrate was of major importance for the distribution of the focal species, while climate and past human disturbances had a significant but lesser impact. Species distribution patterns were significantly related to functional traits. Species associated with sandy soils typical of sandstone and alluvium were characterized by slow growth rates, shade tolerance, evergreen leaves, and high wood density, traits allowing persistence on resource-poor soils. In contrast, fast-growing pioneer species rarely occurred on sandy soils, except for Lophira alata. Conclusions/Significance The results indicate strong environmental filtering due to differential soil resource availability across geological substrates. Additionally, long-term human disturbances in resource-rich areas may have accentuated the observed patterns of species and trait distributions. Trait differences across geological substrates imply pronounced differences in population and ecosystem processes, and call for different conservation and management strategies. PMID:22905127
NASA Astrophysics Data System (ADS)
Zhang, Kun; Ma, Jinzhu; Zhu, Gaofeng; Ma, Ting; Han, Tuo; Feng, Li Li
2017-01-01
Global and regional estimates of daily evapotranspiration are essential to our understanding of the hydrologic cycle and climate change. In this study, we selected the radiation-based Priestly-Taylor Jet Propulsion Laboratory (PT-JPL) model and assessed it at a daily time scale by using 44 flux towers. These towers distributed in a wide range of ecological systems: croplands, deciduous broadleaf forest, evergreen broadleaf forest, evergreen needleleaf forest, grasslands, mixed forests, savannas, and shrublands. A regional land surface evapotranspiration model with a relatively simple structure, the PT-JPL model largely uses ecophysiologically-based formulation and parameters to relate potential evapotranspiration to actual evapotranspiration. The results using the original model indicate that the model always overestimates evapotranspiration in arid regions. This likely results from the misrepresentation of water limitation and energy partition in the model. By analyzing physiological processes and determining the sensitive parameters, we identified a series of parameter sets that can increase model performance. The model with optimized parameters showed better performance (R2 = 0.2-0.87; Nash-Sutcliffe efficiency (NSE) = 0.1-0.87) at each site than the original model (R2 = 0.19-0.87; NSE = -12.14-0.85). The results of the optimization indicated that the parameter β (water control of soil evaporation) was much lower in arid regions than in relatively humid regions. Furthermore, the optimized value of parameter m1 (plant control of canopy transpiration) was mostly between 1 to 1.3, slightly lower than the original value. Also, the optimized parameter Topt correlated well to the actual environmental temperature at each site. We suggest that using optimized parameters with the PT-JPL model could provide an efficient way to improve the model performance.
NASA Astrophysics Data System (ADS)
Zhou, Sha; Yu, Bofu; Zhang, Yao; Huang, Yuefei; Wang, Guangqian
2017-04-01
Evapotranspiration (ET) is dominated by transpiration (T) in the terrestrial water cycle. However, continuous measurement of transpiration is still difficult, and the effect of vegetation on ET partitioning is unclear. The concept of underlying water use efficiency (uWUE) was used to develop a new method for ET partitioning by assuming that the maximum, or the potential uWUE is related to T while the averaged or apparent uWUE is related to ET. T/ET was thus estimated as the ratio of the apparent over the potential uWUE using half-hourly flux data from 17 AmeriFlux sites. The estimated potential uWUE was shown to be essentially constant for the 14 sites with a single vegetation type, and was broadly consistent with the uWUE evaluated at the leaf scale. The annual T/ET was the highest for croplands, i.e., 0.69 for corn and 0.62 for soybean, followed by grasslands (0.60) and evergreen needle leaf forests (0.56), and was the lowest for deciduous broadleaf forests (0.52). The enhanced vegetation index (EVI) was shown to be significantly correlated with T/ET and could explain about 75% of the variation in T/ET among the 71 site-years. The coefficients of determination between EVI and T/ET were 0.84 and 0.82 for corn and soybean, respectively, and 0.77 for deciduous broadleaf forests and grasslands, but only 0.37 for evergreen needle leaf forests. This ET partitioning method is sound in principle and simple to apply in practice, and would enhance the value and role of global FLUXNET in estimating T/ET variations and monitoring ecosystem dynamics.
Guo, Lanlan; Chen, Yi; Zhang, Zhao; Fukushima, Takehiko
2012-01-01
Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo.
Guo, Lanlan; Chen, Yi; Zhang, Zhao; Fukushima, Takehiko
2012-01-01
Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo. PMID:22547978
Sierra, Carlos A; Loescher, Henry W; Harmon, Mark E; Richardson, Andrew D; Hollinger, David Y; Perakis, Steven S
2009-10-01
Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed approximately 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data.
Successional changes in functional composition contrast for dry and wet tropical forest.
Lohbeck, Madelon; Poorter, Lourens; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Paz, Horacio; Pérez-García, Eduardo A; Romero-Pérez, I Eunice; Tauro, Alejandra; Bongers, Frans
2013-06-01
We tested whether and how functional composition changes with succession in dry deciduous and wet evergreen forests of Mexico. We hypothesized that compositional changes during succession in dry forest were mainly determined by increasing water availability leading to community functional changes from conservative to acquisitive strategies, and in wet forest by decreasing light availability leading to changes from acquisitive to conservative strategies. Research was carried out in 15 dry secondary forest plots (5-63 years after abandonment) and 17 wet secondary forest plots (< 1-25 years after abandonment). Community-level functional traits were represented by community-weighted means based on 11 functional traits measured on 132 species. Successional changes in functional composition are more marked in dry forest than in wet forest and largely characterized by different traits. During dry forest succession, conservative traits related to drought tolerance and drought avoidance decreased, as predicted. Unexpectedly acquisitive leaf traits also decreased, whereas seed size and dependence on biotic dispersal increased. In wet forest succession, functional composition changed from acquisitive to conservative leaf traits, suggesting light availability as the main driver of changes. Distinct suites of traits shape functional composition changes in dry and wet forest succession, responding to different environmental filters.
Net ecosystem carbon exchange of a dry temperate eucalypt forest
NASA Astrophysics Data System (ADS)
Hinko-Najera, Nina; Isaac, Peter; Beringer, Jason; van Gorsel, Eva; Ewenz, Cacilia; McHugh, Ian; Exbrayat, Jean-François; Livesley, Stephen J.; Arndt, Stefan K.
2017-08-01
Forest ecosystems play a crucial role in the global carbon cycle by sequestering a considerable fraction of anthropogenic CO2, thereby contributing to climate change mitigation. However, there is a gap in our understanding about the carbon dynamics of eucalypt (broadleaf evergreen) forests in temperate climates, which might differ from temperate evergreen coniferous or deciduous broadleaved forests given their fundamental differences in physiology, phenology and growth dynamics. To address this gap we undertook a 3-year study (2010-2012) of eddy covariance measurements in a dry temperate eucalypt forest in southeastern Australia. We determined the annual net carbon balance and investigated the temporal (seasonal and inter-annual) variability in and environmental controls of net ecosystem carbon exchange (NEE), gross primary productivity (GPP) and ecosystem respiration (ER). The forest was a large and constant carbon sink throughout the study period, even in winter, with an overall mean NEE of -1234 ± 109 (SE) g C m-2 yr-1. Estimated annual ER was similar for 2010 and 2011 but decreased in 2012 ranging from 1603 to 1346 g C m-2 yr-1, whereas GPP showed no significant inter-annual variability, with a mean annual estimate of 2728 ± 39 g C m-2 yr-1. All ecosystem carbon fluxes had a pronounced seasonality, with GPP being greatest during spring and summer and ER being highest during summer, whereas peaks in NEE occurred in early spring and again in summer. High NEE in spring was likely caused by a delayed increase in ER due to low temperatures. A strong seasonal pattern in environmental controls of daytime and night-time NEE was revealed. Daytime NEE was equally explained by incoming solar radiation and air temperature, whereas air temperature was the main environmental driver of night-time NEE. The forest experienced unusual above-average annual rainfall during the first 2 years of this 3-year period so that soil water content remained relatively high and the forest was not water limited. Our results show the potential of temperate eucalypt forests to sequester large amounts of carbon when not water limited. However, further studies using bottom-up approaches are needed to validate measurements from the eddy covariance flux tower and to account for a possible underestimation in ER due to advection fluxes.
NASA Astrophysics Data System (ADS)
Huesca, Margarita; Merino-de-Miguel, Silvia; Eklundh, Lars; Litago, Javier; Cicuéndez, Victor; Rodríguez-Rastrero, Manuel; Ustin, Susan L.; Palacios-Orueta, Alicia
2015-12-01
Remote sensing (RS) time series are an excellent operative source for information about the land surface across several scales and different levels of landscape heterogeneity. Ustin and Gamon (2010) proposed the new concept of "optical types" (OT), meaning "optically distinguishable functional types", as a way to better understand remote sensing signals related to the actual functional behavior of species that share common physiognomic forms but differ in functionality. Whereas the OT approach seems to be promising and consistent with ecological theory as a way to monitor vegetation derived from RS, it received little implementation. This work presents a method for implementing the OT concept for efficient monitoring of ecosystems based on RS time series. We propose relying on an ecosystem's repetitive pattern in the temporal domain (self-similarity) to assess its dynamics. Based on this approach, our main hypothesis is that distinct dynamics are intrinsic to a specific OT. Self-similarity level in the temporal domain within a broadleaf forest class was quantitatively assessed using the auto-correlation function (ACF), from statistical time series analysis. A vector comparison classification method, spectral angle mapper, and principal component analysis were used to identify general patterns related to forest dynamics. Phenological metrics derived from MODIS NDVI time series using the TIMESAT software, together with information from the National Forest Map were used to explain the different dynamics found. Results showed significant and highly stable self-similarity patterns in OTs that corresponded to forests under non-moisture-limited environments with an adaptation strategy based on a strong phenological synchrony with climate seasonality. These forests are characterized by dense closed canopy deciduous forests associated with high productivity and low biodiversity in terms of dominant species. Forests in transitional areas were associated with patterns of less temporal stability probably due to mixtures of different adaptation strategies (i.e., deciduous, marcescent and evergreen species) and higher functional diversity related to climate variability at long and short terms. A less distinct seasonality and even a double season appear in the OT of the broadleaf Mediterranean forest characterized by an open canopy dominated by evergreen-sclerophyllous formations. Within this forest, understory and overstory dynamics maximize functional diversity resulting in contrasting traits adapted to summer drought, winter frosts, and high precipitation variability.
Quantitative Measures of Immersion in Cloud and the Biogeography of Cloud Forests
NASA Technical Reports Server (NTRS)
Lawton, R. O.; Nair, U. S.; Ray, D.; Regmi, A.; Pounds, J. A.; Welch, R. M.
2010-01-01
Sites described as tropical montane cloud forests differ greatly, in part because observers tend to differ in their opinion as to what constitutes frequent and prolonged immersion in cloud. This definitional difficulty interferes with hydrologic analyses, assessments of environmental impacts on ecosystems, and biogeographical analyses of cloud forest communities and species. Quantitative measurements of cloud immersion can be obtained on site, but the observations are necessarily spatially limited, although well-placed observers can examine 10 50 km of a mountain range under rainless conditions. Regional analyses, however, require observations at a broader scale. This chapter discusses remote sensing and modeling approaches that can provide quantitative measures of the spatiotemporal patterns of cloud cover and cloud immersion in tropical mountain ranges. These approaches integrate remote sensing tools of various spatial resolutions and frequencies of observation, digital elevation models, regional atmospheric models, and ground-based observations to provide measures of cloud cover, cloud base height, and the intersection of cloud and terrain. This combined approach was applied to the Monteverde region of northern Costa Rica to illustrate how the proportion of time the forest is immersed in cloud may vary spatially and temporally. The observed spatial variation was largely due to patterns of airflow over the mountains. The temporal variation reflected the diurnal rise and fall of the orographic cloud base, which was influenced in turn by synoptic weather conditions, the seasonal movement of the Intertropical Convergence Zone and the north-easterly trade winds. Knowledge of the proportion of the time that sites are immersed in clouds should facilitate ecological comparisons and biogeographical analyses, as well as land use planning and hydrologic assessments in areas where intensive on-site work is not feasible.
NASA Astrophysics Data System (ADS)
Scholl, M. A.; Gingerich, S. B.; Giambelluca, T. W.; Nullet, M. A.; Loope, L. L.
2002-05-01
The role of fog drip in cloud forest ecosystems is being investigated at two sites, one each on the windward and leeward sides of East Maui, Hawaii. The study involves using the different isotopic signatures of fog (cloud water) and rain to trace fog through the forest water cycle, as well as comparing relative amounts of fog, rain, and throughfall. At each site, volume of rain, fog plus rain, and throughfall is recorded hourly. Stable isotope samples of rain, fog, soil water, stream water, and tree sap are collected monthly, and each site has a visibility sensor and weather station. The windward site, at 1950 m altitude, is enveloped by orographic clouds under trade wind conditions almost every day. This site is near the upper boundary of extensive forested mountain slopes that are a major watershed for the island. Volume data suggest that fog drip (compared to rain as measured by a standard gage) contributes substantially to the forest water budget on the windward side. Tree sap deuterium composition was consistently similar to fog composition for samples analyzed thus far, while soil water was isotopically lighter, possibly reflecting a mixture of fog with rain or shallow groundwater. The leeward site, at 1220 m, is often in a cloud bank under trade wind conditions. During the summer the major source of precipitation is cloud water; rainfall generally occurs during winter storms. Scattered cloud forest remnants persist at this site despite degradation of extensive native forest by ungulate browsing, plant invasion, and fire. Here, fog drip was a smaller proportion of the total precipitation than at the windward site, but exceeded rainfall for some precipitation events. Unlike the windward site, tree sap and soil water had similar isotopic composition. The information gained from this study underscores the importance of trees and shrubs in extracting cloud water that contributes to soil moisture, groundwater recharge, and stream flow in watersheds.
Model-data fusion across ecosystems: from multisite optimizations to global simulations
NASA Astrophysics Data System (ADS)
Kuppel, S.; Peylin, P.; Maignan, F.; Chevallier, F.; Kiely, G.; Montagnani, L.; Cescatti, A.
2014-11-01
This study uses a variational data assimilation framework to simultaneously constrain a global ecosystem model with eddy covariance measurements of daily net ecosystem exchange (NEE) and latent heat (LE) fluxes from a large number of sites grouped in seven plant functional types (PFTs). It is an attempt to bridge the gap between the numerous site-specific parameter optimization works found in the literature and the generic parameterization used by most land surface models within each PFT. The present multisite approach allows deriving PFT-generic sets of optimized parameters enhancing the agreement between measured and simulated fluxes at most of the sites considered, with performances often comparable to those of the corresponding site-specific optimizations. Besides reducing the PFT-averaged model-data root-mean-square difference (RMSD) and the associated daily output uncertainty, the optimization improves the simulated CO2 balance at tropical and temperate forests sites. The major site-level NEE adjustments at the seasonal scale are reduced amplitude in C3 grasslands and boreal forests, increased seasonality in temperate evergreen forests, and better model-data phasing in temperate deciduous broadleaf forests. Conversely, the poorer performances in tropical evergreen broadleaf forests points to deficiencies regarding the modelling of phenology and soil water stress for this PFT. An evaluation with data-oriented estimates of photosynthesis (GPP - gross primary productivity) and ecosystem respiration (Reco) rates indicates distinctively improved simulations of both gross fluxes. The multisite parameter sets are then tested against CO2 concentrations measured at 53 locations around the globe, showing significant adjustments of the modelled seasonality of atmospheric CO2 concentration, whose relevance seems PFT-dependent, along with an improved interannual variability. Lastly, a global-scale evaluation with remote sensing NDVI (normalized difference vegetation index) measurements indicates an improvement of the simulated seasonal variations of the foliar cover for all considered PFTs.
Transmission of Phytophthora ramorum in Mixed-Evergreen Forest in California.
Davidson, Jennifer M; Wickland, Allison C; Patterson, Heather A; Falk, Kristen R; Rizzo, David M
2005-05-01
ABSTRACT During 2001 to 2003, the transmission biology of Phytophthora ramorum, the causal agent of sudden oak death, was studied in mixedevergreen forest, a common forest type in northern, coastal California. Investigation of the sources of spore production focused on coast live oak (Quercus agrifolia) and bay laurel (Umbellularia californica), dominant hosts that comprised 39.7 and 46.2% of the individuals at the study site, respectively. All tests for inoculum production from the surface of infected coast live oak bark or exudates from cankers were negative. In contrast, sporangia and chlamydospores were produced on the surface of infected bay laurel leaves. Mean number of zoospores produced from infected bay laurel leaves under natural field conditions during rainstorms was 1,173.0 +/- SE 301.48, and ranged as high as 5,200 spores/leaf. P. ramorum was recovered from rainwater, soil, litter, and streamwater during the mid- to late rainy season in all 3 years of the study. P. ramorum was not recovered from sporadic summer rains or soil and litter during the hot, dry summer months. Concentrations of inoculum in rainwater varied significantly from year to year and increased as the rainy season progressed for the two complete seasons that were studied. Potential dispersal distances were investigated for rainwater, soil, and streamwater. In rainwater, inoculum moved 5 and 10 m from the inoculum source. For soil, transmission of inoculum was demonstrated from infested soil to bay laurel green leaf litter, and from bay laurel green leaf litter to aerial leaves of bay laurel seedlings. One-third to one-half of the hikers tested at the study site during the rainy season also were carrying infested soil on their shoes. In streamwater, P. ramorum was recovered from an unforested site in pasture 1 km downstream of forest with inoculum sources. In total, these studies provide details on the production and spread of P. ramorum inoculum in mixed-evergreen forest to aid forecasting and managing disease transmission of this environmentally destructive pathogen.
NASA Astrophysics Data System (ADS)
Jing, Jun; Xia, Lingdan; Li, Kai
2017-06-01
The aim of this work was to understand the development of defoliating insects and their preferences for host plants under varying temperatures in a subtropical evergreen broad-leaved forest in China. We measured the main developmental parameters of three typical defoliating insects (i.e., Ourapteryx ebuleata szechuana, Biston marginata, and Euproctis angulata) and their preferences for five host plants at temperatures from 16°C to 31°C at 3°C intervals in the Tiantong National Forest Research station in eastern China. The results showed the following. 1) An appropriate rise in temperature increases the survival rate with an increase in the number of offspring. The developmental durations for these three insects were shortened, and pupal weight increased with an increase in temperature. 2) A shift in the preference for host plants for these three insects was observedat elevated temperatures. They all preferred to feed on Schima superba and Castanopsis sclerophylla at elevated temperatures, showing an opposite response to the other three plants. The daily leaf consumption of the three insects was positively correlated with their feeding preference, with more leaves being consumed from the plants they preferred. 3) For O. ebuleata szechuana larvae, daily leaf consumption initially increased and then decreased with increasing temperatures. In contrast, Biston marginata and Euproctis angulata larvae consumed more leaves at elevated temperatures. The feeding preferences of O. ebuleata szechuana and Biston marginata were more sensitive to changing temperatures than that of Euproctis angulata laevae. We concluded that increased numbers of offspring and generations, pupal weights, and a shift in preference to two plants for these three defoliating insects might lead to severe damage to these two plants which would enhance the fragmentation and decrease the stability of the forest communities under changing temperatures. Meanwhile, the variations in the responses of defoliating insects to the changing temperatures should be taken into consideration for the pest management of forests to adapt to the changing climate.
Andrea Watts; Frederick Meinzer; Brandy J. Saffell
2014-01-01
Swiss needle cast is caused by a fungus native to the Pacific Northwest. Its host is Douglas-fir, an iconic evergreen tree in the region. The fungus does not kill its host, but it adversely affects the tree's growth. The fungal fruiting bodies block the stomata, small openings on the underside of the needle where carbon dioxide, water vapor, and other gases are...
Yuan, W.; Liu, S.; Liu, H.; Randerson, J.T.; Yu, G.; Tieszen, L.L.
2010-01-01
Evapotranspiration (ET) is the largest component of water loss from terrestrial ecosystems; however, large uncertainties exist when estimating the temporal and spatial variations of ET because of concurrent shifts in the magnitude and seasonal distribution of precipitation as well as differences in the response of ecosystem ET to environmental variabilities. In this study, we examined the impacts of precipitation seasonality and ecosystem types on ET quantified by eddy covariance towers from 2002 to 2004 in three ecosystems (grassland, deciduous broadleaf forest, and evergreen needleleaf forest) in the Yukon River Basin, Alaska. The annual precipitation changed greatly in both magnitude and seasonal distribution through the three investigated years. Observations and model results showed that ET was more sensitive to precipitation scarcity in the early growing season than in the late growing season, which was the direct result of different responses of ET components to precipitation in different seasons. The results demonstrated the importance of seasonal variations of precipitation in regulating annual ET and overshadowing the function of annual precipitation. Comparison of ET among ecosystems over the growing season indicated that ET was largest in deciduous broadleaf, intermediate in evergreen needleleaf, and lowest in the grassland ecosystem. These ecosystem differences in ET were related to differences in successional stages and physiological responses.
[The changes of forest canopy spectral reflectance with seasons in Xiaoxing'anling].
Xu, Guang-Cai; Pang, Yong; Li, Zeng-Yuan; Zhao, Kai-Rui; Liu, Lu-Xia
2013-12-01
The ASD FieldSpec portable spectrometer was adopted to collect canopy reflectance spectrum data of the 9 main tree species in study area by a long-term observation to get the data of the four seasons Then the smoothed reflectance curve and the first derivation curve from 350 to 1400 nm and several commonly used vegetation spectral characteristic parameters were generated to analyse seasonal change characteristics and variation of the 9 tree species in visible and near-infrared band and to explore the best band characteristics and period for species identification. The results showed that different trees had different and rather unique spectral features during the four seasons. The spectral characteristics of the deciduous trees have regular changes with the cycle of the seasons, whereas those of the evergreen tree species have no significant changes in one year. As well changes in the spectral characteristics could effectively reflect forest phenology changes, and it is proposed that the optimal strategy for tree species classification may be the integration and analysis of multi-seasonal spectral data. Evergreen trees and deciduous trees in the winter have obvious differences in the canopy spectral characteristics and the best single-season remote sensing data for tree species recognition is in summer.
Madrigal-González, Jaime; Ruiz-Benito, Paloma; Ratcliffe, Sophia; Calatayud, Joaquín; Kändler, Gerald; Lehtonen, Aleksi; Dahlgren, Jonas; Wirth, Christian; Zavala, Miguel A.
2016-01-01
Neglecting tree size and stand structure dynamics might bias the interpretation of the diversity-productivity relationship in forests. Here we show evidence that complementarity is contingent on tree size across large-scale climatic gradients in Europe. We compiled growth data of the 14 most dominant tree species in 32,628 permanent plots covering boreal, temperate and Mediterranean forest biomes. Niche complementarity is expected to result in significant growth increments of trees surrounded by a larger proportion of functionally dissimilar neighbours. Functional dissimilarity at the tree level was assessed using four functional types: i.e. broad-leaved deciduous, broad-leaved evergreen, needle-leaved deciduous and needle-leaved evergreen. Using Linear Mixed Models we show that, complementarity effects depend on tree size along an energy availability gradient across Europe. Specifically: (i) complementarity effects at low and intermediate positions of the gradient (coldest-temperate areas) were stronger for small than for large trees; (ii) in contrast, at the upper end of the gradient (warmer regions), complementarity is more widespread in larger than smaller trees, which in turn showed negative growth responses to increased functional dissimilarity. Our findings suggest that the outcome of species mixing on stand productivity might critically depend on individual size distribution structure along gradients of environmental variation. PMID:27571971
Richardson, Andrew D; Hufkens, Koen; Milliman, Tom; Frolking, Steve
2018-04-09
Phenology is a valuable diagnostic of ecosystem health, and has applications to environmental monitoring and management. Here, we conduct an intercomparison analysis using phenological transition dates derived from near-surface PhenoCam imagery and MODIS satellite remote sensing. We used approximately 600 site-years of data, from 128 camera sites covering a wide range of vegetation types and climate zones. During both "greenness rising" and "greenness falling" transition phases, we found generally good agreement between PhenoCam and MODIS transition dates for agricultural, deciduous forest, and grassland sites, provided that the vegetation in the camera field of view was representative of the broader landscape. The correlation between PhenoCam and MODIS transition dates was poor for evergreen forest sites. We discuss potential reasons (including sub-pixel spatial heterogeneity, flexibility of the transition date extraction method, vegetation index sensitivity in evergreen systems, and PhenoCam geolocation uncertainty) for varying agreement between time series of vegetation indices derived from PhenoCam and MODIS imagery. This analysis increases our confidence in the ability of satellite remote sensing to accurately characterize seasonal dynamics in a range of ecosystems, and provides a basis for interpreting those dynamics in the context of tangible phenological changes occurring on the ground.
Rich, Paul M; Breshears, David D; White, Amanda B
2008-02-01
Ecosystem responses to key climate drivers are reflected in phenological dynamics such as the timing and degree of "green-up" that integrate responses over spatial scales from individual plants to ecosystems. This integration is clearest in ecosystems dominated by a single species or life form, such as seasonally dynamic grasslands or more temporally constant evergreen forests. Yet many ecosystems have substantial contribution of cover from both herbaceous and woody evergreen plants. Responses of mixed woody-herbaceous ecosystems to climate are of increasing concern due to their extensive nature, the potential for such systems to yield more complex responses than those dominated by a single life form, and projections that extreme climate and weather events will increase in frequency and intensity with global warming. We present responses of a mixed woody-herbaceous ecosystem type to an extreme event: regional-scale piñon pine mortality following an extended drought and the subsequent herbaceous green-up following the first wet period after the drought. This example highlights how reductions in greenness of the slower, more stable evergreen woody component can rapidly be offset by increases associated with resources made available to the relatively more responsive herbaceous component. We hypothesize that such two-phase phenological responses to extreme events are characteristic of many mixed woody-herbaceous ecosystems.
Lusk, Christopher H; Onoda, Yusuke; Kooyman, Robert; Gutiérrez-Girón, Alba
2010-04-01
*When grown in a common light environment, the leaves of shade-tolerant evergreen trees have a larger leaf mass per unit area (LMA) than their light-demanding counterparts, associated with differences in lifespan. Yet plastic responses of LMA run counter to this pattern: shade leaves have smaller LMA than sun leaves, despite often living longer. *We measured LMA and cell wall content, and conducted punch and shear tests, on sun and shade leaves of 13 rainforest evergreens of differing shade tolerance, in order to understand adaptation vs plastic responses of leaf structure and biomechanics to shade. *Species shade tolerance and leaf mechanical properties correlated better with cell wall mass per unit area than with LMA. Growth light environment had less effect on leaf mechanics than on LMA: shade leaves had, on average, 40% lower LMA than sun leaves, but differences in work-to-shear, and especially force-to-punch, were smaller. This was associated with a slightly larger cell wall fraction in shade leaves. *The persistence of shade leaves might reflect unattractiveness to herbivores because they yield smaller benefits (cell contents per area) per unit fracture force than sun leaves. In forest trees, cell wall fraction and force-to-punch are more robust correlates of species light requirements than LMA.
Molinari, Jesús; Bustos, Xiomar E; Burneo, Santiago F; Camacho, M Alejandra; Moreno, S Andrea; Fermín, Gustavo
2017-03-13
Sturnira is the most speciose genus of New World leaf-nosed bats (Phyllostomidae). We name Sturnira adrianae, new species. This taxon is born polytypic, divided into a larger subspecies (S. a. adrianae) widespread in the mountains of northern and western Venezuela, and northern Colombia, and a smaller subspecies (S. a. caripana) endemic to the mountains of northeastern Venezuela. The new species inhabits evergreen, deciduous, and cloud forests at mainly medium (1000-2000 m) elevations. It has long been confused with S. ludovici, but it is more closely related to S. oporaphilum. It can be distinguished from other species of Sturnira by genetic data, and based on discrete and continuously varying characters. Within the genus, the new species belongs to a clade that also includes S. oporaphilum, S. ludovici, S. hondurensis, and S. burtonlimi. The larger new subspecies is the largest member of this clade. The two new subspecies are the most sexually dimorphic members of this clade. The smaller new subspecies is restricted to small mountain systems undergoing severe deforestation processes, therefore can be assigned to the Vulnerable (VU) conservation category of the International Union for Conservation of Nature (IUCN).
The hydrology of three high-altitude forests in Central Himalaya, India: a reconnaissance study
NASA Astrophysics Data System (ADS)
Negi, G. C. S.; Rikhari, H. C.; Garkoti, S. C.
1998-02-01
In this preliminary study the partitioning of rain-water into various components of the hydrological cycle in three high-altitude forests of contrasting tree physiognomies (namely, Aesculus indica, Quercus semecarpifolia and Abies pindrow) were studied in the Nandadevi Biosphere Reserve, Central Himalaya, India. The results are compared with the hydrological characteristics of low-altitude forests of this region. The study has indicated a significant role of tree physiognomy with regard to rainfall partitioning into the various components of the hydrological cycle. It is suggested that A. pindrow (an evergreen tree) should be considered superior to A. indica (a deciduous tree) with regard to soil and water conservation in this region. This work is of relevance to land management programmes pertaining to afforestation, logging and regeneration.
Lydia P. Olander; F.N Scatena; Whendee L. Silver
1998-01-01
The impacts of road construction and the spread of exotic vegetation, which are common threats to upper elevation tropical forests, were evaluated in the subtropical cloud forests of Puerto Rico. The vegetation, soil and microclimate of 6-month-old road®lls, 35-year-old road®lls and mature forest with and without grass understories were compared. Recent road®lls had...
NASA Astrophysics Data System (ADS)
Hervé-Fernández, P.; Oyarzun, C. E.
2012-04-01
Land-use and forest cover change play important roles in socio-economic processes and have been linked with water supply and other ecosystem services in various regions of the world. Water yield from watersheds is a major ecosystem service for human activities but has been altered by landscape management superimposed on climatic variability and change. Sustaining ecosystem services important to humans, while providing a dependable water supply for agriculture and urban needs is a major challenge faced by managers of human-dominated or increased antropical effect over watersheds. Since water is mostly consumed by vegetation (i.e: transpiration), which strongly depends on trees physiological characteristics (i.e: foliar area, transpiration capacity) are very important. The quantity of water consumed by plantations is influenced mainly by forest characteristics (species physiology, age and management), catchment water retention capacity and meteorological characteristics. Eventhough in Chile, the forest sector accounts for 3.6% of the gross domestic product (GDP) and 12.5% of total exports (INFOR, 2003), afforestation with fast growing exotic species has ended up being socially and politically questionable because of the supposed impact on the environment and water resources. We present data of trees transpiration and water use efficiency from three headwater catchments: (a) second growth native evergreen forest (Aetoxicon punctatum, Drimys winterii, Gevuina avellana, Laureliopsis philippiana); (b) Eucalyptus globulus plantation, and (c) a mixed native deciduous (Nothofagus obliqua and some evergreen species) forest and Eucalyptus globulus and Acacia melanoxylon plantation located at the Coastal Mountain Range in southern Chile (40°S). Annual transpiration rates ranged from 1.24 ± 0.41 mol•m-2•s-1 (0.022 ± 0.009 L•m-2•s-1) for E. globulus, while the lowest observed was for L. philippiana 0.44 ± 0.31 mol•m-2•s-1 (0.008 ± 0.006 L•m-2•s-1). However water use efficiency for E. globulus, was the lowest observed (6.78 ± 8.92 μmol•mol-1) compared to native species, 7.45 ± 4.41 μmol•mol-1 for A. punctatum which showed the lowest value (p < 0.05). Preliminary results show, that the E. globulus has the highest transpiration rate, but the lowest water use efficiency values, compared to native evergreen and deciduous species. Nevertheless E. globulus showed the highest photosyntethic rate values, which finally traduces that E. globulus is a fast growing, big water drinker but it's less efficient than most native trees used in this experiment. Acknowledges This research has been supported by FONDECYT 1090345. Mr. Hervé-Fernández wishes to thank BECAS CHILE for his scholarship.
Tapia-Armijos, María Fernanda; Homeier, Jürgen; Espinosa, Carlos Iván; Leuschner, Christoph; de la Cruz, Marcelino
2015-01-01
Deforestation and fragmentation are major components of global change; both are contributing to the rapid loss of tropical forest area with important implications for ecosystem functioning and biodiversity conservation. The forests of South Ecuador are a biological 'hotspot' due to their high diversity and endemism levels. We examined the deforestation and fragmentation patterns in this area of high conservation value using aerial photographs and Aster satellite scenes. The registered annual deforestation rates of 0.75% (1976-1989) and 2.86% (1989-2008) for two consecutive survey periods, the decreasing mean patch size and the increasing isolation of the forest fragments show that the area is under severe threat. Approximately 46% of South Ecuador's original forest cover had been converted by 2008 into pastures and other anthropogenic land cover types. We found that deforestation is more intense at lower elevations (premontane evergreen forest and shrubland) and that the deforestation front currently moves in upslope direction. Improved awareness of the spatial extent, dynamics and patterns of deforestation and forest fragmentation is urgently needed in biologically diverse areas like South Ecuador.
Norris, Daniel H; Kraichak, Ekaphan; Risk, Allen C; Lucas, Diane; Allard, Dorothy J; Rosengren, Frida; Clark, Theresa A; Fenton, Nicole; Tessler, Michael; Phephu, Nonkululo; Lennette, Evelyne T
2017-01-01
A survey of the understory bryophytes in the Nectandra Cloud Forest Preserve yielded 1083 specimens distributed among 55 families, represented by 74 genera of mosses, 75 genera of liverworts and 3 of hornworts. We studied and analyzed the bryophytic distribution on six types of substrates: 1) corticolous, 2) epiphyllous, 3) saxicolous, 4) terricolous, 5) aquatic and 6) lignicolous. The richness and composition of bryophyte genera are compared to those of other previous bryophyte surveys from 4 other sites with different oceanic exposures, climatic and geographic conditions in Costa Rica. This is a report of the first extensive general survey of bryophytes at the Nectandra Reserve, a premontane cloud forest located on the Atlantic slope of Costa Rica, an area much less studied compared to the Monteverde cloud forest on the Pacific slope.
NASA Astrophysics Data System (ADS)
Kivalov, Sergey N.; Fitzjarrald, David R.
2018-02-01
Cloud shadows lead to alternating light and dark periods at the surface, with the most abrupt changes occurring in the presence of low-level forced cumulus clouds. We examine multiyear irradiance time series observed at a research tower in a midlatitude mixed deciduous forest (Harvard Forest, Massachusetts, USA: 42.53{°}N, 72.17{°}W) and one made at a similar tower in a tropical rain forest (Tapajós National Forest, Pará, Brazil: 2.86{°}S, 54.96{°}W). We link the durations of these periods statistically to conventional meteorological reports of sky type and cloud height at the two forests and present a method to synthesize the surface irradiance time series from sky-type information. Four classes of events describing distinct sequential irradiance changes at the transition from cloud shadow and direct sunlight are identified: sharp-to-sharp, slow-to-slow, sharp-to-slow, and slow-to-sharp. Lognormal and the Weibull statistical distributions distinguish among cloudy-sky types. Observers' qualitative reports of `scattered' and `broken' clouds are quantitatively distinguished by a threshold value of the ratio of mean clear to cloudy period durations. Generated synthetic time series based on these statistics adequately simulate the temporal "radiative forcing" linked to sky type. Our results offer a quantitative way to connect the conventional meteorological sky type to the time series of irradiance experienced at the surface.
Carbon Cycling and Storage in Mangrove Forests
NASA Astrophysics Data System (ADS)
Alongi, Daniel M.
2014-01-01
Mangroves are ecologically and economically important forests of the tropics. They are highly productive ecosystems with rates of primary production equal to those of tropical humid evergreen forests and coral reefs. Although mangroves occupy only 0.5% of the global coastal area, they contribute 10-15% (24 Tg C y-1) to coastal sediment carbon storage and export 10-11% of the particulate terrestrial carbon to the ocean. Their disproportionate contribution to carbon sequestration is now perceived as a means for conservation and restoration and a way to help ameliorate greenhouse gas emissions. Of immediate concern are potential carbon losses to deforestation (90-970 Tg C y-1) that are greater than these ecosystems' rates of carbon storage. Large reservoirs of dissolved inorganic carbon in deep soils, pumped via subsurface pathways to adjacent waterways, are a large loss of carbon, at a potential rate up to 40% of annual primary production. Patterns of carbon allocation and rates of carbon flux in mangrove forests are nearly identical to those of other tropical forests.
Carbon cycling and storage in mangrove forests.
Alongi, Daniel M
2014-01-01
Mangroves are ecologically and economically important forests of the tropics. They are highly productive ecosystems with rates of primary production equal to those of tropical humid evergreen forests and coral reefs. Although mangroves occupy only 0.5% of the global coastal area, they contribute 10-15% (24 Tg C y(-1)) to coastal sediment carbon storage and export 10-11% of the particulate terrestrial carbon to the ocean. Their disproportionate contribution to carbon sequestration is now perceived as a means for conservation and restoration and a way to help ameliorate greenhouse gas emissions. Of immediate concern are potential carbon losses to deforestation (90-970 Tg C y(-1)) that are greater than these ecosystems' rates of carbon storage. Large reservoirs of dissolved inorganic carbon in deep soils, pumped via subsurface pathways to adjacent waterways, are a large loss of carbon, at a potential rate up to 40% of annual primary production. Patterns of carbon allocation and rates of carbon flux in mangrove forests are nearly identical to those of other tropical forests.
Forest fire in the central Himalaya: climate and recovery of trees
NASA Astrophysics Data System (ADS)
Sharma, Subrat; Rikhari, H. C.
A forest fire event is influenced by climatic conditions and is supported by accumulation of fuel on forest floor. After forest fire, photosynthetically active solar radiation was reduced due to accumulation of ash and dust particles in atmosphere. Post-fire impacts on Quercus leucotrichophora, Rhododendron arboreum and Lyonia ovalifolia in a broadleaf forest were analysed after a wild fire. Bark depth damage was greatest for L. ovalifolia and least for Q. leucotrichophora. Regeneration of saplings was observed for all the tree species through sprouting. Epicormic recovery was observed for the trees of all the species. Young trees of Q. leucotrichophora (<40 cm circumference at breast height) were susceptible to fire as evident by the lack of sprouting. Under-canopy tree species have a high potential for recovery as evident by greater length and diameter of shoots and numbers of buds and leaves per shoot than canopy species. Leaf area, leaf moisture and specific leaf area were greater in the deciduous species, with few exceptions, than in evergreen species.
Modelling landscape dynamics with LST in protected areas of Western Ghats, Karnataka.
Ramachandra, T V; Bharath, Setturu; Gupta, Nimish
2018-01-15
Forest ecosystems sustain biota on the earth as they are habitat to diverse biotic species, arrests soil erosion, play a crucial role in water cycle, sequester carbon, and helps in mitigating the impacts of global warming. Large scale land use land cover (LULC) change leading to deforestation is one of the drivers of global climate changes and alteration of biogeochemical cycles with significant consequences in ecosystem services and biodiversity. This has necessitated the investigation of LULC by mapping, monitoring and modelling spatio-temporal patterns and evaluating these in the context of human-environment interactions. The current work investigates LULC changes with temperature dynamics of select protected areas in Western Ghats. The land use analyses reveal changes in the forest cover across Kudremukh National Park (KNP), Rajiv Gandhi Tiger Reserve (RTR), Bandipur Tiger Reserve (BTR). KNP region has lost evergreen forest cover during 1973-2016 from 33.46 to 27.22%, while BTR lost deciduous cover from 61.69 to 47.3% due to mining, horticulture plantations, human habitations, etc. The LST increase has impacted regeneration of species with the induced water stress, etc. CA-Markov modelling was used for forecasting the likely land uses in 2026 and validation was done through Kappa indices. Results highlight decline of evergreen cover in KNP (9%) and deciduous cover in RTR (2%) followed by BTR (3%) with further expansion of plantations, which will impact biodiversity, hydrology and ecology. Insights of LULC dynamics help natural resource managers in evolving appropriate strategies to ensure conservation of threatened biota in Western Ghats. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modern pollen-rain characteristics of tall terra firme moist evergreen forest, southern Amazonia
NASA Astrophysics Data System (ADS)
Gosling, William D.; Mayle, Francis E.; Tate, Nicholas J.; Killeen, Timothy J.
2005-11-01
The paucity of modern pollen-rain data from Amazonia constitutes a significant barrier to understanding the Late Quaternary vegetation history of this globally important tropical forest region. Here, we present the first modern pollen-rain data for tall terra firme moist evergreen Amazon forest, collected between 1999 and 2001 from artificial pollen traps within a 500 × 20 m permanent study plot (14°34'50″S, 60°49'48″W) in Noel Kempff Mercado National Park (NE Bolivia). Spearman's rank correlations were performed to assess the extent of spatial and inter-annual variability in the pollen rain, whilst statistically distinctive taxa were identified using Principal Components Analysis (PCA). Comparisons with the floristic and basal area data of the plot (stems ≥10 cm d.b.h.) enabled the degree to which taxa are over/under-represented in the pollen rain to be assessed (using R-rel values). Moraceae/Urticaceae dominates the pollen rain (64% median abundance) and is also an important constituent of the vegetation, accounting for 16% of stems ≥10 cm d.b.h. and ca. 11% of the total basal area. Other important pollen taxa are Arecaceae (cf. Euterpe), Melastomataceae/Combretaceae, Cecropia, Didymopanax, Celtis, and Alchornea. However, 75% of stems and 67% of the total basal area of the plot ≥10 cm d.b.h. belong to species which are unidentified in the pollen rain, the most important of which are Phenakospermum guianensis (a banana-like herb) and the key canopy-emergent trees, Erisma uncinatum and Qualea paraensis.
Wildfire Selectivity for Land Cover Type: Does Size Matter?
Barros, Ana M. G.; Pereira, José M. C.
2014-01-01
Previous research has shown that fires burn certain land cover types disproportionally to their abundance. We used quantile regression to study land cover proneness to fire as a function of fire size, under the hypothesis that they are inversely related, for all land cover types. Using five years of fire perimeters, we estimated conditional quantile functions for lower (avoidance) and upper (preference) quantiles of fire selectivity for five land cover types - annual crops, evergreen oak woodlands, eucalypt forests, pine forests and shrublands. The slope of significant regression quantiles describes the rate of change in fire selectivity (avoidance or preference) as a function of fire size. We used Monte-Carlo methods to randomly permutate fires in order to obtain a distribution of fire selectivity due to chance. This distribution was used to test the null hypotheses that 1) mean fire selectivity does not differ from that obtained by randomly relocating observed fire perimeters; 2) that land cover proneness to fire does not vary with fire size. Our results show that land cover proneness to fire is higher for shrublands and pine forests than for annual crops and evergreen oak woodlands. As fire size increases, selectivity decreases for all land cover types tested. Moreover, the rate of change in selectivity with fire size is higher for preference than for avoidance. Comparison between observed and randomized data led us to reject both null hypotheses tested ( = 0.05) and to conclude it is very unlikely the observed values of fire selectivity and change in selectivity with fire size are due to chance. PMID:24454747
Canopy water balance of windward and leeward Hawaiian cloud forests on Haleakalā, Maui, Hawai'i
Giambelluca, Thomas W.; DeLay, John K.; Nullet, Michael A.; Scholl, Martha A.; Gingerich, Stephen B.
2011-01-01
The contribution of intercepted cloud water to precipitation at windward and leeward cloud forest sites on the slopes of Haleakalā, Maui was assessed using two approaches. Canopy water balance estimates based on meteorological monitoring were compared with interpretations of fog screen measurements collected over a 2-year period at each location. The annual incident rainfall was 973 mm at the leeward site (Auwahi) and 2550 mm at the windward site (Waikamoi). At the leeward, dry forest site, throughfall was less than rainfall (87%), and, at the windward, wet forest site, throughfall exceeded rainfall (122%). Cloud water interception estimated from canopy water balance was 166 mm year−1 at Auwahi and 1212 mm year−1 at Waikamoi. Annual fog screen measurements of cloud water flux, corrected for wind-blown rainfall, were 132 and 3017 mm for the dry and wet sites respectively. Event totals of cloud water flux based on fog screen measurements were poorly correlated with event cloud water interception totals derived from the canopy water balance. Hence, the use of fixed planar fog screens to estimate cloud water interception is not recommended. At the wet windward site, cloud water interception made up 32% of the total precipitation, adding to the already substantial amount of rainfall. At the leeward dry site, cloud water interception was 15% of the total precipitation. Vegetation at the dry site, where trees are more exposed and isolated, was more efficient at intercepting the available cloud water than at the rainy site, but events were less frequent, shorter in duration and lower in intensity. A large proportion of intercepted cloud water, 74% and 83%, respectively for the two sites, was estimated to become throughfall, thus adding significantly to soil water at both sites
NASA Astrophysics Data System (ADS)
Sudhakar Reddy, C.; Saranya, K. R. L.
2017-08-01
This study has generated a national level spatial database of land cover and changes in forest cover of Afghanistan for the 1975-1990, 1990-2005 and 2005-2014 periods. Using these results we have analysed the annual deforestation rates, spatial changes in forests, forest types and fragmentation classes over a period of 1975 to 2014 in Afghanistan. The land cover map of 2014 provides distribution of forest (dry evergreen, moist temperate, dry temperate, pine, sub alpine) and non-forest (grassland, scrub, agriculture, wetlands, barren land, snow and settlements) in Afghanistan. The largest land cover, barren land, contributes to 56% of geographical area of country. Forest is distributed mostly in eastern Afghanistan and constitutes an area of 1.02% of geographical area in 2014. The annual deforestation rate in Afghanistan's forests for the period from 1975 to 1990 estimated as 0.06% which was declined significantly from 2005 to 2014. The predominant forest type in Afghanistan is moist temperate which shows loss of 80 km2 of area during the last four decades of the study period. At national level, the percentage of large core forest area was calculated as 52.20% in 2014.
Yin, Zuo-Yun; Zeng, Lu; Luo, Shao-Ming; Chen, Ping; He, Xiao; Guo, Wei; Li, Bailian
2018-01-01
There are a few common species and many rare species in a biological community or a multi-species collection in given space and time. This hollow distribution curve is called species abundance distribution (SAD). Few studies have examined the patterns and dynamics of SADs during the succession of forest communities by model selection. This study explored whether the communities in different successional stages followed different SAD models and whether there existed a best SAD model to reveal their intrinsic quantitative features of structure and dynamics in succession. The abundance (the number of individuals) of each vascular plant was surveyed by quadrat sampling method from the tree, shrub and herb layers in two typical communities (i.e., the evergreen needle- and broad-leaved mixed forest and the monsoon evergreen broad-leaved forest) in southern subtropical Dinghushan Biosphere Reserve, South China. The sites of two forest communities in different successional stages are both 1 ha in area. We collected seven widely representative SAD models with obviously different function forms and transformed them into the same octave (log2) scale. These models are simultaneously confronted with eight datasets from four layers of two communities, and their goodness-of-fits to the data were evaluated by the chi-squared test, the adjusted coefficient of determination and the information criteria. The results indicated that: (1) the logCauchy model followed all the datasets and was the best among seven models; (2) the fitness of each model to the data was not directly related to the successional stage of forest community; (3) according to the SAD curves predicted by the best model (i.e., the logCauchy), the proportion of rare species decreased but that of common ones increased in the upper layers with succession, while the reverse was true in the lower layers; and (4) the difference of the SADs increased between the upper and the lower layers with succession. We concluded that the logCauchy model had the widest applicability in describing the SADs, and could best mirror the SAD patterns and dynamics of communities and their different layers in the succession of forests. The logCauchy-modeled SADs can quantitatively guide the construction of ecological forests and the restoration of degraded vegetation.
Luo, Shao-Ming; Chen, Ping; He, Xiao; Guo, Wei; Li, Bailian
2018-01-01
There are a few common species and many rare species in a biological community or a multi-species collection in given space and time. This hollow distribution curve is called species abundance distribution (SAD). Few studies have examined the patterns and dynamics of SADs during the succession of forest communities by model selection. This study explored whether the communities in different successional stages followed different SAD models and whether there existed a best SAD model to reveal their intrinsic quantitative features of structure and dynamics in succession. The abundance (the number of individuals) of each vascular plant was surveyed by quadrat sampling method from the tree, shrub and herb layers in two typical communities (i.e., the evergreen needle- and broad-leaved mixed forest and the monsoon evergreen broad-leaved forest) in southern subtropical Dinghushan Biosphere Reserve, South China. The sites of two forest communities in different successional stages are both 1 ha in area. We collected seven widely representative SAD models with obviously different function forms and transformed them into the same octave (log2) scale. These models are simultaneously confronted with eight datasets from four layers of two communities, and their goodness-of-fits to the data were evaluated by the chi-squared test, the adjusted coefficient of determination and the information criteria. The results indicated that: (1) the logCauchy model followed all the datasets and was the best among seven models; (2) the fitness of each model to the data was not directly related to the successional stage of forest community; (3) according to the SAD curves predicted by the best model (i.e., the logCauchy), the proportion of rare species decreased but that of common ones increased in the upper layers with succession, while the reverse was true in the lower layers; and (4) the difference of the SADs increased between the upper and the lower layers with succession. We concluded that the logCauchy model had the widest applicability in describing the SADs, and could best mirror the SAD patterns and dynamics of communities and their different layers in the succession of forests. The logCauchy-modeled SADs can quantitatively guide the construction of ecological forests and the restoration of degraded vegetation. PMID:29746516
NASA Astrophysics Data System (ADS)
Heusser, L. E.
2014-12-01
Rice Lake, (40'41" N; 123'30" W, 1109 m elev.) lies in the transition zone of the precipitation dipole in the western United States, which is reflected by the present vegetation - a mosaic of mesic northern mixed hardwood-evergreen forests (Quercus spp., Pinus spp., Calocedrus/Juniperus) and more arid southern oak foothill woodlands (Quercus spp.) that borders the westernmost edge of coastal redwoods (Sequoia sempervirens) forest. The site, which lies on the active Lake Mountain fault zone, is now a large (~15 ha) sagpond that dries in summer. Between ~26,600 yr - ~15,000 yr, a permanent lake with aquatic vegetation (Isoetes) occupied the core site. Montane conifer forests, with pine (Pinus, spp.), mountain hemlock (Tsuga mertensiana), spruce (Picea spp), and western hemlock (T. heterophylla) covered the region. Climatic parameters of modern montane coniferous forest and the continued presence of aquatic vegetation (Isoetes) suggest higher precipitation and lower temperatures during the last glacial. Charcoal (fire event frequency) was minimal. Rapid oscillations of oak, the riparian alder (Alnus), pine, Cupressaceae (Juniperus, Calocedrus), Douglas fir (Pseudotsuga menzeii), and fir (Abies) characterize the deglacial, and reflect rapid changes in precipitation and temperatures, e.g, Bølling-Allerød warming and Younger Dryas cooling. Between ~15,000 yr and ~13,000 yr, aquatic vegetation of the lake abruptly decreased. Expansion of oak, tanoak (Lithocarpus), shrubs (cf. Ceanothus) and decline of pine and montane conifers, along with the development of marshes with Typha and Cyperaceae on the former lakebed, imply early Holocene warming and decreasing precipitation. This is supported by an increase in charcoal, which is attributed to forest fires. Between ~5,000 yr - ~6,000 yr, a short interval of increased precipitation (inferred from a peak in alder and decrease in Cupressaceae) initiates the development of modern mixed hardwood-evergreen forest. Correlative data from terrestrial and marine climate proxies from a core located 33 km off the mouth of the Eel River, (TN062 0550, 40.9°N, 124.6°W, 569 m water depth) suggest that ENSO-like conditions typified the Holocene.
NASA Astrophysics Data System (ADS)
Gonze, Marc-André; Mourlon, Christophe; Calmon, Philippe; Manach, Erwan; Debayle, Christophe; Baccou, Jean
2017-09-01
Since the Fukushima accident, Japanese scientists have been intensively monitoring ambient radiations in the highly contaminated territories situated within 80 km of the nuclear site. The surveys that were conducted through mainly carborne, airborne and in situ gamma-ray measurement devices, enabled to efficiently characterize the spatial distribution and temporal evolution of air dose rates induced by Caesium-134 and Caesium-137 in the terrestrial systems. These measurements revealed that radiation levels decreased at rates greater than expected from physical decay in 2011-2012 (up to a factor of 2), and dependent on the type of environment (i.e. urban, agricultural or forest). Unlike carborne measurements that may have been strongly influenced by the depuration of road surfaces, no obvious reason can be invoked for airborne measurements, especially above forests that are known to efficiently retain and recycle radiocaesium. The purpose of our research project is to develop a comprehensive understanding of the data acquired by Japanese, and identify the environmental mechanisms or factors that may explain such decays. The methodology relies on the use of a process-based and spatially-distributed dynamic model that predicts radiocaesium transfer and associated air dose rates inside/above a terrestrial environment (e.g., forests, croplands, meadows, bare soils and urban areas). Despite the lack of site-specific data, our numerical study predicts decrease rates that are globally consistent with both aerial and in situ observations. The simulation at a flying altitude of 200 m indicated that ambient radiation levels decreased over the first 12 months by about 45% over dense urban areas, 15% above evergreen coniferous forests and between 2 and 12% above agricultural lands, owing to environmental processes that are identified and discussed. In particular, we demonstrate that the decrease over evergreen coniferous regions might be due the combined effects of canopy depuration (through biological and physical mechanisms) and the shielding of gamma rays emitted from the forest floor by vegetation. Our study finally suggests that airborne surveys might have not reflected dose rates at ground level in forest systems, which were predicted to slightly increase by 5 to 10% during the same period of time.
NASA Astrophysics Data System (ADS)
Guétat, Philippe
2017-09-01
Since the Fukushima accident, Japanese scientists have been intensively monitoring ambient radiations in the highly contaminated territories situated within 80 km of the nuclear site. The surveys that were conducted through mainly carborne, airborne and in situ gamma-ray measurement devices, enabled to efficiently characterize the spatial distribution and temporal evolution of air dose rates induced by Caesium-134 and Caesium-137 in the terrestrial systems. These measurements revealed that radiation levels decreased at rates greater than expected from physical decay in 2011-2012 (up to a factor of 2), and dependent on the type of environment (i.e. urban, agricultural or forest). Unlike carborne measurements that may have been strongly influenced by the depuration of road surfaces, no obvious reason can be invoked for airborne measurements, especially above forests that are known to efficiently retain and recycle radiocaesium. The purpose of our research project is to develop a comprehensive understanding of the data acquired by Japanese, and identify the environmental mechanisms or factors that may explain such decays. The methodology relies on the use of a process-based and spatially-distributed dynamic model that predicts radiocaesium transfer and associated air dose rates inside/above a terrestrial environment (e.g., forests, croplands, meadows, bare soils and urban areas). Despite the lack of site-specific data, our numerical study predicts decrease rates that are globally consistent with both aerial and in situ observations. The simulation at a flying altitude of 200 m indicated that ambient radiation levels decreased over the first 12 months by about 45% over dense urban areas, 15% above evergreen coniferous forests and between 2 and 12% above agricultural lands, owing to environmental processes that are identified and discussed. In particular, we demonstrate that the decrease over evergreen coniferous regions might be due the combined effects of canopy depuration (through biological and physical mechanisms) and the shielding of gamma rays emitted from the forest floor by vegetation. Our study finally suggests that airborne surveys might have not reflected dose rates at ground level in forest systems, which were predicted to slightly increase by 5 to 10% during the same period of time.
A method for quantifying cloud immersion in a tropical mountain forest using time-lapse photography
Bassiouni, Maoya; Scholl, Martha A.; Torres-Sanchez, Angel J.; Murphy, Sheila F.
2017-01-01
Quantifying the frequency, duration, and elevation range of fog or cloud immersion is essential to estimate cloud water deposition in water budgets and to understand the ecohydrology of cloud forests. The goal of this study was to develop a low-cost and high spatial-coverage method to detect occurrence of cloud immersion within a mountain cloud forest by using time-lapse photography. Trail cameras and temperature/relative humidity sensors were deployed at five sites covering the elevation range from the assumed lifting condensation level to the mountain peaks in the Luquillo Mountains of Puerto Rico. Cloud-sensitive image characteristics (contrast, the coefficient of variation and the entropy of pixel luminance, and image colorfulness) were used with a k-means clustering approach to accurately detect cloud-immersed conditions in a time series of images from March 2014 to May 2016. Images provided hydrologically meaningful cloud-immersion information while temperature-relative humidity data were used to refine the image analysis using dew point information and provided temperature gradients along the elevation transect. Validation of the image processing method with human-judgment based classification generally indicated greater than 90% accuracy. Cloud-immersion frequency averaged 80% at sites above 900 m during nighttime hours and 49% during daytime hours, and was consistent with diurnal patterns of cloud immersion measured in a previous study. Results for the 617 m site demonstrated that cloud immersion in the Luquillo Mountains rarely occurs at the previously-reported cloud base elevation of about 600 m (11% during nighttime hours and 5% during daytime hours). The framework presented in this paper will be used to monitor at a low cost and high spatial resolution the long-term variability of cloud-immersion patterns in the Luquillo Mountains, and can be applied to ecohydrology research at other cloud-forest sites or in coastal ecosystems with advective sea fog.
NASA Astrophysics Data System (ADS)
Bohlman, Stephanie; Rifai, Sami; Park, John; Dandois, Jonathan; Muller-Landau, Helene
2017-04-01
Phenology is a key life history trait of plant species and critical driver of ecosystem processes. There is strong evidence that phenology is shifting in temperate ecosystems in response to climate change, but tropical forest phenology remains poorly quantified and understood. A key challenge is that tropical forests contain hundreds of plant species with a wide variety of phenological patterns, which makes it difficult to collect sufficient ground-based field data to characterize individual tropical tree species phenologies. Satellite-based observations, an important source of phenology data in northern latitudes, are hindered by frequent cloud cover in the tropics. To quantify phenology over a large number of individuals and species, we collected bi-weekly images from unmanned aerial vehicles (UAVs) in the well-studied 50-ha forest inventory plot on Barro Colorado Island, Panama. The objective of this study is to quantify inter- and intra-specific responses of tropical tree leaf phenology to environmental variation over large spatial scales and identify key environmental variables and physiological mechanisms underpinning phenological variation. Between October 2014 and December 2015 and again in May 2015, we collected a total of 35 sets of UAV images, each with continuous coverage of the 50-ha plot, where every tree ≥ 1 cm DBH is mapped. UAV imagery was corrected for exposure, orthorectified, and then processed to extract spectral, texture, and image information for individual tree crowns, which was then used as inputs for a machine learning algorithm that successfully predicted the percentages of leaf, branch, and flower cover for each tree crown (r2=0.76 between observed and predicted percent branch cover for individual tree crowns). We then quantified cumulative annual deciduousness for each crown by fitting a non-parametric curve of flexible shape to its predicted percent branch time series and calculated the area under the curve. We obtained the species identities of 2000 crowns in the images by linking the crowns to stem tags in the field, thus producing a time series of cumulative annual deciduousness for 65 species. Deciduousness showed continuous variation among species rather than distinct phenological categories (ie evergreen and deciduous) that are commonly used in physiological, ecosystem and modeling studies. Some species labelled as evergreen by expert-based classification had annual deciduousness higher than those labelled as deciduous. We found significant, positive relationships between species mean deciduousness and species' leaf phosphorous, photosynthetic capacity and adult relative growth rate, suggesting that higher deciduousness is associated with greater resource acquisition. Comparing May 2015 (during an El Nino drought) and May 2014 (an non El Nino year with normal rainfall), mean deciduousness values for nearly all species was greater in 2015 but with differing levels of intraspecific variation. We discuss how the variation in deciduousness among species, its relationship with plant traits and response to the drought might be incorporated into terrestrial biosphere models of tropical forests to more accurately represent phenology and understand the consequences of community-level variation in phenology for ecosystem processes.
Ramírez-Barahona, Santiago; Eguiarte, Luis E
2013-01-01
The increasing aridity during the Last Glacial Maximum (LGM) has been proposed as a major factor affecting Neotropical species. The character and intensity of this change, however, remains the subject of ongoing debate. This review proposes an approach to test contrasting paleoecological hypotheses by way of their expected demographic and genetic effects on Neotropical cloud forest species. We reviewed 48 paleoecological records encompassing the LGM in the Neotropics. The records show contrasting evidence regarding the changes in precipitation during this period. Some regions remained fairly moist and others had a significantly reduced precipitation. Many paleoecological records within the same region show apparently conflicting evidence on precipitation and forest stability. From these data, we propose and outline two demographic/genetic scenarios for cloud forests species based on opposite precipitation regimes: the dry refugia and the moist forests hypotheses. We searched for studies dealing with the population genetic structure of cloud forest and other montane taxa and compared their results with the proposed models. To date, the few available molecular studies show insufficient genetic evidence on the predominance of glacial aridity in the Neotropics. In order to disentangle the climatic history of the Neotropics, the present study calls for a general multi-disciplinary approach to conduct future phylogeographic studies. Given the contradictory paleoecological information, population genetic data on Neotropical cloud forest species should be used to explicitly test the genetic consequences of competing paleoecological models. PMID:23531632
Wei Wu; Charlesb Hall; Lianjun Zhang
2006-01-01
We predicted the spatial pattern of hourly probability of cloud cover in the Luquillo Experimental Forest (LEF) in North-Eastern Puerto Rico using four different models. The probability of cloud cover (defined as âthe percentage of the area covered by clouds in each pixel on the mapâ in this paper) at any hour and any place is a function of three topographic variables...
Microclimate and Hydrology of Native Cloud Forest in Hawaii Volcanoes National Park
NASA Astrophysics Data System (ADS)
Giambelluca, T. W.; Asner, G. P.; Martin, R. E.; Delay, J. K.; Mudd, R. G.; Nullet, M. A.; Takahashi, M.
2006-12-01
The water balance of cloud forests on Kilauea Volcano are of interest for improving understanding of regional hydrologic and ecological processes. Exceptionally high rates of forest evapotranspiration (ET) have been found in recent studies on other tropical oceanic islands, raising questions about current estimates of water balance and groundwater recharge for forested areas in Hawai'i. Previous studies in the same area have shown fog to be the dominant pathway for atmospheric nitrogen deposition derived from atmospheric sources associated with the nearby Pu'u O'o eruption. A 25-m tower equipped with eddy covariance and other micrometeorological instrumentation was constructed within 17-m-tall native Metrosideros polymorpha cloud forest in Hawai'i Volcanoes National Park. Measurements of stand-level ET, tree transpiration, throughfall, stemflow, and soil moisture are underway to quantify the canopy water balance and to estimate the direct deposition of cloud water to the system. Based on these measurements, mean monthly stand level ET is estimated to range from 1.69 (March) to 3.43 (July) mm per day. These rates are slightly lower than expected for this site, and much lower than rates recently found at forest sites on other tropical islands. The ratio of throughfall to gross rainfall was 1.096, 1.065, and 1.034 for 2004, 2005, and 2006, respectively. These values imply cloud water interception of approximately 600 to 1000 mm per year. Measurements of stemflow and sapflow have recently begun and will be useful in refining the canopy water balance and improving estimates of cloud water interception.
NASA Technical Reports Server (NTRS)
Potter, Christopher S.
2014-01-01
The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) methodology was applied to detected changes in forest vegetation cover for areas burned by wildfires in the Sierra Nevada Mountains of California between the periods of 1975- 79 and 1995-1999. Results for areas burned by wildfire between 1995 and 1999 confirmed the importance of regrowing forest vegetation over 17% of the combined burned areas. A notable fraction (12%) of the entire 5-km (unburned) buffer area outside the 1995-199 fires perimeters showed decline in forest cover, and not nearly as many regrowing forest areas, covering only 3% of all the 1995-1999 buffer areas combined. Areas burned by wildfire between 1975 and 1979 confirmed the importance of disturbed (or declining evergreen) vegetation covering 13% of the combined 1975- 1979 burned areas. Based on comparison of these results to ground-based survey data, the LEDAPS methodology should be capable of fulfilling much of the need for consistent, low-cost monitoring of changes due to climate and biological factors in western forest regrowth following stand-replacing disturbances.
Alpine forest-tundra ecotone response to temperature change,Sayan Mountains, Siberia
NASA Technical Reports Server (NTRS)
Ranson, K Jon; Kharuk, Vyetcheslav I.
2007-01-01
Models of climate change predict shifts of vegetation zones. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. There is evidence of vegetation change on the northern treeline However, observations on alpine tree line response are controversial. In this NEESPI related study we show that during the past three decades in the forest-tundra ecotone of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure, regeneration propagation into the alpine tundra, and transformation of prostrate Siberian pine and fir into arboreal forms. We found that these changes occurred since the mid 1980s, and strongly correlates with positive temperature (and to a lesser extent, precipitation) trends. Improving climate for forest growth( i.e., warmer temperatures and increased precipitation) provides competitive advantages to Siberian pine in the alpine forest-tundra ecotone, as well as in areas typically dominated by larch, where it has been found to be forming a secondary canopy layer. Substitution of deciduous conifer, larch, for evergreen conifers, decreases albedo and provides positive feedback for temperature increase.
Bandala, Victor Manuel; Ryoo, Rhim; Montoya, Leticia; Ka, Kang-Hyeon
2012-01-01
Crinipellis brunneoaurantiaca, C. pallidibrunnea and C. rubella are described as new species and their taxonomic position is discussed. The two former were collected in subdeciduous tropical forest and the latter in the montane cloud forest, all from the east coast of Mexico (central Veracruz). Crinipellis podocarpi, C. pseudostipitaria var. mesites, C. setipes, recorded in montane cloud forest, and C. tucumanensis, collected in subdeciduous tropical forest, also are discussed. Detailed macro- and microscopic descriptions, illustrations of distinctive microscopic characters and plates are presented for each species.
NASA Astrophysics Data System (ADS)
Asbjornsen, H.; Geissert, D.; Gomez-Tagle, A.; Holwerda, F.; Manson, R.; Perez-Maqueo, O.; Munoz-Villers, L.; Scullion, J.
2013-05-01
Payment for hydrologic service (PHS) programs are increasingly being used as a means to incentivize watershed protection by compensating upstream 'water producers' with payments made by downstream 'water consumers'. However, the effectiveness of PHS programs in achieving their target goals is often poorly understood. Here, we draw from insights obtained from socioeconomic and ecohydrological research in Veracruz, Mexico to explore interactions between PHS policies, landowner decisions, and hydrologic services. GIS analysis of land-cover changes during 2003-2009 combined with interviews of PHS participants indicated that despite lower deforestation rates on properties receiving PES payments, other factors were likely to have a greater influence on land use decisions than PHS payments per se, including opportunity costs and personal conservation ethic. The interviews also highlighted a general lack of trust and cooperation between the citizen participants and government administrators, which was reflected in the relatively low level of knowledge of the PHS programs' regulations and goals, the role of forests in protecting water resources, and a low level of co-financing by the private sector. An important premise of PHS programs is that protecting existing forest cover (and planting trees) will enhance water supply, especially in upland cloud forests that are due to their perceived role as water producers. Measurements of climate, steamflow, canopy fog interception, plant transpiration, soil water dynamics, and hydrologic flow paths were collected over a 3-year period to assess stand water balance and streamflow response under four different land covers: mature cloud forest, pasture, regenerating cloud forest, pine reforestation. Results suggested relatively minor additional inputs of fog to increasing streamflow in cloud forest watersheds, while conversion of forest to pasture did not markedly decrease dry season flows, but did increase annual flows due to lower pasture evapotranspiration. Nevertheless, the pasture showed higher surface runoff for the most intense storms, indicating a diminished infiltration capacity. Young pine plantations and regenerating cloud forest had higher evapotranspiration and therefore higher water yield relative to mature cloud forest. Our analysis suggests a disconnect between PHS policies and the hydrological services provided through forest conservation and tree planting. The implications of this apparent disconnect are discussed within the context of designing effective policies for enhancing hydrologic services, and the importance of site-based research and monitoring to improve understanding of coupled social-ecohydrological systems.
Root productivity of deciduous and evergreen species identified using a molecular approach
NASA Astrophysics Data System (ADS)
Ellsworth, P.; Sternberg, L. O.
2012-12-01
The linkage between leaf traits and root structure may explain how plants integrate above and belowground traits into whole plant adaptations to environmental stresses. In dry seasonal forests, the lack of dry season precipitation dries out the relatively nutrient-rich shallow soil, leaving shallow soil water and nutrients inaccessible to uptake until the wet season. In tropical or subtropical seasonal dry forests, deciduousness may allow for the survival of shallow fine roots during the dry season. Losing leaves during the dry season reduces aboveground plant water demand, and a greater proportion of water extracted from deep soil can be used to maintain shallow roots until the wet season. Higher shallow root survival through the dry season than evergreen species means that deciduous species can take advantage of the nutrient pulse associated with the onset of the wet season. To test the above hypothesis, fine roots were collected from soil cores in a seasonally dry forest during the dry season, onset of the wet season, and the wet season and were identified to selected evergreen and deciduous study species. The fine roots of two of the selected species (Lyonia ferruginea and Carya floridana) could be identified from visual characteristics. The other three study species, which were all from the genus Quercus (Q. geminata, Q. myrtifolia, and Q. laevis), were impossible to separate visually. We developed a PCR-based restriction fragment length polymorphism (PCR-RFLP) technique, which provided a quick, simple, low-cost way to identify the species of all fine roots of our study species. We extracted DNA from all roots that were not visually identified, amplified the internal transcribed spacer region (ITS), digested the ITS region with the restriction enzyme TaqαI, and used gel electrophoresis to separate DNA fragments. Using a PCR-RFLP based root identification key that we developed for the species at Archbold Biological Station, all species that could not be identified visually were separated based on each species ' unique banding pattern of restriction fragments. Approximately 2,500 roots were identified using PCR-RFLP and approximately 1,500 more roots were identified visually. Identifying fine roots to species allows for species-level analysis of root productivity in this in situ study.
Physical attributes of some clouds amid a forest ecosystem's trees
DeFelice, Thomas P.
2002-01-01
Cloud or fog water collected by forest canopies of any elevation could represent significant sources of required moisture and nutrients for forest ecosystems, human consumption, and as an alternative source of water for agriculture and domestic use. The physical characteristics of fogs and other clouds have been well studied, and this information can be useful to water balance or canopy–cloud interaction model verification and to calibration or training of satellite-borne sensors to recognize atmospheric attributes, such as optical thickness, albedo, and cloud properties. These studies have taken place above-canopy or within canopy clearings and rarely amid the canopy. Simultaneous physical and chemical characteristics of clouds amid and above the trees of a mountain forest, located about 3.3 km southwest of Mt. Mitchell, NC, were collected between 13 and 22 June 1993. This paper summarizes the physical characteristics of the cloud portions amid the trees. The characteristic cloud amid the trees (including cloud and precipitation periods) contained 250 droplet/cm3 with a mean diameter of 9.5 μm and liquid water content (LWC) of 0.11 g m−3. The cloud droplets exhibited a bimodal distribution with modes at about 2 and 8 μm and a mean diameter near 5 μm during precipitation-free periods, whereas the concurrent above-canopy cloud droplets had a unimodal distribution with a mode near 6 μm and a mean diameter of 6 μm. The horizontal cloud water flux is nonlinearly related to the rate of collection onto that surface amid the trees, especially for the Atmospheric Sciences Research Center (ASRC) sampling device, whereas it is linear when the forward scattering spectrometer probe (FSSP) are is used. These findings suggest that statements about the effects clouds have on surfaces they encounter, which are based on above-canopy or canopy-clearing data, can be misleading, if not erroneous.
Helmer, E.H.; Kennaway, T.A.; Pedreros, D.H.; Clark, M.L.; Marcano-Vega, H.; Tieszen, L.L.; Ruzycki, T.R.; Schill, S.R.; Carrington, C.M.S.
2008-01-01
Satellite image-based mapping of tropical forests is vital to conservation planning. Standard methods for automated image classification, however, limit classification detail in complex tropical landscapes. In this study, we test an approach to Landsat image interpretation on four islands of the Lesser Antilles, including Grenada and St. Kitts, Nevis and St. Eustatius, testing a more detailed classification than earlier work in the latter three islands. Secondly, we estimate the extents of land cover and protected forest by formation for five islands and ask how land cover has changed over the second half of the 20th century. The image interpretation approach combines image mosaics and ancillary geographic data, classifying the resulting set of raster data with decision tree software. Cloud-free image mosaics for one or two seasons were created by applying regression tree normalization to scene dates that could fill cloudy areas in a base scene. Such mosaics are also known as cloud-filled, cloud-minimized or cloud-cleared imagery, mosaics, or composites. The approach accurately distinguished several classes that more standard methods would confuse; the seamless mosaics aided reference data collection; and the multiseason imagery allowed us to separate drought deciduous forests and woodlands from semi-deciduous ones. Cultivated land areas declined 60 to 100 percent from about 1945 to 2000 on several islands. Meanwhile, forest cover has increased 50 to 950%. This trend will likely continue where sugar cane cultivation has dominated. Like the island of Puerto Rico, most higher-elevation forest formations are protected in formal or informal reserves. Also similarly, lowland forests, which are drier forest types on these islands, are not well represented in reserves. Former cultivated lands in lowland areas could provide lands for new reserves of drier forest types. The land-use history of these islands may provide insight for planners in countries currently considering lowland forest clearing for agriculture. Copyright 2008 College of Arts and Sciences.
Introducing two Random Forest based methods for cloud detection in remote sensing images
NASA Astrophysics Data System (ADS)
Ghasemian, Nafiseh; Akhoondzadeh, Mehdi
2018-07-01
Cloud detection is a necessary phase in satellite images processing to retrieve the atmospheric and lithospheric parameters. Currently, some cloud detection methods based on Random Forest (RF) model have been proposed but they do not consider both spectral and textural characteristics of the image. Furthermore, they have not been tested in the presence of snow/ice. In this paper, we introduce two RF based algorithms, Feature Level Fusion Random Forest (FLFRF) and Decision Level Fusion Random Forest (DLFRF) to incorporate visible, infrared (IR) and thermal spectral and textural features (FLFRF) including Gray Level Co-occurrence Matrix (GLCM) and Robust Extended Local Binary Pattern (RELBP_CI) or visible, IR and thermal classifiers (DLFRF) for highly accurate cloud detection on remote sensing images. FLFRF first fuses visible, IR and thermal features. Thereafter, it uses the RF model to classify pixels to cloud, snow/ice and background or thick cloud, thin cloud and background. DLFRF considers visible, IR and thermal features (both spectral and textural) separately and inserts each set of features to RF model. Then, it holds vote matrix of each run of the model. Finally, it fuses the classifiers using the majority vote method. To demonstrate the effectiveness of the proposed algorithms, 10 Terra MODIS and 15 Landsat 8 OLI/TIRS images with different spatial resolutions are used in this paper. Quantitative analyses are based on manually selected ground truth data. Results show that after adding RELBP_CI to input feature set cloud detection accuracy improves. Also, the average cloud kappa values of FLFRF and DLFRF on MODIS images (1 and 0.99) are higher than other machine learning methods, Linear Discriminate Analysis (LDA), Classification And Regression Tree (CART), K Nearest Neighbor (KNN) and Support Vector Machine (SVM) (0.96). The average snow/ice kappa values of FLFRF and DLFRF on MODIS images (1 and 0.85) are higher than other traditional methods. The quantitative values on Landsat 8 images show similar trend. Consequently, while SVM and K-nearest neighbor show overestimation in predicting cloud and snow/ice pixels, our Random Forest (RF) based models can achieve higher cloud, snow/ice kappa values on MODIS and thin cloud, thick cloud and snow/ice kappa values on Landsat 8 images. Our algorithms predict both thin and thick cloud on Landsat 8 images while the existing cloud detection algorithm, Fmask cannot discriminate them. Compared to the state-of-the-art methods, our algorithms have acquired higher average cloud and snow/ice kappa values for different spatial resolutions.
Sierra, C.A.; Loescher, H.W.; Harmon, M.E.; Richardson, A.D.; Hollinger, D.Y.; Perakis, S.S.
2009-01-01
Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed ?? 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data. ?? 2009 by the Ecological Society of America.
Water use efficiency in a primary subtropical evergreen forest in Southwest China.
Song, Qing-Hai; Fei, Xue-Hai; Zhang, Yi-Ping; Sha, Li-Qing; Liu, Yun-Tong; Zhou, Wen-Jun; Wu, Chuan-Sheng; Lu, Zhi-Yun; Luo, Kang; Gao, Jin-Bo; Liu, Yu-Hong
2017-02-20
We calculated water use efficiency (WUE) using measures of gross primary production (GPP) and evapotranspiration (ET) from five years of continuous eddy covariance measurements (2009-2013) obtained over a primary subtropical evergreen broadleaved forest in southwestern China. Annual mean WUE exhibited a decreasing trend from 2009 to 2013, varying from ~2.28 to 2.68 g C kg H 2 O -1 . The multiyear average WUE was 2.48 ± 0.17 (mean ± standard deviation) g C kg H 2 O -1 . WUE increased greatly in the driest year (2009), due to a larger decline in ET than in GPP. At the diurnal scale, WUE in the wet season reached 5.1 g C kg H 2 O -1 in the early morning and 4.6 g C kg H 2 O -1 in the evening. WUE in the dry season reached 3.1 g C kg H 2 O -1 in the early morning and 2.7 g C kg H 2 O -1 in the evening. During the leaf emergence stage, the variation of WUE could be suitably explained by water-related variables (relative humidity (RH), soil water content at 100 cm (SWC_100)), solar radiation and the green index (Sgreen). These results revealed large variation in WUE at different time scales, highlighting the importance of individual site characteristics.
NASA Astrophysics Data System (ADS)
Handique, Bijoy K.; Khan, Siraj A.; Dutta, Prafulla; Nath, Manash J.; Qadir, Abdul; Raju, P. L. N.
2016-06-01
Malaria is endemic and a major public health problem in north east (NE) region of India and contributes about 8-12 % of India's malaria positives cases. Historical morbidity pattern of malaria in terms of API (Annual Parasite Incidence) in the state of Assam has been used for delineating the malaria incidence hotspots at health sub centre (HSC) level. Strong spatial autocorrelation (p < 0.01) among the HSCs have been observed in terms of API (Annual Parasite Incidence). Malaria incidence hot spots in the state could be identified based on General G statistics and tested for statistical significance. Spatial correlation of malaria incidence hotspots with physiographic and climatic parameters across 6 agro-climatic zones of the state reveals the types of land cover pattern and the range of elevation contributing to the malaria outbreaks. Analysis shows that villages under malaria hotspots are having more agricultural land, evergreen/semi-evergreen forests with abundant waterbodies. Statistical and spatial analyses of malaria incidence showed a significant positive correlation with malaria incidence hotspots and the elevation (p < 0.05) with villages under malaria hotspots are having average elevation ranging between 17 to 240 MSL. This conforms to the characteristics of two dominant mosquito species in the state Anopheles minimus and An. baimai that prefers the habitat of slow flowing streams in the foot hills and in forest ecosystems respectively.
Du, X.; Guo, Q.; Gao, X.; Ma, K.
2007-01-01
Understanding the seed rain and seed loss dynamics in the natural condition has important significance for revealing the natural regeneration mechanisms. We conducted a 3-year field observation on seed rain, seed loss and natural regeneration of Castanopsis fargesii Franch., a dominant tree species in evergreen broad-leaved forests in Dujiangyan, southwestern China. The results showed that: (1) there were marked differences in (mature) seed production between mast (733,700 seeds in 2001) and regular (51,200 and 195,600 seeds in 2002 and 2003, respectively) years for C. fargesii. (2) Most seeds were dispersed in leaf litter, humus and 0-2 cm depth soil in seed bank. (3) Frequency distributions of both DBH and height indicated that C. fargesii had a relatively stable population. (4) Seed rain, seed ground density, seed loss, and leaf fall were highly dynamic and certain quantity of seeds were preserved on the ground for a prolonged time due to predator satiation in both the mast and regular years so that the continuous presence of seed bank and seedling recruitments in situ became possible. Both longer time observations and manipulative experiments should be carried out to better understand the roles of seed dispersal and regeneration process in the ecosystem performance. ?? 2006 Elsevier B.V. All rights reserved.
Kimball, J. S.; Keyser, A. R.; Running, S. W.; Saatchi, S. S.
2000-06-01
An ecological process model (BIOME-BGC) was used to assess boreal forest regional net primary production (NPP) and response to short-term, year-to-year weather fluctuations based on spatially explicit, land cover and biomass maps derived by radar remote sensing, as well as soil, terrain and daily weather information. Simulations were conducted at a 30-m spatial resolution, over a 1205 km(2) portion of the BOREAS Southern Study Area of central Saskatchewan, Canada, over a 3-year period (1994-1996). Simulations of NPP for the study region were spatially and temporally complex, averaging 2.2 (+/- 0.6), 1.8 (+/- 0.5) and 1.7 (+/- 0.5) Mg C ha(-1) year(-1) for 1994, 1995 and 1996, respectively. Spatial variability of NPP was strongly controlled by the amount of aboveground biomass, particularly photosynthetic leaf area, whereas biophysical differences between broadleaf deciduous and evergreen coniferous vegetation were of secondary importance. Simulations of NPP were strongly sensitive to year-to-year variations in seasonal weather patterns, which influenced the timing of spring thaw and deciduous bud-burst. Reductions in annual NPP of approximately 17 and 22% for 1995 and 1996, respectively, were attributed to 3- and 5-week delays in spring thaw relative to 1994. Boreal forest stands with greater proportions of deciduous vegetation were more sensitive to the timing of spring thaw than evergreen coniferous stands. Similar relationships were found by comparing simulated snow depth records with 10-year records of aboveground NPP measurements obtained from biomass harvest plots within the BOREAS region. These results highlight the importance of sub-grid scale land cover complexity in controlling boreal forest regional productivity, the dynamic response of the biome to short-term interannual climate variations, and the potential implications of climate change and other large-scale disturbances.
NASA Astrophysics Data System (ADS)
Wu, J.; Silva Campos, K.; Prohaska, N.; Ferreira, M. L.; Nelson, B. W.; Saleska, S. R.; da Silva, R.
2014-12-01
Metabolism and phenology of tropical forests significantly influence global dynamics of climate, carbon and water. However, there is still lack of mechanistic understanding of the controls on tropical forest metabolism, particularly at individual tree level. In this study, we are interested in investigating (1) what is the seasonal pattern of woody growth for tropical trees and (2) what is the mechanistic controls onwoody growth at individual level?To explore the above questions,we use two data sources from an evergreen tropical forest KM67 site (near Santarem, Brazil). They are: (1) image time series from a tower mounted RGB imaging system, with images recordedin10 minutes interval since October 2013.Images near local noon homogeneous diffuse lighting were selectedfor leaf phenologymonitoring; (2) ground based bi-weekly biometry survey (via dendrometry band technique) for 25 trees from random sampling since September 2013. 12 among 25 trees are within the tower mounted camera image view. Our preliminary resultsdemonstrate that 20 trees among 25 trees surveyed significantly increase woody growth (or "green up") in dry season. Our results also find thatamong those 20 trees, 12 trees reaches the maximum woody increment rate in late dry season with a mean DBH (Diameter at Breast Height) around 30 cm,while 8 trees reaching the maximum in the middle of wet season, with a mean DBH around 90 cm. This study,though limited in the sample size, mightprovide another line of evidence that Amazon rainforests "green up" in dry season. As for mechanistic controls on tropical tree woody control, we hypothesize both climate and leaf phenology control individual woody growth. We would like to link both camera based leaf phenology and climate data in the next to explorethe reason as to the pattern found in this study that bigger trees might have different seasonal growth pattern as smaller trees.
Effects of foliage clumping on the estimation of global terrestrial gross primary productivity
NASA Astrophysics Data System (ADS)
Chen, Jing M.; Mo, Gang; Pisek, Jan; Liu, Jane; Deng, Feng; Ishizawa, Misa; Chan, Douglas
2012-03-01
Sunlit and shaded leaf separation proposed by Norman (1982) is an effective way to upscale from leaf to canopy in modeling vegetation photosynthesis. The Boreal Ecosystem Productivity Simulator (BEPS) makes use of this methodology, and has been shown to be reliable in modeling the gross primary productivity (GPP) derived from CO2flux and tree ring measurements. In this study, we use BEPS to investigate the effect of canopy architecture on the global distribution of GPP. For this purpose, we use not only leaf area index (LAI) but also the first ever global map of the foliage clumping index derived from the multiangle satellite sensor POLDER at 6 km resolution. The clumping index, which characterizes the degree of the deviation of 3-dimensional leaf spatial distributions from the random case, is used to separate sunlit and shaded LAI values for a given LAI. Our model results show that global GPP in 2003 was 132 ± 22 Pg C. Relative to this baseline case, our results also show: (1) global GPP is overestimated by 12% when accurate LAI is available but clumping is ignored, and (2) global GPP is underestimated by 9% when the effective LAI is available and clumping is ignored. The clumping effects in both cases are statistically significant (p < 0.001). The effective LAI is often derived from remote sensing by inverting the measured canopy gap fraction to LAI without considering the clumping. Global GPP would therefore be generally underestimated when remotely sensed LAI (actually effective LAI by our definition) is used. This is due to the underestimation of the shaded LAI and therefore the contribution of shaded leaves to GPP. We found that shaded leaves contribute 50%, 38%, 37%, 39%, 26%, 29% and 21% to the total GPP for broadleaf evergreen forest, broadleaf deciduous forest, evergreen conifer forest, deciduous conifer forest, shrub, C4 vegetation, and other vegetation, respectively. The global average of this ratio is 35%.
Niizato, Tadafumi; Abe, Hironobu; Mitachi, Katsuaki; Sasaki, Yoshito; Ishii, Yasuo; Watanabe, Takayoshi
2016-09-01
Estimations of radiocesium input and output concerning the forest floor within a mountain forest region have been conducted in the north and central part of the Abukuma Mountains of Fukushima, northeast Japan, after a 2-3 year period following the TEPCO Fukushima Dai-ichi nuclear power plant accident. The radiocesium input and output associated with surface washoff, throughfall, stemflow, and litterfall processes at experimental plots installed on the forest floor of evergreen Japanese cedars and deciduous Konara oaks have been monitored. Despite the high output potential in the mountainous forest of Fukushima, the results at both monitoring locations show the radiocesium input to be 4-50 times higher than the output during the summer monsoon in Fukushima. These results indicate that the radiocesium tends to be preserved in the forest ecosystem due to extremely low output ratios (0.05%-0.19%). Thus, the associated fluxes throughout the circulation process are key issues for the projecting the environmental fate of the radiocesium levels, along with the subsequent reconstruction of life emphasized within the setting. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Tapia-Armijos, María Fernanda; Homeier, Jürgen; Espinosa, Carlos Iván; Leuschner, Christoph; de la Cruz, Marcelino
2015-01-01
Deforestation and fragmentation are major components of global change; both are contributing to the rapid loss of tropical forest area with important implications for ecosystem functioning and biodiversity conservation. The forests of South Ecuador are a biological ‘hotspot’ due to their high diversity and endemism levels. We examined the deforestation and fragmentation patterns in this area of high conservation value using aerial photographs and Aster satellite scenes. The registered annual deforestation rates of 0.75% (1976–1989) and 2.86% (1989–2008) for two consecutive survey periods, the decreasing mean patch size and the increasing isolation of the forest fragments show that the area is under severe threat. Approximately 46% of South Ecuador’s original forest cover had been converted by 2008 into pastures and other anthropogenic land cover types. We found that deforestation is more intense at lower elevations (premontane evergreen forest and shrubland) and that the deforestation front currently moves in upslope direction. Improved awareness of the spatial extent, dynamics and patterns of deforestation and forest fragmentation is urgently needed in biologically diverse areas like South Ecuador. PMID:26332681
Seasonal-to-interannual variation in biomass burning over the contiguous United States
NASA Astrophysics Data System (ADS)
Kim, K. M.; Lau, W. K. M.; Ichoku, I.; Pereira, G.; Darmenov, A.; da Silva, A. M., Jr.; Ellison, L.
2017-12-01
The intensity and frequency of wildfires are strongly affected by climatic factors, such as droughts and heat waves, which are governed by weather and climate dynamics. . Climatic impacts on wildfire and biomass burning can be complex involving not only natural variability, but also human activities. In this study, we examine the seasonality of occurrences and intensity of fires and climatic impact as a function of underlying biomes over the CONUS, using fire pixel data from MODIS instruments on-board Terra and Aqua. Results show that there are three distinct fire seasons, i.e., summer (June to August), spring (March-April), and Fall (September-October). In the evergreen needle leaf region where most fires occur, the fire season peaks in mid boreal summer. In this region, fires tend to start early (June) in southern US, and late (August) in northern US. Double peaks are distinctive features in grass land and crop land. Double peaks in crop land (spring and fall) appear to be associated with agricultural practices. However, the two peaks in grass land (spring and summer) are due to natural wildfires, associated with changes in seasonal weather pattern. To better understand the potential climatic impact on fire, we examine relationships between fire weather index (FWI) and fire pixel counts. Fire pixel count has a strong correlation with FWI in evergreen needle leaf forest, deciduous broad leaf forest, and open shrub land. However, no significant linear relations are found in crop land, grass land, and mixed forest. The implications of these findings, and possible impacts of atmospheric teleconnecon on the fire season in the CONUS will also be discussed.
NASA Astrophysics Data System (ADS)
Parsons, S. A.; Valdez-Ramirez, V.; Congdon, R. A.; Williams, S. E.
2014-06-01
The seasonality of litter inputs in forests has important implications for understanding ecosystem processes and biogeochemical cycles. We quantified the drivers of seasonality in litterfall and leaf decomposability, using plots throughout the Australian wet tropical region. Litter fell mostly in the summer (wet, warm) months in the region, but other peaks occurred throughout the year. Litterfall seasonality was modelled well with the level of deciduousness of the site (plots with more deciduous species had lower seasonality than evergreen plots), temperature (higher seasonality in the uplands), disturbance (lower seasonality with more early secondary species) and soil fertility (higher seasonality with higher N : P/P limitation) (SL total litterfall model 1 = deciduousness + soil N : P + early secondary sp: r2 = 0.63, n = 30 plots; model 2 = temperature + early secondary sp. + soil N : P: r2 = 0.54, n = 30; SL leaf = temperature + early secondary sp. + rainfall seasonality: r2 = 0.39, n = 30). Leaf litter decomposability was lower in the dry season than in the wet season, driven by higher phenolic concentrations in the dry, with the difference exacerbated particularly by lower dry season moisture. Our results are contrary to the global trend for tropical rainforests; in that seasonality of litterfall inputs were generally higher in wetter, cooler, evergreen forests, compared to generally drier, warmer, semi-deciduous sites that had more uniform monthly inputs. We consider this due to more diverse litter shedding patterns in semi-deciduous and raingreen rainforest sites, and an important consideration for ecosystem modellers. Seasonal changes in litter quality are likely to have impacts on decomposition and biogeochemical cycles in these forests due to the litter that falls in the dry being more recalcitrant to decay.
NASA Astrophysics Data System (ADS)
Parsons, S. A.; Valdez-Ramirez, V.; Congdon, R. A.; Williams, S. E.
2014-09-01
The seasonality of litter inputs in forests has important implications for understanding ecosystem processes and biogeochemical cycles. We quantified the drivers of seasonality in litterfall and leaf decomposability using plots throughout the Australian wet tropical region. Litter fell mostly in the summer (wet, warm) months in the region, but other peaks occurred throughout the year. Litterfall seasonality was modelled well with the level of deciduousness of the site (plots with more deciduous species had lower seasonality than evergreen plots), temperature (higher seasonality in the uplands), disturbance (lower seasonality with more early secondary species) and soil fertility (higher seasonality with higher N : P/P limitation) (SL total litterfall model 1 = deciduousness + soil N : P + early secondary sp.: r2 = 0.63, n = 30; model 2 = temperature + early secondary sp. + soil N : P: r2 = 0.54, n = 30; SL leaf = temperature + early secondary sp. + rainfall seasonality: r2 = 0.39, n = 30). Leaf litter decomposability was lower in the dry season than in the wet season, driven by higher phenolic concentrations in the dry, with the difference exacerbated particularly by lower dry season moisture. Our results are contrary to the global trend for tropical rainforests; in that seasonality of litterfall input was generally higher in wetter, cooler, evergreen forests, compared to generally drier, warmer, semi-deciduous sites that had more uniform monthly inputs. We consider this due to more diverse litter shedding patterns in semi-deciduous and raingreen rainforest sites, and an important consideration for ecosystem modellers. Seasonal changes in litter quality are likely to have impacts on decomposition and biogeochemical cycles in these forests due to the litter that falls in the dry season being more recalcitrant to decay.
Mapping Vegetation Structure in Kakadu National Park: An AIRSAR and GIS Application in Conservation
NASA Technical Reports Server (NTRS)
Imhoff, Marc L.; Sisk, Thomas D.; Hampton, Haydee; Milne, Anthony K.
1999-01-01
Airborne Synthetic Aperture Radar (AIRSAR) data were used to map vegetation structure in Kakadu National Park Australia as part of the PACRIM project. SAR data were co-registered with Landsat TM, aerial photos, and map data in a geographic information system for a small test area consisting of mangrove, floodplain grasslands, lowland tropical evergreen forest and upland mixed deciduous and evergreen tropical forest near the South Alligator River. Landsat (Thematic Mapper) TM very clearly showed the floristic composition and burn scars from the previous years fires and the AIRSAR data provided a profile of vegetation structure. Extensive field data on vegetation species composition and structure were collected across a series of transects in cooperation with a survey of avifauna in an effort to link the habitat edge structure with bird species responses. A test site was found that contained two types of habitat edges: 1) A structure specific edge - characterized by the appearance of a very strong structural change in the forest canopy occurring in the absence of a substantial turnover in floristics. 2) Floristic edge - a sharp transition in vegetation genetic composition with a mixed set of structural changes. Specific polarization combinations were selected that were highly correlated to a set of desired structural parameters found in the field data. Classification routines were employed to group radar pixels into 3 structural classes based on: the Surface Area to Volume ratio (SA/V) of the stems, the SA/V of the branches, and the leaf area index of the canopy. Separate canopy structure maps were then entered into the GIS and bird responses were observed relative to the classes and their boundaries. Follow-on work will consist of extending this approach to neighboring areas, generating structure maps, predicting bird responses across the edges, and make accuracy assessments.
Leaf phenology as one important driver of seasonal changes in isoprene emission in central Amazonia
Alves, Eliane G.; Tota, Julio; Turnipseed, Andrew; ...
2018-03-06
Isoprene fluxes vary seasonally with changes in environmental factors (e.g., solar radiation and temperature) and biological factors (e.g., leaf phenology). However, our understanding of seasonal patterns of isoprene fluxes and associated mechanistic controls are still limited, especially in Amazonian evergreen forests. Here in this article, we aim to connect intensive, field-based measurements of canopy isoprene flux over a central Amazonian evergreen forest with meteorological observations and with tower-camera leaf phenology to improve understanding of patterns and causes of isoprene flux seasonality. Our results demonstrate that the highest isoprene emissions are observed during the dry and dry-to-wet transition seasons, whereas themore » lowest emissions were found during the wet-to-dry transition season. Our results also indicate that light and temperature can not totally explain the isoprene flux seasonality. Instead, the camera-derived leaf area index (LAI) of recently mature leaf-age class (e.g. leaf ages of 3–5 months) exhibits the highest correlation with observed isoprene flux seasonality (R 2=0.59, p<0.05). Attempting to better represent leaf phenology in the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1), we improved the leaf age algorithm utilizing results from the camera-derived leaf phenology that provided LAI categorized in three different leaf ages. The model results show that the observations of age-dependent isoprene emission capacity, in conjunction with camera-derived leaf age demography, significantly improved simulations in terms of seasonal variations of isoprene fluxes (R 2=0.52, p<0.05). This study highlights the importance of accounting for differences in isoprene emission capacity across canopy leaf age classes and of identifying forest adaptive mechanisms that underlie seasonal variation of isoprene emissions in Amazonia.« less
Leaf phenology as one important driver of seasonal changes in isoprene emission in central Amazonia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alves, Eliane G.; Tota, Julio; Turnipseed, Andrew
Isoprene fluxes vary seasonally with changes in environmental factors (e.g., solar radiation and temperature) and biological factors (e.g., leaf phenology). However, our understanding of seasonal patterns of isoprene fluxes and associated mechanistic controls are still limited, especially in Amazonian evergreen forests. Here in this article, we aim to connect intensive, field-based measurements of canopy isoprene flux over a central Amazonian evergreen forest with meteorological observations and with tower-camera leaf phenology to improve understanding of patterns and causes of isoprene flux seasonality. Our results demonstrate that the highest isoprene emissions are observed during the dry and dry-to-wet transition seasons, whereas themore » lowest emissions were found during the wet-to-dry transition season. Our results also indicate that light and temperature can not totally explain the isoprene flux seasonality. Instead, the camera-derived leaf area index (LAI) of recently mature leaf-age class (e.g. leaf ages of 3–5 months) exhibits the highest correlation with observed isoprene flux seasonality (R 2=0.59, p<0.05). Attempting to better represent leaf phenology in the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1), we improved the leaf age algorithm utilizing results from the camera-derived leaf phenology that provided LAI categorized in three different leaf ages. The model results show that the observations of age-dependent isoprene emission capacity, in conjunction with camera-derived leaf age demography, significantly improved simulations in terms of seasonal variations of isoprene fluxes (R 2=0.52, p<0.05). This study highlights the importance of accounting for differences in isoprene emission capacity across canopy leaf age classes and of identifying forest adaptive mechanisms that underlie seasonal variation of isoprene emissions in Amazonia.« less
NASA Astrophysics Data System (ADS)
Vico, G.; Feng, X.; Dralle, D.; Thompson, S. E.; Manzoni, S.
2016-12-01
Drought deciduousness is a common phenological strategy to cope with water shortages during periodic dry spells or during the dry season in tropical forests. On one hand, shedding leaves allows avoiding drought stress, but implies leaf construction costs that evergreen species need to sustain less frequently. On the other hand, maintaining leaves during dry periods requires stable water sources, traits enabling leaves to remain active at low water potential, and carbon stores to sustain respiration costs in periods with little carbon uptake. Which of these strategies is the most competitive ultimately depends on the balance of carbon costs and gains in the long-term. In turn, this balance is affected by the hydro-climatic conditions, in terms of both length of the dry season and random rainfall occurrences during the wet season. To address the question as to which hydro-climatic conditions favor drought-deciduous vs. evergreen leaf habit in tropical forests, we develop a stochastic eco-hydrological framework that provides probability density functions of long-term carbon gain in tropical trees with a range of phenological strategies. From these distributions we compute the long-term mean carbon gain and use it as a measure of fitness and thus reproductive success. Finally, this measure is used to assess which phenological strategies are evolutionarily stable, providing an objective criterion to predict how likely a species with a certain phenological strategy is to invade a community dominated but another strategy. In general, we find that deciduous habit is evolutionary stable in more unpredictable climates for a given total rainfall, and in drier climates. However, a minimum annual rainfall is required for any strategy to have a positive carbon gain.
Solute deposition from cloud water to the canopy of a puerto rican montane forest
NASA Astrophysics Data System (ADS)
Asbury, Clyde E.; McDowell, William H.; Trinidad-Pizarro, Roberto; Berrios, Samuel
Deposition of cloud water and dissolved solutes onto vegetation was studied by sampling clouds, throughfall and stemflow during 12 cloud-only events at Pico Del Este, a tropical cloud forest in the Luquillo Mountains of Puerto Rico. Liquid water content of the sampled clouds was low (0.016 g m -3), but deposition of water (1.3 mm d -1)was comparable to other sites, apparently due to efficient capture of clouds by epiphyte-laden vegetation. Elemental deposition by cloud water was similar to that in other, more polluted sites, but was only 8-30% of total deposition (cloud-only plus rain) due to the high rainfall at the site (approximately 5 m). Na and CI from marine aerosols dominated cloud chemistry, with concentrations of 400 μeqδ -1. Sulfate and nitrate concentrations were 180 and 60 μedδ -1, respectively. After passage through the canopy, concentrations of base cations in deposited cloud water increased, and concentrations of nitrogen decreased.
Bai, Shangbin; Conant, Richard T; Zhou, Guomo; Wang, Yixiang; Wang, Nan; Li, Yanhua; Zhang, Kaiqiang
2016-08-16
Across southern China, Moso bamboo has been encroaching on most neighboring secondary broad-leaved forests and/or coniferous plantations, leading to the land cover changes that alter abiotic and biotic conditions. Little is known about how this conversion alters soil carbon (C) and nitrogen (N). We selected three sites, each with three plots arrayed along the bamboo encroachment pathway: moso bamboo forest (BF); transition zone, mixed forest plots (MF); and broad-leaved forest (BLF), and examined how bamboo encroachment affects soil organic C (SOC), soil total N, microbial biomass C (MBC), microbial biomass N (MBN), water-soluble organic C (WSOC), and water-soluble organic N (WSON) in three forests. Over nine years, moso bamboo encroachment leads to a decrease in SOC and total soil N, an increase in MBC and WSOC, and a decrease in MBN and WSON. Changes in soil C and N occurred mainly in the topsoil. We conclude that moso bamboo encroachment on broadleaved forest not only substantially altered soil C and N pools, but also changed the distribution pattern of C and N in the studied forest soils. Continued bamboo encroachment into evergreen broadleaved forests seems likely to lead to net CO2 emissions to the atmosphere as ecosystem C stocks decline.
Tracking Trends in Fractional Forest Cover Change using Long Term Data from AVHRR and MODIS
NASA Astrophysics Data System (ADS)
Kim, D. H.; DiMiceli, C.; Sohlberg, R. A.; Hansen, M.; Carroll, M.; Kelly, M.; Townshend, J. R.
2014-12-01
Tree cover affects terrestrial energy and water exchanges, photosynthesis and transpiration, net primary production, and carbon and nutrient fluxes. Accurate and long-term continuous observation of tree cover change is critical for the study of the gradual ecosystem change. Tree cover is most commonly inferred from categorical maps which may inadequately represent within-class heterogeneity for many analyses. Alternatively, Vegetation Continuous Fields data measures fractions or proportions of pixel area. Recent development in remote sensing data processing and cross sensor calibration techniques enabled the continuous, long-term observations such as Land Long-Term Data Records. Such data products and their surface reflectance data have enhanced the possibilities for long term Vegetation Continuous Fields data, thus enabling the estimation of long term trend of fractional forest cover change. In this presentation, we will summarize the progress in algorithm development including automation of training selection for deciduous and evergreen forest, the preliminary results, and its future applications to relate trends in fractional forest cover change and environmental change.
Costa, Renildo I F; Souza, Brígida; Freitas, Sérgio De
2010-01-01
In order to study the interactions of green lacewings toxocenosis on natural ecossystems, samplings were carried out in the Parque Ecológico Quedas do Rio Bonito, located in Lavras, Alto Rio Grande region, South of Minas Gerais, Brazil. The species inventory was accomplished in two vegetation types: semi-evergreen forest and open field formations, including areas of montane grassland, rocky montane grassland and "cerrado". Insects were captured with a butterfly net during 2h, walking through each vegetation formation. Sampling resulted in 1,948 specimens belonging to 30 species, of which 14 were Chrysopini and 16 Leucochrysini. Representatives of these tribes were observed both in forest and in open field formations. Species of the genera Ceraeochrysa, Chrysoperla, Chrysopodes, Plesiochrysa and Leucochrysa were found in forests and in open field formations, except for Plesiochrysa. The highest richness and diversity of species were observed in the forest. The similarity index among the communities of green lacewings in the studied areas was 27%.
137Cs dynamics in the forest of Fukushima after the nuclear power plant accident in March 2011
NASA Astrophysics Data System (ADS)
Endo, I.; Ohte, N.; Iseda, K.; Kobayashi, N.; Hirose, A.; Tanoi, K.
2013-12-01
The accident of Fukushima Daiichi nuclear power plant after the earthquake and Tsunami in March 11th 2011, caused large amount of radioactive Cesium (137Cs) emission into the environment. In the region of Fukushima Prefecture, forest dominates more than 70 % of the land area. River water from the forest area is used for food production and also for drinking water. Thus, it is important to understand the dynamics of 137Cs deposited in the forest to predict how the radioactive Cs diffuse and discharge from the forest catchments. We measured 137Cs concentration of the tree body, litter fall, throughfall, and stemflow, in order to clarify how 137Cs deposited on the above ground biomass of the forest are transported to the forest floor. We set forest site at the upstream part of Kami-Oguni River catchment, northern part of Fukushima Prefecture. Three plots (2 deciduous stands and 1 Japanese cedar (Cryptomeria japonica) plantation stand) were set in the forest site. Quercus serrata and C. japonica, which are representative tree species, were chosen at each plot and concentration of 137Cs on the bark, sapwood and heartwood were measured every 2 m from the ground to tree top. From each plot, 137Cs concentration of leaf litter was measured among species. Water samples of throughfall and stemflow were filtered and 137Cs concentration in suspended matter was measured. 137Cs was deposited on the bark of Q. serrata at high concentration (9-18 kBq/kg) but there were no clear relationship between tree height and concentration. 137Cs concentration of the sapwood (41 Bq/kg) was relatively higher than that of the heartwood (5 Bq/kg). It was suggested that 137Cs may be absorbed from bark and/or root. The concentration of 137Cs deposited in leaf litter varied from non-detected level to above 30 kBq/kg. The concentration was higher at evergreen tree than deciduous tree. It is considered that the litter of evergreen tree was derived from leaves on the tree canopy at the time of the accident. Also, though the leaves of deciduous trees had not been emerged at the time of the accident, significant levels of 137Cs on those leaves suggest that 137Cs may have translocated from some part of tree body. The concentration of 137Cs in rain water was below detection level. However, both throughfall and stemflow contained 137Cs at every plot. From these results, it is suggested that 137Cs deposited on the above ground biomass of the forest continues to move to the forest floor by litter fall and rain event.
Sosa, Victoria; Ornelas, Juan Francisco; Ramírez-Barahona, Santiago; Gándara, Etelvina
2016-01-01
Cloud forests, characterized by a persistent, frequent or seasonal low-level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted species remained in situ or expanded to the lowlands during glacial cycles and contracted allopatrically during the interglacials. Although the observed genetic signals of population size changes of cloud forest-adapted species including tree ferns correspond to predicted changes by Pleistocene climate change dynamics, the observed patterns of intraspecific lineage divergence showed temporal incongruence. Here we combined phylogenetic analyses, ancestral area reconstruction, and divergence time estimates with climatic and altitudinal data (environmental space) for phenotypic traits of tree fern species to make inferences about evolutionary processes in deep time. We used phylogenetic Bayesian inference and geographic and altitudinal distribution of tree ferns to investigate ancestral area and elevation and environmental preferences of Mesoamerican tree ferns. The phylogeny was then used to estimate divergence times and ask whether the ancestral area and elevation and environmental shifts were linked to climatic events and historical climatic preferences. Bayesian trees retrieved Cyathea, Alsophyla, Gymnosphaera and Sphaeropteris in monophyletic clades. Splits for species in these genera found in Mesoamerican cloud forests are recent, from the Neogene to the Quaternary, Australia was identified as the ancestral area for the clades of these genera, except for Gymnosphaera that was Mesoamerica. Climate tolerance was not divergent from hypothesized ancestors for the most significant variables or elevation. For elevational shifts, we found repeated change from low to high elevations. Our data suggest that representatives of Cyatheaceae main lineages migrated from Australia to Mesoamerican cloud forests in different times and have persisted in these environmentally unstable areas but extant species diverged recentrly from their ancestors.
2016-01-01
Background Cloud forests, characterized by a persistent, frequent or seasonal low-level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted species remained in situ or expanded to the lowlands during glacial cycles and contracted allopatrically during the interglacials. Although the observed genetic signals of population size changes of cloud forest-adapted species including tree ferns correspond to predicted changes by Pleistocene climate change dynamics, the observed patterns of intraspecific lineage divergence showed temporal incongruence. Methods Here we combined phylogenetic analyses, ancestral area reconstruction, and divergence time estimates with climatic and altitudinal data (environmental space) for phenotypic traits of tree fern species to make inferences about evolutionary processes in deep time. We used phylogenetic Bayesian inference and geographic and altitudinal distribution of tree ferns to investigate ancestral area and elevation and environmental preferences of Mesoamerican tree ferns. The phylogeny was then used to estimate divergence times and ask whether the ancestral area and elevation and environmental shifts were linked to climatic events and historical climatic preferences. Results Bayesian trees retrieved Cyathea, Alsophyla, Gymnosphaera and Sphaeropteris in monophyletic clades. Splits for species in these genera found in Mesoamerican cloud forests are recent, from the Neogene to the Quaternary, Australia was identified as the ancestral area for the clades of these genera, except for Gymnosphaera that was Mesoamerica. Climate tolerance was not divergent from hypothesized ancestors for the most significant variables or elevation. For elevational shifts, we found repeated change from low to high elevations. Conclusions Our data suggest that representatives of Cyatheaceae main lineages migrated from Australia to Mesoamerican cloud forests in different times and have persisted in these environmentally unstable areas but extant species diverged recentrly from their ancestors. PMID:27896030
Scholl, M.A.; Giambelluca, T.W.; Gingerich, S.B.; Nullet, M.A.; Loope, L.L.
2007-01-01
Cloud water can be a significant hydrologic input to mountain forests. Because it is a precipitation source that is vulnerable to climate change, it is important to quantify amounts of cloud water input at watershed and regional scales. During this study, cloud water and rain samples were collected monthly for 2 years at sites on windward and leeward East Maui. The difference in isotopic composition between volume‐weighted average cloud water and rain samples was 1.4‰ δ18O and 12‰ δ2H for the windward site and 2.8‰ δ18O and 25‰ δ2H for the leeward site, with the cloud water samples enriched in 18O and 2H relative to the rain samples. A summary of previous literature shows that fog and/or cloud water is enriched in 18O and 2H compared to rain at many locations around the world; this study documents cloud water and rain isotopic composition resulting from weather patterns common to montane environments in the trade wind latitudes. An end‐member isotopic composition for cloud water was identified for each site and was used in an isotopic mixing model to estimate the proportion of precipitation input from orographic clouds. Orographic cloud water input was 37% of the total precipitation at the windward site and 46% at the leeward site. This represents an estimate of water input to the forest that could be altered by changes in cloud base altitude resulting from global climate change or deforestation.
Johnson, Daniel M; Smith, William K
2006-11-01
High-altitude forests of the southern Appalachian Mountains (USA) are frequently immersed in clouds, as are many mountain forests. They may be particularly sensitive to predicted increases in cloud base altitude with global warming. However, few studies have addressed the impacts of immersion on incident sunlight and photosynthesis. Understory sunlight (photosynthetically active radiation, PAR) was measured during clear, low cloud, and cloud-immersed conditions at Mount Mitchell and Roan Mountain, NC (USA) along with accompanying photosynthesis in four representative understory species. Understory PAR was substantially less variable on immersed vs. clear days. Photosynthesis became light-saturated between ∼100 and 400 μmol · m(-2) · s(-1) PAR for all species measured, corresponding closely to the sunlight environment measured during immersion. Estimated daily carbon gain was 26% greater on clear days at a more open canopy site but was 22% greater on immersed/cloudy days at a more closed canopy site. F(v)/F(m) (maximum photosystem II efficiency) in Abies fraseri seedlings exposed to 2.5 min full sunlight was significantly reduced (10%), indicating potential reductions in photosynthesis on clear days. In addition, photosynthesis in microsites with canopy cover was nearly 3-fold greater under immersed (2.6 mmol · m(-2) · h(-1)) vs. clear conditions (0.9 mmol · m(-2) · h(-1)). Thus, cloud immersion provided more constant PAR regimes that enhanced photosynthesis, especially in shaded microsites. Future studies are needed to predict the survival of these refugial forests under potential changes in cloud regimes.
Vulnerability of forest vegetation to anthropogenic climate change in China.
Wan, Ji-Zhong; Wang, Chun-Jing; Qu, Hong; Liu, Ran; Zhang, Zhi-Xiang
2018-04-15
China has large areas of forest vegetation that are critical to biodiversity and carbon storage. It is important to assess vulnerability of forest vegetation to anthropogenic climate change in China because it may change the distributions and species compositions of forest vegetation. Based on the equilibrium assumption of forest communities across different spatial and temporal scales, we used species distribution modelling coupled with endemics-area relationship to assess the vulnerability of 204 forest communities across 16 vegetation types under different climate change scenarios in China. By mapping the vulnerability of forest vegetation to climate change, we determined that 78.9% and 61.8% of forest vegetation should be relatively stable in the low and high concentration scenarios, respectively. There were large vulnerable areas of forest vegetation under anthropogenic climate change in northeastern and southwestern China. The vegetation of subtropical mixed broadleaf evergreen and deciduous forest, cold-temperate and temperate mountains needleleaf forest, and temperate mixed needleleaf and broadleaf deciduous forest types were the most vulnerable under climate change. Furthermore, the vulnerability of forest vegetation may increase due to high greenhouse gas concentrations. Given our estimates of forest vegetation vulnerability to anthropogenic climate change, it is critical that we ensure long-term monitoring of forest vegetation responses to future climate change to assess our projections against observations. We need to better integrate projected changes of temperature and precipitation into climate-adaptive conservation strategies for forest vegetation in China. Copyright © 2017 Elsevier B.V. All rights reserved.
Mouri, Goro; Nakano, Katsuhiro; Tsuyama, Ikutaro; Tanaka, Nobuyuki
2016-08-01
Forest disturbance (or land-cover change) and climatic variability are commonly recognised as two major drivers interactively influencing hydrology in forested watersheds. Future climate changes and corresponding changes in forest type and distribution are expected to generate changes in rainfall runoff that pose a threat to river catchments. It is therefore important to understand how future climate changes will effect average rainfall distribution and temperature and what effect this will have upon forest types across Japan. Recent deforestation of the present-day coniferous forest and expected increases in evergreen forest are shown to influence runoff processes and, therefore, to influence future runoff conditions. We strongly recommend that variations in forest type be considered in future plans to ameliorate projected climate changes. This will help to improve water retention and storage capacities, enhance the flood protection function of forests, and improve human health. We qualitatively assessed future changes in runoff including the effects of variation in forest type across Japan. Four general circulation models (GCMs) were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM), and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble including multiple physics configurations and different reference concentration pathways (RCP2.6, 4.5, and 8.5), the results of which have produced monthly data sets for the whole of Japan. The impacts of future climate changes on forest type in Japan are based on the balance amongst changes in rainfall distribution, temperature and hydrological factors. Methods for assessing the impact of such changes include the Catchment Simulator modelling frameworks based on the Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO) model, which was expanded to estimate discharge by incorporating the effects of forest-type transition across the whole of Japan. The results indicated that, by the 2090s, annual runoff will increase above present-day values. Increases in annual variation in runoff by the 2090s was predicted to be around 14.1% when using the MRI-GCM data and 44.4% when using the HadGEM data. Analysis by long-term projection showed the largest increases in runoff in the 2090s were related to the type of forest, such as evergreen. Increased runoff can have negative effects on both society and the environment, including increased flooding events, worsened water quality, habitat destruction and changes to the forest moisture-retaining function. Prediction of the impacts of future climate change on water generation is crucial for effective environmental planning and management. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohnen, V.A.; Aneja, V.; Bailey, B.
The report summarizes the results of the four year field measurement and data analysis program of MCCP. The MCCP is sponsored by the U.S. Environmental Protection Agency as part of the joint U.S. Forest Service-EPA Spruce-Fir Research Cooperative. The objectives of the project have been met and the result is an assessment of principal atmospheric constituents as they impact the high elevation forests of the Eastern U.S. Deposition of SO4(-2), NO3(-), H(+), and NH(4+) in cloud water represents a significant input to forest canopies with elevations greater than 1000m. Cloud water deposition can exceed wet (rain) deposition and may bemore » the dominant process for input of sulfate and nitrate compounds during the growing season in high elevation forests frequently exposed to clouds. Cloud water pH concentrations may be as much as 0.6pH units lower than pH in rain. SO(4+) and NO3(-) concentrations are also higher in cloud water than in precipitation. Ozone data reveals that significant differences exist between ozone concentrations at high elevation and low elevation sites. The primary effect of the difference is to produce higher mean ozone concentrations and longer episodes at the higher elevation sites.« less
Hirabayashi, Satoshi; Nowak, David J
2016-08-01
Trees remove air pollutants through dry deposition processes depending upon forest structure, meteorology, and air quality that vary across space and time. Employing nationally available forest, weather, air pollution and human population data for 2010, computer simulations were performed for deciduous and evergreen trees with varying leaf area index for rural and urban areas in every county in the conterminous United States. The results populated a national database of annual air pollutant removal, concentration changes, and reductions in adverse health incidences and costs for NO2, O3, PM2.5 and SO2. The developed database enabled a first order approximation of air quality and associated human health benefits provided by trees with any forest configurations anywhere in the conterminous United States over time. Comprehensive national database of tree effects on air quality and human health in the United States was developed. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamraz, Hamid; Contreras, Marco A.; Zhang, Jun
2017-08-01
Airborne LiDAR point cloud representing a forest contains 3D data, from which vertical stand structure even of understory layers can be derived. This paper presents a tree segmentation approach for multi-story stands that stratifies the point cloud to canopy layers and segments individual tree crowns within each layer using a digital surface model based tree segmentation method. The novelty of the approach is the stratification procedure that separates the point cloud to an overstory and multiple understory tree canopy layers by analyzing vertical distributions of LiDAR points within overlapping locales. The procedure does not make a priori assumptions about the shape and size of the tree crowns and can, independent of the tree segmentation method, be utilized to vertically stratify tree crowns of forest canopies. We applied the proposed approach to the University of Kentucky Robinson Forest - a natural deciduous forest with complex and highly variable terrain and vegetation structure. The segmentation results showed that using the stratification procedure strongly improved detecting understory trees (from 46% to 68%) at the cost of introducing a fair number of over-segmented understory trees (increased from 1% to 16%), while barely affecting the overall segmentation quality of overstory trees. Results of vertical stratification of the canopy showed that the point density of understory canopy layers were suboptimal for performing a reasonable tree segmentation, suggesting that acquiring denser LiDAR point clouds would allow more improvements in segmenting understory trees. As shown by inspecting correlations of the results with forest structure, the segmentation approach is applicable to a variety of forest types.
29 CFR 780.1013 - Natural evergreens.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false Natural evergreens. 780.1013 Section 780.1013 Labor... Provisions Under Section 13(d) Requirements for Exemption § 780.1013 Natural evergreens. Only “natural” evergreens may comprise the principal part of the wreath. The word “natural” qualifies all of the evergreens...
29 CFR 780.1013 - Natural evergreens.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 3 2011-07-01 2011-07-01 false Natural evergreens. 780.1013 Section 780.1013 Labor... Provisions Under Section 13(d) Requirements for Exemption § 780.1013 Natural evergreens. Only “natural” evergreens may comprise the principal part of the wreath. The word “natural” qualifies all of the evergreens...
Parker, Daniel M; Zavortink, Thomas J; Billo, Timothy J; Valdez, Ursula; Edwards, John S
2012-03-01
Mosquitoes and other macro arthropods were collected in September 2008 from bucket bromeliads in the vicinity of the Wayqecha Cloud Forest Research Center in southeastern Peru, an area for which there are no published data. Range extensions of culicid species are reported.
Chen, Xiao-mei; Liu, Ju-xiu; Deng, Qi; Chu, Guo-wei; Zhou, Guo-yi; Zhang, De-qiang
2010-05-01
From December 2006 to June 2008, a field experiment was conducted to study the effects of natural precipitation, doubled precipitation, and no precipitation on the soil organic carbon fractions and their distribution under a successional series of monsoon evergreen broad-leaf forest, pine and broad-leaf mixed forest, and pine forest in Dinghushan Mountain of Southern China. Different precipitation treatments had no significant effects on the total organic carbon (TOC) concentration in the same soil layer under the same forest type (P > 0.05). In treatment no precipitation, particulate organic carbon (POC) and light fraction organic carbon (LFOC) were mainly accumulated in surface soil layer (0-10 cm); but in treatments natural precipitation and doubled precipitation, the two fractions were infiltrated to deeper soil layers. Under pine forest, soil readily oxidizable organic carbon (ROC) was significantly higher in treatment no precipitation than in treatments natural precipitation and doubled precipitation (P < 0.05). The percentage of soil POC, ROC, and LFOC to soil TOC was much greater under the forests at early successional stage than at climax stage, suggesting that the forest at early successional stage might not be an ideal place for soil organic carbon storage. Precipitation intensity less affected TOC, but had greater effects on the labile components POC, ROC, and LFOC.
NASA Astrophysics Data System (ADS)
Schmidt, Cynthia L.
Global forests are experiencing dramatic changes due to changes in climate as well as anthropogenic activities. Increased warming is causing the advancement of some species upslope and northward, while it is also causing widespread mortality due to increased drought conditions. In addition, increasing human population in mountain regions is resulting in elevated risk of human life and property loss due to larger and more severe wildfires. My research focuses on assessing the current vulnerability of forests and their communities in the Sierra Nevada, and how forests are projected to change in the future based on different climate change scenarios. In the first chapter I use Landsat satellite imagery to identify and attribute cause of forest disturbance between 1985 and 2011, primarily focusing on disturbances due to insect, diseases and drought. The change-detection algorithm, Landtrendr, was successfully used to identify forest disturbance, but identifying cause of disturbance was challenging due to the spectral similarities between disturbance types. Landtrendr was most successful in identifying disturbance due to insect, disease and drought in the San Bernardino National Forest, where there is little forest management activity. In the second chapter, I assess whether state or local land use policies in high-fire prone regions exist to reduce the vulnerability of residential developments to wildfire. Three specific land-use tools associated with reducing wildfire vulnerability are identified: (1) buffers around developments; (2) clustered developments; (3) restricting construction on slopes greater than 25%. The study also determines whether demographic and physical characteristics of selected California counties were related to implementing land use policies related to reducing wildfire vulnerability. Results indicate that land use policies related to preventing wildfire-related losses focus on building materials, road access, water availability and vegetation management, not the three identified land-use tools. San Diego County, the county that has experienced the most devastating fires, had the highest percentage of residential developments with both clustering and buffering. The third chapter focuses on future forest conditions. I used a Dynamic Global Vegetation Model (DGVM) to assess future vegetation dynamics and productivity under changing climate and atmospheric CO2 concentrations in the Sierra Nevada. Model results suggest that Temperate Broadleaved Evergreen Plant Functional Types (PFTs) will move upslope and eastward, replacing Temperate Needleleaved PFTs. Boreal Needleleaved Evergreen PFTs, found primarily at higher elevations, will decline dramatically as temperatures continue to increase. Gross Primary Productivity (GPP) will increase as atmospheric CO2 concentration increases, due primarily to the increase in the more productive broadleaved PFTs. Forest ecosystems play an important role in maintaining climate stability at the regional and global scales as a vital carbon sink, so understanding the role of disturbance and climate change will be vital to both scientists and policy makers in the future.
Kurbatova, Yu A; Kuricheva, O A; Avilov, V K; Dinh, Ba Duy; Kuznetsov, A N
2015-01-01
The 2.5-year dynamics of heat, water and carbon dioxide fluxes in the tropical monsoon semi-evergreen forest in Southern Vietnam obtained by means of continuous eddy covariance observations using standard procedures of FLUXNET global network are analyzed. The features of wet seasons during the measurement period were close to long-term average ones, but dry seasons had a great heterogeneity. The maximal duration of the period with little precipitation was 4 months. The annual radiation balance in the south of Vietnam exceeded the balance at all stations of FLUXNET in tropical forests, except one. Annual evapotranspiration in monsoon forest of south of Vietnam is approximately equal to the evaporation of the rain forests of Central Amazonia. During the wet season evapotranspiration spent 80% of the radiation balance, and in the driest months this value decreased to 50%. In the dry season reduction of evapotranspiration and gross primary production was relatively small due to photosynthesizing trees of 2-4 canopy sub-layers. For the first time a large net sink of carbon dioxide from the atmosphere in the monsoon forest ecosystem was identified.
Population dynamics of the epiphytic bromeliad Tillandsia butzii in cloud forest
NASA Astrophysics Data System (ADS)
Toledo-Aceves, Tarin; Hernández-Apolinar, Mariana
2016-02-01
Epiphytes are a major component of tropical montane cloud forests. Over-exploitation and forest loss and degradation affect remnant populations. In this study, we analysed the population dynamics of the epiphytic bromeliad Tillandsia butzii over a 2-y period in a tropical montane cloud forest fragment in southern Mexico. Matrix analysis revealed that the T. butzii population is likely to be stable at the study site. On average the λ value did not differ significantly from unity: λ (95% confidence interval) = 0.978 (0.936-1.001). λ was highly influenced by stasis, to a lesser extent by growth and only slightly by fecundity. Overall, adult plant stasis and phalanx growth habit played a fundamental role in population maintenance. T. butzii tolerance to xeric conditions may contribute to population stability in the studied region.
Gonze, Marc-André; Mourlon, Christophe; Calmon, Philippe; Manach, Erwan; Debayle, Christophe; Baccou, Jean
2016-09-01
Since the Fukushima accident, Japanese scientists have been intensively monitoring ambient radiations in the highly contaminated territories situated within 80 km of the nuclear site. The surveys that were conducted through mainly carborne, airborne and in situ gamma-ray measurement devices, enabled to efficiently characterize the spatial distribution and temporal evolution of air dose rates induced by Caesium-134 and Caesium-137 in the terrestrial systems. These measurements revealed that radiation levels decreased at rates greater than expected from physical decay in 2011-2012 (up to a factor of 2), and dependent on the type of environment (i.e. urban, agricultural or forest). Unlike carborne measurements that may have been strongly influenced by the depuration of road surfaces, no obvious reason can be invoked for airborne measurements, especially above forests that are known to efficiently retain and recycle radiocaesium. The purpose of our research project is to develop a comprehensive understanding of the data acquired by Japanese, and identify the environmental mechanisms or factors that may explain such decays. The methodology relies on the use of a process-based and spatially-distributed dynamic model that predicts radiocaesium transfer and associated air dose rates inside/above a terrestrial environment (e.g., forests, croplands, meadows, bare soils and urban areas). Despite the lack of site-specific data, our numerical study predicts decrease rates that are globally consistent with both aerial and in situ observations. The simulation at a flying altitude of 200 m indicated that ambient radiation levels decreased over the first 12 months by about 45% over dense urban areas, 15% above evergreen coniferous forests and between 2 and 12% above agricultural lands, owing to environmental processes that are identified and discussed. In particular, we demonstrate that the decrease over evergreen coniferous regions might be due the combined effects of canopy depuration (through biological and physical mechanisms) and the shielding of gamma rays emitted from the forest floor by vegetation. Our study finally suggests that airborne surveys might have not reflected dose rates at ground level in forest systems, which were predicted to slightly increase by 5-10% during the same period of time. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ni, Wenjian; Ranson, Kenneth Jon; Zhang, Zhiyu; Sun, Guoqing
2014-01-01
LiDAR waveform data from airborne LiDAR scanners (ALS) e.g. the Land Vegetation and Ice Sensor (LVIS) havebeen successfully used for estimation of forest height and biomass at local scales and have become the preferredremote sensing dataset. However, regional and global applications are limited by the cost of the airborne LiDARdata acquisition and there are no available spaceborne LiDAR systems. Some researchers have demonstrated thepotential for mapping forest height using aerial or spaceborne stereo imagery with very high spatial resolutions.For stereo imageswith global coverage but coarse resolution newanalysis methods need to be used. Unlike mostresearch based on digital surface models, this study concentrated on analyzing the features of point cloud datagenerated from stereo imagery. The synthesizing of point cloud data from multi-view stereo imagery increasedthe point density of the data. The point cloud data over forested areas were analyzed and compared to small footprintLiDAR data and large-footprint LiDAR waveform data. The results showed that the synthesized point clouddata from ALOSPRISM triplets produce vertical distributions similar to LiDAR data and detected the verticalstructure of sparse and non-closed forests at 30mresolution. For dense forest canopies, the canopy could be capturedbut the ground surface could not be seen, so surface elevations from other sourceswould be needed to calculatethe height of the canopy. A canopy height map with 30 m pixels was produced by subtracting nationalelevation dataset (NED) fromthe averaged elevation of synthesized point clouds,which exhibited spatial featuresof roads, forest edges and patches. The linear regression showed that the canopy height map had a good correlationwith RH50 of LVIS data with a slope of 1.04 and R2 of 0.74 indicating that the canopy height derived fromPRISM triplets can be used to estimate forest biomass at 30 m resolution.
MODIS Based Estimation of Forest Aboveground Biomass in China.
Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong
2015-01-01
Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.
MODIS Based Estimation of Forest Aboveground Biomass in China
Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong
2015-01-01
Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195
Forest resilience to drought varies across biomes.
Gazol, Antonio; Camarero, Jesus Julio; Vicente-Serrano, Sergio M; Sánchez-Salguero, Raúl; Gutiérrez, Emilia; de Luis, Martin; Sangüesa-Barreda, Gabriel; Novak, Klemen; Rozas, Vicente; Tíscar, Pedro A; Linares, Juan C; Martín-Hernández, Natalia; Martínez Del Castillo, Edurne; Ribas, Montse; García-González, Ignacio; Silla, Fernando; Camisón, Alvaro; Génova, Mar; Olano, José M; Longares, Luis A; Hevia, Andrea; Tomás-Burguera, Miquel; Galván, J Diego
2018-05-01
Forecasted increase drought frequency and severity may drive worldwide declines in forest productivity. Species-level responses to a drier world are likely to be influenced by their functional traits. Here, we analyse forest resilience to drought using an extensive network of tree-ring width data and satellite imagery. We compiled proxies of forest growth and productivity (TRWi, absolutely dated ring-width indices; NDVI, Normalized Difference Vegetation Index) for 11 tree species and 502 forests in Spain corresponding to Mediterranean, temperate, and continental biomes. Four different components of forest resilience to drought were calculated based on TRWi and NDVI data before, during, and after four major droughts (1986, 1994-1995, 1999, and 2005), and pointed out that TRWi data were more sensitive metrics of forest resilience to drought than NDVI data. Resilience was related to both drought severity and forest composition. Evergreen gymnosperms dominating semi-arid Mediterranean forests showed the lowest resistance to drought, but higher recovery than deciduous angiosperms dominating humid temperate forests. Moreover, semi-arid gymnosperm forests presented a negative temporal trend in the resistance to drought, but this pattern was absent in continental and temperate forests. Although gymnosperms in dry Mediterranean forests showed a faster recovery after drought, their recovery potential could be constrained if droughts become more frequent. Conversely, angiosperms and gymnosperms inhabiting temperate and continental sites might have problems to recover after more intense droughts since they resist drought but are less able to recover afterwards. © 2018 John Wiley & Sons Ltd.
Host tree phenology affects vascular epiphytes at the physiological, demographic and community level
Einzmann, Helena J. R.; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard
2015-01-01
The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ13C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests. PMID:25392188
Lötter, Mervyn C; Beck, Hans T
2004-01-01
Background Mixed evergreen forests form the smallest, most widely distributed and fragmented biome in southern Africa. Within South Africa, 44% of this vegetation type has been transformed. Afromontane forest only covers 0.56 % of South Africa, yet it contains 5.35% of South Africa's plant species. Prior to this investigation of the indigenous forests on the Blyde River Canyon Nature Reserve (BRCNR), very little was known about the size, floristic composition and conservation status of the forest biome conserved within the reserve. We report here an inventory of the forest size, fragmentation, species composition and the basic floristic communities along environmental gradients. Results A total of 2111 ha of forest occurs on Blyde River Canyon Nature Reserve. The forest is fragmented, with a total of 60 forest patches recorded, varying from 0.21 ha to 567 ha in size. On average, patch size was 23 ha. Two forest communities – high altitude moist afromontane forest and low altitude dry afromontane forest – are identified. Sub-communities are recognized based on canopy development and slope, respectively. An altitudinal gradient accounts for most of the variation within the forest communities. Conclusion BRCNR has a fragmented network of small forest patches that together make up 7.3% of the reserve's surface area. These forest patches host a variety of forest-dependent trees, including some species considered rare, insufficiently known, or listed under the Red Data List of South African Plants. The fragmented nature of the relatively small forest patches accentuates the need for careful fire management and stringent alien plant control. PMID:15287991
Vasey, Michael C; Loik, Michael E; Parker, V Thomas
2012-10-01
Mediterranean-type climate (MTC) regions around the world are notable for cool, wet winters and hot, dry summers. A dominant vegetation type in all five MTC regions is evergreen, sclerophyllous shrubland, called chaparral in California. The extreme summer dry season in California is moderated by a persistent low-elevation layer of marine fog and cloud cover along the margin of the Pacific coast. We tested whether late dry season water potentials (Ψ(min)) of chaparral shrubs, such as Arctostaphylos species in central California, are influenced by this coast-to-interior climate gradient. Lowland coastal (maritime) shrubs were found to have significantly less negative Ψ(min) than upland interior shrubs (interior), and stable isotope (δ(13)C) values exhibited greater water use efficiency in the interior. Post-fire resprouter shrubs (resprouters) had significantly less negative Ψ(min) than co-occurring obligate seeder shrubs (seeders) in interior and transitional chaparral, possibly because resprouters have deeper root systems with better access to subsurface water than shallow-rooted seeders. Unexpectedly, maritime resprouters and seeders did not differ significantly in their Ψ(min), possibly reflecting more favorable water availability for shrubs influenced by the summer marine layer. Microclimate and soil data also suggest that maritime habitats have more favorable water availability than the interior. While maritime seeders constitute the majority of local Arctostaphylos endemics, they exhibited significantly greater vulnerability to xylem cavitation than interior seeders. Because rare seeders in maritime chaparral are more vulnerable to xylem cavitation than interior seeders, the potential breakdown of the summer marine layer along the coast is of potential conservation concern.
Spatial dynamics of deforestation and forest fragmentation (1930-2013) in Eastern Ghats, India
NASA Astrophysics Data System (ADS)
Sudhakar Reddy, C.; Jha, C. S.; Dadhwal, V. K.
2014-11-01
The tropical forests are the most unique ecosystems for their potential economic value. Eastern Ghats, a phytogeographical region of India has rugged hilly terrain distributed in parts of five states, viz. Odisha, Andhra Pradesh, Telangana, Karnataka and Tamil Nadu. The present study is mainly aimed to analyse the trends in deforestation and its role in forest fragmentation of Eastern Ghats. The long term changes in forest cover with its spatial pattern over time has been assessed by analyzing a set of topographical maps and satellite remote sensing datasets. The multi-source and multi-date mapping has been carried out using survey of India topographical maps (1930's), Landsat MSS (1975 and 1985), IRS 1B LISS-I (1995), IRS P6 AWiFS (2005) and Resourcesat-2 AWiFS (2013) satellite images. The classified spatial data for 1930, 1975, 1985, 1995, 2005 and 2013 showed that the forest cover for the mentioned years are 102213 km2 (45.6 %), 76630 (34.2 %), 73416 km2 (32.7 %), 71730 km2 (32 %), 71305 km2 (31.8 %) and 71186 km2 (31.7 %) of the geographical area of Eastern Ghats respectively. A spatial statistical analysis of the deforestation rates and forest cover change were carried out based on distinctive time phases, i.e. 1930-1975, 1975-1985, 1985-1995, 1995-2005 and 2005-2013. The spatial analysis was carried out first by segmenting the study area into grid cells of 5 km x 5 km for time series assessment and determining spatial changes in forests. The distribution of loss and gain of forest was calculated across six classes i.e. <1 km2, 1-5 km2, 5-10 km2, 10-15 km2, 15-20 km2 and >20 km2. Landscape metrics were used to quantify spatial variability of landscape structure and composition. The results of study on net rate of deforestation was found to be 0.64 during 1935 to 1975, 0.43 during 1975-1985, 0.23 during 1985-1995, 0.06 during 1995-2005 and 0.02 during 2005-2013. The number of forest patches increased from 2688 (1930) to 13009 (2013). The largest forest patch in 1930 represents area of 41669 km2 that has reduced to 27800 km2 by 2013. Thus, it is evident that there is a substantial reduction in the size of the very large forest patches due to deforestation. According to spatial analysis, among the different land use change drivers, agriculture occupies highest area, followed by degradation to scrub and conversion to orchards. The dominant forest type was dry deciduous which comprises 37192 km2 (52.2 %) of the total forest area of Eastern Ghats, followed by moist deciduous forest (39.2 %) and semievergreen forest (4.8 %) in 2013. The change analysis showed that the large scale negative changes occurred in deciduous forests and semi-evergreen forests compared to wet evergreen forests due to high economic potential and accessibility. This study has quantified the deforestation that has taken place over the last eight decades in the Eastern Ghats. The decline in overall rate of deforestation in recent years indicates increased measures of conservation. The change analysis of deforestation and forest fragmentation provides a decisive component for conservation and helpful in long term management of forests of Eastern Ghats.
Li, Rong; Kraft, Nathan J B; Yu, Haiying; Li, Heng
2015-12-01
One of the main goals of conservation biology is to understand the factors shaping variation in biodiversity across the planet. This understanding is critical for conservation planners to be able to develop effective conservation strategies. Although many studies have focused on species richness and the protection of rare and endemic species, less attention has been paid to the protection of the phylogenetic dimension of biodiversity. We explored how phylogenetic diversity, species richness, and phylogenetic community structure vary in seed plant communities along an elevational gradient in a relatively understudied high mountain region, the Dulong Valley, in southeastern Tibet, China. As expected, phylogenetic diversity was well correlated with species richness among the elevational bands and among communities. At the community level, evergreen broad-leaved forests had the highest levels of species richness and phylogenetic diversity. Using null model analyses, we found evidence of nonrandom phylogenetic structure across the region. Evergreen broad-leaved forests were phylogenetically overdispersed, whereas other vegetation types tended to be phylogenetically clustered. We suggest that communities with high species richness or overdispersed phylogenetic structure should be a focus for biodiversity conservation within the Dulong Valley because these areas may help maximize the potential of this flora to respond to future global change. In biodiversity hotspots worldwide, we suggest that the phylogenetic structure of a community may serve as a useful measure of phylogenetic diversity in the context of conservation planning. © 2015 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Ustin, S.; Roth, K. L.; Huesca, M.; Casas, A.; Adeline, K.; Drewry, D.; Koltunov, A.; Ramirez, C.
2015-12-01
Given the known heterogeneity in ecological processes within plant communities in California, we questioned whether the concept of conventional plant functional types (cPFTs) was adequate to characterize the functionality of the dominant species in these communities. We examined seasonal (spring, summer, fall) airborne AVIRIS and MASTER imagery collected during three years of progressive drought in California, and airborne LiDAR acquired once, for ecosystems that represent a wide range of plant functional types, from annual agriculture and herbaceous perennial wetlands, to forests and shrublands, including broadleaf deciduous and evergreen species and conifer species. These data were used to determine the extent to which changes in canopy chemistry could be detected, quantified, and related to leaf and canopy traits that are indicators of physiological functioning (water content, Leaf Mass Area, total C, N, and pigments (chlorophyll a, b, and carotenoids). At the canopy scale we measured leaf area index, and for forests — species, height, canopy area, DBH, deciduous or evergreen, broadleaf or needleleaf, and gap size. Strong correlations between leaf and canopy traits were predictable and quantifiable from spectroscopy data. Key structural properties of canopy height, biomass and complexity, a measure of spatial and vertical heterogeneity, were predicted by AVIRIS and validated against LiDAR data. Our data supports the hypothesis that optical sensors provide more detailed information about the distribution and variability in leaf and canopy traits related to plant functionality than cPFTs.
How multiple factors control evapotranspiration in North America evergreen needleleaf forests.
Chen, Yueming; Xue, Yueju; Hu, Yueming
2018-05-01
Identifying the factors dominating ecosystem water flux is a critical step for predicting evapotranspiration (ET). Here, the fuzzy rough set with binary shuffled frog leaping (BSFL-FRSA) was used to identify both individual factors and multi-factor combinations that dominate the half-hourly ET variation at evergreen needleleaf forests (ENFs) sites across three different climatic zones in the North America. Among 21factors, air temperature (TA), atmospheric CO 2 concentration (CCO 2 ), soil temperature (TS), soil water content (SWC) and net radiation (NETRAD) were evaluated as dominant single factors, contributed to the ET variation averaged for all ENF sites by 48%, 36%, 32%, 18% and 13%, respectively. While the importance order would vary with climatic zones, and TA was assessed as the most influential factor at a single climatic zone level, counting a contribution rate of 54.7%, 49.9%, and 38.6% in the subarctic, warm summer continental, and Mediterranean climatic zones, respectively. In view of impacts of each multi-factors combination on ET, both TA and CCO 2 made a contribution of 71% across three climate zones; the combination of TA, CCO 2 and NETRAD was evaluated the most dominant at Mediterranean and subarctic ENF sites, and the combination of TA, CCO 2 and TS at warm summer continental sites. Our results suggest that temperature was most critical for ET variation at the warm summer continental ENF. Copyright © 2017 Elsevier B.V. All rights reserved.
A Practical and Automated Approach to Large Area Forest Disturbance Mapping with Remote Sensing
Ozdogan, Mutlu
2014-01-01
In this paper, I describe a set of procedures that automate forest disturbance mapping using a pair of Landsat images. The approach is built on the traditional pair-wise change detection method, but is designed to extract training data without user interaction and uses a robust classification algorithm capable of handling incorrectly labeled training data. The steps in this procedure include: i) creating masks for water, non-forested areas, clouds, and cloud shadows; ii) identifying training pixels whose value is above or below a threshold defined by the number of standard deviations from the mean value of the histograms generated from local windows in the short-wave infrared (SWIR) difference image; iii) filtering the original training data through a number of classification algorithms using an n-fold cross validation to eliminate mislabeled training samples; and finally, iv) mapping forest disturbance using a supervised classification algorithm. When applied to 17 Landsat footprints across the U.S. at five-year intervals between 1985 and 2010, the proposed approach produced forest disturbance maps with 80 to 95% overall accuracy, comparable to those obtained from traditional approaches to forest change detection. The primary sources of mis-classification errors included inaccurate identification of forests (errors of commission), issues related to the land/water mask, and clouds and cloud shadows missed during image screening. The approach requires images from the peak growing season, at least for the deciduous forest sites, and cannot readily distinguish forest harvest from natural disturbances or other types of land cover change. The accuracy of detecting forest disturbance diminishes with the number of years between the images that make up the image pair. Nevertheless, the relatively high accuracies, little or no user input needed for processing, speed of map production, and simplicity of the approach make the new method especially practical for forest cover change analysis over very large regions. PMID:24717283
A practical and automated approach to large area forest disturbance mapping with remote sensing.
Ozdogan, Mutlu
2014-01-01
In this paper, I describe a set of procedures that automate forest disturbance mapping using a pair of Landsat images. The approach is built on the traditional pair-wise change detection method, but is designed to extract training data without user interaction and uses a robust classification algorithm capable of handling incorrectly labeled training data. The steps in this procedure include: i) creating masks for water, non-forested areas, clouds, and cloud shadows; ii) identifying training pixels whose value is above or below a threshold defined by the number of standard deviations from the mean value of the histograms generated from local windows in the short-wave infrared (SWIR) difference image; iii) filtering the original training data through a number of classification algorithms using an n-fold cross validation to eliminate mislabeled training samples; and finally, iv) mapping forest disturbance using a supervised classification algorithm. When applied to 17 Landsat footprints across the U.S. at five-year intervals between 1985 and 2010, the proposed approach produced forest disturbance maps with 80 to 95% overall accuracy, comparable to those obtained from traditional approaches to forest change detection. The primary sources of mis-classification errors included inaccurate identification of forests (errors of commission), issues related to the land/water mask, and clouds and cloud shadows missed during image screening. The approach requires images from the peak growing season, at least for the deciduous forest sites, and cannot readily distinguish forest harvest from natural disturbances or other types of land cover change. The accuracy of detecting forest disturbance diminishes with the number of years between the images that make up the image pair. Nevertheless, the relatively high accuracies, little or no user input needed for processing, speed of map production, and simplicity of the approach make the new method especially practical for forest cover change analysis over very large regions.
Berry, Z Carter; Smith, William K
2013-11-01
Climate warming predicts changes to the frequency and height of cloud-immersion events in mountain communities. Threatened southern Appalachian spruce-fir forests have been suggested to persist because of frequent periods of cloud immersion. These relic forests exist on only seven mountaintop areas, grow only above ca. 1,500 m elevation (maximum 2,037 m), and harbor the endemic Abies fraseri. To predict future distribution, we examined the ecophysiological effects of cloud immersion on saplings of A. fraseri and Picea rubens at their upper and lower elevational limits. Leaf photosynthesis, conductance, transpiration, xylem water potentials, and general abiotic variables were measured simultaneously on individuals at the top (1,960 m) and bottom (1,510 m) of their elevation limits on numerous clear and cloud-immersed days throughout the growing season. The high elevation sites had 1.5 as many cloud-immersed days (75 % of days) as the low elevation sites (56 % of days). Cloud immersion resulted in higher photosynthesis, leaf conductance, and xylem water potentials, particularly during afternoon measurements. Leaf conductance remained higher throughout the day with corresponding increases in photosynthesis and transpiration, despite low photon flux density levels, leading to an increase in water potentials from morning to afternoon. The endemic A. fraseri had a greater response in carbon gain and water balance in response to cloud immersion. Climate models predict warmer temperatures with a decrease in the frequency of cloud immersion for this region, leading to an environment on these peaks similar to elevations where spruce-fir communities currently do not exist. Because spruce-fir communities may rely on cloud immersion for improved carbon gain and water conservation, an upslope shift is likely if cloud ceilings rise. Their ultimate survival will likely depend on the magnitude of changes in cloud regimes.
Scholl, M.; Eugster, W.; Burkard, R.
2011-01-01
Understanding the hydrology of tropical montane cloud forests (TMCF) has become essential as deforestation of mountain areas proceeds at an increased rate worldwide. Passive and active cloud-water collectors, throughfall and stemflow collectors, visibility or droplet size measurements, and micrometeorological sensors are typically used to measure the fog water inputs to ecosystems. In addition, stable isotopes may be used as a natural tracer for fog and rain. Previous studies have shown that the isotopic signature of fog tends to be more enriched in the heavier isotopes 2H and 18O than that of rain, due to differences in condensation temperature and history. Differences between fog and rain isotopes are largest when rain is from synoptic-scale storms, and fog or orographic cloud water is generated locally. Smaller isotopic differences have been observed between rain and fog on mountains with orographic clouds, but only a few studies have been conducted. Quantifying fog deposition using isotope methods is more difficult in forests receiving mixed precipitation, because of limitations in the ability of sampling equipment to separate fog from rain, and because fog and rain may, under some conditions, have similar isotopic composition. This article describes the various types of fog most relevant to montane cloud forests and the importance of fog water deposition in the hydrologic budget. A brief overview of isotope hydrology provides the background needed to understand isotope applications in cloud forests. A summary of previous work explains isotopic differences between rain and fog in different environments, and how monitoring the isotopic signature of surface water, soil water and tree xylem water can yield estimates of the contribution of fog water to streamflow, groundwater recharge and transpiration. Next, instrumentation to measure fog and rain, and methods to determine isotopic concentrations in plant and soil water are discussed. The article concludes with the identification of some of the more pressing research questions in this field and offers various suggestions for future research. ?? 2010 This article is a US Government work and is in the public domain in the USA.
Jewel scarabs (Chrysina sp.) in Honduras: key species for cloud forest conservation monitoring?
Jocque, M; Vanhove, M P M; Creedy, T J; Burdekin, O; Nuñez-Miño, J M; Casteels, J
2013-01-01
Jewel scarabs, beetles in the genus Chrysina Kirby (Coleoptera: Rutelinae: Scarabaeidae), receive their name from the bright, often gold, green elytra that reflect light like a precious stone. Jewel scarabs are commonly observed at light traps in Mesoamerican cloud forests, and their association with mountain forests makes them potentially interesting candidates for cloud forest conservation monitoring. The absence of survey protocols and identification tools, and the little ecological information available are barriers. In the present study, collection of Chrysina species assembled during biodiversity surveys by Operation Wallacea in Cusuco National Park (CNP), Honduras, were studied. The aim of this overview is to provide an easy to use identification tool for in the field, hopefully stimulating data collection on these beetles. Based on the data associated with the collection localities, elevation distribution of the species in the park was analyzed. The limited data points available were complemented with potential distribution areas generated with distribution models based on climate and elevation data. This study is aimed at initializing the development of a survey protocol for Chrysina species that can be used in cloud forest conservation monitoring throughout Central America. A list of Chrysina species recorded from Honduras so far is provided. The six identified and one unidentified species recorded from CNP are easy to identify in the field based on color and straightforward morphological characteristics. Literature research revealed ten species currently recorded from Honduras. This low species richness in comparison with surrounding Central American countries indicates the poor knowledge of this genus in Honduras. Chrysina species richness in CNP increases with elevation, thereby making the genus one of a few groups of organisms where this correlation is observed, and rendering it a suitable invertebrate representative for cloud forest habitats in Central America.
Life in the clouds: are tropical montane cloud forests responding to changes in climate?
Hu, Jia; Riveros-Iregui, Diego A
2016-04-01
The humid tropics represent only one example of the many places worldwide where anthropogenic disturbance and climate change are quickly affecting the feedbacks between water and trees. In this article, we address the need for a more long-term perspective on the effects of climate change on tropical montane cloud forests (TMCF) in order to fully assess the combined vulnerability and long-term response of tropical trees to changes in precipitation regimes, including cloud immersion. We first review the ecophysiological benefits that cloud water interception offers to trees in TMCF and then examine current climatological evidence that suggests changes in cloud base height and impending changes in cloud immersion for TMCF. Finally, we propose an experimental approach to examine the long-term dynamics of tropical trees in TMCF in response to environmental conditions on decade-to-century time scales. This information is important to assess the vulnerability and long-term response of TMCF to changes in cloud cover and fog frequency and duration.
Fire in the Land of 100,000 Lakes
NASA Technical Reports Server (NTRS)
2001-01-01
Fire season in Manitoba, Canada lasts from April until October, and numerous smoke plumes caused by lightning strikes are captured in these Multi-angle Imaging SpectroRadiometer (MISR) views of the northwestern part of the province. The data were acquired on June 20, 2001 during Terra orbit 8015.On the left is a true-color image acquired by MISR's vertical-viewing (nadir) camera. The area covered measures 232 kilometers X 80 kilometers. The greenish area on the right-hand side of the image, partially obscured by clouds, is Southern Indian Lake. This landscape is predominantly boreal, and contains deciduous and evergreen conifer forests, deciduous broadleaved forests, fens, and lakes. Tree species found within the area include white and black spruce, jack pine, tamarack, willow, and birch. Human population density is sparse, averaging about 1 person per 10 square kilometers.During the fire season, information is updated daily on the Manitoba Conservation website (http://www.gov.mb.ca/natres/fire/). The large plume northwest of Big Sand Lake, above image center, was reported to be under control on June 20, whereas the plume at lower left, to the west of Gold Sand Lake, was classified 'out of control.' In the next two days, an additional 27 out-of-control fires in the area were started by lightning strikes arriving with as low-moving northerly cold front. By June 29, all but six of the fires had been brought under control.The picture on the right is a height field derived using automated computer processing of the data from several of MISR's cameras. The results indicate that the smoke plumes reach altitudes a few kilometers above the surface terrain, nearly as high as the cumulus cloud field in the lower right quadrant. The height retrievals make use of geometric parallax associated with observing the features at multiple angles. A few artifacts are visible in this early version of the MISR stereoscopic product, e.g., linear discontinuities in the elevation field, isolated elevation 'spikes' (appearing as red), and black areas where no result was obtained. Nevertheless, this first version of the algorithm, which is designed to operate autonomously and rapidly without human intervention, is doing a good job at detecting the smoke plumes and cloud field. Improvements are anticipated in the future. The product was generated as part of operational processing at the NASA Langley Atmospheric Sciences Data Center.MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.NASA Astrophysics Data System (ADS)
Wickham, J.; Wade, T. G.; Riitters, K. H.
2014-09-01
Forest-oriented climate mitigation policies promote forestation as a means to increase uptake of atmospheric carbon to counteract global warming. Some have pointed out that a carbon-centric forest policy may be overstated because it discounts biophysical aspects of the influence of forests on climate. In extra-tropical regions, many climate models have shown that forests tend to be warmer than grasslands and croplands because forest albedos tend to be lower than non-forest albedos. A lower forest albedo results in higher absorption of solar radiation and increased sensible warming that is not offset by the cooling effects of carbon uptake in extra-tropical regions. However, comparison of forest warming potential in the context of climate models is based on a coarse classification system of tropical, temperate, and boreal. There is considerable variation in climate within the broad latitudinal zonation of tropical, temperate, and boreal, and the relationship between biophysical (albedo) and biogeochemical (carbon uptake) mechanisms may not be constant within these broad zones. We compared wintertime forest and non-forest surface temperatures for the southeastern United States and found that forest surface temperatures shifted from being warmer than non-forest surface temperatures north of approximately 36°N to cooler south of 36°N. Our results suggest that the biophysical aspects of forests' influence on climate reinforce the biogeochemical aspects of forests' influence on climate south of 36°N. South of 36°N, both biophysical and biogeochemical properties of forests appear to support forestation as a climate mitigation policy. We also provide some quantitative evidence that evergreen forests tend to have cooler wintertime surface temperatures than deciduous forests that may be attributable to greater evapotranspiration rates.
Coexistence trend contingent to Mediterranean oaks with different leaf habits.
Di Paola, Arianna; Paquette, Alain; Trabucco, Antonio; Mereu, Simone; Valentini, Riccardo; Paparella, Francesco
2017-05-01
In a previous work we developed a mathematical model to explain the co-occurrence of evergreen and deciduous oak groups in the Mediterranean region, regarded as one of the distinctive features of Mediterranean biodiversity. The mathematical analysis showed that a stabilizing mechanism resulting from niche difference (i.e. different water use and water stress tolerance) between groups allows their coexistence at intermediate values of suitable soil water content. A simple formal derivation of the model expresses this hypothesis in a testable form linked uniquely to the actual evapotranspiration of forests community. In the present work we ascertain whether this simplified conclusion possesses some degree of explanatory power by comparing available data on oaks distributions and remotely sensed evapotranspiration (MODIS product) in a large-scale survey embracing the western Mediterranean area. Our findings confirmed the basic assumptions of model addressed on large scale, but also revealed asymmetric responses to water use and water stress tolerance between evergreen and deciduous oaks that should be taken into account to increase the understating of species interactions and, ultimately, improve the modeling capacity to explain co-occurrence.
Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, Eric J.; Laskin, Alexander; Laskin, Julia
2015-07-21
Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influencemore » of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.« less
Remote sensing-based estimation of annual soil respiration at two contrasting forest sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Ni; Gu, Lianhong; Black, T. Andrew
Here, soil respiration (R s), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this study, we proposed a methodology for the remote estimation of annual R s at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest). A version of the Akaike's information criterion was used to select the best model from a range of models for annual R s estimation based on the remotely sensed data products from the Moderate Resolution Imaging Spectroradiometer and root-zonemore » soil moisture product derived from assimilation of the NASA Advanced Microwave Scanning Radiometer soil moisture products and a two-layer Palmer water balance model. We found that the Arrhenius-type function based on nighttime land surface temperature (LST-night) was the best model by comprehensively considering the model explanatory power and model complexity at the Missouri Ozark and BC-Campbell River 1949 Douglas-fir sites.« less
NASA Astrophysics Data System (ADS)
Helmer, E.; Ruzycki, T. S.; Wunderle, J. M.; Kwit, C.; Ewert, D. N.; Voggesser, S. M.; Brandeis, T. J.
2011-12-01
We mapped tropical dry forest height (RMSE = 0.9 m, R2 = 0.84, range 0.6-7 m) and foliage height profiles with a time series of gap-filled Landsat and Advanced Land Imager (ALI) imagery for the island of Eleuthera, The Bahamas. We also mapped disturbance type and age with decision tree classification of the image time series. Having mapped these variables in the context of studies of wintering habitat of an endangered Nearctic-Neotropical migrant bird, the Kirtland's Warbler (Dendroica kirtlandii), we then illustrated relationships between forest vertical structure, disturbance type and counts of forage species important to the Kirtland's Warbler. The ALI imagery and the Landsat time series were both critical to the result for forest height, which the strong relationship of forest height with disturbance type and age facilitated. Also unique to this study was that seven of the eight image time steps were cloud-gap-filled images: mosaics of the clear parts of several cloudy scenes, in which cloud gaps in a reference scene for each time step are filled with image data from alternate scenes. We created each cloud-cleared image, including a virtually seamless ALI image mosaic, with regression tree normalization of the image data that filled cloud gaps. We also illustrated how viewing time series imagery as red-green-blue composites of tasseled cap wetness (RGB wetness composites) aids reference data collection for classifying tropical forest disturbance type and age.
NASA Astrophysics Data System (ADS)
Auret, Danie; Swart, Hendrik; Venter, André
2014-04-01
The 5th South African Conference on Photonic Materials (SACPM) was again hosted very successfully at the beautiful Kariega private game reserve situated in the Eastern Cape, the second largest of South Africa's nine provinces. It is the traditional home of the Xhosa people and the birth place of many prominent South Africans including Nelson Mandela and Thabo Mbeki. This movingly beautiful region is a remarkably diverse biosphere - ranging from lush evergreen forests to rugged mountains - incorporating the sunshine coast, with miles of sun-drenched coastline, pristine beaches and the warm sparkling Indian Ocean dotted with rivers, lagoons and coastal villages.
Baseline Inventory of amphibians and reptiles of Kurupukari, Guyana
MacCulloch, Ross D.; Reynolds, Robert P.
2013-01-01
The habitat in the vicinity of Kurupukari, on the Essequibo River in central Guyana, is tall evergreen lowland forest. The area has suffered some human disturbance from agriculture, road construction and ferry activity. The area was sampled for 10 days in 1990 and 12 days in 1997; seven days in rainy season and 15 in dry season. During this sampling 23 anuran and 17 reptile species were collected. Some differences exist between species collected on either side of the river. Comparisons are made with collections from other locations in Guyana.
76 FR 21732 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-18
.... Applicants: Evergreen Wind Power III, LLC, Evergreen Gen Lead, LLC. Description: Application of Evergreen Wind Power III, LLC, and Evergreen Gen Lead, LLC. Filed Date: 04/06/2011. Accession Number: 20110406... relates to any qualifying facility filings, the notices of self-certification [or self-recertification...
[Ecological regulation services of Hainan Island ecosystem and their valuation].
Ouyang, Zhiyun; Zhao, Tongqian; Zhao, Jingzhu; Xiao, Han; Wang, Xiaoke
2004-08-01
Ecosystem services imply the natural environmental conditions on which human life relies for existence, and their effectiveness formed and sustained by ecosystem and its ecological processes. In newly research reports, they were divided into four groups, i. e., provisioning services, regulation services, cultural services, and supporting services. To assess and valuate ecosystem services is the foundation of regional environmental reserve and development. Taking Hainan Island as an example and based on the structure and processes of natural ecosystem, this paper discussed the proper methods for regulation services assessment. The ecosystems were classified into 13 types including valley rain forest, mountainous rain forest, tropical monsoon forest, mountainous coppice forest, mountainous evergreen forest, tropical coniferous forest, shrubs, plantation, timber forest, windbreak forest, mangrove, savanna, and cropland, and then, the regulation services and their economic values of Hainan Island ecosystem were assessed and evaluated by terms of water-holding, soil conservancy, nutrient cycle, C fixation, and windbreak function. The economic value of the regulation services of Hainan Island ecosystem was estimated as 2035.88 x 10(8)-2153.39 x 10(8) RMB yuan, 8 times higher to its provisioning services (wood and agricultural products) which were estimated as only 254.06 x 10(8) RMB yuan. The result implied that ecosystem regulation services played an even more important role in the sustainable development of society and economy in Hainan Island.
Longo, Marcos; Knox, Ryan G; Levine, Naomi M; Alves, Luciana F; Bonal, Damien; Camargo, Plinio B; Fitzjarrald, David R; Hayek, Matthew N; Restrepo-Coupe, Natalia; Saleska, Scott R; da Silva, Rodrigo; Stark, Scott C; Tapajós, Raphael P; Wiedemann, Kenia T; Zhang, Ke; Wofsy, Steven C; Moorcroft, Paul R
2018-05-22
The impact of increases in drought frequency on the Amazon forest's composition, structure and functioning remain uncertain. We used a process- and individual-based ecosystem model (ED2) to quantify the forest's vulnerability to increased drought recurrence. We generated meteorologically realistic, drier-than-observed rainfall scenarios for two Amazon forest sites, Paracou (wetter) and Tapajós (drier), to evaluate the impacts of more frequent droughts on forest biomass, structure and composition. The wet site was insensitive to the tested scenarios, whereas at the dry site biomass declined when average rainfall reduction exceeded 15%, due to high mortality of large-sized evergreen trees. Biomass losses persisted when year-long drought recurrence was shorter than 2-7 yr, depending upon soil texture and leaf phenology. From the site-level scenario results, we developed regionally applicable metrics to quantify the Amazon forest's climatological proximity to rainfall regimes likely to cause biomass loss > 20% in 50 yr according to ED2 predictions. Nearly 25% (1.8 million km 2 ) of the Amazon forests could experience frequent droughts and biomass loss if mean annual rainfall or interannual variability changed by 2σ. At least 10% of the high-emission climate projections (CMIP5/RCP8.5 models) predict critically dry regimes over 25% of the Amazon forest area by 2100. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Gulbranson, E.; Isbell, J. L.; Taylor, E. L.; Ryberg, P. E.; Taylor, T. N.
2012-12-01
Late Permian forests from Antarctica are one of a few examples of polar forest biomes in Earth history. We present a paleoforestry and geochemical study of three contemporaneous Late Permian fossil forests and geochemical analysis of fossil wood specimens from the Permian-Triassic contact in Antarctica. Late Permian paleoforestry analysis suggests that these forests responded to disturbance in exactly the opposite manner as compared to modern boreal forests, with forest thinning and loss of understory vegetation occurring towards areas of disturbance. New high-resolution carbon isotope data from 6 permineralized stumps, 32 tree rings studied in total, indicate that these forests were mixed evergreen and deciduous, but dominated by deciduous trees. Moreover, intra-tree ring and ring-to-ring variation of δ13C values suggest that the Late Permian polar climate maintained wet winters, with precipitation in the austral winter being a factor of three greater than the austral summer. Such seasonality in precipitation implies the development of a temperate-like climate at polar latitudes following the demise of the late Paleozoic ice age. High-resolution carbon isotopes in tree rings in a stratigraphic succession of Late Permian fossil wood to fossil wood at the Permian-Triassic contact indicates that Antarctica experienced a change in precipitation patterns around the time of the Permian-Triassic boundary, marked by intervals of pronounced drying juxtaposed against wetter conditions.
76 FR 31324 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-31
.... Applicants: Evergreen Wind Power III, LLC, Evergreen Gen Lead, LLC. Description: Supplemental Letter of Evergreen Wind Power III, LLC, and Evergreen Gen Lead. Filed Date: 05/24/2011. Accession Number: 20110524... persons other than the Applicant. As it relates to any qualifying facility filings, the notices of self...
NASA Astrophysics Data System (ADS)
Lozhkin, A. V.; Anderson, P. M.
2013-01-01
Palynological data from Lake El'gygytgyn reveal responses of plant communities to a range of climatic conditions that can help assess the possible impact of global warming on arctoboreal ecosystems. Vegetation associated with climatic optima suggests two types of interglacial responses: one is dominated by deciduous taxa (the postglacial thermal maximum (PGTM) and marine isotope stage (MIS5)) and the second by evergreen conifers (MIS11, MIS31). The MIS11 forests show a similarity to Picea-Larix-Betula-Alnus forests of Siberia. While dark coniferous forest also characterizes MIS31, the pollen taxa show an affinity to the modern boreal forest of the lower Amur valley in the Russian Far East. Despite vegetation differences during the thermal maxima, all four glacial-interglacial transitions are alike, being dominated by deciduous woody taxa. Initially Betula shrub tundra established and was replaced by tundra with tree-sized shrubs (PGTM), Betula woodland (MIS5), or Betula-Larix (MIS11, MIS31) forest. The consistent occurrence of deciduous forest and/or high shrub tundra in all interglaciations as they approach or achieve maximum warmth underscores the significance of this biome for modeling efforts. The El'gygytgyn data also suggest the possible elimination or massive reduction of arctic plant communities under extreme warm-earth scenarios.
Xu, Xiangtao; Medvigy, David; Wright, Stuart Joseph; ...
2017-07-04
Leaf longevity (LL) varies more than 20-fold in tropical evergreen forests, but it remains unclear how to capture these variations using predictive models. Current theories of LL that are based on carbon optimisation principles are challenging to quantitatively assess because of uncertainty across species in the ‘ageing rate:’ the rate at which leaf photosynthetic capacity declines with age. Here in this paper, we present a meta-analysis of 49 species across temperate and tropical biomes, demonstrating that the ageing rate of photosynthetic capacity is positively correlated with the mass-based carboxylation rate of mature leaves. We assess an improved trait-driven carbon optimalitymore » model with in situLL data for 105 species in two Panamanian forests. Additionally, we show that our model explains over 40% of the cross-species variation in LL under contrasting light environment. Collectively, our results reveal how variation in LL emerges from carbon optimisation constrained by both leaf structural traits and abiotic environment.« less
Geography of Global Forest Carbon Stocks & Dynamics
NASA Astrophysics Data System (ADS)
Saatchi, S. S.; Yu, Y.; Xu, L.; Yang, Y.; Fore, A.; Ganguly, S.; Nemani, R. R.; Zhang, G.; Lefsky, M. A.; Sun, G.; Woodall, C. W.; Naesset, E.; Seibt, U. H.
2014-12-01
Spatially explicit distribution of carbon stocks and dynamics in global forests can greatly reduce the uncertainty in the terrestrial portion of the global carbon cycle by improving estimates of emissions and uptakes from land use activities, and help with green house gas inventory at regional and national scales. Here, we produce the first global distribution of carbon stocks in living woody biomass at ~ 100 m (1-ha) resolution for circa 2005 from a combination of satellite observations and ground inventory data. The total carbon stored in live woody biomass is estimated to be 337 PgC with 258 PgC in aboveground and 79 PgC in roots, and partitioned globally in boreal (20%), tropical evergreen (50%), temperate (12%), and woodland savanna and shrublands (15%). We use a combination of satellite observations of tree height, remote sensing data on deforestation and degradation to quantify the dynamics of these forests at the biome level globally and provide geographical distribution of carbon storage dynamics in terms sinks and sources globally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiangtao; Medvigy, David; Wright, Stuart Joseph
Leaf longevity (LL) varies more than 20-fold in tropical evergreen forests, but it remains unclear how to capture these variations using predictive models. Current theories of LL that are based on carbon optimisation principles are challenging to quantitatively assess because of uncertainty across species in the ‘ageing rate:’ the rate at which leaf photosynthetic capacity declines with age. Here in this paper, we present a meta-analysis of 49 species across temperate and tropical biomes, demonstrating that the ageing rate of photosynthetic capacity is positively correlated with the mass-based carboxylation rate of mature leaves. We assess an improved trait-driven carbon optimalitymore » model with in situLL data for 105 species in two Panamanian forests. Additionally, we show that our model explains over 40% of the cross-species variation in LL under contrasting light environment. Collectively, our results reveal how variation in LL emerges from carbon optimisation constrained by both leaf structural traits and abiotic environment.« less
NASA Astrophysics Data System (ADS)
Reinhardt, K.; Emanuel, R. E.; Johnson, D. M.
2013-12-01
Mountain cloud forest (MCF) ecosystems are characterized by a high frequency of cloud fog, with vegetation enshrouded in fog. The altitudinal boundaries of cloud-fog zones co-occur with conspicuous, sharp vegetation ecotones between MCF- and non-MCF-vegetation. This suggests linkages between cloud-fog and vegetation physiology and ecosystem functioning. However, very few studies have provided a mechanistic explanation for the sharp changes in vegetation communities, or how (if) cloud-fog and vegetation are linked. We investigated ecophysiological linkages between clouds and trees in Southern Appalachian spruce-fir MCF. These refugial forests occur in only six mountain-top, sky-island populations, and are immersed in clouds on up to 80% of all growing season days. Our fundamental research questions was: How are cloud-fog and cloud-forest trees linked? We measured microclimate and physiology of canopy tree species across a range of sky conditions (cloud immersed, partly cloudy, sunny). Measurements included: 1) sunlight intensity and spectral quality; 2) carbon gain and photosynthetic capacity at leaf (gas exchange) and ecosystem (eddy covariance) scales; and 3) relative limitations to carbon gain (biochemical, stomatal, hydraulic). RESULTS: 1) Midday sunlight intensity ranged from very dark (<30 μmol m-2 s-1, under cloud-immersed conditions) to very bright (>2500 μmol m-2 s-1), and was highly variable on minute-to-minute timescales whenever clouds were present in the sky. Clouds and cloud-fog increased the proportion of blue-light wavelengths 5-15% compared to sunny conditions, and altered blue:red and red:far red ratios, both of which have been shown to strongly affect stomatal functioning. 2) Cloud-fog resulted in ~50% decreased carbon gain at leaf and ecosystem scales, due to sunlight levels below photosynthetic light-saturation-points. However, greenhouse studies and light-response-curve analyses demonstrated that MCF tree species have low light-compensation points (can photosynthesize even at low light levels), and maximum photosynthesis occurs during high-light, diffuse-light conditions such as occurs during diffuse 'sunflecks' inside the cloud fog. Additionally, the capacity to respond to brief, intermittent sunflecks ('photosynthetic induction', e.g., time to maximum photosynthesis) was high in our MCF species. 3) Data quantifying limitations to photosynthesis were contradictory, underscoring complex relationships among photosynthesis, light, carbon and water relations. While stomatal response to atmospheric moisture demand was sensitive (e.g., 80% drop in stomatal conductance in a <1 kPa drop in vapor-pressure-deficit in conifer species), stem xylem hydraulic conductivity suggested strong drought tolerance capabilities. CONCLUSIONS: Clouds and cloud-fog exert strong influence on canopy-tree and ecosystem carbon relations. MCF are dynamic light environments. In these highly variable but ultimately light-limited ecosystems, vegetation must be able to both fix carbon when cloudy and dark but also be able to capitalize on saturating sunlight when possible.
NASA Astrophysics Data System (ADS)
Van Beusekom, A.; Gonzalez, G.; Scholl, M. A.
2016-12-01
The degree to which cloud immersion sustains tropical montane cloud forests (TMCFs) during rainless periods and the amount these clouds are affected by urban areas is not well understood, as cloud base is rarely quantified near mountains. We found that a healthy small-mountain TMCF in Puerto Rico had lowest cloud base during the mid-summer dry season. In addition, we observed that cloud bases were lower than the mountaintops as often in the winter dry season as in the wet seasons, based on 2.5 years of direct and 16 years of indirect observations. The low clouds during dry season appear to be explained by proximity to the oceanic cloud system where lower clouds are seasonally invariant in altitude and cover; along with orographic lifting and trade-wind control over cloud formation. These results suggest that climate change impacts on small-mountain TMCFs may not be limited to the dry season; changes in regional-scale patterns that cause drought periods during the wet seasons will likely have higher cloud base, and thus may threaten cloud water support to sensitive mountain ecosystems. Strong El Niño's can cause drought in Puerto Rico; we will report results from the summer of 2015 that examined El Niño effects on cloud base altitudes. Looking at regionally collected airport cloud data, we see indicators that diurnal urban effects may already be raising the low cloud bases.
A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers
Huemmrich, K. Fred; Ensminger, Ingo; Garrity, Steven; Noormets, Asko; Peñuelas, Josep
2016-01-01
In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying “photosynthetic phenology” from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a “chlorophyll/carotenoid index” (CCI) that tracks evergreen photosynthesis at multiple spatial scales. When calculated from NASA’s Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance. This discovery provides a way of monitoring evergreen photosynthetic activity from optical remote sensing, and indicates an important regulatory role for carotenoid pigments in evergreen photosynthesis. Improved methods of monitoring photosynthesis from space can improve our understanding of the global carbon budget in a warming world of changing vegetation phenology. PMID:27803333
A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers.
Gamon, John A; Huemmrich, K Fred; Wong, Christopher Y S; Ensminger, Ingo; Garrity, Steven; Hollinger, David Y; Noormets, Asko; Peñuelas, Josep
2016-11-15
In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying "photosynthetic phenology" from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a "chlorophyll/carotenoid index" (CCI) that tracks evergreen photosynthesis at multiple spatial scales. When calculated from NASA's Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance. This discovery provides a way of monitoring evergreen photosynthetic activity from optical remote sensing, and indicates an important regulatory role for carotenoid pigments in evergreen photosynthesis. Improved methods of monitoring photosynthesis from space can improve our understanding of the global carbon budget in a warming world of changing vegetation phenology.
Reinhardt, Keith; Smith, William K
2008-01-01
The southern Appalachian spruce-fir (Picea rubens Sarg. and Abies fraseri (Pursh) Poir.) forest is found only on high altitude mountain tops that receive copious precipitation ( > 2000 mm year(-1)) and experience frequent cloud immersion. These high-elevation, temperate rain forests are immersed in clouds on approximately 65% of the total growth season days and for 30-40% of a typical summer day, and cloud deposition accounts for up to 50% of their annual water budget. We investigated environmental influences on understory leaf gas exchange and water relations at two sites: Mt. Mitchell, NC (MM; 35 degrees 45'53'' N, 82 degrees 15'53'' W, 2028 m elevation) and Whitetop Mtn., VA (WT; 36 degrees 38'19'' N, 81 degrees 36'19'' W, 1685 m elevation). We hypothesized that the cool, moist and cloudy conditions at these sites exert a strong influence on leaf gas exchange. Maximum photosynthesis (A(max)) varied between 1.6 and 4.0 micromol CO(2) m(-2) s(-1) for both spruce and fir and saturated at irradiances between approximately 200 and 400 micromol m(-2) s(-1) at both sites. Leaf conductance (g) ranged between 0.05 and 0.25 mol m(-2) s(-1) at MM and between 0.15 and 0.40 mol m(-2) s(-1) at WT and was strongly associated with leaf-to-air vapor pressure difference (LAVD). At both sites, g decreased exponentially as LAVD increased, with an 80-90% reduction in g between 0 and 0.5 kPa. Predawn leaf water potentials remained between -0.25 and -0.5 MPa for the entire summer, whereas late afternoon values declined to between -1.25 and -1.75 MPa by late summer. Thus, leaf gas exchange appeared tightly coupled to the response of g to LAVD, which maintained high water status, even at the relatively low LAVD of these cloud forests. Moreover, the cloudy, humid environment of these refugial forests appears to exert a strong influence on tree leaf gas exchange and water relations. Because global climate change is predicted to increase regional cloud ceiling levels, more research on cloud impacts on carbon gain and water relations is needed to predict future impacts on these relict forests.
Mapping the montane cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data.
Schulz, Hans Martin; Li, Ching-Feng; Thies, Boris; Chang, Shih-Chieh; Bendix, Jörg
2017-01-01
Up until now montane cloud forest (MCF) in Taiwan has only been mapped for selected areas of vegetation plots. This paper presents the first comprehensive map of MCF distribution for the entire island. For its creation, a Random Forest model was trained with vegetation plots from the National Vegetation Database of Taiwan that were classified as "MCF" or "non-MCF". This model predicted the distribution of MCF from a raster data set of parameters derived from a digital elevation model (DEM), Landsat channels and texture measures derived from them as well as ground fog frequency data derived from the Moderate Resolution Imaging Spectroradiometer. While the DEM parameters and Landsat data predicted much of the cloud forest's location, local deviations in the altitudinal distribution of MCF linked to the monsoonal influence as well as the Massenerhebung effect (causing MCF in atypically low altitudes) were only captured once fog frequency data was included. Therefore, our study suggests that ground fog data are most useful for accurately mapping MCF.
USDA-ARS?s Scientific Manuscript database
All flies (Diptera) collected for one year from a four-hectare (150 X 266 meter) patch of cloud forest at 1600 meters above sea level at Zurquí de Moravia, San José Province, Costa Rica (hereafter referred to as Zurquí), revealed an astounding 4,348 species. These amount to more than half the number...
Ortega-Andrade, H Mauricio; Prieto-Torres, David A; Gómez-Lora, Ignacio; Lizcano, Diego J
2015-01-01
In Ecuador, Tapirus pinchaque is considered to be critically endangered. Although the species has been registered in several localities, its geographic distribution remains unclear, and the effects of climate change and current land uses on this species are largely unknown. We modeled the ecological niche of T. pinchaque using MaxEnt, in order to assess its potential adaptation to present and future climate change scenarios. We evaluated the effects of habitat loss due by current land use, the ecosystem availability and importance of Ecuadorian System of Protected Areas into the models. The model of environmental suitability estimated an extent of occurrence for species of 21,729 km2 in all of Ecuador, mainly occurring along the corridor of the eastern Ecuadorian Andes. A total of 10 Andean ecosystems encompassed ~98% of the area defined by the model, with herbaceous paramo, northeastern Andean montane evergreen forest and northeastern Andes upper montane evergreen forest being the most representative. When considering the effect of habitat loss, a significant reduction in model area (~17%) occurred, and the effect of climate change represented a net reduction up to 37.86%. However, the synergistic effect of both climate change and habitat loss, given current land use practices, could represent a greater risk in the short-term, leading to a net reduction of 19.90 to 44.65% in T. pinchaque's potential distribution. Even under such a scenarios, several Protected Areas harbor a portion (~36 to 48%) of the potential distribution defined by the models. However, the central and southern populations are highly threatened by habitat loss and climate change. Based on these results and due to the restricted home range of T. pinchaque, its preference for upland forests and paramos, and its small estimated population size in the Andes, we suggest to maintaining its current status as Critically Endangered in Ecuador.
NASA Astrophysics Data System (ADS)
Tanner, Edmund Vincent John; Sheldrake, Merlin W. A.; Turner, Benjamin L.
2016-11-01
Increasing atmospheric CO2 and temperature may increase forest productivity, including litterfall, but the consequences for soil organic matter remain poorly understood. To address this, we measured soil carbon and nutrient concentrations at nine depths to 2 m after 6 years of continuous litter removal and litter addition in a semi-evergreen rain forest in Panama. Soils in litter addition plots, compared to litter removal plots, had higher pH and contained greater concentrations of KCl-extractable nitrate (both to 30 cm); Mehlich-III extractable phosphorus and total carbon (both to 20 cm); total nitrogen (to 15 cm); Mehlich-III calcium (to 10 cm); and Mehlich-III magnesium and lower bulk density (both to 5 cm). In contrast, litter manipulation did not affect ammonium, manganese, potassium or zinc, and soils deeper than 30 cm did not differ for any nutrient. Comparison with previous analyses in the experiment indicates that the effect of litter manipulation on nutrient concentrations and the depth to which the effects are significant are increasing with time. To allow for changes in bulk density in calculation of changes in carbon stocks, we standardized total carbon and nitrogen on the basis of a constant mineral mass. For 200 kg m-2 of mineral soil (approximately the upper 20 cm of the profile) about 0.5 kg C m-2 was "missing" from the litter removal plots, with a similar amount accumulated in the litter addition plots. There was an additional 0.4 kg C m-2 extra in the litter standing crop of the litter addition plots compared to the control. This increase in carbon in surface soil and the litter standing crop can be interpreted as a potential partial mitigation of the effects of increasing CO2 concentrations in the atmosphere.
Evapotranspiration response to multi-year dry periods in the semi-arid western United States
NASA Astrophysics Data System (ADS)
Rungee, J. P., II; Bales, R. C.
2017-12-01
Analysis of measured evapotranspiration shows multi-year regolith water storage can support evapotranspiration for years into a multi-year dry period. Measurements at 25 flux-tower sites in the semi-arid western United States, distributed across five primary land-cover types, show both resilience and vulnerability to multi-year dry periods. Average evapotranspiration ranged from about 700+200 mm per water year (October-September) in evergreen needleleaf forests to 350+150 mm per water year in grasslands and open shrublands. On average, in California's Mediterranean climate almost half of the water-year evapotranspiration is supported by seasonal and/or multi-year regolith water storage, compared to a characteristic 20 to 30 percent value of energy-limited and inland sites. Below 35oN latitude, water-year evapotranspiration exceeded estimated precipitation in over half of the years on record. For non-energy-limited sites, water-year evapotranspiration increased with precipitation up to a maximum water-year evapotranspiration value of about 900, 750, 600, 425 and 300 mm per water year for evergreen needleleaf forests, mixed forests, woody savannas, grasslands and open shrublands, respectively. There were 15 multi-year dry periods on record that exhibited either an attenuation in evapotranspiration, defined as an annual value below 80% of the wet-year average, or withdrawal from multi-year storage. A multi-year dry period was defined as three or more consecutive water years in which all water-year precipitation values and the mean period value were in the lower 50 and 35 percent of the historical record, respectively. For sites exhibiting evapotranspiration attenuation, resistance to multi-year dry periods ranged from 9 to 49 months, drafting as much as 444 mm of regolith storage. At some mountain sites regolith storage provided up to 678 mm, almost the equivalent of the average water-year evapotranspiration for these sites, over the extent of the multi-year dry period.
Ortega-Andrade, H. Mauricio; Prieto-Torres, David A.; Gómez-Lora, Ignacio; Lizcano, Diego J.
2015-01-01
In Ecuador, Tapirus pinchaque is considered to be critically endangered. Although the species has been registered in several localities, its geographic distribution remains unclear, and the effects of climate change and current land uses on this species are largely unknown. We modeled the ecological niche of T. pinchaque using MaxEnt, in order to assess its potential adaptation to present and future climate change scenarios. We evaluated the effects of habitat loss due by current land use, the ecosystem availability and importance of Ecuadorian System of Protected Areas into the models. The model of environmental suitability estimated an extent of occurrence for species of 21,729 km2 in all of Ecuador, mainly occurring along the corridor of the eastern Ecuadorian Andes. A total of 10 Andean ecosystems encompassed ~98% of the area defined by the model, with herbaceous paramo, northeastern Andean montane evergreen forest and northeastern Andes upper montane evergreen forest being the most representative. When considering the effect of habitat loss, a significant reduction in model area (~17%) occurred, and the effect of climate change represented a net reduction up to 37.86%. However, the synergistic effect of both climate change and habitat loss, given current land use practices, could represent a greater risk in the short-term, leading to a net reduction of 19.90 to 44.65% in T. pinchaque’s potential distribution. Even under such a scenarios, several Protected Areas harbor a portion (~36 to 48%) of the potential distribution defined by the models. However, the central and southern populations are highly threatened by habitat loss and climate change. Based on these results and due to the restricted home range of T. pinchaque, its preference for upland forests and paramos, and its small estimated population size in the Andes, we suggest to maintaining its current status as Critically Endangered in Ecuador. PMID:25798851
A ˜50 ka record of monsoonal variability in the Darjeeling foothill region, eastern Himalayas
NASA Astrophysics Data System (ADS)
Ghosh, Ruby; Bera, Subir; Sarkar, Anindya; Paruya, Dipak Kumar; Yao, Yi-Feng; Li, Cheng-Sen
2015-04-01
Pollen, phytoliths and δ 13C signatures of soil organic matter from two fluvial sedimentary sequences of the Darjeeling foothill region, eastern Himalayas are used to portray palaeoclimatic oscillations and their impact on regional plant communities over the last ˜50 ka. Quantitative palaeoclimate estimation using coexistence approach on pollen data and other proxies indicate significant oscillations in precipitation during the late part of MIS 3 (46.4-25.9 ka), early and middle part of MIS 2 (25.9-15.6 ka), and 5.4 to 3.5 ka. Middle to late MIS 3 (ca 46.4-31 ka.) was characterized by a comparatively low monsoonal activity and slightly higher temperature than that during ca 31 ka onwards. Simultaneous expansion of deciduous trees and chloridoid grasses also imply a drier and warmer phase. Between 31 and 22.3 ka (late MIS 3 to mid-MIS 2), higher precipitation and a slightly cooler temperature led to an increase in evergreen elements over deciduous taxa and wet-loving panicoid grasses over dry-loving chloridoid grasses than earlier. After ca 22.3 ka, shrinking of forest cover, expansion of C4 chloridoid grasses, Asteraceae and Cheno-ams in the vegetation with lowering of temperature and precipitation characterized the onset of the LGM which continued till 18.3 ka. End of the LGM is manifested by a restoration in the forest cover and in the temperature and precipitation regime. Later, during 5.4 to 4.3 ka, a strong monsoonal activity supported a dense moist evergreen forest cover that subsequently declined during 4.3 to 3.5 ka. A further increase in deciduous elements and non-arboreals might be a consequence of reduced precipitation and higher temperature during this phase. A comparison between monsoonal rainfall, MAT and palaeoatmospheric CO2 with floral dynamics since last ˜50 ka indicates that these fluctuations in plant succession were mainly driven by monsoonal variations.
Lempereur, Morine; Limousin, Jean-Marc; Guibal, Frédéric; Ourcival, Jean-Marc; Rambal, Serge; Ruffault, Julien; Mouillot, Florent
2017-01-01
A better understanding of stem growth phenology and its climate drivers would improve projections of the impact of climate change on forest productivity. Under a Mediterranean climate, tree growth is primarily limited by soil water availability during summer, but cold temperatures in winter also prevent tree growth in evergreen forests. In the widespread Mediterranean evergreen tree species Quercus ilex, the duration of stem growth has been shown to predict annual stem increment, and to be limited by winter temperatures on the one hand, and by the summer drought onset on the other hand. We tested how these climatic controls of Q. ilex growth varied with recent climate change by correlating a 40-year tree ring record and a 30-year annual diameter inventory against winter temperature, spring precipitation, and simulated growth duration. Our results showed that growth duration was the best predictor of annual tree growth. We predicted that recent climate changes have resulted in earlier growth onset (-10 days) due to winter warming and earlier growth cessation (-26 days) due to earlier drought onset. These climatic trends partly offset one another, as we observed no significant trend of change in tree growth between 1968 and 2008. A moving-window correlation analysis revealed that in the past, Q. ilex growth was only correlated with water availability, but that since the 2000s, growth suddenly became correlated with winter temperature in addition to spring drought. This change in the climate-growth correlations matches the start of the recent atmospheric warming pause also known as the 'climate hiatus'. The duration of growth of Q. ilex is thus shortened because winter warming has stopped compensating for increasing drought in the last decade. Decoupled trends in precipitation and temperature, a neglected aspect of climate change, might reduce forest productivity through phenological constraints and have more consequences than climate warming alone. © 2016 John Wiley & Sons Ltd.
Reich, Peter B.; Rich, Roy L.; Lu, Xingjie; Wang, Ying-Ping; Oleksyn, Jacek
2014-01-01
Leaf life span is an important plant trait associated with interspecific variation in leaf, organismal, and ecosystem processes. We hypothesized that intraspecific variation in gymnosperm needle traits with latitude reflects both selection and acclimation for traits adaptive to the associated temperature and moisture gradient. This hypothesis was supported, because across 127 sites along a 2,160-km gradient in North America individuals of Picea glauca, Picea mariana, Pinus banksiana, and Abies balsamea had longer needle life span and lower tissue nitrogen concentration with decreasing mean annual temperature. Similar patterns were noted for Pinus sylvestris across a north–south gradient in Europe. These differences highlight needle longevity as an adaptive feature important to ecological success of boreal conifers across broad climatic ranges. Additionally, differences in leaf life span directly affect annual foliage turnover rate, which along with needle physiology partially regulates carbon cycling through effects on gross primary production and net canopy carbon export. However, most, if not all, global land surface models parameterize needle longevity of boreal evergreen forests as if it were a constant. We incorporated temperature-dependent needle longevity and %nitrogen, and biomass allocation, into a land surface model, Community Atmosphere Biosphere Land Exchange, to assess their impacts on carbon cycling processes. Incorporating realistic parameterization of these variables improved predictions of canopy leaf area index and gross primary production compared with observations from flux sites. Finally, increasingly low foliage turnover and biomass fraction toward the cold far north indicate that a surprisingly small fraction of new biomass is allocated to foliage under such conditions. PMID:25225397
Semenoff-Irving, M.; Howell, J.A.
2005-01-01
The United States Geological Survey Golden Gate Field Station conducted a baseline inventory of terrestrial vertebrates within the Golden Gate National Recreation Area (GGNRA), Marin, San Francisco, and San Mateo Counties, California between 1990 and 1997. We established 456 permanent study plots in 6 major park habitats, including grassland, coastal scrub, riparian woodland, coastal wetland, broad-leaved evergreen forest, and needle-leaved evergreen forest. We tested multiple inventory methods, including live traps, track plate stations, and artificial cover boards, across all years and habitats. In most years, sampling occurred in 3?4 primary sampling sessions between July and September. In 1994, additional sampling occurred in February and May in conjunction with an assessment of Hantavirus exposure in deer mice (Peromyscus maniculatus). Overall, we detected 32 mammal, 14 reptile, and 6 amphibian species during 25,222 trap-nights of effort. The deer mouse?the most abundant species detected--accounted for 67% of total captures. We detected the Federal Endangered salt marsh harvest mouse (Reithrodontomys raviventris) at one coastal wetland plot in 1992. This project represents the first phase in the development of a comprehensive terrestrial vertebrate inventory and monitoring program for GGNRA. This report summarizes data on relative abundance, frequency of occurrence, distribution across habitat types, and trap success for terrestrial vertebrates detected during this 7-year effort. It includes comprehensive descriptions of the inventory methods and sampling strategies employed during this survey and is intended to help guide the park in the implementation of future longterm ecological monitoring programs.
Semenoff-Irving, Marcia; Howell, Judd A.
2005-01-01
The United States Geological Survey Golden Gate Field Station conducted a baseline inventory of terrestrial vertebrates within the Golden Gate National Recreation Area (GGNRA), Marin, San Francisco, and San Mateo Counties, California between 1990 and 1997. We established 456 permanent study plots in 6 major park habitats, including grassland, coastal scrub, riparian woodland, coastal wetland, broad-leaved evergreen forest, and needle-leaved evergreen forest. We tested multiple inventory methods, including live traps, track plate stations, and artificial cover boards, across all years and habitats. In most years, sampling occurred in 3-4 primary sampling sessions between July and September. In 1994, additional sampling occurred in February and May in conjunction with an assessment of Hantavirus exposure in deer mice (Peromyscus maniculatus). Overall, we detected 32 mammal, 14 reptile, and 6 amphibian species during 25,222 trap-nights of effort. The deer mouse-the most abundant species detected--accounted for 67% of total captures. We detected the Federal Endangered salt marsh harvest mouse (Reithrodontomys raviventris) at one coastal wetland plot in 1992. This project represents the first phase in the development of a comprehensive terrestrial vertebrate inventory and monitoring program for GGNRA. This report summarizes data on relative abundance, frequency of occurrence, distribution across habitat types, and trap success for terrestrial vertebrates detected during this 7-year effort. It includes comprehensive descriptions of the inventory methods and sampling strategies employed during this survey and is intended to help guide the park in the implementation of future longterm ecological monitoring programs.
Ornelas, Juan Francisco; Rodríguez-Gómez, Flor
2015-01-01
Phylogeographical work on cloud forest-adapted species provides inconsistent evidence on cloud forest dynamics during glacial cycles. A study of Rhipsalis baccifera (Cactaceae), a bird-dispersed epiphytic mistletoe cactus, was conducted to investigate genetic variation at sequence data from nuclear [internal transcribed spacer (ITS), 677 bp] and chloroplast (rpl32-trnL, 1092bp) DNA for 154 individuals across the species range in Mesoamerica to determine if such patterns are consistent with the expansion/contraction model of cloud forest during glacial cycles. We conducted population and spatial genetic analyses as well as gene flow and divergence time estimates between 24 populations comprising the distribution of R. baccifera in Mexico and Guatemala to gain insight of the evolutionary history of these populations, and a complementary species distribution modeling approach to frame information derived from the genetic analyses into an explicit paleoecological context. The results revealed a phylogeographical break at the Isthmus of Tehuantepec, and high levels of genetic diversity among populations and cloud forest areas. Despite the genetic differentiation of some R. baccifera populations, the widespread ITS ribotypes suggest effective nuclear gene flow via pollen and population differentiation shown by the rpl32-trnL suggests more restricted seed flow. Predictions of species distribution models under past last glacial maximum (LGM) climatic conditions and a significant signal of demographic expansion suggest that R. baccifera populations experienced a range expansion tracking the conditions of the cloud forest distribution and shifted to the lowlands with population connectivity during the LGM. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Water relations and microclimate around the upper limit of a cloud forest in Maui, Hawai'i.
Gotsch, Sybil G; Crausbay, Shelley D; Giambelluca, Thomas W; Weintraub, Alexis E; Longman, Ryan J; Asbjornsen, Heidi; Hotchkiss, Sara C; Dawson, Todd E
2014-07-01
The goal of this study was to determine the effects of atmospheric demand on both plant water relations and daily whole-tree water balance across the upper limit of a cloud forest at the mean base height of the trade wind inversion in the tropical trade wind belt. We measured the microclimate and water relations (sap flow, water potential, stomatal conductance, pressure-volume relations) of Metrosideros polymorpha Gaudich. var. polymorpha in three habitats bracketing the cloud forest's upper limit in Hawai'i to understand the role of water relations in determining ecotone position. The subalpine shrubland site, located 100 m above the cloud forest boundary, had the highest vapor pressure deficit, the least amount of rainfall and the highest levels of nighttime transpiration (EN) of all three sites. In the shrubland site, on average, 29% of daily whole-tree transpiration occurred at night, while on the driest day of the study 50% of total daily transpiration occurred at night. While EN occurred in the cloud forest habitat, the proportion of total daily transpiration that occurred at night was much lower (4%). The average leaf water potential (Ψleaf) was above the water potential at the turgor loss point (ΨTLP) on both sides of the ecotone due to strong stomatal regulation. While stomatal closure maintained a high Ψleaf, the minimum leaf water potential (Ψleafmin) was close to ΨTLP, indicating that drier conditions may cause drought stress in these habitats and may be an important driver of current landscape patterns in stand density. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Daytime turbulent exchange between the Amazon forest and the atmosphere
NASA Technical Reports Server (NTRS)
Fitzjarrald, David R.; Moore, Kathleen E.; Cabral, Osvaldo M. R.; Scolar, Jose; Manzi, Antonio O.; Deabreusa, Leonardo D.
1989-01-01
Detailed observations of turbulence just above and below the crown of the Amazon rain forest during the wet season are presented. The forest canopy is shown to remove high frequency turbulent fluctuations while passing lower frequencies. Filter characteristics of turbulent transfer into the Amazon rain forest canopy are quantified. Simple empirical relations that relate observed turbulent heat fluxes to horizontal wind variance are presented. Changes in the amount of turbulent coupling between the forest and the boundary layer associated with deep convective clouds are presented both as statistical averages and as a series of case studies. These convective processes during the rainy season are shown to alter the diurnal course of turbulent fluxes. In wake of giant coastal systems, no significant heat or moisture fluxes occur for up to a day after the event. Radar data is used to demonstrate that even small raining clouds are capable of evacuating the canopy of substances normally trapped by persistent static stability near the forest floor. Recovery from these events can take more than an hour, even during mid-day. In spite of the ubiquitous presence of clouds and frequent rain during this season, the average horizontal wind speed spectrum is well described by dry CBL similarity hypotheses originally found to apply in flat terrain.
Daytime turbulent exchange between the Amazon forest and the atmosphere
NASA Technical Reports Server (NTRS)
Fitzjarrald, David R.; Moore, Kathleen E.; Cabral, Osvaldo M. R.; Scolar, Jose; Manzi, Antonio
1990-01-01
Detailed observations of turbulence just above and below the crown of the Amazon rain forest during the wet season are presented. The forest canopy is shown to remove high frequency turbulent fluctuations while passing lower frequencies. Filter characteristics of turbulent transfer into the Amazon rain forest canopy are quantified. Simple empirical relations that relate observed turbulent heat fluxes to horizontal wind variance are presented. Changes in the amount of turbulent coupling between the forest and the boundary layer associated with deep convective clouds are presented both as statistical averages and as a series of case studies. These convective processes during the rainy season are shown to alter the diurnal course of turbulent fluxes. In wake of giant coastal systems, no significant heat or moisture fluxes occur for up to a day after the event. Radar data is used to demonstrate that even small raining clouds are capable of evacuating the canopy of substances normally trapped by persistent static stability near the forest floor. Recovery from these events can take more than an hour, even during mid-day. In spite of the ubiquitous presence of clouds and frequent rain during this season, the average horizontal wind speed spectrum is well described by dry CBL similarity hypotheses originally found to apply in flat terrain.
Forest structure analysis combining laser scanning with digital airborne photogrammetry
NASA Astrophysics Data System (ADS)
Lissak, Candide; Onda, Yuichi; Kato, Hiroaki
2017-04-01
The interest of Light Detection and Ranging (LiDAR) for vegetation structure analysis has been demonstrated in several research context. Indeed, airborne or ground Lidar surveys can provide detailed three-dimensional data of the forest structure from understorey forest to the canopy. To characterize at different timescale the vegetation components in dense cedar forests we can combine several sources point clouds from Lidar survey and photogrammetry data. For our study, Terrestrial Laser Scanning (TLS-Leica ScanStation C10 processed with Cyclone software) have been lead in three forest areas (≈ 200m2 each zone) mainly composed of japanese cedar (Japonica cryptomeria), in the region of Fukushima (Japan). The study areas are characterized by various vegetation densities. For the 3 areas, Terrestrial laser scanning has been performed from several location points and several heights. Various floors shootings (ground, 4m, 6m and 18m high) were able with the use of a several meters high tower implanted to study the canopy evolution following the Fukushima Daiishi nuclear power plant accident. The combination of all scanners provides a very dense 3D point cloud of ground and canopy structure (average 300 000 000 points). For the Tochigi forest area, a first test of a low-cost Unmanned Aerial Vehicle (UAV) photogrammetry has been lead and calibrated by ground GPS measurements to determine the coordinates of points. TLS combined to UAV photogrammetry make it possible to obtain information on vertical and horizontal structure of the Tochigi forest. This combination of technologies will allow the forest structure mapping, morphometry analysis and the assessment of biomass volume evolution from multi-temporal point clouds. In our research, we used a low-cost UAV 3 Advanced (200 m2 cover, 1300 pictures...). Data processing were performed using PotoScan Pro software to obtain a very dense point clouds to combine to TLS data set. This low-cost UAV photogrammetry data has been successfully used to derive information on the canopy cover. The purpose of this poster is to present the usability of combined remote sensing methods for forest structure analysis and 3D model reconstitution for a trend analysis of the forest changes.
Novel Methods for Measuring LiDAR
NASA Astrophysics Data System (ADS)
Ayrey, E.; Hayes, D. J.; Fraver, S.; Weiskittel, A.; Cook, B.; Kershaw, J.
2017-12-01
The estimation of forest biometrics from airborne LiDAR data has become invaluable for quantifying forest carbon stocks, forest and wildlife ecology research, and sustainable forest management. The area-based approach is arguably the most common method for developing enhanced forest inventories from LiDAR. It involves taking a series of vertical height measurements of the point cloud, then using those measurements with field measured data to develop predictive models. Unfortunately, there is considerable variation in methodology for collecting point cloud data, which can vary in pulse density, seasonality, canopy penetrability, and instrument specifications. Today there exists a wealth of public LiDAR data, however the variation in acquisition parameters makes forest inventory prediction by traditional means unreliable across the different datasets. The goal of this project is to test a series of novel point cloud measurements developed along a conceptual spectrum of human interpretability, and then to use the best measurements to develop regional enhanced forest inventories on Northern New England's and Atlantic Canada's public LiDAR. Similarly to a field-based inventory, individual tree crowns are being segmented, and summary statistics are being used as covariates. Established competition and structural indices are being generated using each tree's relationship to one another, whilst existing allometric equations are being used to estimate diameter and biomass of each tree measured in the LiDAR. Novel metrics measuring light interception, clusteredness, and rugosity are also being measured as predictors. On the other end of the human interpretability spectrum, convolutional neural networks are being employed to directly measure both the canopy height model, and the point clouds by scanning each using two and three dimensional kernals trained to identify features useful for predicting biological attributes such as biomass. Predictive models will be trained and tested against one another using 28 different sites and over 42 different LiDAR acquisitions. The optimal model will then be used to generate regional wall-to-wall forest inventories at a 10 m resolution.
Schleeweis, Karen; Goward, Samuel N.; Huang, Chengquan; Dwyer, John L.; Dungan, Jennifer L.; Lindsey, Mary A.; Michaelis, Andrew; Rishmawi, Khaldoun; Masek, Jeffery G.
2016-01-01
Using the NASA Earth Exchange platform, the North American Forest Dynamics (NAFD) project mapped forest history wall-to-wall, annually for the contiguous US (1986–2010) using the Vegetation Change Tracker algorithm. As with any effort to identify real changes in remotely sensed time-series, data gaps, shifts in seasonality, misregistration, inconsistent radiometry and cloud contamination can be sources of error. We discuss the NAFD image selection and processing stream (NISPS) that was designed to minimize these sources of error. The NISPS image quality assessments highlighted issues with the Landsat archive and metadata including inadequate georegistration, unreliability of the pre-2009 L5 cloud cover assessments algorithm, missing growing-season imagery and paucity of clear views. Assessment maps of Landsat 5–7 image quantities and qualities are presented that offer novel perspectives on the growing-season archive considered for this study. Over 150,000+ Landsat images were considered for the NAFD project. Optimally, one high quality cloud-free image in each year or a total of 12,152 images would be used. However, to accommodate data gaps and cloud/shadow contamination 23,338 images were needed. In 220 specific path-row image years no acceptable images were found resulting in data gaps in the annual national map products.
Surveys of Puerto Rican screech-owl populations in large-tract and fragmented forest habitats
Pardieck, K.L.; Meyers, J.M.; Pagan, M.
1996-01-01
We conducted road surveys of Puerto Rican Screech-Owls (Otus nudipes) by playing conspecific vocalizations in secondary wet forest and fragmented secondary moist forest in rural areas of eastern Puerto Rico. Six paired surveys were conducted bi-weekly beginning in April. We recorded number of owl responses, cloud cover, wind speed, moon phase, and number of passing cars during 5-min stops at 60 locations. Owls responded in similar numbers (P > 0.05) in both habitat types. Also, we detected no association with cloud cover, wind speed, moon phase, or passing cars.
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Hargrove, William; Gasser, Gerald
2013-01-01
This presentation discusses the development of anew method for computing NDVI temporal composites from near real time eMODIS data This research is being conducted to improve forest change products used in the ForWarn system for monitoring regional forest disturbances in the United States. ForWarn provides nation-wide NDVI-based forest disturbance detection products that are refreshed every 8 days. Current eMODIS and historical MOD13 24 day NDVI data are used to compute the disturbance detection products. The eMODIS 24 day NDVI data re-aggregated from 7 day NDVI products. The 24 day eMODIS NDVIs are generally cloud free, but do not necessarily use the freshest quality data. To shorten the disturbance detection time, a method has been developed that performs adaptive length/maximum value compositing of eMODIS NDVI, along with cloud and shadow "noise" mitigation. Tests indicate that this method can reduce detection rates by 8-16 days for known recent disturbance events, depending on the cloud frequencies and disturbance type. The noise mitigation in these tests, though imperfect, helped to improve quality of the resulting NDVI and forest change products.
NASA Astrophysics Data System (ADS)
Chen, Bao-Ming; Li, Song; Liao, Hui-Xuan; Peng, Shao-Lin
2017-05-01
Successful invaders must overcome biotic resistance, which is defined as the reduction in invasion success caused by the resident community. Soil microbes are an important source of community resistance to plant invasions, and understanding their role in this process requires urgent investigation. Therefore, three forest communities along successional stages and four exotic invasive plant species were selected to test the role of soil microbes of three forest communities in resisting the exotic invasive plant. Our results showed that soil microbes from a monsoon evergreen broadleaf forest (MEBF) (late-successional stage) had the greatest resistance to the invasive plants. Only the invasive species Ipomoea triloba was not sensitive to the three successional forest soils. Mycorrhizal fungi in early successional forest Pinus massonina forest (PMF) or mid-successional forest pine-broadleaf mixed forest (PBMF) soil promoted the growth of Mikania micrantha and Eupatorium catarium, but mycorrhizal fungi in MEBF soil had no significant effects on their growth. Pathogens plus other non-mycorrhizal microbes in MEBF soil inhibited the growth of M. micrantha and E. catarium significantly, and only inhibited root growth of E. catarium when compared with those with mycorrhizal fungi addition. The study suggest that soil mycorrhizal fungi of early-mid-successional forests benefit invasive species M. micrantha and E. catarium, while soil pathogens of late-successional forest may play an important role in resisting M. micrantha and E. catarium. The benefit and resistance of the soil microbes are dependent on invasive species and related to forest succession. The study gives a possible clue to control invasive plants by regulating soil microbes of forest community to resist plant invasion.
Sakai, Masaru; Gomi, Takashi; Negishi, Junjiro N
2016-11-01
It is important to understand the changes in the 137 Cs concentration in litter through leaching when considering that 137 Cs is transferred from basal food resources to animals in forested streams. We found that the difference of 137 Cs activity concentration in litter between forest and stream was associated with both litter type and 137 Cs fallout volume around Fukushima, Japan. The 137 Cs activity concentrations in the litter of evergreen conifers tended to be greater than those in the litter of broad-leaved deciduous trees because of the absence of deciduous leaves during the fallout period in March 2011. Moreover, 137 Cs activity concentrations in forest litter were greater with respect to the 137 Cs fallout volume. The 137 Cs activity concentrations in stream litter were much lower than those in forest litter when those in forest litter were higher. The 137 Cs leaching patterns indicated that the differences in 137 Cs activity concentration between forest and stream litter could change with changes in both fallout volume and litter type. Because litter is an important basal food resource in the food webs of both forests and streams, the 137 Cs concentration gradient reflects to possible 137 Cs transfer from lower to higher trophic animals. Our findings will improve our understanding of the spatial heterogeneity and variability of 137 Cs concentrations in animals resident to the contaminated landscape. Copyright © 2016 Elsevier Ltd. All rights reserved.
Global climate change and terrestrial net primary production
NASA Technical Reports Server (NTRS)
Melillo, Jerry M.; Mcguire, A. D.; Kicklighter, David W.; Moore, Berrien, III; Vorosmarty, Charles J.; Schloss, Annette L.
1993-01-01
A process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric CO2 concentration. Over half of the global annual net primary production was estimated to occur in the tropics, with most of the production attributable to tropical evergreen forest. The effects of CO2 doubling and associated climate changes were also explored. The responses in tropical and dry temperate ecosystems were dominated by CO2, but those in northern and moist temperate ecosystems reflected the effects of temperature on nitrogen availability.
NASA Astrophysics Data System (ADS)
Broich, Mark
Humid tropical forest cover loss is threatening the sustainability of ecosystem goods and services as vast forest areas are rapidly cleared for industrial scale agriculture and tree plantations. Despite the importance of humid tropical forest in the provision of ecosystem services and economic development opportunities, the spatial and temporal distribution of forest cover loss across large areas is not well quantified. Here I improve the quantification of humid tropical forest cover loss using two remote sensing-based methods: sampling and wall-to-wall mapping. In all of the presented studies, the integration of coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data enable advances in quantifying forest cover loss in the humid tropics. Imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used as the source of coarse spatial resolution, high temporal resolution data and imagery from the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor are used as the source of moderate spatial, low temporal resolution data. In a first study, I compare the precision of different sampling designs for the Brazilian Amazon using the annual deforestation maps derived by the Brazilian Space Agency for reference. I show that sampling designs can provide reliable deforestation estimates; furthermore, sampling designs guided by MODIS data can provide more efficient estimates than the systematic design used for the United Nations Food and Agricultural Organization Forest Resource Assessment 2010. Sampling approaches, such as the one demonstrated, are viable in regions where data limitations, such as cloud contamination, limit exhaustive mapping methods. Cloud-contaminated regions experiencing high rates of change include Insular Southeast Asia, specifically Indonesia and Malaysia. Due to persistent cloud cover, forest cover loss in Indonesia has only been mapped at a 5-10 year interval using photo interpretation of single best Landsat images. Such an approach does not provide timely results, and cloud cover reduces the utility of map outputs. In a second study, I develop a method to exhaustively mine the recently opened Landsat archive for cloud-free observations and automatically map forest cover loss for Sumatra and Kalimantan for the 2000-2005 interval. In a comparison with a reference dataset consisting of 64 Landsat sample blocks, I show that my method, using per pixel time-series, provides more accurate forest cover loss maps for multiyear intervals than approaches using image composites. In a third study, I disaggregate Landsat-mapped forest cover loss, mapped over a multiyear interval, by year using annual forest cover loss maps generated from coarse spatial, high temporal resolution MODIS imagery. I further disaggregate and analyze forest cover loss by forest land use, and provinces. Forest cover loss trends show high spatial and temporal variability. These results underline the importance of annual mapping for the quantification of forest cover loss in Indonesia, specifically in the light of the developing Reducing Emissions from Deforestation and Forest Degradation in Developing Countries policy framework (REDD). All three studies highlight the advances in quantifying forest cover loss in the humid tropics made by integrating coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data. The three methods presented can be combined into an integrated monitoring strategy.
Effects of anthropogenic disturbance on indri (Indri indri) health in Madagascar.
Junge, Randall E; Barrett, Meredith A; Yoder, Anne D
2011-07-01
Anthropogenic habitat disturbance impairs ecosystem health by fragmenting forested areas, introducing environmental contamination, and reducing the quality of habitat resources. The effect of this disturbance on wildlife health is of particular concern in Madagascar, one of the world's biodiversity hotspots, where anthropogenic pressures on the environment remain high. Despite the conservation importance of threatened lemur populations in Madagascar, few data exist on the effects of anthropogenic disturbance on lemur health. To examine these impacts, indri (Indri indri) populations were evaluated from two forest reserves that differ in their exposure to anthropogenic disturbance. We compared the health status of 36 indri individuals from two sites: one population from a protected, undisturbed area of lowland evergreen humid forest and the other population from a reserve exposed to frequent tourism and forest degradation. Comparison of indri health parameters between sites suggests an impact of anthropogenic disturbance, including significant differences in leukocyte count and differential, 12 serum parameters, 6 trace minerals, and a higher diversity of parasites, with a significant difference in the presence of the louse, Trichophilopterus babakotophilus. These data suggest that indri living in disturbed forests may experience physiological changes and increased susceptibility to parasitism, which may ultimately impair reproductive success and survival. © 2011 Wiley-Liss, Inc.
Joly, François-Xavier; Milcu, Alexandru; Scherer-Lorenzen, Michael; Jean, Loreline-Katia; Bussotti, Filippo; Dawud, Seid Muhie; Müller, Sandra; Pollastrini, Martina; Raulund-Rasmussen, Karsten; Vesterdal, Lars; Hättenschwiler, Stephan
2017-05-01
Different tree species influence litter decomposition directly through species-specific litter traits, and indirectly through distinct modifications of the local decomposition environment. Whether these indirect effects on decomposition are influenced by tree species diversity is presently not clear. We addressed this question by studying the decomposition of two common substrates, cellulose paper and wood sticks, in a total of 209 forest stands of varying tree species diversity across six major forest types at the scale of Europe. Tree species richness showed a weak but positive correlation with the decomposition of cellulose but not with that of wood. Surprisingly, macroclimate had only a minor effect on cellulose decomposition and no effect on wood decomposition despite the wide range in climatic conditions among sites from Mediterranean to boreal forests. Instead, forest canopy density and stand-specific litter traits affected the decomposition of both substrates, with a particularly clear negative effect of the proportion of evergreen tree litter. Our study suggests that species richness and composition of tree canopies modify decomposition indirectly through changes in microenvironmental conditions. These canopy-induced differences in the local decomposition environment control decomposition to a greater extent than continental-scale differences in macroclimatic conditions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Modeling nonstructural carbohydrate reserve dynamics in forest trees
NASA Astrophysics Data System (ADS)
Richardson, Andrew; Keenan, Trevor; Carbone, Mariah; Pederson, Neil
2013-04-01
Understanding the factors influencing the availability of nonstructural carbohydrate (NSC) reserves is essential for predicting the resilience of forests to climate change and environmental stress. However, carbon allocation processes remain poorly understood and many models either ignore NSC reserves, or use simple and untested representations of NSC allocation and pool dynamics. Using model-data fusion techniques, we combined a parsimonious model of forest ecosystem carbon cycling with novel field sampling and laboratory analyses of NSCs. Simulations were conducted for an evergreen conifer forest and a deciduous broadleaf forest in New England. We used radiocarbon methods based on the 14C "bomb spike" to estimate the age of NSC reserves, and used this to constrain the mean residence time of modeled NSCs. We used additional data, including tower-measured fluxes of CO2, soil and biomass carbon stocks, woody biomass increment, and leaf area index and litterfall, to further constrain the model's parameters and initial conditions. Incorporation of fast- and slow-cycling NSC pools improved the ability of the model to reproduce the measured interannual variability in woody biomass increment. We show how model performance varies according to model structure and total pool size, and we use novel diagnostic criteria, based on autocorrelation statistics of annual biomass growth, to evaluate the model's ability to correctly represent lags and memory effects.
Climate and Vegetation Effects on Temperate Mountain Forest ...
Current forest composition may be resilient to typical climatic variability; however, climate trends, combined with projected changes in species composition, may increase tree vulnerability to water stress. A shift in forest composition toward tree species with higher water use has implications for biogenic emissions and deposition of reactive nitrogen and carbon compounds. Forest evapotranspiration (ET) can vary greatly at daily and seasonal time scales, but compared to carbon fluxes, often exhibits relatively consistent inter-annual behavior. The processes controlling ET involve the combined effects of physical and biological factors. Atmospheric conditions that promote high ET, consisting of high radiation and vapor pressure deficit (D), are often characterized by rainless periods when soil water supply to vegetation may be limiting and plant stomata may close to prevent excessive water loss. In contrast, periods of high ecosystem water availability require frequent precipitation and are characterized by low D. Thus, the combination of these contrasting conditions throughout a growing season may explain some of the consistency in ET. Additionally, vegetation composition is also an important factor in determining ET. In mixed species forests, physiological differences in water use strategies (e.g. isohydric/anisohydric species) can produce conservative water use throughout wet and dry phases of the growing season. Furthermore, transpiration by evergreen specie
Occult chemical deposition to a Maritime forest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vong, R.J.; Kowalski, A.S.
1996-12-31
Studies of chemical fluxes from the atmosphere to vegetated surfaces have suggested that, along with conventional wet and dry processes, an additional chemical input occurs when wind-blown cloud droplets are directly intercepted by vegetation. This cloud water deposition process has been sometimes termed {open_quote}occult deposition{close_quote} because the water fluxes cannot ordinarily be observed using rain gauges. Such occult deposition of cloud water has rarely been measured directly, in part because of the complexity of the governing turbulent transfer process. However, reviews by the National Acidic Precipitation Assessment Program (NAPAP SoS/T-2,6) have suggested that the chemical flux to be forest declinemore » in the eastern USA. This paper presents direct field measurements occult chemical fluxes to a silver fir forest located in complex terrain on the Olympic Peninsula near the coast of Washington State, USA.« less
Towards improved bottom-up inventories of methane from the European land surface
NASA Astrophysics Data System (ADS)
Grunwald, Dennis; Fender, Ann-Catrin; Erasmi, Stefan; Jungkunst, Hermann F.
2012-05-01
Forests and wetlands are generally seen as opposites in the methane cycle of terrestrial ecosystems. Wetlands are sources for atmospheric methane and forest soils sinks. However, this greenhouse gas is also emitted by wet forest soils, which is commonly disregarded due to lacking information on their spatial distribution. Here, we estimated the potential bias made for the European methane budget of terrestrial ecosystems when neglecting wet forest ecosystems but including rice paddies and latest estimates for lakes. We appointed distinct annual methane rates for individual land use types based on a literature survey and weighted them according to their European area. This was performed separately for four major ecozones (cold, temperate, continental and Mediterranean). Three approaches were applied: (1) the mean values for forests and wetlands were calculated in three different scenarios, (2) assuming that boreal needle-leaved evergreen forest with a low tree cover (<40%) is predominately forested wetland (3) assuming different shares of wet forest ecosystems in individual forest areas. For the net balance 2.8 Tg CH4-C a-1 were calculated which includes emissions from rice paddies (0.2 Tg CH4-C a-1) and from lakes (2.5 Tg CH4-C a-1). The different approaches for the net balances that included wet forest ecosystems mainly ranged between 4.6 and 6.7 Tg CH4-C a-1. The results suggest that wet forest ecosystems are approximately as important as wetlands for the European methane balance. European bottom-up inventories are improved best by more accurate mapping of wetlands both within and outside forests and more flux data for lakes and continental wetlands.
A Local Index of Cloud Immersion in Tropical Forests Using Time-Lapse Photography
NASA Astrophysics Data System (ADS)
Bassiouni, M.; Scholl, M. A.
2015-12-01
Data on the frequency, duration and elevation of cloud immersion is essential to improve estimates of cloud water deposition in water budgets in cloud forests. Here, we present a methodology to detect local cloud immersion in remote tropical forests using time-lapse photography. A simple approach is developed to detect cloudy conditions in photographs within the canopy where image depth during clear conditions may be less than 10 meters and moving leaves and branches and changes in lighting are unpredictable. A primary innovation of this study is that cloudiness is determined from images without using a reference clear image and without minimal threshold value determination or human judgment for calibration. Five sites ranging from 600 to 1000 meters elevation along a ridge in the Luquillo Critical Zone Observatory, Puerto Rico were each equipped with a trail camera programmed to take an image every 30 minutes since March 2014. Images were classified using four selected cloud-sensitive image characteristics (SCICs) computed for small image regions: contrast, the coefficient of variation and the entropy of the luminance of each image pixel, and image colorfulness. K-means clustering provided reasonable results to discriminate cloudy from clear conditions. Preliminary results indicate that 79-94% (daytime) and 85-93% (nighttime) of validation images were classified accurately at one open and two closed canopy sites. The euclidian distances between SCICs vectors of images during cloudy conditions and the SCICs vector of the centroid of the cluster of clear images show potential to quantify cloud density in addition to immersion. The classification method will be applied to determine spatial and temporal patterns of cloud immersion in the study area. The presented approach offers promising applications to increase observations of low-lying clouds at remote mountain sites where standard instruments to measure visibility and cloud base may not be practical.
NASA Astrophysics Data System (ADS)
Hoch, Guenter; Roemer, Helena; Fioroni, Tiffany; Olmedo, Inayat; Kahmen, Ansgar
2017-04-01
Tropical cloud forests are among the most climate sensitive ecosystems world-wide. The lack of a strong seasonality and the additional dampening of temperature fluctuations by the omnipresence of clouds and fog produce year-round constant climatic conditions. With climate change the presence of clouds and fog is, however, predicted to be reduced. The disappearance of the cooling fog cover will have dramatic consequences for air temperatures, that are predicted to increase locally well over 5 °C by the end of the 21st century. Especially the large number of endemic epiphytic orchids in tropical cloud forests that contribute substantially to the biological diversity of these ecosystems, but are typically adapted to a very narrow climate envelope, are speculated to be very sensitive to the anticipated rise in temperature. In a phytotron experiment we investigated the effect of increasing temperatures on the carbon balance (gas-exchange and the carbon reserve household) of 10 epiphytic orchid species from the genera Dracula, native to tropical, South-American cloud forests. The orchids were exposed to three temperature treatments: i) a constant temperature treatment (23°C/13°C, day/night) simulating natural conditions, ii) a slow temperature ramp of +0.75 K every 10 days, and iii) a fast temperature ramp of +1.5 K every 10 days. CO2 leaf gas-exchanges was determined every 10 days, and concentrations of low molecular weight sugars and starch were analyses from leaf samples throughout the experiment. We found that increasing temperatures had only minor effects on day-time leaf respiration, but led to a moderate increase of respiration during night-time. In contrast to the rather minor effects of higher temperatures on respiration, there was a dramatic decline of net-photosynthesis above day-time temperatures of 29°C, and a complete stop of net-carbon uptake at 33°C in all investigated species. This high sensitivity of photosynthesis to warming was independent of the speed of the temperature increase. Most importantly, the decline of photosynthesis was accompanied by a rapid and complete depletion of leaf starch reserves followed by the prompt death of the plants. We therefore conclude, that temperature increases to 29 - 33°C lead to carbon starvation in epiphytic orchids of tropical cloud forests that is driven by the break-down of photosynthesis. The physiological reason for the observed dysfunction of photosynthesis at only moderately warm temperatures are currently not well understood. Within an ongoing phytotron study, we thus are aiming to confirm and deepen the findings in the genus Dracula in Masdevallia, another orchid genera native and endemic to tropical cloud forests.
NASA Astrophysics Data System (ADS)
Lozhkin, A. V.; Anderson, P. M.
2013-06-01
Preliminary analyses of Lake El'gygytgyn sediment indicate a wide range of ecosystem responses to warmer than present climates. While palynological work describing all interglacial vegetation is ongoing, sufficient data exist to compare recent warm events (the postglacial thermal maximum, PGTM, and marine isotope stage, MIS5) with "super" interglaciations (MIS11, MIS31). Palynological assemblages associated with these climatic optima suggest two types of vegetation responses: one dominated by deciduous taxa (PGTM, MIS5) and the second by evergreen conifers (MIS11, MIS31). MIS11 forests show a similarity to modern Picea-Larix-Betula-Alnus forests of Siberia. While dark coniferous forest also characterizes MIS31, the pollen taxa show an affinity to the boreal forest of the lower Amur valley (southern Russian Far East). Despite vegetation differences during these thermal maxima, all glacial-interglacial transitions are alike, being dominated by deciduous woody taxa. Initially Betula shrub tundra established and was replaced by tundra with tree-sized shrubs (PGTM), Betula woodland (MIS5), or Betula-Larix (MIS11, MIS31) forest. The consistent occurrence of deciduous forest and/or high shrub tundra before the incidence of maximum warmth underscores the importance of this biome for modeling efforts. The El'gygytgyn data also suggest a possible elimination or massive reduction of Arctic plant communities under extreme warm-earth scenarios.
NASA Astrophysics Data System (ADS)
Jeong, Eun Kyoung; Kim, Hyun Joo; Uemura, Kazuhiko; Kim, Kyungsik
2016-04-01
The Tertiary sedimentary basins are distributed along the eastern coast of Korean Peninsula. The northernmost Bukpyeong Basin is located in Donghae City, Gangwon-do Province, Korea. The Bukpyeong Basin consists of Bukpyeong Formation and Dogyeongri Conglomerate in ascending order. The geologic age of Bukpyeong Formation has been suggested as from Early Miocene to Pliocene, In particular, Lee & Jacobs (2010) suggested the age of the Bukpyeong Formation as late Early Miocene to early Middle Miocene based on the fossils of rodent teeth. Sedimentary environment has been thought as mainly fresh water lake and/or swamp partly influenced by marine water. Lately, new outcrops of Bukpyeong Formation were exposed during the road construction and abundant fossil plants were yielded from the newly exposed outcrops. As a result of palaeobotanical studies 47 genera of 23 families have been found. This fossil plant assemblage is composed of gymnosperms and dicotyledons. Gymnosperms were Pinaceae (e.g., Pinus, Tsuga), Sciadopityaceae (e.g., Sciadopitys) and Cupressaceae with well-preserved Metasequoia cones. Dicotyledons were deciduous trees such as Betulaceae (e.g., Alnus, Carpinus) and Sapindaceae (e.g., Acer, Aesculus, Sapindus), and evergreen trees such as evergreen Fagaceae (e.g., Castanopsis, Cyclobalanopsis, Pasania) and Lauraceae (e.g., Cinnamomum, Machilus). In addition, fresh water plants such as Hemitrapa (Lytraceae) and Ceratophyllum (Ceratophyllaceae) were also found. The fossil plant assemblage of the Bukpyeong Formation supported the freshwater environment implied by previous studies. It can be suggested that the palaeoflora of Bukpyeong Formation was oak-laurel forest with broad-leaved evergreen and deciduous trees accompanying commonly by conifers of Pinaceae and Cupressaceae under warm-temperate climate.
NASA Technical Reports Server (NTRS)
Ulsig, Laura; Nichol, Caroline J.; Huemmrich, Karl F.; Landis, David R.; Middleton, Elizabeth M.; Lyapustin, Alexei I.; Mammarella, Ivan; Levula, Janne; Porcar-Castell, Albert
2017-01-01
Long-term observations of vegetation phenology can be used to monitor the response of terrestrial ecosystems to climate change. Satellite remote sensing provides the most efficient means to observe phenological events through time series analysis of vegetation indices such as the Normalized Difference Vegetation Index (NDVI). This study investigates the potential of a Photochemical Reflectance Index (PRI), which has been linked to vegetation light use efficiency, to improve the accuracy of MODIS-based estimates of phenology in an evergreen conifer forest. Timings of the start and end of the growing season (SGS and EGS) were derived from a 13-year-long time series of PRI and NDVI based on a MAIAC (multi-angle implementation of atmospheric correction) processed MODIS dataset and standard MODIS NDVI product data. The derived dates were validated with phenology estimates from ground-based flux tower measurements of ecosystem productivity. Significant correlations were found between the MAIAC time series and ground-estimated SGS (R (sup 2) equals 0.36-0.8), which is remarkable since previous studies have found it difficult to observe inter-annual phenological variations in evergreen vegetation from satellite data. The considerably noisier NDVI product could not accurately predict SGS, and EGS could not be derived successfully from any of the time series. While the strongest relationship overall was found between SGS derived from the ground data and PRI, MAIAC NDVI exhibited high correlations with SGS more consistently (R (sup 2) is greater than 0.6 in all cases). The results suggest that PRI can serve as an effective indicator of spring seasonal transitions, however, additional work is necessary to confirm the relationships observed and to further explore the usefulness of MODIS PRI for detecting phenology.
Nitrogen deposition's role in determining forest photosynthetic capacity; a FLUXNET synthesis
NASA Astrophysics Data System (ADS)
Fleischer, K.; Rebel, K.; van der Molen, M.; Erisman, J.; Wassen, M.; Dolman, H.
2011-12-01
There is growing evidence that nitrogen (N) deposition stimulates forest growth, as many forest ecosystems are N-limited. However, the significance of N deposition in determining the strength of the present and future terrestrial carbon sink is strongly debated. We investigated and quantified the effect of N deposition on ecosystem photosynthetic capacity (Amax) with the FLUXNET database, including 80 forest sites, covering the major forest types and climates of the world. The relative effect of climate and N deposition on photosynthesis was assessed with regression models. We found a significant positive correlation of Amax and N deposition for evergreen needleleaf forests in our dataset. We further found indications that foliar N and LAI scale positively with N deposition, reflecting the 2 mechanisms at which N is believed to cause an increase in carbon gain. We can support the hypothesis that foliar N is the principal scaling factor for canopy Amax across all forest types. Deciduous forests are less diverse in terms of climate and nutritional conditions for the included sites and these forests exhibited weak to no correlations with the included climate and N predictor variables. Quantifying the effect of N deposition on photosynthetic rates at the canopy level is an essential step for quantifying its contribution to the terrestrial carbon sink and for predicting vegetation response to N fertilization and global change in the future. The approach shows that eddy-covariance measurements of carbon fluxes at the canopy scale allow us to test hypotheses with respect to the expected nitrogen-photosynthesis relationships at the canopy scale.
Annual Proxy Records from Tropical Cloud Forest Trees in the Monteverde Cloud Forest, Costa Rica
NASA Astrophysics Data System (ADS)
Anchukaitis, K. J.; Evans, M. N.; Wheelwright, N. T.; Schrag, D. P.
2005-12-01
The extinction of the Golden Toad (Bufo periglenes) from Costa Rica's Monteverde Cloud Forest prompted research into the causes of ecological change in the montane forests of Costa Rica. Subsequent analysis of meteorological data has suggested that warmer global surface and tropical Pacific sea surface temperatures contribute to an observed decrease in cloud cover at Monteverde. However, while recent studies may have concluded that climate change is already having an effect on cloud forest environments in Costa Rica, without the context provided by long-term climate records, it is difficult to confidently conclude that the observed ecological changes are the result of anthropogenic climate forcing, land clearance in the lowland rainforest, or natural variability in tropical climate. To address this, we develop high-resolution proxy paleoclimate records from trees without annual rings in the Monteverde Cloud Forest in Costa Rica. Calibration of an age model in these trees is a fundamental prerequisite for proxy paleoclimate reconstructions. Our approach exploits the isotopic seasonality in the δ18O of water sources (fog versus rainfall) used by trees over the course of a single year. Ocotea tenera individuals of known age and measured annual growth increments were sampled in long-term monitored plantation sites in order to test this proposed age model. High-resolution (200μm increments) stable isotope measurements on cellulose reveal distinct, coherent δ18O cycles of 6 to 10‰. The calculated growth rates derived from the isotope timeseries match those observed from basal growth increment measurements. Spatial fidelity in the age model and climate signal is examined by using multiple cores from multiple trees and multiple sites. These data support our hypothesis that annual isotope cycles in these trees can be used to provide chronological control in the absence of rings. The ability of trees to record interannual climate variability in local hydrometeorology and remote climate forcing is evaluated using the isotope signal from multiple trees, local meteorological observations, and climate field data for the well-observed 1997-1998 warm El Niño-Southern Oscillation (ENSO) event. The successful calibration of our age model is a necessary step toward the development of long, annually-resolved paleoclimate reconstructions from old trees, even without rings, which will be used to evaluate the cause of recent observed climate change at Monteverde and as proxies for tropical climate field reconstructions.
NASA Astrophysics Data System (ADS)
Defelice, Thomas Peter
The decline of forests has long been attributed to various natural (e.g. drought), man-made (e.g. logging), and perhaps, combinations of these (eg. fires caused by loggers) causes. A new type of forest decline (attributed to the deposition of air pollutants and other natural causes) has become apparent at high elevation sites in western Europe and North America; especially for above cloudbase forests like those in the Mt. Mitchell State Park. Investigations of air pollutant deposition are plentiful and laboratory studies have shown extreme deposition of these pollutants to be potentially harmful to forests. However, no field study has concentrated on these events. The primary objective of this study is to characterize (i.e., meterologically, microphysically, chemically) extreme episodes of air pollutant deposition. This study defines extreme aqueous events as having a pH < 3.1. pH's of this order are known to reduce laboratory tree growth depending on their age and species. On the average, one out of three aqueous events, sampled in the park during the 1986-1988 growing seasons (mid-May through mid-September), was extreme. Their occurrence over time may lead to the death of infant and 'old' trees, and to the reduced vigor of trees in their prime, as a result of triggering the decline mechanisms of these trees. These events usually last ~ 4.0 h, form during extended periods of high atmospheric pressure, have a liquid water content of ~ 0.10 gm^{-3}, and near typical cloud droplet sizes (~ 8.0 μm). Extreme aqueous events deposit most of their acid at their end. The deposition from the infrequent occurrences of very high ozone ( >=q100 ppb) and sulfur dioxide (>=q 5 ppb) concentrations in conjunction with these cloud events may be even more detrimental to the canopy, then that by extreme aqueous events alone. The physical characteristics of these combined events appear to include those of mature, precipitating clouds. Their occurrence may provide a clue as to how very low pH clouds might be deacidified. That is, base gases (eg. ammonia) locally introduced into such clouds at the proper time may render them harmless upon impact with the forest canopy, and beneficial to regional water supply users.
Carbon emissions from spring 1998 fires in tropical Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cairns, M.A.; Hao, W.M.; Alvarado, E.
1999-04-01
The authors used NOAA-AVHRR satellite imagery, biomass density maps, fuel consumption estimates, and a carbon emission factor to estimate the total carbon (C) emissions from the Spring 1998 fires in tropical Mexico. All eight states in southeast Mexico were affected by the wildfires, although the activity was concentrated near the common border of Oaxaca, Chiapas, and Veracruz. The fires burned approximately 482,000 ha and the land use/land cover classes most extensively impacted were the tall/medium selvas (tropical evergreen forests), open/fragmented forests, and perturbed areas. The total prompt emissions were 4.6 TgC during the two-month period of the authors` study, contributingmore » an additional 24% to the region`s average annual net C emissions from forestry and land-use change. Mexico in 1998 experienced its driest Spring since 1941, setting the stage for the widespread burning.« less
Soil Temperature Triggers the Onset of Photosynthesis in Korean Pine
Wu, Jiabing; Guan, Dexin; Yuan, Fenhui; Wang, Anzhi; Jin, Changjie
2013-01-01
In forest ecosystems, the onset of spring photosynthesis may have an important influence on the annual carbon balance. However, triggers for the onset of photosynthesis have yet to be clearly identified, especially for temperate evergreen conifers. The effects of climatic factors on recovery of photosynthetic capacity in a Korean pine forest were investigated in the field. No photosynthesis was detectable when the soil temperature was below 0°C even if the air temperature was far beyond 15°C. The onset of photosynthesis and sap flow was coincident with the time of soil thawing. The rates of recovery of photosynthetic capacity highly fluctuated with air temperature after onset of photosynthesis, and intermittent frost events remarkably inhibited the photosynthetic capacity of the needles. The results suggest that earlier soil thawing is more important than air temperature increases in triggering the onset of photosynthesis in Korean pine in temperate zones under global warming scenarios. PMID:23755227
NASA Technical Reports Server (NTRS)
Anderson, J. H. (Principal Investigator)
1976-01-01
The author has identified the following significant results. A simulated color infrared LANDSAT image covering the western Seward Peninsula was used for identifying and mapping vegetation by direct visual examination. The 1:1,083,400 scale print used was prepared by a color additive process using positive transparencies from MSS bands 4, 5, and 7. Seven color classes were recognized. A vegetation map of 3200 sq km area just west of Fairbanks, Alaska was made. Five colors were recognized on the image and identified to vegetation types roughly equivalent to formations in the UNESCO classification: orange - broadleaf deciduous forest; gray - needleleaf evergreen forest; light violet - subarctic alpine tundra vegetation; violet - broadleaf deciduous shrub thicket; and dull violet - bog vegetation.
Ingicco, Thomas; de Vos, John; Huffman, O Frank
2014-01-01
A fossil femur excavated by Eugène Dubois between 1891-1900 in the Lower/Middle Pleistocene bonebed of the Trinil site (Java, Indonesia) was recognised by us as that of a Hylobatidae. The specimen, Trinil 5703 of the Dubois Collection (Leiden, The Netherlands), has the same distinctive form of fossilization that is seen in many of the bonebed fossils from Trinil in the collection. Anatomical comparison of Trinil 5703 to a sample of carnivore and primate femora, supported by morphometric analyses, lead to the attribution of the fossil to gibbon. Trinil 5703 therefore provides the oldest insular record of this clade, one of the oldest known Hylobatidae fossils from Southeast Asia. Because living Hylobatidae only inhabit evergreen rain forests, the paleoenvironment within the river drainage in the greater Trinil area evidently included forests of this kind during the Lower/Middle Pleistocene as revealed here.
Ingicco, Thomas; de Vos, John; Huffman, O. Frank
2014-01-01
A fossil femur excavated by Eugène Dubois between 1891–1900 in the Lower/Middle Pleistocene bonebed of the Trinil site (Java, Indonesia) was recognised by us as that of a Hylobatidae. The specimen, Trinil 5703 of the Dubois Collection (Leiden, The Netherlands), has the same distinctive form of fossilization that is seen in many of the bonebed fossils from Trinil in the collection. Anatomical comparison of Trinil 5703 to a sample of carnivore and primate femora, supported by morphometric analyses, lead to the attribution of the fossil to gibbon. Trinil 5703 therefore provides the oldest insular record of this clade, one of the oldest known Hylobatidae fossils from Southeast Asia. Because living Hylobatidae only inhabit evergreen rain forests, the paleoenvironment within the river drainage in the greater Trinil area evidently included forests of this kind during the Lower/Middle Pleistocene as revealed here. PMID:24914951
A warbler in trouble: Dendroica cerulea
Robbins, C.S.; Fitzpatrick, J.W.; Hamel, P.B.; Hagan, John M.; Johnston, David W.
1992-01-01
The Cerulean Warbler, like other Neotropical migrants, has suffered extensive loss of breeding habitat during the past century. It differs from many other migrants in its preference for mature floodplain forest with tall trees, a habitat that has become scarce over much of the warbler's original nesting range. Sensitivity to fragmentation within remaining suitable tracts places this warbler at an additional disadvantage. Furthermore, Cerulean Warblers winter strictly in primary, humid evergreen forest along an extremely narrow elevational zone at the base of the Andes. This zone is among the most intensively logged and cultivated regions of the Neotropics. From 1966 to 1987 the Cerulean Warbler showed the most precipitous decline of any North American warbler (3.4% per year). Unless steps are taken to protect large tracts of habitat of this ecologically specialized species, both on the breeding grounds and in the Andean foothills, we believe the future of this warbler is in serious jeopardy.
2017-12-08
A vigorous summer fire season continued through July, 2013 as many large wildfires continued to burn in the forests of northern Canada. The high fire activity not only laid waste to thousands of hectares of boreal forest, but sent thick smoke billowing high into the atmosphere, where it was carried far across the Atlantic Ocean. On July 30, the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of a river of smoke spreading south across the Hudson Bay. The blue background is formed by the waters of Hudson Bay. In the southeast the green, forest-covered land of Quebec province peeks from under a large cloud bank. Another large bank of white cloud covers the water in the southwest, and a smaller cloud bank covers the territory of Nunavut in the northwest. A bit of Baffin Island can be seen near the top center of the image. Looking closely at the image, it appears that the gray smoke mixes with whiter cloud in the south, suggesting they may be at the same level in the atmosphere. In the northeast corner of the image, a ribbon of smoke appears to blow over a bank of popcorn clouds as well as over a few lower-lying clouds, causing some of the clouds to appear gray beneath the smoky veil. Where cloud meets smoke in the northeast, however, the line of the cloud bank remains sharp, while the smoke appears to continue traveling under the edge. Although these interpretations are somewhat subjective in this true-color image, the false-color image of the same scene (not shown here) lends strength to the interpretation. Data from other NASA instruments, designed to measure cloud height and characteristics, agree that clouds vary in height, and that smoke mingles with cloud in the south. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Bandala, Victor M; Montoya, Leticia; Horak, Egon
2006-01-01
Two species of Crepidotus are recorded from cloud forest in the central region of Veracruz State (eastern Mexico): Crepidotus rubrovinosus sp. nov. and Crepidotus septicoides. The latter species was known previously only from the type locality in Brazil and from one record in tropical rain forest in southern Veracruz (as C. longicystis s. str. Singer). Descriptions, illustrations and discussions for both taxa are provided. A type study of C. fusisporus var. longicystis from USA is included, and it is concluded that the collection supporting this variety belongs to C. luteolus.
How Do Evergreens Stay Ever-Green? Hands on Science.
ERIC Educational Resources Information Center
Kepler, Lynne
1993-01-01
Provides instructional techniques, using samples from evergreen trees, to explain to school children the concept of adaptation. The techniques help children develop skills in observation, classification, communication, inferring, and predicting. A teacher's reproducible is included. (GLR)
Ratter, J A; Askew, G P; Montgomery, R F; Gifford, D R
1978-12-04
The vegetation of the well drained soils along the Suiá--Missu road in the Serra do Roncador region of NE Mato Grosso is Evergreen Seasonal forest of Amazonian type. The area lies close to the meeting place of the Amazonian forest (the hylaea) and the cerrado (savanna) formation of Central Brazil. The structure of the forest is simple: the canopy is at about 18--23 m, and is exceeded by a few scattered emergents; no recognizable strata can be distinguished among the understorey trees and the shrub and herb layers are sparse. Table 1 lists the most important species and gives information on stratification and general distribution. Most of the species appear to have a hylaean centre of distribution but extend into other vegetation types. The forest differs from related communities which lie closer to the cerrado/forest boundary in its greater height and luxuriance, the presence of additional tall tree species, and the great reduction in abundance of a cerrado floristic element. A survey on the Xavantina--São Felix road allowed us to extend previous observations on the distance to which the cerrado tree Pterodon pubescens extends into the forest. The results obtained indicate a considerable extension of forest into cerrado during the life of an individual tree. A characteristic low forest occurs in the flood plain of the Rio Suiá--Missu while Swampy Gallery forests occur on permanently waterlogged soils around the headwaters of streams. The well drained soils of the Suiá--Missu forest are very uniform, deep latosols (oxisols) of very dystrophic nature with pH (in water) between 4.0 and 5.0 (see table 2, p. 203).
Ma, Jianyong; Shugart, Herman H; Yan, Xiaodong; Cao, Cougui; Wu, Shuang; Fang, Jing
2017-05-15
The carbon budget of forest ecosystems, an important component of the terrestrial carbon cycle, needs to be accurately quantified and predicted by ecological models. As a preamble to apply the model to estimate global carbon uptake by forest ecosystems, we used the CO 2 flux measurements from 37 forest eddy-covariance sites to examine the individual tree-based FORCCHN model's performance globally. In these initial tests, the FORCCHN model simulated gross primary production (GPP), ecosystem respiration (ER) and net ecosystem production (NEP) with correlations of 0.72, 0.70 and 0.53, respectively, across all forest biomes. The model underestimated GPP and slightly overestimated ER across most of the eddy-covariance sites. An underestimation of NEP arose primarily from the lower GPP estimates. Model performance was better in capturing both the temporal changes and magnitude of carbon fluxes in deciduous broadleaf forest than in evergreen broadleaf forest, and it performed less well for sites in Mediterranean climate. We then applied the model to estimate the carbon fluxes of forest ecosystems on global scale over 1982-2011. This application of FORCCHN gave a total GPP of 59.41±5.67 and an ER of 57.21±5.32PgCyr -1 for global forest ecosystems during 1982-2011. The forest ecosystems over this same period contributed a large carbon storage, with total NEP being 2.20±0.64PgCyr -1 . These values are comparable to and reinforce estimates reported in other studies. This analysis highlights individual tree-based model FORCCHN could be used to evaluate carbon fluxes of forest ecosystems on global scale. Copyright © 2017 Elsevier B.V. All rights reserved.
Moisture status during a strong El Niño explains a tropical montane cloud forest's upper limit.
Crausbay, Shelley D; Frazier, Abby G; Giambelluca, Thomas W; Longman, Ryan J; Hotchkiss, Sara C
2014-05-01
Growing evidence suggests short-duration climate events may drive community structure and composition more directly than long-term climate means, particularly at ecotones where taxa are close to their physiological limits. Here we use an empirical habitat model to evaluate the role of microclimate during a strong El Niño in structuring a tropical montane cloud forest's upper limit and composition in Hawai'i. We interpolate climate surfaces, derived from a high-density network of climate stations, to permanent vegetation plots. Climatic predictor variables include (1) total rainfall, (2) mean relative humidity, and (3) mean temperature representing non-El Niño periods and a strong El Niño drought. Habitat models explained species composition within the cloud forest with non-El Niño rainfall; however, the ecotone at the cloud forest's upper limit was modeled with relative humidity during a strong El Niño drought and secondarily with non-El Niño rainfall. This forest ecotone may be particularly responsive to strong, short-duration climate variability because taxa here, particularly the isohydric dominant Metrosideros polymorpha, are near their physiological limits. Overall, this study demonstrates moisture's overarching influence on a tropical montane ecosystem, and suggests that short-term climate events affecting moisture status are particularly relevant at tropical ecotones. This study further suggests that predicting the consequences of climate change here, and perhaps in other tropical montane settings, will rely on the skill and certainty around future climate models of regional rainfall, relative humidity, and El Niño.
NASA Astrophysics Data System (ADS)
Toda, M.; Yokozawa, M.; Richardson, A. D.; Kohyama, T.
2011-12-01
The effects of wind disturbance on interannual variability in ecosystem CO2 exchange have been assessed in two forests in northern Japan, i.e., a young, even-aged, monocultured, deciduous forest and an uneven-aged mixed forest of evergreen and deciduous trees, including some over 200 years old using eddy covariance (EC) measurements during 2004-2008. The EC measurements have indicated that photosynthetic recovery of trees after a huge typhoon occurred during early September in 2004 activated annual carbon uptake of both forests due to changes in physiological response of tree leaves during their growth stages. However, little have been resolved about what biotic and abiotic factors regulated interannual variability in heat, water and carbon exchange between an atmosphere and forests. In recent years, an inverse modeling analysis has been utilized as a powerful tool to estimate biotic and abiotic parameters that might affect heat, water and CO2 exchange between the atmosphere and forest of a parsimonious physiologically based model. We conducted the Bayesian inverse model analysis for the model with the EC measurements. The preliminary result showed that the above model-derived NEE values were consistent with observed ones on the hourly basis with optimized parameters by Baysian inversion. In the presentation, we would examine interannual variability in biotic and abiotic parameters related to heat, water and carbon exchange between the atmosphere and forests after disturbance by typhoon.
Yuan, Xiao Chun; Lin, Wei Sheng; Pu, Xiao Ting; Yang, Zhi Rong; Zheng, Wei; Chen, Yue Min; Yang, Yu Sheng
2016-06-01
Using the negative pressure sampling method, the concentrations and spectral characte-ristics of dissolved organic matter (DOM) of soil solution were studied at 0-15, 15-30, 30-60 cm layers in Castanopsis carlesii forest (BF), human-assisted naturally regenerated C. carlesii forest (RF), C. carlesii plantation (CP) in evergreen broad-leaved forests in Sanming City, Fujian Pro-vince. The results showed that the overall trend of dissolved organic carbon (DOC) concentrations in soil solution was RF>CP>BF, and the concentration of dissolved organic nitrogen (DON) was highest in C. carlesii plantation. The concentrations of DOC and DON in surface soil (0-15 cm) were all significantly higher than in the subsurface (30-60 cm). The aromatic index (AI) was in the order of RF>CP>BF, and as a whole, the highest AI was observed in the surface soil. Higher fluorescence intensity and a short wave absorption peak (320 nm) were observed in C. carlesii plantation, suggesting the surface soil of C. carlesii plantation was rich in decomposed substance content, while the degree of humification was lower. A medium wave absorption peak (380 nm) was observed in human-assisted naturally regenerated C. carlesii forest, indicating the degree of humification was higher which would contribute to the storage of soil fertility. In addition, DOM characte-ristics in 30-60 cm soil solution were almost unaffected by forest regeneration patterns.
A new species of the genus Leptolalax (Anura: Megophryidae) from southern Vietnam
Van Duong, Tang; Do, Dang Trong; Ngo, Chung Dac; Nguyen, Truong Quang; Poyarkov, Nikolay A.
2018-01-01
We describe a new species of megophryid frog from Phu Yen Province in southern Vietnam. Leptolalax macrops sp. nov. is distinguished from its congeners by a combination of the following morphological attributes: (1) body size medium (SVL 28.0–29.3 mm in three adult males, 30.3 mm in single adult female); (2) supra-axillary glands present, creamy white; ventrolateral glands indistinct; (3) tympanum externally distinct; (4) dorsal skin roughly granular with larger tubercles, dermal ridges on dorsum absent; (5) rudimentary webbing present between fingers I–II and II–III; rudimentary webbing between all toes; fingers and toes without dermal fringes; (6) in life ventral surface greyish-violet with white speckling; (7) supratympanic fold distinct, dark brown in life; (8) iris bicolored, typically golden in upper half, fading to golden green in lower half; (9) tibia short (TbL/SVL 0.44–0.45 in males); and (10) eyes large and protuberant (ED/SVL 0.15–0.16 in males). From all congeners for which comparable sequences are available, the new species differs markedly in the 16S rRNA mitochondrial gene sequence (P-distance>5.7%). The new species is currently known only from montane evergreen tropical forests of Song Hinh District, Phu Yen Province, and M’Drak District of Dak Lak Province at elevations of 470–630 m a.s.l.. We suggest the new species should be considered as Data Deficient following the IUCN’s Red List categories. We also report a previously unknown Leptolalax mtDNA lineage from an evergreen tropical forest in the Hoa Thinh District of Phu Yen Province, which may also represent an undescribed species. PMID:29643325
A new species of the genus Leptolalax (Anura: Megophryidae) from southern Vietnam.
Duong, Tang Van; Do, Dang Trong; Ngo, Chung Dac; Nguyen, Truong Quang; Poyarkov, Nikolay A
2018-05-18
We describe a new species of megophryid frog from Phu Yen Province in southern Vietnam. Leptolalax macrops sp. nov. is distinguished from its congeners by a combination of the following morphological attributes: (1) body size medium (SVL 28.0-29.3 mm in three adult males, 30.3 mm in single adult female); (2) supra-axillary glands present, creamy white; ventrolateral glands indistinct; (3) tympanum externally distinct; (4) dorsal skin roughly granular with larger tubercles, dermal ridges on dorsum absent; (5) rudimentary webbing present between fingers I-II and II-III; rudimentary webbing between all toes; fingers and toes without dermal fringes; (6) in life ventral surface greyish-violet with white speckling; (7) supratympanic fold distinct, dark brown in life; (8) iris bicolored, typically golden in upper half, fading to golden green in lower half; (9) tibia short (TbL/SVL 0.44-0.45 in males); and (10) eyes large and protuberant (ED/SVL 0.15-0.16 in males). From all congeners for which comparable sequences are available, the new species differs markedly in the 16S rRNA mitochondrial gene sequence (P-distance>5.7%). The new species is currently known only from montane evergreen tropical forests of Song Hinh District, Phu Yen Province, and M'Drak District of Dak Lak Province at elevations of 470-630 m a.s.l. We suggest the new species should be considered as Data Deficient following the IUCN's Red List categories. We also report a previously unknown Leptolalax mtDNA lineage from an evergreen tropical forest in the Hoa Thinh District of Phu Yen Province, which may also represent an undescribed species.
High-resolution data on the impact of warming on soil CO2 efflux from an Asian monsoon forest
Liang, Naishen; Teramoto, Munemasa; Takagi, Masahiro; Zeng, Jiye
2017-01-01
This paper describes a project for evaluation of global warming’s impacts on soil carbon dynamics in Japanese forest ecosystems. We started a soil warming experiment in late 2008 in a 55-year-old evergreen broad-leaved forest at the boundary between the subtropical and warm-temperate biomes in southern Japan. We used infrared carbon-filament heat lamps to increase soil temperature by about 2.5 °C at a depth of 5 cm and continuously recorded CO2 emission from the soil surface using a multichannel automated chamber system. Here, we present details of the experimental processes and datasets for the CO2 emission rate, soil temperature, and soil moisture from control, trenched, and warmed trenched plots. The long term of the study and its high resolution make the datasets meaningful for use in or development of coupled climate-ecosystem models to tune their dynamic behaviour as well as to provide mean parameters for decomposition of soil organic carbon to support future predictions of soil carbon sequestration. PMID:28291228
Schall, J J; Pearson, A R; Perkins, S L
2000-06-01
The prevalence of malaria parasites was studied in the lizard Anolis gundlachi over a 9-yr period at a site in the wet evergreen forest of eastern Puerto Rico. Three forms of the parasite infected the lizards; these were Plasmodium floridense, Plasmodium azurophilum in erythrocytes, and P. azurophilum in white blood cells. Overall prevalence of infection for 8 samples during the study period was significantly higher for males than females (32% of 3,296 males and 22% of 1,439 females). During the study, the site experienced substantial climatic and physical disturbance including rising temperature, droughts, and hurricanes that severely damaged the forest. Parasite prevalence in the first sample, 8 mo after the massive hurricane Hugo, was slightly, though significantly, lower than for subsequent samples. However, overall prevalence was stable during the 9-yr period. The results show malaria prevalence is more constant at the site than found for 2 studies in temperate forests, and that the Puerto Rico system may be an example of the stable, endemic malaria described by standard models for human malaria epidemiology.
Hagar, Joan C.; Dugger, Kate; Starkey, Edward E.
2007-01-01
Availability of food resources is an important factor in avian habitat selection. Food resources for terrestrial birds often are closely related to vegetation structure and composition. Identification of plant species important in supporting food resources may facilitate vegetation management to achieve objectives for providing bird habitat. We used fecal analysis to describe the diet of adult Wilson's Warblers (Wilsonia pusilla) that foraged in the understory of Douglas-fir (Pseudotsuga menziesii) forests in western Oregon during the breeding season. We sampled arthropods at the same sites where diet data were collected, and compared abundance and biomass of prey among seven common shrub species. Wilson's Warblers ate more caterpillars (Lepidoptera larvae), flies (Diptera), beetles (Coleoptera), and Homoptera than expected based on availability. Deciduous shrubs supported higher abundances of arthropod taxa and size classes used as prey by Wilson's Warblers than did evergreen shrubs. The development and maintenance of deciduous understory vegetation in conifer forests of the Pacific Northwest may be fundamental for conservation of food webs that support breeding Wilson's Warblers and other shrub-associated, insectivorous songbirds.
Arthropod prey of Wilson's Warblers in the understory of Douglas-fir forests
Hagar, J.C.; Dugger, K.M.; Starkey, E.E.
2007-01-01
Availability of food resources is an important factor in avian habitat selection. Food resources for terrestrial birds often are closely related to vegetation structure and composition. Identification of plant species important in supporting food resources may facilitate vegetation management to achieve objectives for providing bird habitat. We used fecal analysis to describe the diet of adult Wilson's Warblers (Wilsonia pusilla) that foraged in the understory of Douglas-fir (Pseudotsuga menziesii) forests in western Oregon during the breeding season. We sampled arthropods at the same sites where diet data were collected, and compared abundance and biomass of prey among seven common shrub species. Wilson's Warblers ate more caterpillars (Lepidoptera larvae), flies (Diptera), beetles (Coleoptera), and Homoptera than expected based on availability. Deciduous shrubs supported higher abundances of arthropod taxa and size classes used as prey by Wilson's Warblers than did evergreen shrubs. The development and maintenance of deciduous understory vegetation in conifer forests of the Pacific Northwest may be fundamental for conservation of food webs that support breeding Wilson's Warblers and other shrub-associated, insectivorous songbirds.
T.A. Kennaway; E.H. Helmer; M.A. Lefsky; T.A. Brandeis; K.R. Sherill
2008-01-01
Current information on land cover, forest type and forest structure for the Virgin Islands is critical to land managers and researchers for accurate forest inventory and ecological monitoring. In this study, we use cloud free image mosaics of panchromatic sharpened Landsat ETM+ images and decision tree classification software to map land cover and forest type for the...
Todd Kennaway; Eileen Helmer; Michael Lefsky; Thomas Brandeis; Kirk Sherrill
2009-01-01
Current information on land cover, forest type and forest structure for the Virgin Islands is critical to land managers and researachers for accurate forest inverntory and ecological monitoring. In this study, we use cloud free image mosaics of panchromatic sharpened Landsat ETM+ images and decision tree classification software to map land cover and forest type for the...
Asner, Gregory P; Joseph, Shijo
2015-01-01
Conservation and monitoring of tropical forests requires accurate information on their extent and change dynamics. Cloud cover, sensor errors and technical barriers associated with satellite remote sensing data continue to prevent many national and sub-national REDD+ initiatives from developing their reference deforestation and forest degradation emission levels. Here we present a framework for large-scale historical forest cover change analysis using free multispectral satellite imagery in an extremely cloudy tropical forest region. The CLASlite approach provided highly automated mapping of tropical forest cover, deforestation and degradation from Landsat satellite imagery. Critically, the fractional cover of forest photosynthetic vegetation, non-photosynthetic vegetation, and bare substrates calculated by CLASlite provided scene-invariant quantities for forest cover, allowing for systematic mosaicking of incomplete satellite data coverage. A synthesized satellite-based data set of forest cover was thereby created, reducing image incompleteness caused by clouds, shadows or sensor errors. This approach can readily be implemented by single operators with highly constrained budgets. We test this framework on tropical forests of the Colombian Pacific Coast (Chocó) – one of the cloudiest regions on Earth, with successful comparison to the Colombian government’s deforestation map and a global deforestation map. PMID:25678933
DISGUISED IN AN OCEANIC CAMOUFLAGE PAINT SCHEME, EVERGREEN MAKES HER ...
DISGUISED IN AN OCEANIC CAMOUFLAGE PAINT SCHEME, EVERGREEN MAKES HER WAY THROUGH THE NORTH ATLANTIC DURING WORLD WAR II. HER 3" GUN IS VISIBLE BEHIND THE STACK - U.S. Coast Guard Cutter EVERGREEN, New London, New London County, CT
Eileen H. Helmer; Thomas S. Ruzycki; Jay Benner; Shannon M. Voggesser; Barbara P. Scobie; Courtenay Park; David W. Fanning; Seepersad Ramnarine
2012-01-01
Tropical forest managers need detailed maps of forest types for REDD+, but spectral similarity among forest types; cloud and scan-line gaps; and scarce vegetation ground plots make producing such maps with satellite imagery difficult. How can managers map tropical forest tree communities with satellite imagery given these challenges? Here we describe a case study of...