Lesser, R P; Raudzens, P; Lüders, H; Nuwer, M R; Goldie, W D; Morris, H H; Dinner, D S; Klem, G; Hahn, J F; Shetter, A G
1986-01-01
We describe 6 patients who demonstrated postoperative neurological deficits despite unchanged somatosensory evoked potentials during intraoperative monitoring. Although there is both experimental and clinical evidence that somatosensory evoked potentials are sensitive to some types of intraoperative mishap, the technique should be employed with an awareness of its possible limitations.
[Evoked potentials extraction based on cross-talk resistant adaptive noise cancellation].
Zeng, Qingning; Li, Ling; Liu, Qinghua; Yao, Dezhong
2004-06-01
As Evoked Potentials are much lower in amplitude with respect to the on-going EEC, many trigger-related signals are needed for common averaging technique to enable the extraction of single-trail evoked potentials (EP). How to acquire EP through fewer evocations is an important research project. This paper proposes a cross-talk resistant adaptive noise cancellation method to extract EP. Together with the use of filtering technique and the common averaging technique, the present method needs much less evocations to acquire EP signals. According to the simulating experiment, it needs only several evocations or even only one evocation to get EP signals in good quality.
McIntyre, Ian W; Francis, Lisa; McAuliffe, John J
2016-01-01
There is a general belief that somatosensory-evoked potentials (SSEPs) are more easily obtained than transcranial motor-evoked potentials (TcMEPs) in children younger than 6 years. We tested this assumption and the assumption that motor-evoked potentials are rarely obtained in children younger than 2 years. The records of all patients who were monitored during surgical procedures between April 1, 2010, and June 30, 2013, were reviewed and those who were younger than 72 months at the time of surgery were identified and analyzed for the rate of obtaining clinically useful SSEPs and motor-evoked potentials. Subgroup analysis was performed by age. A total of 146 patients were identified, 9 had SSEPs without TcMEPs monitored, 117 had both TcMEPs and SSEPs monitored, and the remainder had only electromyographic monitoring. All patients who were to have TcMEPs recorded received a total IV anesthetic. Among the 117 patients who had both SSEPs and TcMEPs monitored, clinically relevant TcMEPs were obtained more frequently than SSEPs (110/117 vs 89/117; χ = 14.82; P = 0.00012). There were significant differences between the rates of obtaining SSEPs and TcMEPs in the 0- to 23-month (P = 0.0038) and 24- to 47-month (P = 0.0056) age groups. Utilization of a double-train stimulation technique facilitated obtaining TcMEPs in the youngest patients. TcMEPs can be obtained more easily than SSEPs in patients younger than 72 months if a permissive anesthetic technique is used. The success rate for obtaining TcMEPs can be further enhanced by the use of a temporal facilitation (double-train) stimulation technique.
NASA Technical Reports Server (NTRS)
Fender, Derek H.; Hestenes, John D.
1985-01-01
We have developed computerized analysis and display techniques to help identify the origins of visually evoked scalped potentials (VESP). The potentials are recorded simultaneously from many electrodes (usually 40 to 48) spaced over the region of the scalp where appreciable evoked potentials are found in response to particular stimulus. Contour mapping algorithms are then used to display the time behavior of equipotential surfaces on the scalp during the VESP. We then use an optimization technique to select the parameters of arrays of current dipole sources within the model until the model equipotential field distribution closely fits the measured data. Computer graphics are then used to display, as a movie, the actual and model scalp potential fields and the parameters of the dipole generators within the model head during the course of VESP activity. We have devised reaction time tests that involve potentially separable stages of cognitive processing and utilize stimuli that produce measurable cognition-related features in the late component of the evoked potential. We have used these techniques to determine the loci in the brain where known cognition-related features in the evoked potential are generated and we have explored the extent to which each of these features can be related to the reaction time tasks. We have also examined the temporal-spatial aspects of their cerebral involvement. Our current work is planned to characterize the age-related changes in the processes performed by such sources. We also use a neuromagnetometer to measure the evoked magnetic fields in similar circumstances; we will discuss the relative merits of the two methodologies.
La Cesa, S; Di Stefano, G; Leone, C; Pepe, A; Galosi, E; Alu, F; Fasolino, A; Cruccu, G; Valeriani, M; Truini, A
2018-01-01
In the neurophysiological assessment of patients with neuropathic pain, laser evoked potentials (LEPs), contact heat evoked potentials (CHEPs) and the evoked potentials by the intraepidermal electrical stimulation via concentric needle electrode are widely agreed as nociceptive specific responses; conversely, the nociceptive specificity of evoked potentials by surface concentric electrode (SE-PREPs) is still debated. In this neurophysiological study we aimed at verifying the nociceptive specificity of SE-PREPs. We recorded LEPs, CHEPs and SE-PREPs in eleven healthy participants, before and after epidermal denervation produced by prolonged capsaicin application. We also used skin biopsy to verify the capsaicin-induced nociceptive nerve fibre loss in the epidermis. We found that whereas LEPs and CHEPs were suppressed after capsaicin-induced epidermal denervation, the surface concentric electrode stimulation of the same denervated skin area yielded unchanged SE-PREPs. The suppression of LEPs and CHEPs after nociceptive nerve fibre loss in the epidermis indicates that these techniques are selectively mediated by nociceptive system. Conversely, the lack of SE-PREP changes suggests that SE-PREPs do not provide selective information on nociceptive system function. Capsaicin-induced epidermal denervation abolishes laser evoked potentials (LEPs) and contact heat evoked potentials (CHEPs), but leaves unaffected pain-related evoked potentials by surface concentric electrode (SE-PREPs). These findings suggest that unlike LEPs and CHEPs, SE-PREPs are not selectively mediated by nociceptive system. © 2017 European Pain Federation - EFIC®.
Wilson, A; Fram, D; Sistar, J
1981-06-01
An Imsai 8080 microcomputer is being used to simultaneously generate a color graphics stimulus display and to record visual-evoked cortical potentials. A brief description of the hardware and software developed for this system is presented. Data storage and analysis techniques are also discussed.
Development of visual evoked potentials in neonates. A study using light emitting diode goggles.
Chin, K C; Taylor, M J; Menzies, R; Whyte, H
1985-01-01
We used a signal averager with light emitting diode goggles as the photostimulator to study the development of the visual evoked potentials in 40 normal neonates of between 23 and 42 weeks' gestation. All except two infants of less than 24 weeks' gestation had replicable visual evoked potentials. A negative peak of latency (mean (SD), 308 (21) msec) was present in all infants, but the development of the primary positive peak depended on maturity. Only infants of 37 weeks or more had a consistent positive peak of latency (mean (SD), 220 (22) msec). The practical simplicity and reliability of this technique has distinct advantages over previous conventional recording systems. Neonatal visual evoked potentials are shown to change with maturity. PMID:4091582
Szlavik, Robert B
2016-02-01
The characterization of peripheral nerve fiber distributions, in terms of diameter or velocity, is of clinical significance because information associated with these distributions can be utilized in the differential diagnosis of peripheral neuropathies. Electro-diagnostic techniques can be applied to the investigation of peripheral neuropathies and can yield valuable diagnostic information while being minimally invasive. Nerve conduction velocity studies are single parameter tests that yield no detailed information regarding the characteristics of the population of nerve fibers that contribute to the compound-evoked potential. Decomposition of the compound-evoked potential, such that the velocity or diameter distribution of the contributing nerve fibers may be determined, is necessary if information regarding the population of contributing nerve fibers is to be ascertained from the electro-diagnostic study. In this work, a perturbation-based decomposition of compound-evoked potentials is proposed that facilitates determination of the fiber diameter distribution associated with the compound-evoked potential. The decomposition is based on representing the single fiber-evoked potential, associated with each diameter class, as being perturbed by contributions, of varying degree, from all the other diameter class single fiber-evoked potentials. The resultant estimator of the contributing nerve fiber diameter distribution is valid for relatively large separations in diameter classes. It is also useful in situations where the separation between diameter classes is small and the concomitant single fiber-evoked potentials are not orthogonal.
Surgical monitoring with auditory evoked potentials.
Lüders, H
1988-07-01
This comprehensive review of surgical monitoring with auditory evoked potentials (AEPs) includes a detailed discussion of techniques used for recording brainstem auditory evoked potentials, direct eight-nerve potentials, and electrocochleograms. The normal waveform of these different potentials is discussed, and the typical patterns of abnormalities seen with different insults to the peripheral or central auditory pathways are presented. The mechanisms most probably responsible for changes in AEPs during surgical procedures are analyzed. A critical analysis is made of what represents a significant change in AEPs. Also considered is the predictive value of intrasurgical changes of AEPs. Finally, attempts are made to determine whether AEPs monitoring can assist the surgeon in the prevention of postsurgical complications.
Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential
NASA Astrophysics Data System (ADS)
Tu, Tao; Xin, Yi; Gao, Xiaorong; Gao, Shangkai
2012-02-01
Visual evoked potentials (VEPs) are of great concern in cognitive and clinical neuroscience as well as in the recent research field of brain-computer interfaces (BCIs). In this study, a chirp-modulated stimulation was employed to serve as a novel type of visual stimulus. Based on our empirical study, the chirp stimuli visual evoked potential (Chirp-VEP) preserved frequency features of the chirp stimulus analogous to the steady state evoked potential (SSVEP), and therefore it can be regarded as a generalization of SSVEP. Specifically, we first investigated the characteristics of the Chirp-VEP in the time-frequency domain and the fractional domain via fractional Fourier transform. We also proposed a group delay technique to derive the apparent latency from Chirp-VEP. Results on EEG data showed that our approach outperformed the traditional SSVEP-based method in efficiency and ease of apparent latency estimation. For the recruited six subjects, the average apparent latencies ranged from 100 to 130 ms. Finally, we implemented a BCI system with six targets to validate the feasibility of Chirp-VEP as a potential candidate in the field of BCIs.
Pérez-Vidal, Alan F; Garcia-Beltran, Carlos D; Martínez-Sibaja, Albino; Posada-Gómez, Rubén
2018-05-09
The evoked potential is a neuronal activity that originates when a stimulus is presented. To achieve its detection, various techniques of brain signal processing can be used. One of the most studied evoked potentials is the P300 brain wave, which usually appears between 300 and 500 ms after the stimulus. Currently, the detection of P300 evoked potentials is of great importance due to its unique properties that allow the development of applications such as spellers, lie detectors, and diagnosis of psychiatric disorders. The present study was developed to demonstrate the usefulness of the Stockwell transform in the process of identifying P300 evoked potentials using a low-cost electroencephalography (EEG) device with only two brain sensors. The acquisition of signals was carried out using the Emotiv EPOC ® device—a wireless EEG headset. In the feature extraction, the Stockwell transform was used to obtain time-frequency information. The algorithms of linear discriminant analysis and a support vector machine were used in the classification process. The experiments were carried out with 10 participants; men with an average age of 25.3 years in good health. In general, a good performance (75⁻92%) was obtained in identifying P300 evoked potentials.
Intraoperative Functional Mapping and Monitoring during Glioma Surgery
SAITO, Taiichi; MURAGAKI, Yoshihiro; MARUYAMA, Takashi; TAMURA, Manabu; NITTA, Masayuki; OKADA, Yoshikazu
2015-01-01
Glioma surgery represents a significant advance with respect to improving resection rates using new surgical techniques, including intraoperative functional mapping, monitoring, and imaging. Functional mapping under awake craniotomy can be used to detect individual eloquent tissues of speech and/or motor functions in order to prevent unexpected deficits and promote extensive resection. In addition, monitoring the patient’s neurological findings during resection is also very useful for maximizing the removal rate and minimizing deficits by alarming that the touched area is close to eloquent regions and fibers. Assessing several types of evoked potentials, including motor evoked potentials (MEPs), sensory evoked potentials (SEPs) and visual evoked potentials (VEPs), is also helpful for performing surgical monitoring in patients under general anesthesia (GA). We herein review the utility of intraoperative mapping and monitoring the assessment of neurological findings, with a particular focus on speech and the motor function, in patients undergoing glioma surgery. PMID:25744346
Ahirwal, M K; Kumar, Anil; Singh, G K
2013-01-01
This paper explores the migration of adaptive filtering with swarm intelligence/evolutionary techniques employed in the field of electroencephalogram/event-related potential noise cancellation or extraction. A new approach is proposed in the form of controlled search space to stabilize the randomness of swarm intelligence techniques especially for the EEG signal. Swarm-based algorithms such as Particles Swarm Optimization, Artificial Bee Colony, and Cuckoo Optimization Algorithm with their variants are implemented to design optimized adaptive noise canceler. The proposed controlled search space technique is tested on each of the swarm intelligence techniques and is found to be more accurate and powerful. Adaptive noise canceler with traditional algorithms such as least-mean-square, normalized least-mean-square, and recursive least-mean-square algorithms are also implemented to compare the results. ERP signals such as simulated visual evoked potential, real visual evoked potential, and real sensorimotor evoked potential are used, due to their physiological importance in various EEG studies. Average computational time and shape measures of evolutionary techniques are observed 8.21E-01 sec and 1.73E-01, respectively. Though, traditional algorithms take negligible time consumption, but are unable to offer good shape preservation of ERP, noticed as average computational time and shape measure difference, 1.41E-02 sec and 2.60E+00, respectively.
Silva, Tatiana Rocha; de Resende, Luciana Macedo; Santos, Marco Aurélio Rocha
The vestibular evoked myogenic potential is a potential of mean latency that measures the muscle response to auditory stimulation. This potential can be generated from the contraction of the sternocleidomastoid muscle and also from the contraction of extraocular muscles in response to high-intensity sounds. This study presents a combined or simultaneous technique of cervical and ocular vestibular evoked myogenic potential in individuals with changes in the vestibular system, for use in otoneurologic diagnosis. To characterize the records and analyze the results of combined cervical and ocular VEMP in individuals with vestibular hyporeflexia and in those with Ménière's disease. The study included 120 subjects: 30 subjects with vestibular hyporeflexia, 30 with Ménière's disease, and 60 individuals with normal hearing. Data collection was performed by simultaneously recording the cervical and ocular vestibular evoked myogenic potential. There were differences between the study groups (individuals with vestibular hyporeflexia and individuals with Ménière's disease) and the control group for most of wave parameters in combined cervical and ocular vestibular evoked myogenic potential. For cervical vestibular evoked myogenic potential, it was observed that the prolongation of latency of the P13 and N23 waves was the most frequent finding in the group with vestibular hyporeflexia and in the group with Ménière's disease. For ocular vestibular evoked myogenic potential, prolonged latency of N10 and P15 waves was the most frequent finding in the study groups. Combined cervical and ocular vestibular evoked myogenic potential presented relevant results for individuals with vestibular hyporeflexia and for those with Ménière's disease. There were differences between the study groups and the control group for most of the wave parameters in combined cervical and ocular vestibular evoked myogenic potential. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Intraoperative Monitoring: Recent Advances in Motor Evoked Potentials.
Koht, Antoun; Sloan, Tod B
2016-09-01
Advances in electrophysiological monitoring have improved the ability of surgeons to make decisions and minimize the risks of complications during surgery and interventional procedures when the central nervous system (CNS) is at risk. Individual techniques have become important for identifying or mapping the location and pathway of critical neural structures. These techniques are also used to monitor the progress of procedures to augment surgical and physiologic management so as to reduce the risk of CNS injury. Advances in motor evoked potentials have facilitated mapping and monitoring of the motor tracts in newer, more complex procedures. Copyright © 2016 Elsevier Inc. All rights reserved.
Welgampola, Miriam S; Carey, John P
2010-08-01
The advent of cervical vestibular evoked myogenic potentials (CVEMPs) marked a milestone in clinical vestibular testing because they provided a simple means of assessing human otolith function. The availability of air-conducted (AC) sound and bone-conducted vibration (BCV) to evoke CVEMPs and development of a new technique of recording ocular vestibular-evoked myogenic potentials (OVEMPs) have increased the complexity of this simple test, yet extended its diagnostic capabilities. Here we highlight the evidence-based assumptions that guide interpretation of AC sound- and BCV-evoked VEMPs and the gaps in VEMP research thus far. Copyright (c) 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.
On hemispheric differences in evoked potentials to speech stimuli
NASA Technical Reports Server (NTRS)
Galambos, R.; Benson, P.; Smith, T. S.; Schulman-Galambos, C.; Osier, H.
1975-01-01
Confirmation is provided for the belief that evoked potentials may reflect differences in hemispheric functioning that are marginal at best. Subjects were right-handed and audiologically normal men and women, and responses were recorded using standard EEG techniques. Subjects were instructed to listen for the targets while laying in a darkened sound booth. Different stimuli, speech and tone signals, were used. Speech sounds were shown to evoke a response pattern that resembles that to tone or clicks. Analysis of variances on peak amplitude and latency measures showed no significant differences between hemispheres, however, a Wilcoxon test showed significant differences in hemispheres for certain target tasks.
Neurophysiological detection of impending spinal cord injury during scoliosis surgery.
Schwartz, Daniel M; Auerbach, Joshua D; Dormans, John P; Flynn, John; Drummond, Denis S; Bowe, J Andrew; Laufer, Samuel; Shah, Suken A; Bowen, J Richard; Pizzutillo, Peter D; Jones, Kristofer J; Drummond, Denis S
2007-11-01
Despite the many reports attesting to the efficacy of intraoperative somatosensory evoked potential monitoring in reducing the prevalence of iatrogenic spinal cord injury during corrective scoliosis surgery, these afferent neurophysiological signals can provide only indirect evidence of injury to the motor tracts since they monitor posterior column function. Early reports on the use of transcranial electric motor evoked potentials to monitor the corticospinal motor tracts directly suggested that the method holds great promise for improving detection of emerging spinal cord injury. We sought to compare the efficacy of these two methods of monitoring to detect impending iatrogenic neural injury during scoliosis surgery. We reviewed the intraoperative neurophysiological monitoring records of 1121 consecutive patients (834 female and 287 male) with adolescent idiopathic scoliosis (mean age, 13.9 years) treated between 2000 and 2004 at four pediatric spine centers. The same group of experienced surgical neurophysiologists monitored spinal cord function in all patients with use of a standardized multimodality technique with the patient under total intravenous anesthesia. A relevant neurophysiological change (an alert) was defined as a reduction in amplitude (unilateral or bilateral) of at least 50% for somatosensory evoked potentials and at least 65% for transcranial electric motor evoked potentials compared with baseline. Thirty-eight (3.4%) of the 1121 patients had recordings that met the criteria for a relevant signal change (i.e., an alert). Of those thirty-eight patients, seventeen showed suppression of the amplitude of transcranial electric motor evoked potentials in excess of 65% without any evidence of changes in somatosensory evoked potentials. In nine of the thirty-eight patients, the signal change was related to hypotension and was corrected with augmentation of the blood pressure. The remaining twenty-nine patients had an alert that was related directly to a surgical maneuver. Three alerts occurred following segmental vessel clamping, and the remaining twenty-six were related to posterior instrumentation and correction. Nine (35%) of these twenty-six patients with an instrumentation-related alert, or 0.8% of the cohort, awoke with a transient motor and/or sensory deficit. Seven of these nine patients presented solely with a motor deficit, which was detected by intraoperative monitoring of transcranial electric motor evoked potentials in all cases, and two patients had only sensory symptoms. Somatosensory evoked potential monitoring failed to identify a motor deficit in four of the seven patients with a confirmed motor deficit. Furthermore, when changes in somatosensory evoked potentials occurred, they lagged behind the changes in transcranial electric motor evoked potentials by an average of approximately five minutes. With an appropriate response to the alert, the motor or sensory deficit resolved in all nine patients within one to ninety days. This study underscores the advantage of monitoring the spinal cord motor tracts directly by recording transcranial electric motor evoked potentials in addition to somatosensory evoked potentials. Transcranial electric motor evoked potentials are exquisitely sensitive to altered spinal cord blood flow due to either hypotension or a vascular insult. Moreover, changes in transcranial electric motor evoked potentials are detected earlier than are changes in somatosensory evoked potentials, thereby facilitating more rapid identification of impending spinal cord injury.
Rodriguez, Rosendo A
2004-06-01
Focal neurologic and intellectual deficits or memory problems are relatively frequent after cardiac surgery. These complications have been associated with cerebral hypoperfusion, embolization, and inflammation that occur during or after surgery. Auditory evoked potentials, a neurophysiologic technique that evaluates the function of neural structures from the auditory nerve to the cortex, provide useful information about the functional status of the brain during major cardiovascular procedures. Skepticism regarding the presence of artifacts or difficulty in their interpretation has outweighed considerations of its potential utility and noninvasiveness. This paper reviews the evidence of their potential applications in several aspects of the management of cardiac surgery patients. The sensitivity of auditory evoked potentials to the effects of changes in brain temperature makes them useful for monitoring cerebral hypothermia and rewarming during cardiopulmonary bypass. The close relationship between evoked potential waveforms and specific anatomic structures facilitates the assessment of the functional integrity of the central nervous system in cardiac surgery patients. This feature may also be relevant in the management of critical patients under sedation and coma or in the evaluation of their prognosis during critical care. Their objectivity, reproducibility, and relative insensitivity to learning effects make auditory evoked potentials attractive for the cognitive assessment of cardiac surgery patients. From a clinical perspective, auditory evoked potentials represent an additional window for the study of underlying cerebral processes in healthy and diseased patients. From a research standpoint, this technology offers opportunities for a better understanding of the particular cerebral deficits associated with patients who are undergoing major cardiovascular procedures.
Maximally reliable spatial filtering of steady state visual evoked potentials.
Dmochowski, Jacek P; Greaves, Alex S; Norcia, Anthony M
2015-04-01
Due to their high signal-to-noise ratio (SNR) and robustness to artifacts, steady state visual evoked potentials (SSVEPs) are a popular technique for studying neural processing in the human visual system. SSVEPs are conventionally analyzed at individual electrodes or linear combinations of electrodes which maximize some variant of the SNR. Here we exploit the fundamental assumption of evoked responses--reproducibility across trials--to develop a technique that extracts a small number of high SNR, maximally reliable SSVEP components. This novel spatial filtering method operates on an array of Fourier coefficients and projects the data into a low-dimensional space in which the trial-to-trial spectral covariance is maximized. When applied to two sample data sets, the resulting technique recovers physiologically plausible components (i.e., the recovered topographies match the lead fields of the underlying sources) while drastically reducing the dimensionality of the data (i.e., more than 90% of the trial-to-trial reliability is captured in the first four components). Moreover, the proposed technique achieves a higher SNR than that of the single-best electrode or the Principal Components. We provide a freely-available MATLAB implementation of the proposed technique, herein termed "Reliable Components Analysis". Copyright © 2015 Elsevier Inc. All rights reserved.
Steady-State Somatosensory Evoked Potential for Brain-Computer Interface—Present and Future
Ahn, Sangtae; Kim, Kiwoong; Jun, Sung Chan
2016-01-01
Brain-computer interface (BCI) performance has achieved continued improvement over recent decades, and sensorimotor rhythm-based BCIs that use motor function have been popular subjects of investigation. However, it remains problematic to introduce them to the public market because of their low reliability. As an alternative resolution to this issue, visual-based BCIs that use P300 or steady-state visually evoked potentials (SSVEPs) seem promising; however, the inherent visual fatigue that occurs with these BCIs may be unavoidable. For these reasons, steady-state somatosensory evoked potential (SSSEP) BCIs, which are based on tactile selective attention, have gained increasing attention recently. These may reduce the fatigue induced by visual attention and overcome the low reliability of motor activity. In this literature survey, recent findings on SSSEP and its methodological uses in BCI are reviewed. Further, existing limitations of SSSEP BCI and potential future directions for the technique are discussed. PMID:26834611
The Role of Auditory Evoked Potentials in the Context of Cochlear Implant Provision.
Hoth, Sebastian; Dziemba, Oliver Christian
2017-12-01
: Auditory evoked potentials (AEP) are highly demanded during the whole process of equipping patients with cochlear implants (CI). They play an essential role in preoperative diagnostics, intraoperative testing, and postoperative monitoring of auditory performance and success. The versatility of AEP's is essentially enhanced by their property to be evokable by acoustic as well as electric stimuli. Thus, the electric responses of the auditory system following acoustic stimulation and recorded by the conventional surface technique as well as by transtympanic derivation from the promontory (Electrocochleography [ECochG]) are used for the quantitative determination of hearing loss and, additionally, electrically evoked compound actions potentials (ECAP) can be recorded with the intracochlear electrodes of the implant just adjacent to the stimulation electrode to check the functional integrity of the device and its coupling to the auditory system. The profile of ECAP thresholds is used as basis for speech processor fitting, the spread of excitation (SOE) allows the identification of electrode mislocations such as array foldover, and recovery functions may serve to optimize stimulus pulse rate. These techniques as well as those relying on scalp surface activity originating in the brainstem or the auditory cortex accompany the CI recipient during its whole life span and they offer valuable insights into functioning and possible adverse effects of the CI for clinical and scientific purposes.
Technology in the Assessment of Learning Disability.
ERIC Educational Resources Information Center
Bigler, Erin D.; Lajiness-O'Neill, Renee; Howes, Nancy-Louise
1998-01-01
Reviews recent neuroradiologic and brain imaging techniques in the assessment of learning disability. Technologies reviewed include computerized tomography; magnetic resonance imaging; electrophysiological and metabolic imaging; computerized electroencepholographic studies of evoked potentials, event-related potentials, spectral analysis, and…
Delgado-García, José M; Gruart, Agnès
2008-12-01
The availability of transgenic mice mimicking selective human neurodegenerative and psychiatric disorders calls for new electrophysiological and microstimulation techniques capable of being applied in vivo in this species. In this article, we will concentrate on experiments and techniques developed in our laboratory during the past few years. Thus we have developed different techniques for the study of learning and memory capabilities of wild-type and transgenic mice with deficits in cognitive functions, using classical conditioning procedures. These techniques include different trace (tone/SHOCK and shock/SHOCK) conditioning procedures ? that is, a classical conditioning task involving the cerebral cortex, including the hippocampus. We have also developed implantation and recording techniques for evoking long-term potentiation (LTP) in behaving mice and for recording the evolution of field excitatory postsynaptic potentials (fEPSP) evoked in the hippocampal CA1 area by the electrical stimulation of the commissural/Schaffer collateral pathway across conditioning sessions. Computer programs have also been developed to quantify the appearance and evolution of eyelid conditioned responses and the slope of evoked fEPSPs. According to the present results, the in vivo recording of the electrical activity of selected hippocampal sites during classical conditioning of eyelid responses appears to be a suitable experimental procedure for studying learning capabilities in genetically modified mice, and an excellent model for the study of selected neuropsychiatric disorders compromising cerebral cortex functioning.
Recording Visual Evoked Potentials and Auditory Evoked P300 at 9.4T Static Magnetic Field
Hahn, David; Boers, Frank; Shah, N. Jon
2013-01-01
Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4T were not different from those recorded at 0T. The amplitudes of ERPs were higher at 9.4T when compared to recordings at 0T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses. PMID:23650538
Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.
Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon
2013-01-01
Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.
Transesophageal versus transcranial motor evoked potentials to monitor spinal cord ischemia.
Tsuda, Kazumasa; Shiiya, Norihiko; Takahashi, Daisuke; Ohkura, Kazuhiro; Yamashita, Katsushi; Kando, Yumi; Arai, Yoshifumi
2016-02-01
We have previously reported that transesophageal motor evoked potential is feasible and more stable than transcranial motor evoked potential. This study aimed to investigate the efficacy of transesophageal motor evoked potential to monitor spinal cord ischemia. Transesophageal and transcranial motor evoked potentials were recorded in 13 anesthetized dogs at the bilateral forelimbs, anal sphincters, and hindlimbs. Spinal cord ischemia was induced by aortic balloon occlusion at the 8th to 10th thoracic vertebra level. In the 12 animals with motor evoked potential disappearance, occlusion was maintained for 10 minutes (n = 6) or 40 minutes (n = 6) after motor evoked potential disappearance. Neurologic function was evaluated by Tarlov score at 24 and 48 hours postoperatively. Time to disappearance of bilateral motor evoked potentials was quicker in transesophageal motor evoked potentials than in transcranial motor evoked potentials at anal sphincters (6.9 ± 3.1 minutes vs 8.3 ± 3.4 minutes, P = .02) and hindlimbs (5.7 ± 1.9 minutes vs 7.1 ± 2.7 minutes, P = .008). Hindlimb function was normal in all dogs in the 10-minute occlusion group, and motor evoked potentials recovery (>75% on both sides) after reperfusion was quicker in transesophageal motor evoked potentials than transcranial motor evoked potentials at hindlimbs (14.8 ± 5.6 minutes vs 24.7 ± 8.2 minutes, P = .001). At anal sphincters, transesophageal motor evoked potentials always reappeared (>25%), but transcranial motor evoked potentials did not in 3 of 6 dogs. In the 40-minute occlusion group, hindlimb motor evoked potentials did not reappear in 4 dogs with paraplegia. Among the 2 remaining dogs, 1 with paraparesis (Tarlov 3) showed delayed recovery (>75%) of hindlimb motor evoked potentials without reappearance of anal sphincter motor evoked potentials. In another dog with spastic paraplegia, transesophageal motor evoked potentials from the hindlimbs remained less than 20%, whereas transcranial motor evoked potentials showed recovery (>75%). Transesophageal motor evoked potentials may be superior to transcranial motor evoked potentials in terms of quicker response to spinal cord ischemia and better prognostic value. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Finneran, James J; Houser, Dorian S
2006-05-01
Traditional behavioral techniques for hearing assessment in marine mammals are limited by the time and access required to train subjects. Electrophysiological methods, where passive electrodes are used to measure auditory evoked potentials (AEPs), are attractive alternatives to behavioral techniques; however, there have been few attempts to compare AEP and behavioral results for the same subject. In this study, behavioral and AEP hearing thresholds were compared in four bottlenose dolphins. AEP thresholds were measured in-air using a piezoelectric sound projector embedded in a suction cup to deliver amplitude modulated tones to the dolphin through the lower jaw. Evoked potentials were recorded noninvasively using surface electrodes. Adaptive procedures allowed AEP hearing thresholds to be estimated from 10 to 150 kHz in a single ear in about 45 min. Behavioral thresholds were measured in a quiet pool and in San Diego Bay. AEP and behavioral threshold estimates agreed closely as to the upper cutoff frequency beyond which thresholds increased sharply. AEP thresholds were strongly correlated with pool behavioral thresholds across the range of hearing; differences between AEP and pool behavioral thresholds increased with threshold magnitude and ranged from 0 to + 18 dB.
High frequency oscillations evoked by peripheral magnetic stimulation.
Biller, S; Simon, L; Fiedler, P; Strohmeier, D; Haueisen, J
2011-01-01
The analysis of somatosensory evoked potentials (SEP) and / or fields (SEF) is a well-established and important tool for investigating the functioning of the peripheral and central human nervous system. A standard technique to evoke SEPs / SEFs is the stimulation of the median nerve by using a bipolar electrical stimulus. We aim at an alternative stimulation technique enabling stimulation of deep nerve structures while reducing patient stress and error susceptibility. In the current study, we apply a commercial transcranial magnetic stimulation system for peripheral magnetic stimulation of the median nerve. We compare the results of simultaneously recorded EEG signals to prove applicability of our technique to evoke SEPs including low frequency components (LFC) as well as high frequency oscillations (HFO). Therefore, we compare amplitude, latency and time-frequency characteristics of the SEP of 14 healthy volunteers after electric and magnetic stimulation. Both low frequency components and high frequency oscillations were detected. The HFOs were superimposed onto the primary cortical response N20. Statistical analysis revealed significantly lower amplitudes and increased latencies for LFC and HFO components after magnetic stimulation. The differences indicate the inability of magnetic stimulation to elicit supramaximal responses. A psycho-perceptual evaluation showed that magnetic stimulation was less unpleasant for 12 out of the 14 volunteers. In conclusion, we showed that LFC and HFO components related to median nerve stimulation can be evoked by peripheral magnetic stimulation.
Jou, I M
2000-08-01
Acute spinal cord injury was induced by a clip compression model in rats to approximate spinal cord injury encountered in spinal surgery. Spinal somatosensory-evoked potential neuromonitoring was used to study the electrophysiologic change. To compare and correlate changes in evoked potential after acute compression at different core temperatures with postoperative neurologic function and histologic change, to evaluate current intraoperative neuromonitoring warning criteria for neural damage, and to confirm the protective effect of hypothermia in acute spinal cord compression injury by electrophysiologic, histologic, and clinical observation. With the increase in aggressive correction of spinal deformities, and the invasiveness of surgical instruments, the incidence of neurologic complication appears to have increased despite the availability of sensitive intraoperative neuromonitoring techniques designed to alert surgeons to impending neural damage. Many reasons have been given for the frequent failures of neuromonitoring, but the influence of temperature-a very important and frequently encountered factor-on evoked potential has not been well documented. Specifically, decrease in amplitude and elongation of latency seem not to have been sufficiently taken into account when intraoperative neuromonitoring levels were interpreted and when acceptable intraoperative warning criteria were determined. Experimental acute spinal cord injury was induced in rats by clip compression for two different intervals and at three different core temperatures. Spinal somatosensory-evoked potential, elicited by stimulating the median nerve and recorded from the cervical interspinous C2-C3, was monitored immediately before and after compression, and at 15-minute intervals for 1 hour. Spinal somatosensory-evoked potential change is almost parallel to temperature-based amplitude reduction and latency elongation. Significant neurologic damage induced by acute compression of the cervical spinal cord produced a degree of effect on the amplitude of spinal somatosensory-evoked potential in normothermic conditions that differed from the effect in moderately hypothermic conditions. Using the same electromonitoring criteria,moderately hypothermic groups showed a significantly higher false-negative rate statistically (35%) than normothermic groups (10%). Systemic cooling may protect against the detrimental effects of aggressive spinal surgical procedures. There is still not enough published information available to establish statistically and ethically acceptable intraoperative neuromonitoring warning and intervention criteria conclusively. Therefore, an urgent need exists for further investigation. Although a reduction of more than 50% in evoked potential still seems acceptable as an indicator of impending neural function loss, maintenance of more than 50% of baseline evoked potential is no guarantee of normal postoperative neural function, especially at lower than normal temperatures.
Cerebellar interaction with the acoustic reflex.
Jastreboff, P J
1981-01-01
The involvement of the cerebellar vermis in the acoustic reflex was analyzed in 12 cats, decerebrated or in pentobarbital anesthesia. Anatomical data suggested the existence of a connection of lobules VIII with the ventral cochlear nucleus. Single cell recording and evoked potential techniques demonstrated the existence of the acoustic projection to lobulus VIII. Electrical stimulation of this area changed the tension of the middle ear muscle and caused evoked potential responses in the caudal part of the ventral cochlear nucleus. Electrical stimulation of the motor nucleus of the facial nerve evoked a slow wave in the recording taken from the surrounding of the cochlear round window. A hypothesis is proposed which postulates the involvement of the acoustic reflex in space localization of acoustic stimuli and the action of cerebellar vermis in order to assure the stability and plasticity of the acoustic reflex arc.
Bardy, Fabrice; Dillon, Harvey; Van Dun, Bram
2014-04-01
Rapid presentation of stimuli in an evoked response paradigm can lead to overlap of multiple responses and consequently difficulties interpreting waveform morphology. This paper presents a deconvolution method allowing overlapping multiple responses to be disentangled. The deconvolution technique uses a least-squared error approach. A methodology is proposed to optimize the stimulus sequence associated with the deconvolution technique under low-jitter conditions. It controls the condition number of the matrices involved in recovering the responses. Simulations were performed using the proposed deconvolution technique. Multiple overlapping responses can be recovered perfectly in noiseless conditions. In the presence of noise, the amount of error introduced by the technique can be controlled a priori by the condition number of the matrix associated with the used stimulus sequence. The simulation results indicate the need for a minimum amount of jitter, as well as a sufficient number of overlap combinations to obtain optimum results. An aperiodic model is recommended to improve reconstruction. We propose a deconvolution technique allowing multiple overlapping responses to be extracted and a method of choosing the stimulus sequence optimal for response recovery. This technique may allow audiologists, psychologists, and electrophysiologists to optimize their experimental designs involving rapidly presented stimuli, and to recover evoked overlapping responses. Copyright © 2013 International Federation of Clinical Neurophysiology. All rights reserved.
Steady-state evoked potentials possibilities for mental-state estimation
NASA Technical Reports Server (NTRS)
Junker, Andrew M.; Schnurer, John H.; Ingle, David F.; Downey, Craig W.
1988-01-01
The use of the human steady-state evoked potential (SSEP) as a possible measure of mental-state estimation is explored. A method for evoking a visual response to a sum-of-ten sine waves is presented. This approach provides simultaneous multiple frequency measurements of the human EEG to the evoking stimulus in terms of describing functions (gain and phase) and remnant spectra. Ways in which these quantities vary with the addition of performance tasks (manual tracking, grammatical reasoning, and decision making) are presented. Models of the describing function measures can be formulated using systems engineering technology. Relationships between model parameters and performance scores during manual tracking are discussed. Problems of unresponsiveness and lack of repeatability of subject responses are addressed in terms of a need for loop closure of the SSEP. A technique to achieve loop closure using a lock-in amplifier approach is presented. Results of a study designed to test the effectiveness of using feedback to consciously connect humans to their evoked response are presented. Findings indicate that conscious control of EEG is possible. Implications of these results in terms of secondary tasks for mental-state estimation and brain actuated control are addressed.
Objective response detection in an electroencephalogram during somatosensory stimulation.
Simpson, D M; Tierra-Criollo, C J; Leite, R T; Zayen, E J; Infantosi, A F
2000-06-01
Techniques for objective response detection aim to identify the presence of evoked potentials based purely on statistical principles. They have been shown to be potentially more sensitive than the conventional approach of subjective evaluation by experienced clinicians and could be of great clinical use. Three such techniques to detect changes in an electroencephalogram (EEG) synchronous with the stimuli, namely, magnitude-squared coherence (MSC), the phase-synchrony measure (PSM) and the spectral F test (SFT) were applied to EEG signals of 12 normal subjects under conventional somatosensory pulse stimulation to the tibial nerve. The SFT, which uses only the power spectrum, showed the poorest performance, while the PSM, based only on the phase spectrum, gave results almost as good as those of the MSC, which uses both phase and power spectra. With the latter two techniques, stimulus responses were evident in the frequency range of 20-80 Hz in all subjects after 200 stimuli (5 Hz stimulus frequency), whereas for visual recognition at least 500 stimuli are usually applied. Based on these results and on simulations, the phase-based techniques appear promising for the automated detection and monitoring of somatosensory evoked potentials.
Intraoperative Subcortical Fiber Mapping with Subcortico-Cortical Evoked Potentials.
Enatsu, Rei; Kanno, Aya; Ohtaki, Shunya; Akiyama, Yukinori; Ochi, Satoko; Mikuni, Nobuhiro
2016-02-01
During brain surgery, there are difficulties associated with identifying subcortical fibers with no clear landmarks. We evaluated the usefulness of cortical evoked potentials with subcortical stimuli (subcortico-cortical evoked potential [SCEP]) in identifying subcortical fibers intraoperatively. We used SCEP to identify the pyramidal tract in 4 patients, arcuate fasciculus in 1 patient, and both in 2 patients during surgical procedures. After resection, a 1 × 4-electrode plate was placed on the floor of the removal cavity and 1-Hz alternating electrical stimuli were delivered to this electrode. A 4 × 5 recording electrode plate was placed on the central cortical areas to map the pyramidal tract and temporoparietal cortical areas for the arcuate fasciculus. SCEPs were obtained by averaging electrocorticograms time locked to the stimulus onset. The subcortical stimulation within 15 mm of the target fiber induced cortical evoked potentials in the corresponding areas, whereas the stimulation apart from 20 mm did not. Five patients showed transient worsening of neurologic symptoms after surgery. However, all patients recovered. SCEP was useful for identifying subcortical fibers and confirmed the preservation of these fibers. This technique is expected to contribute to the effectiveness and safety of resective surgery in patients with lesions close to eloquent areas. Copyright © 2016 Elsevier Inc. All rights reserved.
Leisman, Gerald; Ashkenazi, Maureen
1979-01-01
Objective psychophysical techniques for investigating visual fields are described. The paper concerns methods for the collection and analysis of evoked potentials using a small laboratory computer and provides efficient methods for obtaining information about the conduction pathways of the visual system.
Effects of pharmacological agents on subcortical resistance shifts
NASA Technical Reports Server (NTRS)
Klivington, K. A.
1975-01-01
Microliter quantities of tetrodotoxin, tetraethylammonium chloride, and picrotoxin injected into the inferior colliculus and superior olive of unanesthetized cats differentially affect the amplitude and waveform of click-evoked potentials and evoked resistance shifts. Tetrodotoxin simultaneously reduces the negative phase of the evoked potential and eliminates the evoked resistance shift. Tetraethylammonium enhances the negative evoked potential component, presumably of postsynaptic origin, without significantly altering evoked resistance shift amplitude. Picrotoxin also enhances the negative evoked potential wave but increases evoked resistance shift amplitude. These findings implicate events associated with postsynaptic membrane depolarization in the production of the evoked resistance shift.
NEUROPHYSIOLOGICAL EVALUATION OF SENSORY SYSTEMS'
Exposure to many neurotoxic compounds has been shown to produce a sensory system dysfunction. Neurophysiological assessment of sensory function in humans and animal models often uses techniques known as sensory evoked potentials. Because both humans and animals show analogous res...
Popov, Vladimir V; Nechaev, Dmitry I; Sysueva, Evgenia V; Rozhnov, Viatcheslav V; Supin, Alexander Ya
2015-07-01
Temporary threshold shift (TTS) and the discrimination of spectrum patterns after fatiguing noise exposure (170 dB re 1 μPa, 10 min duration) was investigated in a beluga whale, Delphinapterus leucas, using the evoked potential technique. Thresholds were measured using rhythmic (1000/s) pip trains of varying levels and recording the rhythmic evoked responses. Discrimination of spectrum patterns was investigated using rippled-spectrum test stimuli of various levels and ripple densities, recording the rhythmic evoked responses to ripple phase reversals. Before noise exposure, the greatest responses to rippled-spectrum probes were evoked by stimuli with a low ripple density with a decrease in the response magnitude occurring with an increasing ripple density. After noise exposure, both a TTS and a reduction of the responses to rippled-spectrum probes appeared and recovered in parallel. The reduction of the responses to rippled-spectrum probes was maximal for high-magnitude responses at low ripple densities and was negligible for low-magnitude responses at high ripple densities. It is hypothesized that the impacts of fatiguing sounds are not limited by increased thresholds and decreased sensitivity results in reduced ability to discriminate fine spectral content with the greatest impact on the discrimination of spectrum content that may carry the most obvious information about stimulus properties.
Markessis, Emily; Poncelet, Luc; Colin, Cécile; Hoonhorst, Ingrid; Collet, Grégory; Deltenre, Paul; Moore, Brian C J
2010-06-01
Auditory steady-state evoked potential (ASSEP) tuning curves were compared to compound action potential (CAP) tuning curves, both measured at 2 Hz, using sedated beagle puppies. The effect of two types of masker (narrowband noise and sinusoidal) on the tuning curve parameters was assessed. Whatever the masker type, CAP tuning curve parameters were qualitatively and quantitatively similar to the ASSEP ones, with a similar inter-subject variability, but with a greater incidence of upward tip displacement. Whatever the procedure, sinusoidal maskers produced sharper tuning curves than narrow-band maskers. Although these differences are not likely to have significant implications for clinical work, from a fundamental point of view, their origin requires further investigations. The same amount of time was needed to record a CAP and an ASSEP 13-point tuning curve. The data further validate the ASSEP technique, which has the advantages of having a smaller tendency to produce upward tip shifts than the CAP technique. Moreover, being non invasive, ASSEP tuning curves can be easily repeated over time in the same subject for clinical and research purposes.
[Effects of sevoflurane and propofol on evoked potentials during neurosurgical anesthesia].
Nakagawa, Itsuo; Hidaka, Syozo; Okada, Hironori; Kubo, Takashi; Okamura, Kenta; Kato, Takahiro
2006-06-01
The effect of anesthetics on somatosensory evoked potential (SEP) and auditory brain stem response (ABR) has been a subject of intense reseach over the last two decades. In fact, volatile anesthetics have been repeatedly shown to decrease cortical amplitude in a dose-dependent fashion but the information regarding the effect of propofol is incomplete. The purpose of this study was to compare the effects of sevoflurane and propofol on evoked potentials during comparable depth of anesthesia guided by bispectral index (BIS). Forty four patients scheduled for neurosurgery were studied. Anesthesia was maintained with intravenous propofol using target controlled infusion (TCI). We measured the change of amplitude and latency of SEP(N20-P25), ABR (V wave) and visual evoked potential (VEP: P100) at three sets of sevoflurane (0%, 1%, 2%) or propofol concentrations (effect site concentration of 1.5, 2.0, 3.0 microug x ml(-1)). BIS monitor was used to measure relative depth of hypnosis. With increasing concentrations of sevoflurane (0, 1% and 2%), SEP showed dose-related reduction in its amplitude, ABR produced less marked changes and VEP showed a significant reduction at 1%. VEP at the propofol concentration of 3.0 microg x ml(-1) was decreased significantly compared with the amplitude at 1.5 microg x ml(-1) concentration. No significant change was observed with SEP and ABR during the change of propofol dosages. BIS values were almost the same with each anesthetics. VEP was most strongly affected with anesthetics, and ABR showed less marked influence of sevoflurane and propofol. Propofol based TIVA technique would induce less change in evoked potentials than sevoflurane.
Pulsed laser versus electrical energy for peripheral nerve stimulation
Wells, Jonathon; Konrad, Peter; Kao, Chris; Jansen, E. Duco; Mahadevan-Jansen, Anita
2010-01-01
Transient optical neural stimulation has previously been shown to elicit highly controlled, artifact-free potentials within the nervous system in a non-contact fashion without resulting in damage to tissue. This paper presents the physiologic validity of elicited nerve and muscle potentials from pulsed laser induced stimulation of the peripheral nerve in a comparative study with the standard method of electrically evoked potentials. Herein, the fundamental physical properties underlying the two techniques are contrasted. Key laser parameters for efficient optical stimulation of the peripheral nerve are detailed. Strength response curves are shown to be linear for each stimulation modality, although fewer axons can be recruited with optically evoked potentials. Results compare the relative transient energy requirements for stimulation using each technique and demonstrate that optical methods can selectively excite functional nerve stimulation. Adjacent stimulation and recording of compound nerve potentials in their entirety from optical and electrical stimulation are presented, with optical responses shown to be free of any stimulation artifact. Thus, use of a pulsed laser exhibits some advantages when compared to standard electrical means for excitation of muscle potentials in the peripheral nerve in the research domain and possibly for clinical diagnostics in the future. PMID:17537515
Zhang, Z; Tian, X
2005-01-01
The application of a recently proposed denoising implementation for obtaining cognitive evoked potentials (CEPs) at the single-trial level is shown. The aim of this investigation is to develop the technique of extracting CEPs by combining both the third-order correlation and the wavelet denoising methods. First, the noisy CEPs was passed through a finite impulse response filter whose impulse response is matched with the shape of the noise-free signal. It was shown that it is possible to estimate the filter impulse response on basis of a select third-order correlation slice (TOCS) of the input noisy CEPs. Second, the output from the third-order correlation filter is decomposed with bi-orthogonal splines at 5 levels. The CEPs is reconstructed by wavelet final approximation a
Christiansen, Emily F; Piniak, Wendy E D; Lester, Lori A; Harms, Craig A
2013-01-01
Investigations into the biology of aquatic and semiaquatic species, including those involving sensory specialization, often require creative solutions to novel questions. We developed a technique for safely anesthetizing a semiaquatic chelonian species, the diamondback terrapin (Malaclemys terrapin), for measurement of auditory evoked potentials while animals were completely submerged in water. Custom-modified endotracheal tubes were used to obtain a watertight seal on both sides of the glottis and prevent aspiration of water during testing. No adverse effects were seen after the procedures, and assessment of venous blood-gas partial pressures and lactate concentrations indicated that sufficient gas exchange was maintained under anesthesia through manual ventilation. PMID:24351768
Kim, Keewon; Cho, Charles; Bang, Moon-Suk; Shin, Hyung-Ik; Phi, Ji-Hoon; Kim, Seung-Ki
2018-05-01
Intraoperative monitoring (IOM) utilizes electrophysiological techniques as a surrogate test and evaluation of nervous function while a patient is under general anesthesia. They are increasingly used for procedures, both surgical and endovascular, to avoid injury during an operation, examine neurological tissue to guide the surgery, or to test electrophysiological function to allow for more complete resection or corrections. The application of IOM during pediatric brain tumor resections encompasses a unique set of technical issues. First, obtaining stable and reliable responses in children of different ages requires detailed understanding of normal ageadjusted brain-spine development. Neurophysiology, anatomy, and anthropometry of children are different from those of adults. Second, monitoring of the brain may include risk to eloquent functions and cranial nerve functions that are difficult with the usual neurophysiological techniques. Third, interpretation of signal change requires unique sets of normative values specific for children of that age. Fourth, tumor resection involves multiple considerations including defining tumor type, size, location, pathophysiology that might require maximal removal of lesion or minimal intervention. IOM techniques can be divided into monitoring and mapping. Mapping involves identification of specific neural structures to avoid or minimize injury. Monitoring is continuous acquisition of neural signals to determine the integrity of the full longitudinal path of the neural system of interest. Motor evoked potentials and somatosensory evoked potentials are representative methodologies for monitoring. Free-running electromyography is also used to monitor irritation or damage to the motor nerves in the lower motor neuron level : cranial nerves, roots, and peripheral nerves. For the surgery of infratentorial tumors, in addition to free-running electromyography of the bulbar muscles, brainstem auditory evoked potentials or corticobulbar motor evoked potentials could be combined to prevent injury of the cranial nerves or nucleus. IOM for cerebral tumors can adopt direct cortical stimulation or direct subcortical stimulation to map the corticospinal pathways in the vicinity of lesion. IOM is a diagnostic as well as interventional tool for neurosurgery. To prove clinical evidence of it is not simple. Randomized controlled prospective studies may not be possible due to ethical reasons. However, prospective longitudinal studies confirming prognostic value of IOM are available. Furthermore, oncological outcome has also been shown to be superior in some brain tumors, with IOM. New methodologies of IOM are being developed and clinically applied. This review establishes a composite view of techniques used today, noting differences between adult and pediatric monitoring.
A joint sparse representation-based method for double-trial evoked potentials estimation.
Yu, Nannan; Liu, Haikuan; Wang, Xiaoyan; Lu, Hanbing
2013-12-01
In this paper, we present a novel approach to solving an evoked potentials estimating problem. Generally, the evoked potentials in two consecutive trials obtained by repeated identical stimuli of the nerves are extremely similar. In order to trace evoked potentials, we propose a joint sparse representation-based double-trial evoked potentials estimation method, taking full advantage of this similarity. The estimation process is performed in three stages: first, according to the similarity of evoked potentials and the randomness of a spontaneous electroencephalogram, the two consecutive observations of evoked potentials are considered as superpositions of the common component and the unique components; second, making use of their characteristics, the two sparse dictionaries are constructed; and finally, we apply the joint sparse representation method in order to extract the common component of double-trial observations, instead of the evoked potential in each trial. A series of experiments carried out on simulated and human test responses confirmed the superior performance of our method. © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.
A simple model for the generation of the vestibular evoked myogenic potential (VEMP).
Wit, Hero P; Kingma, Charlotte M
2006-06-01
To describe the mechanism by which the vestibular evoked myogenic potential is generated. Vestibular evoked myogenic potential generation is modeled by adding a large number of muscle motor unit action potentials. These action potentials occur randomly in time along a 100 ms long time axis. But because between approximately 15 and 20 ms after a loud short sound stimulus (almost) no action potentials are generated during VEMP measurements in human subjects, no action potentials are present in the model during this time. The evoked potential is the result of the lack of amplitude cancellation in the averaged surface electromyogram at the edges of this 5 ms long time interval. The relatively simple model describes generation and some properties of the vestibular evoked myogenic potential very well. It is shown that, in contrast with other evoked potentials (BAEPs, VERs), the vestibular evoked myogenic potential is the result of an interruption of activity and not that of summed synchronized neural action potentials.
Hu, Y; Luk, K D; Lu, W W; Holmes, A; Leong, J C
2001-05-01
Spinal somatosensory evoked potential (SSEP) has been employed to monitor the integrity of the spinal cord during surgery. To detect both temporal and spectral changes in SSEP waveforms, an investigation of the application of time-frequency analysis (TFA) techniques was conducted. SSEP signals from 30 scoliosis patients were analysed using different techniques; short time Fourier transform (STFT), Wigner-Ville distribution (WVD), Choi-Williams distribution (CWD), cone-shaped distribution (CSD) and adaptive spectrogram (ADS). The time-frequency distributions (TFD) computed using these methods were assessed and compared with each other. WVD, ADS, CSD and CWD showed better resolution than STFT. Comparing normalised peak widths, CSD showed the sharpest peak width (0.13+/-0.1) in the frequency dimension, and a mean peak width of 0.70+/-0.12 in the time dimension. Both WVD and CWD produced cross-term interference, distorting the TFA distribution, but this was not seen with CSD and ADS. CSD appeared to give a lower mean peak power bias (10.3%+/-6.2%) than ADS (41.8%+/-19.6%). Application of the CSD algorithm showed both good resolution and accurate spectrograms, and is therefore recommended as the most appropriate TFA technique for the analysis of SSEP signals.
THE EFFECT OF THE "EVOKING FREEDOM" TECHNIQUE ON AN UNUSUAL AND DISTURBING REQUEST.
Guéguen, Nicolas; Silone, Fabien; David, Mathieu; Pascual, Alexandre
2015-06-01
The "evoking freedom" technique consists in soliciting someone to comply with a request by simply saying that she is free to accept or to refuse the request. However, previous studies used low cost requests. The present study examined the magnitude of this technique associated with a more disturbing and costly request. Sixty men and 60 women aged approximately 20-25 years walking in the street were asked by a male confederate to hold a closed transparent box containing a live trap-door spider while he went into the post office to pick up a package. In the evoking freedom condition, the confederate added in his request that the participant was "free to accept or to refuse." More compliance occurred in the "evoking freedom" condition (53.3%) than in the control condition (36.7%). These results confirm the robustness and the magnitude of the evoking freedom technique on compliance and show that this technique remained effective even when the request was psychologically costly to perform and was associated with fear.
Median and ulnar muscle and sensory evoked potentials.
Felsenthal, G
1978-08-01
The medical literature was reviewed to find suggested clinical applications of the study of the amplitude of evoked muscle action potentials (MAP) and sensory action potentials (SAP). In addition, the literature was reviewed to ascertain the normal amplitude and duration of the evoked MAP and SAP as well as the factors affecting the amplitude: age, sex, temperature, ischemia. The present study determined the normal amplitude and duration of the median and ulnar MAP and SAP in fifty normal subjects. The amplitude of evoked muscle or sensory action potentials depends on multiple factors. Increased skin resistance, capacitance, and impedance at the surface of the recording electrode diminishes the amplitude. Similarly, increased distance from the source of the action potential diminishes its amplitude. Increased interelectrode distance increases the amplitude of the bipolarly recorded sensory action potential until a certain interelectrode distance is exceeded and the diphasic response becomes tri- or tetraphasic. Artifact or poor technique may reduce the potential difference between the recording electrodes or obscure the late positive phase of the action potential and thus diminish the peak to peak amplitude measurement. Intraindividual comparison indicated a marked difference of amplitude in opposite hands. The range of the MAP of the abductor pollicis brevis in one hand was 40.0--100% of the response in the opposite hand. For the abductor digiti minimi, the MAP was 58.5--100% of the response of the opposite hand. The median and ulnar SAP was between 50--100% of the opposite SAP. Consequent to these findings the effect of hand dominance on the amplitude of median and ulnar evoked muscle and sensory action potentials was studied in 41 right handed volunteers. The amplitudes of the median muscle action potential (p less than 0.02) and the median and ulnar sensory action potentials (p less than 0.001) were significantly less in the dominant hand. There was no significant difference between the ulnar muscle action potentials or for the median and ulnar distal motor and sensory latencies in the right and left hands of this group of volunteers.
Wirsching, Andreas; Müller-Felber, Wolfgang; Schoser, Benedikt
2014-08-01
Pompe disease is a multisystem autosomal recessive glycogen storage disease. Autoptic findings in patients with classic infantile and late-onset Pompe disease have proven that accumulation of glycogen can also be found in the peripheral and central nervous system. To assess the functional role of these pathologic findings, multimodal sensory evoked potentials were analyzed. Serial recordings for brainstem auditory, visual, and somatosensory evoked potentials of 11 late-onset Pompe patients were reviewed. Data at the onset of the enzyme replacement therapy with alglucosidase alfa were compared with follow-up recordings at 12 and 24 months. Brainstem auditory evoked potentials showed a delayed peak I in 1/10 patients and an increased I-III and I-V interpeak latency in 1/10 patients, respectively. The III-V interpeak latencies were in the normal range. Visual evoked potentials were completely normal. Median somatosensory evoked potentials showed an extended interpeak latency in 3/9 patients. Wilcoxon tests comparing age-matched subgroups found significant differences in brainstem auditory evoked potentials and visual evoked potentials. We found that the majority of recordings for evoked potentials were within the ranges for standard values, therefore reflecting the lack of clinically relevant central nervous system involvement. Regular surveillance by means of evoked potentials does not seem to be appropriate in late-onset Pompe patients.
Scibilia, Antonino; Raffa, Giovanni; Rizzo, Vincenzo; Quartarone, Angelo; Visocchi, Massimiliano; Germanò, Antonino; Tomasello, Francesco
2017-01-01
Although there is recent evidence for the role of intraoperative neurophysiological monitoring (IONM) in spine surgery, there are no uniform opinions on the optimal combination of the different tools. At our institution, multimodal IONM (mIONM) approach in spine surgery involves the evaluation of somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) with electrical transcranial stimulation, including the use of a multipulse technique with multiple myomeric registration of responses from limbs, and a single-pulse technique with D-wave registration through epi- and intradural recording, and free running and evoked electromyography (frEMG and eEMG) with bilateral recording from segmental target muscles. We analyzed the impact of the mIONM on the preservation of neuronal structures and on functional restoration in a prospective series of patients who underwent spine surgery. We observed an improvement of neurological status in 50 % of the patients. The D-wave registration was the most useful intraoperative tool, especially when MEP and SEP responses were absent or poorly recordable. Our preliminary data confirm that mIONM plays a fundamental role in the identification and functional preservation of the spinal cord and nerve roots. It is highly sensitive and specific for detecting and avoiding neurological injury during spine surgery and represents a helpful tool for achieving optimal postoperative functional outcome.
Mesbah, Samineh; Angeli, Claudia A; Keynton, Robert S; El-Baz, Ayman; Harkema, Susan J
2017-01-01
Voluntary movements and the standing of spinal cord injured patients have been facilitated using lumbosacral spinal cord epidural stimulation (scES). Identifying the appropriate stimulation parameters (intensity, frequency and anode/cathode assignment) is an arduous task and requires extensive mapping of the spinal cord using evoked potentials. Effective visualization and detection of muscle evoked potentials induced by scES from the recorded electromyography (EMG) signals is critical to identify the optimal configurations and the effects of specific scES parameters on muscle activation. The purpose of this work was to develop a novel approach to automatically detect the occurrence of evoked potentials, quantify the attributes of the signal and visualize the effects across a high number of scES parameters. This new method is designed to automate the current process for performing this task, which has been accomplished manually by data analysts through observation of raw EMG signals, a process that is laborious and time-consuming as well as prone to human errors. The proposed method provides a fast and accurate five-step algorithms framework for activation detection and visualization of the results including: conversion of the EMG signal into its 2-D representation by overlaying the located signal building blocks; de-noising the 2-D image by applying the Generalized Gaussian Markov Random Field technique; detection of the occurrence of evoked potentials using a statistically optimal decision method through the comparison of the probability density functions of each segment to the background noise utilizing log-likelihood ratio; feature extraction of detected motor units such as peak-to-peak amplitude, latency, integrated EMG and Min-max time intervals; and finally visualization of the outputs as Colormap images. In comparing the automatic method vs. manual detection on 700 EMG signals from five individuals, the new approach decreased the processing time from several hours to less than 15 seconds for each set of data, and demonstrated an average accuracy of 98.28% based on the combined false positive and false negative error rates. The sensitivity of this method to the signal-to-noise ratio (SNR) was tested using simulated EMG signals and compared to two existing methods, where the novel technique showed much lower sensitivity to the SNR.
Mesbah, Samineh; Angeli, Claudia A.; Keynton, Robert S.; Harkema, Susan J.
2017-01-01
Voluntary movements and the standing of spinal cord injured patients have been facilitated using lumbosacral spinal cord epidural stimulation (scES). Identifying the appropriate stimulation parameters (intensity, frequency and anode/cathode assignment) is an arduous task and requires extensive mapping of the spinal cord using evoked potentials. Effective visualization and detection of muscle evoked potentials induced by scES from the recorded electromyography (EMG) signals is critical to identify the optimal configurations and the effects of specific scES parameters on muscle activation. The purpose of this work was to develop a novel approach to automatically detect the occurrence of evoked potentials, quantify the attributes of the signal and visualize the effects across a high number of scES parameters. This new method is designed to automate the current process for performing this task, which has been accomplished manually by data analysts through observation of raw EMG signals, a process that is laborious and time-consuming as well as prone to human errors. The proposed method provides a fast and accurate five-step algorithms framework for activation detection and visualization of the results including: conversion of the EMG signal into its 2-D representation by overlaying the located signal building blocks; de-noising the 2-D image by applying the Generalized Gaussian Markov Random Field technique; detection of the occurrence of evoked potentials using a statistically optimal decision method through the comparison of the probability density functions of each segment to the background noise utilizing log-likelihood ratio; feature extraction of detected motor units such as peak-to-peak amplitude, latency, integrated EMG and Min-max time intervals; and finally visualization of the outputs as Colormap images. In comparing the automatic method vs. manual detection on 700 EMG signals from five individuals, the new approach decreased the processing time from several hours to less than 15 seconds for each set of data, and demonstrated an average accuracy of 98.28% based on the combined false positive and false negative error rates. The sensitivity of this method to the signal-to-noise ratio (SNR) was tested using simulated EMG signals and compared to two existing methods, where the novel technique showed much lower sensitivity to the SNR. PMID:29020054
Neuronal current magnetic resonance imaging of evoked potentials and neural oscillations
NASA Astrophysics Data System (ADS)
Jiang, Xia
Despite its great success, the current functional magnetic resonance imaging (MRI) technique relies on changes in cerebral hemodynamic parameters to infer the underlying neural activities, and as a result is limited in its spatial and temporal resolutions. In this dissertation, we discuss the feasibility of neuronal current MRI (nc-MRI), a novel technique in which the small magnetic field changes caused by neuronal electrical activities are directly measured by MRI. Two studies are described. In the first study, we investigated the feasibility of detecting the magnetic field produced by sensory evoked potentials. To eliminate the blood-oxygen-level-dependent (BOLD) effect on the MRI signal, which confounded most previous studies, an octopus visual system model was developed, which, for the first time, allowed for an in vivo investigation of nc-MRI in a BOLD-free environment. Electrophysiological responses were measured in the octopus retina and optical lobe to guide the nc-MRI acquisition. Our results indicated that no nc-MRI signal change related to neuronal activation could be detected at 0.2°/0.2% threshold for signal phase/magnitude respectively, while robust electrophysiological responses were recorded. In the second study, we discuss the feasibility of detecting neural oscillations with MRI, Based on previous studies, a novel approach was proposed in which an external oscillatory field was exploited as the excitation pulse under a spin-locked condition. This approach has the advantages of increased sensitivity and lowered physiological noise. Successful detection of sub-nanotesla field was demonstrated in phantom. Our results suggest that evoked potentials are too weak for nc-MRI detection with the current hardware, and that previous positive findings were likely due to hemodynamic confounders. On the other hand, oscillatory magnetic field can be efficiently detected in phantom. Given the stronger equivalent current dipoles produced by neural oscillations compared to evoked potentials, they might be a more promising candidate for future nc-MRI studies.
Electroretinography and Visual Evoked Potentials in Childhood Brain Tumor Survivors.
Pietilä, Sari; Lenko, Hanna L; Oja, Sakari; Koivisto, Anna-Maija; Pietilä, Timo; Mäkipernaa, Anne
2016-07-01
This population-based cross-sectional study evaluates the clinical value of electroretinography and visual evoked potentials in childhood brain tumor survivors. A flash electroretinography and a checkerboard reversal pattern visual evoked potential (or alternatively a flash visual evoked potential) were done for 51 survivors (age 3.8-28.7 years) after a mean follow-up time of 7.6 (1.5-15.1) years. Abnormal electroretinography was obtained in 1 case, bilaterally delayed abnormal visual evoked potentials in 22/51 (43%) cases. Nine of 25 patients with infratentorial tumor location, and altogether 12 out of 31 (39%) patients who did not have tumors involving the visual pathways, had abnormal visual evoked potentials. Abnormal electroretinographies are rarely observed, but abnormal visual evoked potentials are common even without evident anatomic lesions in the visual pathway. Bilateral changes suggest a general and possibly multifactorial toxic/adverse effect on the visual pathway. Electroretinography and visual evoked potential may have clinical and scientific value while evaluating long-term effects of childhood brain tumors and tumor treatment. © The Author(s) 2016.
Legatt, Alan D; Fried, Stephen J; Amaral, Terry D; Sarwahi, Vishal; Moguilevitch, Marina
2014-04-01
To report a case of motor evoked potential changes and spinal cord injury during the initial dissection in scoliosis surgery. Motor evoked potentials to transcranial electrical stimulation were recorded from multiple muscles. Somatosensory evoked potentials to limb nerve stimulation were recorded from the scalp. Clear motor evoked potentials were initially present in all monitored muscles. The patient was then pharmacologically paralyzed for the initial dissection. More than usual bleeding was encountered during that dissection, prompting transfusion. As the neuromuscular blockade subsided, motor evoked potentials persisted in the hand muscles but disappeared and remained absent in all monitored leg muscles. The spine had not been instrumented. A wake-up test demonstrated paraplegia; the surgery was aborted. There were no adverse somatosensory evoked potential changes. MRI showed an anterior spinal cord infarct. Copious soft tissue bleeding during the initial dissection might have lowered pressures in critical segmental arteries enough to cause spinal cord infarction through a steal phenomenon. The lack of somatosensory evoked potential changes reflected sparing of the dorsal columns. When neuromuscular blockade is used during the initial soft tissue dissection, motor evoked potentials should be assessed after this, but before spinal instrumentation, to determine whether there had been any spinal cord compromise during the initial dissection.
Valderrama, Joaquin T; de la Torre, Angel; Medina, Carlos; Segura, Jose C; Thornton, A Roger D
2016-03-01
The recording of auditory evoked potentials (AEPs) at fast rates allows the study of neural adaptation, improves accuracy in estimating hearing threshold and may help diagnosing certain pathologies. Stimulation sequences used to record AEPs at fast rates require to be designed with a certain jitter, i.e., not periodical. Some authors believe that stimuli from wide-jittered sequences may evoke auditory responses of different morphology, and therefore, the time-invariant assumption would not be accomplished. This paper describes a methodology that can be used to analyze the time-invariant assumption in jittered stimulation sequences. The proposed method [Split-IRSA] is based on an extended version of the iterative randomized stimulation and averaging (IRSA) technique, including selective processing of sweeps according to a predefined criterion. The fundamentals, the mathematical basis and relevant implementation guidelines of this technique are presented in this paper. The results of this study show that Split-IRSA presents an adequate performance and that both fast and slow mechanisms of adaptation influence the evoked-response morphology, thus both mechanisms should be considered when time-invariance is assumed. The significance of these findings is discussed. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
The early identification of anxiety-laden material with the aid of skin conductance measurements.
Lukens, H R
1979-01-01
Measured electrodermal responses (EDR), in the form of changes in skin conductivity, during administration of a calibration questionnaire (CQ) and a personal history questionnaire (PHQ) to each of 25 Ss. "Strong" changes were defined statistically for each S from the amplitudes of EDR evoked by the CQ. The free-floating anxiety of each S also was measured. As predicted on the grounds that questions of the PHQ were more likely than the non-personal questions of the CQ to intersect unresolved, anxiety-laden material, it was found that strong EDR evoked by the PHQ were significantly more likely to perseverate than those evoked by the CQ. Hence, the technique has potential clinical use in identifying anxiety-laden material. Free-floating anxiety did not correlate significantly with EDR data.
Donovan, Chris; Sweet, Jennifer; Eccher, Matthew; Megerian, Cliff; Semaan, Maroun; Murray, Gail; Miller, Jonathan
2015-12-01
Tinnitus is a source of considerable morbidity, and neuromodulation has been shown to be a potential treatment option. However, the location of the primary auditory cortex within Heschl gyrus in the temporal operculum presents challenges for targeting and electrode implantation. To determine whether anatomic targeting with intraoperative verification using evoked potentials can be used to implant electrodes directly into the Heschl gyrus (HG). Nine patients undergoing stereo-electroencephalogram evaluation for epilepsy were enrolled. HG was directly targeted on volumetric magnetic resonance imaging, and framed stereotaxy was used to implant an electrode parallel to the axis of the gyrus by using an oblique anterolateral-posteromedial trajectory. Intraoperative evoked potentials from auditory stimuli were recorded from multiple electrode contacts. Postoperatively, stimulation of each electrode was performed and participants were asked to describe the percept. Audiometric analysis was performed for 2 participants during subthreshold stimulation. Sounds presented to the contralateral and ipsilateral ears produced evoked potentials in HG electrodes in all participants intraoperatively. Stimulation produced a reproducible sensation of sound in all participants with perceived volume proportional to amplitude. Four participants reported distinct sounds when different electrodes were stimulated, with more medial contacts producing tones perceived as higher in pitch. Stimulation was not associated with adverse audiometric effects. There were no complications of electrode implantation. Direct anatomic targeting with physiological verification can be used to implant electrodes directly into primary auditory cortex. If deep brain stimulation proves effective for intractable tinnitus, this technique may be useful to assist with electrode implantation. DBS, deep brain stimulatorEEG, electroencephalographyHG, Heschl gyrus.
Balnytė, Renata; Ulozienė, Ingrida; Rastenytė, Daiva; Vaitkus, Antanas; Malcienė, Lina; Laučkaitė, Kristina
2011-01-01
The aim of this study was to determine the sensitivity and specificity of this classical technique employed at the Hospital of Lithuanian University of Health Sciences for the patients with multiple sclerosis and to assess its possible correlations with affected neurological systems. Pattern shift visual evoked potentials were recorded in 63 patients with multiple sclerosis, 17 (27%) of whom had a history of optic neuritis, and in 63 control patients with other neurological diseases. The latencies and amplitudes of P100 were measured. In total, 126 patients were referred to the inpatient department of neurology for differential diagnosis of demyelinating disorders between January and December of 2007. Abnormalities of visual evoked potentials were observed by 73% more frequently in patients with multiple sclerosis than in control patients (α=0.05, β<0.01). The combined monocular/interocular test showed a specificity of 90.5% and a sensitivity of 82.5%. The probability of an affection of the pyramidal system was 5 times greater (95% CI, 2.2-11.0; P<0.01) and the probability of the optic pathways involvement was 4.8 times greater (95% CI, 1.9-11.9; P<0.01) in patients with multiple sclerosis than in controls. Conventional visual evoked potentials must be reappraised in light of their diagnostic value in multiple sclerosis given their high diagnostic efficiency, relatively easy, short, and cheap implementation, and easy availability in everyday clinical practice.
Normative data for Aδ contact heat evoked potentials in adult population: a multicenter study.
Granovsky, Yelena; Anand, Praveen; Nakae, Aya; Nascimento, Osvaldo; Smith, Benn; Sprecher, Elliot; Valls-Solé, Josep
2016-05-01
There has been a significant increase over recent years in the use of contact heat evoked potentials (CHEPs) for the evaluation of small nerve fiber function. Measuring CHEP amplitude and latency has clinical utility for the diagnosis and assessment of conditions with neuropathic pain. This international multicenter study aimed to provide reference values for CHEPs to stimuli at 5 commonly examined body sites. Contact heat evoked potentials were recorded from 226 subjects (114 females), distributed per age decade between 20 and 79 years. Temperature stimuli were delivered by a thermode (32°C-51°C at a rate of 70°C/s). In phase I of the study, we investigated side-to-side differences and reported the maximum normal side-to-side difference in Aδ CHEP peak latency and amplitude for leg, forearm, and face. In phase II, we obtained normative data for 3 CHEP parameters (N2P2 amplitude, N2 latency, and P2 latency), stratified for gender and age decades from face, upper and lower limbs, and overlying cervical and lumbar spine. In general, larger CHEP amplitudes were associated with higher evoked pain scores. Females had CHEPs of larger amplitude and shorter latency than males. This substantive data set of normative values will facilitate the clinical use of CHEPs as a rapid, noninvasive, and objective technique for the assessment of patients presenting with neuropathic pain.
Myllymaa, Sami; Myllymaa, Katja; Korhonen, Hannu; Töyräs, Juha; Jääskeläinen, Juha E; Djupsund, Kaj; Tanila, Heikki; Lappalainen, Reijo
2009-06-15
Modern microfabrication techniques make it possible to develop microelectrode arrays that may be utilized not only in neurophysiological research but also in the clinic, e.g. in neurosurgery and as elements of neural prostheses. The aim of this study was to test whether a flexible microelectrode array is suitable for recording cortical surface field potentials in rats. Polyimide-based microelectrode arrays were fabricated by utilizing microfabrication techniques e.g. photolithography and magnetron sputter deposition. The present microelectrode array consists of eight platinum microelectrodes (round-shaped, Ø: 200 microm), transmission lines and connector pads sandwiched between two thin layers of biocompatible polyimide. The microelectrode arrays were electrochemically characterized by impedance spectroscopy in physiological saline solution and successfully tested in vivo by conducting acute and chronic measurements of evoked potentials on the surface of rat cortex. The arrays proved excellent flexibility and mechanical strength during handling and implantation onto the surface of cortex. The excellent electrochemical characteristics and stable in vivo recordings with high spatiotemporal resolution highlight the potential of these arrays. The fabrication protocol described here allows implementation of several other neural interfaces with different layouts, material selections or target areas either for recording or stimulation purposes.
Zuniga, M. Geraldine; Janky, Kristen L.; Schubert, Michael C.; Carey, John P.
2013-01-01
Objectives To characterize both cervical and ocular vestibular-evoked myogenic potential (cVEMP, oVEMP) responses to air-conducted sound (ACS) and midline taps in Ménière disease (MD), vestibular migraine (VM), and controls, as well as to determine if cVEMP or oVEMP responses can differentiate MD from VM. Study Design Prospective cohort study. Setting Tertiary referral center. Subjects and Methods Unilateral definite MD patients (n = 20), VM patients (n = 21) by modified Neuhauser criteria, and age-matched controls (n = 28). cVEMP testing used ACS (clicks), and oVEMP testing used ACS (clicks and 500-Hz tone bursts) and midline tap stimuli (reflex hammer and Mini-Shaker). Outcome parameters were cVEMP peak-to-peak amplitudes and oVEMP n10 amplitudes. Results Relative to controls, MD and VM groups both showed reduced click-evoked cVEMP (P < .001) and oVEMP (P < .001) amplitudes. Only the MD group showed reduction in tone-evoked amplitudes for oVEMP. Tone-evoked oVEMPs differentiated MD from controls (P = .001) and from VM (P = .007). The oVEMPs in response to the reflex hammer and Mini-Shaker midline taps showed no differences between groups (P > .210). Conclusions Using these techniques, VM and MD behaved similarly on most of the VEMP test battery. A link in their pathophysiology may be responsible for these responses. The data suggest a difference in 500-Hz tone burst–evoked oVEMP responses between MD and MV as a group. However, no VEMP test that was investigated segregated individuals with MD from those with VM. PMID:22267492
NASA Technical Reports Server (NTRS)
Knuth, Kevin H.; Shah, Ankoor S.; Truccolo, Wilson; Ding, Ming-Zhou; Bressler, Steven L.; Schroeder, Charles E.
2003-01-01
Electric potentials and magnetic fields generated by ensembles of synchronously active neurons in response to external stimuli provide information essential to understanding the processes underlying cognitive and sensorimotor activity. Interpreting recordings of these potentials and fields is difficult as each detector records signals simultaneously generated by various regions throughout the brain. We introduce the differentially Variable Component Analysis (dVCA) algorithm, which relies on trial-to-trial variability in response amplitude and latency to identify multiple components. Using simulations we evaluate the importance of response variability to component identification, the robustness of dVCA to noise, and its ability to characterize single-trial data. Finally, we evaluate the technique using visually evoked field potentials recorded at incremental depths across the layers of cortical area VI, in an awake, behaving macaque monkey.
Todd, Neil P M; McLean, Aisha; Paillard, Aurore; Kluk, Karolina; Colebatch, James G
2014-12-01
We report the results of a study to record vestibular evoked potentials (VsEPs) of cortical origin produced by impulsive acceleration (IA). In a sample of 12 healthy participants, evoked potentials recorded by 70 channel electroencephalography were obtained by IA stimulation at the nasion and compared with evoked potentials from the same stimulus applied to the forefingers. The nasion stimulation gave rise to a series of positive and negative deflections in the latency range of 26-72 ms, which were dependent on the polarity of the applied IA. In contrast, evoked potentials from the fingers were characterised by a single N50/P50 deflection at about 50 ms and were polarity invariant. Source analysis confirmed that the finger evoked potentials were somatosensory in origin, i.e. were somatosensory evoked potentials, and suggested that the nasion evoked potentials plausibly included vestibular midline and frontal sources, as well as contributions from the eyes, and thus were likely VsEPs. These results show considerable promise as a new method for assessment of the central vestibular system by means of VsEPs produced by IA applied to the head.
Jones, Matthew D; Taylor, Janet L; Booth, John; Barry, Benjamin K
2016-01-01
Exercise-induced hypoalgesia is well described, but the underlying mechanisms are unclear. The aim of this study was to examine the effect of exercise on somatosensory evoked potentials, laser evoked potentials, pressure pain thresholds and heat pain thresholds. These were recorded before and after 3-min of isometric elbow flexion exercise at 40% of the participant's maximal voluntary force, or an equivalent period of rest. Exercise-induced hypoalgesia was confirmed in two experiments (Experiment 1-SEPs; Experiment 2-LEPs) by increased pressure pain thresholds at biceps brachii (24.3 and 20.6% increase in Experiment 1 and 2, respectively; both d > 0.84 and p < 0.001) and first dorsal interosseous (18.8 and 21.5% increase in Experiment 1 and 2, respectively; both d > 0.57 and p < 0.001). In contrast, heat pain thresholds were not significantly different after exercise (forearm: 10.8% increase, d = 0.35, p = 0.10; hand: 3.6% increase, d = 0.06, p = 0.74). Contrasting effects of exercise on the amplitude of laser evoked potentials (14.6% decrease, d = -0.42, p = 0.004) and somatosensory evoked potentials (10.9% increase, d = -0.02, p = 1) were also observed, while an equivalent period of rest showed similar habituation (laser evoked potential: 7.3% decrease, d = -0.25, p = 0.14; somatosensory evoked potential: 20.7% decrease, d = -0.32, p = 0.006). The differential response of pressure pain thresholds and heat pain thresholds to exercise is consistent with relative insensitivity of thermal nociception to the acute hypoalgesic effects of exercise. Conflicting effects of exercise on somatosensory evoked potentials and laser evoked potentials were observed. This may reflect non-nociceptive contributions to the somatosensory evoked potential, but could also indicate that peripheral nociceptors contribute to exercise-induced hypoalgesia.
2013-01-01
Background Previous studies have demonstrated functional and structural temporal lobe abnormalities located close to the auditory cortical regions in schizophrenia. The goal of this study was to determine whether functional abnormalities exist in the cortical processing of musical sound in schizophrenia. Methods Twelve schizophrenic patients and twelve age- and sex-matched healthy controls were recruited, and participants listened to a random sequence of two kinds of sonic entities, intervals (tritones and perfect fifths) and chords (atonal chords, diminished chords, and major triads), of varying degrees of complexity and consonance. The perception of musical sound was investigated by the auditory evoked potentials technique. Results Our results showed that schizophrenic patients exhibited significant reductions in the amplitudes of the N1 and P2 components elicited by musical stimuli, to which consonant sounds contributed more significantly than dissonant sounds. Schizophrenic patients could not perceive the dissimilarity between interval and chord stimuli based on the evoked potentials responses as compared with the healthy controls. Conclusion This study provided electrophysiological evidence of functional abnormalities in the cortical processing of sound complexity and music consonance in schizophrenia. The preliminary findings warrant further investigations for the underlying mechanisms. PMID:23721126
Topographic Brain Mapping: A Window on Brain Function?
ERIC Educational Resources Information Center
Karniski, Walt M.
1989-01-01
The article reviews the method of topographic mapping of the brain's electrical activity. Multiple electroencephalogram (EEG) electrodes and computerized analysis of the EEG signal are used to generate maps of frequency and voltage (evoked potential). This relatively new technique holds promise in the evaluation of children with behavioral and…
Hatem, S M; Hu, L; Ragé, M; Gierasimowicz, A; Plaghki, L; Bouhassira, D; Attal, N; Iannetti, G D; Mouraux, A
2012-12-01
To assess the clinical usefulness of an automated analysis of event-related potentials (ERPs). Nociceptive laser-evoked potentials (LEPs) and non-nociceptive somatosensory electrically-evoked potentials (SEPs) were recorded in 37 patients with syringomyelia and 21 controls. LEP and SEP peak amplitudes and latencies were estimated using a single-trial automated approach based on time-frequency wavelet filtering and multiple linear regression, as well as a conventional approach based on visual inspection. The amplitudes and latencies of normal and abnormal LEP and SEP peaks were identified reliably using both approaches, with similar sensitivity and specificity. Because the automated approach provided an unbiased solution to account for average waveforms where no ERP could be identified visually, it revealed significant differences between patients and controls that were not revealed using the visual approach. The automated analysis of ERPs characterized reliably and objectively LEP and SEP waveforms in patients. The automated single-trial analysis can be used to characterize normal and abnormal ERPs with a similar sensitivity and specificity as visual inspection. While this does not justify its use in a routine clinical setting, the technique could be useful to avoid observer-dependent biases in clinical research. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Milner, Rafał; Rusiniak, Mateusz; Lewandowska, Monika; Wolak, Tomasz; Ganc, Małgorzata; Piątkowska-Janko, Ewa; Bogorodzki, Piotr; Skarżyński, Henryk
2014-01-01
Background The neural underpinnings of auditory information processing have often been investigated using the odd-ball paradigm, in which infrequent sounds (deviants) are presented within a regular train of frequent stimuli (standards). Traditionally, this paradigm has been applied using either high temporal resolution (EEG) or high spatial resolution (fMRI, PET). However, used separately, these techniques cannot provide information on both the location and time course of particular neural processes. The goal of this study was to investigate the neural correlates of auditory processes with a fine spatio-temporal resolution. A simultaneous auditory evoked potentials (AEP) and functional magnetic resonance imaging (fMRI) technique (AEP-fMRI), together with an odd-ball paradigm, were used. Material/Methods Six healthy volunteers, aged 20–35 years, participated in an odd-ball simultaneous AEP-fMRI experiment. AEP in response to acoustic stimuli were used to model bioelectric intracerebral generators, and electrophysiological results were integrated with fMRI data. Results fMRI activation evoked by standard stimuli was found to occur mainly in the primary auditory cortex. Activity in these regions overlapped with intracerebral bioelectric sources (dipoles) of the N1 component. Dipoles of the N1/P2 complex in response to standard stimuli were also found in the auditory pathway between the thalamus and the auditory cortex. Deviant stimuli induced fMRI activity in the anterior cingulate gyrus, insula, and parietal lobes. Conclusions The present study showed that neural processes evoked by standard stimuli occur predominantly in subcortical and cortical structures of the auditory pathway. Deviants activate areas non-specific for auditory information processing. PMID:24413019
Voltage-gated currents in identified rat olfactory receptor neurons.
Trombley, P Q; Westbrook, G L
1991-02-01
Whole-cell recording techniques were used to characterize voltage-gated membrane currents in neonatal rat olfactory receptor neurons (ORNs) in cell culture. Mature ORNs were identified in culture by their characteristic bipolar morphology, by retrograde labeling techniques, and by olfactory marker protein (OMP) immunoreactivity. ORNs did not have spontaneous activity, but fired action potentials to depolarizing current pulses. Action potentials were blocked by tetrodotoxin (TTX), which contrasts with the TTX-resistant action potentials in salamander olfactory receptor cells (e.g., Firestein and Werblin, 1987). Prolonged, suprathreshold current pulses evoked only a single action potential; however, repetitive firing up to 35 Hz could be elicited by a series of brief depolarizing pulses. Under voltage clamp, the TTX-sensitive sodium current had activation and inactivation properties similar to other excitable cells. In TTX and 20 mM barium, sustained inward current were evoked by voltage steps positive to -30 mV. This current was blocked by Cd (100 microM) and by nifedipine (IC50 = 368 nM) consistent with L-type calcium channels in other neurons. No T-type calcium current was observed. Voltage steps positive to -20 mV also evoked an outward current that did not inactivate during 100-msec depolarizations. Tail current analysis of this current was consistent with a selective potassium conductance. The outward current was blocked by external tetraethylammonium but was unaffected by Cd or 4-aminopyridine (4-AP) or by removal of external calcium. A transient outward current was not observed. The 3 voltage-dependent conductances in cultured rat ORNs appear to be sufficient for 2 essential functions: action potential generation and transmitter release. As a single odorant-activated channel can trigger an action potential (e.g., Lynch and Barry, 1989), the repetitive firing seen with brief depolarizing pulses suggests that ORNs do not integrate sensory input, but rather act as high-fidelity relays such that each opening of an odorant-activated channel reaches the olfactory bulb glomeruli as an action potential.
Multimodal intraoperative monitoring: an overview and proposal of methodology based on 1,017 cases
Eggspuehler, Andreas; Muller, Alfred; Dvorak, Jiri
2007-01-01
To describe different currently available tests of multimodal intraoperative monitoring (MIOM) used in spine and spinal cord surgery indicating the technical parameters, application and interpretation as an easy understanding systematic overview to help implementation of MIOM and improve communication between neurophysiologists and spine surgeons. This article aims to give an overview and proposal of the different MIOM-techniques as used daily in spine and spinal cord surgery at our institution. Intensive research in neurophysiology over the past decades has lead to a profound understanding of the spinal cord, nerve functions and their intraoperative functional evaluation in anaesthetised patients. At present, spine surgeons and neurophysiologist are faced with 1,883 publications in PubMed on spinal cord monitoring. The value and the limitations of single monitoring methods are well documented. The diagnostic power of the multimodal approach in a larger study population in spine surgery, as measured with sensitivity and specificity, is dealt with elsewhere in this supplement (Sutter et al. in Eur Spine J Suppl, 2007). This paper aims to give a detailed description of the different modalities used in this study. Description of monitoring techniques of the descending and ascending spinal cord and nerve root pathways by motor evoked potentials of the spinal cord and muscles elicited after transcranial electrical motor cortex, spinal cord, cauda equina and nerve root stimulation, continuous EMG, sensory cortical and spinal evoked potentials, as well as direct spinal cord evoked potentials applied on 1,017 patients. The method of MIOM, continuously adapted according to the site, stage of surgery and potential danger to nerve tissues, proved to be applicable with online results, reliable and furthermore teachable. PMID:17653777
On wavelet analysis of auditory evoked potentials.
Bradley, A P; Wilson, W J
2004-05-01
To determine a preferred wavelet transform (WT) procedure for multi-resolution analysis (MRA) of auditory evoked potentials (AEP). A number of WT algorithms, mother wavelets, and pre-processing techniques were examined by way of critical theoretical discussion followed by experimental testing of key points using real and simulated auditory brain-stem response (ABR) waveforms. Conclusions from these examinations were then tested on a normative ABR dataset. The results of the various experiments are reported in detail. Optimal AEP WT MRA is most likely to occur when an over-sampled discrete wavelet transformation (DWT) is used, utilising a smooth (regularity >or=3) and symmetrical (linear phase) mother wavelet, and a reflection boundary extension policy. This study demonstrates the practical importance of, and explains how to minimize potential artefacts due to, 4 inter-related issues relevant to AEP WT MRA, namely shift variance, phase distortion, reconstruction smoothness, and boundary artefacts.
Lobsien, D; Ettrich, B; Sotiriou, K; Classen, J; Then Bergh, F; Hoffmann, K-T
2014-01-01
Functional correlates of microstructural damage of the brain affected by MS are incompletely understood. The purpose of this study was to evaluate correlations of visual-evoked potentials with microstructural brain changes as determined by DTI in patients with demyelinating central nervous disease. Sixty-one patients with clinically isolated syndrome or MS were prospectively recruited. The mean P100 visual-evoked potential latencies of the right and left eyes of each patient were calculated and used for the analysis. For DTI acquisition, a single-shot echo-planar imaging pulse sequence with 80 diffusion directions was performed at 3T. Fractional anisotropy, radial diffusivity, and axial diffusivity were calculated and correlated with mean P100 visual-evoked potentials by tract-based spatial statistics. Significant negative correlations between mean P100 visual-evoked potentials and fractional anisotropy and significant positive correlations between mean P100 visual-evoked potentials and radial diffusivity were found widespread over the whole brain. The highest significance was found in the optic radiation, frontoparietal white matter, and corpus callosum. Significant positive correlations between mean P100 visual-evoked potentials and axial diffusivity were less widespread, notably sparing the optic radiation. Microstructural changes of the whole brain correlated significantly with mean P100 visual-evoked potentials. The distribution of the correlations showed clear differences among axial diffusivity, fractional anisotropy, and radial diffusivity, notably in the optic radiation. This finding suggests a stronger correlation of mean P100 visual-evoked potentials to demyelination than to axonal damage. © 2014 by American Journal of Neuroradiology.
Electrophysiological studies of the nervous system
NASA Technical Reports Server (NTRS)
Galambos, R.
1972-01-01
The electrophysiology of the nervous system is studied using cats and human subjects. Data cover effects of chlorolose on evoked potential, the evoked resistance shift that accompanies evoked potentials, and the relationship of eye movements to potentials aroused by visual stimulation.
Stein, Aryeh D; Wang, Meng; Rivera, Juan A; Martorell, Reynaldo; Ramakrishnan, Usha
2012-08-01
The evidence relating prenatal supplementation with DHA to offspring neurological development is limited. We investigated the effect of prenatal DHA supplementation on infant brainstem auditory-evoked responses and visual- evoked potentials in a double-blind, randomized controlled trial in Cuernavaca, Mexico. Pregnant women were supplemented daily with 400 mg DHA or placebo from gestation wk 18-22 through delivery. DHA and placebo groups did not differ in maternal characteristics at randomization or infant characteristics at birth. Brainstem auditory-evoked responses were measured at 1 and 3 mo in 749 and 664 infants, respectively, and visual-evoked potentials were measured at 3 and 6 mo in 679 and 817 infants, respectively. Left-right brainstem auditory-evoked potentials were moderately correlated (range, 0.26-0.43; all P < 0.001) and left-right visual-evoked potentials were strongly correlated (range, 0.79-0.94; all P < 0.001) within any assessment. Correlations across visits were modest to moderate (range, 0.09-0.38; all P < 0.01). The offspring of DHA-supplemented women did not differ from those of control women with respect to any outcome measure (all comparisons P > 0.10). We conclude that DHA supplementation during pregnancy did not influence brainstem auditory-evoked responses at 1 and 3 mo or visual-evoked potentials at 3 and 6 mo.
ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.
This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats
" NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo.
" The pattern evok...
Jones, Matthew D.; Taylor, Janet L.; Booth, John; Barry, Benjamin K.
2016-01-01
Exercise-induced hypoalgesia is well described, but the underlying mechanisms are unclear. The aim of this study was to examine the effect of exercise on somatosensory evoked potentials, laser evoked potentials, pressure pain thresholds and heat pain thresholds. These were recorded before and after 3-min of isometric elbow flexion exercise at 40% of the participant's maximal voluntary force, or an equivalent period of rest. Exercise-induced hypoalgesia was confirmed in two experiments (Experiment 1–SEPs; Experiment 2–LEPs) by increased pressure pain thresholds at biceps brachii (24.3 and 20.6% increase in Experiment 1 and 2, respectively; both d > 0.84 and p < 0.001) and first dorsal interosseous (18.8 and 21.5% increase in Experiment 1 and 2, respectively; both d > 0.57 and p < 0.001). In contrast, heat pain thresholds were not significantly different after exercise (forearm: 10.8% increase, d = 0.35, p = 0.10; hand: 3.6% increase, d = 0.06, p = 0.74). Contrasting effects of exercise on the amplitude of laser evoked potentials (14.6% decrease, d = −0.42, p = 0.004) and somatosensory evoked potentials (10.9% increase, d = −0.02, p = 1) were also observed, while an equivalent period of rest showed similar habituation (laser evoked potential: 7.3% decrease, d = −0.25, p = 0.14; somatosensory evoked potential: 20.7% decrease, d = −0.32, p = 0.006). The differential response of pressure pain thresholds and heat pain thresholds to exercise is consistent with relative insensitivity of thermal nociception to the acute hypoalgesic effects of exercise. Conflicting effects of exercise on somatosensory evoked potentials and laser evoked potentials were observed. This may reflect non-nociceptive contributions to the somatosensory evoked potential, but could also indicate that peripheral nociceptors contribute to exercise-induced hypoalgesia. PMID:27965587
Properties of visual evoked potentials to onset of movement on a television screen.
Kubová, Z; Kuba, M; Hubacek, J; Vít, F
1990-08-01
In 80 subjects the dependence of movement-onset visual evoked potentials on some measures of stimulation was examined, and these responses were compared with pattern-reversal visual evoked potentials to verify the effectiveness of pattern movement application for visual evoked potential acquisition. Horizontally moving vertical gratings were generated on a television screen. The typical movement-onset reactions were characterized by one marked negative peak only, with a peak time between 140 and 200 ms. In all subjects the sufficient stimulus duration for acquisition of movement-onset-related visual evoked potentials was 100 ms; in some cases it was only 20 ms. Higher velocity (5.6 degree/s) produced higher amplitudes of movement-onset visual evoked potentials than did the lower velocity (2.8 degrees/s). In 80% of subjects, the more distinct reactions were found in the leads from lateral occipital areas (in 60% from the right hemisphere), with no correlation to handedness of subjects. Unlike pattern-reversal visual evoked potentials, the movement-onset responses tended to be larger to extramacular stimulation (annular target of 5 degrees-9 degrees) than to macular stimulation (circular target of 5 degrees diameter).
Yao, Dezhong; Tang, Yu; Huang, Yilan; Su, Sheng
2009-01-01
Previous studies have shown that the amplitude and phase of the steady-state visual-evoked potential (SSVEP) can be influenced by a cognitive task, yet the mechanism of this influence has not been understood. As the event-related potential (ERP) is the direct neural electric response to a cognitive task, studying the relationship between the SSVEP and ERP would be meaningful in understanding this underlying mechanism. In this work, the traditional average method was applied to extract the ERP directly, following the stimulus of a working memory task, while a technique named steady-state probe topography was utilized to estimate the SSVEP under the simultaneous stimulus of an 8.3-Hz flicker and a working memory task; a comparison between the ERP and SSVEP was completed. The results show that the ERP can modulate the SSVEP amplitude, and for regions where both SSVEP and ERP are strong, the modulation depth is large. PMID:19960240
The Farther Reaches of Gestalt Therapy: A Conversation with George Brown
ERIC Educational Resources Information Center
Carter, Betsie; Vargiu, Susan
1977-01-01
This interview evokes much of the essential spirit of Gestalt Therapy and some of its techniques. Gestalt is a method of growth for developing the potential of the healthy individual. It emphasizes acquiring awareness of the existential moment, integrating unconscious aspects of self, and taking responsibility for one's actions. (Author/BP)
Kadoya, Tatsuo; Uehara, Hirofumi; Yamamoto, Toshinori; Shiraishi, Munehiro; Kinoshita, Yuki; Joyashiki, Takeshi; Enokida, Kengo
2016-02-01
Previously, we reported a case of brainstem cavernous hemangioma showing false positive responses to electromyographic tracheal tube (EMG tube). We concluded that the cause was spontaneous respiration accompanied by vocal cord movement. We report a case of left vertebral artery aneurysm showing evoked potentials on bilateral electrodes by the left vagus nerve stimulation to EMG tube. An 82-year-old woman underwent clipping of a left unruptured vertebral artery-posterior inferior cerebellar artery aneurysm. General anesthesia was induced with remifentanil, propofol and suxamethonium, and was maintained with oxygen, air, remifentanil and propofol. We monitored somatosensory evoked potentials, motor evoked potentials, and electromyogram of the vocal cord. When the manipulation reached brainstem and the instrument touched the left vagus nerve, evoked potentials appeared on bilateral electrodes. EMG tube is equipped with two electrodes on both sides. We concluded that the left vagus nerve stimulation generated evoked potentials of the left laryngeal muscles, and they were simultaneously detected as potential difference between two electrodes on both sides. EMG tube is used to identify the vagus nerve. However, it is necessary to bear in mind that each vagus nerve stimulation inevitably generates evoked potentials on bilateral electrodes.
Combined evoked potentials in co-occuring attention deficit hyperactivity disorder and epilepsy.
Major, Zoltán Zsigmond
2011-07-30
Evoked potentials, both stimulus related and event related, show disturbances in attention deficit-hyperactivity disorder and epilepsies, too. This study was designed to evaluate if these potentials are characteristically influenced by the presence of the two diseases, individually, and in the case of co-occurrence. Forty children were included, and four groups were formed, control group, ADHD group, epilepsy group and a group with the comorbidity of epilepsy and ADHD. Epilepsy patients were under proper antiepileptic treatment; ADHD patients were free of specific therapy. Brainstem auditory evoked potentials, visual evoked potentials and auditory P300 evaluation were performed. The latency of the P100 and N135 visual evoked potential components was significantly extended by the presence of epilepsy. If ADHD was concomitantly present, this effect was attenuated. Brainstem auditory evoked potential components were prolonged in the presence of the comorbidity, considering the waves elicited in the brainstem. P300 latencies were prolonged by the presence of co-occurring ADHD and epilepsy. Feedback parameters showed overall reduction of the tested cognitive performances in the ADHD group. Disturbances produced by the presence of ADHD-epilepsy comorbidity reveal hypothetically a linked physiopathological path for both diseases, and offers an approach with possible diagnostic importance, combined evoked potential recordings.
Monitoring somatosensory evoked potentials in spinal cord ischemia-reperfusion injury
Ji, Yiming; Meng, Bin; Yuan, Chenxi; Yang, Huilin; Zou, Jun
2013-01-01
It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-reperfusion injury in rabbits using somatosensory evoked potential detection technology. The results showed that the somatosensory evoked potential latency was significantly prolonged and the amplitude significantly reduced until it disappeared during the period of spinal cord ischemia. After reperfusion for 30–180 minutes, the amplitude and latency began to gradually recover; at 360 minutes of reperfusion, the latency showed no significant difference compared with the pre-ischemic value, while the somatosensory evoked potential amplitude in-creased, and severe hindlimb motor dysfunctions were detected. Experimental findings suggest that changes in somatosensory evoked potential latency can reflect the degree of spinal cord ischemic injury, while the amplitude variations are indicators of the late spinal cord reperfusion injury, which provide evidence for the assessment of limb motor function and avoid iatrogenic spinal cord injury. PMID:25206629
Passmore, Steven R; Murphy, Bernadette; Lee, Timothy D
2014-06-01
Somatosensory evoked potentionals (SEPs) can be used to elucidate differences in cortical activity associated with a spinal manipulation (SM) intervention. The purpose of this narrative review is to overview the origin and application of SEPs, a neurophysiological technique to investigate neuroplasticity. Summaries of: 1) parameters for SEP generation and waveform recording; 2) SEP peak nomenclature, interpretation and generators; 3) peaks pertaining to tactile information processing (relevant to both chiropractic and other manual therapies); 4) utilization and application of SEPs; 5) SEPs concurrent with an experimental task and at baseline/control/pretest; 6) SEPs pain studies; and 7) SEPs design (pre/post) and neural reorganization/neuroplasticity; and 8) SEPs and future chiropractic research are all reviewed. Understanding what SEPs are, and their application allows chiropractors, educators, and other manual therapists interested in SM to understand the context, and importance of research findings from SM studies that involve SEPs.
Ramos de Miguel, Angel; Falcon Gonzalez, Juan Carlos; Ramos Macias, Angel
2017-08-01
Electrical stimulation of the utricular and saccular portions of the vestibular nerve improves stability in patients suffering from vestibular dysfunction. The main objective of this study was to evaluate a new technique, vestibular response telemetry (VRT), for measuring the electrically evoked vestibular compound action potential (saccular and utricular) after stimulating the otolith organ (saccular and utricular) in adults. This study used evidence that the otolith organ can be electrically stimulated in order to develop a new vestibular implant design to improve the sensation of gravitoinertial acceleration. Four adult patients were evaluated by using a variety of measurement procedures with novel VRT software. VRT values were obtained by stimulating with three full-band Nucleus CI24RE (ST) electrodes. Specific stimuli were used. Simultaneously, electrical ocular vestibular evoked myogenic potentials (eoVEMPs) were recorded in the contralateral side. Electrically evoked compound action potentials were obtained in 10 of the 12 electrodes tested, and eoVEMPs were recorded when VRT was present. In addition to the validation of this technique, a set of default clinical test parameters was established. The VRT response morphology consisted of a biphasic waveform with an initial negative peak (N1) followed by a positive peak (P1), and latencies were typically 400 μs for N1 and 800 μs for P1. The consequences for the development of a vestibular implant for the improvement of gravitoinertial acceleration sensation are also presented. The VRT measurement technique has been shown to be a useful tool to record neural response on the otolith organ, and thus it is a convenient tool to evaluate whether the implanted electrodes provide a neural response or not. This can be used for the early development of vestibular implants to improve gravitoinertial acceleration sensation.
Van der Lubbe, Rob H J; Szumska, Izabela; Fajkowska, Małgorzata
2016-01-01
New analysis techniques of the electroencephalogram (EEG) such as wavelet analysis open the possibility to address questions that may largely improve our understanding of the EEG and clarify its relation with related potentials (ER Ps). Three issues were addressed. 1) To what extent can early ERERP components be described as transient evoked oscillations in specific frequency bands? 2) Total EEG power (TP) after a stimulus consists of pre-stimulus baseline power (BP), evoked power (EP), and induced power (IP), but what are their respective contributions? 3) The Phase Reset model proposes that BP predicts EP, while the evoked model holds that BP is unrelated to EP; which model is the most valid one? EEG results on NoGo trials for 123 individuals that took part in an experiment with emotional facial expressions were examined by computing ERPs and by performing wavelet analyses on the raw EEG and on ER Ps. After performing several multiple regression analyses, we obtained the following answers. First, the P1, N1, and P2 components can by and large be described as transient oscillations in the α and θ bands. Secondly, it appears possible to estimate the separate contributions of EP, BP, and IP to TP, and importantly, the contribution of IP is mostly larger than that of EP. Finally, no strong support was obtained for either the Phase Reset or the Evoked model. Recent models are discussed that may better explain the relation between raw EEG and ERPs.
Van der Lubbe, Rob H. J.; Szumska, Izabela; Fajkowska, Małgorzata
2016-01-01
New analysis techniques of the electroencephalogram (EEG) such as wavelet analysis open the possibility to address questions that may largely improve our understanding of the EEG and clarify its relation with related potentials (ER Ps). Three issues were addressed. 1) To what extent can early ERERP components be described as transient evoked oscillations in specific frequency bands? 2) Total EEG power (TP) after a stimulus consists of pre-stimulus baseline power (BP), evoked power (EP), and induced power (IP), but what are their respective contributions? 3) The Phase Reset model proposes that BP predicts EP, while the evoked model holds that BP is unrelated to EP; which model is the most valid one? EEG results on NoGo trials for 123 individuals that took part in an experiment with emotional facial expressions were examined by computing ERPs and by performing wavelet analyses on the raw EEG and on ER Ps. After performing several multiple regression analyses, we obtained the following answers. First, the P1, N1, and P2 components can by and large be described as transient oscillations in the α and θ bands. Secondly, it appears possible to estimate the separate contributions of EP, BP, and IP to TP, and importantly, the contribution of IP is mostly larger than that of EP. Finally, no strong support was obtained for either the Phase Reset or the Evoked model. Recent models are discussed that may better explain the relation between raw EEG and ERPs. PMID:28154612
Stein, Aryeh D.; Wang, Meng; Rivera, Juan A.; Martorell, Reynaldo; Ramakrishnan, Usha
2012-01-01
The evidence relating prenatal supplementation with DHA to offspring neurological development is limited. We investigated the effect of prenatal DHA supplementation on infant brainstem auditory-evoked responses and visual- evoked potentials in a double-blind, randomized controlled trial in Cuernavaca, Mexico. Pregnant women were supplemented daily with 400 mg DHA or placebo from gestation wk 18–22 through delivery. DHA and placebo groups did not differ in maternal characteristics at randomization or infant characteristics at birth. Brainstem auditory-evoked responses were measured at 1 and 3 mo in 749 and 664 infants, respectively, and visual-evoked potentials were measured at 3 and 6 mo in 679 and 817 infants, respectively. Left-right brainstem auditory-evoked potentials were moderately correlated (range, 0.26–0.43; all P < 0.001) and left-right visual-evoked potentials were strongly correlated (range, 0.79–0.94; all P < 0.001) within any assessment. Correlations across visits were modest to moderate (range, 0.09–0.38; all P < 0.01). The offspring of DHA-supplemented women did not differ from those of control women with respect to any outcome measure (all comparisons P > 0.10). We conclude that DHA supplementation during pregnancy did not influence brainstem auditory-evoked responses at 1 and 3 mo or visual-evoked potentials at 3 and 6 mo. PMID:22739364
Evoked potentials in multiple sclerosis.
Kraft, George H
2013-11-01
Before the development of magnetic resonance imaging (MRI), evoked potentials (EPs)-visual evoked potentials, somatosensory evoked potentials, and brain stem auditory evoked responses-were commonly used to determine a second site of disease in patients being evaluated for possible multiple sclerosis (MS). The identification of an area of the central nervous system showing abnormal conduction was used to supplement the abnormal signs identified on the physical examination-thus identifying the "multiple" in MS. This article is a brief overview of additional ways in which central nervous system (CNS) physiology-as measured by EPs-can still contribute value in the management of MS in the era of MRIs. Copyright © 2013 Elsevier Inc. All rights reserved.
Jiang, Shu-Xia; Li, Qian; Wang, Xiao-Han; Li, Fang; Wang, Zhong-Feng
2013-08-25
Activation of cannabinoid CB1 receptors (CB1Rs) regulates a variety of physiological functions in the vertebrate retina through modulating various types of ion channels. The aim of the present study was to investigate the effects of this receptor on cell excitability of rat retinal ganglion cells (RGCs) in retinal slices using whole-cell patch-clamp techniques. The results showed that under current-clamped condition perfusing WIN55212-2 (WIN, 5 μmol/L), a CB1R agonist, did not significantly change the spontaneous firing frequency and resting membrane potential of RGCs. In the presence of cocktail synaptic blockers, including excitatory postsynaptic receptor blockers CNQX and D-APV, and inhibitory receptor blockers bicuculline and strychnine, perfusion of WIN (5 μmol/L) hardly changed the frequencies of evoked action potentials by a series of positive current injection (from +10 to +100 pA). Phase-plane plot analysis showed that both average threshold voltage for triggering action potential and delay time to reach threshold voltage were not affected by WIN. However, WIN significantly decreased +dV/dtmax and -dV/dtmax of action potentials, suggestive of reduced rising and descending velocities of action potentials. The effects of WIN were reversed by co-application of SR141716, a CB1R selective antagonist. Moreover, WIN did not influence resting membrane potential of RGCs with synaptic inputs being blocked. These results suggest that activation of CB1Rs may regulate intrinsic excitability of rat RGCs through modulating evoked action potentials.
[Motor evoked potentials in thoracoabdominal aortic surgery].
Magro, Cátia; Nora, David; Marques, Miguel; Alves, Angela Garcia
2012-01-01
Thoracoabdominal aortic disease (aneurysm or dissection) has increased in recent decades. Surgery is the curative treatment but is associated to high perioperative morbidity and mortality risks. Paraplegia is one of the most severe complications, whose incidence has decreased significantly with the implementation of spinal cord protection strategies. No single method or combination of methods has proven to be fully effective in preventing paraplegia. This review is intended to analyse the scientific evidence available on the role of intraoperative monitoring with motor evoked potentials in the neurological outcome of patients undergoing thoracoabdominal aortic surgery. An online search (PubMed) was conducted. Relevant references were selected and reviewed. Intraoperative monitoring with motor evoked potentials (MEP) allows early detection of ischemic events and a targeted intervention to prevent the development of spinal cord injury, significantly reducing the incidence of postoperative paraplegia. MEP monitoring may undergo several intraoperative interferences which may compromise their interpretation. Neuromuscular blockade is the main limiting factor of anesthetic origin. It is essential to strike a balance between monitoring conditions and surgical and anesthetic needs as well as to evaluate the risks and benefits of the technique for each patient. MEP monitoring improves neurological outcome when integrated in a multidisciplinary strategy which must include multiple protective mechanisms that should be tailored to each hospital reality.
New Perspectives on Assessing Amplification Effects
Souza, Pamela E.; Tremblay, Kelly L.
2006-01-01
Clinicians have long been aware of the range of performance variability with hearing aids. Despite improvements in technology, there remain many instances of well-selected and appropriately fitted hearing aids whereby the user reports minimal improvement in speech understanding. This review presents a multistage framework for understanding how a hearing aid affects performance. Six stages are considered: (1) acoustic content of the signal, (2) modification of the signal by the hearing aid, (3) interaction between sound at the output of the hearing aid and the listener's ear, (4) integrity of the auditory system, (5) coding of available acoustic cues by the listener's auditory system, and (6) correct identification of the speech sound. Within this framework, this review describes methodology and research on 2 new assessment techniques: acoustic analysis of speech measured at the output of the hearing aid and auditory evoked potentials recorded while the listener wears hearing aids. Acoustic analysis topics include the relationship between conventional probe microphone tests and probe microphone measurements using speech, appropriate procedures for such tests, and assessment of signal-processing effects on speech acoustics and recognition. Auditory evoked potential topics include an overview of physiologic measures of speech processing and the effect of hearing loss and hearing aids on cortical auditory evoked potential measurements in response to speech. Finally, the clinical utility of these procedures is discussed. PMID:16959734
Moncho, Dulce; Poca, Maria-Antonia; Minoves, Teresa; Ferré, Alejandro; Rahnama, Kimia; Sahuquillo, Juan
2015-04-01
The aim of this study was to describe the abnormalities found in the recordings of evoked potentials (EPs), in particular those of brainstem auditory evoked potentials and somatosensory evoked potentials, in a homogeneous series of patients with Chiari type 1 malformation (CM-1) and study their relationship with clinical symptoms and malformation severity. CM-1 is characterized by cerebellar tonsils that descend below the foramen magnum and may be associated with EP alterations. However, only a small number of authors have described these tests in CM-1, and the patient groups studied to date have been small and heterogeneous. The clinical findings, neuroimages, and EP findings were retrospectively studied in a cohort of 50 patients with CM-1. Seventy percent of patients had EP abnormalities (brainstem auditory evoked potential: 52%, posterior tibial nerve somatosensory evoked potential: 42%, and median nerve somatosensory evoked potential: 34%). The most frequent alteration was an increased central conduction time. Morphometric measurements differed between the normal and pathological groups, although no statistical significance was found when comparing these groups. A high percentage of patients with CM-1 show EP alterations regardless of their clinical or radiological findings, thus highlighting the necessity of performing these tests, especially in patients with few or no symptoms.
Tsutsui, Shunji; Yamada, Hiroshi; Hashizume, Hiroshi; Minamide, Akihito; Nakagawa, Yukihiro; Iwasaki, Hiroshi; Yoshida, Munehito
2013-12-01
Transcranial motor evoked potentials (TcMEPs) are widely used to monitor motor function during spinal surgery. However, they are much smaller and more variable in amplitude than responses evoked by maximal peripheral nerve stimulation, suggesting that a limited number of spinal motor neurons to the target muscle are excited by transcranial stimulation. The aim of this study was to quantify the proportion of motor neurons recruited during TcMEP monitoring under general anesthesia. In twenty patients who underwent thoracic and/or lumbar spinal surgery with TcMEP monitoring, the triple stimulation technique (TST) was applied to the unilateral upper arm intraoperatively. Total intravenous anesthesia was employed. Trains of four stimuli were delivered with maximal intensity and an inter-pulse interval of 1.5 ms. TST responses were recorded from the abductor digiti minimi muscle, and the negative peak amplitude and area were measured and compared between the TST test (two collisions between transcranial and proximal and distal peripheral stimulation) and control response (two collisions between two proximal and one distal peripheral stimulation). The highest degree of superimposition of the TST test and control responses was chosen from several trials per patient. The average ratios (test:control) were 17.1 % (range 1.8-38 %) for the amplitudes and 21.6 % (range 2.9-40 %) for the areas. The activity of approximately 80 % of the motor units to the target muscle cannot be detected by TcMEP monitoring. Therefore, changes in evoked potentials must be interpreted cautiously when assessing segmental motor function with TcMEP monitoring.
Use of 64-channel electroencephalography to study neural otolith-evoked responses.
McNerney, Kathleen M; Lockwood, Alan H; Coad, Mary Lou; Wack, David S; Burkard, Robert F
2011-03-01
The vestibular evoked myogenic potential (VEMP) is a myogenic response that can be used clinically to evaluate the function of the saccule. However, to date, little is known about the thalamo-cortical representation of saccular activation. It is important to understand all aspects of the VEMP, as this test is currently used clinically in the evaluation of saccular function. To identify the areas of the brain that are activated in response to stimuli used clinically to evoke the VEMP. Electroencephalography (EEG) recordings combined with current density analyses were used to identify the areas of the brain that are activated in response to stimuli presented above VEMP threshold (500 Hz, 120 dB peak SPL [pSPL] tone bursts), as compared to stimuli presented below VEMP threshold (90 dB pSPL, 500 Hz tone bursts). Ten subjects without any history of balance or hearing impairment participated in the study. The neural otolith-evoked responses (NOERs) recorded in response to stimuli presented below VEMP threshold were absent or smaller than NOERs that were recorded in response to stimuli presented above VEMP threshold. Subsequent analyses with source localization techniques, followed by statistical analysis with SPM5 (Statistical Parametric Mapping), revealed several areas that were activated in response to the 120 dB pSPL tone bursts. These areas included the primary visual cortex, the precuneus, the precentral gyrus, the medial temporal gyrus, and the superior temporal gyrus. The present study found a number of specific brain areas that may be activated by otolith stimulation. Given the findings and source localization techniques (which required limited input from the investigator as to where the sources are believed to be located in the brain) used in the present study as well as the similarity in findings between studies employing galvanic stimuli, fMRI (functional magnetic resonance imaging), and scalp-recorded potentials in response to VEMP-eliciting stimuli, our study provides additional evidence that these brain regions are activated in response to stimuli that can be used clinically to evoke the VEMP. American Academy of Audiology.
Artieda, J; Valencia, M; Alegre, M; Olaziregi, O; Urrestarazu, E; Iriarte, J
2004-03-01
Steady-state potentials are oscillatory responses generated by a rhythmic stimulation of a sensory pathway. The frequency of the response, which follows the frequency of stimulation, is maximal at a stimulus rate of 40 Hz for auditory stimuli. The exact cause of these maximal responses is not known, although some authors have suggested that they might be related to the 'working frequency' of the auditory cortex. Testing of the responses to different frequencies of stimulation may be lengthy if a single frequency is studied at a time. Our aim was to develop a fast technique to explore the oscillatory response to auditory stimuli, using a tone modulated in amplitude by a sinusoid whose frequency increases linearly in frequency ('chirp') from 1 to 120 Hz. Time-frequency transforms were used for the analysis of the evoked responses in 10 subjects. Also, we analyzed whether the peaks in these responses were due to increases of amplitude or to phase-locking phenomena, using single-sweep time-frequency transforms and inter-trial phase analysis. The pattern observed in the time-frequency transform of the chirp-evoked potential was very similar in all subjects: a diagonal band of energy was observed, corresponding to the frequency of modulation at each time instant. Two components were present in the band, one around 45 Hz (30-60 Hz) and a smaller one between 80 and 120 Hz. Inter-trial phase analysis showed that these components were mainly due to phase locking phenomena. A simultaneous testing of the amplitude-modulation-following oscillatory responses to auditory stimulation is feasible using a tone modulated in amplitude at increasing frequencies. The maximal energies found at stimulation frequencies around 40 Hz are probably due to increased phase-locking of the individual responses.
1990-10-01
New Orleans, LA 70189-0407 Approved for public release; distribution is unlimited. Reproduction in whole or in part is permitted for any purpose of...have the subject supine on a bed with pillows at the head to minimize neck muscle tone. The room is kept quiet and a mild hypnotic , such as chloral
1983-11-04
visual acuity in amblyopia , using steady-state visual evoked potentials. In J. E. Desmedt (Ed.), Visual evoked potentials in man: new developments... amblyopia by the evoked potential method. Ophthalmologica, 1977s 175, 159-164. 61. Regan, D. & Spekreijse, H. Auditory-visual interactions and the
Chang, Y C
1987-01-01
An outbreak of n-hexane polyneuropathy as a result of industrial exposure occurred in printing factories in Taipei area from December 1983 to February 1985. Multimodality evoked potentials study was performed on 22 of the polyneuropathy cases, five of the subclinical cases, and seven of the unaffected workers. The absolute and interpeak latencies of patterned visual evoked potential (pVEP) in both the polyneuropathy and subclinical groups were longer than in the normal controls. The pVEP interpeak amplitude was also decreased in the polyneuropathy cases. Brainstem auditory evoked potentials (BAEP), showed no difference of wave I latency between factory workers and normal controls, but prolongation of the wave I-V interpeak latencies was noted, corresponding with the severity of the polyneuropathy. In somatosensory evoked potentials (SEPs), both the absolute latencies and central conduction time (CCT) were longer in subclinical and polyneuropathy cases than in the unaffected workers and normal controls. From this evoked potentials study, chronic toxic effects of n-hexane on the central nervous system were shown. PMID:3031221
Brainstem Auditory Evoked Potential in HIV-Positive Adults.
Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C
2015-10-20
To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment - research groups I and II, respectively - and 30 control group individuals) were assessed through brainstem auditory evoked potential. There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment.
Lega, Bradley; Dionisio, Sasha; Flanigan, Patrick; Bingaman, William; Najm, Imad; Nair, Dileep; Gonzalez-Martinez, Jorge
2015-09-01
Cortico-cortical evoked potentials offer the possibility of understanding connectivity within seizure networks to improve diagnosis and more accurately identify candidates for seizure surgery. We sought to determine if cortico-cortical evoked potentials and post-stimulation oscillatory changes differ for sites of EARLY versus LATE ictal spread. 37 patients undergoing stereoelectroencephalography were tested using a cortico-cortical evoked potential paradigm. All electrodes were classified according to the speed of ictal spread. EARLY spread sites were matched to a LATE spread site equidistant from the onset zone. Root-mean-square was used to quantify evoked responses and post-stimulation gamma band power and coherence were extracted and compared. Sites of EARLY spread exhibited significantly greater evoked responses after stimulation across all patients (t(36)=2.973, p=0.004). Stimulation elicited enhanced gamma band activity at EARLY spread sites (t(36)=2.61, p=0.03, FDR corrected); this gamma band oscillation was highly coherent with the onset zone. Cortico-cortical evoked potentials and post-stimulation changes in gamma band activity differ between sites of EARLY versus LATE ictal spread. The oscillatory changes can help visualize connectivity within the seizure network. Copyright © 2015 Elsevier B.V. All rights reserved.
Kawaguchi, Jun; Matsuura, Nobuyuki; Kasahara, Masataka; Ichinohe, Tatsuya
2015-02-01
The purpose of this study was to investigate the latency and amplitude of trigeminal somatosensory evoked potentials to clarify how nerve function on the contralateral side is affected after cervical sympathetic block (CSB). Subjects comprised 16 volunteers. For CSB, the tip of a needle was contacted with the transverse process of the sixth cervical vertebra on the right side, and lidocaine was injected. Trigeminal somatosensory evoked potentials were recorded bilaterally from C5/C6 scalp positions. Pupil diameters were also measured. Electrical stimulations were applied to the left-side lower lip, and trigeminal somatosensory evoked potentials waveforms derived from both sides of the scalp were recorded. Then, electrical stimulations were applied to the right-side of the lower lip, and recording was again performed. Recordings were performed at 5, 15, and 30 minutes after CSB. On the CSB side, pupil diameter decreased at 5 and 15 minutes after CSB. Trigeminal somatosensory evoked potentials at contralateral stimulation showed a prolongation of the latency in both P20 and N25 components on bilateral recording sites 5 and 15 minutes after CSB. Trigeminal somatosensory evoked potentials' amplitude at contralateral stimulation was smaller than at ipsilateral stimulation 5 minutes after CSB. Cervical sympathetic block prolongs the latency and reduces the amplitude of trigeminal somatosensory evoked potentials on the contralateral side.
Click- and chirp-evoked human compound action potentials
Chertoff, Mark; Lichtenhan, Jeffery; Willis, Marie
2010-01-01
In the experiments reported here, the amplitude and the latency of human compound action potentials (CAPs) evoked from a chirp stimulus are compared to those evoked from a traditional click stimulus. The chirp stimulus was created with a frequency sweep to compensate for basilar membrane traveling wave delay using the O-Chirp equations from Fobel and Dau [(2004). J. Acoust. Soc. Am. 116, 2213–2222] derived from otoacoustic emission data. Human cochlear traveling wave delay estimates were obtained from derived compound band action potentials provided by Eggermont [(1979). J. Acoust. Soc. Am. 65, 463–470]. CAPs were recorded from an electrode placed on the tympanic membrane (TM), and the acoustic signals were monitored with a probe tube microphone attached to the TM electrode. Results showed that the amplitude and latency of chirp-evoked N1 of the CAP differed from click-evoked CAPs in several regards. For the chirp-evoked CAP, the N1 amplitude was significantly larger than the click-evoked N1s. The latency-intensity function was significantly shallower for chirp-evoked CAPs as compared to click-evoked CAPs. This suggests that auditory nerve fibers respond with more unison to a chirp stimulus than to a click stimulus. PMID:21117748
Kallupi, Marsida; Varodayan, Florence P; Oleata, Christopher S; Correia, Diego; Luu, George; Roberto, Marisa
2014-04-01
The central nucleus of the amygdala (CeA) mediates several addiction-related processes and nociceptin/orphanin FQ (nociceptin) regulates ethanol intake and anxiety-like behaviors. Glutamatergic synapses, in the CeA and throughout the brain, are very sensitive to ethanol and contribute to alcohol reinforcement, tolerance, and dependence. Previously, we reported that in the rat CeA, acute and chronic ethanol exposures significantly decrease glutamate transmission by both pre- and postsynaptic actions. In this study, using electrophysiological techniques in an in vitro CeA slice preparation, we investigated the effects of nociceptin on glutamatergic transmission and its interaction with acute ethanol in naive and ethanol-dependent rats. We found that nociceptin (100-1000 nM) diminished basal-evoked compound glutamatergic receptor-mediated excitatory postsynaptic potentials (EPSPs) and spontaneous and miniature EPSCs (s/mEPSCs) by mainly decreasing glutamate release in the CeA of naive rats. Notably, nociceptin blocked the inhibition induced by acute ethanol (44 mM) and ethanol blocked the nociceptin-induced inhibition of evoked EPSPs in CeA neurons of naive rats. In neurons from chronic ethanol-treated (ethanol-dependent) rats, the nociceptin-induced inhibition of evoked EPSP amplitude was not significantly different from that in naive rats. Application of [Nphe1]Nociceptin(1-13)NH2, a nociceptin receptor (NOP) antagonist, revealed tonic inhibitory activity of NOP on evoked CeA glutamatergic transmission only in ethanol-dependent rats. The antagonist also blocked nociceptin-induced decreases in glutamatergic responses, but did not affect ethanol-induced decreases in evoked EPSP amplitude. Taken together, these studies implicate a potential role for the nociceptin system in regulating glutamatergic transmission and a complex interaction with ethanol at CeA glutamatergic synapses.
Steady-State Visual Evoked Potentials and Phase Synchronization in Migraine Patients
NASA Astrophysics Data System (ADS)
Angelini, L.; Tommaso, M. De; Guido, M.; Hu, K.; Ivanov, P. Ch.; Marinazzo, D.; Nardulli, G.; Nitti, L.; Pellicoro, M.; Pierro, C.; Stramaglia, S.
2004-07-01
We investigate phase synchronization in EEG recordings from migraine patients. We use the analytic signal technique, based on the Hilbert transform, and find that migraine brains are characterized by enhanced alpha band phase synchronization in the presence of visual stimuli. Our findings show that migraine patients have an overactive regulatory mechanism that renders them more sensitive to external stimuli.
ERIC Educational Resources Information Center
Ikeda, Kohei; Higashi, Toshio; Sugawara, Kenichi; Tomori, Kounosuke; Kinoshita, Hiroshi; Kasai, Tatsuya
2012-01-01
The effect of visual and auditory enhancements of finger movement on corticospinal excitability during motor imagery (MI) was investigated using the transcranial magnetic stimulation technique. Motor-evoked potentials were elicited from the abductor digit minimi muscle during MI with auditory, visual and, auditory and visual information, and no…
Auditory Evoked Responses in Neonates by MEG
NASA Astrophysics Data System (ADS)
Hernandez-Pavon, J. C.; Sosa, M.; Lutter, W. J.; Maier, M.; Wakai, R. T.
2008-08-01
Magnetoencephalography is a biomagnetic technique with outstanding potential for neurodevelopmental studies. In this work, we have used MEG to determinate if newborns can discriminate between different stimuli during the first few months of life. Five neonates were stimulated during several minutes with auditory stimulation. The results suggest that the newborns are able to discriminate between different stimuli despite their early age.
Auditory Evoked Responses in Neonates by MEG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Pavon, J. C.; Department of Medical Physics, University of Wisconsin Madison, Wisconsin; Sosa, M.
2008-08-11
Magnetoencephalography is a biomagnetic technique with outstanding potential for neurodevelopmental studies. In this work, we have used MEG to determinate if newborns can discriminate between different stimuli during the first few months of life. Five neonates were stimulated during several minutes with auditory stimulation. The results suggest that the newborns are able to discriminate between different stimuli despite their early age.
Behavioral and auditory evoked potential audiograms of a false killer whale (Pseudorca crassidens)
NASA Astrophysics Data System (ADS)
Yuen, Michelle M. L.; Nachtigall, Paul E.; Breese, Marlee; Supin, Alexander Ya.
2005-10-01
Behavioral and auditory evoked potential (AEP) audiograms of a false killer whale were measured using the same subject and experimental conditions. The objective was to compare and assess the correspondence of auditory thresholds collected by behavioral and electrophysiological techniques. Behavioral audiograms used 3-s pure-tone stimuli from 4 to 45 kHz, and were conducted with a go/no-go modified staircase procedure. AEP audiograms used 20-ms sinusoidally amplitude-modulated tone bursts from 4 to 45 kHz, and the electrophysiological responses were received through gold disc electrodes in rubber suction cups. The behavioral data were reliable and repeatable, with the region of best sensitivity between 16 and 24 kHz and peak sensitivity at 20 kHz. The AEP audiograms produced thresholds that were also consistent over time, with range of best sensitivity from 16 to 22.5 kHz and peak sensitivity at 22.5 kHz. Behavioral thresholds were always lower than AEP thresholds. However, AEP audiograms were completed in a shorter amount of time with minimum participation from the animal. These data indicated that behavioral and AEP techniques can be used successfully and interchangeably to measure cetacean hearing sensitivity.
Music-Evoked Emotions—Current Studies
Schaefer, Hans-Eckhardt
2017-01-01
The present study is focused on a review of the current state of investigating music-evoked emotions experimentally, theoretically and with respect to their therapeutic potentials. After a concise historical overview and a schematic of the hearing mechanisms, experimental studies on music listeners and on music performers are discussed, starting with the presentation of characteristic musical stimuli and the basic features of tomographic imaging of emotional activation in the brain, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), which offer high spatial resolution in the millimeter range. The progress in correlating activation imaging in the brain to the psychological understanding of music-evoked emotion is demonstrated and some prospects for future research are outlined. Research in psychoneuroendocrinology and molecular markers is reviewed in the context of music-evoked emotions and the results indicate that the research in this area should be intensified. An assessment of studies involving measuring techniques with high temporal resolution down to the 10 ms range, as, e.g., electroencephalography (EEG), event-related brain potentials (ERP), magnetoencephalography (MEG), skin conductance response (SCR), finger temperature, and goose bump development (piloerection) can yield information on the dynamics and kinetics of emotion. Genetic investigations reviewed suggest the heredity transmission of a predilection for music. Theoretical approaches to musical emotion are directed to a unified model for experimental neurological evidence and aesthetic judgment. Finally, the reports on musical therapy are briefly outlined. The study concludes with an outlook on emerging technologies and future research fields. PMID:29225563
[The algorithms and development for the extraction of evoked potentials].
Niu, Jie; Qiu, Tianshuang
2004-06-01
The extraction of evoked potentials is a main subject in the area of brain signal processing. In recent years, the single-trial extraction of evoked potentials has been focused on by many studies. In this paper, the approaches based on the wavelet transform, the neural network, the high order acumulants and the independent component analysis are briefly reviewed.
Human cerebral potentials evoked by moving dynamic random dot stereograms.
Herpers, M J; Caberg, H B; Mol, J M
1981-07-01
In 11 normal healthy human subjects an evoked potential was elicited by moving dynamic random dot stereograms. The random dots were generated by a minicomputer. An average of each of 8 EEG channels of the subjects tested was made. The maximum of the cerebral evoked potentials thus found was localized in the central and parietal region. No response earlier than 130--150 msec after the stimulus could be proved. The influence of fixation, the number of dots provided, an interocular interstimulus interval in the presentation of the dots, and lense accommodation movements on the evoked stereoptic potentials was investigated and discussed. An interocular interstimulus interval (left eye leading) in the presentation of the dots caused an increase in latency of the response much longer than the imposed interstimulus interval itself. It was shown that no accommodation was needed to perceive the depth impression, and to evoke the cerebral response with random dot stereograms. There are indications of an asymmetry between the two hemispheres in the handling of depth perception after 250 msec. The potential distribution of the evoked potentials strongly suggests that they are not generated in the occipital region.
[Application of evoked potentials monitoring in total thoracoabdominal aorta aneurysm repair].
Duan, Y Y; Zheng, J; Pan, X D; Zhu, J M; Liu, Y M; Ge, Y P; Cheng, L J; Sun, L Z
2016-04-05
To evaluate the application value of evoked potentials (EP) monitoring in patients undergoing aorta-iliac bypass for total thoracoabdominal aorta aneurysm repair (tTAAAR). A prospective study, with a total of 31 patients undergoing tTAAAR and intraoperative EP monitoring from June 2014 to April 2015 was carried out. The results of intraoperative evoked potentials, clinical outcomes and follow-up data of patients were collected for further evaluation. The EP wave disappeared [motor evoked potentials for (55.6±18.1) min, somatosensory evoked potentials for (50.3±18.7) min] after proximal descending aorta being clamped, and gradually recovered after the segment arteries of spine cord were reconstructed. The EP wave was restored to normal level at the end of operation in all the cases. The somatosensory evoked potentials remained unchanged in 2 cases (false negative). One case died after operation. No spinal cord injury occurred. The median follow-up after operation was 10 months (5-14 months). There was no delayed neurological deficit. EP provided an on-line monitoring of the condition of spinal cord function, which become an intraoperative protocol to avoid the irreversible injury of spinal cord.
Objective correlate of subjective pain perception by contact heat-evoked potentials.
Granovsky, Yelena; Granot, Michal; Nir, Rony-Reuven; Yarnitsky, David
2008-01-01
The method of pain-evoked potentials has gained considerable acceptance over the last 3 decades regarding its objectivity, repeatability, and quantifiability. The present study explored whether the relationship between pain-evoked potentials and pain psychophysics obtained by contact heat stimuli is similar to those observed for the conventionally used laser stimulation. Evoked potentials (EPs) were recorded in response to contact heat stimuli at different body sites in 24 healthy volunteers. Stimuli at various temperatures were applied to the forearm (43 degrees C, 46 degrees C, 49 degrees C, and 52 degrees C) and leg (46 degrees C and 49 degrees C). The amplitudes of both components (N2 and P2) were strongly associated with the intensity of the applied stimuli and with subjective pain perception. Yet, regression analysis revealed pain perception and not stimulus intensity as the major contributing factor. A significant correlation was found between the forearm and the leg for both psychophysics and EPs amplitude. Contact heat can generate readily distinguishable evoked potentials on the scalp, consistent between upper and lower limbs. Although these potentials bear positive correlation with both stimulus intensity and pain magnitude, the latter is the main contributor to the evoked brain response.
D'Ausilio, A.; Maffongelli, L.; Bartoli, E.; Campanella, M.; Ferrari, E.; Berry, J.; Fadiga, L.
2014-01-01
The activation of listener's motor system during speech processing was first demonstrated by the enhancement of electromyographic tongue potentials as evoked by single-pulse transcranial magnetic stimulation (TMS) over tongue motor cortex. This technique is, however, technically challenging and enables only a rather coarse measurement of this motor mirroring. Here, we applied TMS to listeners’ tongue motor area in association with ultrasound tissue Doppler imaging to describe fine-grained tongue kinematic synergies evoked by passive listening to speech. Subjects listened to syllables requiring different patterns of dorso-ventral and antero-posterior movements (/ki/, /ko/, /ti/, /to/). Results show that passive listening to speech sounds evokes a pattern of motor synergies mirroring those occurring during speech production. Moreover, mirror motor synergies were more evident in those subjects showing good performances in discriminating speech in noise demonstrating a role of the speech-related mirror system in feed-forward processing the speaker's ongoing motor plan. PMID:24778384
Lęski, Szymon; Kublik, Ewa; Swiejkowski, Daniel A; Wróbel, Andrzej; Wójcik, Daniel K
2010-12-01
Local field potentials have good temporal resolution but are blurred due to the slow spatial decay of the electric field. For simultaneous recordings on regular grids one can reconstruct efficiently the current sources (CSD) using the inverse Current Source Density method (iCSD). It is possible to decompose the resultant spatiotemporal information about the current dynamics into functional components using Independent Component Analysis (ICA). We show on test data modeling recordings of evoked potentials on a grid of 4 × 5 × 7 points that meaningful results are obtained with spatial ICA decomposition of reconstructed CSD. The components obtained through decomposition of CSD are better defined and allow easier physiological interpretation than the results of similar analysis of corresponding evoked potentials in the thalamus. We show that spatiotemporal ICA decompositions can perform better for certain types of sources but it does not seem to be the case for the experimental data studied. Having found the appropriate approach to decomposing neural dynamics into functional components we use the technique to study the somatosensory evoked potentials recorded on a grid spanning a large part of the forebrain. We discuss two example components associated with the first waves of activation of the somatosensory thalamus. We show that the proposed method brings up new, more detailed information on the time and spatial location of specific activity conveyed through various parts of the somatosensory thalamus in the rat.
Jensen-Dahm, Christina; Madsen, Caspar Skau; Waldemar, Gunhild; Ballegaard, Martin; Hejl, Anne-Mette; Johnsen, Birger; Jensen, Troels Staehelin
2016-04-01
Clinical studies have found that patients with Alzheimer's disease report pain of less intensity and with a lower affective response, which has been thought to be due to altered pain processing. The authors wished to examine the cerebral processing of non-painful and painful stimuli using somatosensory evoked potentials and contact heat evoked potentials in patients with Alzheimer's disease and in healthy elderly controls. Case-control study Twenty outpatients with mild-moderate Alzheimer's disease and in 17 age- and gender-matched healthy controls were included Contact heat evoked potentials and somatosensory evoked potentials were recorded in all subjects. Furthermore, warmth detection threshold and heat pain threshold were assessed. Patients and controls also rated quality and intensity of the stimuli. The authors found no difference on contact heat evoked potential amplitude (P = 0.59) or latency of N2 or P2 wave (P = 0.62 and P = 0.75, respectively) between patients and controls. In addition, there was no difference in regard to pain intensity scores or pain quality. The patients and controls had similar warmth detection threshold and heat pain threshold. Somatosensory evoked potentials, amplitude, and latency were within normal range and similar for the two groups. The findings suggest that the processing of non-painful and painful stimuli is preserved in patients with mild to moderate Alzheimer's disease. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lisicki, Marco; D'Ostilio, Kevin; Erpicum, Michel; Schoenen, Jean; Magis, Delphine
2017-01-01
Background Migraine is a complex multifactorial disease that arises from the interaction between a genetic predisposition and an enabling environment. Habituation is considered as a fundamental adaptive behaviour of the nervous system that is often impaired in migraine populations. Given that migraineurs are hypersensitive to light, and that light deprivation is able to induce functional changes in the visual cortex recognizable through visual evoked potentials habituation testing, we hypothesized that regional sunlight irradiance levels could influence the results of visual evoked potentials habituation studies performed in different locations worldwide. Methods We searched the literature for visual evoked potentials habituation studies comparing healthy volunteers and episodic migraine patients and correlated their results with levels of local solar radiation. Results After reviewing the literature, 26 studies involving 1291 participants matched our inclusion criteria. Deficient visual evoked potentials habituation in episodic migraine patients was reported in 19 studies. Mean yearly sunlight irradiance was significantly higher in locations of studies reporting deficient habituation. Correlation analyses suggested that visual evoked potentials habituation decreases with increasing sunlight irradiance in migraine without aura patients. Conclusion Results from this hypothesis generating analysis suggest that variations in sunlight irradiance may induce adaptive modifications in visual processing systems that could be reflected in visual evoked potentials habituation, and thus partially account for the difference in results between studies performed in geographically distant centers. Other causal factors such as genetic differences could also play a role, and therefore well-designed prospective trials are warranted.
Kalliomäki, Jarkko; Granmo, Marcus; Schouenborg, Jens
2003-07-01
The role of NMDA mechanisms in spinal pathways mediating acute nociceptive input to the somatosensory cortex is not clear. In this study, the effect of NMDA-antagonists on nociceptive C fibre transmission to the primary somatosensory cortex (SI) was investigated. Cortical field potentials evoked by CO(2)-laser stimulation of the skin were recorded in the halothane/nitrous oxide anaesthetized rat. The SI nociceptive evoked potential (EP) amplitudes were dependent on the frequency of noxious heat stimulation. The amplitudes of SI potentials evoked by CO(2)-laser pulses (duration 15-20 ms, stimulation energy 21-28 mJ/mm(2)) delivered at a frequency of 0.1 Hz were approximately 40% of the amplitudes of potentials evoked by 1.0 Hz stimulation. After intrathecal lumbar application of either of the NMDA-antagonists CPP or MK-801, the amplitudes of nociceptive SI potentials, evoked by 1.0 Hz stimulation of the contralateral hindpaw, were reduced to approximately 40% of controls. By contrast, field potentials evoked by 0.1 Hz stimulation of the hindpaw were unaffected by MK-801. SI potentials evoked by 1.0 Hz stimulation of the contralateral forepaw did not change after lumbar application of CPP or MK-801, indicating that the depression of hindpaw EPs was due to a segmental effect in the spinal cord. It is concluded that spinal NMDA-receptor mechanisms amplify the acute transmission of nociceptive C fiber input to SI in a frequency-dependent way.
Clinical Applications for EPs in the ICU.
Koenig, Matthew A; Kaplan, Peter W
2015-12-01
In critically ill patients, evoked potential (EP) testing is an important tool for measuring neurologic function, signal transmission, and secondary processing of sensory information in real time. Evoked potential measures conduction along the peripheral and central sensory pathways with longer-latency potentials representing more complex thalamocortical and intracortical processing. In critically ill patients with limited neurologic exams, EP provides a window into brain function and the potential for recovery of consciousness. The most common EP modalities in clinical use in the intensive care unit include somatosensory evoked potentials, brainstem auditory EPs, and cortical event-related potentials. The primary indications for EP in critically ill patients are prognostication in anoxic-ischemic or traumatic coma, monitoring for neurologic improvement or decline, and confirmation of brain death. Somatosensory evoked potentials had become an important prognostic tool for coma recovery, especially in comatose survivors of cardiac arrest. In this population, the bilateral absence of cortical somatosensory evoked potentials has nearly 100% specificity for death or persistent vegetative state. Historically, EP has been regarded as a negative prognostic test, that is, the absence of cortical potentials is associated with poor outcomes while the presence cortical potentials are prognostically indeterminate. In recent studies, the presence of middle-latency and long-latency potentials as well as the amplitude of cortical potentials is more specific for good outcomes. Event-related potentials, particularly mismatch negativity of complex auditory patterns, is emerging as an important positive prognostic test in patients under comatose. Multimodality predictive algorithms that combine somatosensory evoked potentials, event-related potentials, and clinical and radiographic factors are gaining favor for coma prognostication.
The Relationship of Visual Evoked Potential Asymmetries to the Performance of Sonar Operators
1981-08-11
also been related to EP variability. Schizophrenic adults and patients with Korsakoff’s Syndrome have shown higher evoked potential variability than...average evoked response in Korsakoff patients. J. Psychiatry Res. 6: 253-260, 1969. Santoro, T. and D. Fender. Rules for the perception of
Quant, Sylvia; Maki, Brian E; McIlroy, William E
2005-06-24
Previous studies have suggested that early cortical potentials (e.g. N1) that are evoked by perturbations to upright stance are associated with sensory processing of the initial perturbation and that later potentials may represent cognitive processing of this perturbation. However, it has also been suggested that later cortical potentials could reflect sensory and motor processing of later phases of the postural reaction. The current study set out to provide additional insight into the association between perturbation-evoked cortical potentials and postural reactions evoked by whole-body perturbations. By altering the deceleration onset of the perturbation, which altered the timing of later postural responses, we determined whether changes in later postural responses were associated with changes in later potentials. Based on previous work, we hypothesized that later potentials would not be associated with changes in later postural responses. During stance, seven healthy young adults were instructed to maintain their balance following two types of perturbations: (1) acceleration phase immediately followed by a deceleration phase (TASK 1), and (2) acceleration phase followed by a delayed deceleration phase (TASK 2). In spite of profound task differences in later postural responses, results revealed no significant differences in later potentials. This work provides additional support for the idea that latter elements of perturbation-evoked cortical responses are likely independent of evoked motor reactions required to maintain stability.
Auditory evoked potentials in two short-finned pilot whales (Globicephala macrorhynchus).
Schlundt, Carolyn E; Dear, Randall L; Houser, Dorian S; Bowles, Ann E; Reidarson, Tom; Finneran, James J
2011-02-01
The hearing sensitivities of two short-finned pilot whales (Globicephala macrorhynchus) were investigated by measuring auditory evoked potentials generated in response to clicks and sinusoidal amplitude modulated (SAM) tones. The first whale tested, an adult female, was a long-time resident at SeaWorld San Diego with a known health history. Click-evoked responses in this animal were similar to those measured in other echolocating odontocetes. Auditory thresholds were comparable to dolphins of similar age determined with similar evoked potential methods. The region of best sensitivity was near 40 kHz and the upper limit of functional hearing was between 80 and 100 kHz. The second whale tested, a juvenile male, was recently stranded and deemed non-releasable. Click-evoked potentials were not detected in this animal and testing with SAM tones suggested severe hearing loss above 10 kHz.
Visual and brainstem auditory evoked potentials in infants with severe vitamin B12 deficiency.
Demir, Nihat; Koç, Ahmet; Abuhandan, Mahmut; Calik, Mustafa; Işcan, Akin
2015-01-01
Vitamin B12 plays an important role in the development of mental, motor, cognitive, and social functions via its role in DNA synthesis and nerve myelination. Its deficiency in infants might cause neuromotor retardation as well as megaloblastic anemia. The objective of this study was to investigate the effects of infantile vitamin B12 deficiency on evoked brain potentials and determine whether improvement could be obtained with vitamin B12 replacement at appropriate dosages. Thirty patients with vitamin B12 deficiency and 30 age-matched healthy controls were included in the study. Hematological parameters, visual evoked potentials, and brainstem auditory evoked potentials tests were performed prior to treatment, 1 week after treatment, and 3 months after treatment. Visual evoked potentials (VEPs) and brainstem auditory evoked potentials (BAEPs) were found to be prolonged in 16 (53.3%) and 15 (50%) patients, respectively. Statistically significant improvements in VEP and BAEP examinations were determined 3 months after treatment. Three months after treatment, VEP and BAEP examinations returned to normal in 81.3% and 53.3% of subjects with prolonged VEPs and BAEPs, respectively. These results demonstrate that vitamin B12 deficiency in infants causes significant impairment in the auditory and visual functioning tests of the brain, such as VEP and BAEP.
Simple and powerful visual stimulus generator.
Kremlácek, J; Kuba, M; Kubová, Z; Vít, F
1999-02-01
We describe a cheap, simple, portable and efficient approach to visual stimulation for neurophysiology which does not need any special hardware equipment. The method based on an animation technique uses the FLI autodesk animator format. This form of the animation is replayed by a special program ('player') providing synchronisation pulses toward recording system via parallel port. The 'player is running on an IBM compatible personal computer under MS-DOS operation system and stimulus is displayed on a VGA computer monitor. Various stimuli created with this technique for visual evoked potentials (VEPs) are presented.
dos Santos Filha, Valdete Alves Valentins; Samelli, Alessandra Giannella; Matas, Carla Gentile
2015-09-11
Tinnitus is an important occupational health concern, but few studies have focused on the central auditory pathways of workers with a history of occupational noise exposure. Thus, we analyzed the central auditory pathways of workers with a history of occupational noise exposure who had normal hearing threshold, and compared middle latency auditory evoked potential in those with and without noise-induced tinnitus. Sixty individuals (30 with and 30 without tinnitus) underwent the following procedures: anamnesis, immittance measures, pure-tone air conduction thresholds at all frequencies between 0.25-8 kHz, and middle latency auditory evoked potentials. Quantitative analysis of latencies and amplitudes of middle latency auditory evoked potential showed no significant differences between the groups with and without tinnitus. In the qualitative analysis, we found that both groups showed increased middle latency auditory evoked potential latencies. The study group had more alterations of the "both" type regarding the Na-Pa amplitude, while the control group had more "electrode effect" alterations, but these alterations were not significantly different when compared to controls. Individuals with normal hearing with or without tinnitus who are exposed to occupational noise have altered middle latency auditory evoked potential, suggesting impairment of the auditory pathways in cortical and subcortical regions. Although differences did not reach significance, individuals with tinnitus seemed to have more abnormalities in components of the middle latency auditory evoked potential when compared to individuals without tinnitus, suggesting alterations in the generation and transmission of neuroelectrical impulses along the auditory pathway.
Celis-Aguilar, Erika; Hinojosa-González, Ramon; Vales-Hidalgo, Olivia; Coutinho-Toledo, Heloisa
Even today, the treatment of intractable vertigo remains a challenge. Vestibular ablation with intratympanic gentamicin stands as a good alternative in the management of refractory vertigo patients. To control intractable vertigo through complete saccular and horizontal canal vestibular ablation with intratympanic gentamicin treatment. Patients with refractory episodic vertigo were included. The inclusion criteria were: unilateral ear disease, moderate to profound sensorineural hearing loss, and failure to other treatments. Included patients underwent 0.5-0.8mL of gentamicin intratympanic application at a 30mg/mL concentration. Vestibular ablation was confirmed by the absence of response on cervical vestibular evoked myogenic potentials and no response on caloric tests. Audiometry, electronystagmography with iced water, and vestibular evoked myogenic potentials were performed in all patients. Ten patients were included; nine patients with Meniere's disease and one patient with (late onset) delayed hydrops. Nine patients showed an absent response on vestibular evoked myogenic potentials and no response on caloric tests. The only patient with low amplitude on cervical vestibular evoked myogenic potentials had vertigo recurrence. Vertigo control was achieved in 90% of the patients. One patient developed hearing loss >30dB. Cervical vestibular evoked myogenic potentials confirmed vestibular ablation in patients treated with intratympanic gentamicin. High-grade vertigo control was due to complete saccular and horizontal canal ablation (no response to iced water in electronystagmography and no response on cervical vestibular evoked myogenic potentials). Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
NASA Technical Reports Server (NTRS)
Gilinskiy, M. A.; Korsakov, I. A.
1979-01-01
Averaged evoked potentials in the auditory, somatosensory, and motor cortical zones, as well as in the mesencephalic reticular formation were recorded in acute experiments on nonanesthetized, immobilized cats. Omission of the painful stimulus after a number of pairings resulted in the appearance of a delayed evoked potential, often resembling the late phases of the response to the painful stimulus. The characteristics of this response are discussed in comparison with conditioned changes of the sensory potential amplitudes.
Cheng, Jason S; Ivan, Michael E; Stapleton, Christopher J; Quinones-Hinojosa, Alfredo; Gupta, Nalin; Auguste, Kurtis I
2014-06-01
Intraoperative dorsal column mapping, transcranial motor evoked potentials (TcMEPs), and somatosensory evoked potentials (SSEPs) have been used in adults to assist with the resection of intramedullary spinal cord tumors (IMSCTs) and to predict postoperative motor deficits. The authors sought to determine whether changes in MEP and SSEP waveforms would similarly predict postoperative motor deficits in children. The authors reviewed charts and intraoperative records for children who had undergone resection for IMSCTs as well as dorsal column mapping and TcMEP and SSEP monitoring. Motor evoked potential data were supplemented with electromyography data obtained using a Kartush microstimulator (Medtronic Inc.). Motor strength was graded using the Medical Research Council (MRC) scale during the preoperative, immediate postoperative, and follow-up periods. Reductions in SSEPs were documented after mechanical traction, in response to maneuvers with the cavitational ultrasonic surgical aspirator (CUSA), or both. Data from 12 patients were analyzed. Three lesions were encountered in the cervical and 7 in the thoracic spinal cord. Two patients had lesions of the cervicomedullary junction and upper spinal cord. Intraoperative MEP changes were noted in half of the patients. In these cases, normal polyphasic signals converted to biphasic signals, and these changes correlated with a loss of 1-2 grades in motor strength. One patient lost MEP signals completely and recovered strength to MRC Grade 4/5. The 2 patients with high cervical lesions showed neither intraoperative MEP changes nor motor deficits postoperatively. Dorsal columns were mapped in 7 patients, and the midline was determined accurately in all 7. Somatosensory evoked potentials were decreased in 7 patients. Two patients each had 2 SSEP decreases in response to traction intraoperatively but had no new sensory findings postoperatively. Another 2 patients had 3 traction-related SSEP decreases intraoperatively, and both had new postoperative sensory deficits that resolved. One additional patient had a CUSA-related SSEP decrease intraoperatively, which resolved postoperatively, and the last patient had 3 traction-related sensory deficits and a CUSA-related sensory deficit postoperatively, none of which resolved. Intraoperative TcMEPs and SSEPs can predict the degree of postoperative motor deficit in pediatric patients undergoing IMSCT resection. This technique, combined with dorsal column mapping, is particularly useful in resecting lesions of the upper cervical cord, which are generally considered to be high risk in this population. Furthermore, the spinal cord appears to be less tolerant of repeated intraoperative SSEP decreases, with 3 successive insults most likely to yield postoperative sensory deficits. Changes in TcMEPs and SSEP waveforms can signal the need to guard against excessive manipulation thereby increasing the safety of tumor resection.
Laser-evoked potentials in painful radiculopathy.
Hüllemann, P; von der Brelie, C; Manthey, G; Düsterhöft, J; Helmers, A K; Synowitz, M; Gierthmühlen, J; Baron, R
2017-11-01
The aims of this exploratory study were (1) to develop a standardized objective electrophysiological technique with laser-evoked potentials to assess dorsal root damage quantitatively and (2) to correlate these LEP measures with clinical parameters and sensory abnormalities (QST) in the affected dermatome. Thirty-eight patients with painful radiculopathy and 20 healthy subjects were investigated with LEP recorded from the affected dermatome and control areas as well as with quantitative sensory testing. Questionnaires evaluating severity and functionality were applied. On average, LEP amplitudes and latencies from the affected dermatomes did not differ from the contralateral control side. In patients with left L5 radiculopathy (more severely affected) the N2 latency was longer and the amplitudes reduced. The N2P2 amplitude correlated with pinprick evoked sensations in QST. The N2 latency from the affected dermatome correlates with pain intensity, chronicity, clinical severity and with a decrease of physical function. An increase in N2-latency indicates a more pronounced nerve root damage, which is associated with a decrease of function and an increase of severity and pain. LEP amplitudes are associated with the functional status of the nociceptive system and may distinguish between degeneration of neuronal systems and central sensitization processes. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Vestibular receptors contribute to cortical auditory evoked potentials.
Todd, Neil P M; Paillard, Aurore C; Kluk, Karolina; Whittle, Elizabeth; Colebatch, James G
2014-03-01
Acoustic sensitivity of the vestibular apparatus is well-established, but the contribution of vestibular receptors to the late auditory evoked potentials of cortical origin is unknown. Evoked potentials from 500 Hz tone pips were recorded using 70 channel EEG at several intensities below and above the vestibular acoustic threshold, as determined by vestibular evoked myogenic potentials (VEMPs). In healthy subjects both auditory mid- and long-latency auditory evoked potentials (AEPs), consisting of Na, Pa, N1 and P2 waves, were observed in the sub-threshold conditions. However, in passing through the vestibular threshold, systematic changes were observed in the morphology of the potentials and in the intensity dependence of their amplitude and latency. These changes were absent in a patient without functioning vestibular receptors. In particular, for the healthy subjects there was a fronto-central negativity, which appeared at about 42 ms, referred to as an N42, prior to the AEP N1. Source analysis of both the N42 and N1 indicated involvement of cingulate cortex, as well as bilateral superior temporal cortex. Our findings are best explained by vestibular receptors contributing to what were hitherto considered as purely auditory evoked potentials and in addition tentatively identify a new component that appears to be primarily of vestibular origin. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
NLP-12 engages different UNC-13 proteins to potentiate tonic and evoked release.
Hu, Zhitao; Vashlishan-Murray, Amy B; Kaplan, Joshua M
2015-01-21
A neuropeptide (NLP-12) and its receptor (CKR-2) potentiate tonic and evoked ACh release at Caenorhabditis elegans neuromuscular junctions. Increased evoked release is mediated by a presynaptic pathway (egl-30 Gαq and egl-8 PLCβ) that produces DAG, and by DAG binding to short and long UNC-13 proteins. Potentiation of tonic ACh release persists in mutants deficient for egl-30 Gαq and egl-8 PLCβ and requires DAG binding to UNC-13L (but not UNC-13S). Thus, NLP-12 adjusts tonic and evoked release by distinct mechanisms. Copyright © 2015 the authors 0270-6474/15/351038-05$15.00/0.
Alvarez, Isaac; de la Torre, Angel; Sainz, Manuel; Roldan, Cristina; Schoesser, Hansjoerg; Spitzer, Philipp
2007-09-15
Stimulus artifact is one of the main limitations when considering electrically evoked compound action potential for clinical applications. Alternating stimulation (average of recordings obtained with anodic-cathodic and cathodic-anodic bipolar stimulation pulses) is an effective method to reduce stimulus artifact when evoked potentials are recorded. In this paper we extend the concept of alternating stimulation by combining anodic-cathodic and cathodic-anodic recordings with a weight in general different to 0.5. We also provide an automatic method to obtain an estimation of the optimal weights. Comparison with conventional alternating, triphasic stimulation and masker-probe paradigm shows that the generalized alternating method improves the quality of electrically evoked compound action potential responses.
Sodium-bicarbonate cotransport in retinal Müller (glial) cells of the salamander.
Newman, E A
1991-12-01
An electrogenic Na+/HCO3- cotransport system was studied in freshly dissociated Müller cells of the salamander retina. Cotransporter currents were recorded from isolated cells using the whole-cell, voltage-clamp technique following the block of K+ conductance with external Ba2+ and internal Cs+. At constant pHo, an outward current was evoked when extracellular HCO3- concentration was raised by pressure ejecting a HCO3(-)-buffered solution onto the surface of cells bathed in nominally HCO3(-)-free solution. The HCO3(-)-evoked outward current was reduced to 4.4% of control by 0.5 mM DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonate), to 28.8% of control by 2 mM DNDS (4,4'-dinitrostilbene-2,2'-disulfonate), and to 28.4% of control by 2 mM harmaline. Substitution of choline for Na+ in bath and ejection solutions reduced the response to 1.3% of control. Bicarbonate-evoked currents of normal magnitude were recorded when methane sulfonate was substituted for Cl- in bath, ejection, and intracellular solutions. Similarly, an outward current was evoked when extracellular Na+ concentration was raised in the presence of HCO3-. The Na(+)-evoked response was reduced to 16.2% of control by 2 mM DNDS and was abolished by removal of HCO3- from bath and ejection solutions. Taken together, these results (block by stilbenes and harmaline, HCO3- and Na+ dependence, Cl- independence) indicate that salamander Müller cells possess an electrogenic Na+/HCO3- cotransport system. Na+/HCO3- cotransporter sites were localized primarily at the endfoot region of Müller cells. Ejection of HCO3- onto the endfoot evoked outward currents 10 times larger than currents evoked by ejections onto the opposite (distal) end of the cell. The reversal potential of the cotransporter was determined by DNDS block of cotransport current. In the absence of a transmembrane HCO3- gradient, the reversal potential varied systematically as a function of the transmembrane Na+ gradient. The reversal potential was -0.1 mV for a [Na+]o:[Na+]i ratio of 1:1 and -25.2 mV for a Na+ gradient ratio of 7.4:1. Based on these values, the estimated stoichiometry of the cotransporter was 2.80 +/- 0.13:1 (HCO3-:Na+). Possible functions of the glial cell Na+/HCO3- cotransporter, including the regulation of CO2 in the retina and the regulation of cerebral blood flow, are discussed.
Kumru, H; Kofler, M; Flores, M C; Portell, E; Robles, V; Leon, N; Vidal, J
2013-08-01
Somatic antinociceptive effects of baclofen have been demonstrated in animal models. We hypothesized that if enhanced thermal or pain sensitivity is produced by loss of gamma-aminobutyric acid (GABA)-ergic tone in the central nervous system, spinal administration of GABA agonists might be predicted to be effective in thermal and/or pain perception changes and pain-related evoked potentials in candidates for intrathecal baclofen (ITB) treatment. Eleven patients with severe spinal cord injury (SCI) who suffered from severe spasticity were evaluated during a 50-μg ITB bolus test. Warm and heat pain thresholds, evoked heat pain perception, and contact heat-evoked potentials (CHEPs) were determined above SCI level from the right and left sides. Nine age- and gender-matched healthy volunteers undergoing repeat testing without any placebo injection served as control group. In patients, heat pain perception threshold increased, and evoked pain perception and amplitude of CHEPs decreased significantly after ITB bolus application in comparison with baseline (p < 0.005), with no change in warm perception threshold. In controls, no significant changes were observed in repeat testing over time. Our findings indicate that ITB modulates heat pain perception threshold, evoked heat pain perception and heat pain-related evoked potentials without inducing warm perception threshold changes in SCI patients. This phenomenon should be taken into account in the clinical evaluation and management of pain in patients receiving baclofen. © 2012 European Federation of International Association for the Study of Pain Chapters.
Zanatta, Paolo; Messerotti Benvenuti, Simone; Baldanzi, Fabrizio; Bendini, Matteo; Saccavini, Marsilio; Tamari, Wadih; Palomba, Daniela; Bosco, Enrico
2012-03-31
This case series investigates whether painful electrical stimulation increases the early prognostic value of both somatosensory-evoked potentials and functional magnetic resonance imaging in comatose patients after cardiac arrest. Three single cases with hypoxic-ischemic encephalopathy were considered. A neurophysiological evaluation with an electroencephalogram and somatosensory-evoked potentials during increased electrical stimulation in both median nerves was performed within five days of cardiac arrest. Each patient also underwent a functional magnetic resonance imaging evaluation with the same neurophysiological protocol one month after cardiac arrest. One patient, who completely recovered, showed a middle latency component at a high intensity of stimulation and the activation of all brain areas involved in cerebral pain processing. One patient in a minimally conscious state only showed the cortical somatosensory response and the activation of the primary somatosensory cortex. The last patient, who was in a vegetative state, did not show primary somatosensory evoked potentials; only the activation of subcortical brain areas occurred. These preliminary findings suggest that the pain-related somatosensory evoked potentials performed to increase the prognosis of comatose patients after cardiac arrest are associated with regional brain activity showed by functional magnetic resonance imaging during median nerves electrical stimulation. More importantly, this cases report also suggests that somatosensory evoked potentials and functional magnetic resonance imaging during painful electrical stimulation may be sensitive and complementary methods to predict the neurological outcome in the acute phase of coma. Thus, pain-related somatosensory-evoked potentials may be a reliable and a cost-effective tool for planning the early diagnostic evaluation of comatose patients.
Benavides, Francisco D; Santamaria, Andrea J; Bodoukhin, Nikita; Guada, Luis G; Solano, Juan P; Guest, James D
2017-09-15
Yucatan micropigs have brain and spinal cord dimensions similar to humans and are useful for certain spinal cord injury (SCI) translational studies. Micropigs are readily trained in behavioral tasks, allowing consistent testing of locomotor loss and recovery. However, there has been little description of their motor and sensory pathway neurophysiology. We established methods to assess motor and sensory cortical evoked potentials in the anesthetized, uninjured state. We also evaluated epidurally evoked motor and sensory stimuli from the T6 and T9 levels, spanning the intended contusion injury epicenter. Response detection frequency, mean latency and amplitude values, and variability of evoked potentials were determined. Somatosensory evoked potentials were reliable and best detected during stimulation of peripheral nerve and epidural stimulation by referencing the lateral cortex to midline Fz. The most reliable hindlimb motor evoked potential (MEP) occurred in tibialis anterior. We found MEPs in forelimb muscles in response to thoracic epidural stimulation likely generated from propriospinal pathways. Cranially stimulated MEPs were easier to evoke in the upper limbs than in the hindlimbs. Autopsy studies revealed substantial variations in cortical morphology between animals. This electrophysiological study establishes that neurophysiological measures can be reliably obtained in micropigs in a time frame compatible with other experimental procedures, such as SCI and transplantation. It underscores the need to better understand the motor control pathways, including the corticospinal tract, to determine which therapeutics are suitable for testing in the pig model.
Vascular compliance limits during sleep deprivation and recovery sleep.
Phillips, Derrick J; Schei, Jennifer L; Rector, David M
2013-10-01
Our previous studies showed that evoked hemodynamic responses are smaller during wake compared to sleep; suggesting neural activity is associated with vascular expansion and decreased compliance. We explored whether prolonged activity during sleep deprivation may exacerbate vascular expansion and blunt hemodynamic responses. Evoked auditory responses were generated with periodic 65 dB speaker clicks over a 72-h period and measured with cortical electrodes. Evoked hemodynamic responses were measured simultaneously with optical techniques using three light-emitting diodes, and a photodiode. Animals were housed in separate 30×30×80 cm enclosures, tethered to a commutator system and maintained on a 12-h light/dark cycle. Food and water were available ad libitum. Seven adult female Sprague-Dawley rats. Following a 24-h baseline recording, sleep deprivation was initiated for 0 to 10 h by gentle handling, followed by a 24-h recovery sleep recording. Evoked electrical and hemodynamic responses were measured before, during, and after sleep deprivation. Following deprivation, evoked hemodynamic amplitudes were blunted. Steady-state oxyhemoglobin concentration increased during deprivation and remained high during the initial recovery period before returning to baseline levels after approximately 9-h. Sleep deprivation resulted in blood vessel expansion and decreased compliance while lower basal neural activity during recovery sleep may allow blood vessel compliance to recover. Chronic sleep restriction or sleep deprivation could push the vasculature to critical levels, limiting blood delivery, and leading to metabolic deficits with the potential for neural trauma.
Martin, G; Baumann, H; Grieger, F
1976-01-01
Using the average evoked potential technique, angiotensin-II depot effects (1 mg implantate = 3--4 mg/kg body weight angiotensin-II) were studied neuroelectrophysiologically in reticular, hippocampal and neocrotical structures of albino rats. A multivariate variance and discriminance analysis program revealed differentiated changes of the bioelectrical processing data of the CNS. Evidence was obtained for a varying structural sensitivity of central-nervous substructures under depot administration of angiotensin-II. In later phases of angiotensin-II action, the hippocampus was characterized by an electrographic synchronization phenomenon with high-amplitude average evoked potentials. The reticular formation, and to a lesser extent the visual cortex, showed an angiotensin-induced diminution of bioelectrical excitation. However, the intensity of the change in functional CNS patterns did not always correlate with maximal blood pressure rises. The described changes of afference processing to standardized sensory stimuli, especially in hippocampal and reticular structures of the CNS foll owing angiotensin depot action, point to a central-nervous action mechanism of angiotensin-II.
Functional MRI Detection of Hemodynamic Response of Repeated Median Nerve Stimulation
Ai, Leo; Oya, Hiroyuki; Howard, Matthew; Xiong, Jinhu
2012-01-01
Median nerve stimulation is a commonly used technique in the clinical setting to determine areas of neuronal function in the brain. Neuronal activity of repeated median nerve stimulation is well studied. The cerebral hemodynamic response of the stimulation, on the other hand, is not very clear. In this study, we investigate how cerebral hemodynamics behaves over time using the same repeated median nerve stimulation. Ten subjects received constant repeated electrical stimulation to the right median nerve. Each subject had fMRI scans while receiving said stimulations for seven runs. Our results show that the BOLD signal significantly decreases across each run. Significant BOLD signal decreases can also be seen within runs. These results are consistent with studies that have studied the hemodynamic habituation effect with other forms of stimulation. However, the results do not completely agree with the findings of studies where evoked potentials were examined. Thus, further inquiry of how evoked potentials and cerebral hemodynamics are coupled when using constant stimulations is needed. PMID:23228312
Morizot-Koutlidis, R; André-Obadia, N; Antoine, J-C; Attarian, S; Ayache, S S; Azabou, E; Benaderette, S; Camdessanché, J-P; Cassereau, J; Convers, P; d'Anglejean, J; Delval, A; Durand, M-C; Etard, O; Fayet, G; Fournier, E; Franques, J; Gavaret, M; Guehl, D; Guerit, J-M; Krim, E; Kubis, N; Lacour, A; Lozeron, P; Mauguière, F; Merle, P-E; Mesrati, F; Mutschler, V; Nicolas, G; Nordine, T; Pautot, V; Péréon, Y; Petiot, P; Pouget, J; Praline, J; Salhi, H; Trébuchon, A; Tyvaert, L; Vial, C; Zola, J-M; Zyss, J; Lefaucheur, J-P
2015-05-01
Somatosensory evoked potentials (SSEPs) are increasingly performed for the assessment of peripheral neuropathies, but no practical guidelines have yet been established in this specific application. To determine the relevant indication criteria and optimal technical parameters for SSEP recording in peripheral neuropathy investigation. A survey was conducted among the French-speaking practitioners with experience of SSEP recording in the context of peripheral neuropathies. The results of the survey were analyzed and discussed to provide recommendations for practice. SSEPs appear to be a second-line test when electroneuromyographic investigation is not sufficiently conclusive, providing complementary and valuable information on central and proximal peripheral conduction in the somatosensory pathways. Guidelines for a standardized recording protocol, including the various parameters to be measured, are proposed. We hope that these proposals will help to recognize the value of this technique in peripheral neuropathy assessment in clinical practice. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Golding, Maryanne; Pearce, Wendy; Seymour, John; Cooper, Alison; Ching, Teresa; Dillon, Harvey
2007-02-01
Finding ways to evaluate the success of hearing aid fittings in young infants has increased in importance with the implementation of hearing screening programs. Cortical auditory evoked potentials (CAEP) can be recorded in infants and provides evidence for speech detection at the cortical level. The validity of this technique as a tool of hearing aid evaluation needs, however, to be demonstrated. The present study examined the relationship between the presence/absence of CAEPs to speech stimuli and the outcomes of a parental questionnaire in young infants who were fitted with hearing aids. The presence/absence of responses was determined by an experienced examiner as well as by a statistical measure, Hotelling's T(2). A statistically significant correlation between CAEPs and questionnaire scores was found using the examiner's grading (rs = 0.45) and using the statistical grading (rs = 0.41), and there was reasonably good agreement between traditional response detection methods and the statistical analysis.
Grover, Helen J; Thornton, Rachel; Lutchman, Lennel N; Blake, Julian C
2016-06-01
The authors report a case of unilateral loss of intraoperative transcranial electrical motor evoked potentials (TES MEP) associated with a spinal cord injury during scoliosis correction and the subsequent use of extraoperative transcranial magnetic stimulation to monitor the recovery of spinal cord function. The authors demonstrate the absence of TES MEPs and absent transcranial magnetic stimulation responses in the immediate postoperative period, and document the partial recovery of transcranial magnetic stimulation responses, which corresponded to partial recovery of TES MEPs. Intraoperative TES MEPs were enhanced using spatial facilitation technique, which enabled the patient to undergo further surgery to stabilize the spine and correct her scoliosis. This case report supports evidence of the use of extraoperative transcranial magnetic stimulation to predict the presence of intraoperative TES responses and demonstrates the usefulness of spatial facilitation to monitor TES MEPs in a patient with a preexisting spinal cord injury.
ERIC Educational Resources Information Center
Izawa, Shuji; Mizutani, Tohru
This paper examines the development of visually evoked EEG patterns in retarded and normal subjects. The paper focuses on the averaged visually evoked potentials (AVEP) in the central and occipital regions of the brain in eyes closed and eyes open conditions. Wave pattern, amplitude, and latency are examined. The first section of the paper reviews…
Granata, Giuseppe; Di Iorio, Riccardo; Romanello, Roberto; Iodice, Francesco; Raspopovic, Stanisa; Petrini, Francesco; Strauss, Ivo; Valle, Giacomo; Stieglitz, Thomas; Čvančara, Paul; Andreu, David; Divoux, Jean-Louis; Guiraud, David; Wauters, Loic; Hiairrassary, Arthur; Jensen, Winnie; Micera, Silvestro; Rossini, Paolo Maria
2018-06-01
The aim of the paper is to objectively demonstrate that amputees implanted with intraneural interfaces are truly able to feel a sensation in the phantom hand by recording "phantom" somatosensory evoked potentials from the corresponding brain areas. We implanted four transverse intrafascicular multichannel electrodes, available with percutaneous connections to a multichannel electrical stimulator, in the median and ulnar nerves of two left trans-radial amputees. Two channels of the implants that were able to elicit sensations during intraneural nerve stimulation were chosen, in both patients, for recording somatosensory evoked potentials. We recorded reproducible evoked responses by stimulating the median and the ulnar nerves in both cases. Latencies were in accordance with the arrival of somatosensory information to the primary somatosensory cortex. Our results provide evidence that sensations generated by intraneural stimulation are truly perceived by amputees and located in the phantom hand. Moreover, our results strongly suggest that sensations perceived in different parts of the phantom hand result in different evoked responses. Somatosensory evoked potentials obtained by selective intraneural electrical stimulation in amputee patients are a useful tool to provide an objective demonstration of somatosensory feedback in new generation bidirectional prostheses. Copyright © 2018. Published by Elsevier B.V.
Effects of single cycle binaural beat duration on auditory evoked potentials.
Mihajloski, Todor; Bohorquez, Jorge; Özdamar, Özcan
2014-01-01
Binaural beat (BB) illusions are experienced as continuous central pulsations when two sounds with slightly different frequencies are delivered to each ear. It has been shown that steady-state auditory evoked potentials (AEPs) to BBs can be captured and investigated. The authors recently developed a new method of evoking transient AEPs to binaural beats using frequency modulated stimuli. This methodology was able to create single BBs in predetermined intervals with varying carrier frequencies. This study examines the effects of the BB duration and the frequency modulating component of the stimulus on the binaural beats and their evoked potentials. Normal hearing subjects were tested with a set of four durations (25, 50, 100, and 200 ms) with two stimulation configurations, binaural dichotic (binaural beats) and diotic (frequency modulation). The results obtained from the study showed that out of the given durations, the 100 ms beat, was capable of evoking the largest amplitude responses. The frequency modulation effect showed a decrease in peak amplitudes with increasing beat duration until their complete disappearance at 200 ms. Even though, at 200 ms, the frequency modulation effects were not present, the binaural beats were still perceived and captured as evoked potentials.
Multifocal visual evoked potential and automated perimetry abnormalities in strabismic amblyopes.
Greenstein, Vivienne C; Eggers, Howard M; Hood, Donald C
2008-02-01
To compare visual field abnormalities obtained with standard automated perimetry (SAP) to those obtained with the multifocal visual evoked potential (mfVEP) technique in strabismic amblyopes. Humphrey 24-2 visual fields (HVF) and mfVEPs were obtained from each eye of 12 strabismic amblyopes. For the mfVEP, amplitudes and latencies were analyzed and probability plots were derived. Multifocal VEP and HVF hemifields were abnormal if they had clusters of two or more contiguous points at p < 0.01, or three or more contiguous points at p < 0.05 with at least one at p < 0.01. An eye was abnormal if it had an abnormal hemifield. On SAP, amblyopic eyes had significantly higher foveal thresholds (p = 0.003) and lower mean deviation values (p = 0.005) than fellow eyes. For the mfVEP, 11 amblyopic and 6 fellow eyes were abnormal. Of the 11 amblyopic eyes, 6 were abnormal on SAP. The deficits extended from the center to mid periphery. Monocular mfVEP latencies were significantly decreased for amblyopic eyes compared with control eyes (p < 0.0002). Both techniques revealed deficits in visual function across the visual field in strabismic amblyopes, but the mfVEP revealed deficits in fellow eyes and in more amblyopic eyes. In addition, mfVEP response latencies for amblyopic eyes were shorter than normal.
Thirumala, Parthasarathy; Zhou, James; Krishnan, Rohan; Manem, Nihita; Umredkar, Shreya; Hamilton, D K; Balzer, Jeffrey R; Oudega, Martin
2016-03-01
Iatrogenic spinal cord injury (SCI) is a cause of potentially debilitating post-operative neurologic complications. Currently, intra-operative neurophysiological monitoring (IONM) via somatosensory evoked potentials and motor-evoked potentials is used to detect and prevent impending SCI. However, no empirically validated interventions exist to halt the progression of iatrogenic SCI once it is detected. This is in part due to the lack of a suitable translational model that mimics the circumstances surrounding iatrogenic SCI detected via IONM. Here, we evaluate a model of simulated contusive iatrogenic SCI detected via IONM in adult female Sprague-Dawley rats. We show that transient losses of somatosensory evoked potentials responses are 88.24% sensitive (95% confidence interval [CI] 63.53-98.20) and 80% specific (95% CI 51.91-95.43) for significant functional impairment following simulated iatrogenic SCI. Similarly, we show that transient losses in motor-evoked potentials responses are 70.83% sensitive (95% CI 48.91-87.33) and 100% specific (95% CI 62.91-100.00) for significant functional impairment following simulated iatrogenic SCI. These results indicate that our model is a suitable replica of the circumstances surrounding clinical iatrogenic SCI. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fernández-Sánchez, Marcela; del Castillo-Vaquero, Angel; Salido, Ginés M; González, Antonio
2009-10-30
A significant percentage of patients with pancreatitis often presents a history of excessive alcohol consumption. Nevertheless, the patho-physiological effect of ethanol on pancreatitis remains poorly understood. In the present study, we have investigated the early effects of acute ethanol exposure on CCK-8-evoked Ca2+ signals in mouse pancreatic acinar cells. Changes in [Ca2+]i and ROS production were analyzed employing fluorescence techniques after loading cells with fura-2 or CM-H2DCFDA, respectively. Ethanol, in the concentration range from 1 to 50 mM, evoked an oscillatory pattern in [Ca2+]i. In addition, ethanol evoked reactive oxygen species generation (ROS) production. Stimulation of cells with 1 nM or 20 pM CCK-8, respectively led to a transient change and oscillations in [Ca2+]i. In the presence of ethanol a transformation of 20 pM CCK-8-evoked physiological oscillations into a single transient increase in [Ca2+]i in the majority of cells was observed. Whereas, in response to 1 nM CCK-8, the total Ca2+ mobilization was significantly increased by ethanol pre-treatment. Preincubation of cells with 1 mM 4-MP, an inhibitor of alcohol dehydrogenase, or 10 microM of the antioxidant cinnamtannin B-1, reverted the effect of ethanol on total Ca2+ mobilization evoked by 1 nM CCK-8. Cinnamtannin B-1 blocked ethanol-evoked ROS production. ethanol may lead, either directly or through ROS generation, to an over stimulation of pancreatic acinar cells in response to CCK-8, resulting in a higher Ca2+ mobilization compared to normal conditions. The actions of ethanol on CCK-8-stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis.
Electrical stimulus artifact cancellation and neural spike detection on large multi-electrode arrays
Grosberg, Lauren E.; Madugula, Sasidhar; Litke, Alan; Cunningham, John; Chichilnisky, E. J.; Paninski, Liam
2017-01-01
Simultaneous electrical stimulation and recording using multi-electrode arrays can provide a valuable technique for studying circuit connectivity and engineering neural interfaces. However, interpreting these measurements is challenging because the spike sorting process (identifying and segregating action potentials arising from different neurons) is greatly complicated by electrical stimulation artifacts across the array, which can exhibit complex and nonlinear waveforms, and overlap temporarily with evoked spikes. Here we develop a scalable algorithm based on a structured Gaussian Process model to estimate the artifact and identify evoked spikes. The effectiveness of our methods is demonstrated in both real and simulated 512-electrode recordings in the peripheral primate retina with single-electrode and several types of multi-electrode stimulation. We establish small error rates in the identification of evoked spikes, with a computational complexity that is compatible with real-time data analysis. This technology may be helpful in the design of future high-resolution sensory prostheses based on tailored stimulation (e.g., retinal prostheses), and for closed-loop neural stimulation at a much larger scale than currently possible. PMID:29131818
Mena, Gonzalo E; Grosberg, Lauren E; Madugula, Sasidhar; Hottowy, Paweł; Litke, Alan; Cunningham, John; Chichilnisky, E J; Paninski, Liam
2017-11-01
Simultaneous electrical stimulation and recording using multi-electrode arrays can provide a valuable technique for studying circuit connectivity and engineering neural interfaces. However, interpreting these measurements is challenging because the spike sorting process (identifying and segregating action potentials arising from different neurons) is greatly complicated by electrical stimulation artifacts across the array, which can exhibit complex and nonlinear waveforms, and overlap temporarily with evoked spikes. Here we develop a scalable algorithm based on a structured Gaussian Process model to estimate the artifact and identify evoked spikes. The effectiveness of our methods is demonstrated in both real and simulated 512-electrode recordings in the peripheral primate retina with single-electrode and several types of multi-electrode stimulation. We establish small error rates in the identification of evoked spikes, with a computational complexity that is compatible with real-time data analysis. This technology may be helpful in the design of future high-resolution sensory prostheses based on tailored stimulation (e.g., retinal prostheses), and for closed-loop neural stimulation at a much larger scale than currently possible.
Binkley, Candace
2016-06-01
Pseudocholinesterase abnormalities are a genetic cause of aberrant metabolism of the depolarizing muscle relaxant succinylcholine. This article examines a case where succinylcholine was chosen to facilitate intubation due to its ultra short duration and the request of the surgeon to monitor motor evoked potentials. Following succinylcholine administration the neurophysiologist was unable to obtain motor evoked potentials. This case study highlights the intraoperative and postoperative management of an elderly patient with an unknown pseudocholinesterase deficiency.
A method to detect progression of glaucoma using the multifocal visual evoked potential technique
Wangsupadilok, Boonchai; Kanadani, Fabio N.; Grippo, Tomas M.; Liebmann, Jeffrey M.; Ritch, Robert; Hood, Donald C.
2010-01-01
Purpose To describe a method for monitoring progression of glaucoma using the multifocal visual evoked potential (mfVEP) technique. Methods Eighty-seven patients diagnosed with open-angle glaucoma were divided into two groups. Group I, comprised 43 patients who had a repeat mfVEP test within 50 days (mean 0.9 ± 0.5 months), and group II, 44 patients who had a repeat test after at least 6 months (mean 20.7 ± 9.7 months). Monocular mfVEPs were obtained using a 60-sector pattern reversal dartboard display. Monocular and interocular analyses were performed. Data from the two visits were compared. The total number of abnormal test points with P < 5% within the visual field (total scores) and number of abnormal test points within a cluster (cluster size) were calculated. Data for group I provided a measure of test–retest variability independent of disease progression. Data for group II provided a possible measure of progression. Results The difference in the total scores for group II between visit 1 and visit 2 for the interocular and monocular comparison was significant (P < 0.05) as was the difference in cluster size for the interocular comparison (P < 0.05). Group I did not show a significant change in either total score or cluster size. Conclusion The change in the total score and cluster size over time provides a possible method for assessing progression of glaucoma with the mfVEP technique. PMID:18830654
Gordeev, S A; Voronin, S G
2015-01-01
The proprioceptive sensitivity of healthy volunteers and convalescents after acute cerebrovascular episodes was studied by a new neurophysiological method for registration of kinesthetic evoked potentials emerging in response to passive 50(o) bending of the hand in the wrist joint with the angular acceleration of 350 rad/sec(2). Kinesthetic evoked potentials were recorded above the somatosensory cortex projection areas in the hemispheres contra- and ipsilateral to the stimulated limb. The patients exhibited significantly longer latencies and lesser amplitudes of the early components of response in the involved hemisphere in comparison with normal subjects. The method for registration of the kinesthetic evoked potentials allows a more detailed study of the mechanisms of kinesthetic sensitivity in health and in organic involvement of the brain.
Vertex evoked potentials in a rating-scale detection task: Relation to signal probability
NASA Technical Reports Server (NTRS)
Squires, K. C.; Squires, N. K.; Hillyard, S. A.
1974-01-01
Vertex evoked potentials were recorded from human subjects performing in an auditory detection task with rating scale responses. Three values of a priori probability of signal presentation were tested. The amplitudes of the N1 and P3 components of the vertex potential associated with correct detections of the signal were found to be systematically related to the strictness of the response criterion and independent of variations in a priori signal probability. No similar evoked potential components were found associated with signal absent judgements (misses and correct rejections) regardless of the confidence level of the judgement or signal probability. These results strongly support the contention that the form of the vertex evoked response is closely correlated with the subject's psychophysical decision regarding the presence or absence of a threshold level signal.
Magnano, Immacolata; Pes, Giovanni Mario; Pilurzi, Giovanna; Cabboi, Maria Paola; Ginatempo, Francesca; Giaconi, Elena; Tolu, Eusebio; Achene, Antonio; Salis, Antonio; Rothwell, John C; Conti, Maurizio; Deriu, Franca
2014-11-01
To investigate vestibulo-masseteric (VMR), acoustic-masseteric (AMR), vestibulo-collic (VCR) and trigemino-collic (TCR) reflexes in patients with multiple sclerosis (MS); to relate abnormalities of brainstem reflexes (BSRs) to multimodal evoked potentials (EPs), clinical and Magnetic Resonance Imaging (MRI) findings. Click-evoked VMR, AMR and VCR were recorded from active masseter and sternocleidomastoid muscles, respectively; TCR was recorded from active sternocleidomastoid muscles, following electrical stimulation of the infraorbital nerve. EPs and MRI were performed with standard techniques. Frequencies of abnormal BSRs were: VMR 62.1%, AMR 55.1%, VCR 25.9%, TCR 58.6%. Brainstem dysfunction was identified by these tests, combined into a four-reflex battery, in 86.9% of cases, by EPs in 82.7%, MRI in 71.7% and clinical examination in 37.7% of cases. The sensitivity of paired BSRs/EPs (93.3%) was significantly higher than combined MRI/clinical testing (70%) in patients with disease duration ⩽6.4years. BSR alterations significantly correlated with clinical, EP and MRI findings. The four-BSR battery effectively increases the performance of standard EPs in early detection of brainstem impairment, otherwise undetected by clinical examination and neuroimaging. Multiple BSR assessment usefully supplements conventional testing and monitoring of brainstem function in MS, especially in newly diagnosed patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Gordeev, S A; Voronin, S G
2016-01-01
To analyze the efficacy of modified (passive radiocarpal articulation flexion/extension) and «standard» (passive radiocarpal articulation flexion) methods of kinesthetic evoked potentials for proprioceptive sensitivity assessment in healthy subjects and patients with spondylotic cervical myelopathy. The study included 14 healthy subjects (4 women and 10 men, mean age 54.1±10.5 years) and 8 patients (2 women and 6 men, mean age 55.8±10.9 years) with spondylotic cervical myelopathy. Muscle-joint sensation was examined during the clinical study. A modified method of kinesthetic evoked potentials was developed. This method differed from the "standard" one by the organization of a cycle including several passive movements,where each new movement differed from the preceding one by the direction. The modified method of kinesthetic evoked potentials ensures more reliable kinesthetic sensitivity assessment due to movement variability. Asignificant increaseof the latent periods of the early components of the response was found in patients compared to healthy subjects. The modified method of kinesthetic evoked potentials can be used for objective diagnosis of proprioceptive sensitivity disorders in patients with spondylotic cervical myelopathy.
Ellingson, Roger M; Oken, Barry
2010-01-01
Report contains the design overview and key performance measurements demonstrating the feasibility of generating and recording ambulatory visual stimulus evoked potentials using the previously reported custom Complementary and Alternative Medicine physiologic data collection and monitoring system, CAMAS. The methods used to generate visual stimuli on a PDA device and the design of an optical coupling device to convert the display to an electrical waveform which is recorded by the CAMAS base unit are presented. The optical sensor signal, synchronized to the visual stimulus emulates the brain's synchronized EEG signal input to CAMAS normally reviewed for the evoked potential response. Most importantly, the PDA also sends a marker message over the wireless Bluetooth connection to the CAMAS base unit synchronized to the visual stimulus which is the critical averaging reference component to obtain VEP results. Results show the variance in the latency of the wireless marker messaging link is consistent enough to support the generation and recording of visual evoked potentials. The averaged sensor waveforms at multiple CPU speeds are presented and demonstrate suitability of the Bluetooth interface for portable ambulatory visual evoked potential implementation on our CAMAS platform.
Alamusi; Matsuo, Toshihiko; Hosoya, Osamu; Uchida, Tetsuya
2017-06-01
Photoelectric dye-coupled polyethylene film, designated Okayama University type-retinal prosthesis or OUReP™, generates light-evoked surface electric potentials and stimulates neurons. The dye-coupled films or plain films were implanted subretinally in both eyes of 10 Royal College of Surgeons rats with hereditary retinal dystrophy at the age of 6 weeks. Visual evoked potentials in response to monocular flashing light stimuli were recorded from cranially-fixed electrodes, 4 weeks and 8 weeks after the implantation. After the recording, subretinal film implantation was confirmed histologically in 7 eyes with dye-coupled films and 7 eyes with plain films. The recordings from these 7 eyes in each group were used for statistical analysis. The amplitudes of visual evoked potentials in the consecutive time points from 125 to 250 ms after flash were significantly larger in the 7 eyes with dye-coupled film implantation, compared to the 7 eyes with plain film implantation at 8 weeks after the implantation (P < 0.05, repeated-measure ANOVA). The photoelectric dye-coupled polyethylene film, as retinal prosthesis, gave rise to visual evoked potential in response to flashing light.
Assessment of Human Visual Performance with a Swept Evoked Potential Technique
1984-07-01
obtained in naive patients. Retinitis pigmentosa patients with < 20/50 vision have shown contrast sensitivity losses at the higher spatial frequencies...X and Y visual subsystems The new visual duplicity. Th« observation that cat retinal ganglion cells can be divided into those which sum luminous...bias in retinal ganglion cells (cat: Levick & Thibos, 1980; monkey: DeMonasterio, 1978). The bias is weak. In cat, when the stimulus orientation was
Tamura, Yukie; Ogawa, Hiroshi; Kapeller, Christoph; Prueckl, Robert; Takeuchi, Fumiya; Anei, Ryogo; Ritaccio, Anthony; Guger, Christoph; Kamada, Kyousuke
2016-12-01
OBJECTIVE Electrocortical stimulation (ECS) is the gold standard for functional brain mapping; however, precise functional mapping is still difficult in patients with language deficits. High gamma activity (HGA) between 80 and 140 Hz on electrocorticography is assumed to reflect localized cortical processing, whereas the cortico-cortical evoked potential (CCEP) can reflect bidirectional responses evoked by monophasic pulse stimuli to the language cortices when there is no patient cooperation. The authors propose the use of "passive" mapping by combining HGA mapping and CCEP recording without active tasks during conscious resections of brain tumors. METHODS Five patients, each with an intraaxial tumor in their dominant hemisphere, underwent conscious resection of their lesion with passive mapping. The authors performed functional localization for the receptive language area, using real-time HGA mapping, by listening passively to linguistic sounds. Furthermore, single electrical pulses were delivered to the identified receptive temporal language area to detect CCEPs in the frontal lobe. All mapping results were validated by ECS, and the sensitivity and specificity were evaluated. RESULTS Linguistic HGA mapping quickly identified the language area in the temporal lobe. Electrical stimulation by linguistic HGA mapping to the identified temporal receptive language area evoked CCEPs on the frontal lobe. The combination of linguistic HGA and frontal CCEPs needed no patient cooperation or effort. In this small case series, the sensitivity and specificity were 93.8% and 89%, respectively. CONCLUSIONS The described technique allows for simple and quick functional brain mapping with higher sensitivity and specificity than ECS mapping. The authors believe that this could improve the reliability of functional brain mapping and facilitate rational and objective operations. Passive mapping also sheds light on the underlying physiological mechanisms of language in the human brain.
Local classifiers for evoked potentials recorded from behaving rats.
Jakuczun, Wit; Kublik, Ewa; Wójcik, Daniel K; Wróbel, Andrzej
2005-01-01
Dynamic states of the brain determine the way information is processed in local neural networks. We have applied classical conditioning paradigm in order to study whether habituated and aroused states can be differentiated in single barrel column of rat's somatosensory cortex by means of analysis of field potentials evoked by stimulation of a single vibrissa. A new method using local classifiers is presented which allows for reliable and meaningful classification of single evoked potentials which might be consequently attributed to different functional states of the cortical column.
Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.
Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M
1991-06-01
An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.
Imaging fast electrical activity in the brain with electrical impedance tomography
Aristovich, Kirill Y.; Packham, Brett C.; Koo, Hwan; Santos, Gustavo Sato dos; McEvoy, Andy; Holder, David S.
2016-01-01
Imaging of neuronal depolarization in the brain is a major goal in neuroscience, but no technique currently exists that could image neural activity over milliseconds throughout the whole brain. Electrical impedance tomography (EIT) is an emerging medical imaging technique which can produce tomographic images of impedance changes with non-invasive surface electrodes. We report EIT imaging of impedance changes in rat somatosensory cerebral cortex with a resolution of 2 ms and < 200 μm during evoked potentials using epicortical arrays with 30 electrodes. Images were validated with local field potential recordings and current source-sink density analysis. Our results demonstrate that EIT can image neural activity in a volume 7 × 5 × 2 mm in somatosensory cerebral cortex with reduced invasiveness, greater resolution and imaging volume than other methods. Modeling indicates similar resolutions are feasible throughout the entire brain so this technique, uniquely, has the potential to image functional connectivity of cortical and subcortical structures. PMID:26348559
Transcranial electric motor evoked potential monitoring during spine surgery: is it safe?
Schwartz, Daniel M; Sestokas, Anthony K; Dormans, John P; Vaccaro, Alexander R; Hilibrand, Alan S; Flynn, John M; Li, P Mark; Shah, Suken A; Welch, William; Drummond, Denis S; Albert, Todd J
2011-06-01
Retrospective review. To report on the safety of repetitive transcranial electric stimulation (RTES) for eliciting motor-evoked potentials during spine surgery. Theoretical concerns over the safety of RTES have hindered broader acceptance of transcranial electric motor-evoked potentials (tceMEP), despite successful implementation of spinal cord monitoring with tceMEPs in many large spine centers, as well as their apparent superiority over mixed-nerve somatosensory-evoked potentials (SSEP) for detection of spinal cord injury. The records of 18,862 consecutive patients who met inclusion criteria and underwent spine surgery with tceMEP monitoring were reviewed for RTES-related complications. This large retrospective review identified only 26 (0.14%) cases with RTES-related complications; all but one of these were tongue lacerations, most of which were self-limiting. The results demonstrate that RTES is a highly safe modality for monitoring spinal cord motor tract function intraoperatively.
Yudina, Marina M; Toropina, Galina G; Lvov, Andrey; Gieler, Uwe
2011-10-01
The aim of this study was to examine the findings of innovative neurophysiological methods of itch research. Short-latency and pain-related somatosensory-evoked potentials after electrical stimulation, as well as long-latency evoked potentials after thermal stimulation were studied in 38 patients with atopic dermatitis (AD) and 26 healthy volunteers. Quantitative Sensory Testing of thermal perception was performed in 22 patients with AD from the main AD group and in 15 healthy volunteers. Brain hyperactivity to electrical stimuli, delayed thermal-evoked potentials and elevated thermal thresholds were revealed in patients with AD compared with healthy controls. The data indicate small nerve fibre dysfunction in patients with AD, which may contribute to the pathogenesis of AD and chronic itch. The study demonstrates objective approaches to assess the function of small nerve fibres in patients with chronic itch.
Kaji, Izumi; Karaki, Shin-ichiro; Fukami, Yasuyuki; Terasaki, Masaki; Kuwahara, Atsukazu
2009-05-01
Taste transduction molecules, such as Galpha(gust), and taste receptor families for bitter [taste receptor type 2 (T2R)], sweet, and umami, have previously been identified in taste buds and the gastrointestinal (GI) tract; however, their physiological functions in GI tissues are still unclear. Here, we investigated the physiological function and expression of T2R in human and rat large intestine using various physiological and molecular biological techniques. To study the physiological function of T2R, the effect of a bitter compound, 6-n-propyl-2-thiouracil (6-PTU), on transepithelial ion transport was investigated using the Ussing chamber technique. In mucosal-submucosal preparations, mucosal 6-PTU evoked Cl(-) and HCO(3)(-) secretions in a concentration-dependent manner. In rat middle colon, levels of 6-PTU-evoked anion secretion were higher than in distal colon, but there was no such difference in human large intestine. The response to 6-PTU was greatly reduced by piroxicam, but not by tetrodotoxin. Additionally, prostaglandin E(2) concentration-dependently potentiated the response to 6-PTU. Transcripts of multiple T2Rs (putative 6-PTU receptors) were detected in both human and rat colonic mucosa by RT-PCR. In conclusion, these results suggest that the T2R ligand, 6-PTU, evokes anion secretion, and such response is regulated by prostaglandins. This luminal bitter sensing mechanism may be important for host defense in the GI tract.
Kitzmiller, Joseph P; Hansford, Derek J; Fortin, Linda D; Obrietan, Karl H; Bergdall, Valerie K; Beversdorf, David Q
2007-05-15
A sub-dural surface microelectrode array designed to detect micro-field evoked potentials has been developed. The device is comprised of an array of 350-microm square gold contacts, with bidirectional spacing of 150 microm, contained within a polyimide Kapton material. Cytotoxicity testing suggests that the device is suitable for use with animal and human patients. Implementation of the device in animal studies revealed that reliable evoked potentials could be acquired. Further work will be needed to determine how these micro-field potentials, which demonstrate selectivity for one eye, relate to the distribution of the ocular dominance columns of the occipital cortex.
Kitzmiller, Joseph P.; Hansford, Derek J.; Fortin, Linda D.; Obrietan, Karl H.; Bergdall, Valerie K.
2007-01-01
A sub-dural surface microelectrode array designed to detect microfield evoked potentials has been developed. The device is comprised of an array of 350-micron square gold contacts, with bi-directional spacing of 150 microns, contained within a polyimide Kapton material. Cytotoxicity testing suggests that the device is suitable for use with animal and human patients. Implementation of the device in animal studies revealed that reliable evoked potentials could be acquired. Further work will be needed to determine how these microfield potentials, which demonstrate selectivity for one eye, relate to the distribution of the ocular dominance columns of the occipital cortex. PMID:17298849
Moncho, Dulce; Poca, Maria A; Minoves, Teresa; Ferré, Alejandro; Sahuquillo, Juan
2015-10-01
Limits of the interside differences are invaluable when interpreting asymmetry in brainstem auditory evoked potentials and somatosensory evoked potentials (SEP) recordings. The aim of this study was to analyze the normal upper limits of interside latency differences of brainstem auditory evoked potentials and SEP from the posterior tibial nerve and median nerve to determine asymmetry. The authors performed a prospective study in 56 healthy subjects aged 15 to 64 years with no neurological or hearing disorders. They analyzed (1) the latencies of I, III, and V waves and I-III, III-V, and I-V intervals and the amplitude ratios V/I and IV/I for brainstem auditory evoked potentials bilaterally; (2) the latencies of N8, N22, N28, and P37 waves and the interval N22-P37 and the amplitude P37 for posterior tibial nerve SEP bilaterally; and (3) the latencies and amplitudes of N9, N13, and N20 waves and N9-N13 and N13-N20 intervals for median nerve SEP bilaterally. The interside differences for these parameters were calculated and analyzed. The authors obtained an upper limit for the interside latency differences from brainstem auditory evoked potentials that was significantly lower than the previously published data. However, the upper limits of interside latency differences for SEP were similar to those previously reported. The findings of this study should be considered when laboratories analyze asymmetry using the normative data published by another center, however temporarily, in organizing new laboratories.
Ewing, Samuel G; Grace, Anthony A
2013-02-01
Existing antipsychotic drugs are most effective at treating the positive symptoms of schizophrenia but their relative efficacy is low and they are associated with considerable side effects. In this study deep brain stimulation of the ventral hippocampus was performed in a rodent model of schizophrenia (MAM-E17) in an attempt to alleviate one set of neurophysiological alterations observed in this disorder. Bipolar stimulating electrodes were fabricated and implanted, bilaterally, into the ventral hippocampus of rats. High frequency stimulation was delivered bilaterally via a custom-made stimulation device and both spectral analysis (power and coherence) of resting state local field potentials and amplitude of auditory evoked potential components during a standard inhibitory gating paradigm were examined. MAM rats exhibited alterations in specific components of the auditory evoked potential in the infralimbic cortex, the core of the nucleus accumbens, mediodorsal thalamic nucleus, and ventral hippocampus in the left hemisphere only. DBS was effective in reversing these evoked deficits in the infralimbic cortex and the mediodorsal thalamic nucleus of MAM-treated rats to levels similar to those observed in control animals. In contrast stimulation did not alter evoked potentials in control rats. No deficits or stimulation-induced alterations were observed in the prelimbic and orbitofrontal cortices, the shell of the nucleus accumbens or ventral tegmental area. These data indicate a normalization of deficits in generating auditory evoked potentials induced by a developmental disruption by acute high frequency, electrical stimulation of the ventral hippocampus. Copyright © 2012 Elsevier B.V. All rights reserved.
Ewing, Samuel G.; Grace, Anthony A.
2012-01-01
Existing antipsychotic drugs are most effective at treating the positive symptoms of schizophrenia, but their relative efficacy is low and they are associated with considerable side effects. In this study deep brain stimulation of the ventral hippocampus was performed in a rodent model of schizophrenia (MAM-E17) in an attempt to alleviate one set of neurophysiological alterations observed in this disorder. Bipolar stimulating electrodes were fabricated and implanted, bilaterally, into the ventral hippocampus of rats. High frequency stimulation was delivered bilaterally via a custom-made stimulation device and both spectral analysis (power and coherence) of resting state local field potentials and amplitude of auditory evoked potential components during a standard inhibitory gating paradigm were examined. MAM rats exhibited alterations in specific components of the auditory evoked potential in the infralimbic cortex, the core of the nucleus accumbens, mediodorsal thalamic nucleus, and ventral hippocampus in the left hemisphere only. DBS was effective in reversing these evoked deficits in the infralimbic cortex and the mediodorsal thalamic nucleus of MAM-treated rats to levels similar to those observed in control animals. In contrast stimulation did not alter evoked potentials in control rats. No deficits or stimulation-induced alterations were observed in the prelimbic and orbitofrontal cortices, the shell of the nucleus accumbens or ventral tegmental area. These data indicate a normalization of deficits in generating auditory evoked potentials induced by a developmental disruption by acute high frequency, electrical stimulation of the ventral hippocampus. PMID:23269227
Evoked potentials are useful for diagnosis of neuromyelitis optica spectrum disorder.
Ohnari, Keiko; Okada, Kazumasa; Takahashi, Toshiyuki; Mafune, Kosuke; Adachi, Hiroaki
2016-05-15
Neuromyelitis optica spectrum disorder (NMOSD) has been differentiated from relapsing-remitting multiple sclerosis (RRMS) by clinical, laboratory, and pathological findings, including the presence of the anti-aquaporin 4 antibody. Measurement of evoked potentials (EPs) is often used for the diagnosis of RRMS, although the possibility of applying EPs to the diagnosis of NMOSD has not been investigated in detail. Eighteen patients with NMOSD and 28 patients with RRMS were included in this study. The patients' neurological symptoms and signs were examined and their EPs were recorded. Characteristic findings were absence of visual evoked potentials and absence of motor evoked potentials in the lower extremities in patients with NMOSD, and a delay in these potentials in patients with RRMS. Most patients with NMOSD did not present abnormal subclinical EPs, whereas many patients with RRMS did. None of the patients with NMOSD showed abnormalities in auditory brainstem responses. NMOSD can be differentiated from RRMS by EP data obtained in the early stages of these diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Gazzeri, Roberto; Faiola, Andrea; Neroni, Massimiliano; Fiore, Claudio; Callovini, Giorgio; Pischedda, Mauro; Galarza, Marcelo
2013-09-01
Intraoperative motor evoked potentials (MEP) and electromyography (EMG) monitoring in patients with spinal and cranial lesions is a valuable tool for prevention of postoperative motor deficits. The purpose of this study was to determine whether electrophysiological monitoring during skull base, spinal cord, and spinal surgery might be useful for predicting postoperative motor deterioration. From January 2012 to March 2013, thirty-three consecutive patients were studied using intraoperative monitoring (Nuvasive NV-M5 System) to check the integrity of brainstem, spinal cord, and nerve roots, recording transcranial motor evoked potentials (TcMEPs) and electromyography. Changes in MEPs and EMGs were related to postoperative deficits. Preoperative diagnosis included skull base and brainstem lesions (6 patients), spinal tumors (11 patients), spinal deformity (16 cases). Using TcMEPs and EMG is a practicable and safe method. MEPs are useful in any surgery in which the brainstem and spinal cord are at risk. EMG stimulation helps to identify an optimal trans-psoas entry point for an extreme lateral lumbar interbody fusion (XLIF) approach to protect against potential nerve injury. This neural navigation technique via a surgeon-interpreted interface assists the surgical team in safely removing lesions and accessing the intervertebral disc space for minimally invasive spinal procedures.
Viral infection potentiates the increase in airway blood flow produced by substance P.
Yamawaki, I; Geppetti, P; Bertrand, C; Chan, B; Massion, P; Piedimonte, G; Nadel, J A
1995-08-01
We examined the effect of respiratory tract infection with Sendai virus on the responsiveness of airway blood flow to substance P (SP) in rats. Pathogen-free rats were inoculated with either Sendai virus suspension or sterile viral growth medium into each nostril. Five days later, we measured airway and esophageal blood flows before and immediately after injection of SP or histamine into the left ventricle of rats in both groups using a modification of the reference-sample microsphere technique. Viral infection potentiated the increase in airway blood flow evoked by SP but not by histamine. We also examined the effect of neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE) on the SP-induced increase in airway blood flow. Both phosphoramidon (NEP inhibitor) and captopril (ACE inhibitor) potentiated the increase in airway blood flow produced by SP in pathogen-free rats. In the presence of both peptidase inhibitors, a submaximal dose of SP increased blood flow to a similar level in infected and pathogen-free rats. Thus decreased activity of both ACE and NEP may be involved in the exaggerated increase in airway blood flow evoked by SP in virus-infected rats.
Carbachol-Induced Reduction in the Activity of Adult Male Zebra Finch RA Projection Neurons.
Meng, Wei; Wang, Song-Hua; Li, Dong-Feng
2016-01-01
Cholinergic mechanism is involved in motor behavior. In songbirds, the robust nucleus of the arcopallium (RA) is a song premotor nucleus in the pallium and receives cholinergic inputs from the basal forebrain. The activity of projection neurons in RA determines song motor behavior. Although many evidences suggest that cholinergic system is implicated in song production, the cholinergic modulation of RA is not clear until now. In the present study, the electrophysiological effects of carbachol, a nonselective cholinergic receptor agonist, were investigated on the RA projection neurons of adult male zebra finches through whole-cell patch-clamp techniques in vitro. Our results show that carbachol produced a significant decrease in the spontaneous and evoked action potential (AP) firing frequency of RA projection neurons, accompanying a hyperpolarization of the membrane potential, an increase in the evoked AP latency, afterhyperpolarization (AHP) peak amplitude, and AHP time to peak, and a decrease in the membrane input resistance, membrane time constant, and membrane capacitance. These results indicate that carbachol reduces the activity of RA projection neurons by hyperpolarizing the resting membrane potential and increasing the AHP and the membrane conductance, suggesting that the cholinergic modulation of RA may play an important role in song production.
SOMATOSENSORY EVOKED POTENTIALS
Somatosensory evoked potentials (SEPs) have been used by neuroscientists for many years. The versatility of the method is attested to be the differing purposes to which it has been applied. Initially, SEPs were used to uncover basic principles of sensory processing. A casual glan...
Wang, Jingxuan; Lu, Jianren; Tian, Lan
2016-06-01
The purpose of this study was to evaluate the effects of fiberoptic collimation technique on auditory neural stimulation in the cochlea with 808 nm wavelength lasers. Recently, the pulsed near-infrared lasers in the 800-1000 nm wavelength range have been investigated as an emerging technique to trigger auditory neural response in the cochlea. A laser beam divergence in the optical stimulation pathway exists, which may affect stimulation efficiency and spatial selectivity. The fiberoptic collimation technique was proposed for cochlear neuron stimulation, and the C-lens element was designed as the collimation structure. The spiral ganglion cells in deafened guinea pigs' cochlea were irradiated with collimated and uncollimated near-infrared lasers. Optically evoked auditory brainstem response (OABR) under the two laser output modes were recorded. Laser with the collimation technique evoked an average 58% higher OABR amplitude than the uncollimated laser output. In addition, the collimated laser setup consumed on average 35.2% of laser energy compared with the uncollimated laser when evoking the same OABR amplitude. The fiberoptic collimation technique improved stimulation efficiency and reduced stimulating energy consumption in near-infrared neural stimulation in cochlea. The positive effects of laser collimation technique could benefit further research in optically based cochlear implants.
A comparison of auditory evoked potentials to acoustic beats and to binaural beats.
Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi
2010-04-01
The purpose of this study was to compare cortical brain responses evoked by amplitude modulated acoustic beats of 3 and 6 Hz in tones of 250 and 1000 Hz with those evoked by their binaural beats counterparts in unmodulated tones to indicate whether the cortical processes involved differ. Event-related potentials (ERPs) were recorded to 3- and 6-Hz acoustic and binaural beats in 2000 ms duration 250 and 1000 Hz tones presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to beats-evoked oscillations were determined and compared across beat types, beat frequencies and base (carrier) frequencies. All stimuli evoked tone-onset components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude in response to acoustic than to binaural beats, to 250 than to 1000 Hz base frequency and to 3 Hz than to 6 Hz beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left temporal lobe areas. Differences between estimated sources of potentials to acoustic and binaural beats were not significant. The perceptions of binaural beats involve cortical activity that is not different than acoustic beats in distribution and in the effects of beat- and base frequency, indicating similar cortical processing. Copyright 2010 Elsevier B.V. All rights reserved.
Challenges of recording human fetal auditory-evoked response using magnetoencephalography.
Eswaran, H; Lowery, C L; Robinson, S E; Wilson, J D; Cheyne, D; McKenzie, D
2000-01-01
Our goals were to successfully perform fetal auditory-evoked responses using the magnetoencephalography technique, understand its problems and limitations, and propose instrument design modifications to improve the signal quality and success rate. Fetal auditory-evoked responses were recorded from four fetuses with gestational ages ranging from 33-40+ weeks. The signals were recorded using a gantry-based superconducting quantum interference device. Auditory stimulus was 1 kHz tone burst. The evoked signals were digitized and averaged over an 800 ms window. After several trials of positioning and repositioning the subjects, we were able to record auditory-evoked responses in three out of the four fetuses. Since the superconducting quantum interference device array design was not shaped to fit over the mother's abdomen, we experienced difficulty in positioning the sensors over the fetal head. Based on this pilot study, we propose instrument design that may improve signal quality and success rate of the fetal magnetic auditory-evoked response.
Ma, Hongtao; Harris, Samuel; Rahmani, Redi; Lacefield, Clay O.; Zhao, Mingrui; Daniel, Andy G. S.; Zhou, Zhiping; Bruno, Randy M.; Berwick, Jason; Schwartz, Theodore H.
2014-01-01
Abstract. In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required. PMID:25525611
Ma, Hongtao; Harris, Samuel; Rahmani, Redi; Lacefield, Clay O; Zhao, Mingrui; Daniel, Andy G S; Zhou, Zhiping; Bruno, Randy M; Berwick, Jason; Schwartz, Theodore H
2014-07-24
In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required.
Steady-state visual evoked potentials as a research tool in social affective neuroscience
Wieser, Matthias J.; Miskovic, Vladimir; Keil, Andreas
2017-01-01
Like many other primates, humans place a high premium on social information transmission and processing. One important aspect of this information concerns the emotional state of other individuals, conveyed by distinct visual cues such as facial expressions, overt actions, or by cues extracted from the situational context. A rich body of theoretical and empirical work has demonstrated that these socio-emotional cues are processed by the human visual system in a prioritized fashion, in the service of optimizing social behavior. Furthermore, socio-emotional perception is highly dependent on situational contexts and previous experience. Here, we review current issues in this area of research and discuss the utility of the steady-state visual evoked potential (ssVEP) technique for addressing key empirical questions. Methodological advantages and caveats are discussed with particular regard to quantifying time-varying competition among multiple perceptual objects, trial-by-trial analysis of visual cortical activation, functional connectivity, and the control of low-level stimulus features. Studies on facial expression and emotional scene processing are summarized, with an emphasis on viewing faces and other social cues in emotional contexts, or when competing with each other. Further, because the ssVEP technique can be readily accommodated to studying the viewing of complex scenes with multiple elements, it enables researchers to advance theoretical models of socio-emotional perception, based on complex, quasi-naturalistic viewing situations. PMID:27699794
Barmack, N H; Errico, P; Ferraresi, A; Pettorossi, V E
1989-01-01
1. Eye movements in unanaesthetized rabbits were studied during horizontal neck-proprioceptive stimulation (movement of the body with respect to the fixed head), when this stimulation was given alone and when it was given simultaneously with vestibular stimulation (rotation of the head-body). The effect of neck-proprioceptive stimulation on modifying the anticompensatory fast-phase eye movements (AFPs) evoked by vestibular stimulation was studied with a 'conditioning-test' protocol; the 'conditioning' stimulus was a neck-proprioceptive signal evoked by a step-like change in body position with respect to the head and the 'test' stimulus was a vestibular signal evoked by a step rotation of the head-body. 2. The influence of eye position and direction of slow eye movements on the occurrence of compensatory fast-phase eye movements (CFPs) evoked by neck-proprioceptive stimulation was also examined. 3. The anticompensatory fast phase (AFP) evoked by vestibular stimulation was attenuated by a preceding neck-proprioceptive stimulus which when delivered alone evoked compensatory slow-phase eye movements (CSP) in the same direction as the CSP evoked by vestibular stimulation. Conversely, the vestibularly evoked AFP was potentiated by a neck-proprioceptive stimulus which evoked CSPs opposite to that of vestibularly evoked CSPs. 4. Eccentric initial eye positions increased the probability of occurrence of midline-directed compensatory fast-phase eye movements (CFPs) evoked by appropriate neck-proprioceptive stimulation. 5. The gain of the horizontal cervico-ocular reflex (GHCOR) was measured from the combined changes in eye position resulting from AFPs and CSPs. GHCOR was potentiated during simultaneous vestibular stimulation. This enhancement of GHCOR occurred at neck-proprioceptive stimulus frequencies which, in the absence of conjoint vestibular stimulation, do not evoke CSPs. PMID:2795479
Influence of rotating shift work on visual reaction time and visual evoked potential.
R V, Hemamalini; N, Krishnamurthy; A, Saravanan
2014-10-01
The present day life style is changing the circadian rhythm of the body especially in rotating night shift workers. The impact of this prolongs their reaction time. Night shift also interferes with the circadian variation of pupil size which may affect the visual evoked potential. To compare the visual reaction time, visual evoked potential (VEP) in rotating night shift workers & day workers and also to correlate the changes in visual reaction time with visual evoked potential. Forty healthy male security guards & staff (25 - 35 y) who did rotating night shifts at least for six months & 40 d workers (25 - 35 y) who did not do night shift in last two years were involved in the study. Visual reaction time and the latency & amplitude of VEP were recorded. Kolmogorov- Smirnov test for normalcy showed the latencies & amplitude of VEP to be normally distributed. Student's unpaired t test showed significant difference (p<0.05) in the visual time and in the latencies of VEP between night shift & day workers. There was no significant difference in the amplitude of VEP. Night shift workers who are prone to circadian rhythm alteration will have prolonged visual reaction time & visual evoked potential abnormalities. Implementation of Bright Light Therapy would be beneficial to the night shift worker.
Evaluation of afferent pain pathways in adrenomyeloneuropathic patients.
Yagüe, Sara; Veciana, Misericordia; Casasnovas, Carlos; Ruiz, Montserrat; Pedro, Jordi; Valls-Solé, Josep; Pujol, Aurora
2018-03-01
Patients with adrenomyeloneuropathy may have dysfunctions of visual, auditory, motor and somatosensory pathways. We thought on examining the nociceptive pathways by means of laser evoked potentials (LEPs), to obtain additional information on the pathophysiology of this condition. In 13 adrenomyeloneuropathic patients we examined LEPs to leg, arm and face stimulation. Normative data were obtained from 10 healthy subjects examined in the same experimental conditions. We also examined brainstem auditory evoked potentials (BAEPs), pattern reversal full-field visual evoked potentials (VEPs), motor evoked potentials (MEPs) and somatosensory evoked potentials (SEPs). Upper and lower limb MEPs and SEPs, as well as BAEPs, were abnormal in all patients, while VEPs were abnormal in 3 of them (23.1%). LEPs revealed abnormalities to stimulation of the face in 4 patients (30.7%), the forearm in 4 patients (30.7%) and the leg in 10 patients (76.9%). The pathologic process of adrenomyeloneuropathy is characterized by a preferential involvement of auditory, motor and somatosensory tracts and less severely of the visual and nociceptive pathways. This non-inflammatory distal axonopathy preferably damages large myelinated spinal tracts but there is also partial involvement of small myelinated fibres. LEPs studies can provide relevant information about afferent pain pathways involvement in adrenomyeloneuropathic patients. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Electropysiologic evaluation of the visual pathway in patients with multiple sclerosis.
Rodriguez-Mena, Diego; Almarcegui, Carmen; Dolz, Isabel; Herrero, Raquel; Bambo, Maria P; Fernandez, Javier; Pablo, Luis E; Garcia-Martin, Elena
2013-08-01
To evaluate the ability of visual evoked potentials and pattern electroretinograms (PERG) to detect subclinical axonal damage in patients during the early diagnostic stage of multiple sclerosis (MS). The authors also compared the ability of optical coherence tomography (OCT), PERG, and visual evoked potentials to detect axonal loss in MS patients and correlated the functional and structural properties of the retinal nerve fiber layer. Two hundred twenty-eight eyes of 114 subjects (57 MS patients and 57 age- and sex-matched healthy controls) were included. The visual pathway was evaluated based on functional and structural assessments. All patients underwent a complete ophthalmic examination that included assessment of visual acuity, ocular motility, intraocular pressure, visual field, papillary morphology, OCT, visual evoked potentials, and PERG. Visual evoked potentials (P100 latency and amplitude), PERG (N95 amplitude and N95/P50 ratio), and OCT parameters differed significantly between MS patients and healthy subjects. Moderate significant correlations were found between visual evoked potentials or PERG parameters and OCT measurements. Axonal damage in ganglion cells of the visual pathway can be detected based on structural measures provided by OCT in MS patients and by the N95 component and N95/P50 index of PERG, thus providing good correlation between function and structure.
Slater, Rebeccah; Fabrizi, Lorenzo; Worley, Alan; Meek, Judith; Boyd, Stewart; Fitzgerald, Maria
2010-08-15
This study demonstrates that infants who are born prematurely and who have experienced at least 40days of intensive or special care have increased brain neuronal responses to noxious stimuli compared to healthy newborns at the same postmenstrual age. We have measured evoked potentials generated by noxious clinically-essential heel lances in infants born at term (8 infants; born 37-40weeks) and in infants born prematurely (7 infants; born 24-32weeks) who had reached the same postmenstrual age (mean age at time of heel lance 39.2+/-1.2weeks). These noxious-evoked potentials are clearly distinguishable from shorter latency potentials evoked by non-noxious tactile sensory stimulation. While the shorter latency touch potentials are not dependent on the age of the infant at birth, the noxious-evoked potentials are significantly larger in prematurely-born infants. This enhancement is not associated with specific brain lesions but reflects a functional change in pain processing in the brain that is likely to underlie previously reported changes in pain sensitivity in older ex-preterm children. Our ability to quantify and measure experience-dependent changes in infant cortical pain processing will allow us to develop a more rational approach to pain management in neonatal intensive care. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Recording and assessment of evoked potentials with electrode arrays.
Miljković, N; Malešević, N; Kojić, V; Bijelić, G; Keller, T; Popović, D B
2015-09-01
In order to optimize procedure for the assessment of evoked potentials and to provide visualization of the flow of action potentials along the motor systems, we introduced array electrodes for stimulation and recording and developed software for the analysis of the recordings. The system uses a stimulator connected to an electrode array for the generation of evoked potentials, an electrode array connected to the amplifier, A/D converter and computer for the recording of evoked potentials, and a dedicated software application. The method has been tested for the assessment of the H-reflex on the triceps surae muscle in six healthy humans. The electrode array with 16 pads was positioned over the posterior aspect of the thigh, while the recording electrode array with 16 pads was positioned over the triceps surae muscle. The stimulator activated all the pads of the stimulation electrode array asynchronously, while the signals were recorded continuously at all the recording sites. The results are topography maps (spatial distribution of evoked potentials) and matrices (spatial visualization of nerve excitability). The software allows the automatic selection of the lowest stimulation intensity to achieve maximal H-reflex amplitude and selection of the recording/stimulation pads according to predefined criteria. The analysis of results shows that the method provides rich information compared with the conventional recording of the H-reflex with regard the spatial distribution.
Video Head Impulse Testing (vHIT) and the Assessment of Horizontal Semicircular Canal Function.
Riska, Kristal M; Murnane, Owen; Akin, Faith W; Hall, Courtney
2015-05-01
Vestibular function (specifically, horizontal semicircular canal function) can be assessed across a broad frequency range using several different techniques. The head impulse test is a qualitative test of horizontal semicircular canal function that can be completed at bedside. Recently, a new instrument (video head impulse test [vHIT]) has been developed to provide an objective assessment to the clinical test. Questions persist regarding how this test may be used in the overall vestibular test battery. The purpose of this case report is to describe vestibular test results (vHIT, rotational testing, vestibular evoked myogenic potentials, and balance and gait performance) in an individual with a 100% unilateral caloric weakness who was asymptomatic for dizziness, vertigo or imbalance. Comprehensive assessment was completed to evaluate vestibular function. Caloric irrigations, rotary chair testing, vHIT, and vestibular evoked myogenic potentials were completed. A 100% left-sided unilateral caloric weakness was observed in an asymptomatic individual. vHIT produced normal gain with covert saccades. This case demonstrates the clinical usefulness of vHIT as a diagnostic tool and indicator of vestibular compensation and functional status. American Academy of Audiology.
Sinkiewicz, Daniel; Friesen, Lendra; Ghoraani, Behnaz
2017-02-01
Cortical auditory evoked potentials (CAEP) are used to evaluate cochlear implant (CI) patient auditory pathways, but the CI device produces an electrical artifact, which obscures the relevant information in the neural response. Currently there are multiple methods, which attempt to recover the neural response from the contaminated CAEP, but there is no gold standard, which can quantitatively confirm the effectiveness of these methods. To address this crucial shortcoming, we develop a wavelet-based method to quantify the amount of artifact energy in the neural response. In addition, a novel technique for extracting the neural response from single channel CAEPs is proposed. The new method uses matching pursuit (MP) based feature extraction to represent the contaminated CAEP in a feature space, and support vector machines (SVM) to classify the components as normal hearing (NH) or artifact. The NH components are combined to recover the neural response without artifact energy, as verified using the evaluation tool. Although it needs some further evaluation, this approach is a promising method of electrical artifact removal from CAEPs. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Hosono, Yuki; Kitaoka, Kazuyoshi; Urushihara, Ryo; Séi, Hiroyoshi; Kinouchi, Yohsuke
2014-01-01
It has been reported that negative emotional changes and conditions affect the visual faculties of humans at the neural level. On the other hand, the effects of emotion on color perception in particular, which are based on evoked potentials, are unknown. In the present study, we investigated whether different anxiety levels affect the color information processing for each of 3 wavelengths by using flash visual evoked potentials (FVEPs) and State-Trait Anxiety Inventory. In results, significant positive correlations were observed between FVEP amplitudes and state or trait anxiety scores in the long (sensed as red) and middle (sensed as green) wavelengths. On the other hand, short-wavelength-evoked FVEPs were not correlated with anxiety level. Our results suggest that negative emotional conditions may affect color sense processing in humans.
Bergin, M J; Bird, P A; Vlajkovic, S M; Thorne, P R
2015-12-01
Permanent high frequency (>4 kHz) sensorineural hearing loss following middle ear surgery occurs in up to 25% of patients. The aetiology of this loss is poorly understood and may involve transmission of supra-physiological forces down the ossicular chain to the cochlea. Investigating the mechanisms of this injury using animal models is challenging, as evaluating cochlear function with evoked potentials is confounded when ossicular manipulation disrupts the normal air conduction (AC) pathway. Bone conduction (BC) using clinical bone vibrators in small animals is limited by poor transducer output at high frequencies sensitive to trauma. The objectives of the present study were firstly to evaluate a novel high frequency bone conduction transducer with evoked auditory potentials in a guinea pig model, and secondly to use this model to investigate the impact of middle ear surgical manipulation on cochlear function. We modified a magnetostrictive device as a high frequency BC transducer and evaluated its performance by comparison with a calibrated AC transducer at frequencies up to 32 kHz using the auditory brainstem response (ABR), compound action potential (CAP) and summating potential (SP). To mimic a middle ear traumatising stimulus, a rotating bur was brought in to contact with the incudomalleal complex and the effect on evoked cochlear potentials was observed. BC-evoked potentials followed the same input-output function pattern as AC potentials for all ABR frequencies. Deterioration in CAP and SP thresholds was observed after ossicular manipulation. It is possible to use high frequency BC to evoke responses from the injury sensitive basal region of the cochlea and so not rely on AC with the potential confounder of conductive hearing loss. Ongoing research explores how these findings evolve over time, and ways in which injury may be reduced and the cochlea protected during middle ear surgery. Copyright © 2015 Elsevier B.V. All rights reserved.
Origins of retinal intrinsic signals: a series of experiments on retinas of macaque monkeys.
Tsunoda, Kazushige; Hanazono, Gen; Inomata, Koichi; Kazato, Yoko; Suzuki, Wataru; Tanifuji, Manabu
2009-07-01
Diffuse flash stimuli applied to the ocular fundus evoke light reflectance decreases of the fundus illuminated with infrared observation light. This phenomenon, which is independent of the photopigment bleaching observed as an increase in the reflectance of visible light, is called intrinsic signals. Intrinsic signals, in general, are stimulus-evoked light reflectance changes of neural tissues due to metabolic changes, and they have been extensively investigated in the cerebral cortex. This noninvasive objective technique of functional imaging has good potential as a tool for the early detection of retinal dysfunction. Once the signal properties were studied in detail, however, it became apparent that the intrinsic signals observed in the retina have uniquely interesting properties of their own due to the characteristic layered structure of the retina. Experiments on anesthetized macaque monkeys are reviewed, and the possible origins of the intrinsic signals of the retina are discussed.
Fedele, T; Scheer, H-J; Burghoff, M; Waterstraat, G; Nikulin, V V; Curio, G
2013-01-01
Non-invasively recorded averaged event-related potentials (ERP) represent a convenient opportunity to investigate human brain perceptive and cognitive processes. Nevertheless, generative ERP mechanisms are still debated. Two previous approaches have been contested in the past: the added-energy model in which the response raises independently from the ongoing background activity, and the phase-reset model, based on stimulus-driven synchronization of oscillatory ongoing activity. Many criteria for the distinction of these two models have been proposed, but there is no definitive methodology to disentangle them, owing also to the limited information at the single trial level. Here, we propose a new approach combining low-noise EEG technology and multivariate decomposition techniques. We present theoretical analyses based on simulated data and identify in high-frequency somatosensory evoked responses an optimal target for the distinction between the two mechanisms.
Substance P is a functional neurotransmitter in the rat parotid gland.
Gallacher, D V
1983-09-01
The technique of electrical field stimulation was employed to stimulate the intrinsic nerves of isolated rat parotid gland fragments. Responses to field stimulation were recorded as changes in enzyme secretion (amylase release), radiolabelled ion fluxes (86Rb efflux) and electrophysiological effects (changes in acinar cell membrane potential and input resistance). All effects of field stimulation were abolished by the neurotoxin, tetrodotoxin (TTX). Selective use of pharmacological antagonists revealed that both the sympathetic and parasympathetic nerves to this tissue were being excited by field stimulation. Importantly a significant component of the response to field stimulation persisted in the presence of combined autonomic receptor blockade by atropine, phentolamine and propranolol, i.e. due to release of a non-cholinergic, non-adrenergic neurotransmitter. The non-cholinergic, non-adrenergic neurotransmitter evoked amylase release, 86Rb efflux and electrophysiological effects seen as changes in acinar cell membrane potential and conductance, i.e. stimulus-permeability coupled. Two biologically active peptides, substance P (SP) and vasoactive intestinal polypeptide (VIP) were shown to evoke amylase release in the presence of combined autonomic blockade. VIP however did not evoke any increase in 86Rb efflux, i.e. not stimulus-permeability coupled. All the effects of the non-cholinergic, non-adrenergic transmitter were mimicked by substance P which evokes 86Rb efflux and electrophysiological effects in addition to amylase release. The non-cholinergic, non-adrenergic field stimulus effects on amylase release and 86Rb efflux were abolished or markedly attenuated in tissues which had been desensitized by prior exposure to exogenous substance P. In the presence of VIP, however, the non-cholinergic, non-adrenergic effects persisted and were apparently potentiated. Acute application of the neurotoxin capsaicin first stimulated a transient release of amylase and subsequently abolished the non-cholinergic, non-adrenergic field stimulus-evoked enzyme release. The putative substance P antagonist, D-Pro2, D-Trp7,9 substance P, reversibly blocked the response to both non-cholinergic, non-adrenergic nerve stimulation and exogenous substance P. It was demonstrated however that prolonged exposure to this antagonist is associated with non-reversible and, importantly, non-specific neurotoxic effects. It is concluded that substance P or a closely related peptide is a functional neurotransmitter in the rat parotid gland.
2012-01-01
Background A flexed neck posture leads to non-specific activation of the brain. Sensory evoked cerebral potentials and focal brain blood flow have been used to evaluate the activation of the sensory cortex. We investigated the effects of a flexed neck posture on the cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in the related sensory cortices. Methods Twelve healthy young adults received right visual hemi-field, binaural auditory and left median nerve stimuli while sitting with the neck in a resting and flexed (20° flexion) position. Sensory evoked potentials were recorded from the right occipital region, Cz in accordance with the international 10–20 system, and 2 cm posterior from C4, during visual, auditory and somatosensory stimulations. The oxidative-hemoglobin concentration was measured in the respective sensory cortex using near-infrared spectroscopy. Results Latencies of the late component of all sensory evoked potentials significantly shortened, and the amplitude of auditory evoked potentials increased when the neck was in a flexed position. Oxidative-hemoglobin concentrations in the left and right visual cortices were higher during visual stimulation in the flexed neck position. The left visual cortex is responsible for receiving the visual information. In addition, oxidative-hemoglobin concentrations in the bilateral auditory cortex during auditory stimulation, and in the right somatosensory cortex during somatosensory stimulation, were higher in the flexed neck position. Conclusions Visual, auditory and somatosensory pathways were activated by neck flexion. The sensory cortices were selectively activated, reflecting the modalities in sensory projection to the cerebral cortex and inter-hemispheric connections. PMID:23199306
Zhu, Jin; Zhang, Xin; Zhao, Hua; Tang, Yin-Da; Ying, Ting-Ting; Li, Shi-Ting
2017-09-01
To investigate the characteristics of brainstem trigeminal evoked potentials (BTEP) waveform in patients with and without trigeminal neuralgia (TN), and to discuss the utility of BTEP in patients with primary TN treated by microvascular decompression (MVD). A retrospective review of 43 patients who underwent BTEP between January 2016 and June 2016, including 33 patients with TN who underwent MVD and 10 patients without TN. Brainstem trigeminal evoked potentials characteristics of TN and non-TN were summarized, in particular to compare the BTEP changes between pre- and post-MVD, and to discover the relationship between BTEP changes and surgical outcome. Brainstem trigeminal evoked potentials can be recorded in patients without trigeminal neuralgia. Abnormal BTEP could be recorded when different branches were stimulated. After decompression, the original W2, W3 disappeared and then replaced by a large wave in most patients, or original wave poorly differentiated improved in some patients, showed as shorter latency and (or) amplitude increased. Brainstem trigeminal evoked potentials waveform of healthy side in patients with trigeminal neuralgia was similar to the waveform of patients without TN. In 3 patients, after decompression the W2, W3 peaks increased, and the latency, duration, IPLD did not change significantly. Until discharge, 87.9% (29/33) of the patients presented complete absence of pain without medication (BNI I) and 93.9% (31/33) had good pain control without medication (BNI I-II). Brainstem trigeminal evoked potentials can reflect the conduction function of the trigeminal nerve to evaluate the functional level of the trigeminal nerve conduction pathway. The improvement and restoration of BTEP waveforms are closely related to the postoperative curative effect.
Amarasekera, Dilru C; Resende, Arthur F; Waisbourd, Michael; Puri, Sanjeev; Moster, Marlene R; Hark, Lisa A; Katz, L Jay; Fudemberg, Scott J; Mantravadi, Anand V
2018-01-01
This study evaluates two rapid electrophysiological glaucoma diagnostic tests that may add a functional perspective to glaucoma diagnosis. This study aimed to determine the ability of two office-based electrophysiological diagnostic tests, steady-state pattern electroretinogram and short-duration transient visual evoked potentials, to discern between glaucomatous and healthy eyes. This is a cross-sectional study in a hospital setting. Forty-one patients with glaucoma and 41 healthy volunteers participated in the study. Steady-state pattern electroretinogram and short-duration transient visual evoked potential testing was conducted in glaucomatous and healthy eyes. A 64-bar-size stimulus with both a low-contrast and high-contrast setting was used to compare steady-state pattern electroretinogram parameters in both groups. A low-contrast and high-contrast checkerboard stimulus was used to measure short-duration transient visual evoked potential parameters in both groups. Steady-state pattern electroretinogram parameters compared were MagnitudeD, MagnitudeD/Magnitude ratio, and the signal-to-noise ratio. Short-duration transient visual evoked potential parameters compared were amplitude and latency. MagnitudeD was significantly lower in glaucoma patients when using a low-contrast (P = 0.001) and high-contrast (P < 0.001) 64-bar-size steady-state pattern electroretinogram stimulus. MagnitudeD/Magnitude ratio and SNR were significantly lower in the glaucoma group when using a high-contrast 64-bar-size stimulus (P < 0.001 and P = 0.010, respectively). Short-duration transient visual evoked potential amplitude and latency were not significantly different between the two groups. Steady-state pattern electroretinogram was effectively able to discern between glaucomatous and healthy eyes. Steady-state pattern electroretinogram may thus have a role as a clinically useful electrophysiological diagnostic tool. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Sousa, Rafael M; Oyamada, Maria K; Cunha, Leonardo P; Monteiro, Mário L R
2017-09-01
To verify whether multifocal visual evoked potential (mfVEP) can differentiate eyes with temporal hemianopia due to chiasmal compression from healthy controls. To assess the relationship between mfVEP, standard automated perimetry (SAP), and Fourier domain-optical coherence tomography (FD-OCT) macular and peripapillary retinal nerve fiber layer (RNFL) thickness measurements. Twenty-seven eyes with permanent temporal visual field (VF) defects from chiasmal compression on SAP and 43 eyes of healthy controls were submitted to mfVEP and FD-OCT scanning. Multifocal visual evoked potential was elicited using a stimulus pattern of 60 sectors and the responses were averaged for the four quadrants and two hemifields. Optical coherence tomography macular measurements were averaged in quadrants and halves, while peripapillary RNFL thickness was averaged in four sectors around the disc. Visual field loss was estimated in four quadrants and each half of the 24-2 strategy test points. Multifocal visual evoked potential measurements in the two groups were compared using generalized estimated equations, and the correlations between mfVEP, VF, and OCT findings were quantified. Multifocal visual evoked potential-measured temporal P1 and N2 amplitudes were significantly smaller in patients than in controls. No significant difference in amplitude was observed for nasal parameters. A significant correlation was found between mfVEP amplitudes and temporal VF loss, and between mfVEP amplitudes and the corresponding OCT-measured macular and RNFL thickness parameters. Multifocal visual evoked potential amplitude parameters were able to differentiate eyes with temporal hemianopia from controls and were significantly correlated with VF and OCT findings, suggesting mfVEP is a useful tool for the detection of visual abnormalities in patients with chiasmal compression.
Riazi, Mariam; Marcario, Joanne K; Samson, Frank K.; Kenjale, Himanshu; Adany, Istvan; Staggs, Vincent; Ledford, Emily; Marquis, Janet; Narayan, Opendra; Cheney, Paul D.
2013-01-01
Our work characterizes the effects of opiate (morphine) dependence on auditory brainstem and visual evoked responses in a rhesus macaque model of neuro-AIDS utilizing a chronic continuous drug delivery paradigm. The goal of this study was to clarify whether morphine is protective, or if it exacerbates simian immunodeficiency virus (SIV) related systemic and neurological disease. Our model employs a macrophage tropic CD4/CCR5 co-receptor virus, SIVmac239 (R71/E17), which crosses the blood brain barrier shortly after inoculation and closely mimics the natural disease course of human immunodeficiency virus (HIV) infection. The cohort was divided into 3 groups: morphine only, SIV only, and SIV + morphine. Evoked potential (EP) abnormalities in sub-clinically infected macaques were evident as early as eight weeks post-inoculation. Prolongations in EP latencies were observed in SIV-infected macaques across all modalities. Animals with the highest CSF viral loads and clinical disease showed more abnormalities than those with sub-clinical disease, confirming our previous work (Raymond et al, 1998, 1999, 2000). Although some differences were observed in auditory and visual evoked potentials in morphine treated compared to untreated SIV-infected animals, the effects were relatively small and not consistent across evoked potential type. However, morphine treated animals with subclinical disease had a clear tendency toward higher virus loads in peripheral and CNS tissues (Marcario et al., 2008) suggesting that if had been possible to follow all animals to end-stage disease, a clearer pattern of evoked potential abnormality might have emerged. PMID:19283490
Stimulus novelty, task relevance and the visual evoked potential in man
NASA Technical Reports Server (NTRS)
Courchesne, E.; Hillyard, S. A.; Galambos, R.
1975-01-01
The effect of task relevance on P3 (waveform of human evoked potential) waves and the methodologies used to deal with them are outlined. Visual evoked potentials (VEPs) were recorded from normal adult subjects performing in a visual discrimination task. Subjects counted the number of presentations of the numeral 4 which was interposed rarely and randomly within a sequence of tachistoscopically flashed background stimuli. Intrusive, task-irrelevant (not counted) stimuli were also interspersed rarely and randomly in the sequence of 2s; these stimuli were of two types: simples, which were easily recognizable, and novels, which were completely unrecognizable. It was found that the simples and the counted 4s evoked posteriorly distributed P3 waves while the irrelevant novels evoked large, frontally distributed P3 waves. These large, frontal P3 waves to novels were also found to be preceded by large N2 waves. These findings indicate that the P3 wave is not a unitary phenomenon but should be considered in terms of a family of waves, differing in their brain generators and in their psychological correlates.
Jones, S J
1979-01-01
Peripheral, spinal and cortical somatosensory evoked potentials were recorded in 26 patients with unilateral traction injuries of the brachial plexus ganglia. Of 10 cases explored surgically the recordings correctly anticipated the major site of the lesion in eight. PMID:422958
Chen, X; Zhang, M; Wang, J; Lou, F; Liang, J
1999-03-01
To investigate the variations of auditory evoked potentials (AEP) and visual evoked potentials (VEP) of patients with idiot savant (IS) syndrome. Both AEP and VEP were recorded from 7 patients with IS syndrome, 21 mentally retarded (MR) children without the syndrome and 21 normally age-matched controls, using a Dantec concerto SEEG-16 BEAM instrument. Both AEP and VEP of MR group showed significantly longer latencies (P1 and P2 latencies of AEP, P < 0.01; N1 and N2 latencies of VEP, P < 0.01/0.05), lower P2 amplitudes (P < 0.01) and higher P3 amplitudes (P < 0.01), as compared with normal controls. But none of above-mentioned changes was found with IS group. Almost all MR patients (90.1%) presented P4 component in both AEP and VEP, which was also in sharp contrast with its incidence in other 2 groups (IS: 14.3%; normal controls: 9.5%). Patients with idiot savant syndrome presented normalized AEP and VEP.
Roca, Patricia; Mulas, Fernando; Gandia, Rubén; Ortiz-Sánchez, Pedro; Abad, Luis
2013-02-22
Evoked potentials P300 and the analysis of executive functions have shown their utility in the monitoring of patients with symptoms of attention deficit hyperactivity disorder (ADHD). Neuropsychological profiles and evoked potentials P300 have been analysed for two groups of children with an ADHD treatment with atomoxetine and methylphenidate respectively. Correlations between P300 and the selected neuropsychological parameters are studied, and the differences between basal values and 1 year follow-up are analysed. Two groups were performed: a group of 22 children ADHD in the atomoxetine condition, and a group of 24 children ADHD in the methylphenidate condition. The results show a global improvement of all the parameters, in terms of executive function and P300 values in both, the atomoxetine and the methylphenidate group. Executive functions and evoked potentials P300 reflect an underlying processing and they are very useful in the clinical practice. This exploratory study shows the importance of designing personalized objective variables-based treatments.
Cortico-centric effects of general anesthetics on cerebrocortical evoked potentials.
Voss, Logan J; Sleigh, James W
2015-12-01
Despite their ubiquitous use for rendering patients unconscious for surgery, our understanding of how general anesthetics cause hypnosis remains rudimentary at best. Recent years have seen increased interest in "top-down" cortico-centric theories of anesthetic action. The aim of this study was to explore this by investigating direct cortical effects of anesthetics on cerebrocortical evoked potentials in isolated mouse brain slices. Evoked potentials were elicited in cortical layer IV by electrical stimulation of the underlying white matter. The effects of three anesthetics (ketamine, etomidate, and isoflurane) on the amplitude, latency, and slope of short-latency evoked potentials were quantified. The N2/P3/N4 potentials–which represent the early cortical response–were enhanced by etomidate (increased P3-N4 slope, P <0.01), maintained by ketamine, and reduced by isoflurane (lower N2/P3 amplitude, P <0.01). These effects closely resemble those seen in vivo for the same drugs and point to a cortical mechanism independent of effects on subcortical structures such as the thalamus.
An indirect component in the evoked compound action potential of the vagal nerve.
Ordelman, Simone C M A; Kornet, Lilian; Cornelussen, Richard; Buschman, Hendrik P J; Veltink, Peter H
2010-12-01
The vagal nerve plays a vital role in the regulation of the cardiovascular system. It not only regulates the heart but also sends sensory information from the heart back to the brain. We hypothesize that the evoked vagal nerve compound action potential contains components that are indirect via the brain stem or coming via the neural network on the heart. In an experimental study of 15 pigs, we identified four components in the evoked compound action potentials. The fourth component was found to be an indirect component, which came from the periphery. The latency of the indirect component increased when heart rate and contractility were decreased by burst stimulation (P = 0.01; n = 7). When heart rate and contractility were increased by dobutamine administration, the latency of the indirect component decreased (P = 0.01; n = 9). This showed that the latency of the indirect component of the evoked compound action potentials may relate to the state of the cardiovascular system.
Buonfiglio, Marzia; Toscano, M; Puledda, F; Avanzini, G; Di Clemente, L; Di Sabato, F; Di Piero, V
2015-03-01
Habituation is considered one of the most basic mechanisms of learning. Habituation deficit to several sensory stimulations has been defined as a trait of migraine brain and also observed in other disorders. On the other hand, analytic information processing style is characterized by the habit of continually evaluating stimuli and it has been associated with migraine. We investigated a possible correlation between lack of habituation of evoked visual potentials and analytic cognitive style in healthy subjects. According to Sternberg-Wagner self-assessment inventory, 15 healthy volunteers (HV) with high analytic score and 15 HV with high global score were recruited. Both groups underwent visual evoked potentials recordings after psychological evaluation. We observed significant lack of habituation in analytical individuals compared to global group. In conclusion, a reduced habituation of visual evoked potentials has been observed in analytic subjects. Our results suggest that further research should be undertaken regarding the relationship between analytic cognitive style and lack of habituation in both physiological and pathophysiological conditions.
Sato, Masaki; Ogura, Kazuhiro; Kimura, Maki; Nishi, Koichi; Ando, Masayuki; Tazaki, Masakazu; Shibukawa, Yoshiyuki
2018-06-01
Various stimuli to the dentin surface elicit dentinal pain by inducing dentinal fluid movement causing cellular deformation in odontoblasts. Although odontoblasts detect deformation by the activation of mechanosensitive ionic channels, it is still unclear whether odontoblasts are capable of establishing neurotransmission with myelinated A delta (Aδ) neurons. Additionally, it is still unclear whether these neurons evoke action potentials by neurotransmitters from odontoblasts to mediate sensory transduction in dentin. Thus, we investigated evoked inward currents and evoked action potentials form trigeminal ganglion (TG) neurons after odontoblast mechanical stimulation. We used patch clamp recordings to identify electrophysiological properties and record evoked responses in TG neurons. We classified TG cells into small-sized and medium-sized neurons. In both types of neurons, we observed voltage-dependent inward currents. The currents from medium-sized neurons showed fast inactivation kinetics. When mechanical stimuli were applied to odontoblasts, evoked inward currents were recorded from medium-sized neurons. Antagonists for the ionotropic adenosine triphosphate receptor (P2X 3 ), transient receptor potential channel subfamilies, and Piezo1 channel significantly inhibited these inward currents. Mechanical stimulation to odontoblasts also generated action potentials in the isolectin B 4 -negative medium-sized neurons. Action potentials in these isolectin B 4 -negative medium-sized neurons showed a short duration. Overall, electrophysiological properties of neurons indicate that the TG neurons with recorded evoked responses after odontoblast mechanical stimulation were myelinated Aδ neurons. Odontoblasts established neurotransmission with myelinated Aδ neurons via P2X 3 receptor activation. The results also indicated that mechanosensitive TRP/Piezo1 channels were functionally expressed in odontoblasts. The activation of P2X 3 receptors induced an action potential in the Aδ neurons, underlying a sensory generation mechanism of dentinal pain. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Todd, N P M; Paillard, A C; Kluk, K; Whittle, E; Colebatch, J G
2014-06-01
Todd et al. (2014) have recently demonstrated the presence of vestibular dependent changes both in the morphology and in the intensity dependence of auditory evoked potentials (AEPs) when passing through the vestibular threshold as determined by vestibular evoked myogenic potentials (VEMPs). In this paper we extend this work by comparing left vs. right ear stimulation and by conducting a source analysis of the resulting evoked potentials of short and long latency. Ten healthy, right-handed subjects were recruited and evoked potentials were recorded to both left- and right-ear sound stimulation, above and below vestibular threshold. Below VEMP threshold, typical AEPs were recorded, consisting of mid-latency (MLR) waves Na and Pa followed by long latency AEPs (LAEPs) N1 and P2. In the supra-threshold condition, the expected changes in morphology were observed, consisting of: (1) short-latency vestibular evoked potentials (VsEPs) which have no auditory correlate, i.e. the ocular VEMP (OVEMP) and inion response related potentials; (2) a later deflection, labelled N42/P52, followed by the LAEPs N1 and P2. Statistical analysis of the vestibular dependent responses indicated a contralateral effect for inion related short-latency responses and a left-ear/right-hemisphere advantage for the long-latency responses. Source analysis indicated that the short-latency effects may be mediated by a contralateral projection to left cerebellum, while the long-latency effects were mediated by a contralateral projection to right cingulate cortex. In addition we found evidence of a possible vestibular contribution to the auditory T-complex in radial temporal lobe sources. These last results raise the possibility that acoustic activation of the otolith organs could potentially contribute to auditory processing. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Free flap reconstruction of the sole of the foot with or without sensory nerve coaptation.
Santanelli, Fabio; Tenna, Stefania; Pace, Andrea; Scuderi, Nicolò
2002-06-01
The authors present a retrospective study on major plantar foot reconstruction to evaluate the role of the free fasciocutaneous flap and the importance of sensory nerve reconstruction in improving long-term results. Between 1995 and 1999, 20 patients with major defects of the sole of the foot underwent free forearm flap reconstruction performed by the senior author (F.S.). Sensory nerve reconstruction was added to this technique in 1997. The age and sex of the patients and the cause, location, and dimensions of their defects were recorded. The patients were clinically and neurophysiologically evaluated at 3, 6, and 12 months after the procedure for the following parameters: flap contour, flap stability, load capacity, walking ability, touch sensation, pain sensation, static two-point discrimination, and thermal sensibility. Dermatomic somatosensory-evoked potentials were also tested at 12 months. Follow-up ranged from 1 to 5 years. Patients were divided into two groups according to sensory nerve reconstruction. Group A consisted of 11 patients with nerve repair, and group B consisted of nine patients without nerve repair. One patient from group A who had an idiopathic neuropathy was excluded from the study because of interference with the reinnervation process. Five more patients (three from group A and two from group B) were lost at follow-up and excluded from the study. The final sample size in each group was seven. Data from both groups were compared and statistically analyzed with the Mann-Whitney test and the Fisher exact test. Long-term results confirmed in all reconstructions long-lasting stability. During the first postoperative year, patients with sensory nerve reconstruction showed better sensibility. The statistical analyses confirmed significant differences between the two groups to be dependent upon surgical technique at 3 and 6 months. Two-point discrimination and dermatomic somatosensory-evoked potentials were recorded. After 12 months, flaps without surgical nerve repair showed progressive improvement of sensitive thresholds, achieving a good protective sensibility, similar to that of the other group, but these flaps never regained two-point discrimination or dermatomic somatosensory-evoked potentials.
Vascular Compliance Limits during Sleep Deprivation and Recovery Sleep
Phillips, Derrick J.; Schei, Jennifer L.; Rector, David M.
2013-01-01
Study Objectives: Our previous studies showed that evoked hemodynamic responses are smaller during wake compared to sleep; suggesting neural activity is associated with vascular expansion and decreased compliance. We explored whether prolonged activity during sleep deprivation may exacerbate vascular expansion and blunt hemodynamic responses. Design: Evoked auditory responses were generated with periodic 65dB speaker clicks over a 72-h period and measured with cortical electrodes. Evoked hemodynamic responses were measured simultaneously with optical techniques using three light-emitting diodes, and a photodiode. Setting: Animals were housed in separate 30×30×80cm enclosures, tethered to a commutator system and maintained on a 12-h light/dark cycle. Food and water were available ad libitum. Patients or Participants: Seven adult female Sprague-Dawley rats. Interventions: Following a 24-h baseline recording, sleep deprivation was initiated for 0 to 10 h by gentle handling, followed by a 24-h recovery sleep recording. Evoked electrical and hemodynamic responses were measured before, during, and after sleep deprivation. Measurements and Results: Following deprivation, evoked hemodynamic amplitudes were blunted. Steady-state oxyhemoglobin concentration increased during deprivation and remained high during the initial recovery period before returning to baseline levels after approximately 9-h. Conclusions: Sleep deprivation resulted in blood vessel expansion and decreased compliance while lower basal neural activity during recovery sleep may allow blood vessel compliance to recover. Chronic sleep restriction or sleep deprivation could push the vasculature to critical levels, limiting blood delivery, and leading to metabolic deficits with the potential for neural trauma. Citation: Phillips DJ; Schei JL; Rector DM. Vascular compliance limits during sleep deprivation and recovery sleep. SLEEP 2013;36(10):1459-1470. PMID:24082305
[Development of auditory evoked potentials of the brainstem in relation to age].
Tarantino, V; Stura, M; Vallarino, R
1988-01-01
In order to study the various changes which occur in the waveform, latency and amplitude of the auditory brainstem evoked response (BSER) as a function of age, the authors recorded the BSER from the scalp's surface of 20 newborns and 50 infants, 3 months, 6 months, 1 year and 3 years old as well as from 20 normal adults. The data obtained show that the most reliable waves during the first month of life are waves I, III, V, which is often present even when other vertex-positive peaks are absent. The latencies of the various potential components decreased with maturation. Wave V, evoked by 90 dB sensation level clicks, changed in latency from 7, 12 msec at 1-4 weeks of age to 5,77 msec at 3 years of life. The auditory processes related to peripheral and central transmission were shown to mature at differential rates during the first period of life. By the 6th month, in fact, wave I latency had reached the adult value; in contrast, wave V latency did match that of the adult until approximately 1 year old. One obvious explanation for the age-related latency shift is progressive myelination of the auditory tract in infants, for this is know to occur. The authors conclude that the clinical application of this technique in paediatric patients couldn't provide reliable informations about auditory brain stem activity regardless of evaluation of the relationship between age and characteristics of BSER.
Smith, Amanda R; Garris, Paul A; Casto, Joseph M
2015-01-01
Fast-scan cyclic voltammetry is a powerful technique for monitoring rapid changes in extracellular neurotransmitter levels in the brain. In vivo fast-scan cyclic voltammetry has been used extensively in mammalian models to characterize dopamine signals in both anesthetized and awake preparations, but has yet to be applied to a non-mammalian vertebrate. The goal of this study was to establish in vivo fast-scan cyclic voltammetry in a songbird, the European starling, to facilitate real-time measurements of extracellular catecholamine levels in the avian striatum. In urethane-anesthetized starlings, changes in catecholamine levels were evoked by electrical stimulation of the ventral tegmental area and measured at carbon-fiber microelectrodes positioned in the medial and lateral striata. Catecholamines were elicited by different stimulations, including trains related to phasic dopamine signaling in the rat, and were analyzed to quantify presynaptic mechanisms governing exocytotic release and neuronal uptake. Evoked extracellular catecholamine dynamics, maximal amplitude of the evoked catecholamine signal, and parameters for catecholamine release and uptake did not differ between striatal regions and were similar to those determined for dopamine in the rat dorsomedial striatum under similar conditions. Chemical identification of measured catecholamine by its voltammogram was consistent with the presence of both dopamine and norepinephrine in striatal tissue content. However, the high ratio of dopamine to norepinephrine in tissue content and the greater sensitivity of the carbon-fiber microelectrode to dopamine compared to norepinephrine favored the measurement of dopamine. Thus, converging evidence suggests that dopamine was the predominate analyte of the electrically evoked catecholamine signal measured in the striatum by fast-scan cyclic voltammetry. Overall, comparisons between the characteristics of these evoked signals suggested a similar presynaptic regulation of dopamine in the starling and rat striatum. Fast-scan cyclic voltammetry thus has the potential to be an invaluable tool for investigating the neural underpinnings of behavior in birds. Copyright © 2015 Elsevier B.V. All rights reserved.
Smith, Amanda R.; Garris, Paul A.; Casto, Joseph M.
2015-01-01
Fast-scan cyclic voltammetry is a powerful technique for monitoring rapid changes in extracellular neurotransmitter levels in the brain. In vivo fast-scan cyclic voltammetry has been used extensively in mammalian models to characterize dopamine signals in both anesthetized and awake preparations, but has yet to be applied to a non-mammalian vertebrate. The goal of this study was to establish in vivo fast-scan cyclic voltammetry in a songbird, the European starling, to facilitate real-time measurements of extracellular catecholamine levels in the avian striatum. In urethane-anesthetized starlings, changes in catecholamine levels were evoked by electrical stimulation of the ventral tegmental area and measured at carbon-fiber microelectrodes positioned in the medial and lateral striata. Catecholamines were elicited by different stimulations, including trains related to phasic dopamine signaling in the rat, and were analyzed to quantify presynaptic mechanisms governing exocytotic release and neuronal uptake. Evoked extracellular catecholamine dynamics, maximal amplitude of the evoked catecholamine signal, and parameters for catecholamine release and uptake did not differ between striatal regions and were similar to those determined for dopamine in the rat dorsomedial striatum under similar conditions. Chemical identification of measured catecholamine by its voltammogram was consistent with the presence of both dopamine and norepinephrine in striatal tissue content. However, the high ratio of dopamine to norepinephrine in tissue content and the greater sensitivity of the carbon-fiber microelectrode to dopamine compared to norepinephrine favored the measurement of dopamine. Thus, converging evidence suggests that dopamine was the predominate analyte of the electrically evoked catecholamine signal measured in the striatum by fast-scan cyclic voltammetry. Overall, comparisons between the characteristics of these evoked signals suggested a similar presynaptic regulation of dopamine in the starling and rat striatum. Fast-scan cyclic voltammetry thus has the potential to be an invaluable tool for investigating the neural underpinnings of behavior in birds. PMID:25900708
Casula, Elias P; Tarantino, Vincenza; Basso, Demis; Arcara, Giorgio; Marino, Giuliana; Toffolo, Gianna Maria; Rothwell, John C; Bisiacchi, Patrizia S
2014-09-01
The neuromodulatory effects of repetitive transcranial magnetic stimulation (rTMS) have been mostly investigated by peripheral motor-evoked potentials (MEPs). New TMS-compatible EEG systems allow a direct investigation of the stimulation effects through the analysis of TMS-evoked potentials (TEPs). We investigated the effects of 1-Hz rTMS over the primary motor cortex (M1) of 15 healthy volunteers on TEP evoked by single pulse TMS over the same area. A second experiment in which rTMS was delivered over the primary visual cortex (V1) of 15 healthy volunteers was conducted to examine the spatial specificity of the effects. Single-pulse TMS evoked four main components: P30, N45, P60 and N100. M1-rTMS resulted in a significant decrease of MEP amplitude and in a significant increase of P60 and N100 amplitude. There was no effect after V1-rTMS. 1-Hz rTMS appears to increase the amount of inhibition following a TMS pulse, as demonstrated by the higher N100 and P60, which are thought to originate from GABAb-mediated inhibitory post-synaptic potentials. Our results confirm the reliability of the TMS-evoked N100 as a marker of cortical inhibition and provide insight into the neuromodulatory effects of 1-Hz rTMS. The present finding could be of relevance for therapeutic and diagnostic purposes. Copyright © 2014 Elsevier Inc. All rights reserved.
Méndez-Balbuena, Ignacio; Huidobro, Nayeli; Silva, Mayte; Flores, Amira; Trenado, Carlos; Quintanar, Luis; Arias-Carrión, Oscar; Kristeva, Rumyana; Manjarrez, Elias
2015-10-01
The present investigation documents the electrophysiological occurrence of multisensory stochastic resonance in the human visual pathway elicited by tactile noise. We define multisensory stochastic resonance of brain evoked potentials as the phenomenon in which an intermediate level of input noise of one sensory modality enhances the brain evoked response of another sensory modality. Here we examined this phenomenon in visual evoked potentials (VEPs) modulated by the addition of tactile noise. Specifically, we examined whether a particular level of mechanical Gaussian noise applied to the index finger can improve the amplitude of the VEP. We compared the amplitude of the positive P100 VEP component between zero noise (ZN), optimal noise (ON), and high mechanical noise (HN). The data disclosed an inverted U-like graph for all the subjects, thus demonstrating the occurrence of a multisensory stochastic resonance in the P100 VEP. Copyright © 2015 the American Physiological Society.
Stolarz, Maria; Dziubińska, Halina; Krupa, Maciej; Buda, Agnieszka; Trebacz, Kazimierz; Zawadzki, Tadeusz
2003-01-01
The relationship between evoked electrical activity and stem movements in three-week old sunflowers was demonstrated. Electrical potential changes (recorded by Ag/AgCl extracellular electrodes) and time-lapse images (from a top view camera) were recorded and analyzed. A heat stimulus applied to the tip of one of the second pair of leaves evoked a variation potential, transmitted basipetally along one side of the stem. After stimulation, disturbances of circumnutations occurred. They included: changes in the period, disorders in the elliptical shape, and, in some cases, reversion of direction (of movement). We suggest that asymmetrically propagated variation potential induces asymmetric stem shrinking and bending, which strongly disturbs circumnutations. Our results confirm the involvement of electrical potential changes in the mechanism of stem nutations.
WITHIN-SESSION CHANGES IN PEAK N160 AMPLITUDE OF FLASH EVOKED POTENTIALS IN RATS
The negative peak occurring approximately 160 msec after stimulation (peak N 160) flash evoked potentials (FEPS) of rats changes with repeated testing. abituation, sensitization, and arousal have all been invoked to explain these changes, but few studies have directly tested thes...
Recovery of TES-MEPs during surgical decompression of the spine: a case series of eight patients.
Visser, Jetze; Verra, Wiebe C; Kuijlen, Jos M; Horsting, Philip P; Journée, Henricus L
2014-12-01
This study aimed to illustrate the recovery of transcranial electrical stimulation motor evoked potentials during surgical decompression of the spinal cord in patients with impaired motor function preoperatively. Specific attention was paid to the duration of neurologic symptoms before surgery and the postoperative clinical recovery. A case series of eight patients was selected from a cohort of 74 patients that underwent spine surgery. The selected patients initially had low or absent transcranial electrical stimulation motor evoked potentials followed by a significant increase after surgical decompression of the spinal cord. A significant intraoperative increase in amplitude of motor evoked potentials was detected after decompression of the spinal cord or cauda equina in patients suffering from spinal canal stenosis (n = 2), extradural meningioma (n = 3), or a herniated nucleus polposus (n = 3). This was related to an enhanced neurologic outcome only if patients (n = 6) had a short onset (less than ½ year) of neurologic impairment before surgery. In patients with a short onset of neurologic impairment because of compression of the spinal cord or caudal fibers, an intraoperative recovery of transcranial electrical stimulation motor evoked potentials can indicate an improvement of motor function postoperatively. Therefore, transcranial electrical stimulation motor evoked potentials can be considered as a useful tool to the surgeon to monitor the quality of decompression of the spinal cord.
Zittel, S; Helmich, R C; Demiralay, C; Münchau, A; Bäumer, T
2015-08-01
Previous studies indicated that sensorimotor integration and plasticity of the sensorimotor system are impaired in dystonia patients. We investigated motor evoked potential amplitudes and short latency afferent inhibition to examine corticospinal excitability and cortical sensorimotor integration, before and after inhibitory 1 Hz repetitive transcranial magnetic stimulation over primary sensory and primary motor cortex in patients with cervical dystonia (n = 12). Motor evoked potentials were recorded from the right first dorsal interosseous muscle after application of unconditioned transcranial magnetic test stimuli and after previous conditioning electrical stimulation of the right index finger at short interstimulus intervals of 25, 30 and 40 ms. Results were compared to a group of healthy age-matched controls. At baseline, motor evoked potential amplitudes did not differ between groups. Short latency afferent inhibition was reduced in cervical dystonia patients compared to healthy controls. Inhibitory 1 Hz sensory cortex repetitive transcranial magnetic stimulation but not motor cortex repetitive transcranial magnetic stimulation increased motor evoked potential amplitudes in cervical dystonia patients. Additionally, both 1 Hz repetitive transcranial magnetic stimulation over primary sensory and primary motor cortex normalized short latency afferent inhibition in these patients. In healthy subjects, sensory repetitive transcranial magnetic stimulation had no influence on motor evoked potential amplitudes and short latency afferent inhibition. Plasticity of sensorimotor circuits is altered in cervical dystonia patients.
Caldas, Fernanda Ferreira; Cardoso, Carolina Costa; Barreto, Monique Antunes de Souza Chelminski; Teixeira, Marina Santos; Hilgenberg, Anacléia Melo da Silva; Serra, Lucieny Silva Martins; Bahmad Junior, Fayez
2016-01-01
The cochlear implant device has the capacity to measure the electrically evoked compound action potential of the auditory nerve. The neural response telemetry is used in order to measure the electrically evoked compound action potential of the auditory nerve. To analyze the electrically evoked compound action potential, through the neural response telemetry, in children with bilateral cochlear implants. This is an analytical, prospective, longitudinal, historical cohort study. Six children, aged 1-4 years, with bilateral cochlear implant were assessed at five different intervals during their first year of cochlear implant use. There were significant differences in follow-up time (p=0.0082) and electrode position (p=0.0019) in the T-NRT measure. There was a significant difference in the interaction between time of follow-up and electrode position (p=0.0143) when measuring the N1-P1 wave amplitude between the three electrodes at each time of follow-up. The electrically evoked compound action potential measurement using neural response telemetry in children with bilateral cochlear implants during the first year of follow-up was effective in demonstrating the synchronized bilateral development of the peripheral auditory pathways in the studied population. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Frøbert, O; Arendt-Nielsen, L; Bak, P; Funch-Jensen, P; Bagger, J P
1995-01-01
Sensory thresholds and brain evoked potentials were determined in 12 healthy volunteers using electrical stimulation of the oesophagus 28 and 38 cm from the nares. The peaks of the evoked potentials were designated N for negative deflections and P for positive. Continuous electrical stimulation (40 Hz) at the 38 cm position resembled heartburn (five of 12 subjects) while non-specific ('electrical') sensations were provoked at 28 cm (10 of 12). Thresholds of sensation and of pain were lower at the initial than the second determination, but did not differ with respect to stimulation site. The pain summation threshold to repeated stimuli (2 Hz, 5 stimuli) was determined for the first time in a viscus. This threshold was lower than the pain threshold to single stimuli at 38 cm (p < 0.02). Evoked potential latencies did not change significantly over a six month period while the N1/P2 amplitude was higher at the first measurement (p < 0.05). P1 and N1 latencies were significantly shorter 38 cm (medians 100 and 141 ms) than 28 cm from the nares (102 and 148 ms) (p = 0.04 and p = 0.008). Electrical stimulation of the oesophagus may serve as a human experimental model for visceral pain. Longer evoked potential latencies from the proximal compared with distal stimulations provide new information about the sensory pathways of the oesophagus. PMID:8549932
Effect of caffeine on vestibular evoked myogenic potential: a systematic review with meta-analysis.
Souza, Maria Eduarda Di Cavalcanti Alves de; Costa, Klinger Vagner Teixeira da; Menezes, Pedro de Lemos
2017-12-24
Caffeine can be considered the most consumed drug by adults worldwide, and can be found in several foods, such as chocolate, coffee, tea, soda and others. Overall, caffeine in moderate doses, results in increased physical and intellectual productivity, increases the capacity of concentration and reduces the time of reaction to sensory stimuli. On the other hand, high doses can cause noticeable signs of mental confusion and error induction in intellectual tasks, anxiety, restlessness, muscle tremors, tachycardia, labyrinthine changes, and tinnitus. Considering that the vestibular evoked myogenic potential is a clinical test that evaluates the muscular response of high intensity auditory stimulation, the present systematic review aimed to analyze the effects of caffeine on vestibular evoked myogenic potential. This study consisted of the search of the following databases: MEDLINE, CENTRAL, ScienceDirect, Scopus, Web of Science, LILACS, SciELO and ClinicalTrials.gov. Additionally, the gray literature was also searched. The search strategy included terms related to intervention (caffeine or coffee consumption) and the primary outcome (vestibular evoked myogenic potential). Based on the 253 potentially relevant articles identified through the database search, only two full-text publications were retrieved for further evaluation, which were maintained for qualitative analysis. Analyzing the articles found, caffeine has no effect on vestibular evoked myogenic potential in normal individuals. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Effect of ischaemia on somatosensory evoked potentials in diabetic patients.
López-Alburquerque, T; García Miguel, A; Ruiz Ezquerro, J J; de Portugal Alvarez, J
1987-01-01
The nerve action potential at the elbow and somatosensory evoked potentials (SEPs) at the scalp were recorded over 30 minutes of tourniquet-induced limb ischaemia in 10 diabetic patients and 10 controls. According to the SEP changes, an increased resistance to nerve ischaemia in diabetic patients was observed. The pathways involved in SEP conduction are discussed. PMID:3585354
Camargo-Silva, Gabriel; Turones, Larissa Córdova; da Cruz, Kellen Rosa; Gomes, Karina Pereira; Mendonça, Michelle Mendanha; Nunes, Allancer; de Jesus, Itamar Guedes; Colugnati, Diego Basile; Pansani, Aline Priscila; Pobbe, Roger Luis Henschel; Santos, Robson; Fontes, Marco Antônio Peliky; Guatimosim, Silvia; de Castro, Carlos Henrique; Ianzer, Danielle; Ferreira, Reginaldo Nassar; Xavier, Carlos Henrique
2018-03-01
Prior evidence indicates that ghrelin is involved in the integration of cardiovascular functions and behavioral responses. Ghrelin actions are mediated by the growth hormone secretagogue receptor subtype 1a (GHS-R1a), which is expressed in peripheral tissues and central areas involved in the control of cardiovascular responses to stress. In the present study, we assessed the role of ghrelin - GHS-R1a axis in the cardiovascular reactivity to acute emotional stress in rats. Ghrelin potentiated the tachycardia evoked by restraint and air jet stresses, which was reverted by GHS-R1a blockade. Evaluation of the autonomic balance revealed that the sympathetic branch modulates the ghrelin-evoked positive chronotropy. In isolated hearts, the perfusion with ghrelin potentiated the contractile responses caused by stimulation of the beta-adrenergic receptor, without altering the amplitude of the responses evoked by acetylcholine. Experiments in isolated cardiomyocytes revealed that ghrelin amplified the increases in calcium transient changes evoked by isoproterenol. Taken together, our results indicate that the Ghrelin-GHS-R1a axis potentiates the magnitude of stress-evoked tachycardia by modulating the autonomic nervous system and peripheral mechanisms, strongly relying on the activation of cardiac calcium transient and beta-adrenergic receptors. Copyright © 2018 Elsevier Inc. All rights reserved.
TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion
Togashi, Kazuya; Hara, Yuji; Tominaga, Tomoko; Higashi, Tomohiro; Konishi, Yasunobu; Mori, Yasuo; Tominaga, Makoto
2006-01-01
There are eight thermosensitive TRP (transient receptor potential) channels in mammals, and there might be other TRP channels sensitive to temperature stimuli. Here, we demonstrate that TRPM2 can be activated by exposure to warm temperatures (>35°C) apparently via direct heat-evoked channel gating. β-NAD+- or ADP-ribose-evoked TRPM2 activity is robustly potentiated at elevated temperatures. We also show that, even though cyclic ADP-ribose (cADPR) does not activate TRPM2 at 25°C, co-application of heat and intracellular cADPR dramatically potentiates TRPM2 activity. Heat and cADPR evoke similar responses in rat insulinoma RIN-5F cells, which express TRPM2 endogenously. In pancreatic islets, TRPM2 is coexpressed with insulin, and mild heating of these cells evokes increases in both cytosolic Ca2+ and insulin release, which is KATP channel-independent and protein kinase A-mediated. Heat-evoked responses in both RIN-5F cells and pancreatic islets are significantly diminished by treatment with TRPM2-specific siRNA. These results identify TRPM2 as a potential molecular target for cADPR, and suggest that TRPM2 regulates Ca2+ entry into pancreatic β-cells at body temperature depending on the production of cADPR-related molecules, thereby regulating insulin secretion. PMID:16601673
Xia, J-D; Han, Y-F; Pan, F; Zhou, L-H; Chen, Y; Dai, Y-T
2013-09-01
Primary delayed ejaculation (DE) is a relatively uncommon condition and has not been studied broadly. In this study, we aimed to investigate the clinical characteristics and penile afferent neuronal function using somatosensory evoked potentials in patients with primary DE. Twenty-four patients with primary DE and 24 age-matched normally potent men were enrolled in this study. Results indicated that patients with primary DE had remarkably higher frequency of masturbatory activity (especially, some with idiosyncratic styles), lower night emissions, longer intravaginal ejaculation latency time (IELT), higher anxiety and depression states (p = 0.010, p = 0.017, p < 0.001, p < 0.001, p < 0.001 respectively). In addition, the mean penile shaft sensory threshold values in the patients were considerably higher than those in the healthy men (p < 0.001). Mean latencies of dorsal nerve somatosensory evoked potential DNSEP were 4.32 ms longer in the DE group than those in the control group (p < 0.001). However, the latencies of glans penis somatosensory evoked potential (GPSEP) between the two group showed no significant difference (p = 0.985). At the same time, in comparison with the control group, the amplitudes of DNSEP were considerably lower in the DE group (p = 0.016), but not in the amplitudes of GPSEP (p = 0.934). This study indicates that the patients with primary DE appear to have penile shaft rather than glans hyposensitivity and hypoexcitability, and adaptation to a certain masturbatory technique (higher and idiosyncratic) may be related to the causes of primary DE, which is also associated with lower night emissions, longer IELT, higher anxiety and depression states. © 2013 American Society of Andrology and European Academy of Andrology.
Almoqbel, Fahad M; Irving, Elizabeth L; Leat, Susan J
2017-08-01
The purpose of this study was to investigate the development of visual acuity (VA) and contrast sensitivity in children as measured with objective (sweep visually evoked potential) and subjective, psychophysical techniques, including signal detection theory (SDT), which attempts to control for differences in criterion or behavior between adults and children. Furthermore, this study examines the possibility of applying SDT methods with children. Visual acuity and contrast thresholds were measured in 12 children 6 to 7 years old, 10 children 8 to 9 years old, 10 children 10 to 12 years old, and 16 adults. For sweep visually evoked potential measurements, spatial frequency was swept from 1 to 40 cpd to measure VA, and contrast of sine-wave gratings (1 or 8 cpd) was swept from 0.33 to 30% to measure contrast thresholds. For psychophysical measurements, VA and contrast thresholds (1 or 8 cpd) were measured using a temporal two-alternative forced-choice staircase procedure and also with a yes-no SDT procedure. Optotype (logMAR [log of the minimum angle of resolution]) VA was also measured. The results of the various procedures were in agreement showing that there are age-related changes in threshold values and logMAR VA after the age of 6 years and that these visual functions do not become adult-like until the age of 8 to 9 years at the earliest. It was also found that children can participate in SDT procedures and do show differences in criterion compared with adults in psychophysical testing. These findings confirm a slightly later development of VA and contrast sensitivity (8 years or older) and indicate the importance of using SDT or forced-choice procedures in any developmental study to attempt to overcome the effect of criterion in children.
Koutlidis, R M; Ayrignac, X; Pradat, P-F; Le Forestier, N; Léger, J-M; Salachas, F; Maisonobe, T; Fournier, E; Viala, K
2014-09-01
Somatosensory-evoked potentials with segmental recordings were performed with the aim of distinguishing chronic inflammatory demyelinating polyneuropathy from other sensory neuropathies. Four groups of 20 subjects each corresponded to patients with (1) possible sensory chronic inflammatory demyelinating polyneuropathy, (2) patients with sensory polyneuropathy of unknown origin, (3) patients with amyotrophic lateral sclerosis and (4) normal subjects. The patients selected for this study had preserved sensory potentials on electroneuromyogram and all waves were recordable in evoked potentials. Somatosensory-evoked potentials evaluations were carried out by stimulation of the posterior tibial nerve at the ankle, recording peripheral nerve potential in the popliteal fossa, radicular potential and spinal potential at the L4-L5 and T12 levels, and cortical at C'z, with determination of distal conduction time, proximal and radicular conduction time and central conduction time. In the group of chronic inflammatory demyelinating polyneuropathy, 80% of patients had abnormal conduction in the N8-N22 segment and 95% had abnormal N18-N22 conduction time. In the group of neuropathies, distal conduction was abnormal in most cases, whereas 60% of patients had no proximal abnormality. None of the patients in the group of amyotrophic lateral sclerosis had an abnormal N18-N22 conduction time. Somatosensory-evoked potentials with segmental recording can be used to distinguish between atypical sensory chronic inflammatory demyelinating polyneuropathy and other sensory neuropathies, at the early stage of the disease. Graphical representation of segmental conduction times provides a rapid and accurate visualization of the profile of each patient. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Alvarenga, Kátia de Freitas; Alvarez Bernardez-Braga, Gabriela Rosito; Zucki, Fernanda; Duarte, Josilene Luciene; Lopes, Andrea Cintra; Feniman, Mariza Ribeiro
2013-01-01
Summary Introduction: The effects of lead on children's health have been widely studied. Aim: To analyze the correlation between the long latency auditory evoked potential N2 and cognitive P3 with the level of lead poisoning in Brazilian children. Methods: This retrospective study evaluated 20 children ranging in age from 7 to 14 years at the time of audiological and electrophysiological evaluations. We performed periodic surveys of the lead concentration in the blood and basic audiological evaluations. Furthermore, we studied the auditory evoked potential long latency N2 and cognitive P3 by analyzing the absolute latency of the N2 and P3 potentials and the P3 amplitude recorded at Cz. At the time of audiological and electrophysiological evaluations, the average concentration of lead in the blood was less than 10 ug/dL. Results: In conventional audiologic evaluations, all children had hearing thresholds below 20 dBHL for the frequencies tested and normal tympanometry findings; the auditory evoked potential long latency N2 and cognitive P3 were present in 95% of children. No significant correlations were found between the blood lead concentration and latency (p = 0.821) or amplitude (p = 0.411) of the P3 potential. However, the latency of the N2 potential increased with the concentration of lead in the blood, with a significant correlation (p = 0.030). Conclusion: Among Brazilian children with low lead exposure, a significant correlation was found between blood lead levels and the average latency of the auditory evoked potential long latency N2; however, a significant correlation was not observed for the amplitude and latency of the cognitive potential P3. PMID:25991992
Enhanced excitability of small dorsal root ganglion neurons in rats with bone cancer pain
2012-01-01
Background Primary and metastatic cancers that affect bone are frequently associated with severe and intractable pain. The mechanisms underlying the development of bone cancer pain are largely unknown. The aim of this study was to determine whether enhanced excitability of primary sensory neurons contributed to peripheral sensitization and tumor-induced hyperalgesia during cancer condition. In this study, using techniques of whole-cell patch-clamp recording associated with immunofluorescent staining, single-cell reverse-transcriptase PCR and behavioral test, we investigated whether the intrinsic membrane properties and the excitability of small-sized dorsal root ganglion (DRG) neurons altered in a rat model of bone cancer pain, and whether suppression of DRG neurons activity inhibited the bone cancer-induced pain. Results Our present study showed that implantation of MRMT-1 tumor cells into the tibial canal in rats produced significant mechanical and thermal hyperalgesia in the ipsilateral hind paw. Moreover, implantation of tumor cells provoked spontaneous discharges and tonic excitatory discharges evoked by a depolarizing current pulse in small-sized DRG neurons. In line with these findings, alterations in intrinsic membrane properties that reflect the enhanced neuronal excitability were observed in small DRG neurons in bone cancer rats, of which including: 1) depolarized resting membrane potential (RMP); 2) decreased input resistance (Rin); 3) a marked reduction in current threshold (CT) and voltage threshold (TP) of action potential (AP); 4) a dramatic decrease in amplitude, overshot, and duration of evoked action potentials as well as in amplitude and duration of afterhyperpolarization (AHP); and 5) a significant increase in the firing frequency of evoked action potentials. Here, the decreased AP threshold and increased firing frequency of evoked action potentials implicate the occurrence of hyperexcitability in small-sized DRG neurons in bone cancer rats. In addiotion, immunofluorescent staining and single-cell reverse-transcriptase PCR revealed that in isolated small DRG neurons, most neurons were IB4-positive, or expressed TRPV1 or CGRP, indicating that most recorded small DRG neurons were nociceptive neurons. Finally, using in vivo behavioral test, we found that blockade of DRG neurons activity by TTX inhibited the tumor-evoked mechanical allodynia and thermal hyperalgesia in bone cancer rats, implicating that the enhanced excitability of primary sensory neurons underlied the development of bone cancer pain. Conclusions Our present results suggest that implantation of tumor cells into the tibial canal in rats induces an enhanced excitability of small-sized DRG neurons that is probably as results of alterations in intrinsic electrogenic properties of these neurons. Therefore, alterations in intrinsic membrane properties associated with the hyperexcitability of primary sensory neurons likely contribute to the peripheral sensitization and tumor-induced hyperalgesia under cancer condition. PMID:22472208
Brainstem Auditory Evoked Potential Study in Children with Autistic Disorder.
ERIC Educational Resources Information Center
Wong, Virginia; Wong, Sik Nin
1991-01-01
Brainstem auditory evoked potentials were compared in 109 children with infantile autism, 38 with autistic condition, 19 with mental retardation, and 20 normal children. Children with infantile autism or autistic condition had significantly longer brainstem transmission time than normal children suggesting neurological damage as the basis of…
Intelligence and Complexity of the Averaged Evoked Potential: An Attentional Theory.
ERIC Educational Resources Information Center
Bates, Tim; And Others
1995-01-01
A study measuring average evoked potentials in 21 college students finds that intelligence test scores correlate significantly with the difference between string length in attended and nonattended conditions, a finding that suggests that previous inconsistencies in reporting string length-intelligence correlations may have resulted from confound…
Phase stability analysis of chirp evoked auditory brainstem responses by Gabor frame operators.
Corona-Strauss, Farah I; Delb, Wolfgang; Schick, Bernhard; Strauss, Daniel J
2009-12-01
We have recently shown that click evoked auditory brainstem responses (ABRs) can be efficiently processed using a novelty detection paradigm. Here, ABRs as a large-scale reflection of a stimulus locked neuronal group synchronization at the brainstem level are detected as novel instance-novel as compared to the spontaneous activity which does not exhibit a regular stimulus locked synchronization. In this paper we propose for the first time Gabor frame operators as an efficient feature extraction technique for ABR single sweep sequences that is in line with this paradigm. In particular, we use this decomposition technique to derive the Gabor frame phase stability (GFPS) of sweep sequences of click and chirp evoked ABRs. We show that the GFPS of chirp evoked ABRs provides a stable discrimination of the spontaneous activity from stimulations above the hearing threshold with a small number of sweeps, even at low stimulation intensities. It is concluded that the GFPS analysis represents a robust feature extraction method for ABR single sweep sequences. Further studies are necessary to evaluate the value of the presented approach for clinical applications.
Neural Dynamics Underlying Event-Related Potentials
NASA Technical Reports Server (NTRS)
Shah, Ankoor S.; Bressler, Steven L.; Knuth, Kevin H.; Ding, Ming-Zhou; Mehta, Ashesh D.; Ulbert, Istvan; Schroeder, Charles E.
2003-01-01
There are two opposing hypotheses about the brain mechanisms underlying sensory event-related potentials (ERPs). One holds that sensory ERPs are generated by phase resetting of ongoing electroencephalographic (EEG) activity, and the other that they result from signal averaging of stimulus-evoked neural responses. We tested several contrasting predictions of these hypotheses by direct intracortical analysis of neural activity in monkeys. Our findings clearly demonstrate evoked response contributions to the sensory ERP in the monkey, and they suggest the likelihood that a mixed (Evoked/Phase Resetting) model may account for the generation of scalp ERPs in humans.
Automated cortical auditory evoked potentials threshold estimation in neonates.
Oliveira, Lilian Sanches; Didoné, Dayane Domeneghini; Durante, Alessandra Spada
2018-02-02
The evaluation of Cortical Auditory Evoked Potential has been the focus of scientific studies in infants. Some authors have reported that automated response detection is effective in exploring these potentials in infants, but few have reported their efficacy in the search for thresholds. To analyze the latency, amplitude and thresholds of Cortical Auditory Evoked Potential using an automatic response detection device in a neonatal population. This is a cross-sectional, observational study. Cortical Auditory Evoked Potentials were recorded in response to pure-tone stimuli of the frequencies 500, 1000, 2000 and 4000Hz presented in an intensity range between 0 and 80dB HL using a single channel recording. P1 was performed in an exclusively automated fashion, using Hotelling's T 2 statistical test. The latency and amplitude were obtained manually by three examiners. The study comprised 39 neonates up to 28 days old of both sexes with presence of otoacoustic emissions and no risk factors for hearing loss. With the protocol used, Cortical Auditory Evoked Potential responses were detected in all subjects at high intensity and thresholds. The mean thresholds were 24.8±10.4dB NA, 25±9.0dB NA, 28±7.8dB NA and 29.4±6.6dB HL for 500, 1000, 2000 and 4000Hz, respectively. Reliable responses were obtained in the assessment of cortical auditory potentials in the neonates assessed with a device for automatic response detection. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Stone, David B.; Urrea, Laura J.; Aine, Cheryl J.; Bustillo, Juan R.; Clark, Vincent P.; Stephen, Julia M.
2011-01-01
In real-world settings, information from multiple sensory modalities is combined to form a complete, behaviorally salient percept - a process known as multisensory integration. While deficits in auditory and visual processing are often observed in schizophrenia, little is known about how multisensory integration is affected by the disorder. The present study examined auditory, visual, and combined audio-visual processing in schizophrenia patients using high-density electrical mapping. An ecologically relevant task was used to compare unisensory and multisensory evoked potentials from schizophrenia patients to potentials from healthy normal volunteers. Analysis of unisensory responses revealed a large decrease in the N100 component of the auditory-evoked potential, as well as early differences in the visual-evoked components in the schizophrenia group. Differences in early evoked responses to multisensory stimuli were also detected. Multisensory facilitation was assessed by comparing the sum of auditory and visual evoked responses to the audio-visual evoked response. Schizophrenia patients showed a significantly greater absolute magnitude response to audio-visual stimuli than to summed unisensory stimuli when compared to healthy volunteers, indicating significantly greater multisensory facilitation in the patient group. Behavioral responses also indicated increased facilitation from multisensory stimuli. The results represent the first report of increased multisensory facilitation in schizophrenia and suggest that, although unisensory deficits are present, compensatory mechanisms may exist under certain conditions that permit improved multisensory integration in individuals afflicted with the disorder. PMID:21807011
Carbachol-Induced Reduction in the Activity of Adult Male Zebra Finch RA Projection Neurons
Meng, Wei; Wang, Song-Hua; Li, Dong-Feng
2016-01-01
Cholinergic mechanism is involved in motor behavior. In songbirds, the robust nucleus of the arcopallium (RA) is a song premotor nucleus in the pallium and receives cholinergic inputs from the basal forebrain. The activity of projection neurons in RA determines song motor behavior. Although many evidences suggest that cholinergic system is implicated in song production, the cholinergic modulation of RA is not clear until now. In the present study, the electrophysiological effects of carbachol, a nonselective cholinergic receptor agonist, were investigated on the RA projection neurons of adult male zebra finches through whole-cell patch-clamp techniques in vitro. Our results show that carbachol produced a significant decrease in the spontaneous and evoked action potential (AP) firing frequency of RA projection neurons, accompanying a hyperpolarization of the membrane potential, an increase in the evoked AP latency, afterhyperpolarization (AHP) peak amplitude, and AHP time to peak, and a decrease in the membrane input resistance, membrane time constant, and membrane capacitance. These results indicate that carbachol reduces the activity of RA projection neurons by hyperpolarizing the resting membrane potential and increasing the AHP and the membrane conductance, suggesting that the cholinergic modulation of RA may play an important role in song production. PMID:26904300
The steady-state visual evoked potential in vision research: A review
Norcia, Anthony M.; Appelbaum, L. Gregory; Ales, Justin M.; Cottereau, Benoit R.; Rossion, Bruno
2015-01-01
Periodic visual stimulation and analysis of the resulting steady-state visual evoked potentials were first introduced over 80 years ago as a means to study visual sensation and perception. From the first single-channel recording of responses to modulated light to the present use of sophisticated digital displays composed of complex visual stimuli and high-density recording arrays, steady-state methods have been applied in a broad range of scientific and applied settings.The purpose of this article is to describe the fundamental stimulation paradigms for steady-state visual evoked potentials and to illustrate these principles through research findings across a range of applications in vision science. PMID:26024451
Binaural Interaction in Specific Language Impairment: An Auditory Evoked Potential Study
ERIC Educational Resources Information Center
Clarke, Elaine M; Adams, Catherine
2007-01-01
The aim of the study was to examine whether auditory binaural interaction, defined as any difference between binaurally evoked responses and the sum of monaurally evoked responses, which is thought to index functions involved in the localization and detection of signals in background noise, is atypical in a group of children with specific language…
Revell, Christopher M.
2009-01-01
This review examines current approaches available for articular cartilage repair, not only in terms of their regeneration potential, but also as a function of immunologic response. Autogenic repair techniques, including osteochondral plug transplantation, chondrocyte implantation, and microfracture, are the most widely accepted clinical treatment options due to the lack of immunogenic reactions, but only moderate graft success rates have been reported. Although suspended allogenic chondrocytes are shown to evoke an immune response upon implantation, allogenic osteochondral plugs and tissue-engineered grafts using allogenic chondrocytes exhibit a tolerable immunogenic response. Additionally, these repair techniques produce neotissue with success rates approaching those of currently available autogenic repair techniques, while simultaneously obviating their major hindrance of donor tissue scarcity. To date, limited research has been performed with xenogenic tissue, although several studies demonstrate the potential for its long-term success. This article focuses on the various treatment options for cartilage repair and their associated success rates and immunologic responses. PMID:19063664
Cortical dipole imaging using truncated total least squares considering transfer matrix error.
Hori, Junichi; Takeuchi, Kosuke
2013-01-01
Cortical dipole imaging has been proposed as a method to visualize electroencephalogram in high spatial resolution. We investigated the inverse technique of cortical dipole imaging using a truncated total least squares (TTLS). The TTLS is a regularization technique to reduce the influence from both the measurement noise and the transfer matrix error caused by the head model distortion. The estimation of the regularization parameter was also investigated based on L-curve. The computer simulation suggested that the estimation accuracy was improved by the TTLS compared with Tikhonov regularization. The proposed method was applied to human experimental data of visual evoked potentials. We confirmed the TTLS provided the high spatial resolution of cortical dipole imaging.
A Steady State Visually Evoked Potential Investigation of Memory and Ageing
ERIC Educational Resources Information Center
Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard
2009-01-01
Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and…
2007-01-01
Breese, M. (2007) Evoked-potential recovery during double click stimulation in a whale: A possibility of biosonar automatic gain control. Journal of...Yokohama Japan (published) Supin A.Ya, Nachtigall, P.E., and Breese, M. Source level to sensation level ratio of transmitted biosonar pulses in an
Short-Latency Median-Nerve Somatosensory-Evoked Potentials and Induced Gamma-Oscillations in Humans
ERIC Educational Resources Information Center
Fukuda, Miho; Nishida, Masaaki; Juhasz, Csaba; Muzik, Otto; Sood, Sandeep; Chugani, Harry T.; Asano, Eishi
2008-01-01
Recent studies have suggested that cortical gamma-oscillations are tightly linked with various forms of physiological activity. In the present study, the dynamic changes of intracranially recorded median-nerve somatosensory-evoked potentials (SEPs) and somatosensory-induced gamma-oscillations were animated on a three-dimensional MR image, and the…
Carbaryl is a widely used N-methyl carbamate pesticide that acts by inhibiting cholinesterases (ChE), which may lead to cholinergic toxicity. Flash evoked potentials (FEPs) are a neurophysiological response often used to detect central nervous system (CNS) changes following expos...
Propoxur is a widely used N-methyl carbamate pesticide that acts by inhibiting cholinesterases (ChE), which may lead to cholinergic toxicity. Flash evoked potentials (FEPs) are a neurophysiological response following stimulation of the visual system with flashes of light. They ar...
Temporal processing and long-latency auditory evoked potential in stutterers.
Prestes, Raquel; de Andrade, Adriana Neves; Santos, Renata Beatriz Fernandes; Marangoni, Andrea Tortosa; Schiefer, Ana Maria; Gil, Daniela
Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n=20) and non-stutters (n=21), compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Powers, Randall K.; Türker, Kemal S.
2010-01-01
The amplitude and time course of synaptic potentials in human motoneurons can be estimated in tonically discharging motor units by measuring stimulus-evoked changes in the rate and probability of motor unit action potentials. However, in spite of the fact that some of these techniques have been used for over thirty years, there is still no consensus on the best way to estimate the characteristics of synaptic potentials or on the accuracy of these estimates. In this review, we compare different techniques for estimating synaptic potentials from human motor unit discharge and also discuss relevant animal models in which estimated synaptic potentials can be compared to those directly measured from intracellular recordings. We also review the experimental evidence on how synaptic noise and intrinsic motoneuron properties influence their responses to synaptic inputs. Finally, we consider to what extent recordings of single motor unit discharge in humans can be used to distinguish the contribution of changes in synaptic inputs versus changes in intrinsic motoneuron properties to altered motoneuron responses following CNS injury. PMID:20427230
Fieber, L A; Adams, D J
1991-01-01
1. The properties of acetylcholine (ACh)-activated ion channels of parasympathetic neurones from neonatal rat cardiac ganglia grown in tissue culture were examined using patch clamp recording techniques. Membrane currents evoked by ACh were mimicked by nicotine, attenuated by neuronal bungarotoxin, and unaffected by atropine, suggesting that the ACh-induced currents are mediated by nicotinic receptor activation. 2. The current-voltage (I-V) relationship for whole-cell ACh-evoked currents exhibited strong inward rectification and a reversal (zero current) potential of -3 mV (NaCl outside, CsCl inside). The rectification was not alleviated by changing the main permeant cation or by removal of divalent cations from the intracellular or extracellular solutions. Unitary ACh-activated currents exhibited a linear I-V relationship with slope conductances of 32 pS in cell-attached membrane patches and 38 pS in excised membrane patches with symmetrical CsCl solutions. 3. Acetylcholine-induced currents were reversibly inhibited in a dose-dependent manner by the ganglionic antagonists, mecamylamine (Kd = 37 nM) and hexamethonium (IC50 approximately 1 microM), as well as by the neuromuscular relaxant, d-tubocurarine (Kd = 3 microM). Inhibition of ACh-evoked currents by hexamethonium could not be described by a simple blocking model for drug-receptor interaction. 4. The amplitude of the ionic current through the open channel was dependent on the extracellular Na+ concentration. The direction of the shift in reversal potential upon replacement of NaCl by mannitol indicates that the neuronal nicotinic receptor channel is cation selective and the magnitude suggests a high cation to anion permeability ratio. The cation permeability (PX/PNa) followed the ionic selectivity sequence Cs+ (1.06) greater than Na+ (1.0) greater than Ca2+ (0.93). Anion substitution experiments showed a relative anion permeability, PCl/PNa less than or equal to 0.05. 5. The nicotinic ACh-activated channels described mediate the responses of postganglionic parasympathetic neurones of the mammalian heart to vagal stimulation. PMID:1708819
Poncelet, L; Coppens, A; Deltenre, P
2000-01-01
This study investigated whether Dalmatian puppies with normal hearing bilaterally had the same click-evoked brainstem auditory potential characteristics as age-matched dogs of another breed. Short-latency brainstem auditory potentials evoked by condensation and rarefaction clicks were recorded in 23 1.5- to 2-month-old Dalmatian puppies with normal hearing bilaterally by a qualitative brainstem auditory evoked potential test and in 16 Beagle dogs of the same age. For each stimulus intensity, from 90 dB normal hearing level down to the wave V threshold, the sum of the potentials evoked by the 2 kinds of stimuli were added, giving an equivalent to the alternate click polarity stimulation. The slope of the L segment of the wave V latency-intensity curve was steeper in Dalmatian (-40 +/- 10 micros/dB) than in Beagles (-28 +/- 5 micros/dB, P < .001) puppies. The hearing threshold was lower in the Beagle puppies (P < .05). These results suggest that interbreed differences may exist at the level of cochlear function in this age class. The wave V latency and wave V-wave I latencies differences at high stimulus intensity were different between the groups of puppies (4.3 +/- 0.2 and 2.5 +/- 0.2 milliseconds, respectively, for Beagles; and 4.1 +/- 0.2 and 2.3 +/- 0.2 milliseconds for Dalmatians, P < .05). A different maturation speed of the neural pathways is one possible explanation of this observation.
Untergehrer, Gisela; Jordan, Denis; Eyl, Sebastian; Schneider, Gerhard
2013-02-01
Although electroencephalographic parameters and auditory evoked potentials (AEP) reflect the hypnotic component of anesthesia, there is currently no specific and mechanism-based monitoring tool for anesthesia-induced blockade of nociceptive inputs. The aim of this study was to assess visceral pain-evoked potentials (VPEP) and contact heat-evoked potentials (CHEP) as electroencephalographic indicators of drug-induced changes of visceral and somatosensory pain. Additionally, AEP and electroencephalographic permutation entropy were used to evaluate sedative components of the applied drugs. In a study enrolling 60 volunteers, VPEP, CHEP (amplitude N2-P1), and AEP (latency Nb, amplitude Pa-Nb) were recorded without drug application and at two subanesthetic concentration levels of propofol, sevoflurane, remifentanil, or (s)-ketamine. Drug-induced changes of evoked potentials were analyzed. VPEP were generated by electric stimuli using bipolar electrodes positioned in the distal esophagus. For CHEP, heat pulses were given to the medial aspect of the right forearm using a CHEP stimulator. In addition to AEP, electroencephalographic permutation entropy was used to indicate level of sedation. With increasing concentrations of propofol, sevoflurane, remifentanil, and (s)-ketamine, VPEP and CHEP N2-P1 amplitudes decreased. AEP and electroencephalographic permutation entropy showed neither clinically relevant nor statistically significant suppression of cortical activity during drug application. Decreasing VPEP and CHEP amplitudes under subanesthetic concentrations of propofol, sevoflurane, remifentanil, and (s)-ketamine indicate suppressive drug effects. These effects seem to be specific for analgesia.
Visual evoked potentials in patients after methanol poisoning.
Urban, Pavel; Zakharov, Sergey; Diblík, Pavel; Pelclová, Daniela; Ridzoň, Petr
2016-01-01
We report the results of the visual evoked potentials (VEP) examination in patients after severe poisoning by methanol. The group of 47 patients (38 males and 9 females) was assembled out of persons who survived an outbreak of poisoning by the methanol adulterated alcohol beverages, which happened in the Czech Republic in 2012-2013. The visual evoked potentials examination was performed using monocular checkerboard pattern-reversal stimulation. Two criteria of abnormality were chosen: missing evoked response, and wave P1 latency > 117 ms. Non-parametric statistical methods (median, range, and the median test) were used to analyze factors influencing the VEP abnormality. The visual evoked potential was abnormal in 20 patients (43%), 5 of them had normal visual acuity on the Snellen chart. The VEP abnormality did not correlate significantly with initial serum concentrations of methanol, formic acid or lactate; however, it showed statistically significant inverse relation to the initial serum pH: the subgroup with the abnormal VEP had significantly lower median pH in comparison with the subgroup with the normal VEP (7.16 vs. 7.34, p = 0.04). The abnormality was not related to chronic alcohol abuse. The visual evoked potentials examination appeared sensitive enough to detected even subclinical impairment of the optic system. Metabolic acidosis is likely to be the key factor related to the development of visual damage induced by methanol. The examination performed with a delay of 1-9 months after the poisoning documented the situation relatively early after the event. It is considered as a baseline for the planned long-term follow-up of the patients, which will make it possible to assess the dynamics of the observed changes, their reversibility, and the occurrence of potential late sequelae. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Dong, Xuebao; Suo, Puxia; Yuan, Xin; Yao, Xuefeng
2015-01-01
Auditory evoked potentials (AEPs) have been used as a measure of the depth of anesthesia during the intra-operative process. AEPs are classically divided, on the basis of their latency, into first, fast, middle, slow, and late components. The use of auditory evoked potential has been advocated for the assessment of Intra-operative awareness (IOA), but has not been considered seriously enough to universalize it. It is because we have not explored enough the impact of auditory perception and auditory processing on the IOA phenomena as well as on the subsequent psychological impact of IOA on the patient. More importantly, we have seldom tried to look at the phenomena of IOP from the perspective of consciousness itself. This perspective is especially important because many of IOA phenomena exist in the subconscious domain than they do in the conscious domain of explicit recall. Two important forms of these subconscious manifestations of IOA are the implicit recall phenomena and post-operative dreams related to the operation. Here, we present an integrated auditory consciousness-based model of IOA. We start with a brief description of auditory awareness and the factors affecting it. Further, we proceed to the evaluation of conscious and subconscious information processing by auditory modality and how they interact during and after intra-operative period. Further, we show that both conscious and subconscious auditory processing affect the IOA experience and both have serious psychological implications on the patient subsequently. These effects could be prevented by using auditory evoked potential during monitoring of anesthesia, especially the mid-latency auditory evoked potentials (MLAERs). To conclude our model with present hypothesis, we propose that the use of auditory evoked potential should be universal with general anesthesia use in order to prevent the occurrences of distressing outcomes resulting from both conscious and subconscious auditory processing during anesthesia.
Bisensory stimulation increases gamma-responses over multiple cortical regions.
Sakowitz, O W; Quiroga, R Q; Schürmann, M; Başar, E
2001-04-01
In the framework of the discussion about gamma (approx. 40 Hz) oscillations as information carriers in the brain, we investigated the relationship between gamma responses in the EEG and intersensory association. Auditory evoked potentials (AEPs) and visual evoked potentials (VEPs) were compared with bisensory evoked potentials (BEPs; simultaneous auditory and visual stimulation) in 15 subjects. Gamma responses in AEPs, VEPs and BEPs were assessed by means of wavelet decomposition. Overall maximum gamma-components post-stimulus were highest in BEPs (P < 0.01). Bisensory evoked gamma-responses also showed significant central, parietal and occipital amplitude-increases (P < 0.001, P < 0.01, P < 0.05, respectively; prestimulus interval as baseline). These were of greater magnitude when compared with the unisensory responses. As a correlate of the marked gamma responses to bimodal stimulation we suggest a process of 'intersensory association', i.e. one of the steps between sensory transmission and perception. Our data may be interpreted as a further example of function-related gamma responses in the EEG.
Influence of detomidine and buprenorphine on motor-evoked potentials in horses.
Nollet, H; Van Ham, L; Gasthuys, F; Dewulf, J; Vanderstraeten, G; Deprez, P
2003-04-26
Horses need to be sedated before they are investigated by transcranial magnetic stimulation because of the mild discomfort induced by the evoked muscle contraction and the noise of stimulation. This paper describes the influence of a combination of detomidine (10 microg/kg bodyweight) and a low dose of buprenorphine (2.4 microg/kg) on the onset latency and peak-to-peak amplitude of magnetic motor-evoked potentials in normal horses. There were no significant differences between measurements of these parameters made before the horses were sedated and measurements made 10 and 30 minutes after the drugs were administered.
Guerra López, Seidel; Martín Reyes, Migdyrai; Pedroso Rodríguez, María de Los Ángeles; Reyes Berazain, Adnelys; Mendoza Quiñones, Raúl; Bravo Collazo, Tania Martha; Días de Villarvilla, Thais; Machado Cano, María Julia; Bobés León, María Antonieta
2015-04-01
N200 and P300 event-related evoked potentials provide sensitive measurements of sensory and cognitive function and have been used to study information processing in patients with schizophrenia and their unaffected first-degree relatives. Reduced amplitude and increased latency of N200 and P300 potentials have been consistently reported in schizophrenia. Thus, event-related evoked potentials abnormalities are promising possible biological markers for genetic vulnerability to schizophrenia. To assess the association of changes in latency, amplitude and topographic distribution of potentials N200 and P300 of patients with paranoid schizophrenia and their healthy first-degree relatives, in families with schizophrenia multiplex. We measured latency and amplitude of the N200 and P300 component of evoked potentials using an auditory odd-ball paradigm in 25 schizophrenic patients (probands) from 60 families multiply affected with paranoid schizophrenia, 23 of their non-schizophrenic first-degree relatives and 25 unrelated healthy controls, through a study of family association. Schizophrenic patients and their relatives showed significant latency prolongation and amplitude reduction of the N200 and P300 waves compared to controls. Left-temporal as compared to right-temporal N200 and P300 were significantly smaller in schizophrenic patients and their non-schizophrenic first-degree relatives than in controls. Our results suggest that event-related evoked potentials abnormalities may serve as markers of genetic vulnerability in schizophrenia. Confirming results of other researchers, this present study suggests that latency prolongation and amplitude reduction of the N200 and P300 waves and an altered topography at temporal sites may be a trait marker of paranoid schizophrenia.
Auditory evoked potentials in children and adolescents with Down syndrome.
Gregory, Letícia; Rosa, Rafael F M; Zen, Paulo R G; Sleifer, Pricila
2018-01-01
Down syndrome, or trisomy 21, is the most common genetic alteration in humans. The syndrome presents with several features, including hearing loss and changes in the central nervous system, which may affect language development in children and lead to school difficulties. The present study aimed to investigate group differences in the central auditory system by long-latency auditory evoked potentials and cognitive potential. An assessment of 23 children and adolescents with Down syndrome was performed, and a control group composed of 43 children and adolescents without genetic and/or neurological changes was used for comparison. All children underwent evaluation with pure tone and vocal audiometry, acoustic immitance measures, long-latency auditory evoked potentials, and cognitive potential. Longer latencies of the waves were found in the Down syndrome group than the control group, without significant differences in amplitude, suggesting that individuals with Down syndrome have difficulty in discrimination and auditory memory. It is, therefore, important to stimulate and monitor these children in order to enable adequate development and improve their life quality. We also emphasize the importance of the application of auditory evoked potentials in clinical practice, in order to contribute to the early diagnosis of hearing alterations and the development of more research in this area. © 2017 Wiley Periodicals, Inc.
An Intelligent Decision System for Intraoperative Somatosensory Evoked Potential Monitoring.
Fan, Bi; Li, Han-Xiong; Hu, Yong
2016-02-01
Somatosensory evoked potential (SEP) is a useful, noninvasive technique widely used for spinal cord monitoring during surgery. One of the main indicators of a spinal cord injury is the drop in amplitude of the SEP signal in comparison to the nominal baseline that is assumed to be constant during the surgery. However, in practice, the real-time baseline is not constant and may vary during the operation due to nonsurgical factors, such as blood pressure, anaesthesia, etc. Thus, a false warning is often generated if the nominal baseline is used for SEP monitoring. In current practice, human experts must be used to prevent this false warning. However, these well-trained human experts are expensive and may not be reliable and consistent due to various reasons like fatigue and emotion. In this paper, an intelligent decision system is proposed to improve SEP monitoring. First, the least squares support vector regression and multi-support vector regression models are trained to construct the dynamic baseline from historical data. Then a control chart is applied to detect abnormalities during surgery. The effectiveness of the intelligent decision system is evaluated by comparing its performance against the nominal baseline model by using the real experimental datasets derived from clinical conditions.
Gu, X; Fang, Z-M; Liu, Y; Lin, S-L; Han, B; Zhang, R; Chen, X
2014-01-01
Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging of the inner ear after intratympanic injection of gadolinium, together with magnetic resonance imaging scoring of the perilymphatic space, were used to investigate the positive identification rate of hydrops and determine the technique's diagnostic value for delayed endolymphatic hydrops. Twenty-five patients with delayed endolymphatic hydrops underwent pure tone audiometry, bithermal caloric testing, vestibular-evoked myogenic potential testing and three-dimensional magnetic resonance imaging of the inner ear after bilateral intratympanic injection of gadolinium. The perilymphatic space of the scanned images was analysed to investigate the positive identification rate of endolymphatic hydrops. According to the magnetic resonance imaging scoring of the perilymphatic space and the diagnostic standard, 84 per cent of the patients examined had endolymphatic hydrops. In comparison, the positive identification rates for vestibular-evoked myogenic potential and bithermal caloric testing were 52 per cent and 72 per cent respectively. Three-dimensional magnetic resonance imaging after intratympanic injection of gadolinium is valuable in the diagnosis of delayed endolymphatic hydrops and its classification. The perilymphatic space scoring system improved the diagnostic accuracy of magnetic resonance imaging.
Laryngeal and tracheal afferent nerve stimulation evokes swallowing in anaesthetized guinea pigs
Tsujimura, Takanori; Udemgba, Chioma; Inoue, Makoto; Canning, Brendan J
2013-01-01
We describe swallowing reflexes evoked by laryngeal and tracheal vagal afferent nerve stimulation in anaesthetized guinea pigs. The swallowing reflexes evoked by laryngeal citric acid challenges were abolished by recurrent laryngeal nerve (RLN) transection and mimicked by electrical stimulation of the central cut ends of an RLN. By contrast, the number of swallows evoked by upper airway/pharyngeal distensions was not significantly reduced by RLN transection but they were virtually abolished by superior laryngeal nerve transection. Laryngeal citric acid-evoked swallowing was mimicked by laryngeal capsaicin challenges, implicating transient receptor potential vanilloid 1 (TRPV1)-expressing laryngeal afferent nerves arising from the jugular ganglia. The swallowing evoked by citric acid and capsaicin and evoked by electrical stimulation of either the tracheal or the laryngeal mucosa occurred at stimulation intensities that were typically subthreshold for evoking cough in these animals. Swallowing evoked by airway afferent nerve stimulation also desensitized at a much slower rate than cough. We speculate that swallowing is an essential component of airway protection from aspiration associated with laryngeal and tracheal afferent nerve activation. PMID:23858010
Spatiotemporal mapping of scalp potentials.
Fender, D H; Santoro, T P
1977-11-01
Computerized analysis and display techniques are applied to the problem of identifying the origins of visually evoked scalped potentials (VESP's). A new stimulus for VESP work, white noise, is being incorporated in the solution of this problem. VESP's for white-noise stimulation exhibit time domain behavior similar to the classical response for flash stimuli but with certain significant differences. Contour mapping algorithms are used to display the time behavior of equipotential surfaces on the scalp during the VESP. The electrical and geometrical parameters of the head are modeled. Electrical fields closely matching those obtained experimentally are generated on the surface of the model head by optimally selecting the location and strength parameters of one or two dipole current sources contained within the model. Computer graphics are used to display as a movie the actual and model scalp potential field and the parameters of the dipole generators whithin the model head during the time course of the VESP. These techniques are currently used to study retinotopic mapping, fusion, and texture perception in the human.
Evoked bioelectrical brain activity following exposure to ionizing radiation.
Loganovsky, K; Kuts, K
2017-12-01
The article provides an overview of modern physiological evidence to support the hypothesis on cortico limbic sys tem dysfunction due to the hippocampal neurogenesis impairment as a basis of the brain interhemispheric asym metry and neurocognitive deficit after radiation exposure. The importance of the research of both evoked poten tials and fields as a highly sensitive and informative method is emphasized.Particular attention is paid to cerebral sensor systems dysfunction as a typical effect of ionizing radiation. Changes in functioning of the central parts of sensory analyzers of different modalities as well as the violation of brain integrative information processes under the influence of small doses of ionizing radiation can be critical when determining the radiation risks of space flight. The possible long term prospects for manned flights into space, including to Mars, given the effects identified are discussed. Potential risks to the central nervous system during space travel comprise cognitive functions impairment, including the volume of short term memory short ening, impaired motor functions, behavioral changes that could affect human performance and health. The remote risks for CNS are considered to be the following possible neuropsychiatric disorders: accelerated brain aging, Alzheimer's disease and other types of dementia. The new radiocerebral dose dependent effect, when applied cog nitive auditory evoked potentials P300 technique with a possible threshold dose of 0.05 Gy, manifesting in a form of disruption of information processing in the Wernicke's area is under discussion. In order to identify neurophys iological biological markers of ionizing radiation further international researches with adequate dosimetry support are necessary. K. Loganovsky, K. Kuts.
Albiñana, E; Luengo, J G; Baraibar, A M; Muñoz, M D; Gandía, L; Solís, J M; Hernández-Guijo, J M
2017-06-01
Choline is present at cholinergic synapses as a product of acetylcholine degradation. In addition, it is considered a selective agonist for α5 and α7 nicotinic acetylcholine receptors (nAChRs). In this study, we determined how choline affects action potentials and excitatory synaptic transmission using extracellular and intracellular recording techniques in CA1 area of hippocampal slices obtained from both mice and rats. Choline caused a reversible depression of evoked field excitatory postsynaptic potentials (fEPSPs) in a concentration-dependent manner that was not affected by α7 nAChR antagonists. Moreover, this choline-induced effect was not mimicked by either selective agonists or allosteric modulators of α7 nAChRs. Additionally, this choline-mediated effect was not prevented by either selective antagonists of GABA receptors or hemicholinium, a choline uptake inhibitor. The paired pulse facilitation paradigm, which detects whether a substance affects presynaptic release of glutamate, was not modified by choline. On the other hand, choline induced a robust increase of population spike evoked by orthodromic stimulation but did not modify that evoked by antidromic stimulation. We also found that choline impaired recurrent inhibition recorded in the pyramidal cell layer through a mechanism independent of α7 nAChR activation. These choline-mediated effects on fEPSP and population spike observed in rat slices were completely reproduced in slices obtained from α7 nAChR knockout mice, which reinforces our conclusion that choline modulates synaptic transmission and neuronal excitability by a mechanism independent of nicotinic receptor activation.
Koban, Leonie; Ninck, Markus; Li, Jun; Gisler, Thomas; Kissler, Johanna
2010-07-27
Emotional stimuli are preferentially processed compared to neutral ones. Measuring the magnetic resonance blood-oxygen level dependent (BOLD) response or EEG event-related potentials, this has also been demonstrated for emotional versus neutral words. However, it is currently unclear whether emotion effects in word processing can also be detected with other measures such as EEG steady-state visual evoked potentials (SSVEPs) or optical brain imaging techniques. In the present study, we simultaneously performed SSVEP measurements and near-infrared diffusing-wave spectroscopy (DWS), a new optical technique for the non-invasive measurement of brain function, to measure brain responses to neutral, pleasant, and unpleasant nouns flickering at a frequency of 7.5 Hz. The power of the SSVEP signal was significantly modulated by the words' emotional content at occipital electrodes, showing reduced SSVEP power during stimulation with pleasant compared to neutral nouns. By contrast, the DWS signal measured over the visual cortex showed significant differences between stimulation with flickering words and baseline periods, but no modulation in response to the words' emotional significance. This study is the first investigation of brain responses to emotional words using simultaneous measurements of SSVEPs and DWS. Emotional modulation of word processing was detected with EEG SSVEPs, but not by DWS. SSVEP power for emotional, specifically pleasant, compared to neutral words was reduced, which contrasts with previous results obtained when presenting emotional pictures. This appears to reflect processing differences between symbolic and pictorial emotional stimuli. While pictures prompt sustained perceptual processing, decoding the significance of emotional words requires more internal associative processing. Reasons for an absence of emotion effects in the DWS signal are discussed.
Analysis of the Averaged Visually Evoked Potentials in Normal Children. (RIEEC Research Bulletin 3.)
ERIC Educational Resources Information Center
Mizutani, Tohru; And Others
Evaluated were the properties and fine structures of averaged visually evoked potentials (AVEP) in 60 normal children between the ages of 2 and 9 years. Electroencephalographic recordings were taken while white diffuse flashes were used to deliver visual stimuli to the Ss. Three types of AVEP patterns were discerned, with no relationship observed…
ERIC Educational Resources Information Center
Fujita, Takako; Kamio, Yoko; Yamasaki, Takao; Yasumoto, Sawa; Hirose, Shinichi; Tobimatsu, Shozo
2013-01-01
Individuals with autism spectrum disorders (ASDs) have different automatic responses to faces than typically developing (TD) individuals. We recorded visual evoked potentials (VEPs) in 10 individuals with high-functioning ASD (HFASD) and 10 TD individuals. Visual stimuli consisted of upright and inverted faces (fearful and neutral) and objects…
ERIC Educational Resources Information Center
Brown, Christopher; El-Deredy, Wael; Blanchette, Isabelle
2010-01-01
In dot-probe tasks, threatening cues facilitate attention to targets and enhance the amplitude of the target P1 peak of the visual-evoked potential. While theories have suggested that evolutionarily relevant threats should obtain preferential neural processing, this has not been examined empirically. In this study we examined the effects of…
Li, Huayun; Jia, Huibin; Yu, Dongchuan
2018-03-01
Using behavioral measures and ERP technique, researchers discovered at least two factors could influence the final perception of depth in Panum's limiting case, which are the vertical disparity gradient and the degree of cue conflict between two- and three-dimensional shapes. Although certain event-related potential components have been proved to be sensitive to the different levels of these two factors, some methodological limitations existed in this technique. In this study, we proposed that the omega complexity of EEG signal may serve as an important supplement of the traditional event-related potential technique. We found that the trials with lower vertical gradient disparity have lower omega complexity (i.e., higher global functional connectivity) of the occipital region, especially that of the right-occipital hemisphere. Moreover, for occipital omega complexity, the trials with low-cue conflict have significantly larger omega complexity than those with medium- and high-cue conflict. It is also found that the electrodes located in the middle line of the occipital region (i.e., POz and Oz) are more crucial to the impact of different levels of cue conflict on omega complexity than the other electrodes located in the left- and right-occipital hemispheres. These evidences demonstrated that the EEG omega complexity could reflect distinct neural activities evoked by Panum's limiting case configurations, with different levels of vertical disparity gradient and cue conflict. Besides, the influence of vertical disparity gradient and cue conflict on omega complexity may be regional dependent. NEW & NOTEWORTHY The EEG omega complexity could reflect distinct neural activities evoked by Panum's limiting case configurations with different levels of vertical disparity gradient and cue conflict. The influence of vertical disparity gradient and cue conflict on omega complexity is regional dependent. The omega complexity of EEG signal can serve as an important supplement of the traditional ERP technique.
Vo, Lechi; Drummond, Peter D
2017-06-01
The R3 component of the electrically evoked blink reflex may form part of a startle reaction. Acoustic startle responses are augmented by yohimbine, an α 2 -adrenoceptor antagonist that blocks α 2 -autoreceptors, and are potentiated by opioid receptor blockade. To investigate these influences on electrically evoked startle responses, 16 mg yohimbine, with (16 participants) or without 50 mg naltrexone (23 participants), was administered in separate double-blind placebo-controlled cross-over experiments. In each experiment, R3 (a probable component of the startle response) was examined before and after high-frequency electrical stimulation of the forearm, a procedure that initiates inhibitory pain controls. Anxiety and somatic symptoms were greater after yohimbine than placebo, and were potentiated by naltrexone. Pain ratings for the electrically evoked startle stimuli decreased after high-frequency electrical stimulation in the placebo session but remained stable after drug administration. Yohimbine with naltrexone, but not yohimbine alone, also blocked an inhibitory effect of high-frequency electrical stimulation on electrically evoked sharp sensations and R3. Together, the findings suggest that adding naltrexone to yohimbine potentiated anxiety and blocked inhibitory influences of high-frequency electrical stimulation on electrically evoked sensations and startle responses. Thus, opioid peptides could reduce activity in nociceptive and startle-reflex pathways, or inhibit crosstalk between these pathways. Failure of this inhibitory opioid influence might be important in chronically painful conditions that are aggravated by startle stimuli.
Stone, David B; Urrea, Laura J; Aine, Cheryl J; Bustillo, Juan R; Clark, Vincent P; Stephen, Julia M
2011-10-01
In real-world settings, information from multiple sensory modalities is combined to form a complete, behaviorally salient percept - a process known as multisensory integration. While deficits in auditory and visual processing are often observed in schizophrenia, little is known about how multisensory integration is affected by the disorder. The present study examined auditory, visual, and combined audio-visual processing in schizophrenia patients using high-density electrical mapping. An ecologically relevant task was used to compare unisensory and multisensory evoked potentials from schizophrenia patients to potentials from healthy normal volunteers. Analysis of unisensory responses revealed a large decrease in the N100 component of the auditory-evoked potential, as well as early differences in the visual-evoked components in the schizophrenia group. Differences in early evoked responses to multisensory stimuli were also detected. Multisensory facilitation was assessed by comparing the sum of auditory and visual evoked responses to the audio-visual evoked response. Schizophrenia patients showed a significantly greater absolute magnitude response to audio-visual stimuli than to summed unisensory stimuli when compared to healthy volunteers, indicating significantly greater multisensory facilitation in the patient group. Behavioral responses also indicated increased facilitation from multisensory stimuli. The results represent the first report of increased multisensory facilitation in schizophrenia and suggest that, although unisensory deficits are present, compensatory mechanisms may exist under certain conditions that permit improved multisensory integration in individuals afflicted with the disorder. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cortical evoked potentials to an auditory illusion: binaural beats.
Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi
2009-08-01
To define brain activity corresponding to an auditory illusion of 3 and 6Hz binaural beats in 250Hz or 1000Hz base frequencies, and compare it to the sound onset response. Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000Hz to one ear and 3 or 6Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3Hz and 6Hz, in base frequencies of 250Hz and 1000Hz. Tones were 2000ms in duration and presented with approximately 1s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. All stimuli evoked tone-onset P(50), N(100) and P(200) components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P(50) had significantly different sources than the beats-evoked oscillations; and N(100) and P(200) sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp.
Cortical Evoked Potentials to an Auditory Illusion: Binaural Beats
Pratt, Hillel; Starr, Arnold; Michalewski, Henry J.; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi
2009-01-01
Objective: To define brain activity corresponding to an auditory illusion of 3 and 6 Hz binaural beats in 250 Hz or 1,000 Hz base frequencies, and compare it to the sound onset response. Methods: Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000 Hz to one ear and 3 or 6 Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3 Hz and 6 Hz, in base frequencies of 250 Hz and 1000 Hz. Tones were 2,000 ms in duration and presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. Results: All stimuli evoked tone-onset P50, N100 and P200 components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P50 had significantly different sources than the beats-evoked oscillations; and N100 and P200 sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Conclusions: Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Significance: Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp. PMID:19616993
Paradoxical monocular stereopsis and perspective vergence
NASA Technical Reports Server (NTRS)
Enright, J. T.
1989-01-01
The question of how to most effectively convey depth in a picture is a multifaceted problem, both because of potential limitations of the chosen medium (stereopsis, image motion), and because effectiveness can be defined in various ways. Practical applications usually focus on information transfer, i.e., effective techniques for evoking recognition of implied depth relationships, but this issue depends on subjective judgements which are difficult to scale when stimuli are above threshold. Two new approaches to this question are proposed here which are based on alternative criteria for effectiveness. Paradoxical monocular stereopsis is a remarkably compelling impression of depth which is evoked during one-eyed viewing of only certain illustrations; it can be unequivocally recognized because the feeling of depth collapses when one shifts to binocular viewing. An exploration of the stimulus properties which are effective for this phenomenon may contribute useful answers for the more general perceptual problem. Positive vergence is an eye-movement response associated with changes of fixation point within a picture which implies depth; it also arises only during monocular viewing. The response is directionally appropriate (i.e., apparently nearer objects evoke convergence, and vice versa), but the magnitude of the response can be altered consistently by making relatively minor changes in the illustration. The cross-subject agreement in changes of response magnitude would permit systematic exploration to determine which stimulus configurations are most effective in evoking perspective vergence, with quantitative answers based upon this involuntary reflex. It may well be that most effective pictures in this context will embody features which would increase effectiveness of pictures in a more general sense.
Granovsky, Yelena; Matre, Dagfinn; Sokolik, Alexander; Lorenz, Jürgen; Casey, Kenneth L
2005-06-01
The human palm has a lower heat detection threshold and a higher heat pain threshold than hairy skin. Neurophysiological studies of monkeys suggest that glabrous skin has fewer low threshold heat nociceptors (AMH type 2) than hairy skin. Accordingly, we used a temperature-controlled contact heat evoked potential (CHEP) stimulator to excite selectively heat receptors with C fibers or Adelta-innervated AMH type 2 receptors in humans. On the dorsal hand, 51 degrees C stimulation produced painful pinprick sensations and 41 degrees C stimuli evoked warmth. On the glabrous thenar, 41 degrees C stimulation produced mild warmth and 51 degrees C evoked strong but painless heat sensations. We used CHEP responses to estimate the conduction velocities (CV) of peripheral fibers mediating these sensations. On hairy skin, 41 degrees C stimuli evoked an ultra-late potential (mean, SD; N wave latency: 455 (118) ms) mediated by C fibers (CV by regression analysis: 1.28 m/s, N=15) whereas 51 degrees C stimuli evoked a late potential (N latency: 267 (33) ms) mediated by Adelta afferents (CV by within-subject analysis: 12.9 m/s, N=6). In contrast, thenar responses to 41 and 51 degrees C were mediated by C fibers (average N wave latencies 485 (100) and 433 (73) ms, respectively; CVs 0.95-1.35 m/s by regression analysis, N=15; average CV=1.7 (0.41) m/s calculated from distal glabrous and proximal hairy skin stimulation, N=6). The exploratory range of the human and monkey palm is enhanced by the abundance of low threshold, C-innervated heat receptors and the paucity of low threshold AMH type 2 heat nociceptors.
Intraoperative cranial nerve monitoring.
Harper, C Michel
2004-03-01
The purpose of intraoperative monitoring is to preserve function and prevent injury to the nervous system at a time when clinical examination is not possible. Cranial nerves are delicate structures and are susceptible to damage by mechanical trauma or ischemia during intracranial and extracranial surgery. A number of reliable electrodiagnostic techniques, including nerve conduction studies, electromyography, and the recording of evoked potentials have been adapted to the study of cranial nerve function during surgery. A growing body of evidence supports the utility of intraoperative monitoring of cranial nerve nerves during selected surgical procedures.
Estimating Single-Trial Responses in EEG
NASA Technical Reports Server (NTRS)
Shah, A. S.; Knuth, K. H.; Truccolo, W. A.; Mehta, A. D.; Fu, K. G.; Johnston, T. A.; Ding, M.; Bressler, S. L.; Schroeder, C. E.; Clancy, Daniel (Technical Monitor)
2002-01-01
Accurate characterization of single-trial field potential responses is critical from a number of perspectives. For example, it allows differentiation of an evoked response from ongoing EEG. We previously developed the multiple component Event Related Potential (mcERP) algorithm to improve resolution of the single-trial evoked response. The mcERP model states that multiple components, each specified by a stereotypic waveform varying in latency and amplitude from trial to trial, comprise the evoked response. Application of the mcERP algorithm to simulated data with three independent, synthetic components has shown that the model is capable of separating these components and estimating their variability. Application of the model to single trial, visual evoked potentials recorded simultaneously from all V1 laminae in an awake, fixating macaque yielded local and far-field components. Certain local components estimated by the model were distributed in both granular and supragranular laminae. This suggests a linear coupling between the responses of thalamo-recipient neuronal ensembles and subsequent responses of supragranular neuronal ensembles, as predicted by the feedforward anatomy of V1. Our results indicate that the mcERP algorithm provides a valid estimation of single-trial responses. This will enable analyses that depend on trial-to-trial variations and those that require separation of the evoked response from background EEG rhythms
Emotional conflict occurs at an early stage: evidence from the emotional face-word Stroop task.
Zhu, Xiang-ru; Zhang, Hui-jun; Wu, Ting-ting; Luo, Wen-bo; Luo, Yue-jia
2010-06-30
The perceptual processing of emotional conflict was studied using electrophysiological techniques to measure event-related potentials (ERPs). The emotional face-word Stroop task in which emotion words are written in prominent red color across a face was use to study emotional conflict. In each trial, the emotion word and facial expression were either congruent or incongruent (in conflict). When subjects were asked to identify the expression of the face during a trial, the incongruent condition evoked a more negative N170 ERP component in posterior lateral sites than in the congruent condition. In contrast, when subjects were asked to identify the word during a trial, the incongruent condition evoked a less negative N170 component than the congruent condition. The present findings extend our understanding of the control processes involved in emotional conflict by demonstrating that differentiation of emotional congruency begins at an early perceptual processing stage. (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Auditory fear conditioning modifies steady-state evoked potentials in the rat inferior colliculus.
Lockmann, André Luiz Vieira; Mourão, Flávio Afonso Gonçalves; Moraes, Marcio Flávio Dutra
2017-08-01
The rat inferior colliculus (IC) is a major midbrain relay for ascending inputs from the auditory brain stem and has been suggested to play a key role in the processing of aversive sounds. Previous studies have demonstrated that auditory fear conditioning (AFC) potentiates transient responses to brief tones in the IC, but it remains unexplored whether AFC modifies responses to sustained periodic acoustic stimulation-a type of response called the steady-state evoked potential (SSEP). Here we used an amplitude-modulated tone-a 10-kHz tone with a sinusoidal amplitude modulation of 53.7 Hz-as the conditioning stimulus (CS) in an AFC protocol (5 CSs per day in 3 consecutive days) while recording local field potentials (LFPs) from the IC. In the preconditioning session ( day 1 ), the CS elicited prominent 53.7-Hz SSEPs. In the training session ( day 2 ), foot shocks occurred at the end of each CS (paired group) or randomized in the inter-CS interval (unpaired group). In the test session ( day 3 ), SSEPs markedly differed from preconditioning in the paired group: in the first two trials the phase to which the SSEP coupled to the CS amplitude envelope shifted ~90°; in the last two trials the SSEP power and the coherence of SSEP with the CS amplitude envelope increased. LFP power decreased in frequency bands other than 53.7 Hz. In the unpaired group, SSEPs did not change in the test compared with preconditioning. Our results show that AFC causes dissociated changes in the phase and power of SSEP in the IC. NEW & NOTEWORTHY Local field potential oscillations in the inferior colliculus follow the amplitude envelope of an amplitude-modulated tone, originating a neural response called the steady-state evoked potential. We show that auditory fear conditioning of an amplitude-modulated tone modifies two parameters of the steady-state evoked potentials in the inferior colliculus: first the phase to which the evoked oscillation couples to the amplitude-modulated tone shifts; subsequently, the evoked oscillation power increases along with its coherence with the amplitude-modulated tone. Copyright © 2017 the American Physiological Society.
Thirumala, Parthasarathy D; Krishnaiah, Balaji; Crammond, Donald J; Habeych, Miguel E; Balzer, Jeffrey R
2014-04-01
Intraoperative monitoring of brain stem auditory evoked potential during microvascular decompression (MVD) prevent hearing loss (HL). Previous studies have shown that changes in wave III (wIII) are an early and sensitive sign of auditory nerve injury. To evaluate the changes of amplitude and latency of wIII of brain stem auditory evoked potential during MVD and its association with postoperative HL. Hearing loss was classified by American Academy of Otolaryngology - Head and Neck Surgery (AAO-HNS) criteria, based on changes in pure tone audiometry and speech discrimination score. Retrospective analysis of wIII in patients who underwent intraoperative monitoring with brain stem auditory evoked potential during MVD was performed. A univariate logistic regression analysis was performed on independent variables amplitude of wIII and latency of wIII at change max and On-Skin, or a final recording at the time of skin closure. A further analysis for the same variables was performed adjusting for the loss of wave. The latency of wIII was not found to be significantly different between groups I and II. The amplitude of wIII was significantly decreased in the group with HL. Regression analysis did not find any increased odds of HL with changes in the amplitude of wIII. Changes in wave III did not increase the odds of HL in patients who underwent brain stem auditory evoked potential s during MVD. This information might be valuable to evaluate the value of wIII as an alarm criterion during MVD to prevent HL.
Neurophysiological correlates of abnormal somatosensory temporal discrimination in dystonia.
Antelmi, Elena; Erro, Roberto; Rocchi, Lorenzo; Liguori, Rocco; Tinazzi, Michele; Di Stasio, Flavio; Berardelli, Alfredo; Rothwell, John C; Bhatia, Kailash P
2017-01-01
Somatosensory temporal discrimination threshold is often prolonged in patients with dystonia. Previous evidence suggested that this might be caused by impaired somatosensory processing in the time domain. Here, we tested if other markers of reduced inhibition in the somatosensory system might also contribute to abnormal somatosensory temporal discrimination in dystonia. Somatosensory temporal discrimination threshold was measured in 19 patients with isolated cervical dystonia and 19 age-matched healthy controls. We evaluated temporal somatosensory inhibition using paired-pulse somatosensory evoked potentials, spatial somatosensory inhibition by measuring the somatosensory evoked potentials interaction between simultaneous stimulation of the digital nerves in thumb and index finger, and Gamma-aminobutyric acid-ergic (GABAergic) sensory inhibition using the early and late components of high-frequency oscillations in digital nerves somatosensory evoked potentials. When compared with healthy controls, dystonic patients had longer somatosensory temporal discrimination thresholds, reduced suppression of cortical and subcortical paired-pulse somatosensory evoked potentials, less spatial inhibition of simultaneous somatosensory evoked potentials, and a smaller area of the early component of the high-frequency oscillations. A logistic regression analysis found that paired pulse suppression of the N20 component at an interstimulus interval of 5 milliseconds and the late component of the high-frequency oscillations were independently related to somatosensory temporal discrimination thresholds. "Dystonia group" was also a predictor of enhanced somatosensory temporal discrimination threshold, indicating a dystonia-specific effect that independently influences this threshold. Increased somatosensory temporal discrimination threshold in dystonia is related to reduced activity of inhibitory circuits within the primary somatosensory cortex. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
ERIC Educational Resources Information Center
Shannon, Dorothy A.; And Others
1984-01-01
The brainstem auditory evoked potential (BAEP) was evaluated as a hearing screening test in 168 high-risk newborns. The BAEP was found to be a sensitive procedure for the early identification of hearing-impaired newborns. However, the yield of significant hearing abnormalities was less than predicted in other studies using BAEP. (Author/CL)
ERIC Educational Resources Information Center
Shucard, Janet L.; Shucard, David W.
1990-01-01
Verbal and musical stimuli were presented to infants in a study of the relations of evoked potential left-right amplitude asymmetries to gender and hand preference. There was a relation between asymmetry and hand preference, and for girls, between asymmetry and stimulus condition. Results suggest a gender difference in cerebral hemisphere…
The effects of N-methyl carbamate pesticides on the photic after discharge (PhAD) of flash evoked potentials (FEPs) and the relationship between inhibition of brain cholinesterase (ChE) activity and the PhAD were evaluated. FEPs were recorded in Long Evans rats treated with physo...
Ibitoye, Morufu Olusola; Estigoni, Eduardo H.; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M.
2014-01-01
The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05) between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population. PMID:25025551
Martín-Palomeque, Guillermo; Castro-Ortiz, Antonio; Pamplona-Valenzuela, Pilar; Saiz-Sepúlveda, Miguel Á; Cabañes-Martínez, Lidia; López, Jaime R
2017-01-01
Although large amplitude evoked potentials (EPs) are typically associated with progressive myoclonic epilepsy patients, giant EPs imply central nervous system (CNS) hyperexcitability and can be seen in various nonepileptic disorders. We performed a retrospective chart review including history, physical examination, imaging and diagnostic studies of nonepileptic patients with large amplitude somatosensory evoked potentials (SSEPs) and visual evoked potentials (VEPs) during 2007 to 2013. Large amplitude EPs were defined as follows: VEPs (N75-P100) >18 μV; and SSEPs (N20-P25) >6.4 μV. Recording montage for VEPs was Oz-Cz and SSEPs C3'/C4'-Fz. Fifty-two patients (33 females, 19 males; age range, 9-90 years) were identified. No CNS pathology was detected in 7 patients. All remaining patients were diagnosed with new CNS disorders including: vascular (37%); myelopathies (13%); demyelinating (11%); space occupying lesions (8.7%); syringomyelia (8.7%); hydrocephalus (6.5%); Vitamin B-12 deficiency (4.3%); multiple system atrophy (4.3%); and toxins (2.2%). This study supports the notion that large amplitude EP implies CNS hyperexcitability and CNS disease. These results confirm the utility of EP studies in patients with suspected CNS pathology.
Kothari, Ruchi; Bokariya, Pradeep; Singh, Ramji; Singh, Smita; Narang, Purvasha
2014-01-01
To evaluate whether glaucomatous visual field defect particularly the pattern standard deviation (PSD) of Humphrey visual field could be associated with visual evoked potential (VEP) parameters of patients having primary open angle glaucoma (POAG). Visual field by Humphrey perimetry and simultaneous recordings of pattern reversal visual evoked potential (PRVEP) were assessed in 100 patients with POAG. The stimulus configuration for VEP recordings consisted of the transient pattern reversal method in which a black and white checker board pattern was generated (full field) and displayed on VEP monitor (colour 14″) by an electronic pattern regenerator inbuilt in an evoked potential recorder (RMS EMG EP MARK II). The results of our study indicate that there is a highly significant (P<0.001) negative correlation of P100 amplitude and a statistically significant (P<0.05) positive correlation of N70 latency, P100 latency and N155 latency with the PSD of Humphrey visual field in the subjects of POAG in various age groups as evaluated by Student's t-test. Prolongation of VEP latencies were mirrored by a corresponding increase of PSD values. Conversely, as PSD increases the magnitude of VEP excursions were found to be diminished.
Index finger somatosensory evoked potentials in blind Braille readers.
Giriyappa, Dayananda; Subrahmanyam, Roopakala Mysore; Rangashetty, Srinivasa; Sharma, Rajeev
2009-01-01
Traditionally, vision has been considered the dominant modality in our multi-sensory perception of the surrounding world. Sensory input via non-visual tracts becomes of greater behavioural relevance in totally blind individuals to enable effective interaction with the world around them. These include audition and tactile perceptions, leading to an augmentation in these perceptions when compared with normal sighted individuals. The objective of the present work was to study the index finger somatosensory evoked potentials (SEPs) in totally blind and normal sighted individuals. SEPs were recorded in 15 Braille reading totally blind females and compared with 15 age-matched normal sighted females. Latency and amplitudes of somatosensory evoked potential waveforms (N9, N13, and N20) were measured. Amplitude of N20 SEP (a cortical somatosensory evoked potential) was significantly larger in the totally blind than in normal sighted individuals (p < 0.05). The amplitudes of N9 and N13 SEP and the latencies of all recorded SEPs showed no significant differences. Blindness has a profound effect on the Braille reading right index finger. Totally blind Braille readers have larger N20 amplitude, suggestive of greater somatosensory cortical representation of the Braille reading index finger.
Laser and somatosensory evoked potentials in amyotrophic lateral sclerosis.
Isak, Baris; Tankisi, Hatice; Johnsen, Birger; Pugdahl, Kirsten; Finnerup, Nanna Brix; Fuglsang-Frederiksen, Anders
2016-10-01
Mild involvement of sensory nerves has been reported in previous studies in ALS patients. In this study, we assessed sensory pathways in ALS patients using laser evoked potentials (LEPs) and somatosensory evoked potentials (SSEPs). We recruited 18 ALS patients and 31 healthy subjects. Neodymium-doped yttrium aluminium perovskite (Nd:YAP)-laser was used to evoke LEPs in upper (UE) and lower (LE) extremities. N1 and N2P2 potentials were obtained from contralateral insular cortex (T3 or T4) and vertex (Cz), respectively. Median SSEPs were recorded from C3' or C4' and tibial SSEPs from Cz'. Compared to controls, ALS patients had longer N2 and P2 latencies, and smaller N2P2 amplitudes in both UE- and LE-LEPs (p<0.05), and longer latencies for median and tibial SSEPs (p<0.05). LEPs and SSEPs were abnormal in 72.2% and 56.6% patients, respectively. Cortical potentials showed that A-beta or A-delta sensory fibres, or both, were impaired in more than half of the ALS patients. The findings support that ALS is a multi-systemic disorder involving, although to a lesser degree, other systems than the motor. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Müller-Putz, Gernot R.; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert
2005-12-01
Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.
Müller-Putz, Gernot R; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert
2005-12-01
Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.
Hardmeier, Martin; Leocani, Letizia; Fuhr, Peter
2017-09-01
Evoked potentials (EP) characterize signal conduction in selected tracts of the central nervous system in a quantifiable way. Since alteration of signal conduction is the main mechanism of symptoms and signs in multiple sclerosis (MS), multimodal EP may serve as a representative measure of the functional impairment in MS. Moreover, EP have been shown to be predictive for disease course, and thus might help to select patient groups at high risk of progression for clinical trials. EP can detect deterioration, as well as improvement of impulse propagation, independently from the mechanism causing the change. Therefore, they are candidates for biomarkers with application in clinical phase-II trials. Applicability of EP in multicenter trials has been limited by different standards of registration and assessment.
Saturation thresholds of evoked neural and hemodynamic responses in awake and asleep rats
NASA Astrophysics Data System (ADS)
Schei, Jennifer L.; Van Nortwick, Amy S.; Meighan, Peter C.; Rector, David M.
2011-03-01
Neural activation generates a hemodynamic response to the localized region replenishing nutrients to the area. Changes in vigilance state have been shown to alter the vascular response where the vascular response is muted during wake compared to quiet sleep. We tested the saturation thresholds of the neurovascular response in the auditory cortex during wake and sleep by chronically implanting rats with an EEG electrode, a light emitting diode (LED, 600 nm), and photodiode to simultaneously measure evoked response potentials (ERPs) and evoked hemodynamic responses. We stimulated the cortex with a single speaker click delivered at random intervals 2-13 s at varied stimulus intensities ranging from 45-80 dB. To further test the potential for activity related saturation, we sleep deprived animals for 2, 4, or 6 hours and recorded evoked responses during the first hour recovery period. With increasing stimulus intensity, integrated ERPs and evoked hemodynamic responses increased; however the hemodynamic response approached saturation limits at a lower stimulus intensity than the ERP. With longer periods of sleep deprivation, the integrated ERPs did not change but evoked hemodynamic responses decreased. There may be physical limits in cortical blood delivery and vascular compliance, and with extended periods of neural activity during wake, vessels may approach these limits.
Automatic classification of visual evoked potentials based on wavelet decomposition
NASA Astrophysics Data System (ADS)
Stasiakiewicz, Paweł; Dobrowolski, Andrzej P.; Tomczykiewicz, Kazimierz
2017-04-01
Diagnosis of part of the visual system, that is responsible for conducting compound action potential, is generally based on visual evoked potentials generated as a result of stimulation of the eye by external light source. The condition of patient's visual path is assessed by set of parameters that describe the time domain characteristic extremes called waves. The decision process is compound therefore diagnosis significantly depends on experience of a doctor. The authors developed a procedure - based on wavelet decomposition and linear discriminant analysis - that ensures automatic classification of visual evoked potentials. The algorithm enables to assign individual case to normal or pathological class. The proposed classifier has a 96,4% sensitivity at 10,4% probability of false alarm in a group of 220 cases and area under curve ROC equals to 0,96 which, from the medical point of view, is a very good result.
Strauss, Daniel J; Delb, Wolfgang; D'Amelio, Roberto; Low, Yin Fen; Falkai, Peter
2008-02-01
Large-scale neural correlates of the tinnitus decompensation might be used for an objective evaluation of therapies and neurofeedback based therapeutic approaches. In this study, we try to identify large-scale neural correlates of the tinnitus decompensation using wavelet phase stability criteria of single sweep sequences of late auditory evoked potentials as synchronization stability measure. The extracted measure provided an objective quantification of the tinnitus decompensation and allowed for a reliable discrimination between a group of compensated and decompensated tinnitus patients. We provide an interpretation for our results by a neural model of top-down projections based on the Jastreboff tinnitus model combined with the adaptive resonance theory which has not been applied to model tinnitus so far. Using this model, our stability measure of evoked potentials can be linked to the focus of attention on the tinnitus signal. It is concluded that the wavelet phase stability of late auditory evoked potential single sweeps might be used as objective tinnitus decompensation measure and can be interpreted in the framework of the Jastreboff tinnitus model and adaptive resonance theory.
Reference-Free Removal of EEG-fMRI Ballistocardiogram Artifacts with Harmonic Regression
Krishnaswamy, Pavitra; Bonmassar, Giorgio; Poulsen, Catherine; Pierce, Eric T; Purdon, Patrick L.; Brown, Emery N.
2016-01-01
Combining electroencephalogram (EEG) recording and functional magnetic resonance imaging (fMRI) offers the potential for imaging brain activity with high spatial and temporal resolution. This potential remains limited by the significant ballistocardiogram (BCG) artifacts induced in the EEG by cardiac pulsation-related head movement within the magnetic field. We model the BCG artifact using a harmonic basis, pose the artifact removal problem as a local harmonic regression analysis, and develop an efficient maximum likelihood algorithm to estimate and remove BCG artifacts. Our analysis paradigm accounts for time-frequency overlap between the BCG artifacts and neurophysiologic EEG signals, and tracks the spatiotemporal variations in both the artifact and the signal. We evaluate performance on: simulated oscillatory and evoked responses constructed with realistic artifacts; actual anesthesia-induced oscillatory recordings; and actual visual evoked potential recordings. In each case, the local harmonic regression analysis effectively removes the BCG artifacts, and recovers the neurophysiologic EEG signals. We further show that our algorithm outperforms commonly used reference-based and component analysis techniques, particularly in low SNR conditions, the presence of significant time-frequency overlap between the artifact and the signal, and/or large spatiotemporal variations in the BCG. Because our algorithm does not require reference signals and has low computational complexity, it offers a practical tool for removing BCG artifacts from EEG data recorded in combination with fMRI. PMID:26151100
An unexpected target of spinal direct current stimulation: Interhemispheric connectivity in humans.
Bocci, Tommaso; Caleo, Matteo; Vannini, Beatrice; Vergari, Maurizio; Cogiamanian, Filippo; Rossi, Simone; Priori, Alberto; Sartucci, Ferdinando
2015-10-30
Transcutaneous spinal Direct Current Stimulation (tsDCS) is a noninvasive technique based on the application of weak electrical currents over spinal cord. We studied the effects of tsDCS on interhemispheric motor connectivity and visual processing by evaluating changes in ipsilateral Silent Period (iSP), Transcallosal Conduction Time (TCT) and hemifield Visual Evoked Potentials (hVEPs), before (T0) and at a different intervals following sham, anodal and cathodal tsDCS (T9-T11 level, 2.0 mA, 20'). Motor Evoked Potentials (MEPs) were recorded from abductor pollicis brevis (APB), abductor hallucis (AH) and deltoid muscles. hVEPs were recorded bilaterally by reversal of a horizontal square wave grating with the display positioned in the right hemifield. Anodal tsDCS increased TCT (p < 0.001) and the interhemispheric delay for both the main VEP components (N1: p = 0.0003; P1: p < 0.0001), dampening at the same time iSP duration (APB: p < 0.0001; AH: p = 0.0005; deltoid: p < 0.0001), while cathodal stimulation elicited opposite effects (p < 0.0001). tsDCS modulates interhemispheric processing in a polarity-specific manner, with anodal stimulation leading to a functional disconnection between hemispheres. tsDCS would be a new promising therapeutic tool in managing a number of human diseases characterized by an impaired interhemispheric balance, or an early rehabilitation strategy in patients with acute brain lesions, when other non-invasive brain stimulation techniques (NIBS) are not indicated due to safety concerns. Copyright © 2015 Elsevier B.V. All rights reserved.
Auditory Evoked Potentials as a Function of Sleep Deprivation and Recovery Sleep
1985-09-29
present research: They relate to the effects of: a) 48-hours of sleep deprivation on endogenous event related potentials (ERPs); b) circadian rhythms on...the study were: decreases in amplitude for N2, P3 and N2P3 across the reprivation period; a circadian rhythm was apparent for both ERP recordings and...of cortical evoked response potentials (ERPs)? 2) How do circadian rhythms affect ERPS under conditions of sleep deprivation? 3) How do different
Matched Filtering of Visual Evoked Potentials to Detect Acceleration (+Gz) Induced Blackout
1985-01-03
FILTERING OF VISUAL EVOKED POTENTIALS rO DETECT ACCELERATION ( + Gz) INDUCED BLACKOUT John Q. Nelson, Leonid Hrebien and Joseph P. Cammarota Aircraft...8217: , r .,.V -. 1-». .v. IE •> _"->.-"*« A^V :j% _"«;_"V X~«. _~»^"V.i.~» iuTtuTii i."»..-^. .-*._> r /; NOTICES REPORT NUMBERING SYSTEM - The...Potentials to Detect Acceleration (+G2) Induced Blackout 12 PERSONAL AUTHOR(S) John G. Nelson, Leonid Hrebien, Joseph P. Cammarota 13* TYPE OF REPORT
Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira
2015-01-01
Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound action potentials in neural regeneration studies.
Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira
2015-01-01
Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound action potentials in neural regeneration studies. PMID:26325291
Martins, Kelly Vasconcelos Chaves; Gil, Daniela
2017-01-01
Introduction The registry of the component P1 of the cortical auditory evoked potential has been widely used to analyze the behavior of auditory pathways in response to cochlear implant stimulation. Objective To determine the influence of aural rehabilitation in the parameters of latency and amplitude of the P1 cortical auditory evoked potential component elicited by simple auditory stimuli (tone burst) and complex stimuli (speech) in children with cochlear implants. Method The study included six individuals of both genders aged 5 to 10 years old who have been cochlear implant users for at least 12 months, and who attended auditory rehabilitation with an aural rehabilitation therapy approach. Participants were submitted to research of the cortical auditory evoked potential at the beginning of the study and after 3 months of aural rehabilitation. To elicit the responses, simple stimuli (tone burst) and complex stimuli (speech) were used and presented in free field at 70 dB HL. The results were statistically analyzed, and both evaluations were compared. Results There was no significant difference between the type of eliciting stimulus of the cortical auditory evoked potential for the latency and the amplitude of P1. There was a statistically significant difference in the P1 latency between the evaluations for both stimuli, with reduction of the latency in the second evaluation after 3 months of auditory rehabilitation. There was no statistically significant difference regarding the amplitude of P1 under the two types of stimuli or in the two evaluations. Conclusion A decrease in latency of the P1 component elicited by both simple and complex stimuli was observed within a three-month interval in children with cochlear implant undergoing aural rehabilitation. PMID:29018498
Meftahi, Gholamhossein; Ghotbedin, Zohreh; Eslamizade, Mohammad Javad; Hosseinmardi, Narges; Janahmadi, Mahyar
2015-01-01
Objective Resveratrol, a phytoalexin, has a wide range of desirable biological actions. Despite a growing body of evidence indicating that resveratrol induces changes in neu- ronal function, little effort, if any, has been made to investigate the cellular effect of res- veratrol treatment on intrinsic neuronal properties. Materials and Methods This experimental study was performed to examine the acute effects of resveratrol (100 µM) on the intrinsic evoked responses of rat Cornu Ammonis (CA1) pyramidal neurons in brain slices, using whole cell patch clamp re- cording under current clamp conditions. Results Findings showed that resveratrol treatment caused dramatic changes in evoked responses of pyramidal neurons. Its treatment induced a significant (P<0.05) increase in the after hyperpolarization amplitude of the first evoked action potential. Resveratrol-treated cells displayed a significantly broader action potential (AP) when compared with either control or vehicle-treated groups. In addition, the mean instantaneous firing frequency between the first two action potentials was significantly lower in resveratrol-treated neurons. It also caused a significant reduction in the time to maximum decay of AP. The rheobase current and the utilization time were both significantly greater following resveratrol treatment. Neurons exhibited a significantly depolarized voltage threshold when exposed to resveratrol. Conclusion Results provide direct electrophysiological evidence for the inhibitory effects of resveratrol on pyramidal neurons, at least in part, by reducing the evoked neural activity. PMID:26464825
Vibration-Induced Kinesthetic Illusions and Corticospinal Excitability Changes.
Mancheva, Kapka; Rollnik, Jens D; Wolf, Werner; Dengler, Reinhard; Kossev, Andon
2017-01-01
The authors' aim was to investigate the changes of corticospinal excitability during kinesthetic illusions induced by tendon vibration. Motor-evoked potentials in response to transcranial magnetic stimulation were recorded from the vibrated flexor carpi radialis and its antagonist, extensor carpi radialis. The illusions were evoked under vision conditions without feedback for the position of the wrist (open or closed eyes). In these two conditions motor-evoked potential changes during vibration in the antagonist were not identical. This discrepancy may be a result of 2 simultaneously acting, different and opposite influences and the balance between them depends on visual conditions. Thus, the illusion was accompanied by the facilitation of corticospinal excitability in both vibrated muscle and its antagonist.
Cellular generators of the cortical auditory evoked potential initial component.
Steinschneider, M; Tenke, C E; Schroeder, C E; Javitt, D C; Simpson, G V; Arezzo, J C; Vaughan, H G
1992-01-01
Cellular generators of the initial cortical auditory evoked potential (AEP) component were determined by analyzing laminar profiles of click-evoked AEPs, current source density, and multiple unit activity (MUA) in primary auditory cortex of awake monkeys. The initial AEP component is a surface-negative wave, N8, that peaks at 8-9 msec and inverts in polarity below lamina 4. N8 is generated by a lamina 4 current sink and a deeper current source. Simultaneous MUA is present from lower lamina 3 to the subjacent white matter. Findings indicate that thalamocortical afferents are a generator of N8 and support a role for lamina 4 stellate cells. Relationships to the human AEP are discussed.
Optical imaging of neural and hemodynamic brain activity
NASA Astrophysics Data System (ADS)
Schei, Jennifer Lynn
Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic sleep disturbances could push the vasculature to critical limits, leading to metabolic deficit and the potential for tissue trauma.
Zhang, Jian-Hua; Böhme, Johann F
2007-11-01
In this paper we report an adaptive regularization network (ARN) approach to realizing fast blind separation of cerebral evoked potentials (EPs) from background electroencephalogram (EEG) activity with no need to make any explicit assumption on the statistical (or deterministic) signal model. The ARNs are proposed to construct nonlinear EEG and EP signal models. A novel adaptive regularization training (ART) algorithm is proposed to improve the generalization performance of the ARN. Two adaptive neural modeling methods based on the ARN are developed and their implementation and performance analysis are also presented. The computer experiments using simulated and measured visual evoked potential (VEP) data have shown that the proposed ARN modeling paradigm yields computationally efficient and more accurate VEP signal estimation owing to its intrinsic model-free and nonlinear processing characteristics.
Reeves, Roy R; Struve, Frederick A; Patrick, Gloria
2005-01-01
In this study of patients with borderline personality disorder (BPD) or antisocial personality disorder (ASPD) hospitalized because of aggressive behavior, auditory and visual P300 evoked potentials were obtained prior to treatment with valproate. Eight ASPD patients (8 males, 0 females) and 11 BPD patients (2 males, 9 females) showed improvement, while in 7 patients with ASPD (7 males, 0 females) and 10 patients with BPD (2 males, 8 females), aggression was not improved. Differences in auditory and visual P300 latencies and amplitudes were not significant for either diagnosis, or for both diagnoses combined. These findings suggest that auditory or visual P300 evoked potentials may not be useful for predicting response of aggressive behavior to valproate treatment in patients with BPD or ASPD.
Brain state-dependence of electrically evoked potentials monitored with head-mounted electronics.
Richardson, Andrew G; Fetz, Eberhard E
2012-11-01
Inferring changes in brain connectivity is critical to studies of learning-related plasticity and stimulus-induced conditioning of neural circuits. In addition, monitoring spontaneous fluctuations in connectivity can provide insight into information processing during different brain states. Here, we quantified state-dependent connectivity changes throughout the 24-h sleep-wake cycle in freely behaving monkeys. A novel, head-mounted electronic device was used to electrically stimulate at one site and record evoked potentials at other sites. Electrically evoked potentials (EEPs) revealed the connectivity pattern between several cortical sites and the basal forebrain. We quantified state-dependent changes in the EEPs. Cortico-cortical EEP amplitude increased during slow-wave sleep, compared to wakefulness, while basal-cortical EEP amplitude decreased. The results demonstrate the utility of using portable electronics to document state-dependent connectivity changes in freely behaving primates.
Direct detection of a single evoked action potential with MRS in Lumbricus terrestris.
Poplawsky, Alexander J; Dingledine, Raymond; Hu, Xiaoping P
2012-01-01
Functional MRI (fMRI) measures neural activity indirectly by detecting the signal change associated with the hemodynamic response following brain activation. In order to alleviate the temporal and spatial specificity problems associated with fMRI, a number of attempts have been made to detect neural magnetic fields (NMFs) with MRI directly, but have thus far provided conflicting results. In this study, we used MR to detect axonal NMFs in the median giant fiber of the earthworm, Lumbricus terrestris, by examining the free induction decay (FID) with a sampling interval of 0.32 ms. The earthworm nerve cords were isolated from the vasculature and stimulated at the threshold of action potential generation. FIDs were acquired shortly after the stimulation, and simultaneous field potential recordings identified the presence or absence of single evoked action potentials. FIDs acquired when the stimulus did not evoke an action potential were summed as background. The phase of the background-subtracted FID exhibited a systematic change, with a peak phase difference of (-1.2 ± 0.3) × 10(-5) radians occurring at a time corresponding to the timing of the action potential. In addition, we calculated the possible changes in the FID magnitude and phase caused by a simulated action potential using a volume conductor model. The measured phase difference matched the theoretical prediction well in both amplitude and temporal characteristics. This study provides the first evidence for the direct detection of a magnetic field from an evoked action potential using MR. Copyright © 2011 John Wiley & Sons, Ltd.
Poplawsky, Alexander J.; Dingledine, Raymond
2011-01-01
Functional MRI (fMRI) indirectly measures neural activity by detecting the signal change associated with the hemodynamic response following brain activation. In order to alleviate the temporal and spatial specificity problems associated with fMRI, a number of attempts have been made to detect neural magnetic fields (NMFs) with MRI directly, but have thus far provided conflicting results. In the present study, we used magnetic resonance to detect axonal NMFs in the median giant fiber of the earthworm, Lumbricus terrestris, by examining the free-induction decay (FID) with a sampling interval of 0.32 ms. The earthworm nerve cords were isolated from the vasculature and stimulated at the threshold of action potential generation. FIDs were acquired shortly after the stimulation and simultaneous field potential recordings identified the presence or absence of single evoked action potentials. FIDs acquired when the stimulus did not evoke an action potential were summed as background. The phase of the background-subtracted FID exhibited a systematic change, with a peak phase difference of [-1.2 ± 0.3] ×10-5 radians occurring at a time corresponding to the timing of the action potential. In addition, we calculated the possible changes in the FID magnitude and phase due to a simulated action potential using a volume conductor model. The measured phase difference matched the theoretical prediction well in both amplitude and temporal characteristics. This study provides the first evidence for the direct detection of a magnetic field from an evoked action potential using magnetic resonance. PMID:21728204
Wiggins, Ian M; Anderson, Carly A; Kitterick, Pádraig T; Hartley, Douglas E H
2016-09-01
Functional near-infrared spectroscopy (fNIRS) is a silent, non-invasive neuroimaging technique that is potentially well suited to auditory research. However, the reliability of auditory-evoked activation measured using fNIRS is largely unknown. The present study investigated the test-retest reliability of speech-evoked fNIRS responses in normally-hearing adults. Seventeen participants underwent fNIRS imaging in two sessions separated by three months. In a block design, participants were presented with auditory speech, visual speech (silent speechreading), and audiovisual speech conditions. Optode arrays were placed bilaterally over the temporal lobes, targeting auditory brain regions. A range of established metrics was used to quantify the reproducibility of cortical activation patterns, as well as the amplitude and time course of the haemodynamic response within predefined regions of interest. The use of a signal processing algorithm designed to reduce the influence of systemic physiological signals was found to be crucial to achieving reliable detection of significant activation at the group level. For auditory speech (with or without visual cues), reliability was good to excellent at the group level, but highly variable among individuals. Temporal-lobe activation in response to visual speech was less reliable, especially in the right hemisphere. Consistent with previous reports, fNIRS reliability was improved by averaging across a small number of channels overlying a cortical region of interest. Overall, the present results confirm that fNIRS can measure speech-evoked auditory responses in adults that are highly reliable at the group level, and indicate that signal processing to reduce physiological noise may substantially improve the reliability of fNIRS measurements. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Forster, Marie-Therese; Hoecker, Alexander Claudius; Kang, Jun-Suk; Quick, Johanna; Seifert, Volker; Hattingen, Elke; Hilker, Rüdiger; Weise, Lutz Martin
2015-06-01
Tractography based on diffusion tensor imaging has become a popular tool for delineating white matter tracts for neurosurgical procedures. To explore whether navigated transcranial magnetic stimulation (nTMS) might increase the accuracy of fiber tracking. Tractography was performed according to both anatomic delineation of the motor cortex (n = 14) and nTMS results (n = 9). After implantation of the definitive electrode, stimulation via the electrode was performed, defining a stimulation threshold for eliciting motor evoked potentials recorded during deep brain stimulation surgery. Others have shown that of arm and leg muscles. This threshold was correlated with the shortest distance between the active electrode contact and both fiber tracks. Results were evaluated by correlation to motor evoked potential monitoring during deep brain stimulation, a surgical procedure causing hardly any brain shift. Distances to fiber tracks clearly correlated with motor evoked potential thresholds. Tracks based on nTMS had a higher predictive value than tracks based on anatomic motor cortex definition (P < .001 and P = .005, respectively). However, target site, hemisphere, and active electrode contact did not influence this correlation. The implementation of tractography based on nTMS increases the accuracy of fiber tracking. Moreover, this combination of methods has the potential to become a supplemental tool for guiding electrode implantation.
Galiñanes, Gregorio L.; Braz, Barbara Y.; Murer, Mario Gustavo
2011-01-01
Evoked striatal field potentials are seldom used to study corticostriatal communication in vivo because little is known about their origin and significance. Here we show that striatal field responses evoked by stimulating the prelimbic cortex in mice are reduced by more than 90% after infusing the AMPA receptor antagonist CNQX close to the recording electrode. Moreover, the amplitude of local field responses and dPSPs recorded in striatal medium spiny neurons increase in parallel with increasing stimulating current intensity. Finally, the evoked striatal fields show several of the basic known properties of corticostriatal transmission, including paired pulse facilitation and topographical organization. As a case study, we characterized the effect of local GABAA receptor blockade on striatal field and multiunitary action potential responses to prelimbic cortex stimulation. Striatal activity was recorded through a 24 channel silicon probe at about 600 µm from a microdialysis probe. Intrastriatal administration of the GABAA receptor antagonist bicuculline increased by 65±7% the duration of the evoked field responses. Moreover, the associated action potential responses were markedly enhanced during bicuculline infusion. Bicuculline enhancement took place at all the striatal sites that showed a response to cortical stimulation before drug infusion, but sites showing no field response before bicuculline remained unresponsive during GABAA receptor blockade. Thus, the data demonstrate that fast inhibitory connections exert a marked temporal regulation of input-output transformations within spatially delimited striatal networks responding to a cortical input. Overall, we propose that evoked striatal fields may be a useful tool to study corticostriatal synaptic connectivity in relation to behavior. PMID:22163020
Time Perception and Evoked Potentials
1988-07-01
ARI Research Note 88-69 0 MitnS.Ktohe U.0 ... Ann-r (. Time Perception and Evoked Potentials Paul FraisseDT ( Lfniversit6 Rene Descartes E LECTE...JOHNSON 00L, [N Technical Dicctojr Cmad Research accomplished under contract for the Department of the Army C. Universite Rene Descartes , Paris )r...ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Labrato-ire de Psychologie Experimental AREA• WORK UNIT NUMBERS Universite Rene Descartes
Hoeger Bement, Marie K; Weyer, Andy D; Yoon, Tejin; Hunter, Sandra K
2014-02-01
The purposes of this study were to assess corticomotor excitability in people with fibromyalgia during a noxious stimulus before and after fatiguing exercise and examine associations with pain perception. Fifteen women with fibromyalgia completed three sessions: one familiarization and two experimental. The experimental sessions were randomized and involved measurement of pain perception and motor evoked potentials before and after (1) quiet rest and (2) isometric contraction of the elbow flexor muscles. Motor evoked potential amplitude of brachioradialis muscle was measured following transcranial magnetic stimulation delivered before, during, and after a noxious mechanical stimulus. After quiet rest, there was no change in pain perception. After the submaximal contraction, there was considerable variability in the pain response. Based on the changes in the experimental pain, subjects were divided into three groups (increase, decrease, and no change in pain). There was an interaction between pain response and the pain-induced change in motor evoked potentials. Those individuals who had an increase in motor evoked potentials during the pain test had an increase in pain after exercise. Thus, women with fibromyalgia were classified based on their pain response to exercise, and this response was associated with the change in corticomotor excitability during the application of a noxious stimulus.
Effects of maternal inhalation of gasoline evaporative ...
In order to assess potential health effects resulting from exposure to ethanol-gasoline blend vapors, we previously conducted neurophysiological assessment of sensory function following gestational exposure to 100% ethanol vapor (Herr et al., Toxicologist, 2012). For comparison purposes, the current study investigated the same measures after gestational exposure to 100% gasoline evaporative condensates (GVC). Pregnant Long-Evans rats were exposed to 0, 3K, 6K, or 9K ppm GVC vapors for 6.5 h/day over GD9 – GD20. Sensory evaluations of male offspring began around PND106. Peripheral nerve function (compound action potentials, NCV), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual evoked responses were assessed. Visual function assessment included pattern elicited visual evoked potentials (VEP), VEP contrast sensitivity, and electroretinograms (ERG) recorded from dark-adapted (scotopic) and light-adapted (photopic) flashes, and UV and green flicker. Although some minor statistical differences were indicated for auditory and somatosensory responses, these changes were not consistently dose- or stimulus intensity-related. Scotopic ERGs had a statistically significant dose-related decrease in the b-wave implicit time. All other parameters of ERGs and VEPs were unaffected by treatment. All physiological responses showed changes related to stimulus intensity, and provided an estimate of detectable le
Xu, Yin-Hua; Zhang, Guang-Jian; Zhao, Jing-Tong; Chu, Chun-Ping; Li, Yu-Zi; Qiu, De-Lai
2017-11-01
The functions of N-methyl-d-aspartate receptors (NMDARs) in cerebellar cortex have been widely studied under in vitro condition, but their roles during the sensory stimulation-evoked responses in the cerebellar cortical molecular layer in living animals are currently unclear. We here investigated the roles of NMDARs during the air-puff stimulation on ipsilateral whisker pad-evoked field potential responses in cerebellar cortical molecular layer in urethane-anesthetized mice by electrophysiological recording and pharmacological methods. Our results showed that cerebellar surface administration of NMDA induced a dose-dependent decrease in amplitude of the facial stimulation-evoked inhibitory responses (P1) in the molecular layer, accompanied with decreases in decay time, half-width and area under curve (AUC) of P1. The IC 50 of NMDA induced inhibition in amplitude of P1 was 46.5μM. In addition, application of NMDA induced significant increases in the decay time, half-width and AUC values of the facial stimulation-evoked excitatory responses (N1) in the molecular layer. Application of an NMDAR blocker, D-APV (250μM) abolished the facial stimulation-evoked P1 in the molecular layer. These results suggested that NMDARs play a critical role during the sensory information processing in cerebellar cortical molecular layer in vivo in mice. Copyright © 2017 Elsevier B.V. All rights reserved.
Do Event-Related Evoked Potentials Reflect Apathy Tendency and Motivation?
Takayoshi, Hiroyuki; Onoda, Keiichi; Yamaguchi, Shuhei
2018-01-01
Apathy is a mental state of diminished motivation. Although the reward system as the foundation of the motivation in the human brain has been studied extensively with neuroimaging techniques, the electrophysiological correlates of motivation and apathy have not been fully explored. Thus, in 14 healthy volunteers, we examined whether event-related evoked potentials (ERP) obtained during a simple number discrimination task with/without rewards reflected apathy tendency and a reward-dependent tendency, which were assessed separately using the apathy scale and the temperament and character inventory (TCI). Participants were asked to judge the size of a number, and received feedback based on their performance in each trial. The P3 amplitudes related to the feedback stimuli increased only in the reward condition. Furthermore, the P2 amplitudes related to the negative feedback stimuli in the reward condition had a positive correlation with the reward-dependent tendency in TCI, whereas the P3 amplitudes related to the positive feedback stimuli had a negative correlation with the apathy score. Our result suggests that the P2 and P3 ERPs to reward-related feedback stimuli are modulated in a distinctive manner by the motivational reward dependence and apathy tendency, and thus the current paradigm may be useful for investigating the brain activity associated with motivation. PMID:29445331
Component analysis of somatosensory evoked potentials for identifying spinal cord injury location.
Wang, Yazhou; Li, Guangsheng; Luk, Keith D K; Hu, Yong
2017-05-24
This study aims to determine whether the time-frequency components (TFCs) of somatosensory evoked potentials (SEPs) can be used to identify the specific location of a compressive spinal cord injury using a classification technique. Waveforms of SEPs after compressive injuries at various locations (C4, C5 and C6) in rat spinal cords were decomposed into a series of TFCs using a high-resolution time-frequency analysis method. A classification method based on support vector machine (SVM) was applied to the distributions of these TFCs among different pathological locations. The difference among injury locations manifests itself in different categories of SEP TFCs. High-energy TFCs of normal-state SEPs have significantly higher power and frequency than those of injury-state SEPs. The location of C5 is characterized by a unique distribution pattern of middle-energy TFCs. The difference between C4 and C6 is evidenced by the distribution pattern of low-energy TFCs. The proposed classification method based on SEP TFCs offers a discrimination accuracy of 80.2%. In this study, meaningful information contained in various SEP components was investigated and used to propose a new application of SEPs for identification of the location of pathological changes in the cervical spinal cord.
L-/M-cone opponency in visual evoked potentials of human cortex.
Barboni, Mirella Telles Salgueiro; Nagy, Balázs Vince; Martins, Cristiane Maria Gomes; Bonci, Daniela Maria Oliveria; Hauzman, Einat; Aher, Avinash; Tsai, Tina I; Kremers, Jan; Ventura, Dora Fix
2017-08-01
L and M cones send their signals to the cortex using two chromatic (parvocellular and blue-yellow koniocellular) and one luminance (magnocellular) pathways. These pathways contain ON and OFF subpathways that respond to excitation increments and decrements respectively. Here, we report on visually evoked potentials (VEP) recordings that reflect L- and M-cone driven increment (LI and MI) and decrement (LD and MD) activity. VEP recordings were performed on 12 trichromats and four dichromats (two protanopes and two deuteranopes). We found that the responses to LI strongly resembled those to MD, and that LD and MI responses were very similar. Moreover, the lack of a photoreceptor type (L or M) in the dichromats led to a dominance of the ON pathway of the remaining photoreceptor type. These results provide electrophysiological evidence that antagonistic L/M signal processing, already present in the retina and the lateral geniculate nucleus (LGN), is also observed at the visual cortex. These data are in agreement with results from human psychophysics where MI stimuli lead to a perceived brightness decrease whereas LI stimuli resulted in perceived brightness increases. VEP recording is a noninvasive tool that can be easily and painlessly applied. We propose that the technique may provide information in the diagnosis of color vision deficiencies.
Struthers, Amanda M.; Wilkinson, Jamie L.; Dwoskin, Linda P.; Crooks, Peter A.; Bevins, Rick A.
2009-01-01
Current smokers express the desire to quit. However, the majority find it difficult to remain abstinent. As such, research efforts continually seek to develop more effective treatment. One such area of research involves the interoceptive stimulus effects of nicotine as either a discriminative stimulus in an operant drug discrimination task, or more recently as a conditional stimulus (CS) in a discriminated goal-tracking task. The present work investigated the potential role nicotinic acetylcholine receptors in the CS effects of nicotine (0.4 mg/kg) using antagonists with differential selectivity for β2*, α7*, α6β2*, and α3β4* receptors. Methyllycaconitine (MLA) had no effect on nicotine-evoked conditioned responding. Mecamylamine and dihydro-β-erythroidine (DHβE) dose dependently blocked responding evoked by the nicotine CS. In a time-course assessment of mecamylamine and DHβE, each blocked conditioned responding when given 5 min before testing and still blocked conditioned responding when administered 200 min before testing. Two novel bis-picolinium analogs (N, N’-(3, 3′-(dodecan-1,12-diyl)-bis-picolinium dibromide [bPiDDB], and N, N’-(decan-1,10-diyl)-bis-picolinium diiodide [bPiDI]) did not block nicotine-evoked conditioned responding. Finally, pretreatment with low dose combinations of mecamylamine, dextromethorphan, and/or bupropion were used to target α3β4* receptors. No combination blocked conditioned responding evoked by the training dose of nicotine. However, a combination of mecamylamine and dextromethorphan partially blocked nicotine-evoked conditioned responding to a lower dose of nicotine (0.1 mg/kg). These results indicate that β2* and potentially α3β4* nicotinic acetylcholine receptors play a role in the CS effects of nicotine and are potential targets for the development of nicotine cessation aids. PMID:19778551
Krieger, Patrik
2009-11-01
In spines on basal dendrites of layer 2/3 pyramidal neurons in somatosensory barrel cortex, calcium transients evoked by back-propagating action potentials (bAPs) were investigated (i) along the length of the basal dendrite, (ii) with postnatal development and (iii) with sensory deprivation during postnatal development. Layer 2/3 pyramidal neurons were investigated at three different ages. At all ages [postnatal day (P)8, P14, P21] the bAP-evoked calcium transient amplitude increased with distance from the soma with a peak at around 50 microm, followed by a gradual decline in amplitude. The effect of sensory deprivation on the bAP-evoked calcium was investigated using two different protocols. When all whiskers on one side of the rat snout were trimmed daily from P8 to P20-24 there was no difference in the bAP-evoked calcium transient between cells in the contralateral hemisphere, lacking sensory input from the whisker, and cells in the ipsilateral barrel cortex, with intact whisker activation. When, however, only the D-row whiskers on one side were trimmed the distribution of bAP-evoked calcium transients in spines was shifted towards larger amplitudes in cells located in the deprived D-column. In conclusion, (i) the bAP-evoked calcium transient gradient along the dendrite length is established at P8, (ii) the calcium transient increases in amplitude with age and (iii) this increase is enhanced in layer 2/3 pyramidal neurons located in a sensory-deprived barrel column that is bordered by non-deprived barrel columns.
Sabeva, Nadezhda; Cho, Richard W.; Vasin, Alexander; Gonzalez, Agustin; Littleton, J. Troy
2017-01-01
Synaptic vesicles fuse at morphological specializations in the presynaptic terminal termed active zones (AZs). Vesicle fusion can occur spontaneously or in response to an action potential. Following fusion, vesicles are retrieved and recycled within nerve terminals. It is still unclear whether vesicles that fuse spontaneously or following evoked release share similar recycling mechanisms. Genetic deletion of the SNARE-binding protein complexin dramatically increases spontaneous fusion, with the protein serving as the synaptic vesicle fusion clamp at Drosophila synapses. We examined synaptic vesicle recycling pathways at complexin null neuromuscular junctions, where spontaneous release is dramatically enhanced. We combined loading of the lipophilic dye FM1–43 with photoconversion, electron microscopy, and electrophysiology to monitor evoked and spontaneous recycling vesicle pools. We found that the total number of recycling vesicles was equal to those retrieved through spontaneous and evoked pools, suggesting that retrieval following fusion is partially segregated for spontaneous and evoked release. In addition, the kinetics of FM1–43 destaining and synaptic depression measured in the presence of the vesicle-refilling blocker bafilomycin indicated that spontaneous and evoked recycling pools partially intermix during the release process. Finally, FM1–43 photoconversion combined with electron microscopy analysis indicated that spontaneous recycling preferentially involves synaptic vesicles in the vicinity of AZs, whereas vesicles recycled following evoked release involve a larger intraterminal pool. Together, these results suggest that spontaneous and evoked vesicles use separable recycling pathways and then partially intermix during subsequent rounds of fusion. SIGNIFICANCE STATEMENT Neurotransmitter release involves fusion of synaptic vesicles with the plasma membrane in response to an action potential, or spontaneously in the absence of stimulation. Upon fusion, vesicles are retrieved and recycled, and it is unclear whether recycling pathways for evoked and spontaneous vesicles are segregated after fusion. We addressed this question by taking advantage of preparations lacking the synaptic protein complexin, which have elevated spontaneous release that enables reliable tracking of the spontaneous recycling pool. Our results suggest that spontaneous and evoked recycling pathways are segregated during the retrieval process but can partially intermix during stimulation. PMID:28077717
Sensorimotor System Measurement Techniques
Riemann, Bryan L.; Myers, Joseph B.; Lephart, Scott M.
2002-01-01
Objective: To provide an overview of currently available sensorimotor assessment techniques. Data Sources: We drew information from an extensive review of the scientific literature conducted in the areas of proprioception, neuromuscular control, and motor control measurement. Literature searches were conducted using MEDLINE for the years 1965 to 1999 with the key words proprioception, somatosensory evoked potentials, nerve conduction testing, electromyography, muscle dynamometry, isometric, isokinetic, kinetic, kinematic, posture, equilibrium, balance, stiffness, neuromuscular, sensorimotor, and measurement. Additional sources were collected using the reference lists of identified articles. Data Synthesis: Sensorimotor measurement techniques are discussed with reference to the underlying physiologic mechanisms, influential factors and locations of the variable within the system, clinical research questions, limitations of the measurement technique, and directions for future research. Conclusions/Recommendations: The complex interactions and relationships among the individual components of the sensorimotor system make measuring and analyzing specific characteristics and functions difficult. Additionally, the specific assessment techniques used to measure a variable can influence attained results. Optimizing the application of sensorimotor research to clinical settings can, therefore, be best accomplished through the use of common nomenclature to describe underlying physiologic mechanisms and specific measurement techniques. PMID:16558672
Kothari, R; Singh, R; Singh, S; Bokariya, P
2012-06-01
Visual evoked response testing has been one of the most exciting clinical tools to be developed from neurophysiologic research in recent years and has provided us with an objective method of identifying abnormalities of the afferent visual pathways. Investigation were carried out to see whether the head circumference influence the pattern reversal visual evoked potential (PRVEP) parameters. The study comprised of pattern reversal visual evoked potential (PRVEP) recordings in 400 eyes of 200 normal subjects. Two hundred fourty eight eyes were males and 152 eyes were from 76 female subjects recruited from the Central Indian population in the age range of 40-79 years. Visual evoked potential (VEP) recordings were performed in accordance to the standardized methodology of International Federation of Clinical Neurophysiology (IFCN) Committee Recommendations and International Society for Clinical Electrophysiology of Vision (ISCEV) Guidelines and montages were kept as per 10-20 International System of EEG Electrode placements. The stimulus configuration in this study consisted of the transient pattern reversal method in which a black and white checker board was generated (full field) and displayed on a VEP Monitor by an electronic pattern regenerator inbuilt in an Evoked Potential Recorder (RMS EMG EP MARK II). VEP latencies, duration and amplitude were measured in all subjects and the data were analyzed. The correlation of all the electrophysiological parameters with head circumference was evaluated by Pearson's correlation co-efficient (r) and its statistical significance was evaluated. The prediction equations for all the VEP parameters with respect to head circumference were derived. We found a positive correlation of P 100 latency and N 155 latency with mean head circumference, while a highly significant negative correlation were noted of P 100 amplitude with head circumference. N 70 latency was significantly correlated with head circumference. P 100 duration showed in negative correlation with head circumference. These findings suggest that VEP latencies, duration and amplitude are influenced by the head circumference of the individual in a sample of healthy subjects and head circumference can be a useful predictor of VEP peak latencies, amplitude and duration.
Akin, Faith Wurm; Murnane, Owen D; Proffitt, Tina M
2003-11-01
Vestibular evoked myogenic potentials (VEMP) are short latency electromyograms (EMG) evoked by high-level acoustic stimuli and recorded from surface electrodes over the tonically contracted sternocleidomastoid (SCM) muscle and are presumed to originate in the saccule. The present experiments examined the effects of click and tone-burst level and stimulus frequency on the latency, amplitude, and threshold of the VEMP in subjects with normal hearing sensitivity and no history of vestibular disease. VEMPs were recorded in all subjects using 100 dB nHL click stimuli. Most subjects had VEMPs present at 500, 750, and 1000 Hz, and few subjects had VEMPs present at 2000 Hz. The response amplitude of the VEMP increased with click and tone-burst level, whereas VEMP latency was not influenced by the stimulus level. The largest tone-burst-evoked VEMPs and lowest thresholds were obtained at 500 and 750 Hz. VEMP latency was independent of stimulus frequency when tone-burst duration was held constant.
Evoked potential application to study of echolocation in cetaceans
NASA Astrophysics Data System (ADS)
Supin, Alexander Ya.; Nactigall, Paul E.; Pawloski, Jeffrey; Au, Whitlow W. L.
2002-05-01
The evoked-potential (EP) method is effective in studies of hearing capabilities of cetaceans. However, until now EP studies in cetaceans were performed only in conditions of passive hearing by recording EP to external stimuli. Can this method be applied to study active echolocation in odontocetes? To answer this question, auditory brainstem evoked responses (ABR) were recorded in a false killer whale while the animal echolocated a target within an experiment in which the animal reported the target present or absent. The ABR collection was triggered by echolocation clicks. In these conditions, the recorded ABR pattern contained a duplicate set of waves. A comparison of ABR wave delays recorded during echolocation with those recorded during regular external stimulation has shown that the first set of waves is a response to the emitted click whereas the second one is a response to the echo. Both responses, to the emitted click and to the echo, were of comparable amplitude in spite of the intensity difference of these two sounds of more than 40 dB near the animal's head. This finding indicates some mechanisms releasing responses to echoes from masking by loud emitted clicks. The evoked-potential method may be productive to investigate these mechanisms.
Lew, Henry L; Lee, Eun Ha; Miyoshi, Yasushi; Chang, Douglas G; Date, Elaine S; Jerger, James F
2004-03-01
Because of the violent nature of traumatic brain injury, traumatic brain injury patients are susceptible to various types of trauma involving the auditory system. We report a case of a 55-yr-old man who presented with communication problems after traumatic brain injury. Initial results from behavioral audiometry and Weber/Rinne tests were not reliable because of poor cooperation. He was transferred to our service for inpatient rehabilitation, where review of the initial head computed tomographic scan showed only left temporal bone fracture. Brainstem auditory-evoked potential was then performed to evaluate his hearing function. The results showed bilateral absence of auditory-evoked responses, which strongly suggested bilateral deafness. This finding led to a follow-up computed tomographic scan, with focus on bilateral temporal bones. A subtle transverse fracture of the right temporal bone was then detected, in addition to the left temporal bone fracture previously identified. Like children with hearing impairment, traumatic brain injury patients may not be able to verbalize their auditory deficits in a timely manner. If hearing loss is suspected in a patient who is unable to participate in traditional behavioral audiometric testing, brainstem auditory-evoked potential may be an option for evaluating hearing dysfunction.
Early-Stage Visual Processing and Cortical Amplification Deficits in Schizophrenia
Butler, Pamela D.; Zemon, Vance; Schechter, Isaac; Saperstein, Alice M.; Hoptman, Matthew J.; Lim, Kelvin O.; Revheim, Nadine; Silipo, Gail; Javitt, Daniel C.
2005-01-01
Background Patients with schizophrenia show deficits in early-stage visual processing, potentially reflecting dysfunction of the magnocellular visual pathway. The magnocellular system operates normally in a nonlinear amplification mode mediated by glutamatergic (N-methyl-d-aspartate) receptors. Investigating magnocellular dysfunction in schizophrenia therefore permits evaluation of underlying etiologic hypotheses. Objectives To evaluate magnocellular dysfunction in schizophrenia, relative to known neurochemical and neuroanatomical substrates, and to examine relationships between electrophysiological and behavioral measures of visual pathway dysfunction and relationships with higher cognitive deficits. Design, Setting, and Participants Between-group study at an inpatient state psychiatric hospital and out-patient county psychiatric facilities. Thirty-three patients met DSM-IV criteria for schizophrenia or schizoaffective disorder, and 21 nonpsychiatric volunteers of similar ages composed the control group. Main Outcome Measures (1) Magnocellular and parvocellular evoked potentials, analyzed using nonlinear (Michaelis-Menten) and linear contrast gain approaches; (2) behavioral contrast sensitivity measures; (3) white matter integrity; (4) visual and nonvisual neuropsychological measures, and (5) clinical symptom and community functioning measures. Results Patients generated evoked potentials that were significantly reduced in response to magnocellular-biased, but not parvocellular-biased, stimuli (P=.001). Michaelis-Menten analyses demonstrated reduced contrast gain of the magnocellular system (P=.001). Patients showed decreased contrast sensitivity to magnocellular-biased stimuli (P<.001). Evoked potential deficits were significantly related to decreased white matter integrity in the optic radiations (P<.03). Evoked potential deficits predicted impaired contrast sensitivity (P=.002), which was in turn related to deficits in complex visual processing (P≤.04). Both evoked potential (P≤.04) and contrast sensitivity (P=.01) measures significantly predicted community functioning. Conclusions These findings confirm the existence of early-stage visual processing dysfunction in schizophrenia and provide the first evidence that such deficits are due to decreased nonlinear signal amplification, consistent with glutamatergic theories. Neuroimaging studies support the hypothesis of dysfunction within low-level visual pathways involving thalamocortical radiations. Deficits in early-stage visual processing significantly predict higher cognitive deficits. PMID:15867102
Richards, C D; Russell, W J; Smaje, J C
1975-01-01
1. The actions of ether and methoxyflurane on the evoked potentials of in vitro preparations of the guinea-pig olfactory cortex were studied. Following stimulation of the lateral olfactory tract (l.o.t.) evoked potentials could be recorded from the cortical surface; these potentials consisted of an initial wave (the compound action potential of the l.o.t.) followed by a negative field potential which was associated with the synchronous excitation of many superficial excitatory synapses (population e.p.s.p.). Superimposed on the population e.p.s.p. was a number of positive peaks. These positive peaks reflect the synchronous discharge of many neurones and so have been called population spikes. 2. When ether or methoxyflurane was added to the gas stream that superfused the surface of the preparations, the population e.p.s.p.s. and population spikes were depressed at lower concentrations than those required to depress the compound action potential of the afferent fibres. 3. The evoked activity of individual cells in the cortex was depressed by ether and methoxyflurane. However, five of the twelve cells tested in ether showed an increase in their evoked activity at concentrations below 4-5%, but at higher concentrations these cells also became depressed. 4. Both ether and methoxyflurane depressed the sensitivity of cortical neurones to iontophoretically applied L-glutamate and may similarly depress the sensitivity of the post-synaptic membrane to the released transmitter substance. 5. Neither anaesthetic appeared to increase the threshold depolarization required for nerve impulse generation. Thus, the decrease of the discharge of the post-synaptic cells was primarily caused by a depression of chemical transmission. 6. Ether caused some cells in the cortex to alter their normal pattern of synaptically evoked discharge and both anaesthetics induced similar changes during excitation by glutamate. PMID:168356
Patel, Tirth R; Shahin, Antoine J; Bhat, Jyoti; Welling, D Bradley; Moberly, Aaron C
2016-10-01
We describe a novel use of cortical auditory evoked potentials in the preoperative workup to determine ear candidacy for cochlear implantation. A 71-year-old male was evaluated who had a long-deafened right ear, had never worn a hearing aid in that ear, and relied heavily on use of a left-sided hearing aid. Electroencephalographic testing was performed using free field auditory stimulation of each ear independently with pure tones at 1000 and 2000 Hz at approximately 10 dB above pure-tone thresholds for each frequency and for each ear. Mature cortical potentials were identified through auditory stimulation of the long-deafened ear. The patient underwent successful implantation of that ear. He experienced progressively improving aided pure-tone thresholds and binaural speech recognition benefit (AzBio score of 74%). Findings suggest that use of cortical auditory evoked potentials may serve a preoperative role in ear selection prior to cochlear implantation. © The Author(s) 2016.
Stability of Evoked Potentials during Auditory Attention
1988-12-01
attention ef- (S2), to which the subject made a behavioral response and fects upon NI components of the evoked potential received food reinforcement for a... food dipper mounted in the floor, and a driver, with a sound tube attached, mounted in the top of the box. Histology Four weeks after surgery, the cats...response paradigm dose of intravenous sodium pentobarbital. Electrolytic lesions were using food reinforcement. They were gradually deprived of food
Lober, Robert M.; Doan, Adam T.; Matsumoto, Craig I.; Kenning, Tyler J.; Evans, James J.
2016-01-01
Intraoperative neurophysiological monitoring during endoscopic, endonasal approaches to the skull base is both feasible and safe. Numerous reports have recently emerged from the literature evaluating the efficacy of different neuromonitoring tests during endonasal procedures, making them relatively well-studied. The authors report on a comprehensive, multimodality approach to monitoring the functional integrity of at risk nervous system structures, including the cerebral cortex, brainstem, cranial nerves, corticospinal tract, corticobulbar tract, and the thalamocortical somatosensory system during endonasal surgery of the skull base. The modalities employed include electroencephalography, somatosensory evoked potentials, free-running and electrically triggered electromyography, transcranial electric motor evoked potentials, and auditory evoked potentials. Methodological considerations as well as benefits and limitations are discussed. The authors argue that, while individual modalities have their limitations, multimodality neuromonitoring provides a real-time, comprehensive assessment of nervous system function and allows for safer, more aggressive management of skull base tumors via the endonasal route. PMID:27293965
Lin, Chi; Ma, Liangxiao; Zhu, Shipeng; Hu, Nijuan; Wang, Pei; Zhang, Peng; Qi, Dandan; Hao, Jie; Li, Jing; Xin, Siyuan; Zhu, Jiang
2015-10-01
To review and discuss the Chinese and English literature on the use of pain-related evoked potentials (PREP) and short-latency somatosensory EP (SLSEP) in acupuncture research. China National Knowledge Infrastructure Database and MEDLINE were searched for the following key words: acupuncture and PREP or SLSEP. Thirty-seven articles were included in the review. Researchers usually use PREPs to study the analgesic effect of acupuncture, observe influential factors, or for mechanistic exploration. In the SLSEP studies, researchers focused on response characteristics of acupuncture, acupoint specificity, and influential factors of the treatment. There were some problems with the study design and conclusions. Researchers could use PREP and SLSEP to objectively validate the effects of acupuncture and explore its mechanisms using nerve electrophysiology. Further studies can benefit from observing more acupoints' effects using PREPs or SLSEPs and investigating the placebo effect of acupuncture.
Multifocal visual evoked potentials for early glaucoma detection.
Weizer, Jennifer S; Musch, David C; Niziol, Leslie M; Khan, Naheed W
2012-07-01
To compare multifocal visual evoked potentials (mfVEP) with other detection methods in early open-angle glaucoma. Ten patients with suspected glaucoma and 5 with early open-angle glaucoma underwent mfVEP, standard automated perimetry (SAP), short-wave automated perimetry, frequency-doubling technology perimetry, and nerve fiber layer optical coherence tomography. Nineteen healthy control subjects underwent mfVEP and SAP for comparison. Comparisons between groups involving continuous variables were made using independent t tests; for categorical variables, Fisher's exact test was used. Monocular mfVEP cluster defects were associated with an increased SAP pattern standard deviation (P = .0195). Visual fields that showed interocular mfVEP cluster defects were more likely to also show superior quadrant nerve fiber layer thinning by OCT (P = .0152). Multifocal visual evoked potential cluster defects are associated with a functional and an anatomic measure that both relate to glaucomatous optic neuropathy. Copyright 2012, SLACK Incorporated.
Beyaert, C A; Hill, J M; Kaufman, M P
1997-06-06
Microinjection of a substance P analogue (1 mM; 7 or 10 nl) into laminae I and II of the L7 dorsal horn of decerebrate cats significantly potentiated (P < 0.05) the increase in arterial pressure evoked by microinjection of L-glutamate (109 mM; 7 or 10 nl) into these spinal sites. Microinjection of the substance P analogues (i.e., GR73638 and [Sar9,Met(O2)11]-substance P) which were selective NK-1 receptor agonists, had no impact on the cardioacceleration evoked by microinjection of L-glutamate (P > 0.05). In addition, microinjection of these analogues had no effect on the modest and non-significant increase in phrenic nerve discharge evoked by L-glutamate. We conclude that stimulation of NK-1 receptors in the superficial laminae of the dorsal horn potentiates the pressor responses to microinjection of L-glutamate.
Fatigue reduction during aggregated and distributed sequential stimulation.
Bergquist, Austin J; Babbar, Vishvek; Ali, Saima; Popovic, Milos R; Masani, Kei
2017-08-01
Transcutaneous neuromuscular electrical stimulation (NMES) can generate muscle contractions for rehabilitation and exercise. However, NMES-evoked contractions are limited by fatigue when they are delivered "conventionally" (CONV) using a single active electrode. Researchers have developed "sequential" (SEQ) stimulation, involving rotation of pulses between multiple "aggregated" (AGGR-SEQ) or "distributed" (DISTR-SEQ) active electrodes, to reduce fatigue (torque-decline) by reducing motor unit discharge rates. The primary objective was to compare fatigue-related outcomes, "potentiation," "variability," and "efficiency" between CONV, AGGR-SEQ, and DISTR-SEQ stimulation of knee extensors in healthy participants. Torque and current were recorded during testing with fatiguing trains using each NMES type under isometric and isokinetic (180°/s) conditions. Compared with CONV stimulation, SEQ techniques reduced fatigue-related outcomes, increased potentiation, did not affect variability, and reduced efficiency. SEQ techniques hold promise for reducing fatigue during NMES-based rehabilitation and exercise; however, optimization is required to improve efficiency. Muscle Nerve 56: 271-281, 2017. © 2016 Wiley Periodicals, Inc.
Cholesterol-dependent balance between evoked and spontaneous synaptic vesicle recycling
Wasser, Catherine R; Ertunc, Mert; Liu, Xinran; Kavalali, Ege T
2007-01-01
Cholesterol is a prominent component of nerve terminals. To examine cholesterol's role in central neurotransmission, we treated hippocampal cultures with methyl-β-cyclodextrin, which reversibly binds cholesterol, or mevastatin, an inhibitor of cholesterol biosynthesis, to deplete cholesterol. We also used hippocampal cultures from Niemann-Pick type C1-deficient mice defective in intracellular cholesterol trafficking. These conditions revealed an augmentation in spontaneous neurotransmission detected electrically and an increase in spontaneous vesicle endocytosis judged by horseradish peroxidase uptake after cholesterol depletion by methyl-β-cyclodextrin. In contrast, responses evoked by action potentials and hypertonicity were severely impaired after the same treatments. The increase in spontaneous vesicle recycling and the decrease in evoked neurotransmission were reversible upon cholesterol addition. Cholesterol removal did not impact on the low level of evoked neurotransmission seen in the absence of synaptic vesicle SNARE protein synaptobrevin-2 whereas the increase in spontaneous fusion remained. These results suggest that synaptic cholesterol balances evoked and spontaneous neurotransmission by hindering spontaneous synaptic vesicle turnover and sustaining evoked exo-endocytosis. PMID:17170046
Sjöström, A; Abrahamsson, M
1994-04-01
In a previous experimental study on anaesthetized cat it was shown that a short latency (35-40 ms) cortical potential changed polarity due to the presence or absence of a pattern in the flash stimulus. The results suggested one pathway of neuronal activation in the cortex to a pattern that was within the level of resolution and another to patterns that were not. It was implied that a similar difference in impulse transmission to pattern and non-pattern stimuli may be recorded in humans. The present paper describes recordings of the short-latency visual evoked response to varying light flash checkerboard pattern stimuli of high intensity in visually normal and amblyopic children and adults. When stimulating the normal eye a visual evoked response potential with a peak latency between 35 to 40 ms showed a polarity change to patterned compared to non-patterned stimulation. The visual evoked response resolution limit could be correlated to a visual acuity of 0.5 and below. In amblyopic eyes the shift in polarity was recorded at the acuity limit level. The latency of the pattern depending potential was increased in patients with amblyopia compared to normal, but not directly related to amblyopic degree. It is concluded that the short latency, visual evoked response that mainly represents the retino-geniculo-cortical activation may be used to estimate visual resolution below 0.5 in acuity level.(ABSTRACT TRUNCATED AT 250 WORDS)
Venturelli, Massimo; Layec, Gwenael; Trinity, Joel; Hart, Corey R; Broxterman, Ryan M; Richardson, Russell S
2017-01-01
Passive leg movement (PLM)-induced hyperemia is a novel approach to assess vascular function, with a potential clinical role. However, in some instances, the varying chronotropic response induced by PLM has been proposed to be a potentially confounding factor. Therefore, we simplified and modified the PLM model to require just a single PLM (sPLM), an approach that may evoke a peripheral hemodynamic response, allowing a vascular function assessment, but at the same time minimizing central responses. To both characterize and assess the utility of sPLM, in 12 healthy subjects, we measured heart rate (HR), stroke volume, cardiac output (CO), mean arterial pressure (MAP), leg blood flow (LBF), and calculated leg vascular conductance (LVC) during both standard PLM, consisting of passive knee flexion and extension performed at 1 Hz for 60 s, and sPLM, consisting of only a single passive knee flexion and extension over 1 s. During PLM, MAP transiently decreased (5 ± 1 mmHg), whereas both HR and CO increased from baseline (6.0 ± 1.1 beats/min, and 0.8 ± 0.01 l/min, respectively). Following sPLM, MAP fell similarly (5 ± 2 mmHg; P = 0.8), but neither HR nor CO responses were identifiable. The peak LBF and LVC response was similar for PLM (993 ± 189 ml/min; 11.9 ± 1.5 ml·min -1 ·mmHg -1 , respectively) and sPLM (878 ± 119 ml/min; 10.9 ± 1.6 ml·min -1 ·mmHg -1 , respectively). Thus sPLM represents a variant of the PLM approach to assess vascular function that is more easily performed and evokes a peripheral stimulus that induces a significant hyperemia, but does not generate a potentially confounding, chronotropic response, which may make sPLM more useful clinically. Using the single passive leg movement (PLM) technique, a variant of the vascular function assessment PLM, we have identified a novel peripheral vascular assessment method that is more easily performed than PLM, which, by not evoking potentially confounding central hemodynamic responses, may be more useful clinically.
Albertson, T E; Walby, W F; Stark, L G; Joy, R M
1996-05-24
An in vitro paired-pulse orthodromic stimulation technique was used to examine the effects of propofol on excitatory afferent terminals, CA1 pyramidal cells and recurrent collateral evoked inhibition in the rat hippocampal slice. Hippocampal slices 400 microns thick were perfused with oxygenated artificial cerebrospinal fluid, and electrodes were placed in the CA1 region to record extracellular field population spike (PS) or excitatory postsynaptic potential (EPSP) responses to stimulation of Schaffer collateral/commissural fibers. Gamma-aminobutyric acid (GABA)-mediated recurrent inhibition was measured using a paired-pulse technique. The major effect of propofol (7-28 microM) was a dose and time dependent increase in the intensity and duration of GABA-mediated inhibition. This propofol effect could be rapidly and completely reversed by exposure to known GABAA antagonists, including picrotoxin, bicuculline and pentylenetetrazol. It was also reversed by the chloride channel antagonist, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). It was not antagonized by central (flumazenil) or peripheral (PK11195) benzodiazepine antagonists. Reversal of endogenous inhibition was also noted with the antagonists picrotoxin and pentylenetetrazol. Input/output curves constructed using stimulus propofol caused only a small enhancement of EPSPs at higher stimulus intensities but had no effect on PS amplitudes. These studies are consistent with propofol having a GABAA-chloride channel mechanism causing its effect on recurrent collateral evoked inhibition in the rat hippocampal slice.
Interhemispheric Asymmetries in Visual Evoked Potential Amplitude
1980-06-12
Layne, 1965) and of patients with Korsakoff’s syndrome (Malerstein and Callaway, 1969) . In the schizophrenics, the high variability is related to poor...communication. Malerstein, A. J., Callaway, E. Two-tone average evoked response in Korsakoff patients. J. Psychiatr. Res. 6: 253-260, 1969. Marsh, G
NASA Astrophysics Data System (ADS)
Wilson, John J.; Palaniappan, Ramaswamy
2011-04-01
The steady state visual evoked protocol has recently become a popular paradigm in brain-computer interface (BCI) applications. Typically (regardless of function) these applications offer the user a binary selection of targets that perform correspondingly discrete actions. Such discrete control systems are appropriate for applications that are inherently isolated in nature, such as selecting numbers from a keypad to be dialled or letters from an alphabet to be spelled. However motivation exists for users to employ proportional control methods in intrinsically analogue tasks such as the movement of a mouse pointer. This paper introduces an online BCI in which control of a mouse pointer is directly proportional to a user's intent. Performance is measured over a series of pointer movement tasks and compared to the traditional discrete output approach. Analogue control allowed subjects to move the pointer faster to the cued target location compared to discrete output but suffers more undesired movements overall. Best performance is achieved when combining the threshold to movement of traditional discrete techniques with the range of movement offered by proportional control.
Conduction studies of the normal sural nerve.
Horowitz, S H; Krarup, C
1992-03-01
The sural nerve was studied orthodromically using the near-nerve technique in 273 normal subjects (155 females, 118 males) aged 5 to 90 years. The sensory action potential (SAP), evoked at the dorsum of the foot, was recorded at the lateral malleolus and midcalf, and at the midcalf when evoked at the lateral malleolus. In addition, the SAP was recorded at intermediate distal sites and at proximal sites at the popliteal fossa, the gluteal fold, and the S-1 root. The amplitude of the SAP recorded at midcalf was 32% higher in females than in males. This was probably due to volume-conduction properties, as differences between genders were less noticeable at more distal recording sites. The amplitude decreased steeply and exponentially with age. Conduction distance had a strong influence on the amplitude of the SAP, which decreased with increasing distance following a power relationship with an exponent of 1.4 to 1.7. This decrease was due to temporal dispersion with decreased summation and increased phase cancellation. The conduction velocity was slightly lower along the very distal course of the nerve than along more proximal segments.
Ferster, D; Lindström, S
1985-01-01
Evoked potentials were recorded in the visual cortex of the cat after electrical stimulation of the lateral geniculate nucleus (l.g.n.). The primary response, mediated by geniculo-cortical fibres, was depressed at stimulation frequencies above 7 Hz and replaced by a late potential, the incremental response, which gradually increased in amplitude with successive stimuli. The incremental response was a negative-positive potential in the depth of the cortex with the negative component having maximal amplitude in layer 4. The response reversed polarity in layer 1 to become a positive-negative potential at the surface. The latency of the negative component of the incremental response was about 3.5-4 ms in layer 4, compared to about 1.5 and 2.5 ms for the mono- and disynaptic components of the primary response. The incremental response could only be evoked from the l.g.n. and the optic radiation, not from the optic tract, superior colliculus or other surrounding structures. Within the l.g.n., the effect was only evoked from stimulation sites in approximate retinotopic register with the recording site in the cortex. Low threshold points were found in the A laminae, completely overlapping with the low threshold points for the primary response. Thresholds increased steeply when the stimulation electrode was lowered into the C laminae. The incremental response could still be evoked ten days after the destruction of all cells in the l.g.n. complex by kainic acid. It is concluded that the described incremental response is identical to the augmenting response of Dempsey & Morison (1943) and is mediated by intracortical axon collaterals of antidromically activated cortico-geniculate neurones. Images Plate 1 PMID:4057097
Martin, Melanie; Reyes, Samuel D; Hiltner, Timothy D; Givogri, M Irene; Tyszka, J Michael; Fisher, Robin; Campagnoni, Anthony T; Fraser, Scott E; Jacobs, Russell E; Readhead, Carol
2007-02-01
Our objective was to follow the course of a dysmyelinating disease followed by partial recovery in transgenic mice using non-invasive high-resolution (117 x 117 x 70 microm) magnetic resonance (microMRI) and evoked potential of the visual system (VEP) techniques. We used JOE (for J37 golli overexpressing) transgenic mice engineered to overexpress golli J37, a product of the Golli-mbp gene complex, specifically in oligodendrocytes. Individual JOE transgenics and their unaffected siblings were followed from 21 until 75-days-old using non-invasive in vivo VEPs and 3D T2-weighted microMRI on an 11.7 T scanner, performing what we believe is the first longitudinal study of its kind. The microMRI data indicated clear, global hypomyelination during the period of peak myelination (21-42 days), which was partially corrected at later ages (>60 days) in the JOE mice compared to controls. These microMRI data correlated well with [Campagnoni AT (1995) "Molecular biology of myelination". In: Ransom B, Kettenmann H (eds) Neuroglia--a Treatise. Oxford University Press, London, pp 555-570] myelin staining, [Campagnoni AT, Macklin WB (1988) Cellular and molecular aspects of myelin protein gene-expression. Mol Neurobiol 2:41-89] a transient intention tremor during the peak period of myelination, which abated at later ages, and [Lees MB, Brostoff SW (1984) Proteins in myelin. In: Morell (ed) Myelin. Plenum Press, New York and London, pp 197-224] VEPs which all indicated a significant delay of CNS myelin development and persistent hypomyelination in JOE mice. Overall these non-invasive techniques are capable of spatially resolving the increase in myelination in the normally developing and developmentally delayed mouse brain.
Behbehani, Raed; Ahmed, Samar; Al-Hashel, Jasem; Rousseff, Rossen T; Alroughani, Raed
2017-02-01
Visual evoked potentials and spectral-domain optical coherence tomography are common ancillary studies that assess the visual pathways from a functional and structural aspect, respectively. To compare prevalence of abnormalities of Visual evoked potentials (VEP) and spectral-domain optical coherence tomography (SDOCT) in patients with relapsing remitting multiple sclerosis (RRMS). A cross-sectional study of 100 eyes with disease duration of less than 5 years since the diagnosis. Correlation between retinal nerve fiber layer and ganglion-cell/inner plexiform layer with pattern-reversal visual evoked potentials amplitude and latency and contrast sensitivity was performed. The prevalence of abnormalities in pattern-reversal visual VEP was 56% while that of SOCT was 48% in all eyes. There was significant negative correlations between the average RNFL (r=-0.34, p=0.001) and GCIPL (r=-0.39, p<0.001) with VEP latency. In eyes with prior optic neuritis, a significant negative correlation was seen between average RNFL (r=-0.33, p=0.037) and GCIPL (r=-0.40, p=0.010) with VEP latency. We have found higher prevalence of VEP abnormalities than SCOCT in early relapsing-remitting multiple sclerosis. This suggests that VEP has a higher sensitivity for detecting lesions of the visual pathway in patients with early RRMS. Copyright © 2016 Elsevier B.V. All rights reserved.
Lopez Valdes, Alejandro; Mc Laughlin, Myles; Viani, Laura; Walshe, Peter; Smith, Jaclyn; Zeng, Fan-Gang; Reilly, Richard B.
2014-01-01
Cochlear implants (CIs) can partially restore functional hearing in deaf individuals. However, multiple factors affect CI listener's speech perception, resulting in large performance differences. Non-speech based tests, such as spectral ripple discrimination, measure acoustic processing capabilities that are highly correlated with speech perception. Currently spectral ripple discrimination is measured using standard psychoacoustic methods, which require attentive listening and active response that can be difficult or even impossible in special patient populations. Here, a completely objective cortical evoked potential based method is developed and validated to assess spectral ripple discrimination in CI listeners. In 19 CI listeners, using an oddball paradigm, cortical evoked potential responses to standard and inverted spectrally rippled stimuli were measured. In the same subjects, psychoacoustic spectral ripple discrimination thresholds were also measured. A neural discrimination threshold was determined by systematically increasing the number of ripples per octave and determining the point at which there was no longer a significant difference between the evoked potential response to the standard and inverted stimuli. A correlation was found between the neural and the psychoacoustic discrimination thresholds (R2 = 0.60, p<0.01). This method can objectively assess CI spectral resolution performance, providing a potential tool for the evaluation and follow-up of CI listeners who have difficulty performing psychoacoustic tests, such as pediatric or new users. PMID:24599314
Otsuka, M; Yoshioka, K; Yanagisawa, M; Suzuki, H; Zhao, F Y; Guo, J Z; Hosoki, R; Kurihara, T
1995-07-01
Tachykinin NK1 receptor antagonists were used to explore the physiological functions of substance P (SP) and neurokinin A (NKA). Pharmacological profiles of three NK1 receptor antagonists, GR71251, GR82334, and RP 67580, were examined in the isolated spinal cord preparation of the neonatal rat. These tachykinin receptor antagonists exhibited considerable specificities and antagonized the actions of both SP and NKA to induce the depolarization of ventral roots. Electrical stimulation of the saphenous nerve with C-fiber strength evoked a depolarization lasting about 30 s of the ipsilateral L3 ventral root. This response, which is referred to as saphenous-nerve-evoked slow ventral root potential (VRP), was depressed by these NK1 receptor antagonists. In contrast, the saphenous-nerve-evoked slow VRP was potentiated by application of a mixture of peptidase inhibitors, including thiorphan, actinonin, and captopril in the presence of naloxone, but not after further addition of GR71251. Likewise, in the isolated coeliac ganglion of the guinea pig, electrical stimulation of the mesenteric nerves evoked in some ganglionic cells slow excitatory postsynaptic potentials (EPSPs), which were depressed by GR71251 and potentiated by peptidase inhibitors. These results further support the notion that SP and NKA serve as neurotransmitters producing slow EPSPs in the neonatal rat spinal cord and guinea pig prevertebral ganglia.
Lopez Valdes, Alejandro; Mc Laughlin, Myles; Viani, Laura; Walshe, Peter; Smith, Jaclyn; Zeng, Fan-Gang; Reilly, Richard B
2014-01-01
Cochlear implants (CIs) can partially restore functional hearing in deaf individuals. However, multiple factors affect CI listener's speech perception, resulting in large performance differences. Non-speech based tests, such as spectral ripple discrimination, measure acoustic processing capabilities that are highly correlated with speech perception. Currently spectral ripple discrimination is measured using standard psychoacoustic methods, which require attentive listening and active response that can be difficult or even impossible in special patient populations. Here, a completely objective cortical evoked potential based method is developed and validated to assess spectral ripple discrimination in CI listeners. In 19 CI listeners, using an oddball paradigm, cortical evoked potential responses to standard and inverted spectrally rippled stimuli were measured. In the same subjects, psychoacoustic spectral ripple discrimination thresholds were also measured. A neural discrimination threshold was determined by systematically increasing the number of ripples per octave and determining the point at which there was no longer a significant difference between the evoked potential response to the standard and inverted stimuli. A correlation was found between the neural and the psychoacoustic discrimination thresholds (R2=0.60, p<0.01). This method can objectively assess CI spectral resolution performance, providing a potential tool for the evaluation and follow-up of CI listeners who have difficulty performing psychoacoustic tests, such as pediatric or new users.
Komaromy, Andras M; Brooks, Dennis E; Kallberg, Maria E; Dawson, William W; Sapp, Harold L; Sherwood, Mark B; Lambrou, George N; Percicot, Christine L
2003-05-01
The purpose of our study was to determine changes in amplitudes and implicit times of retinal and cortical pattern evoked potentials with increasing body weight in young, growing rhesus macaques (Macaca mulatta). Retinal and cortical pattern evoked potentials were recorded from 29 male rhesus macaques between 3 and 7 years of age. Thirteen animals were reexamined after 11 months. Computed tomography (CT) was performed on two animals to measure the distance between the location of the skin electrode and the surface of the striate cortex. Spearman correlation coefficients were calculated to describe the relationship between body weights and either root mean square (rms) amplitudes or implicit times. For 13 animals rms amplitudes and implicit times were compared with the Wilcoxon matched pairs signed rank test for recordings taken 11 months apart. Highly significant correlations between increases in body weights and decreases in cortical rms amplitudes were noted in 29 monkeys (p < 0.0005). No significant changes were found in the cortical rms amplitudes in thirteen monkeys over 11 months. Computed tomography showed a large increase of soft tissue thickness over the skull and striate cortex with increased body weight. The decreased amplitude in cortical evoked potentials with weight gain associated with aging can be explained by the increased distance between skin electrode and striate cortex due to soft tissue thickening (passive attenuation).
ERIC Educational Resources Information Center
Salamy, A.
1981-01-01
Determines the frequency distribution of Brainstem Auditory Evoked Potential variables (BAEP) for premature babies at different stages of development--normal newborns, infants, young children, and adults. The author concludes that the assumption of normality underlying most "standard" statistical analyses can be met for many BAEP…
The Middle Latency Response (MLR) and Steady State Evoked Potential (SSEP) in Neonates.
1985-05-01
diagnostic audiologic information will enhance habilitation efforts in prescribing hearing aids and designing appropriate language intervention strategies...auditory evoked brain stem response. A study of patients with sensory hearing loss. SCANDINAVIAN AUDIOLOGY 8: 67-70, 1979. Page 165 "- FILMED 10-85 DTIC * 4 N . . -. N
Functional ligand-gated purinergic receptors (P2X) in rat vestibular ganglion neurons.
Ito, Ken; Chihara, Yasuhiro; Iwasaki, Shinichi; Komuta, Yukari; Sugasawa, Masashi; Sahara, Yoshinori
2010-08-01
The expression of purinergic receptors (P2X) on rat vestibular ganglion neurons (VGNs) was examined using whole-cell patch-clamp recordings. An application of adenosine 5'-triphosphate (ATP; 100microM) evoked inward currents in VGNs at a holding potential of -60mV. The decay time constant of the ATP-evoked currents was 2-4s, which is in between the values for rapidly desensitizing subgroups (P2X1 and P2X3) and slowly desensitizing subgroups (P2X2, P2X4, etc.), suggesting the heterogeneous expression of P2X receptors. A dose-response experiment showed an EC(50) of 11.0microM and a Hill's coefficient of 0.82. Suramin (100microM) reversibly inhibited the ATP-evoked inward currents. Alpha, beta-methylene ATP (100microM), a P2X-specific agonist, also evoked inward currents but less extensively than ATP. An application of adenosine 5'-dihosphate (ADP; 100microM) evoked similar, but much smaller, currents. The current-voltage relationship of the ATP-evoked conductance showed pronounced inward rectification with a reversal potential more positive than 0mV, suggesting non-selective cation conductance. However, the channel was not permeable to a large cation (N-methyl-d-glucamine) and acidification (pH 6.3) had little effect on the ATP-evoked conductance. RT-PCR confirmed the expression of five subtypes (P2X2-P2X6) in VGNs. The physiological role of P2X receptors includes the modulation of excitability at the synapses between hair cells and dendrites and/or trophic support (or also neuromodulation) from supporting cells surrounding the VGNs. Copyright 2010 Elsevier B.V. All rights reserved.
Identification of visual evoked response parameters sensitive to pilot mental state
NASA Technical Reports Server (NTRS)
Zacharias, G. L.
1988-01-01
Systems analysis techniques were developed and demonstrated for modeling the electroencephalographic (EEG) steady state visual evoked response (ssVER), for use in EEG data compression and as an indicator of mental workload. The study focused on steady state frequency domain stimulation and response analysis, implemented with a sum-of-sines (SOS) stimulus generator and an off-line describing function response analyzer. Three major tasks were conducted: (1) VER related systems identification material was reviewed; (2) Software for experiment control and data analysis was developed and implemented; and (3) ssVER identification and modeling was demonstrated, via a mental loading experiment. It was found that a systems approach to ssVER functional modeling can serve as the basis for eventual development of a mental workload indicator. The review showed how transient visual evoked response (tVER) and ssVER research are related at the functional level, the software development showed how systems techniques can be used for ssVER characterization, and the pilot experiment showed how a simple model can be used to capture the basic dynamic response of the ssVER, under varying loads.
Bansod, BabanKumar; Kumar, Tejinder; Thakur, Ritula; Rana, Shakshi; Singh, Inderbir
2017-08-15
Heavy metal ions are non-biodegradable and contaminate most of the natural resources occurring in the environment including water. Some of the heavy metals including Lead (Pb), Mercury (Hg), Arsenic (As), Chromium (Cr) and Cadmium (Cd) are considered to be highly toxic and hazardous to human health even at trace levels. This leads to the requirement of fast, accurate and reliable techniques for the detection of heavy metal ions. This review presents various electrochemical detection techniques for heavy metal ions those are user friendly, low cost, provides on-site and real time monitoring as compared to other spectroscopic and optical techniques. The categorization of different electrochemical techniques is done on the basis of different types of detection signals generated due to presence of heavy metal ions in the solution matrix like current, potential, conductivity, electrochemical impedance, and electrochemiluminescence. Also, the recent trends in electrochemical detection of heavy metal ions with various types of sensing platforms including metals, metal films, metal oxides, nanomaterials, carbon nano tubes, polymers, microspheres and biomaterials have been evoked. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Soede, M.
1977-01-01
Experiments were carried out on a bicycle simulator with alcohol administration and a binary choice task in separate sessions, intending to reduce the subject's mental capacity. Before and after such sessions a visual evoked response measurement was done. The subject's performance was analyzed with describing function techniques. The results indicate that the alcohol affects the course-following task as well as the balancing task. The binary choice task is more specifically influencing the course-following task. The dual task shows a more pronounced effect on the recovery of the evoked response. The alcohol is delaying the recovery curve of the evoked response. A tentative explanation can be given which agrees with the performance data.
Jalaei, Bahram; Azmi, Mohd Hafiz Afifi Mohd; Zakaria, Mohd Normani
2018-05-17
Binaurally evoked auditory evoked potentials have good diagnostic values when testing subjects with central auditory deficits. The literature on speech-evoked auditory brainstem response evoked by binaural stimulation is in fact limited. Gender disparities in speech-evoked auditory brainstem response results have been consistently noted but the magnitude of gender difference has not been reported. The present study aimed to compare the magnitude of gender difference in speech-evoked auditory brainstem response results between monaural and binaural stimulations. A total of 34 healthy Asian adults aged 19-30 years participated in this comparative study. Eighteen of them were females (mean age=23.6±2.3 years) and the remaining sixteen were males (mean age=22.0±2.3 years). For each subject, speech-evoked auditory brainstem response was recorded with the synthesized syllable /da/ presented monaurally and binaurally. While latencies were not affected (p>0.05), the binaural stimulation produced statistically higher speech-evoked auditory brainstem response amplitudes than the monaural stimulation (p<0.05). As revealed by large effect sizes (d>0.80), substantive gender differences were noted in most of speech-evoked auditory brainstem response peaks for both stimulation modes. The magnitude of gender difference between the two stimulation modes revealed some distinct patterns. Based on these clinically significant results, gender-specific normative data are highly recommended when using speech-evoked auditory brainstem response for clinical and future applications. The preliminary normative data provided in the present study can serve as the reference for future studies on this test among Asian adults. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Shafi, Mouhsin M.; Whitfield-Gabrieli, Susan; Chu, Catherine J.; Pascual-Leone, Alvaro; Chang, Bernard S.
2017-01-01
Resting-state functional connectivity MRI (rs-fcMRI) is a technique that identifies connectivity between different brain regions based on correlations over time in the blood-oxygenation level dependent signal. rs-fcMRI has been applied extensively to identify abnormalities in brain connectivity in different neurologic and psychiatric diseases. However, the relationship among rs-fcMRI connectivity abnormalities, brain electrophysiology and disease state is unknown, in part because the causal significance of alterations in functional connectivity in disease pathophysiology has not been established. Transcranial Magnetic Stimulation (TMS) is a technique that uses electromagnetic induction to noninvasively produce focal changes in cortical activity. When combined with electroencephalography (EEG), TMS can be used to assess the brain's response to external perturbations. Here we provide a protocol for combining rs-fcMRI, TMS and EEG to assess the physiologic significance of alterations in functional connectivity in patients with neuropsychiatric disease. We provide representative results from a previously published study in which rs-fcMRI was used to identify regions with abnormal connectivity in patients with epilepsy due to a malformation of cortical development, periventricular nodular heterotopia (PNH). Stimulation in patients with epilepsy resulted in abnormal TMS-evoked EEG activity relative to stimulation of the same sites in matched healthy control patients, with an abnormal increase in the late component of the TMS-evoked potential, consistent with cortical hyperexcitability. This abnormality was specific to regions with abnormal resting-state functional connectivity. Electrical source analysis in a subject with previously recorded seizures demonstrated that the origin of the abnormal TMS-evoked activity co-localized with the seizure-onset zone, suggesting the presence of an epileptogenic circuit. These results demonstrate how rs-fcMRI, TMS and EEG can be utilized together to identify and understand the physiological significance of abnormal brain connectivity in human diseases. PMID:27911366
Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats.
Frost, Shawn B; Dunham, Caleb L; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K; Guggenmos, David J; Nudo, Randolph J
2015-11-01
The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9-T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury.
Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats
Dunham, Caleb L.; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K.; Guggenmos, David J.; Nudo, Randolph J.
2015-01-01
Abstract The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9–T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury. PMID:26406381
Evoked potential correlates of selective attention with multi-channel auditory inputs
NASA Technical Reports Server (NTRS)
Schwent, V. L.; Hillyard, S. A.
1975-01-01
Ten subjects were presented with random, rapid sequences of four auditory tones which were separated in pitch and apparent spatial position. The N1 component of the auditory vertex evoked potential (EP) measured relative to a baseline was observed to increase with attention. It was concluded that the N1 enhancement reflects a finely tuned selective attention to one stimulus channel among several concurrent, competing channels. This EP enhancement probably increases with increased information load on the subject.
2006-12-01
Biology of Marine Mammals, San Diego, California, 12 - 16 December. Finneran, J. J. and Houser, D. S. 2004. Objective measures of steady-state...Gervais’ beaked whale auditory evoked potential hearing measurements. 16th Biennial Conference on the Biology of Marine Mammals, San Diego, California...Biennial Conference on the Biology of Marine Mammals, San Diego, California, 12 - 16 December. 16 FTR N00014-04-1-0455 BIOMIMETICA Invited Lectures
Human lateral geniculate nucleus and visual cortex respond to screen flicker.
Krolak-Salmon, Pierre; Hénaff, Marie-Anne; Tallon-Baudry, Catherine; Yvert, Blaise; Guénot, Marc; Vighetto, Alain; Mauguière, François; Bertrand, Olivier
2003-01-01
The first electrophysiological study of the human lateral geniculate nucleus (LGN), optic radiation, striate, and extrastriate visual areas is presented in the context of presurgical evaluation of three epileptic patients (Patients 1, 2, and 3). Visual-evoked potentials to pattern reversal and face presentation were recorded with depth intracranial electrodes implanted stereotactically. For Patient 1, electrode anatomical registration, structural magnetic resonance imaging, and electrophysiological responses confirmed the location of two contacts in the geniculate body and one in the optic radiation. The first responses peaked approximately 40 milliseconds in the LGN in Patient 1 and 60 milliseconds in the V1/V2 complex in Patients 2 and 3. Moreover, steady state visual-evoked potentials evoked by the unperceived but commonly experienced video-screen flicker were recorded in the LGN, optic radiation, and V1/V2 visual areas. This study provides topographic and temporal propagation characteristics of steady state visual-evoked potentials along human visual pathways. We discuss the possible relationship between the oscillating signal recorded in subcortical and cortical areas and the electroencephalogram abnormalities observed in patients suffering from photosensitive epilepsy, particularly video-game epilepsy. The consequences of high temporal frequency visual stimuli delivered by ubiquitous video screens on epilepsy, headaches, and eyestrain must be considered.
Direct sensorimotor corticospinal modulation of dorsal horn neuronal C-fiber responses in the rat.
Rojas-Piloni, Gerardo; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rodríguez-Jiménez, Javier
2010-09-10
Clinically, the stimulation of motor cortical areas has been used to alleviate certain pain conditions. However, the attempts to understand the mechanisms of cortical nociceptive modulation at the spinal cord level have yielded controversial results. The objectives of the present work were to: 1) determine the effects of activating and suppressing the activity of sensorimotor cortical neurons on the nociceptive electrophysiological responses of the segmental C-fibers, and 2) evaluate the contribution of direct and indirect corticospinal projections in segmental nociceptive modulation. By means of a bipolar matrix of stimulation electrodes we mapped the stimulation of cortical areas that modulate C-fiber evoked field potentials in the dorsal horn. In addition, suppressing the cortical activity by means of cortical spreading depression, we observed that the C-fiber evoked field potentials in the dorsal horn are facilitated when cortical activity is suppressed specifically in sensorimotor cortex. Moreover, the C-fiber evoked field potentials were inhibited during spontaneous activation of cortical projecting neurons. Furthermore, after a lesion of the pyramidal tract contralateral to the spinal cord recording sites, the cortical action was suppressed. Our results show that corticospinal tract fibers arising from the sensorimotor cortex modulate directly the nociceptive C-fiber evoked responses of the dorsal horn. 2010. Published by Elsevier B.V.
Nagy, David; Marosi, Mate; Kis, Zsolt; Farkas, Tamas; Rakos, Gabriella; Vecsei, Laszlo; Teichberg, Vivian I; Toldi, Jozsef
2009-09-01
A traumatic brain injury or a focal brain lesion is followed by acute excitotoxicity caused by the presence of abnormally high glutamate (Glu) levels in the cerebrospinal and interstitial fluids. It has recently been demonstrated that this excess Glu in the brain can be eliminated into the blood following the intravenous administration of oxaloacetate (OxAc), which, by scavenging the blood Glu, induces an enhanced and neuroprotective brain-to-blood Glu efflux. In this study, we subjected rats to a photothrombotic lesion and treated them after the illumination with a single 30-min-long administration of OxAc (1.2 mg/100 g, i.v.). Following induction of the lesion, we measured the infarct size and the amplitudes of the somatosensory evoked potentials (SEPs) as recorded from the skull surface. The photothrombotic lesion resulted in appreciably decreased amplitudes of the evoked potentials, but OxAc administration significantly attenuated this reduction, and also the infarct size assessed histologically. We suggest that the neuroprotective effects of OxAc are due to its blood Glu-scavenging activity, which, by increasing the brain-to-blood Glu efflux, reduces the excess Glu responsible for the anatomical and functional correlates of the ischemia, as evaluated by electrophysiological evoked potential (EP) measurements.
Atcherson, Samuel R; Damji, Zohra; Upson, Steve
2011-11-01
We explored the feasibility of a subtraction technique described by Friesen and Picton to remove the cochlear implant (CI) artifact to long duration stimuli in the soundfield and using direct input all through the participant's preferred MAP. Friesen and Picton previously explored this technique by recording cortical potentials in four CI users with 1000 pulse per second (pps) stimuli, bypassing the speech processor. Cortical auditory evoked potentials (N1-P2) to 1000 Hz tones were recorded from a post-lingually deafened adult with three different stimulus presentation setups: soundfield to processor T-mic (SF), soundfield to lapel mic (SF-LM), and direct input (DI). Stimuli were presented at 65 dB SPL(A). The SF setup required stabilizing the head to minimize changes in magnitude for the CI artifact. The SF-LM and DI setups did not require head stabilization, but were evaluated as alternatives to the SF setup. Clear N1-P2 responses were obtained with comparable waveform morphologies, amplitudes, and latencies despite some differences in the magnitude of the CI artifact for the different stimulus presentation setups. The results of this study demonstrate that subtraction technique is feasible for recording N1-P2 responses in CI users, though further studies are needed for the three stimulation setups.
Video-signal synchronizes registration of visual evoked responses.
Vít, F; Kuba, M; Kremlácek, J; Kubová, Z; Horevaj, M
1996-01-01
Autodesk Animator software offers the suitable technique for visual stimulation in the registration of visual evoked responses (VERs). However, it is not possible to generate pulses that are synchronous with the animated sequences on any output port of the computer. These pulses are necessary for the synchronization of the computer that makes the registration of the VERs. The principle of the circuit is presented that is able to provide the synchronization of the analyzer with the stimulation computer using Autodesk Animator software.
Pontine hyperperfusion in sporadic hyperekplexia
Vetrugno, Roberto; Mascalchi, Mario; Vella, Alessandra; Nave, Riccardo Della; Guerrini, Laura; Vattimo, Angelo; del Giudice, Emanuele Miraglia; Plazzi, Giuseppe; D'Angelo, Roberto; Greco, Giovanni; Montagna, Pasquale
2007-01-01
Objective To explore with neuroimaging techniques the anatomical and functional correlates of sporadic hyperekplexia. Methods Two elderly women with sporadic hyperekplexia underwent neurophysiological assessment, MRI of the brain and proton magnetic resonance spectroscopy (1H‐MRS) of the brainstem and frontal lobes. Regional cerebral blood flow was investigated with single photon emission tomography (SPECT) during evoked startles and at rest. Results Both patients showed excessively large and non‐habituating startle responses. In both patients, MRI showed impingement of the brainstem by the vertebrobasilar artery, lack of frontal or brainstem abnormalities on 1H‐MRS and hyperperfusion in the dorsal pons and cingulate cortex, and superior frontal gyrus at SPECT during evoked startles. Conclusions In our patients with hyperekplexia, the vertebrobasilar arteries were found to impinge on the brainstem. Neurophysiological findings and neurofunctional imaging of evoked startles indicated a pontine origin of the movement disorder modulated by activation in cortical, especially frontal, areas. The neurofunctional correlates of evoked startles in human sporadic hyperekplexia are similar to those observed for the startle circuit in animals. PMID:17702784
Pontine hyperperfusion in sporadic hyperekplexia.
Vetrugno, Roberto; Mascalchi, Mario; Vella, Alessandra; Della Nave, Riccardo; Guerrini, Laura; Vattimo, Angelo; del Giudice, Emanuele Miraglia; Plazzi, Giuseppe; D'Angelo, Roberto; Greco, Giovanni; Montagna, Pasquale
2007-09-01
To explore with neuroimaging techniques the anatomical and functional correlates of sporadic hyperekplexia. Two elderly women with sporadic hyperekplexia underwent neurophysiological assessment, MRI of the brain and proton magnetic resonance spectroscopy (1H-MRS) of the brainstem and frontal lobes. Regional cerebral blood flow was investigated with single photon emission tomography (SPECT) during evoked startles and at rest. Both patients showed excessively large and non-habituating startle responses. In both patients, MRI showed impingement of the brainstem by the vertebrobasilar artery, lack of frontal or brainstem abnormalities on 1H-MRS and hyperperfusion in the dorsal pons and cingulate cortex, and superior frontal gyrus at SPECT during evoked startles. In our patients with hyperekplexia, the vertebrobasilar arteries were found to impinge on the brainstem. Neurophysiological findings and neurofunctional imaging of evoked startles indicated a pontine origin of the movement disorder modulated by activation in cortical, especially frontal, areas. The neurofunctional correlates of evoked startles in human sporadic hyperekplexia are similar to those observed for the startle circuit in animals.
Lindell, E; Svensjö, M E; Malm, L; Petersson, G
1995-05-01
Substance P (SP) evokes fluid secretion and plasma extravasation when applied to the nasal mucosa of rats. SP and another tachykinin, neurokinin A (NKA), are degraded in vitro by neutral endopeptidase (NEP) and angiotensin-1-converting enzyme (ACE). In this study, NKA or SP were applied locally to the nasal mucosa of rats. Subsequent fluid secretion was measured by a filter paper technique. Plasma exudation was derived as the recovery of intravenous (i.v.) administered 125I-albumin from the fluid-containing filter papers. In order to inhibit enzymatic degradation of the tachykinins by NEP and ACE, the rats were treated with i.v. administered phosphoramidon or captopril respectively or their combination. SP evoked fluid secretion that was augmented by phosphoramidon and further enhanced by adding captopril. NKA evoked nasal fluid secretion less effectively than SP and the effect was unaffected by peptidase inhibition. SP, but not NKA, evoked increased plasma exudation but only after pre-treatment with phosphoramidon.
ERIC Educational Resources Information Center
Wood, Frank; And Others
1991-01-01
Investigates the proposed left hemisphere dysfunction in dyslexia by reviewing four studies using regional cerebral blood flow (RCBF) and combined auditory evoked responses with positron emission tomography. Emphasizes methodological issues. Finds that dyslexics showed a positive correlation between Heschl's gyrus activation and phonemic…
Non-provocative diagnostics of photosensitivity using visual evoked potentials.
Vermeulen, Joost; Kalitzin, Stiliyan; Parra, Jaime; Dekker, Erwin; Vossepoel, Albert; da Silva, Fernando Lopes
2008-04-01
Photosensitive epilepsy (PSE) is the most common form of reflex epilepsy. Usually, to find out whether a patient is sensitive, he/she is stimulated visually with, e.g. a stroboscopic light stimulus at variable frequency and intensity until a photo paroxysmal response (PPR) occurs. The research described in this work aims to find whether photosensitivity can be detected without provoking a PPR. Twenty-two subjects, 15 with known photosensitivity, were stimulated with visual stimuli that did not provoke a PPR. Using an "evoked response representation", 18 features were analytically derived from EEG signals. Single- and multi-feature classification paradigms were applied to extract those features that separate best subjects with PSE from controls. Two variables in the "evoked response representation", a frequency term and a goodness of fit term to a particular template, appeared to be best suited to make a prediction about the photosensitivity of a subject. Evoked responses appear to carry information about potential PSE. This result can be useful for screening patients for photosensitivity and it may also help to assess in a quantitative way the effectiveness of medical therapy.
Ma, Teng; Li, Hui; Deng, Lili; Yang, Hao; Lv, Xulin; Li, Peiyang; Li, Fali; Zhang, Rui; Liu, Tiejun; Yao, Dezhong; Xu, Peng
2017-04-01
Movement control is an important application for EEG-BCI (EEG-based brain-computer interface) systems. A single-modality BCI cannot provide an efficient and natural control strategy, but a hybrid BCI system that combines two or more different tasks can effectively overcome the drawbacks encountered in single-modality BCI control. In the current paper, we developed a new hybrid BCI system by combining MI (motor imagery) and mVEP (motion-onset visual evoked potential), aiming to realize the more efficient 2D movement control of a cursor. The offline analysis demonstrates that the hybrid BCI system proposed in this paper could evoke the desired MI and mVEP signal features simultaneously, and both are very close to those evoked in the single-modality BCI task. Furthermore, the online 2D movement control experiment reveals that the proposed hybrid BCI system could provide more efficient and natural control commands. The proposed hybrid BCI system is compensative to realize efficient 2D movement control for a practical online system, especially for those situations in which P300 stimuli are not suitable to be applied.
Diagnostic imaging advances in murine models of colitis.
Brückner, Markus; Lenz, Philipp; Mücke, Marcus M; Gohar, Faekah; Willeke, Peter; Domagk, Dirk; Bettenworth, Dominik
2016-01-21
Inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis are chronic-remittent inflammatory disorders of the gastrointestinal tract still evoking challenging clinical diagnostic and therapeutic situations. Murine models of experimental colitis are a vital component of research into human IBD concerning questions of its complex pathogenesis or the evaluation of potential new drugs. To monitor the course of colitis, to the present day, classical parameters like histological tissue alterations or analysis of mucosal cytokine/chemokine expression often require euthanasia of animals. Recent advances mean revolutionary non-invasive imaging techniques for in vivo murine colitis diagnostics are increasingly available. These novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. For the first time, in vivo imaging techniques allow for longitudinal examinations and evaluation of intra-individual therapeutic response. This review discusses the latest developments in the different fields of ultrasound, molecularly targeted contrast agent ultrasound, fluorescence endoscopy, confocal laser endomicroscopy as well as tomographic imaging with magnetic resonance imaging, computed tomography and fluorescence-mediated tomography, discussing their individual limitations and potential future diagnostic applications in the management of human patients with IBD.
Molodavkin, G M; Borlikova, G G; Voronina, T A; Gudasheva, T A; Ostrovskaia, R U; Tushmalova, N A; Seredenin, S B
2002-01-01
The effect of new nootropic dipeptides--noopept (N-phenylacetyl-L-prolylglycine, GVS-111) and its metabolite (cyclo-L-prolylglycine)--and a standard nootrope piracetam on the transcallosal evoked potential (TEP) in rat brain was studied. In the dose range from 150 to 300 mg/kg, piracetam increased the TEP amplitude, which exhibited a maximum after 1.5-2 h and then gradually decreased. Both noopept and cyclo-L-prolylglycine also increased the TEP amplitude, which attained a plateau and retained this level over the entire observation time (above 3.5 h). All the nootropes studied increased both components of the evoked potential. Piracetam and cyclo-L-prolylglycine led to an approximately equal increase in both waves, while noopept induced a somewhat greater increase in the negative TEP wave amplitude. It is suggested that the positive effect of noopept and cyclo-L-prolylglycine upon the interhemispheric signal transfer (indicated by the improved transcallosal response) can be considered as a potential neurophysiological basis for a positive drug influence on the behavioral level.
Auditory effects of aircraft noise on people living near an airport.
Chen, T J; Chen, S S; Hsieh, P Y; Chiang, H C
1997-01-01
Two groups of randomly chosen individuals who lived in two communities located different distances from the airport were studied. We monitored audiometry and brainstem auditory-evoked potentials to evaluate cochlear and retrocochlear functions in the individuals studied. The results of audiometry measurements indicated that hearing ability was reduced significantly in individuals who lived near the airport and who were exposed frequently to aircraft noise. Values of pure-tone average, high pure-tone average, and threshold at 4 kHz were all higher in individuals who lived near the airport, compared with those who lived farther away. With respect to brainstem auditory-evoked potentials, latencies between the two groups were not consistently different; however, the abnormality rate of such potentials was significantly higher in volunteers who lived near the airport, compared with less-exposed counterparts. In addition, a positive correlation was found between brainstem auditory-evoked potential latency and behavioral hearing threshold of high-frequency tone in exposed volunteers. We not only confirmed that damage to the peripheral cochlear organs occurred in individuals exposed frequently to aircraft noise, but we demonstrated involvement of the central auditory pathway.
Mapping the vestibular evoked myogenic potential (VEMP).
Colebatch, James G
2012-01-01
Effects of different electrode placements and indifferent electrodes were investigated for the vestibular evoked myogenic potential (VEMP) recorded from the sternocleidomastoid muscle (SCM). In 5 normal volunteers, the motor point of the left SCM was identified and an electrode placed there. A grid of 7 additional electrodes was laid out, along and across the SCM, based upon the location of the motor point. One reference electrode was placed over the sternoclavicular joint and another over C7. There were clear morphological changes with differing recording sites and for the two reference electrodes, but the earliest and largest responses were recorded from the motor point. The C7 reference affected the level of rectified EMG and was associated with an initial negativity in some electrodes. The latencies of the p13 potentials increased with distance from the motor point but the n23 latencies did not. Thus the p13 potential behaved as a travelling wave whereas the n23 behaved as a standing wave. The C7 reference may be contaminated by other evoked myogenic activity. Ideally recordings should be made with an active electrode over the motor point.
Effects of musical training on the auditory cortex in children.
Trainor, Laurel J; Shahin, Antoine; Roberts, Larry E
2003-11-01
Several studies of the effects of musical experience on sound representations in the auditory cortex are reviewed. Auditory evoked potentials are compared in response to pure tones, violin tones, and piano tones in adult musicians versus nonmusicians as well as in 4- to 5-year-old children who have either had or not had extensive musical experience. In addition, the effects of auditory frequency discrimination training in adult nonmusicians on auditory evoked potentials are examined. It was found that the P2-evoked response is larger in both adult and child musicians than in nonmusicians and that auditory training enhances this component in nonmusician adults. The results suggest that the P2 is particularly neuroplastic and that the effects of musical experience can be seen early in development. They also suggest that although the effects of musical training on cortical representations may be greater if training begins in childhood, the adult brain is also open to change. These results are discussed with respect to potential benefits of early musical training as well as potential benefits of musical experience in aging.
Gaber, Wafaa; Ezzat, Yasser; El Fayoumy, Neveen M; Helmy, Hanan; Mohey, Abeer M
2014-01-01
The objectives of this study are to assess the risk of asymptomatic cranial neuropathy among patients with systemic lupus erythematosus (SLE) and find any association with disease activity and antiribosomal P antibodies. This study is a case-control study including 60 female patients and 30 healthy female controls. Disease activity was measured with the SLE disease activity index (SLEDAI). All patients were evaluated using evoked potentials, blink reflex, and levels of antiribosomal P antibodies. Patients with abnormal electrophysiological parameters had significantly higher levels of antiribosomal P antibodies (P = 0.034) and secondary antiphospholipid syndrome (P = 0.044). Antiribosomal P antibodies (odds ratio 5.4, 95 % confidence interval 1.002-1.03, P = 0.002) and presence of anti-DNA antibodies (odds ratio 1.01, 95 % confidence interval 1.2-24.8, P = 0.032) were independent risk factors for the presence of the abnormal electrophysiological parameters. Disease duration was positively correlated with wave 1 of the auditory brain reflex (P < 0.001) and a latency of the evoked blink reflex (component R1, P = 0.013). SLEDAI scores were positively correlated with latencies of the visually evoked potential (P100, P = 0.02), wave 1 of the auditory brain reflex (P < 0.001), and a latency of the evoked blink reflex (R2c, P = 0.005). Steroid dosage was negatively correlated with P100 latencies (P = 0.042) and components of the evoked blink reflex (R1, P = 0.042; R2i, P = 0.041; R2c, P < 0.001). Because abnormalities in the visually evoked potential and blink reflex were associated with antiribosomal P antibodies, they can be useful for detecting asymptomatic cranial neuropathy. Further studies on large number of patients should be done to determine any association.
Long latency auditory evoked potentials in children with cochlear implants: systematic review.
Silva, Liliane Aparecida Fagundes; Couto, Maria Inês Vieira; Matas, Carla Gentile; Carvalho, Ana Claudia Martinho de
2013-11-25
The aim of this study was to analyze the findings on Cortical Auditory Evoked Potentials in children with cochlear implant through a systematic literature review. After formulation of research question and search of studies in four data bases with the following descriptors: electrophysiology (eletrofisiologia), cochlear implantation (implante coclear), child (criança), neuronal plasticity (plasticidade neuronal) and audiology (audiologia), were selected articles (original and complete) published between 2002 and 2013 in Brazilian Portuguese or English. A total of 208 studies were found; however, only 13 contemplated the established criteria and were further analyzed; was made data extraction for analysis of methodology and content of the studies. The results described suggest rapid changes in P1 component of Cortical Auditory Evoked Potentials in children with cochlear implants. Although there are few studies on the theme, cochlear implant has been shown to produce effective changes in central auditory path ways especially in children implanted before 3 years and 6 months of age.
NASA Technical Reports Server (NTRS)
Tang, P. C.
1973-01-01
Evidence is presented to indicate that evoked potentials in the recurrent laryngeal, the cervical sympathetic, and the phrenic nerve, commonly reported as being elicited by vestibular nerve stimulation, may be due to stimulation of structures other than the vestibular nerve. Experiments carried out in decerebrated cats indicated that stimulation of the petrous bone and not that of the vestibular nerve is responsible for the genesis of evoked potentials in the recurrent laryngeal and the cervical sympathetic nerves. The phrenic response to electrical stimulation applied through bipolar straight electrodes appears to be the result of stimulation of the facial nerve in the facial canal by current spread along the petrous bone, since stimulation of the suspended facial nerve evoked potentials only in the phrenic nerve and not in the recurrent laryngeal nerve. These findings indicate that autonomic components of motion sickness represent the secondary reactions and not the primary responses to vestibular stimulation.
[Recommendations for the clinical use of motor evoked potentials in multiple sclerosis].
Fernández, V; Valls-Sole, J; Relova, J L; Raguer, N; Miralles, F; Dinca, L; Taramundi, S; Costa-Frossard, L; Ferrandiz, M; Ramió-Torrentà, Ll; Villoslada, P; Saiz, A; Calles, C; Antigüedad, A; Alvarez-Cermeño, J C; Prieto, J M; Izquierdo, G; Montalbán, X; Fernández, O
2013-09-01
To establish clinical guidelines for the clinical use and interpretation of motor evoked potentials (MEP) in diagnosing and monitoring patients with multiple sclerosis (MS). Recommendations for MEP use and interpretation will help us rationalise and optimise resources used in MS patient diagnosis and follow up. We completed an extensive literature review and pooled our own data to produce a consensus statement with recommendations for the clinical use of MEPs in the study of MS. MEPs, in addition to spinal and cranial magnetic resonance imaging (MRI), help us diagnose and assess MS patients whose disease initially presents as spinal cord syndrome and those with non-specific brain MRI findings, or a normal brain MRI and clinical signs of MS. Whenever possible, a multimodal evoked potential study should be performed on patients with suspected MS in order to demonstrate involvement of the motor pathway which supports a diagnosis of dissemination in space. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Stinson, L W; Murray, M J; Jones, K A; Assef, S J; Burke, M J; Behrens, T L; Lennon, R L
1994-02-01
A microcomputer-controlled closed-loop infusion system (MCCLIS) has been developed that provides stable intraoperative levels of partial neuromuscular blockade. Complete neuromuscular blockade interferes with intraoperative motor-evoked potential (MEP) monitoring used for patients undergoing surgical procedures that place them at risk for spinal cord ischemia. Nine patients were studied during which the MCCLIS maintained stable levels of partial neuromuscular blockade and allowed transcranial magnetic motor-evoked potential (TcM-MEP) monitoring during thoracoabdominal aortic aneurysmectomy. The use of TcM-MEP for monitoring intraoperative spinal cord function was balanced against surgical considerations for muscle relaxation with 80% to 90% neuromuscular blockade fulfilling each requirement. Intraoperative adjustment of partial neuromuscular blockade to facilitate TcM-MEP monitoring was also possible with the MCCLIS. The MCCLIS should allow for further investigation into the sensitivity, specificity, and predictability of TcM-MEP monitoring for any patient at risk for intraoperative spinal cord ischemia including those undergoing thoracoabdominal aortic aneurysmectomy.
Oscillatory frontal theta responses are increased upon bisensory stimulation.
Sakowitz, O W; Schürmann, M; Başar, E
2000-05-01
To investigate the functional correlation of oscillatory EEG components with the interaction of sensory modalities following simultaneous audio-visual stimulation. In an experimental study (15 subjects) we compared auditory evoked potentials (AEPs) and visual evoked potentials (VEPs) to bimodal evoked potentials (BEPs; simultaneous auditory and visual stimulation). BEPs were assumed to be brain responses to complex stimuli as a marker for intermodal associative functioning. Frequency domain analysis of these EPs showed marked theta-range components in response to bimodal stimulation. These theta components could not be explained by linear addition of the unimodal responses in the time domain. Considering topography the increased theta-response showed a remarkable frontality in proximity to multimodal association cortices. Referring to methodology we try to demonstrate that, even if various behavioral correlates of brain oscillations exist, common patterns can be extracted by means of a systems-theoretical approach. Serving as an example of functionally relevant brain oscillations, theta responses could be interpreted as an indicator of associative information processing.
Brain function monitoring during off-pump cardiac surgery: a case report
Zanatta, Paolo; Bosco, Enrico; Di Pasquale, Piero; Nivedita, Agarwal; Valfrè, Carlo; Sorbara, Carlo
2008-01-01
Background Early postoperative stroke is an adverse syndrome after coronary bypass surgery. This report focuses on overcoming of cerebral ischemia as a result of haemodynamic instability during heart enucleation in off-pump procedure. Case presentation A 67 year old male patient, Caucasian race, with a body mass index of 28, had a recent non-Q posterolateral myocardial infarction one month before and recurrent instable angina. His past history includes an uncontrolled hypertension, dyslipidemia, insulin dependent diabetes mellitus, epiaortic vessel stenosis. The patient was scheduled for an off-pump procedure and monitored with bilateral somatosensory evoked potentials, whose alteration signalled the decrement of the cardiac index during operation. The somatosensory evoked potentials appeared when the blood pressure was increased with a pharmacological treatment. Conclusion During the off-pump coronary bypass surgery, a lower cardiac index, predisposes patients, with multiple stroke risk factors, to a reduction of the cerebral blood flow. Intraoperative somatosensory evoked potentials monitoring provides informations about the functional status of somatosensory cortex to reverse effects of brain ischemia. PMID:18706094
Changes in visual-evoked potential habituation induced by hyperventilation in migraine.
Coppola, Gianluca; Currà, Antonio; Sava, Simona Liliana; Alibardi, Alessia; Parisi, Vincenzo; Pierelli, Francesco; Schoenen, Jean
2010-12-01
Hyperventilation is often associated with stress, an established trigger factor for migraine. Between attacks, migraine is associated with a deficit in habituation to visual-evoked potentials (VEP) that worsens just before the attack. Hyperventilation slows electroencephalographic (EEG) activity and decreases the functional response in the occipital cortex during visual stimulation. The neural mechanisms underlying deficient-evoked potential habituation in migraineurs remain unclear. To find out whether hyperventilation alters VEP habituation, we recorded VEPs before and after experimentally induced hyperventilation lasting 3 min in 18 healthy subjects and 18 migraine patients between attacks. We measured VEP P100 amplitudes in six sequential blocks of 100 sweeps and habituation as the change in amplitude over the six blocks. In healthy subjects, hyperventilation decreased VEP amplitude in block 1 and abolished the normal VEP habituation. In migraine patients, hyperventilation further decreased the already low block 1 amplitude and worsened the interictal habituation deficit. Hyperventilation worsens the habituation deficit in migraineurs possibly by increasing dysrhythmia in the brainstem-thalamo-cortical network.
Early prognostication markers in cardiac arrest patients treated with hypothermia.
Karapetkova, M; Koenig, M A; Jia, X
2016-03-01
Established prognostication markers, such as clinical findings, electroencephalography (EEG) and biochemical markers, used by clinicians to predict neurological outcome after cardiac arrest (CA) are altered under therapeutic hypothermia (TH) conditions and their validity remains uncertain. MEDLINE and Embase were searched for evidence on the current standards for neurological outcome prediction for out-of-hospital CA patients treated with TH and the validity of a wide range of prognostication markers. Relevant studies that suggested one or several established biomarkers and multimodal approaches for prognostication are included and reviewed. Whilst the prognostic accuracy of various tests after TH has been questioned, pupillary light reflexes and somatosensory evoked potentials are still strongly associated with negative outcome for early prognostication. Increasingly, EEG background activity has also been identified as a valid predictor for outcome after 72 h after CA and a preferred prognostic method in clinical settings. Neuroimaging techniques, such as magnetic resonance imaging and computed tomography, can identify functional and structural brain injury but are not readily available at the patient's bedside because of limited availability and high costs. A multimodal algorithm composed of neurological examination, EEG-based quantitative testing and somatosensory evoked potentials, in conjunction with newer magnetic resonance imaging sequences, if available, holds promise for accurate prognostication in CA patients treated with TH. In order to avoid premature withdrawal of care, prognostication should be performed more than 72 h after CA. © 2015 EAN.
Field evoked potentials in the globus pallidus of non-human primates.
Prescott, Ian A; Marino, Robert A; Levy, Ron
2017-07-01
Stimulation-induced field evoked potentials (fEPs) have been described in the basal ganglia output nuclei of patients with Parkinson's disease and dystonia. The aim of this study was to ascertain whether fEPs were inducible in the external (GPe) and internal (GPi) segments of the globus pallidus in normal non-human primates (NHPs). Microelectrode recording and stimulation was performed in the GPe and GPi of 2 healthy NHPs. Stimulus response curves of the fEP response to changing pulse width and amplitude examined strength-duration relationships and allowed for calculation of fEP chronaxie in the GPe and GPi. Traditional localization techniques were also used, including comparison of neuronal firing rates, optic tract activation, and internal capsule activation. Notable differences were seen in the fEPs found in GPe compared to the fEPs found in GPi. The GPe fEP had a smaller chronaxie time and larger positive deflection amplitude compared to GPi. In addition, an earlier negative deflection was identified in both nuclei and a late negative deflection was observed in the GPe in contrast to reported fEPs in patients with movement disorders. fEPs proved valuable as an ancillary method in localizing the GPe and GPi in NHPs and may be useful in the operating room during human GPi deep brain stimulation or pallidotomy procedures. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
The Clinical Utility of Vestibular-Evoked Myogenic Potentials in the Diagnosis of Ménière’s Disease
Maheu, Maxime; Alvarado-Umanzor, Jenny Marylin; Delcenserie, Audrey; Champoux, François
2017-01-01
Ménière’s disease (MD) is a condition that has been proposed over 150 years ago, which involves audiological and vestibular manifestations, such as aural fullness, tinnitus, vertigo, and fluctuating hearing thresholds. Over the past few years, many researchers have assessed different techniques to help diagnose this pathology. Vestibular-evoked myogenic potential (VEMP) is an electrophysiological method assessing the saccule (cVEMP) and the utricule (oVEMP). Its clinical utility in the diagnosis of multiple pathologies, such as superior canal dehiscence, has made this tool a common method used in otologic clinics. The main objective of the present review is to determine the current state of knowledge of the VEMP in the identification of MD, such as the type of stimuli, the frequency tuning, and the interaural asymmetry ratio of the cVEMP and the oVEMP. Results show that the type of stimulation, the frequency sensitivity shift and the interaural asymmetry ratio (IAR) could be useful tool to diagnose and describe the evolution of MD. It is, however, important to emphasize that further studies are needed to confirm the utility of VEMP in the identification of MD in its early stage, using either bone-conduction vibration or air-conduction stimulation, which is of clinical importance when it comes to early intervention. PMID:28861037
Punch, Simone; Van Dun, Bram; King, Alison; Carter, Lyndal; Pearce, Wendy
2016-01-01
This article presents the clinical protocol that is currently being used within Australian Hearing for infant hearing aid evaluation using cortical auditory evoked potentials (CAEPs). CAEP testing is performed in the free field at two stimulus levels (65 dB sound pressure level [SPL], followed by 55 or 75 dB SPL) using three brief frequency-distinct speech sounds /m/, /ɡ/, and /t/, within a standard audiological appointment of up to 90 minutes. CAEP results are used to check or guide modifications of hearing aid fittings or to confirm unaided hearing capability. A retrospective review of 83 client files evaluated whether clinical practice aligned with the clinical protocol. It showed that most children could be assessed as part of their initial fitting program when they were identified as a priority for CAEP testing. Aided CAEPs were most commonly assessed within 8 weeks of the fitting. A survey of 32 pediatric audiologists provided information about their perception of cortical testing at Australian Hearing. The results indicated that clinical CAEP testing influenced audiologists' approach to rehabilitation and was well received by parents and that they were satisfied with the technique. Three case studies were selected to illustrate how CAEP testing can be used in a clinical environment. Overall, CAEP testing has been effectively integrated into the infant fitting program. PMID:27587921
The effect of preterm birth on vestibular evoked myogenic potentials in children.
Eshaghi, Zahra; Jafari, Zahra; Shaibanizadeh, Abdolreza; Jalaie, Shohreh; Ghaseminejad, Azizeh
2014-01-01
Preterm birth is a significant global health problem with serious short- and long-term consequences. This study examined the long term effects of preterm birth on vestibular evoked myogenic potentials (VEMPs) among preschool-aged children. Thirty-one children with preterm and 20 children with term birth histories aged 5.5 to 6.5 years were studied. Each child underwent VEMPs testing using a 500 Hz tone-burst stimulus with a 95 dB nHL (normal hearing level) intensity level. The mean peak latencies of the p13 and n23 waves in the very preterm group were significantly longer than for the full-term group (p≤ 0.041). There was a significant difference between very and mildly preterm children in the latency of peak p13 (p= 0.003). No significant differences existed between groups for p13-n23 amplitude and the interaural amplitude difference ratio. The tested ear and gender did not affect the results of the test. Prolonged VEMPs in very preterm children may reflect neurodevelopmental impairment and incomplete maturity of the vestibulospinal tract (sacculocollic reflex pathway), especially myelination. VEMPs is a non-invasive technique for investigating the vestibular function in young children, and considered to be an appropriate tool for evaluating vestibular impairments at the low brainstem level. It can be used in follow-ups of the long-term effects of preterm birth on the vestibular system.
Auditory evoked potential could reflect emotional sensitivity and impulsivity
Kim, Ji Sun; Kim, Sungkean; Jung, Wookyoung; Im, Chang-Hwan; Lee, Seung-Hwan
2016-01-01
Emotional sensitivity and impulsivity could cause interpersonal conflicts and neuropsychiatric problems. Serotonin is correlated with behavioral inhibition and impulsivity. This study evaluated whether the loudness dependence of auditory evoked potential (LDAEP), a potential biological marker of central serotonergic activity, could reflect emotional sensitivity and impulsivity. A total of 157 healthy individuals were recruited, who performed LDAEP and Go/Nogo paradigms during electroencephalogram measurement. Barratt impulsivity scale (BIS), Conners’ Adult ADHD rating scale (CAARS), and affective lability scale (ALS) were evaluated. Comparison between low and high LDAEP groups was conducted for behavioural, psychological, and event-related potential (ERP) measures. The high LDAEP group showed significantly increased BIS, a subscale of the CAARS, ALS, and false alarm rate of Nogo stimuli compared to the low LDAEP group. LDAEP showed significant positive correlations with the depression scale, ALS scores, subscale of the CAARS and Nogo-P3 amplitude. In the source activity of Nogo-P3, the cuneus, lingual gyrus, and precentral gyrus activities were significantly increased in the high LDAEP group. Our study revealed that LDAEP could reflect emotional sensitivity and impulsivity. LDAEP, an auditory evoked potential could be a useful tool to evaluate emotional regulation. PMID:27910865
Ion diffusion may introduce spurious current sources in current-source density (CSD) analysis.
Halnes, Geir; Mäki-Marttunen, Tuomo; Pettersen, Klas H; Andreassen, Ole A; Einevoll, Gaute T
2017-07-01
Current-source density (CSD) analysis is a well-established method for analyzing recorded local field potentials (LFPs), that is, the low-frequency part of extracellular potentials. Standard CSD theory is based on the assumption that all extracellular currents are purely ohmic, and thus neglects the possible impact from ionic diffusion on recorded potentials. However, it has previously been shown that in physiological conditions with large ion-concentration gradients, diffusive currents can evoke slow shifts in extracellular potentials. Using computer simulations, we here show that diffusion-evoked potential shifts can introduce errors in standard CSD analysis, and can lead to prediction of spurious current sources. Further, we here show that the diffusion-evoked prediction errors can be removed by using an improved CSD estimator which accounts for concentration-dependent effects. NEW & NOTEWORTHY Standard CSD analysis does not account for ionic diffusion. Using biophysically realistic computer simulations, we show that unaccounted-for diffusive currents can lead to the prediction of spurious current sources. This finding may be of strong interest for in vivo electrophysiologists doing extracellular recordings in general, and CSD analysis in particular. Copyright © 2017 the American Physiological Society.
Projective Techniques in the Counseling Process.
ERIC Educational Resources Information Center
Clark, Arthur J.
1995-01-01
Projective techniques have evoked a minimal degree of interest on the part of counselors due to psychometric limitations, lack of training opportunities, and the obscure qualities of the instruments. The author proposes a method to stimulate the use of projectives as an integral part of the counseling process and provides justification for the…
The ventricular intracardiac unipolar paced-evoked potential in an isolated animal heart.
Economides, A P; Walton, C; Gergely, S
1988-02-01
The endocardial unipolar paced evoked response has excited a great deal of interest due to its possible use in the measurement of the metabolic state of the body and other pacer-related areas. Although rate-responsive pacing utilizing this signal has been clinically evaluated, little is known regarding the behavior of the components of this waveform under normal physiological conditions. We have developed an electronic circuit which allows the recording of the evoked response within a few milliseconds of a pacing stimulus of 5 V and 0.5 ms duration being applied using a single unipolar, smooth platinum electrode of 14 mm2 surface area. The paced evoked response was measured using a total of 20 isolated rabbit heart preparations. Five were run for 8 hours and the remaining fifteen were run for 5 hours. Our results indicate that the waveform components of the evoked response remain stable while the preparation is viable, but that two of the time-related measurements change with loss of viability. A significant lengthening of the stimulus-R interval was seen together with a dramatic shortening of the R-T period. The net result of these changes was an overall reduction of 17% in the complex duration. In addition, we found the R-T shortening to be a sensitive measure of myocardial integrity. We conclude that the combination of our interface charge elimination circuit and the isolated heart preparation has proved a useful system for the investigation of the paced evoked potential. Furthermore, the loss of myocardial viability has a complex action on this response.
A short latency vestibular evoked potential (VsEP) produced by bone-conducted acoustic stimulation
NASA Astrophysics Data System (ADS)
McAngus Todd, Neil P.; Rosengren, Sally M.; Colebatch, James G.
2003-12-01
In this paper data are presented from an experiment which provides evidence for the existence of a short latency, acoustically evoked potential of probable vestibular origin. The experiment was conducted in two phases using bone-conducted acoustic stimulation. In the first phase subjects were stimulated with 6-ms, 500-Hz tone bursts in order to obtain the threshold VT for vestibular evoked myogenic potentials (VEMP). It was confirmed that the difference between bone-conducted auditory and acoustic vestibular thresholds was slightly over 30 dB. The estimated threshold was then used as a reference value in the second part of the experiment to stimulate subjects over a range of intensities from -6 to +18 dB (re:VT). Averaged EEG recordings were made with eight Ag/AgCl electrodes placed on the scalp at Fpz, F3, F4, F7, F8, Cz, T3, and T4 according to the 10-20 system. Below VT auditory midlatency responses (MLRs) were observed. Above VT two additional potentials appeared: a positivity at about 10 ms (P10) which was maximal at Cz, and a negativity at about 15 ms (N15) which was maximal at Fpz. Extrapolation of the growth functions for the P10 and N15 indicated a threshold close to VT, consistent with a vestibular origin of these potentials. Given the low threshold of vestibular acoustic sensitivity it is possible that this mode may make a contribution to the detection of and affective responses to loud low frequency sounds. The evoked potentials may also have application as a noninvasive and nontraumatic test of vestibular projections to the cortex.
Olson, Marnie L; Kargacin, Margaret E; Ward, Christopher A; Kargacin, Gary J
2007-06-01
The effects of the phytoestrogens phloretin and phloridzin on Ca(2+) handling, cell shortening, the action potential, and Ca(2+) and K(+) currents in freshly isolated cardiac myocytes from rat ventricle were examined. Phloretin increased the amplitude and area and decreased the rate of decline of electrically evoked Ca(2+) transients in the myocytes. These effects were accompanied by an increase in the Ca(2+) load of the sarcoplasmic reticulum, as determined by the area of caffeine-evoked Ca(2+) transients. An increase in the extent of shortening of the myocytes in response to electrically evoked action potentials was also observed in the presence of phloretin. To further examine possible mechanisms contributing to the observed changes in Ca(2+) handling and contractility, the effects of phloretin on the cardiac action potential and plasma membrane Ca(2+) and K(+) currents were examined. Phloretin markedly increased the action potential duration in the myocytes, and it inhibited the Ca(2+)-independent transient outward K(+) current (I(to)). The inwardly rectifying K(+) current, the sustained outward delayed rectifier K(+) current, and L-type Ca(2+) currents were not significantly different in the presence and absence of phloretin, nor was there any evidence that the Na(+)/Ca(2+) exchanger was affected. The effects of phloretin on Ca(2+) handling in the myocytes are consistent with its effects on I(to). Phloridzin did not significantly alter the amplitude or area of electrically evoked Ca(2+) transients in the myocytes, nor did it have detectable effects on the sarcoplasmic reticulum Ca(2+) load, cell shortening, or the action potential.
Modafinil evokes striatal [(3)H]dopamine release and alters the subjective properties of stimulants.
Dopheide, Marsha M; Morgan, Russell E; Rodvelt, Kelli R; Schachtman, Todd R; Miller, Dennis K
2007-07-30
Modafinil is a mild psychostimulant used for the treatment of sleep and arousal-related disorders, and has been considered a pharmacotherapy for cocaine and amphetamine dependence; however, modafinil's mechanism of action is largely unclear. The present study investigated modafinil using drug discrimination and slice superfusion techniques. Rats were trained to discriminate cocaine (1.6 or 5 mg/kg) or amphetamine (0.3 mg/kg) from saline injection for food reinforcement. Modafinil (64-128 mg/kg) substituted partially for both cocaine doses and amphetamine. Pretreatment with a lower modafinil dose (32 mg/kg) augmented the discriminative stimulus properties of cocaine (1.6 mg/kg dose group) and amphetamine. In neurochemical experiments, modafinil (100-300 microM) evoked [(3)H]overflow from rat striatal slices preloaded with [(3)H]dopamine in a concentration-dependent manner; however, modafinil was less potent and efficacious than amphetamine and nicotine. The dopamine transporter inhibitor nomifensine (10 microM) blocked modafinil-evoked [(3)H]overflow, and concentrations of modafinil (<100 microM) that did not have intrinsic activity attenuated amphetamine (1 and 3 microM)-evoked [(3)H]overflow. Modafinil-evoked [(3)H]overflow was not altered by the nicotinic acetylcholine receptor antagonist mecamylamine, and modafinil did not alter nicotine-evoked [(3)H]overflow, indicating that nicotinic acetylcholine receptors likely are not important for modafinil's mechanism of action. The present results indicate that modafinil evokes dopamine release from striatal neurons and is a psychostimulant that is pharmacologically similar to, but much less potent and efficacious than, amphetamine.
Modeling OAE responses to short tones
NASA Astrophysics Data System (ADS)
Duifhuis, Hendrikus; Siegel, Jonathan
2015-12-01
In 1999 Shera and Guinan postulated that otoacoustic emissions evoked by low-level transient stimuli are generated by coherent linear reflection (CRF or CLR). This hypothesis was tested experimentally, e.g., by Siegel and Charaziak[10] by measuring emissions evoked by short (1 ms) tone pips in chinchilla. Using techniques in which supplied level and recorded spectral information were used Siegel and Charaziak concluded that much of the emission was generated by a mechanism in a region extending basally from the peak of the traveling wave and that the action of the suppressor is to remove emission generators evoked by the tone-pip and not to generate nonlinear artifacts in regions basal to the peak region. The original formulation of the CRF theory does not account for these results This study addresses relevant cochlear model predictions.
Li, Yuanqing; Pan, Jiahui; He, Yanbin; Wang, Fei; Laureys, Steven; Xie, Qiuyou; Yu, Ronghao
2015-12-15
For patients with disorders of consciousness such as coma, a vegetative state or a minimally conscious state, one challenge is to detect and assess the residual cognitive functions in their brains. Number processing and mental calculation are important brain functions but are difficult to detect in patients with disorders of consciousness using motor response-based clinical assessment scales such as the Coma Recovery Scale-Revised due to the patients' motor impairments and inability to provide sufficient motor responses for number- and calculation-based communication. In this study, we presented a hybrid brain-computer interface that combines P300 and steady state visual evoked potentials to detect number processing and mental calculation in Han Chinese patients with disorders of consciousness. Eleven patients with disorders of consciousness who were in a vegetative state (n = 6) or in a minimally conscious state (n = 3) or who emerged from a minimally conscious state (n = 2) participated in the brain-computer interface-based experiment. During the experiment, the patients with disorders of consciousness were instructed to perform three tasks, i.e., number recognition, number comparison, and mental calculation, including addition and subtraction. In each experimental trial, an arithmetic problem was first presented. Next, two number buttons, only one of which was the correct answer to the problem, flickered at different frequencies to evoke steady state visual evoked potentials, while the frames of the two buttons flashed in a random order to evoke P300 potentials. The patients needed to focus on the target number button (the correct answer). Finally, the brain-computer interface system detected P300 and steady state visual evoked potentials to determine the button to which the patients attended, further presenting the results as feedback. Two of the six patients who were in a vegetative state, one of the three patients who were in a minimally conscious state, and the two patients that emerged from a minimally conscious state achieved accuracies significantly greater than the chance level. Furthermore, P300 potentials and steady state visual evoked potentials were observed in the electroencephalography signals from the five patients. Number processing and arithmetic abilities as well as command following were demonstrated in the five patients. Furthermore, our results suggested that through brain-computer interface systems, many cognitive experiments may be conducted in patients with disorders of consciousness, although they cannot provide sufficient behavioral responses.
Willems, Janske G. P.; Wadman, Wytse J.
2018-01-01
Abstract The perirhinal (PER) and lateral entorhinal (LEC) cortex form an anatomical link between the neocortex and the hippocampus. However, neocortical activity is transmitted through the PER and LEC to the hippocampus with a low probability, suggesting the involvement of the inhibitory network. This study explored the role of interneuron mediated inhibition, activated by electrical stimulation in the agranular insular cortex (AiP), in the deep layers of the PER and LEC. Activated synaptic input by AiP stimulation rarely evoked action potentials in the PER‐LEC deep layer excitatory principal neurons, most probably because the evoked synaptic response consisted of a small excitatory and large inhibitory conductance. Furthermore, parvalbumin positive (PV) interneurons—a subset of interneurons projecting onto the axo‐somatic region of principal neurons—received synaptic input earlier than principal neurons, suggesting recruitment of feedforward inhibition. This synaptic input in PV interneurons evoked varying trains of action potentials, explaining the fast rising, long lasting synaptic inhibition received by deep layer principal neurons. Altogether, the excitatory input from the AiP onto deep layer principal neurons is overruled by strong feedforward inhibition. PV interneurons, with their fast, extensive stimulus‐evoked firing, are able to deliver this fast evoked inhibition in principal neurons. This indicates an essential role for PV interneurons in the gating mechanism of the PER‐LEC network. PMID:29341361
Auditory Evoked Potentials from the Frog Eighth Nerve
1989-09-01
superior olivary nucleus 6, 10-100 ms in torus semicircularis’ 2,4’ 14, 1618, 30-120 ms in thalamus 7’ 1,13,14, and greater than 30 ms in telencephalon 12...899. 12 Mudry, K.M. and Capranica, R.R., Evoked auditory activity within the telencephalon of the bullfrog (Rana catesbeiana), Brain Res., 182 (1980
NASA Astrophysics Data System (ADS)
Bardy, Fabrice; Van Dun, Bram; Dillon, Harvey; Cowan, Robert
2014-08-01
Objective. To evaluate the viability of disentangling a series of overlapping ‘cortical auditory evoked potentials’ (CAEPs) elicited by different stimuli using least-squares (LS) deconvolution, and to assess the adaptation of CAEPs for different stimulus onset-asynchronies (SOAs). Approach. Optimal aperiodic stimulus sequences were designed by controlling the condition number of matrices associated with the LS deconvolution technique. First, theoretical considerations of LS deconvolution were assessed in simulations in which multiple artificial overlapping responses were recovered. Second, biological CAEPs were recorded in response to continuously repeated stimulus trains containing six different tone-bursts with frequencies 8, 4, 2, 1, 0.5, 0.25 kHz separated by SOAs jittered around 150 (120-185), 250 (220-285) and 650 (620-685) ms. The control condition had a fixed SOA of 1175 ms. In a second condition, using the same SOAs, trains of six stimuli were separated by a silence gap of 1600 ms. Twenty-four adults with normal hearing (<20 dB HL) were assessed. Main results. Results showed disentangling of a series of overlapping responses using LS deconvolution on simulated waveforms as well as on real EEG data. The use of rapid presentation and LS deconvolution did not however, allow the recovered CAEPs to have a higher signal-to-noise ratio than for slowly presented stimuli. The LS deconvolution technique enables the analysis of a series of overlapping responses in EEG. Significance. LS deconvolution is a useful technique for the study of adaptation mechanisms of CAEPs for closely spaced stimuli whose characteristics change from stimulus to stimulus. High-rate presentation is necessary to develop an understanding of how the auditory system encodes natural speech or other intrinsically high-rate stimuli.
Evoking prescribed spike times in stochastic neurons
NASA Astrophysics Data System (ADS)
Doose, Jens; Lindner, Benjamin
2017-09-01
Single cell stimulation in vivo is a powerful tool to investigate the properties of single neurons and their functionality in neural networks. We present a method to determine a cell-specific stimulus that reliably evokes a prescribed spike train with high temporal precision of action potentials. We test the performance of this stimulus in simulations for two different stochastic neuron models. For a broad range of parameters and a neuron firing with intermediate firing rates (20-40 Hz) the reliability in evoking the prescribed spike train is close to its theoretical maximum that is mainly determined by the level of intrinsic noise.
Human auditory evoked potentials. I - Evaluation of components
NASA Technical Reports Server (NTRS)
Picton, T. W.; Hillyard, S. A.; Krausz, H. I.; Galambos, R.
1974-01-01
Fifteen distinct components can be identified in the scalp recorded average evoked potential to an abrupt auditory stimulus. The early components occurring in the first 8 msec after a stimulus represent the activation of the cochlea and the auditory nuclei of the brainstem. The middle latency components occurring between 8 and 50 msec after the stimulus probably represent activation of both auditory thalamus and cortex but can be seriously contaminated by concurrent scalp muscle reflex potentials. The longer latency components occurring between 50 and 300 msec after the stimulus are maximally recorded over fronto-central scalp regions and seem to represent widespread activation of frontal cortex.
Vestibular evoked myogenic potential (VEMP) in patients with acoustic neuromas.
Takeichi, N; Sakamoto, T; Fukuda, S; Inuyama, Y
2001-05-01
To study the utility of VEMP (vestibular-evoked myogenic potential) in the diagnosis of acoustic neuromas. Eighteen patients with unilateral acoustic neuromas were subjected to this study. Myogenic potential responding to loud click stimuli was recorded at ipsilateral sternocleidomastoid muscle. A normal range of VEMP was obtained from 20 controls. VEMP responses were compared with both, clinical symptoms and results of caloric tests. Thirteen out of 18 patients showed decreased responses of VEMP at the affected side. VEMP responses seemed to have little relation with dysequilibrium, spontaneous nystagmus, canal paresis and pure-tone hearing. VEMP is useful for detecting dysfunction of inferior vestibular nerve in patients with acoustic neuromas.
Castillo, C; Norcini, M; Baquero-Buitrago, J; Levacic, D; Medina, R; Montoya-Gacharna, J V; Blanck, T J J; Dubois, M; Recio-Pinto, E
2011-03-17
The involvement of substance P (SP) in neuronal sensitization through the activation of the neurokinin-1-receptor (NK1r) in postsynaptic dorsal horn neurons has been well established. In contrast, the role of SP and NK1r in primary sensory dorsal root ganglion (DRG) neurons, in particular in the soma, is not well understood. In this study, we evaluated whether SP modulated the NMDA-evoked transient increase in cytoplasmic Ca2+ ([Ca2+]cyt) in the soma of dissociated adult DRG neurons. Cultures were treated with nerve growth factor (NGF), prostaglandin E2 (PGE2) or both NGF+PGE2. Treatment with NGF+PGE2 increased the percentage of N-methyl-D-aspartate (NMDA) responsive neurons. There was no correlation between the percentage of NMDA responsive neurons and the level of expression of the NR1 and NR2B subunits of the NMDA receptor or of the NK1r. Pretreatment with SP did not alter the percentage of NMDA responsive neurons; while it potentiated the NMDA-evoked [Ca2+]cyt transient by increasing its magnitude and by prolonging the period during which small- and some medium-sized neurons remained NMDA responsive. The SP-mediated potentiation was blocked by the SP-antagonist ([D-Pro4, D-Trp7,9]-SP (4-11)) and by the protein kinase C (PKC) blocker bisindolylmaleimide I (BIM); and correlated with the phosphorylation of PKCε. The Nk1r agonist [Sar9, Met(O2)11]-SP (SarMet-SP) also potentiated the NMDA-evoked [Ca2+]cyt transient. Exposure to SP or SarMet-SP produced a rapid increase in the labeling of phosphorylated-PKCε. In none of the conditions we detected phosphorylation of the NR2B subunit at Ser-1303. Phosphorylation of the NR2B subunit at Tyr1472 was enhanced to a similar extent in cells exposed to NMDA, SP or NMDA+SP, and that enhancement was blocked by BIM. Our findings suggest that NGF and PGE2 may contribute to the injury-evoked sensitization of DRG neurons in part by enhancing their NMDA-evoked [Ca2+]cyt transient in all sized DRG neurons; and that SP may further contribute to the DRG sensitization by enhancing and prolonging the NMDA-evoked increase in [Ca2+]cyt in small- and medium-sized DRG neurons. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
The Emergence of Contrast-Invariant Orientation Tuning in Simple Cells of Cat Visual Cortex
Finn, Ian M.; Priebe, Nicholas J.; Ferster, David
2007-01-01
Simple cells in primary visual cortex exhibit contrast-invariant orientation tuning, in seeming contradiction to feed-forward models relying on lateral geniculate nucleus (LGN) input alone. Contrast invariance has therefore been thought to depend on the presence of intracortical lateral inhibition. In vivo intracellular recordings instead suggest that contrast invariance can be explained by three properties of the excitatory pathway. 1) Depolarizations evoked by orthogonal stimuli are determined by the amount of excitation a cell receives from the LGN, relative to the excitation it receives from other cortical cells. 2) Depolarizations evoked by preferred stimuli saturate at lower contrasts than the spike output of LGN relay cells. 3) Visual stimuli evoke contrast-dependent changes in trial-to-trial variability, which lead to contrast-dependent changes in the relationship between membrane potential and spike rate. Thus, high-contrast, orthogonally-oriented stimuli that evoke significant depolarizations evoke few spikes. Together these mechanisms, without lateral inhibition, can account for contrast-invariant stimulus selectivity. PMID:17408583
Hoebink, Eric A; Journée, Henricus L; de Kleuver, Marinus; Berends, Hanneke; Racz, Ilona; van Hal, Chantal
2016-07-15
A prospective, nonrandomized cohort study. To describe a technique quantifying movement induced by transcranial electrical stimulation (TES) induced movement in relation to the positioning of electrodes during spinal deformity surgery. TES induced movement may cause injuries and delay surgical procedures. When TES movements are evoked, muscles other than those being monitored any adjustments in stimulation protocols and electrode positioning may be expected to minimize movement whereas preserving quality of monitoring. In this study, seismic evoked responses (SER) induced through TES were studied at different electrode positions. Intraoperative TES-motor evoked potentials were carried out in 12 patients undergoing corrective spine surgery. Accelerometer transducers recorded SER in two directions at four different locations of the spine for TES-electrode montage groups Cz-Fz and C3-C4. A paired t test was used to compare the means of SER and the relationship between movement and TES electrode positioning. SERs were strongest in the upper body. All mean SERs values for the Cz-Fz group were up to five times larger when compared with the C3-C4 group. However, there were no differences between the C3-C4 and Cz-Fz groups in the lower body locations. Both electrode montage groups showed a gradual stepwise reduction in all mean SER values along the spine from the cranial to caudal region. For the upper body locations, there were no significant associations between SER and both montages; in contrast, a significant association SER was demonstrated in the lumbar region. At supramaximum levels, movements resulting from multipulse TES are likely caused by relatively strong contractions from muscles in the neck resulting from direct extracranial stimulation. When interchanging electrode montages in individual cases, the movement in the neck may become reduced. At lumbar levels transcranial evoked muscle contractions dominate movement in the surgically exposed areas. 4.
Delta and gamma oscillations in operculo-insular cortex underlie innocuous cold thermosensation
Vinding, Mikkel C.; Allen, Micah; Jensen, Troels Staehelin; Finnerup, Nanna Brix
2017-01-01
Cold-sensitive and nociceptive neural pathways interact to shape the quality and intensity of thermal and pain perception. Yet the central processing of cold thermosensation in the human brain has not been extensively studied. Here, we used magnetoencephalography and EEG in healthy volunteers to investigate the time course (evoked fields and potentials) and oscillatory activity associated with the perception of cold temperature changes. Nonnoxious cold stimuli consisting of Δ3°C and Δ5°C decrements from an adapting temperature of 35°C were delivered on the dorsum of the left hand via a contact thermode. Cold-evoked fields peaked at around 240 and 500 ms, at peak latencies similar to the N1 and P2 cold-evoked potentials. Importantly, cold-related changes in oscillatory power indicated that innocuous thermosensation is mediated by oscillatory activity in the range of delta (1–4 Hz) and gamma (55–90 Hz) rhythms, originating in operculo-insular cortical regions. We suggest that delta rhythms coordinate functional integration between operculo-insular and frontoparietal regions, while gamma rhythms reflect local sensory processing in operculo-insular areas. NEW & NOTEWORTHY Using magnetoencephalography, we identified spatiotemporal features of central cold processing, with respect to the time course, oscillatory profile, and neural generators of cold-evoked responses in healthy human volunteers. Cold thermosensation was associated with low- and high-frequency oscillatory rhythms, both originating in operculo-insular regions. These results support further investigations of central cold processing using magnetoencephalography or EEG and the clinical utility of cold-evoked potentials for neurophysiological assessment of cold-related small-fiber function and damage. PMID:28250150
Somatosensory evoked potentials in patients with hypocalcaemia after parathyroidectomy.
Kanda, F; Jinnai, J; Fujita, T
1988-01-01
The effects of hypocalcaemia on somatosensory evoked potentials (SEPs) were studied in five patients after parathyroidectomy. Despite normal latencies the mean value of amplitudes of the SEPs in hypocalcaemic patients was greater than that in normocalcaemic subjects. Recovery functions of the SEPs showed a significant decrease in hypocalcaemic patients at interstimulus intervals of about 10 ms compared with those in normocalcaemic patients and in normal volunteers. Recovery functions appear to be a valid indicator of synaptic efficacy, especially for evaluation of the reduction in conduction efficacy of the central nervous system in hypocalcaemia.
The division of attention and the human auditory evoked potential
NASA Technical Reports Server (NTRS)
Hink, R. F.; Van Voorhis, S. T.; Hillyard, S. A.; Smith, T. S.
1977-01-01
The sensitivity of the scalp-recorded, auditory evoked potential to selective attention was examined while subjects responded to stimuli presented to one ear (focused attention) and to both ears (divided attention). The amplitude of the N1 component was found to be largest to stimuli in the ear upon which attention was to be focused, smallest to stimuli in the ear to be ignored, and intermediate to stimuli in both ears when attention was divided. The results are interpreted as supporting a capacity model of attention.
NASA Astrophysics Data System (ADS)
Liu, W.; Du, M. H.; Chan, Francis H. Y.; Lam, F. K.; Luk, D. K.; Hu, Y.; Fung, Kan S. M.; Qiu, W.
1998-09-01
Recently there has been a considerable interest in the use of a somatosensory evoked potential (SEP) for monitoring the functional integrity of the spinal cord during surgery such as spinal scoliosis. This paper describes a monitoring system and signal processing algorithms, which consists of 50 Hz mains filtering and a wavelet signal analyzer. Our system allows fast detection of changes in SEP peak latency, amplitude and signal waveform, which are the main parameters of interest during intra-operative procedures.
An event-related potential study of maternal love in mothers.
Lu, Jiamei; Li, Da; Xu, Jingwei
2012-10-01
Feeling is stable and implicit and can be explicated in concrete situations in the form of emotion. To map the time course of feeling processing, the present study explored electrophysiological responses relevant to inner feeling by creating situations to evoke the explicit response of feeling. Fourteen mothers were asked to listen to TS and NS. Although the early event-related potential components (P1, N1 and P2) elicited by story pictures were not affected by the emotional valence of stories, the pictures relevant to TS elicited larger P3 and late positive potential (LPP) components than did neutral story pictures, indicating that feeling processing occurred at the post-perceptual stage. Feeling-related positive potential was separated using the difference wave analysis technique, which consisted of two sub-components: FRBB1 and FRBB2 based on P3 and LPP modulations, respectively. These data provide new electrophysiological evidence for the time course of feeling processing related to maternal love.
[Anesthesia for surgery of degenerative and abnormal cervical spine].
Béal, J L; Lopin, M C; Binnert, M
1993-01-01
A feature common to all congenital or inflammatory abnormalities of the cervical spine is an actual or potential reduction in the lumen of the spinal canal. The spinal cord and nerve roots are at risk. During intubation, and positioning the patient on the table, all untoward movements of the cervical spine may lead to spinal cord compression. Abnormalities of the cervical spine carry the risk of a difficult intubation. If there is much debate as to what constitutes optimum management of the airway, there is no evidence that any one method is the best. Recognizing the possible instability and intubating with care, are probably much more important in preserving neurological function than any particular mode of intubation. During maintenance of anaesthesia, the main goal is to preserve adequate spinal cord perfusion in order to prevent further damage. Spinal cord blood flow seems to be regulated by the same factors as cerebral blood flow. Hypercapnia increases cord blood flow while hypocapnia decreases it. Therefore, normocapnia or mild hypocapnia is recommended. Induced hypotension is frequently used to decrease blood loss. However, in patients with a marginally perfused spinal cord, the reduction in blood flow may cause ischaemia of the spinal cord and may therefore be relatively contraindicated. In addition to standard intraoperative monitoring, spinal cord monitoring is almost mandatory. Monitoring somatosensory evoked potentials is used routinely. However, the major limitation is that this technique only monitors dorsal column function; theoretically, motor paralysis can occur despite a lack of change in recorded signals. Neurogenic motor evoked potentials may now be used to monitor anterior spinal cord integrity.(ABSTRACT TRUNCATED AT 250 WORDS)
Pierrefiche, O; Haji, A; Foutz, A S; Takeda, R; Champagnat, J; Denavit-Saubié, M
1998-01-01
Blockade of NMDA receptors by dizocilpine impairs the inspiratory off-switch (IOS) of central origin but not the IOS evoked by stimulation of sensory afferents. To investigate whether this difference was due to the effects of different patterns of synaptic interactions on respiratory neurones, we stimulated electrically the superior laryngeal nerve (SLN) or vagus nerve in decerebrate cats before and after i.v. administration of dizocilpine, whilst recording intracellularly. Phrenic nerve responses to ipsilateral SLN or vagal stimulation were: at mid-inspiration, a transient inhibition often followed by a brief burst of activity; at late inspiration, an IOS; and at mid-expiration, a late burst of activity. In all neurones (n = 16), SLN stimulation at mid-inspiration evoked an early EPSP during phase 1 (latency to the arrest of phrenic nerve activity), followed by an IPSP in inspiratory (I) neurones (n = 8) and by a wave of EPSPs in post-inspiratory (PI) neurones (n = 8) during phase 2 (inhibition of phrenic activity). An EPSP in I neurones and an IPSP in PI neurones occurred during phase 3 (brief phrenic burst) following phase 2. Evoked IOS was associated with a fast (phase 1) activation of PI neurones, whereas during spontaneous IOS, a progressive (30-50 ms) depolarization of PI neurones preceded the arrest of phrenic activity. Phase 3 PSPs were similar to those occurring during the burst of activity seen at the start of spontaneous inspiration. Dizocilpine did not suppress the evoked phrenic inhibition and the late burst of activity. The shapes and timing of the evoked PSPs and the changes in membrane potential in I and PI neurones during the phase transition were not altered. We hypothesize that afferent sensory pathways not requiring NMDA receptors (1) terminate inspiration through a premature activation of PI neurones, and (2) evoke a late burst of phrenic activity which might be the first stage of the inspiratory on-switch. PMID:9508816
Delaney, K R; Zucker, R S
1990-07-01
1. Transmitter release at the squid giant synapse was stimulated by photolytic release of Ca2+ from the 'caged' Ca2+ compound DM-nitrophen (Kaplan & Ellis-Davies, 1988) inserted into presynaptic terminals. 2. Competing binding reactions cause the amount of Ca2+ released by DM-nitrophen photolysis to depend on the concentrations of DM-nitrophen, total Ca2+, Mg+, ATP and native cytoplasmic Ca2+ buffer. Measurements of presynaptic [Ca2+] changes by co-injection of the fluorescent indicator dye Fura-2 show that DM-nitrophen photolysis causes a transient rise in Ca2+ followed by decay within about 150 ms to an increased steady-state level. 3. Rapid photolysis of Ca2(+)-loaded nitrophen within the presynaptic terminal was followed in less than a millisecond by depolarization of the postsynaptic membrane. As with action potential-evoked excitatory postsynaptic potentials (EPSPs), the light-evoked response was partially and reversibly blocked by 1-3 mM-kainic acid which desensitizes postsynaptic glutamate receptors. 4. Release was similar in magnitude and rate to normal action potential-mediated EPSPs. 5. The release of transmitter by photolysis of Ca2(+)-loaded DM-nitrophen was not affected by removal of Ca2+ from the saline or addition of tetrodotoxin. Photolysis of DM-nitrophen injected into presynaptic terminals without added Ca2+ did not stimulate release of transmitter nor did it interfere with normal action potential-mediated release. 6. Stimulation of presynaptic action potentials in Ca2(+)-free saline during the light-evoked response did not elicit increased release of transmitter if the ganglion was bathed in Ca2(+)-free saline, i.e. in the absence of Ca2+ influx. Increasing the intensity of the light or stimulating presynaptic action potentials in Ca2(+)-containing saline increased the release of transmitter. Therefore the failure of presynaptic voltage change to increase transmitter release resulting from release of caged Ca2+ was not due to saturation or inhibition of the release mechanism by light-released Ca2+. 7. Decreasing the temperature of the preparation increased the delay to onset of the light-evoked response and reduced its amplitude and rate of rise to an extent similar to that observed for action potential-evoked EPSPs.
Nicergoline inhibits T-type Ca2+ channels in rat isolated hippocampal CA1 pyramidal neurones.
Takahashi, K.; Akaike, N.
1990-01-01
1. The effects of nicergoline on the T- and L-type Ca2+ currents in pyramidal cells freshly isolated from rat hippocampal CA1 region were investigated by use of a 'concentration-clamp' technique. The technique combines a suction-pipette technique, which allows intracellular perfusion under a single-electrode voltage-clamp, and rapid exchange of extracellular solution within 2 ms. 2. T-type Ca2+ currents were evoked by step depolarizations from a holding potential of -100 mV to potentials more positive than -70 to -60 mV, and reached a peak at about -30 mV in the current-voltage relationship. Activation and inactivation of T-type Ca2+ currents were highly potential-dependent. 3. Nicergoline and other Ca2+ antagonists dose-dependently blocked the T-type Ca2+ channel with an order of potency nicardipine greater than nicergoline greater than diltiazem. 4. The L-type Ca2+ channel was also blocked in the order nicardipine greater than nicergoline greater than diltiazem, although the T-type Ca2+ channel was more sensitive to nicergoline. 5. The inhibitory effects of nicergoline and nicardipine on the T-type Ca2+ current were voltage-, time-, and use-dependent, and the inhibition increased with a decrease in the external Ca2+ concentration. Diltiazem showed only a use-dependent block. PMID:2169937
Nicergoline inhibits T-type Ca2+ channels in rat isolated hippocampal CA1 pyramidal neurones.
Takahashi, K; Akaike, N
1990-08-01
1. The effects of nicergoline on the T- and L-type Ca2+ currents in pyramidal cells freshly isolated from rat hippocampal CA1 region were investigated by use of a 'concentration-clamp' technique. The technique combines a suction-pipette technique, which allows intracellular perfusion under a single-electrode voltage-clamp, and rapid exchange of extracellular solution within 2 ms. 2. T-type Ca2+ currents were evoked by step depolarizations from a holding potential of -100 mV to potentials more positive than -70 to -60 mV, and reached a peak at about -30 mV in the current-voltage relationship. Activation and inactivation of T-type Ca2+ currents were highly potential-dependent. 3. Nicergoline and other Ca2+ antagonists dose-dependently blocked the T-type Ca2+ channel with an order of potency nicardipine greater than nicergoline greater than diltiazem. 4. The L-type Ca2+ channel was also blocked in the order nicardipine greater than nicergoline greater than diltiazem, although the T-type Ca2+ channel was more sensitive to nicergoline. 5. The inhibitory effects of nicergoline and nicardipine on the T-type Ca2+ current were voltage-, time-, and use-dependent, and the inhibition increased with a decrease in the external Ca2+ concentration. Diltiazem showed only a use-dependent block.
NASA Astrophysics Data System (ADS)
Bai, Yang; Wan, Xiaohong; Zeng, Ke; Ni, Yinmei; Qiu, Lirong; Li, Xiaoli
2016-12-01
Objective. When prefrontal-transcranial magnetic stimulation (p-TMS) performed, it may evoke hybrid artifact mixed with muscle activity and blink activity in EEG recordings. Reducing this kind of hybrid artifact challenges the traditional preprocessing methods. We aim to explore method for the p-TMS evoked hybrid artifact removal. Approach. We propose a novel method used as independent component analysis (ICA) post processing to reduce the p-TMS evoked hybrid artifact. Ensemble empirical mode decomposition (EEMD) was used to decompose signal into multi-components, then the components were separated with artifact reduced by blind source separation (BSS) method. Three standard BSS methods, ICA, independent vector analysis, and canonical correlation analysis (CCA) were tested. Main results. Synthetic results showed that EEMD-CCA outperformed others as ICA post processing step in hybrid artifacts reduction. Its superiority was clearer when signal to noise ratio (SNR) was lower. In application to real experiment, SNR can be significantly increased and the p-TMS evoked potential could be recovered from hybrid artifact contaminated signal. Our proposed method can effectively reduce the p-TMS evoked hybrid artifacts. Significance. Our proposed method may facilitate future prefrontal TMS-EEG researches.
Functional connectivity between right and left mesial temporal structures.
Lacuey, Nuria; Zonjy, Bilal; Kahriman, Emine S; Kaffashi, Farhad; Miller, Jonathan; Lüders, Hans O
2015-09-01
The aim of this study is to investigate functional connectivity between right and left mesial temporal structures using cerebrocerebral evoked potentials. We studied seven patients with drug-resistant focal epilepsy who were explored with stereotactically implanted depth electrodes in bilateral hippocampi. In all patients cerebrocerebral evoked potentials evoked by stimulation of the fornix were evaluated as part of a research project assessing fornix stimulation for control of hippocampal seizures. Stimulation of the fornix elicited responses in the ipsilateral hippocampus in all patients with a mean latency of 4.6 ms (range 2-7 ms). Two patients (29 %) also had contralateral hippocampus responses with a mean latency of 7.5 ms (range 5-12 ms) and without involvement of the contralateral temporal neocortex or amygdala. This study confirms the existence of connections between bilateral mesial temporal structures in some patients and explains seizure discharge spreading between homotopic mesial temporal structures without neocortical involvement.
NASA Technical Reports Server (NTRS)
Stern, John A.
1988-01-01
The study of probe event related potentials (probe ERPs) is reviewed. Several recent experiments are described which seem to leave in doubt the usefulness of applying ERP to simulation and field conditions as well as laboratory situations. Relatively minor changes in the experimental paradigm can produce major shifts in ERP findings, for reasons that are not clear. However, task-elicited ERPs might be used on a flight simulator if the experimenter takes time of arrival of the eyes on a particular instrument as one variable of concern and dwell time on the instrument as a second variable. One can then look at ERPs triggered by saccade termination for fixation pauses of specified durations. It may well be that ERP to a momentarily important display will differ from that elicited by routine instrument check.
Hu, Yu; Chen, Zhuoming; Huang, Lu; Xi, Yue; Li, Bingxiao; Wang, Hong; Yan, Jiajian; Lee, Tatia M C; Tao, Qian; So, Kwok-Fai; Ren, Chaoran
2017-11-07
Rapidly approaching objects indicating threats can induce defensive response through activating a subcortical pathway comprising superior colliculus (SC), lateral posterior nucleus (LP), and basolateral amygdala (BLA). Abnormal defensive response has been reported in autism, and impaired synaptic connections could be the underlying mechanism. Whether the SC-LP-BLA pathway processes looming stimuli abnormally in autism is not clear. Here, we found that looming-evoked defensive response is impaired in a subgroup of the valproic acid (VPA) mouse model of autism. By combining the conventional neurotracer and transneuronal rabies virus tracing techniques, we demonstrated that synaptic connections in the SC-LP-BLA pathway were abnormal in VPA mice whose looming-evoked defensive responses were absent. Importantly, we further translated the finding to children with autism and observed that they did not present looming-evoked defensive response. Furthermore, the findings of the DTI with the probabilistic tractography showed that the structural connections of SC-pulvinar-amygdala in autism children were weak. The pulvinar is parallel to the LP in a mouse. Because looming-evoked defensive response is innate in humans and emerges much earlier than do social and language functions, the absence of defensive response could be an earlier sign of autism in children.
Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X
2013-06-19
Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.
Stanton, P K; Jones, R S; Mody, I; Heinemann, U
1987-01-01
Reduction of extracellular Mg2+ concentration induced spontaneous and evoked epileptiform activity in the entorhinal cortex (EC) and dentate gyrus (DG) of combined hippocampus (HC)-EC slices. Extracellular field potentials, as well as changes in extracellular Ca2+ and K+ concentrations, were measured in EC and DG with ion-selective/reference electrodes during both repetitive and single stimuli. In the EC, lowering extracellular [Mg2+] induces both spontaneous and single stimulus evoked ictal events consisting of extracellular negative potential shifts (up to 5 mV, 30 sec), decreases in [Ca2+]0 and increases in [K+]0. In the DG, spontaneous events were much shorter, but similar changes in [Ca2+]0, [K+]0 and field potentials (FPs) could be evoked by brief high-frequency stimulation. In both areas, the N-methyl-D-aspartate (NMDA) receptor antagonist 2-aminophosphonovalerate (2-APV) completely blocked spontaneous as well as stimulus evoked epileptiform events. The neurotransmitter norepinephrine (NE), which has previously been shown to modulate long-term potentiation in the DG, was found to exhibit differential modulation of epileptiform activity in the EC and DG. In the EC, NE, acting via alpha 1-receptors, completely blocked low Mg2+-induced epileptiform activity. In contrast, in the DG, NE exhibited a beta-receptor mediated prolongation of the low Mg2+-induced ictal events, and enhanced the stimulus-induced ionic and field potential changes. From these results, we conclude that lowering extracellular [Mg2+], acting in large part through the removal of the Mg2+ voltage-dependent blockade of NMDA receptors, leads to induction of epileptiform activity in both the EC and DG.(ABSTRACT TRUNCATED AT 250 WORDS)
Gok, Deniz Kantar; Akpinar, Deniz; Hidisoglu, Enis; Ozen, Sukru; Agar, Aysel; Yargicoglu, Piraye
2016-01-01
The purpose of our study was to investigate the developmental effects of extremely low frequency electric fields (ELF-EFs) on visual evoked potentials (VEPs) and somatosensory-evoked potentials (SEPs) and to examine the relationship between lipid peroxidation and changes of these potentials. In this context, thiobarbituric acid reactive substances (TBARS) levels were determined as an indicator of lipid peroxidation. Wistar albino female rats were divided into four groups; Control (C), gestational (prenatal) exposure (Pr), gestational+ postnatal exposure (PP) and postnatal exposure (Po) groups. Pregnant rats of Pr and PP groups were exposed to 50 Hz electric field (EF) (12 kV/m; 1 h/day), while those of C and Po groups were placed in an inactive system during pregnancy. Following parturition, rats of PP and Po groups were exposed to ELF-EFs whereas rats of C and Pr groups were kept under the same experimental conditions without being exposed to any EF during 68 days. On postnatal day 90, rats were prepared for VEP and SEP recordings. The latencies of VEP components in all experimental groups were significantly prolonged versus C group. For SEPs, all components of PP group, P2, N2 components of Pr group and P1, P2, N2 components of Po group were delayed versus C group. As brain TBARS levels were significantly increased in Pr and Po groups, retina TBARS levels were significantly elevated in all experimental groups versus C group. In conclusion, alterations seen in evoked potentials, at least partly, could be explained by lipid peroxidation in the retina and brain.
Łabuz-Roszak, Beata; Torbus, Magdalena; Kubicka-Bączyk, Katarzyna; Machowska-Majchrzak, Agnieszka; Kierber, Agata; Borucka, Katarzyna; Zellner, Małgorzata; Starostak-Tatar, Anna; Pierzchała, Krystyna
Multiple sclerosis (MS) is a chronic inflammatory, demyelinating disease of the central nervous system with a multifocal damage. The assessment of the MS course by multimodal evoked potentials (EP). We evaluated 95 patients (63 female, 32 male) with relapsing-remitting MS in the average age of 36.4±10.4. The average disease duration was 4.6±7.4 year. Among them, 48 patients (50.5%) were treated with immunomodulatory drugs. All patients underwent neurological examination and EP testing: VEP (visual evoked potentials), SEP (somatosensory evoked potentials), endogenous potential P300. The latencies of following waves were evaluated: P100 (VEP), N4 , N9 , N13, N20, P22 (SEP) and P300, with the reference values of the Neurophysiological Research Laboratory of the Department of Neurology in Zabrze. Abnormal VEP(I) was found in 80 patients (84.2%), SEP(I) in 9 patients (9.5%), P300(I) in 15 patients (15.8%). Abnormal result of the control research VEP (II) was found in 23 patients (82.1%), SEP(II) in 1 patient (3.6%), P300(II) in 4 patients (14.3%). The average values of the waves latencies in the control study were higher, however the statistical significance was not found. The correlation was observed between EDSS, and N20 and P22. No relationship was found between EP and age, disease duration, number of relapses and treatment. In the era of neuroimaging, usage of EP in the diagnosis and assessment of MS is limited. Electrophysiological studies may be used in addition to the clinical examination to confirm the multifocal damage.
Whalley, Benjamin J; Wilkinson, Jonathan D; Williamson, Elizabeth M; Constanti, Andrew
2004-07-15
Cannabis is a potential treatment for epilepsy, although the few human studies supporting this use have proved inconclusive. Previously, we showed that a standardized cannabis extract (SCE), isolated Delta9-tetrahydrocannabinol (Delta9-THC), and even Delta9-THC-free SCE inhibited muscarinic agonist-induced epileptiform bursting in rat olfactory cortical brain slices, acting via CB1 receptors. The present work demonstrates that although Delta9-THC (1 microM) significantly depressed evoked depolarizing postsynaptic potentials (PSPs) in rat olfactory cortex neurones, both SCE and Delta9-THC-free SCE significantly potentiated evoked PSPs (all results were fully reversed by the CB1 receptor antagonist SR141716A, 1 microM); interestingly, the potentiation by Delta9-THC-free SCE was greater than that produced by SCE. On comparing the effects of Delta9-THC-free SCE upon evoked PSPs and artificial PSPs (aPSPs; evoked electrotonically following brief intracellular current injection), PSPs were enhanced, whereas aPSPs were unaffected, suggesting that the effect was not due to changes in background input resistance. Similar recordings made using CB1 receptor-deficient knockout mice (CB1-/-) and wild-type littermate controls revealed cannabinoid or extract-induced changes in membrane resistance, cell excitability and synaptic transmission in wild-type mice that were similar to those seen in rat neurones, but no effect on these properties were seen in CB1-/- cells. It appears that the unknown extract constituent(s) effects over-rode the suppressive effects of Delta9-THC on excitatory neurotransmitter release, which may explain some patients' preference for herbal cannabis rather than isolated Delta9-THC (due to attenuation of some of the central Delta9-THC side effects) and possibly account for the rare incidence of seizures in some individuals taking cannabis recreationally.
Contralateral Inhibition of Click- and Chirp-Evoked Human Compound Action Potentials
Smith, Spencer B.; Lichtenhan, Jeffery T.; Cone, Barbara K.
2017-01-01
Cochlear outer hair cells (OHC) receive direct efferent feedback from the caudal auditory brainstem via the medial olivocochlear (MOC) bundle. This circuit provides the neural substrate for the MOC reflex, which inhibits cochlear amplifier gain and is believed to play a role in listening in noise and protection from acoustic overexposure. The human MOC reflex has been studied extensively using otoacoustic emissions (OAE) paradigms; however, these measurements are insensitive to subsequent “downstream” efferent effects on the neural ensembles that mediate hearing. In this experiment, click- and chirp-evoked auditory nerve compound action potential (CAP) amplitudes were measured electrocochleographically from the human eardrum without and with MOC reflex activation elicited by contralateral broadband noise. We hypothesized that the chirp would be a more optimal stimulus for measuring neural MOC effects because it synchronizes excitation along the entire length of the basilar membrane and thus evokes a more robust CAP than a click at low to moderate stimulus levels. Chirps produced larger CAPs than clicks at all stimulus intensities (50–80 dB ppeSPL). MOC reflex inhibition of CAPs was larger for chirps than clicks at low stimulus levels when quantified both in terms of amplitude reduction and effective attenuation. Effective attenuation was larger for chirp- and click-evoked CAPs than for click-evoked OAEs measured from the same subjects. Our results suggest that the chirp is an optimal stimulus for evoking CAPs at low stimulus intensities and for assessing MOC reflex effects on the auditory nerve. Further, our work supports previous findings that MOC reflex effects at the level of the auditory nerve are underestimated by measures of OAE inhibition. PMID:28420960
Mahdi, Parvane; Amali, Amin; Pourbakht, Akram; Karimi Yazdi, Alireza; Bassam, Ali
2013-06-01
Vestibular evoked myogenic potential (VEMP) has recently been broadly studied in vestibular disorders. As it is evoked by loud sound stimulation, even mild conductive hearing loss may affect VEMP results. Bone-conducted (BC) stimulus is an alternative stimulation for evoking this response. This study aims to assess the characteristics of BC-VEMP in different groups of patients. We performed a cross sectional analysis on 20 healthy volunteers with normal pure-tone audiometry as a control group; and on a group of patients consisted of 20 participants with conductive hearing loss, five with bilateral sensorineural hearing loss and four with vestibular schawannoma. AC and BC-VEMP were performed in all participants. In control group the VEMP responses to both kinds of stimuli had an acceptable morphology and consisted of p13 and n23 waves. Latency value of these main components in each type of stimulus was not significantly different (P>0.05). However, the mean amplitude was larger in BC modality than AC stimulation (P=0.025). In the group with conductive hearing loss, the VEMP response was absent in fifteen (46.87%) of the 32 ears using the AC method, whereas all (100%) displayed positive elicitability of VEMP by BC method. Normal VEMP responses in both stimuli were evoked in all patients with sensorineural hearing loss. In patients with unilateral vestibular schwannomas (VS), 2 (50.00%) had neither AC-VEMP nor BC-VEMP. Auditory stimuli delivered by bone conduction can evoke VEMP response. These responses are of vestibular origin and can be used in vestibular evaluation of patients with conductive hearing loss.
Mahdi, Parvane; Amali, Amin; Pourbakht, Akram; Karimi Yazdi, Alireza; Bassam, Ali
2013-01-01
Introduction: Vestibular evoked myogenic potential (VEMP) has recently been broadly studied in vestibular disorders. As it is evoked by loud sound stimulation, even mild conductive hearing loss may affect VEMP results. Bone-conducted (BC) stimulus is an alternative stimulation for evoking this response. This study aims to assess the characteristics of BC-VEMP in different groups of patients. Materials and Methods: We performed a cross sectional analysis on 20 healthy volunteers with normal pure-tone audiometry as a control group; and on a group of patients consisted of 20 participants with conductive hearing loss, five with bilateral sensorineural hearing loss and four with vestibular schawannoma. AC and BC-VEMP were performed in all participants. Results: In control group the VEMP responses to both kinds of stimuli had an acceptable morphology and consisted of p13 and n23 waves. Latency value of these main components in each type of stimulus was not significantly different (P>0.05). However, the mean amplitude was larger in BC modality than AC stimulation (P=0.025). In the group with conductive hearing loss, the VEMP response was absent in fifteen (46.87%) of the 32 ears using the AC method, whereas all (100%) displayed positive elicitability of VEMP by BC method. Normal VEMP responses in both stimuli were evoked in all patients with sensorineural hearing loss. In patients with unilateral vestibular schwannomas (VS), 2 (50.00%) had neither AC-VEMP nor BC-VEMP. Conclusion: Auditory stimuli delivered by bone conduction can evoke VEMP response. These responses are of vestibular origin and can be used in vestibular evaluation of patients with conductive hearing loss. PMID:24303434
Enhanced brainstem and cortical evoked response amplitudes: single-trial covariance analysis.
Galbraith, G C
2001-06-01
The purpose of the present study was to develop analytic procedures that improve the definition of sensory evoked response components. Such procedures could benefit all recordings but would especially benefit difficult recordings where many trials are contaminated by muscle and movement artifacts. First, cross-correlation and latency adjustment analyses were applied to the human brainstem frequency-following response and cortical auditory evoked response recorded on the same trials. Lagged cross-correlation functions were computed, for each of 17 subjects, between single-trial data and templates consisting of the sinusoid stimulus waveform for the brainstem response and the subject's own smoothed averaged evoked response P2 component for the cortical response. Trials were considered in the analysis only if the maximum correlation-squared (r2) exceeded .5 (negatively correlated trials were thus included). Identical correlation coefficients may be based on signals with quite different amplitudes, but it is possible to assess amplitude by the nonnormalized covariance function. Next, an algorithm is applied in which each trial with negative covariance is matched to a trial with similar, but positive, covariance and these matched-trial pairs are deleted. When an evoked response signal is present in the data, the majority of trials positively correlate with the template. Thus, a residual of positively correlated trials remains after matched covariance trials are deleted. When these residual trials are averaged, the resulting brainstem and cortical responses show greatly enhanced amplitudes. This result supports the utility of this analysis technique in clarifying and assessing evoked response signals.
Wang, Xing; Chaudhry, Sharjeel A; Hou, Wensheng; Jia, Xiaofeng
2017-02-05
Stroke leads to serious long-term disability. Electrical epidural cortical stimulation has made significant improvements in stroke rehabilitation therapy. We developed a preliminary wireless implantable passive interface, which consists of a stimulating surface electrode, receiving coil, and single flexible passive demodulated circuit printed by flexible printed circuit (FPC) technique and output pulse voltage stimulus by inductively coupling an external circuit. The wireless implantable board was implanted in cats' unilateral epidural space for electrical stimulation of the primary visual cortex (V1) while the evoked responses were recorded on the contralateral V1 using a needle electrode. The wireless implantable board output stable monophasic voltage stimuli. The amplitude of the monophasic voltage output could be adjusted by controlling the voltage of the transmitter circuit within a range of 5-20 V. In acute experiment, cortico-cortical evoked potential (CCEP) response was recorded on the contralateral V1. The amplitude of N2 in CCEP was modulated by adjusting the stimulation intensity of the wireless interface. These results demonstrated that a wireless interface based on a microcoil array can offer a valuable tool for researchers to explore electrical stimulation in research and the dura mater-electrode interface can effectively transmit electrical stimulation.
Mismatch negativity to the patient's own name in chronic disorders of consciousness.
Qin, Pengmin; Di, Haibo; Yan, Xiaodan; Yu, Senming; Yu, Dan; Laureys, Steven; Weng, Xuchu
2008-12-19
Previous studies implicated potential value of mismatch negativity (MMN) in predicting recovery of consciousness in patients with disorders of consciousness (DOC). We have adopted a novel MMN evoked by subject's own name (SON), a self-referential stimulus thought to be powerful in evoking residual brain activity, and examined the correlation between the MMN and recovery of consciousness in patients with chronic (>1 month) DOC. Twelve patients and 12 age-matched healthy controls were investigated. The patients were diagnosed as coma (n=4), vegetative state (VS, n=6), and minimally conscious state (MCS, n=2), mainly based on the JFK Coma Recovery Scale-Revised. The SON-evoked MMN (SON-MMN) was present in seven patients. Critically, the presence of SON-MMN was significantly correlated with recovery of consciousness. While four of the five patients (three VS and two coma) showing SON-MMN changed to MCS 3 months later, the rest of the patients (three VS and two coma) without SON-MMN failed to show any clinical improvement. Our study thus illustrates that the subject's own name is effective in evoking MMN in patients with DOC, and that SON-MMN has potential prognostic values in predicting recovery of consciousness.
NASA Astrophysics Data System (ADS)
Ma, Teng; Li, Hui; Deng, Lili; Yang, Hao; Lv, Xulin; Li, Peiyang; Li, Fali; Zhang, Rui; Liu, Tiejun; Yao, Dezhong; Xu, Peng
2017-04-01
Objective. Movement control is an important application for EEG-BCI (EEG-based brain-computer interface) systems. A single-modality BCI cannot provide an efficient and natural control strategy, but a hybrid BCI system that combines two or more different tasks can effectively overcome the drawbacks encountered in single-modality BCI control. Approach. In the current paper, we developed a new hybrid BCI system by combining MI (motor imagery) and mVEP (motion-onset visual evoked potential), aiming to realize the more efficient 2D movement control of a cursor. Main result. The offline analysis demonstrates that the hybrid BCI system proposed in this paper could evoke the desired MI and mVEP signal features simultaneously, and both are very close to those evoked in the single-modality BCI task. Furthermore, the online 2D movement control experiment reveals that the proposed hybrid BCI system could provide more efficient and natural control commands. Significance. The proposed hybrid BCI system is compensative to realize efficient 2D movement control for a practical online system, especially for those situations in which P300 stimuli are not suitable to be applied.
Altered pharmacology of native rodent spinal cord TRPV1 after phosphorylation
Mogg, AJ; Mill, CEJ; Folly, EA; Beattie, RE; Blanco, MJ; Beck, JP; Broad, LM
2013-01-01
Background and Purpose Evidence suggests that phosphorylation of TRPV1 is an important component underlying its aberrant activation in pathological pain states. To date, the detailed pharmacology of diverse TRPV1 receptor agonists and antagonists has yet to be reported for native TRPV1 under phosphorylating conditions. Our goal was to optimize a relatively high-throughput methodology to allow pharmacological characterization of the native TRPV1 receptor using a spinal cord neuropeptide release assay under naive and phosphorylating states. Experimental Approach Herein, we describe characterization of rodent TRPV1 by measurement of CGRP release from acutely isolated lumbar (L1-L6) spinal cord using a 96-well technique that combines use of native, adult tissue with quantitation of CGRP release by elisa. Key Results We have studied a diverse panel of TRPV1 agonists and antagonists under basal and phosphorylating conditions. We show that TRPV1-mediated CGRP release is evoked, in a temperature-dependent manner, by a PKC activator, phorbol 12,13-dibutyrate (PDBu); and that treatment with PDBu increases the potency and efficacy of known TRPV1 chemical agonists, in an agonist-specific manner. We also show that the pharmacological profile of diverse TRPV1 antagonists is dependent on whether the stimulus is PDBu or capsaicin. Of note, HPPB was identified as an antagonist of capsaicin-evoked, but a potentiator of PDBu-evoked, CGRP release. Conclusions and Implications Our findings indicate that both TRPV1 agonist and antagonist profiles can be differentially altered by PKC activation. These findings may offer new insights for targeting TRPV1 in pain states. PMID:23062150
Kundnani, Vishal K; Zhu, Lisa; Tak, HH; Wong, HK
2010-01-01
Background: Multimodal intraoperative neuromonitoring is recommended during corrective spinal surgery, and has been widely used in surgery for spinal deformity with successful outcomes. Despite successful outcomes of corrective surgery due to increased safety of the patients with the usage of spinal cord monitoring in many large spine centers, this modality has not yet achieved widespread popularity. We report the analysis of prospectively collected intraoperative neurophysiological monitoring data of 354 consecutive patients undergoing corrective surgery for adolescent idiopathic scoliosis (AIS) to establish the efficacy of multimodal neuromonitoring and to evaluate comparative sensitivity and specificity. Materials and Methods: The study group consisted of 354 (female = 309; male = 45) patients undergoing spinal deformity corrective surgery between 2004 and 2008. Patients were monitored using electrophysiological methods including somatosensory-evoked potentials and motor-evoked potentials simultaneously. Results: Mean age of patients was 13.6 years (±2.3 years). The operative procedures involved were instrumented fusion of the thoracic/lumbar/both curves, Baseline somatosensory-evoked potentials (SSEP) and neurogenic motor-evoked potentials (NMEP) were recorded successfully in all cases. Thirteen cases expressed significant alert to prompt reversal of intervention. All these 13 cases with significant alert had detectable NMEP alerts, whereas significant SSEP alert was detected in 8 cases. Two patients awoke with new neurological deficit (0.56%) and had significant intraoperative SSEP + NMEP alerts. There were no false positives with SSEP (high specificity) but 5 patients with false negatives with SSEP (38%) reduced its sensitivity. There was no false negative with NMEP but 2 of 13 cases were false positive with NMEP (15%). The specificity of SSEP (100%) is higher than NMEP (96%); however, the sensitivity of NMEP (100%) is far better than SSEP (51%). Due to these results, the overall sensitivity, specificity and positive predictive value of combined multimodality neuromonitoring in this adult deformity series was 100, 98.5 and 85%, respectively. Conclusion: Neurogenic motor-evoked potential (NMEP) monitoring appears to be superior to conventional SSEP monitoring for identifying evolving spinal cord injury. Used in conjunction, the sensitivity and specificity of combined neuromonitoring may reach up to 100%. Multimodality monitoring with SSEP + NMEP should be the standard of care. PMID:20165679
Wright, Nathaniel C; Wessel, Ralf
2017-10-01
A primary goal of systems neuroscience is to understand cortical function, typically by studying spontaneous and stimulus-modulated cortical activity. Mounting evidence suggests a strong and complex relationship exists between the ongoing and stimulus-modulated cortical state. To date, most work in this area has been based on spiking in populations of neurons. While advantageous in many respects, this approach is limited in scope: it records the activity of a minority of neurons and gives no direct indication of the underlying subthreshold dynamics. Membrane potential recordings can fill these gaps in our understanding, but stable recordings are difficult to obtain in vivo. Here, we recorded subthreshold cortical visual responses in the ex vivo turtle eye-attached whole brain preparation, which is ideally suited for such a study. We found that, in the absence of visual stimulation, the network was "synchronous"; neurons displayed network-mediated transitions between hyperpolarized (Down) and depolarized (Up) membrane potential states. The prevalence of these slow-wave transitions varied across turtles and recording sessions. Visual stimulation evoked similar Up states, which were on average larger and less reliable when the ongoing state was more synchronous. Responses were muted when immediately preceded by large, spontaneous Up states. Evoked spiking was sparse, highly variable across trials, and mediated by concerted synaptic inputs that were, in general, only very weakly correlated with inputs to nearby neurons. Together, these results highlight the multiplexed influence of the cortical network on the spontaneous and sensory-evoked activity of individual cortical neurons. NEW & NOTEWORTHY Most studies of cortical activity focus on spikes. Subthreshold membrane potential recordings can provide complementary insight, but stable recordings are difficult to obtain in vivo. Here, we recorded the membrane potentials of cortical neurons during ongoing and visually evoked activity. We observed a strong relationship between network and single-neuron evoked activity spanning multiple temporal scales. The membrane potential perspective of cortical dynamics thus highlights the influence of intrinsic network properties on visual processing. Copyright © 2017 the American Physiological Society.
Miskovic, Vladimir; Martinovic, Jasna; Wieser, Matthias M.; Petro, Nathan M.; Bradley, Margaret M.; Keil, Andreas
2015-01-01
Emotionally arousing scenes readily capture visual attention, prompting amplified neural activity in sensory regions of the brain. The physical stimulus features and related information channels in the human visual system that contribute to this modulation, however, are not known. Here, we manipulated low-level physical parameters of complex scenes varying in hedonic valence and emotional arousal in order to target the relative contributions of luminance based versus chromatic visual channels to emotional perception. Stimulus-evoked brain electrical activity was measured during picture viewing and used to quantify neural responses sensitive to lower-tier visual cortical involvement (steady-state visual evoked potentials) as well as the late positive potential, reflecting a more distributed cortical event. Results showed that the enhancement for emotional content was stimulus-selective when examining the steady-state segments of the evoked visual potentials. Response amplification was present only for low spatial frequency, grayscale stimuli, and not for high spatial frequency, red/green stimuli. In contrast, the late positive potential was modulated by emotion regardless of the scene’s physical properties. Our findings are discussed in relation to neurophysiologically plausible constraints operating at distinct stages of the cortical processing stream. PMID:25640949
NASA Astrophysics Data System (ADS)
Noponen, Tommi; Kicic, Dubravko; Kotilahti, Kalle; Kajava, Timo; Kahkonen, Seppo; Nissila, Ilkka; Merilainen, Pekka; Katila, Toivo
2005-04-01
Visually evoked hemodynamic responses and potentials were simultaneously measured using a 16-channel optical imaging instrument and a 60-channel electroencephalography instrument during normo-, hypo- and hypercapnia from three subjects. Flashing and pattern-reversed checkerboard stimuli were used. The study protocol included two counterbalanced measurements during both normo- and hypocapnia and normo- and hypercapnia. Hypocapnia was produced by controlled hyperventilation and hypercapnia by breathing carbon dioxide enriched air. Near-infrared imaging was also used to monitor the concentration changes of oxy- and deoxyhaemoglobin due to hypo- and hypercapnia. Hemodynamic responses and evoked potentials were successfully detected for each subject above the visual cortex. The latencies of the hemodynamic responses during hypocapnia were shorter whereas during hypercapnia they were longer when compared to the latencies during normocapnia. Hypocapnia tended to decrease the latencies of visually evoked potentials compared to those during normocapnia while hypercapnia did not show any consistent effect to the potentials. The developed measurement setup and the study protocol provide the opportunity to investigate the neurovascular coupling and the links between the baseline level of blood flow, electrical activity and hemodynamic responses in the human brain.
Miskovic, Vladimir; Martinovic, Jasna; Wieser, Matthias J; Petro, Nathan M; Bradley, Margaret M; Keil, Andreas
2015-03-01
Emotionally arousing scenes readily capture visual attention, prompting amplified neural activity in sensory regions of the brain. The physical stimulus features and related information channels in the human visual system that contribute to this modulation, however, are not known. Here, we manipulated low-level physical parameters of complex scenes varying in hedonic valence and emotional arousal in order to target the relative contributions of luminance based versus chromatic visual channels to emotional perception. Stimulus-evoked brain electrical activity was measured during picture viewing and used to quantify neural responses sensitive to lower-tier visual cortical involvement (steady-state visual evoked potentials) as well as the late positive potential, reflecting a more distributed cortical event. Results showed that the enhancement for emotional content was stimulus-selective when examining the steady-state segments of the evoked visual potentials. Response amplification was present only for low spatial frequency, grayscale stimuli, and not for high spatial frequency, red/green stimuli. In contrast, the late positive potential was modulated by emotion regardless of the scene's physical properties. Our findings are discussed in relation to neurophysiologically plausible constraints operating at distinct stages of the cortical processing stream. Copyright © 2015 Elsevier B.V. All rights reserved.
Controlling a stream of paranoia evoking events in a virtual reality environment.
Isnanda, Reza Giga; Brinkman, Willem-Paul; Veling, Wim; van der Gaag, Mark; Neerincx, Mark
2014-01-01
Although virtual reality exposure has been reported as a method to induce paranoid thought, little is known about mechanisms to control specific virtual stressors. This paper reports on a study that examines the effect of controlling the stream of potential paranoia evoking events in a virtual restaurant world. A 2-by-2 experiment with a non-clinical group (n = 24) was conducted with as two within-subject factors: (1) the cycle time (short/long) for when the computer considers activation of a paranoia evoking event and (2) the probability that a paranoia-evoking event (low/high) would be triggered at the completion of a cycle. The results showed a significant main effect for the probability factor and two-way interaction effect with the cycle time factor on the number of paranoid comments participants made and their self-reported anxiety.
Leite, Renata Aparecida; Magliaro, Fernanda Cristina Leite; Raimundo, Jeziela Cristina; Bento, Ricardo Ferreira; Matas, Carla Gentile
2018-02-19
The objective of this study was to compare long-latency auditory evoked potentials before and after hearing aid fittings in children with sensorineural hearing loss compared with age-matched children with normal hearing. Thirty-two subjects of both genders aged 7 to 12 years participated in this study and were divided into two groups as follows: 14 children with normal hearing were assigned to the control group (mean age 9 years and 8 months), and 18 children with mild to moderate symmetrical bilateral sensorineural hearing loss were assigned to the study group (mean age 9 years and 2 months). The children underwent tympanometry, pure tone and speech audiometry and long-latency auditory evoked potential testing with speech and tone burst stimuli. The groups were assessed at three time points. The study group had a lower percentage of positive responses, lower P1-N1 and P2-N2 amplitudes (speech and tone burst), and increased latencies for the P1 and P300 components following the tone burst stimuli. They also showed improvements in long-latency auditory evoked potentials (with regard to both the amplitude and presence of responses) after hearing aid use. Alterations in the central auditory pathways can be identified using P1-N1 and P2-N2 amplitude components, and the presence of these components increases after a short period of auditory stimulation (hearing aid use). These findings emphasize the importance of using these amplitude components to monitor the neuroplasticity of the central auditory nervous system in hearing aid users.
Leite, Renata Aparecida; Magliaro, Fernanda Cristina Leite; Raimundo, Jeziela Cristina; Bento, Ricardo Ferreira; Matas, Carla Gentile
2018-01-01
OBJECTIVE: The objective of this study was to compare long-latency auditory evoked potentials before and after hearing aid fittings in children with sensorineural hearing loss compared with age-matched children with normal hearing. METHODS: Thirty-two subjects of both genders aged 7 to 12 years participated in this study and were divided into two groups as follows: 14 children with normal hearing were assigned to the control group (mean age 9 years and 8 months), and 18 children with mild to moderate symmetrical bilateral sensorineural hearing loss were assigned to the study group (mean age 9 years and 2 months). The children underwent tympanometry, pure tone and speech audiometry and long-latency auditory evoked potential testing with speech and tone burst stimuli. The groups were assessed at three time points. RESULTS: The study group had a lower percentage of positive responses, lower P1-N1 and P2-N2 amplitudes (speech and tone burst), and increased latencies for the P1 and P300 components following the tone burst stimuli. They also showed improvements in long-latency auditory evoked potentials (with regard to both the amplitude and presence of responses) after hearing aid use. CONCLUSIONS: Alterations in the central auditory pathways can be identified using P1-N1 and P2-N2 amplitude components, and the presence of these components increases after a short period of auditory stimulation (hearing aid use). These findings emphasize the importance of using these amplitude components to monitor the neuroplasticity of the central auditory nervous system in hearing aid users. PMID:29466495
Boyes, William K; Degn, Laura L; Martin, Sheppard A; Lyke, Danielle F; Hamm, Charles W; Herr, David W
2014-01-01
Ethanol-blended gasoline entered the market in response to demand for domestic renewable energy sources, and may result in increased inhalation of ethanol vapors in combination with other volatile gasoline constituents. It is important to understand potential risks of inhalation of ethanol vapors by themselves, and also as a baseline for evaluating the risks of ethanol combined with a complex mixture of hydrocarbon vapors. Because sensory dysfunction has been reported after developmental exposure to ethanol, we evaluated the effects of developmental exposure to ethanol vapors on neurophysiological measures of sensory function as a component of a larger project evaluating developmental ethanol toxicity. Pregnant Long-Evans rats were exposed to target concentrations 0, 5000, 10,000, or 21,000 ppm ethanol vapors for 6.5h/day over GD9-GD20. Sensory evaluations of male offspring began between PND106 and PND128. Peripheral nerve function (compound action potentials, nerve conduction velocity (NCV)), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual evoked responses were assessed. Visual function assessment included pattern elicited visual evoked potentials (VEPs), VEP contrast sensitivity, and electroretinograms recorded from dark-adapted (scotopic), light-adapted (photopic) flashes, and UV flicker and green flicker. No consistent concentration-related changes were observed for any of the physiological measures. The results show that gestational exposure to ethanol vapor did not result in detectable changes in peripheral nerve, somatosensory, auditory, or visual function when the offspring were assessed as adults. Published by Elsevier Inc.
Short latency vestibular evoked potentials in the chicken embryo
NASA Technical Reports Server (NTRS)
Jones, S. M.; Jones, T. A.
1996-01-01
Electrophysiological responses to pulsed linear acceleration stimuli were recorded in chicken embryos incubated for 19 or 20 days (E19/E20). Responses occurred within the first 16 ms following the stimulus onset. The evoked potentials disappeared following bilateral labyrinthectomy, but persisted following cochlear destruction alone, thus demonstrating that the responses were vestibular. Approximately 8 to 10 response peaks could be identified. The first 4 positive and corresponding negative components (early peaks with latencies < 6.0 ms) were scored and latencies and amplitudes quantified. Vestibular response latencies were significantly longer (P < 0.01) and amplitudes significantly smaller (P < 0.001) than those observed in 2-week-old birds. Mean response threshold for anesthetized embryos was -15.9dBre 1.0 g/ms, which was significantly higher (P < 0.03) than those observed in 2-week-old birds (-23.0dBre 1.0 g/ms). Latency/intensity functions (that is, slopes) were not significantly different between embryos and 2-week-old animals, but amplitude/intensity functions for embryos were significantly shallower than those for 2-week-old birds (P < 0.001). We presume that these differences reflect the refinement of sensory function that occurs following 19 to 20 days of incubation. The recording of vestibular evoked potentials provides an objective, direct and noninvasive measure of peripheral vestibular function in the embryo and, as such, the method shows promise as an investigative tool. The results of the present study form the definitive basis for using vestibular evoked potentials in the detailed study of avian vestibular ontogeny and factors that may influence it.
Cervical intraspinal microstimulation evokes robust forelimb movements before and after injury
NASA Astrophysics Data System (ADS)
Sunshine, Michael D.; Cho, Frances S.; Lockwood, Danielle R.; Fechko, Amber S.; Kasten, Michael R.; Moritz, Chet T.
2013-06-01
Objective. Intraspinal microstimulation (ISMS) is a promising method for reanimating paralyzed limbs following neurological injury. ISMS within the cervical and lumbar spinal cord is capable of evoking a variety of highly-functional movements prior to injury, but the ability of ISMS to evoke forelimb movements after cervical spinal cord injury is unknown. Here we examine the forelimb movements and muscles activated by cervical ISMS both before and after contusion injury. Approach. We documented the forelimb muscles activated and movements evoked via systematic stimulation of the rodent cervical spinal cord both before injury and three, six and nine weeks following a moderate C4/C5 lateralized contusion injury. Animals were anesthetized with isoflurane to permit construction of somatotopic maps of evoked movements and quantify evoked muscle synergies between cervical segments C3 and T1. Main results. When ISMS was delivered to the cervical spinal cord, a variety of responses were observed at 68% of locations tested, with a spatial distribution that generally corresponded to the location of motor neuron pools. Stimulus currents required to achieve movement and the number of sites where movements could be evoked were unchanged by spinal cord injury. A transient shift toward extension-dominated movements and restricted muscle synergies were observed at three and six weeks following injury, respectively. By nine weeks after injury, however, ISMS-evoked patterns were similar to spinally-intact animals. Significance. The results demonstrate the potential for cervical ISMS to reanimate hand and arm function following spinal cord injury. Robust forelimb movements can be evoked both before and during the chronic stages of recovery from a clinically relevant and sustained cervical contusion injury.
Squids in the Study of Cerebral Magnetic Field
NASA Astrophysics Data System (ADS)
Romani, G. L.; Narici, L.
The following sections are included: * INTRODUCTION * HISTORICAL OVERVIEW * NEUROMAGNETIC FIELDS AND AMBIENT NOISE * DETECTORS * Room temperature sensors * SQUIDs * DETECTION COILS * Magnetometers * Gradiometers * Balancing * Planar gradiometers * Choice of the gradiometer parameters * MODELING * Current pattern due to neural excitations * Action potentials and postsynaptic currents * The current dipole model * Neural population and detected fields * Spherically bounded medium * SPATIAL CONFIGURATION OF THE SENSORS * SOURCE LOCALIZATION * Localization procedure * Experimental accuracy and reproducibility * SIGNAL PROCESSING * Analog Filtering * Bandpass filters * Line rejection filters * DATA ANALYSIS * Analysis of evoked/event-related responses * Simple average * Selected average * Recursive techniques * Similarity analysis * Analysis of spontaneous activity * Mapping and localization * EXAMPLES OF NEUROMAGNETIC STUDIES * Neuromagnetic measurements * Studies on the normal brain * Clinical applications * Epilepsy * Tinnitus * CONCLUSIONS * ACKNOWLEDGEMENTS * REFERENCES
Uribe-Mariño, Andrés; Francisco, Audrey; Castiblanco-Urbina, Maria Angélica; Twardowschy, André; Salgado-Rohner, Carlos José; Crippa, José Alexandre S; Hallak, Jaime Eduardo Cecílio; Zuardi, Antônio Waldo; Coimbra, Norberto Cysne
2012-01-01
Several pharmacological targets have been proposed as modulators of panic-like reactions. However, interest should be given to other potential therapeutic neurochemical agents. Recent attention has been given to the potential anxiolytic properties of cannabidiol, because of its complex actions on the endocannabinoid system together with its effects on other neurotransmitter systems. The aim of this study was to investigate the effects of cannabidiol on innate fear-related behaviors evoked by a prey vs predator paradigm. Male Swiss mice were submitted to habituation in an arena containing a burrow and subsequently pre-treated with intraperitoneal administrations of vehicle or cannabidiol. A constrictor snake was placed inside the arena, and defensive and non-defensive behaviors were recorded. Cannabidiol caused a clear anti-aversive effect, decreasing explosive escape and defensive immobility behaviors outside and inside the burrow. These results show that cannabidiol modulates defensive behaviors evoked by the presence of threatening stimuli, even in a potentially safe environment following a fear response, suggesting a panicolytic effect. PMID:21918503
Xie, Jun; Xu, Guanghua; Wang, Jing; Li, Min; Han, Chengcheng; Jia, Yaguang
Steady-state visual evoked potentials (SSVEP) based paradigm is a conventional BCI method with the advantages of high information transfer rate, high tolerance to artifacts and the robust performance across users. But the occurrence of mental load and fatigue when users stare at flickering stimuli is a critical problem in implementation of SSVEP-based BCIs. Based on electroencephalography (EEG) power indices α, θ, θ + α, ratio index θ/α and response properties of amplitude and SNR, this study quantitatively evaluated the mental load and fatigue in both of conventional flickering and the novel motion-reversal visual attention tasks. Results over nine subjects revealed significant mental load alleviation in motion-reversal task rather than flickering task. The interaction between factors of "stimulation type" and "fatigue level" also illustrated the motion-reversal stimulation as a superior anti-fatigue solution for long-term BCI operation. Taken together, our work provided an objective method favorable for the design of more practically applicable steady-state evoked potential based BCIs.
Radwan, Heba Mohammed; El-Gharib, Amani Mohamed; Erfan, Adel Ali; Emara, Afaf Ahmad
2017-05-01
Delay in ABR and CAEPs wave latencies in children with type 1DM indicates that there is abnormality in the neural conduction in DM patients. The duration of DM has greater effect on auditory function than the control of DM. Diabetes mellitus (DM) is a common endocrine and metabolic disorder. Evoked potentials offer the possibility to perform a functional evaluation of neural pathways in the central nervous system. To investigate the effect of type 1 diabetes mellitus (T1DM) on auditory brain stem response (ABR) and cortical evoked potentials (CAEPs). This study included two groups: a control group (GI), which consisted of 20 healthy children with normal peripheral hearing, and a study group (GII), which consisted of 30 children with type I DM. Basic audiological evaluation, ABR, and CAEPs were done in both groups. Delayed absolute latencies of ABR and CAEPs waves were found. Amplitudes showed no significant difference between both groups. Positive correlation was found between ABR wave latencies and duration of DM. No correlation was found between ABR, CAEPs, and glycated hemoglobin.
Axono-cortical evoked potentials: A proof-of-concept study.
Mandonnet, E; Dadoun, Y; Poisson, I; Madadaki, C; Froelich, S; Lozeron, P
2016-04-01
Awake surgery is currently considered the best method to tailor intraparenchymatous resections according to functional boundaries. However, the exact mechanisms by which electrical stimulation disturbs behavior remain largely unknown. In this case report, we describe a new method to explore the propagation toward cortical sites of a brief pulse applied to an eloquent white matter pathway. We present a patient, operated on in awake condition for removal of a cavernoma of the left ventral premotor cortex. At the end of the resection, the application of 60Hz stimulation in the white matter of the operculum induced anomia. Stimulating the same site at a frequency of 1Hz during 70seconds allowed to record responses on electrodes put over Broca's area and around the inferior part of central sulcus. Axono-cortical evoked potentials were then obtained by averaging unitary responses, time-locked to the stimulus. We then discuss the origin of these evoked axono-cortical potentials and the likely pathway connecting the stimulation site to the recorded cortical sites. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Kazennikov, O V; Solopova, I A; Talis, V L; Ioffe, M E
2006-01-01
The role of the motor cortex was investigated during learning unusual postural adjustment. Healthy subjects held their right (postural) forearm in a horizontal position while supporting a 1-kG load via an electromagnet. The postural forearm position was perturbed by the load release triggered by other elbow voluntary movement. Repetition of the imposed unloading test resulted in a progressive reduction of the maximal forearm rotation, accompanied by the anticipatory decrease in m. biceps brachii activity (learning). Control situation consisted of the voluntary forearm loading. Using the transcranial magnetic stimulation we examined changes in the motor evoked potential of the m. biceps brahii at the beginning and at the end of learning. The evoked potential amplitude did not significantly change in process of the decrease of m. biceps brachii activity. At the end of learning, motor evoked potential / baseline electromyogram ratio increased as compared to the beginning of learning and to the control situation. The results highlight the fundamental role of the motor cortex in suppression of synergies which interfere with formation of a new coordination during motor learning.
Auditory evoked potential (AEP) measurements in stranded rough-toothed dolphins (Steno bredanensis)
NASA Astrophysics Data System (ADS)
Cook, Mandy L. H.; Manire, Charles A.; Mann, David A.
2005-04-01
Thirty-six rough-toothed dolphins (Steno bredanensis) live-stranded on Hutchinson Island, FL on August 6, 2004. Seven animals were transported to Mote Marine Laboratory for rehabilitation. Two auditory evoked potential (AEP) measurements were performed on each of five of these dolphins in air using a jawphone to present acoustic stimuli. Modulation rate transfer functions (MRTFs) were measured to establish how well the auditory system follows the temporal envelope of acoustic stimuli. A 40 kHz stimulus carrier was amplitude modulated (AM) with varying rates ranging from 200 Hz to 1800 Hz, in 200 Hz steps. The best AM-rate from the first dolphin tested was 1500 Hz. This AM rate was used in subsequent AEP measurements to determine evoked-potential hearing thresholds between 5000 and 80
Brain correlates of music-evoked emotions.
Koelsch, Stefan
2014-03-01
Music is a universal feature of human societies, partly owing to its power to evoke strong emotions and influence moods. During the past decade, the investigation of the neural correlates of music-evoked emotions has been invaluable for the understanding of human emotion. Functional neuroimaging studies on music and emotion show that music can modulate activity in brain structures that are known to be crucially involved in emotion, such as the amygdala, nucleus accumbens, hypothalamus, hippocampus, insula, cingulate cortex and orbitofrontal cortex. The potential of music to modulate activity in these structures has important implications for the use of music in the treatment of psychiatric and neurological disorders.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Sun, JinWei; Rolfe, Peter
2010-12-01
Near-infrared spectroscopy (NIRS) can be used as the basis of non-invasive neuroimaging that may allow the measurement of haemodynamic changes in the human brain evoked by applied stimuli. Since this technique is very sensitive, physiological interference arising from the cardiac cycle and breathing can significantly affect the signal quality. Such interference is difficult to remove by conventional techniques because it occurs not only in the extracerebral layer but also in the brain tissue itself. Previous work on this problem employing temporal filtering, spatial filtering, and adaptive filtering have exhibited good performance for recovering brain activity data in evoked response studies. However, in this study, we present a time-frequency adaptive method for physiological interference reduction based on the combination of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). Monte Carlo simulations based on a five-layered slab model of a human adult head were implemented to evaluate our methodology. We applied an EMD algorithm to decompose the NIRS time series derived from Monte Carlo simulations into a series of intrinsic mode functions (IMFs). In order to identify the IMFs associated with symmetric interference, the extracted components were then Hilbert transformed from which the instantaneous frequencies could be acquired. By reconstructing the NIRS signal by properly selecting IMFs, we determined that the evoked brain response is effectively filtered out with even higher signal-to-noise ratio (SNR). The results obtained demonstrated that EMD, combined with HSA, can effectively separate, identify and remove the contamination from the evoked brain response obtained with NIRS using a simple single source-detector pair.
NASA Astrophysics Data System (ADS)
Doi, Marika; Ogawa, Emiyu; Arai, Tsunenori
2017-02-01
In order to study cardiomyocyte electrical conduction damage by a photosensitization reaction (PR) mostly comes from outside of the cells in a few minutes after the PR, we studied propagation delay of contact action potential with cardiomyocyte by the PR. To determine appropriate PR condition for tachyarrhythmia ablation, a precise electrophysiological experiment in vitro has been preferable. We measured the contact action potential using a microelectrode array system of which information may be correct than conventional Ca2+ measurement. We investigated the propagation delays of an evoked potential to evaluate the electrical conduction damage by the PR. Rat cardiomyocytes were cultivated for 5-7 days on a dish with which 64 electrodes were patterned, in an incubator controlled to 37°C, 5% CO2. The following conditions were used for the PR: 40 μg/ml talapordfin sodium and 290 mW/cm2, 40-78 J/cm2 for an irradiation. A 2D map was obtained to visualize the propagation delays of the evoked potential. The propagation speed, which was calculated based on the measured propagation delays, was decreased by about 30-50% on average of all electrodes after the PR. Therefore, we think 2D propagation delays measurement of the evoked potential with contact action potential measuring system might be available to evaluate the acute electrical conduction damage of cardiomyocyte by the PR.
Tye, S J; Miller, A D; Blaha, C D
2013-11-12
Activation of glutamate receptors within the ventral tegmental area (VTA) stimulates extrasynaptic (basal) dopamine release in terminal regions, including the nucleus accumbens (NAc). Hindbrain inputs from the laterodorsal tegmental nucleus (LDT) are critical for elicitation of phasic VTA dopamine cell activity and consequent transient dopamine release. This study investigated the role of VTA ionotropic glutamate receptor (iGluR) stimulation on both basal and LDT electrical stimulation-evoked dopamine efflux in the NAc using in vivo chronoamperometry and fixed potential amperometry in combination with stearate-graphite paste and carbon fiber electrodes, respectively. Intra-VTA infusion of the iGluR agonists (±)-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA; 1 μg/μl) or N-methyl-d-aspartic acid (NMDA; 2 μg/μl) enhanced basal NAc dopamine efflux. This iGluR-mediated potentiation of basal dopamine efflux was paralleled by an attenuation of LDT-evoked transient NAc dopamine efflux, suggesting that excitation of basal activity effectively inhibited the capacity of hindbrain afferents to elicit transient dopamine efflux. In line with this, post-NMDA infusion of the dopamine D2 autoreceptor (D2R) agonist quinpirole (1 μg/μl; intra-VTA) partially recovered NMDA-mediated attenuation of LDT-evoked NAc dopamine, while concurrently attenuating NMDA-mediated potentiation of basal dopamine efflux. Post-NMDA infusion of quinpirole (1 μg/μl) alone attenuated basal and LDT-evoked dopamine efflux. Taken together, these data reveal that hyperstimulation of basal dopamine transmission can stunt hindbrain burst-like stimulation-evoked dopamine efflux. Inhibitory autoreceptor mechanisms within the VTA help to partially recover the magnitude of phasic dopamine efflux, highlighting the importance of both iGluRs and D2 autoreceptors in maintaining the functional balance of tonic and phasic dopamine neurotransmission. Dysregulation of this balance may have important implications for disorders of dopamine dysregulation such as attention deficit hyperactivity disorder. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Middle ear muscle contractions and their relation to pulse and echo evoked potentials in the bat
NASA Technical Reports Server (NTRS)
Henson, O. W., Jr.; Henson, M. M.
1972-01-01
An analysis is made of pulse and echo orientation cries of the Mustache Bat. That bat's cries are characterized by a long, 60 to 30 msec, pure tone component and brief beginning and terminal FM sweeps. In addition to obvious echo overlap and middle ear muscle contractions, the following are examined: (1) characteristics of pulse- and echo-evoked potential under various conditions, (2) evidence of changes in hearing sensitivity during and after pulse emission, and (3) the role of the middle ear muscles in bringing about these changes.
Melatonin potentiates tear secretion induced by diadenosine tetraphosphate in the rabbit.
Hoyle, Charles H V; Peral, Assumpta; Pintor, Jesús
2006-12-15
Diadenosine tetraphosphate (Ap(4)A, 0.03 nmol) applied topically to the cornea of New Zealand white rabbits, evoked an increase in tear secretion of 9.7 +/- 2.60% (N=7). Melatonin (1 nmol) had no significant effect. Application of Ap(4)A in combination with melatonin, evoked a significantly greater increase in tear secretion of 34.2 +/- 5.8% (N=11). This potentiating effect of melatonin was blocked by pretreating the cornea with a topical application of the melatonin receptor antagonist, luzindole (240 nmol). Melatonin combined with Ap(4)A may be useful for treating dry eye conditions.
Neurophysiologic intraoperative monitoring of the vestibulocochlear nerve.
Simon, Mirela V
2011-12-01
Neurosurgical procedures involving the skull base and structures within can pose a significant risk of damage to the brain stem and cranial nerves. This can have life-threatening consequences and/or result in devastating neurologic deficits. Over the past decade, intraoperative neurophysiology has significantly evolved and currently offers a great tool for live monitoring of the integrity of nervous structures. Thus, dysfunction can be identified early and prompt modification of the surgical management or operating conditions, leads to avoidance of permanent structural damage.Along these lines, the vestibulocochlear nerve (CN VIII) and, to a greater extent, the auditory pathways as they pass through the brain stem are especially at risk during cerebelopontine angle (CPA), posterior/middle fossa, or brain stem surgery. CN VIII can be damaged by several mechanisms, from vascular compromise to mechanical injury by stretch, compression, dissection, and heat injury. Additionally, cochlea itself can be significantly damaged during temporal bone drilling, by noise, mechanical destruction, or infarction, and because of rupture, occlusion, or vasospasm of the internal auditory artery.CN VIII monitoring can be successfully achieved by live recording of the function of one of its parts, the cochlear or auditory nerve (AN), using the brain stem auditory evoked potentials (BAEPs), electrocochleography (ECochG), and compound nerve action potentials (CNAPs) of the cochlear nerve.This is a review of these techniques, their principle, applications, methodology, interpretation of the evoked responses, and their change from baseline, within the context of surgical and anesthesia environments, and finally the appropriate management of these changes.
Sutter, Martin A.; Grob, Dieter; Jeszenszky, Dezsö; Porchet, François; Dvorak, Jiri
2007-01-01
A prospective study of 246 patients who received multimodal intraoperative monitoring during cervical spine surgery between March 2000 and December 2005. To determine the sensitivity and specificity of MIOM techniques used to monitor spinal cord and nerve root function during cervical spine surgery. It is appreciated that complication rate of cervical spine surgery is low, however, there is a significant risk of neurological injury. The combination of monitoring of ascending and descending pathways may provide more sensitive and specific results giving immediate feedback information and/or alert regarding any neurological changes during the operation to the surgeon. Intraoperative somatosensory spinal and cerebral evoked potentials combined with continuous EMG and motor-evoked potentials of the spinal cord and muscles were evaluated and compared with postoperative clinical neurological changes. A total of 246 consecutive patients with cervical pathologies, majority spinal stenosis due to degenerative changes of cervical spine were monitored by means of MIOM during the surgical procedure. About 232 patients presented true negative while 2 patients false negative responses. About ten patients presented true positive responses where neurological deficit after the operation was predicted and two patients presented false positive findings. The sensitivity of MIOM applied during cervical spine procedure (anterior and/or posterior) was 83.3% and specificity of 99.2%. MIOM is an effective method of monitoring the spinal cord functional integrity during cervical spine surgery and can help to reduce the risk of neurological deficit by alerting the surgeon when monitoring changes are observed. PMID:17610090
Identification of spinal circuits involved in touch-evoked dynamic mechanical pain
Cheng, Longzhen; Duan, Bo; Huang, Tianwen; Zhang, Yan; Chen, Yangyang; Britz, Olivier; Garcia-Campmany, Lidia; Ren, Xiangyu; Vong, Linh; Lowell, Bradford B.; Goulding, Martyn; Wang, Yun; Ma, Qiufu
2017-01-01
Mechanical hypersensitivity is a debilitating symptom associated with millions of chronic pain patients. It exists in distinct forms, including brush-evoked dynamic and filament-evoked punctate. Here we report that dynamic mechanical hypersensitivity induced by nerve injury or inflammation was compromised in mice with ablation of spinal VT3Lbx1 neurons defined by coexpression of VGLUT3Cre and Lbx1Flpo, as indicated by the loss of brush-evoked nocifensive responses and conditional place aversion. Electrophysiological recordings show that VT3Lbx1 neurons form morphine-resistant polysynaptic pathways relaying inputs from low-threshold Aβ mechanoreceptors to lamina I output neurons. Meanwhile, the subset of somatostatin (SOM) lineage neurons preserved in VT3Lbx1 neuron-ablated mice is largely sufficient to mediate von Frey filament-evoked punctate mechanical hypersensitivity, including both morphine-sensitive and morphine-resistant forms. Furthermore, acute silencing of VT3Lbx1 neurons attenuated pre-established dynamic mechanical hypersensitivity induced by nerve injury, suggesting these neurons as a potential cellular target for treating this form of neuropathic pain. PMID:28436981
Desmedt, J E; Ozaki, I
1991-01-01
A method using a DC servo motor is described to produce brisk angular movements at finger interphalangeal joints in humans. Small passive flexions of 2 degrees elicited sizable somatosensory evoked potentials (SEPs) starting with a contralateral positive P34 parietal response thought to reflect activation of a radial equivalent dipole generator in area 2 which receives joint inputs. By contrast, electric stimulation of tactile (non-joint) inputs from the distal phalanx evoked the usual contralateral negative N20 reflecting a tangential equivalent dipole generator in area 3b. Finger joint inputs also evoked a precentral positivity equivalent to the P22 of motor area 4, and a large frontal negativity equivalent to N30. It is suggested that natural stimulation allows human SEP components to be differentiated in conjunction with distinct cortical somatotopic projections.
NASA Astrophysics Data System (ADS)
Valderrama, Joaquin T.; de la Torre, Angel; Van Dun, Bram
2018-02-01
Objective. Artifact reduction in electroencephalogram (EEG) signals is usually necessary to carry out data analysis appropriately. Despite the large amount of denoising techniques available with a multichannel setup, there is a lack of efficient algorithms that remove (not only detect) blink-artifacts from a single channel EEG, which is of interest in many clinical and research applications. This paper describes and evaluates the iterative template matching and suppression (ITMS), a new method proposed for detecting and suppressing the artifact associated with the blink activity from a single channel EEG. Approach. The approach of ITMS consists of (a) an iterative process in which blink-events are detected and the blink-artifact waveform of the analyzed subject is estimated, (b) generation of a signal modeling the blink-artifact, and (c) suppression of this signal from the raw EEG. The performance of ITMS is compared with the multi-window summation of derivatives within a window (MSDW) technique using both synthesized and real EEG data. Main results. Results suggest that ITMS presents an adequate performance in detecting and suppressing blink-artifacts from a single channel EEG. When applied to the analysis of cortical auditory evoked potentials (CAEPs), ITMS provides a significant quality improvement in the resulting responses, i.e. in a cohort of 30 adults, the mean correlation coefficient improved from 0.37 to 0.65 when the blink-artifacts were detected and suppressed by ITMS. Significance. ITMS is an efficient solution to the problem of denoising blink-artifacts in single-channel EEG applications, both in clinical and research fields. The proposed ITMS algorithm is stable; automatic, since it does not require human intervention; low-invasive, because the EEG segments not contaminated by blink-artifacts remain unaltered; and easy to implement, as can be observed in the Matlab script implemeting the algorithm provided as supporting material.
Trisciuzzi, Maria Teresa S; Riccardi, Riccardo; Piccardi, Marco; Iarossi, Giancarlo; Buzzonetti, Luca; Dickmann, Anna; Colosimo, Cesare; Ruggiero, Antonio; Di Rocco, Concezio; Falsini, Benedetto
2004-01-01
To evaluate a fast technique of visual evoked potentials (VEPs) recording, in response to steady-state luminance stimuli (SS-LVEPs), for functional assessment and follow-up of childhood optic gliomas (OGs). Eighteen OG patients (age range: 3.5-18 years), with different degrees of optic pathway damage severity, were examined. Sixteen age-matched normal subjects served as controls. Ten of the 18 OG patients were re-tested 1-3 months after the first examination. SS-LVEPs were elicited by a sinusoidally-modulated flickering (8 Hz) uniform field, generated by a light emitting diode (LED)-array and presented monocularly in a mini-ganzfeld. Amplitude and phase of the Fourier-analyzed response fundamental (1F) and second harmonic (2F) were measured. The full VEP protocol had a median duration of 6 min (range: 4-12). When compared to normal control values, median 1F and 2F SS-LVEP amplitudes of OG patients were reduced (P<0.01), with a borderline increase in 2F phase lag (P<0.05). In 11 OG patients with asymmetric optic pathway damage in between-eye comparisons, median 1F amplitude losses were greater (P<0.01) in fellow eyes with more severe damage. No significant interocular difference was observed in control subjects. Median test-retest changes of 1F and 2F component were <20% and 30 degrees for amplitude and phase, respectively. In individual OG patients, 1F and 2F amplitudes were positively correlated (P<0.01) with visual acuity. 1F amplitude losses were correlated (P=0.01) with the severity of optic disc atrophy. Considering both 1F and 2F abnormalities, diagnostic sensitivity of SS-LVEP in detecting OG-induced optic pathways damage was 83.3%. The present findings support the use of this technique, as an alternative to pattern VEPs, for functional assessment and follow-up of OG in uncooperative children.
Sweep visually evoked potentials and visual findings in children with West syndrome.
de Freitas Dotto, Patrícia; Cavascan, Nívea Nunes; Berezovsky, Adriana; Sacai, Paula Yuri; Rocha, Daniel Martins; Pereira, Josenilson Martins; Salomão, Solange Rios
2014-03-01
West syndrome (WS) is a type of early childhood epilepsy characterized by progressive neurological development deterioration that includes vision. To demonstrate the clinical importance of grating visual acuity thresholds (GVA) measurement by sweep visually evoked potentials technique (sweep-VEP) as a reliable tool for evaluation of the visual cortex status in WS children. This is a retrospective study of the best-corrected binocular GVA and ophthalmological features of WS children referred for the Laboratory of Clinical Electrophysiology of Vision of UNIFESP from 1998 to 2012 (Committee on Ethics in Research of UNIFESP n° 0349/08). The GVA deficit was calculated by subtracting binocular GVA score (logMAR units) of each patient from the median values of age norms from our own lab and classified as mild (0.1-0.39 logMAR), moderate (0.40-0.80 logMAR) or severe (>0.81 logMAR). Associated ophthalmological features were also described. Data from 30 WS children (age from 6 to 108 months, median = 14.5 months, mean ± SD = 22.0 ± 22.1 months; 19 male) were analyzed. The majority presented severe GVA deficit (0.15-1.44 logMAR; mean ± SD = 0.82 ± 0.32 logMAR; median = 0.82 logMAR), poor visual behavior, high prevalence of strabismus and great variability in ocular positioning. The GVA deficit did not vary according to gender (P = .8022), WS type (P = .908), birth age (P = .2881), perinatal oxygenation (P = .7692), visual behavior (P = .8789), ocular motility (P = .1821), nystagmus (P = .2868), risk of drug-induced retinopathy (P = .4632) and participation in early visual stimulation therapy (P = .9010). The sweep-VEP technique is a reliable tool to classify visual system impairment in WS children, in agreement with the poor visual behavior exhibited by them. Copyright © 2013 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Epp, Bastian; Yasin, Ifat; Verhey, Jesko L
2013-12-01
The audibility of important sounds is often hampered due to the presence of other masking sounds. The present study investigates if a correlate of the audibility of a tone masked by noise is found in late auditory evoked potentials measured from human listeners. The audibility of the target sound at a fixed physical intensity is varied by introducing auditory cues of (i) interaural target signal phase disparity and (ii) coherent masker level fluctuations in different frequency regions. In agreement with previous studies, psychoacoustical experiments showed that both stimulus manipulations result in a masking release (i: binaural masking level difference; ii: comodulation masking release) compared to a condition where those cues are not present. Late auditory evoked potentials (N1, P2) were recorded for the stimuli at a constant masker level, but different signal levels within the same set of listeners who participated in the psychoacoustical experiment. The data indicate differences in N1 and P2 between stimuli with and without interaural phase disparities. However, differences for stimuli with and without coherent masker modulation were only found for P2, i.e., only P2 is sensitive to the increase in audibility, irrespective of the cue that caused the masking release. The amplitude of P2 is consistent with the psychoacoustical finding of an addition of the masking releases when both cues are present. Even though it cannot be concluded where along the auditory pathway the audibility is represented, the P2 component of auditory evoked potentials is a candidate for an objective measure of audibility in the human auditory system. Copyright © 2013 Elsevier B.V. All rights reserved.
Barboni, M.T.S.; Gomes, B.D.; Souza, G.S.; Rodrigues, A.R.; Ventura, D.F.; Silveira, L.C.L.
2013-01-01
The purpose of the present study was to measure contrast sensitivity to equiluminant gratings using steady-state visual evoked cortical potential (ssVECP) and psychophysics. Six healthy volunteers were evaluated with ssVECPs and psychophysics. The visual stimuli were red-green or blue-yellow horizontal sinusoidal gratings, 5° × 5°, 34.3 cd/m2 mean luminance, presented at 6 Hz. Eight spatial frequencies from 0.2 to 8 cpd were used, each presented at 8 contrast levels. Contrast threshold was obtained by extrapolating second harmonic amplitude values to zero. Psychophysical contrast thresholds were measured using stimuli at 6 Hz and static presentation. Contrast sensitivity was calculated as the inverse function of the pooled cone contrast threshold. ssVECP and both psychophysical contrast sensitivity functions (CSFs) were low-pass functions for red-green gratings. For electrophysiology, the highest contrast sensitivity values were found at 0.4 cpd (1.95 ± 0.15). ssVECP CSF was similar to dynamic psychophysical CSF, while static CSF had higher values ranging from 0.4 to 6 cpd (P < 0.05, ANOVA). Blue-yellow chromatic functions showed no specific tuning shape; however, at high spatial frequencies the evoked potentials showed higher contrast sensitivity than the psychophysical methods (P < 0.05, ANOVA). Evoked potentials can be used reliably to evaluate chromatic red-green CSFs in agreement with psychophysical thresholds, mainly if the same temporal properties are applied to the stimulus. For blue-yellow CSF, correlation between electrophysiology and psychophysics was poor at high spatial frequency, possibly due to a greater effect of chromatic aberration on this kind of stimulus. PMID:23369980
2011-01-01
Background The electrical signals measuring method is recommended to examine the relationship between neuronal activities and measure with the event related potentials (ERPs) during an auditory and a visual oddball paradigm between schizophrenic patients and normal subjects. The aim of this study is to discriminate the activation changes of different stimulations evoked by auditory and visual ERPs between schizophrenic patients and normal subjects. Methods Forty-three schizophrenic patients were selected as experimental group patients, and 40 healthy subjects with no medical history of any kind of psychiatric diseases, neurological diseases, or drug abuse, were recruited as a control group. Auditory and visual ERPs were studied with an oddball paradigm. All the data were analyzed by SPSS statistical software version 10.0. Results In the comparative study of auditory and visual ERPs between the schizophrenic and healthy patients, P300 amplitude at Fz, Cz, and Pz and N100, N200, and P200 latencies at Fz, Cz, and Pz were shown significantly different. The cognitive processing reflected by the auditory and the visual P300 latency to rare target stimuli was probably an indicator of the cognitive function in schizophrenic patients. Conclusions This study shows the methodology of application of auditory and visual oddball paradigm identifies task-relevant sources of activity and allows separation of regions that have different response properties. Our study indicates that there may be slowness of automatic cognitive processing and controlled cognitive processing of visual ERPs compared to auditory ERPs in schizophrenic patients. The activation changes of visual evoked potentials are more regionally specific than auditory evoked potentials. PMID:21542917
Martinez Piñeiro, Alicia; Cubells, Carles; Garcia, Pablo; Castaño, Carlos; Dávalos, Antonio; Coll-Canti, Jaume
2015-03-01
Intraoperative monitoring (IOM) has been used in different surgical disciplines since the 1980s. Nonetheless, regular routine use of IOM in interventional neuroradiology units has only been reported in a few centers. The aim of this study is to report our experience, 1 year after deciding to implement standardized IOM during endovascular treatment of vascular abnormalities of the central nervous system. Basic recordings included somatosensory-evoked potentials (SEPs) and motor-evoked potentials (MEPs). Corticobulbar motor-evoked potentials and flash-visual-evoked potentials were also recorded depending on the topography of the lesion. Intra-arterial provocative tests (PTs) with amobarbital and lidocaine were also performed. All patients except 1 were under total intravenous anesthesia. Clinical outcome was assessed prospectively and correlated with IOM events. Twelve patients and 15 procedures were monitored during the inclusion period. Significant IOM events were detected during 3 of the 15 procedures (20%). We observed temporary MEP changes in 2 cases which resolved after interruption of the embolization or application of corrective measures, leaving no postoperative neurological deficits. In 1 case, persistent SEP and MEP deterioration was detected secondary to a frontal hematoma, resulting in mild sensory-motor deficit in the right upper extremity after the procedure. Overall, 12 PTs (4 spinal cord and 8 brain abnormalities) were performed using lidocaine and sodium amytal injections. One positive result occurred after the injection of lidocaine. No false negatives were detected. IOM may provide continuous real-time data about the functional status of eloquent areas and pathways of the central nervous system in patients under general anesthesia. It therefore allows us to detect early neurological damage in time to perform specific actions that may prevent irreversible neurological deficits.
Ertl, M; Moser, M; Boegle, R; Conrad, J; Zu Eulenburg, P; Dieterich, M
2017-07-15
The vestibular organ senses linear and rotational acceleration of the head during active and passive motion. These signals are necessary for bipedal locomotion, navigation, the coordination of eye and head movements in 3D space. The temporal dynamics of vestibular processing in cortical structures have hardly been studied in humans, let alone with natural stimulation. The aim was to investigate the cortical vestibular network related to natural otolith stimulation using a hexapod motion platform. We conducted two experiments, 1. to estimate the sources of the vestibular evoked potentials (VestEPs) by means of distributed source localization (n=49), and 2. to reveal modulations of the VestEPs through the underlying acceleration intensity (n=24). For both experiments subjects were accelerated along the main axis (left/right, up/down, fore/aft) while the EEG was recorded. We were able to identify five VestEPs (P1, N1, P2, N2, P3) with latencies between 38 and 461 ms as well as an evoked beta-band response peaking with a latency of 68 ms in all subjects and for all acceleration directions. Source localization gave the cingulate sulcus visual (CSv) area and the opercular-insular region as the main origin of the evoked potentials. No lateralization effects due to handedness could be observed. In the second experiment, area CSv was shown to be integral in the processing of acceleration intensities as sensed by the otolith organs, hinting at its potential role in ego-motion detection. These robust VestEPs could be used to investigate the mechanisms of inter-regional interaction in the natural context of vestibular processing and multisensory integration. Copyright © 2017 Elsevier Inc. All rights reserved.
Frilot, C; Carrubba, S; Marino, A A
2014-01-31
Subliminal electromagnetic fields (EMFs) triggered nonlinear evoked potentials in awake but not anesthetized animals, and increased glucose metabolism in the hindbrain. Field detection occurred somewhere in the head and possibly was an unrecognized function of sensory neurons in facial skin, which synapse in the trigeminal nucleus and project to the thalamus via glutamate-dependent pathways. If so, anesthetic agents that antagonize glutamate neurotransmission would be expected to degrade EMF-evoked potentials (EEPs) to a greater extent than agents having different pharmacological effects. We tested the hypothesis using ketamine which blocks N-methyl-d-aspartate (NMDA) receptors (NMDARs), and xylazine which is an α₂-adrenoreceptor agonist. Electroencephalograms (EEGs) of rats were examined using recurrence analysis to observe EEPs in the presence and absence of ketamine and/or xylazine anesthesia. Auditory evoked potentials (AEPs) served as positive controls. The frequency of observation of evoked potentials in a given condition (wake or anesthesia) was compared with that due to chance using the Fisher's exact test. EEPs were observed in awake rats but not while they were under anesthesia produced using a cocktail of xylazine and ketamine. In another experiment each rat was measured while awake and while under anesthesia produced using either xylazine or ketamine. EEPs and AEPs were detected during wake and under xylazine (P<0.05 in each of the four measurements). In contrast, neither EEPs nor AEPs were observed when anesthesia was produced partly or wholly using ketamine. The duration and latency of the EEPs was unaltered by xylazine anesthesia. The afferent signal triggered by the transduction of weak EMFs was likely mediated by NMDAR-mediated glutamate neurotransmission. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Zhang, Rui; Xu, Min; Zhang, Qing; Yang, Yin-Tong; Chen, Yanfei
2014-06-01
To observe the effect of acoustic stimulus intensity on air-conducted sound elicited ocular vestibular- evoked myogenic potential (oVEMP) and cervical vestibular-evoked myogenic potential (cVEMP) in normal young Chinese subjects. Thirty-five normal subjects aged 4-40 years (20.80∓8.89 years), including 16 males and 19 females, were recruited for conventional oVEMP and cVEMP examinations. The responses obtained from each side using 500 Hz tone bursts were divided into 6 groups according to different sound intensities (100, 95, 90, 85, 80 and 75dB nHL). The response rate and normal parameters of each stimulus intensity group were calculated. As the acoustic stimulus intensity decreased, the oVEMP response rate decreased from 100% in both 100 dB nHL and 95dB nHL groups to 97.14% (90 dB nHL), 54.29% (85 dB nHL), 14.29% (80 dB nHL), and 2.86% (75 dB nHL), and the response rate of cVEMP, 100% in both 100 dB nHL and 95dB nHL groups, was lowered to 97.14% (90 dB nHL), 84.29% (85 dB nHL), 38.57% (80 dB nHL) and 8.57% (75 dB nHL). The response rate and the parameters were comparable between 100 and 95 dB nHL groups. As the acoustic stimulus intensity decreases, both oVEMP and cVEMP show decreased response rate and amplitude. For Chinese subjects under 40 years of age, we recommend 95dB nHL as the maximum initial stimulus intensity in VEMPs test.
Targeted, noninvasive blockade of cortical neuronal activity
NASA Astrophysics Data System (ADS)
McDannold, Nathan; Zhang, Yongzhi; Power, Chanikarn; Arvanitis, Costas D.; Vykhodtseva, Natalia; Livingstone, Margaret
2015-11-01
Here we describe a novel method to noninvasively modulate targeted brain areas through the temporary disruption of the blood-brain barrier (BBB) via focused ultrasound, enabling focal delivery of a neuroactive substance. Ultrasound was used to locally disrupt the BBB in rat somatosensory cortex, and intravenous administration of GABA then produced a dose-dependent suppression of somatosensory-evoked potentials in response to electrical stimulation of the sciatic nerve. No suppression was observed 1-5 days afterwards or in control animals where the BBB was not disrupted. This method has several advantages over existing techniques: it is noninvasive; it is repeatable via additional GABA injections; multiple brain regions can be affected simultaneously; suppression magnitude can be titrated by GABA dose; and the method can be used with freely behaving subjects. We anticipate that the application of neuroactive substances in this way will be a useful tool for noninvasively mapping brain function, and potentially for surgical planning or novel therapies.
[Biophysical foundations of magnetoencephalograhy].
Pastor, J; Sola, R G
It is sought to expose in a simple but rigorous way the physical, neurobiological and methodological foundations of the magnetoencephalography (MEG). We start from the basic properties of the classical electromagnetism, analyzing in detail the concepts of electric and magnetic fields, the Maxwell s equations and the multipolar development of potentials. All these tools are very important to know the peculiarities of the MEG studies. Later on, they are reviewed very briefly the different types of potentials generated by the neurons and their implication in the MEG. Lastly, some necessary technical characteristics will be commented for detection of the very weak neuromagnetic fields. It is shortly exposed the concept of tunnel effect, in one that detection systems used at the present time are based (SQUID). MEG is a very promising recent technique that is used in epilepsy studies, evoked potentials and other functional pathologies. Its utility in clinic continues being even controversial. However, it is fundamental to know the mechanisms that justify their use in order to know better their benefits and limitations.
Electrophysiological measurement of human auditory function
NASA Technical Reports Server (NTRS)
Galambos, R.
1975-01-01
Contingent negative variations in the presence and amplitudes of brain potentials evoked by sound are considered. Evidence is produced that the evoked brain stem response to auditory stimuli is clearly related to brain events associated with cognitive processing of acoustic signals since their properties depend upon where the listener directs his attention, whether the signal is an expected event or a surprise, and when sound that is listened-for is heard at last.
The Evoked Potential. An Experimental Method for Biomechanical Analysis of Brain and Spinal Injury
1980-01-01
Newtons produced marked changes in blood pressure, heart rate and distraction of the cervical spinal column with minimal ligamentous disruption...pathologic distraction and pathologic flexion of the thoracic ver- tebral column (8). Cerebral responses were lost within two minutes aftex complete...However, the immediate flexion and distraction responses were not altered. These findings suggest that mechanical trauma alters the spinal cord evoked
GABAergic Neural Activity Involved in Salicylate-Induced Auditory Cortex Gain Enhancement
Lu, Jianzhong; Lobarinas, Edward; Deng, Anchun; Goodey, Ronald; Stolzberg, Daniel; Salvi, Richard J.; Sun, Wei
2011-01-01
Although high doses of sodium salicylate impair cochlear function, it paradoxically enhances sound-evoked activity in the auditory cortex (AC) and augments acoustic startle reflex responses, neural and behavioral metrics associated with hyperexcitability and hyperacusis. To explore the neural mechanisms underlying salicylate-induced hyperexcitability and “increased central gain”, we examined the effects of γ-aminobutyric acid (GABA) receptor agonists and antagonists on salicylate-induced hyperexcitability in the AC and startle reflex responses. Consistent with our previous findings, local or systemic application of salicylate significantly increased the amplitude of sound-evoked AC neural activity, but generally reduced spontaneous activity in the AC. Systemic injection of salicylate also significantly increased the acoustic startle reflex. S-baclofen or R-baclofen, GABA-B agonists, which suppressed sound-evoked AC neural firing rate and local field potentials, also suppressed the salicylate-induced enhancement of the AC field potential and the acoustic startle reflex. Local application of vigabatrin, which enhances GABA concentration in the brain, suppressed the salicylate-induced enhancement of AC firing rate. Systemic injection of vigabatrin also reduced the salicylate-induced enhancement of acoustic startle reflex. Collectively, these results suggest that the sound-evoked behavioral and neural hyperactivity induced by salicylate may arise from a salicylate-induced suppression GABAergic inhibition in the AC. PMID:21664433
Chen, Guang-Di; Radziwon, Kelly E.; Manohar, Senthilvelan
2014-01-01
Previous studies have shown that sodium salicylate (SS) activates not only central auditory structures, but also nonauditory regions associated with emotion and memory. To identify electrophysiological changes in the nonauditory regions, we recorded sound-evoked local field potentials and multiunit discharges from the striatum, amygdala, hippocampus, and cingulate cortex after SS-treatment. The SS-treatment produced behavioral evidence of tinnitus and hyperacusis. Physiologically, the treatment significantly enhanced sound-evoked neural activity in the striatum, amygdala, and hippocampus, but not in the cingulate. The enhanced sound evoked response could be linked to the hyperacusis-like behavior. Further analysis showed that the enhancement of sound-evoked activity occurred predominantly at the midfrequencies, likely reflecting shifts of neurons towards the midfrequency range after SS-treatment as observed in our previous studies in the auditory cortex and amygdala. The increased number of midfrequency neurons would lead to a relative higher number of total spontaneous discharges in the midfrequency region, even though the mean discharge rate of each neuron may not increase. The tonotopical overactivity in the midfrequency region in quiet may potentially lead to tonal sensation of midfrequency (the tinnitus). The neural changes in the amygdala and hippocampus may also contribute to the negative effect that patients associate with their tinnitus. PMID:24891959
Spontaneous and evoked release are independently regulated at individual active zones.
Melom, Jan E; Akbergenova, Yulia; Gavornik, Jeffrey P; Littleton, J Troy
2013-10-30
Neurotransmitter release from synaptic vesicle fusion is the fundamental mechanism for neuronal communication at synapses. Evoked release following an action potential has been well characterized for its function in activating the postsynaptic cell, but the significance of spontaneous release is less clear. Using transgenic tools to image single synaptic vesicle fusion events at individual release sites (active zones) in Drosophila, we characterized the spatial and temporal dynamics of exocytotic events that occur spontaneously or in response to an action potential. We also analyzed the relationship between these two modes of fusion at single release sites. A majority of active zones participate in both modes of fusion, although release probability is not correlated between the two modes of release and is highly variable across the population. A subset of active zones is specifically dedicated to spontaneous release, indicating a population of postsynaptic receptors is uniquely activated by this mode of vesicle fusion. Imaging synaptic transmission at individual release sites also revealed general rules for spontaneous and evoked release, and indicate that active zones with similar release probability can cluster spatially within individual synaptic boutons. These findings suggest neuronal connections contain two information channels that can be spatially segregated and independently regulated to transmit evoked or spontaneous fusion signals.
A bleached-kraft mill effluent fraction causing induction of a fish mixed-function oxygenase enzyme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnison, B.K.; Hodson, P.V.; Nuttley, D.J.
1996-09-01
Pulp mill effluents contain a myriad of chemicals that have the potential to cause deleterious effects on aquatic biota in receiving waters. Some of these chemicals evoke an acute lethal response of exposed biota while others evoke sublethal responses. One such sublethal response is the induction of mixed-function oxygenases (MFO) in fish, specifically the CYP1A1 enzyme ethoxy-resorufin-o-deethylase (EROD). Compounds causing MFO induction include congeners of polychlorinated biphenyls (PCBs), dioxins, furans, and polycyclic aromatic hydrocarbons (PAHs). The authors followed the partitioning of the inducing chemicals in pulp mill effluent fractions by Toxicity Identification Evaluation (TIE), or bioassay-driven chemical analysis. This proceduremore » was eventually modified to a more direct technique involving centrifugation, filtration, cleanup procedures, and C{sub 18} solid-phase adsorption. The extracts from the fractionation of two pulp mill effluents after secondary treatment were tested for EROD-inducing activity in a 4-d rainbow trout bioassay. The methanol extracts of particulates/colloids showed significant inducing capacity in Mill A effluent but not in Mill B effluent. The C{sub 18} methanol extracts induced activity from both effluents, with extracts from Mill A causing the greatest response. The particulate/colloidal extract (Mill A) was used as the source material for chemicals which caused EROD induction. The fraction was purified by solid-phase extraction techniques and reverse-phase high-performance liquid chromatography. The majority of the EROD activity was found in the moderately nonpolar region of the chromatogram (K{sub ow} = 4.6 to 5.1).« less
Hinder, Mark R; Goss, Emily L; Fujiyama, Hakuei; Canty, Alison J; Garry, Michael I; Rodger, Jennifer; Summers, Jeffery J
2014-01-01
The continued refinement of non-invasive brain stimulation (NBS) techniques is indicative of promising clinical and rehabilitative interventions that are able to modulate cortical excitability. Intermittent theta burst stimulation (iTBS) is one such technique that can increase cortical excitability, purportedly via LTP-like mechanisms. While iTBS may have the capacity to promote recovery after neurological injury, and to combat cognitive and motor decline, recent reports observed highly variable effects across individuals, questioning the efficacy of iTBS as a clinical tool. The aim of this study was to examine intra-individual reliability and inter-individual variability in responses to iTBS. Thirty healthy participants completed two experimental sessions of the iTBS protocol 1-3 weeks apart. Motor evoked potentials in response to single pulse TMS were used to assess corticospinal excitability prior to, and up to 36 min following, iTBS. At the group level, iTBS evoked statistically significant increases in motor cortical excitability across both sessions (P < 0.001), with 22 out of 30 participants exhibiting increases in excitability in both sessions. A strong intraclass correlation demonstrated that both the direction, and magnitude of the plastic changes were reliable at the individual level. Overall, our results suggest that iTBS is capable of inducing relatively robust and consistent effects within and between young individuals. As such, the capacity for iTBS to be exploited in clinical and rehabilitative interventions should continue to be explored. Copyright © 2014 Elsevier Inc. All rights reserved.
Abe, Y.
1971-01-01
1. In pregnant rat myometrium electrotonic potentials, produced by externally applied current, were recorded intracellularly. 2. The space constant, λ, was 1·8 mm, the time constant, τm, 120 msec. The values obtained on the 7th day and on the 20th day of pregnancy were the same. 3. The magnitude of the electrotonic potential and the time constant of the membrane were increased in the absence of potassium from the external solution and decreased by excess potassium. 4. The magnitude of the electrotonic potential and the time constant of the membrane were increased by the replacement of chloride with C6H5SO3- or SO42-, and decreased with NO3- or I- replacement. 5. When the sodium chloride was replaced with sucrose (16·7 mM sodium remaining in the buffers) the spontaneous spikes deteriorated and activity stopped within 30 min. However, for periods up to 4 hr, a spike of larger amplitude and faster rate of rise than in normal solution could be evoked when a depolarizing current was applied. 6. When the external calcium concentration was raised (5 and 10 mM) the amplitude and the rate of rise of the evoked spike were increased. They were decreased by reducing calcium. In zero calcium spontaneous activity stopped within 15 min. 7. The effects of calcium deficiency were much less marked and slower in onset when, simultaneously, the sodium concentration was reduced to 16·7 mM. 8. When calcium was replaced with strontium (2·5 mM), the membrane was depolarized and the duration of the spontaneous and evoked action potential was prolonged, mainly due to a slowed rate of repolarization. When the concentration of strontium was raised to 7·5 or 12·5 mM the membrane was hyperpolarized, the duration of the action potential became short and the amplitude of the spike was increased. 9. Addition of barium or the replacement of calcium with barium caused depolarization and oscillatory membrane activity. However, a spike could be evoked by applying conditioning hyperpolarization. 10. Manganese abolished the spontaneous and evoked spike. Tetrodotoxin had no effect. 11. The results show that rat uterus has cable-like properties. The action potential may be due to calcium entry, while sodium, by influencing the membrane potential in competition with calcium, may be involved in the spontaneous spike generation and the spread of excitation. PMID:5103422
Optogenetic micro-electrocorticography for modulating and localizing cerebral cortex activity
Richner, Thomas J.; Thongpang, Sanitta; Brodnick, Sarah K.; Schendel, Amelia A.; Falk, Ryan W.; Krugner-Higby, Lisa A.; Pashaie, Ramin; Williams, Justin C.
2014-01-01
Objective Spatial localization of neural activity from within the brain with electrocorticography (ECoG) and electroencephalography (EEG) remains a challenge in clinical and research settings, and while microfabricated ECoG (micro-ECoG) array technology continues to improve, complimentary methods to simultaneously modulate cortical activity while recording are needed. Approach We developed a neural interface utilizing optogenetics, cranial windowing, and micro-ECoG arrays fabricated on a transparent polymer. This approach enabled us to directly modulate neural activity at known locations around micro-ECoG arrays in mice expressing Channelrhodopsin-2 (ChR2). We applied photostimuli varying in time, space and frequency to the cortical surface, and we targeted multiple depths within the cortex using an optical fiber while recording micro-ECoG signals. Main Results Negative potentials of up to 1.5 mV were evoked by photostimuli applied to the entire cortical window, while focally applied photostimuli evoked spatially localized micro-ECoG potentials. Two simultaneously applied focal stimuli could be separated, depending on the distance between them. Photostimuli applied within the cortex with an optical fiber evoked more complex micro-ECoG potentials with multiple positive and negative peaks whose relative amplitudes depended on the depth of the fiber. Significance Optogenetic ECoG has potential applications in the study of epilepsy, cortical dynamics, and neuroprostheses. PMID:24445482
Marine bioacoustics and technology: The new world of marine acoustic ecology
NASA Astrophysics Data System (ADS)
Hastings, Mardi C.; Au, Whitlow W. L.
2012-11-01
Marine animals use sound for communication, navigation, predator avoidance, and prey detection. Thus the rise in acoustic energy associated with increasing human activity in the ocean has potential to impact the lives of marine animals. Thirty years ago marine bioacoustics primarily focused on evaluating effects of human-generated sound on hearing and behavior by testing captive animals and visually observing wild animals. Since that time rapidly changing electronic and computing technologies have yielded three tools that revolutionized how bioacousticians study marine animals. These tools are (1) portable systems for measuring electrophysiological auditory evoked potentials, (2) miniaturized tags equipped with positioning sensors and acoustic recording devices for continuous short-term acoustical observation rather than intermittent visual observation, and (3) passive acoustic monitoring (PAM) systems for remote long-term acoustic observations at specific locations. The beauty of these breakthroughs is their direct applicability to wild animals in natural habitats rather than only to animals held in captivity. Hearing capabilities of many wild species including polar bears, beaked whales, and reef fishes have now been assessed by measuring their auditory evoked potentials. Miniaturized acoustic tags temporarily attached to an animal to record its movements and acoustic environment have revealed the acoustic foraging behavior of sperm and beaked whales. Now tags are being adapted to fishes in effort to understand their behavior in the presence of noise. Moving and static PAM systems automatically detect and characterize biological and physical features of an ocean area without adding any acoustic energy to the environment. PAM is becoming a powerful technique for understanding and managing marine habitats. This paper will review the influence of these transformative tools on the knowledge base of marine bioacoustics and elucidation of relationships between marine animals and their acoustic environment, leading to a new, rapidly growing field of marine acoustic ecology.
Karns, Christina M; Isbell, Elif; Giuliano, Ryan J; Neville, Helen J
2015-06-01
Auditory selective attention is a critical skill for goal-directed behavior, especially where noisy distractions may impede focusing attention. To better understand the developmental trajectory of auditory spatial selective attention in an acoustically complex environment, in the current study we measured auditory event-related potentials (ERPs) across five age groups: 3-5 years; 10 years; 13 years; 16 years; and young adults. Using a naturalistic dichotic listening paradigm, we characterized the ERP morphology for nonlinguistic and linguistic auditory probes embedded in attended and unattended stories. We documented robust maturational changes in auditory evoked potentials that were specific to the types of probes. Furthermore, we found a remarkable interplay between age and attention-modulation of auditory evoked potentials in terms of morphology and latency from the early years of childhood through young adulthood. The results are consistent with the view that attention can operate across age groups by modulating the amplitude of maturing auditory early-latency evoked potentials or by invoking later endogenous attention processes. Development of these processes is not uniform for probes with different acoustic properties within our acoustically dense speech-based dichotic listening task. In light of the developmental differences we demonstrate, researchers conducting future attention studies of children and adolescents should be wary of combining analyses across diverse ages. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Karns, Christina M.; Isbell, Elif; Giuliano, Ryan J.; Neville, Helen J.
2015-01-01
Auditory selective attention is a critical skill for goal-directed behavior, especially where noisy distractions may impede focusing attention. To better understand the developmental trajectory of auditory spatial selective attention in an acoustically complex environment, in the current study we measured auditory event-related potentials (ERPs) in human children across five age groups: 3–5 years; 10 years; 13 years; 16 years; and young adults using a naturalistic dichotic listening paradigm, characterizing the ERP morphology for nonlinguistic and linguistic auditory probes embedded in attended and unattended stories. We documented robust maturational changes in auditory evoked potentials that were specific to the types of probes. Furthermore, we found a remarkable interplay between age and attention-modulation of auditory evoked potentials in terms of morphology and latency from the early years of childhood through young adulthood. The results are consistent with the view that attention can operate across age groups by modulating the amplitude of maturing auditory early-latency evoked potentials or by invoking later endogenous attention processes. Development of these processes is not uniform for probes with different acoustic properties within our acoustically dense speech-based dichotic listening task. In light of the developmental differences we demonstrate, researchers conducting future attention studies of children and adolescents should be wary of combining analyses across diverse ages. PMID:26002721
Single-trial laser-evoked potentials feature extraction for prediction of pain perception.
Huang, Gan; Xiao, Ping; Hu, Li; Hung, Yeung Sam; Zhang, Zhiguo
2013-01-01
Pain is a highly subjective experience, and the availability of an objective assessment of pain perception would be of great importance for both basic and clinical applications. The objective of the present study is to develop a novel approach to extract pain-related features from single-trial laser-evoked potentials (LEPs) for classification of pain perception. The single-trial LEP feature extraction approach combines a spatial filtering using common spatial pattern (CSP) and a multiple linear regression (MLR). The CSP method is effective in separating laser-evoked EEG response from ongoing EEG activity, while MLR is capable of automatically estimating the amplitudes and latencies of N2 and P2 from single-trial LEP waveforms. The extracted single-trial LEP features are used in a Naïve Bayes classifier to classify different levels of pain perceived by the subjects. The experimental results show that the proposed single-trial LEP feature extraction approach can effectively extract pain-related LEP features for achieving high classification accuracy.
Stimulation of mucosal secretion by lubiprostone (SPI-0211) in guinea pig small intestine and colon
Fei, Guijun; Wang, Yu-Zhong; Liu, Sumei; Hu, Hong-Zhen; Wang, Guo-Du; Qu, Mei-Hua; Wang, Xi-Yu; Xia, Yun; Sun, Xiaohong; Bohn, Laura M.; Cooke, Helen J.; Wood, Jackie D.
2009-01-01
Actions of lubiprostone, a selective type-2 chloride channel activator, on mucosal secretion were investigated in guinea pig small intestine and colon. Flat-sheet preparations were mounted in Ussing flux chambers for recording short-circuit current (Isc) as a marker for electrogenic chloride secretion. Lubiprostone, applied to the small intestinal mucosa in eight concentrations ranging from 1–3000 nM, evoked increases in Isc in a concentration-dependent manner with an EC50 of 42.5 nM. Lubiprostone applied to the mucosa of the colon in eight concentrations ranging from 1–3000 nM evoked increases in Isc in a concentration-dependent manner with an EC50 of 31.7 nM. Blockade of enteric nerves by tetrodotoxin did not influence stimulation of Isc by lubiprostone. Antagonists acting at prostaglandin (PG)E2, EP1–3, or EP4 receptors did not suppress stimulation of Isc by lubiprostone but suppressed or abolished PGE2-evoked responses. Substitution of gluconate for chloride abolished all responses to lubiprostone. The selective CFTR channel blocker, CFTR(inh)-172, did not suppress lubiprostone-evoked Isc. The broadly acting blocker, glibenclamide, suppressed (P < 0.001) lubiprostone-evoked Isc. Lubiprostone, in the presence of tetrodotoxin, enhanced carbachol-evoked Isc. The cholinergic component, but not the putative vasoactive intestinal peptide component, of neural responses to electrical field stimulation was enhanced by lubiprostone. Application of any of the prostaglandins, E2, F2, or I2, evoked depolarization of the resting membrane potential in enteric neurons. Unlike the prostaglandins, lubiprostone did not alter the electrical behavior of enteric neurons. Exposure to the histamine H2 receptor agonists increased basal Isc followed by persistent cyclical increases in Isc. Lubiprostone increased the peak amplitude of the dimaprit-evoked cycles. PMID:19179625
Stimulation of mucosal secretion by lubiprostone (SPI-0211) in guinea pig small intestine and colon.
Fei, Guijun; Wang, Yu-Zhong; Liu, Sumei; Hu, Hong-Zhen; Wang, Guo-Du; Qu, Mei-Hua; Wang, Xi-Yu; Xia, Yun; Sun, Xiaohong; Bohn, Laura M; Cooke, Helen J; Wood, Jackie D
2009-04-01
Actions of lubiprostone, a selective type-2 chloride channel activator, on mucosal secretion were investigated in guinea pig small intestine and colon. Flat-sheet preparations were mounted in Ussing flux chambers for recording short-circuit current (Isc) as a marker for electrogenic chloride secretion. Lubiprostone, applied to the small intestinal mucosa in eight concentrations ranging from 1-3000 nM, evoked increases in Isc in a concentration-dependent manner with an EC50 of 42.5 nM. Lubiprostone applied to the mucosa of the colon in eight concentrations ranging from 1-3000 nM evoked increases in Isc in a concentration-dependent manner with an EC50 of 31.7 nM. Blockade of enteric nerves by tetrodotoxin did not influence stimulation of Isc by lubiprostone. Antagonists acting at prostaglandin (PG)E2, EP1-3, or EP4 receptors did not suppress stimulation of Isc by lubiprostone but suppressed or abolished PGE2-evoked responses. Substitution of gluconate for chloride abolished all responses to lubiprostone. The selective CFTR channel blocker, CFTR(inh)-172, did not suppress lubiprostone-evoked Isc. The broadly acting blocker, glibenclamide, suppressed (P<0.001) lubiprostone-evoked Isc. Lubiprostone, in the presence of tetrodotoxin, enhanced carbachol-evoked Isc. The cholinergic component, but not the putative vasoactive intestinal peptide component, of neural responses to electrical field stimulation was enhanced by lubiprostone. Application of any of the prostaglandins, E2, F2, or I2, evoked depolarization of the resting membrane potential in enteric neurons. Unlike the prostaglandins, lubiprostone did not alter the electrical behavior of enteric neurons. Exposure to the histamine H2 receptor agonists increased basal Isc followed by persistent cyclical increases in Isc. Lubiprostone increased the peak amplitude of the dimaprit-evoked cycles.
All optical experimental design for neuron excitation, inhibition, and action potential detection
NASA Astrophysics Data System (ADS)
Walsh, Alex J.; Tolstykh, Gleb; Martens, Stacey; Sedelnikova, Anna; Ibey, Bennett L.; Beier, Hope T.
2016-03-01
Recently, infrared light has been shown to both stimulate and inhibit excitatory cells. However, studies of infrared light for excitatory cell inhibition have been constrained by the use of invasive and cumbersome electrodes for cell excitation and action potential recording. Here, we present an all optical experimental design for neuronal excitation, inhibition, and action potential detection. Primary rat neurons were transfected with plasmids containing the light sensitive ion channel CheRiff. CheRiff has a peak excitation around 450 nm, allowing excitation of transfected neurons with pulsed blue light. Additionally, primary neurons were transfected with QuasAr2, a fast and sensitive fluorescent voltage indicator. QuasAr2 is excited with yellow or red light and therefore does not spectrally overlap CheRiff, enabling imaging and action potential activation, simultaneously. Using an optic fiber, neurons were exposed to blue light sequentially to generate controlled action potentials. A second optic fiber delivered a single pulse of 1869nm light to the neuron causing inhibition of the evoked action potentials (by the blue light). When used in concert, these optical techniques enable electrode free neuron excitation, inhibition, and action potential recording, allowing research into neuronal behaviors with high spatial fidelity.
Conductance changes associated with the secretory potential in the cockroach salivary gland.
Ginsborg, B L; House, C R; Silinsky, E M
1974-02-01
1. Conductance changes in the acini of the cockroach salivary gland have been examined during nerve stimulation by means of two intracellular electrodes placed in the same acinus, the first electrode being used for recording membrane potential and the second for current injection.2. The transient hyperpolarization (secretory potential) in the acinus evoked by nerve stimuli is accompanied by a rise in membrane conductance. The conductance, however, remains high for a longer period than that of the response.3. Applying the analysis of Trautwein & Dudel (1958) to the secretory potentials recorded in the acinus (assumed to behave electrically like a single cell) gives estimates of the ;transmitter equilibrium potential'. The values indicate that the neurotransmitter increases the membrane potassium conductance.4. The hyperpolarization of the acinus evoked by 10(-6)M dopamine in the bathing fluid is also associated with an increase in membrane potassium conductance.
Control of humanoid robot via motion-onset visual evoked potentials
Li, Wei; Li, Mengfan; Zhao, Jing
2015-01-01
This paper investigates controlling humanoid robot behavior via motion-onset specific N200 potentials. In this study, N200 potentials are induced by moving a blue bar through robot images intuitively representing robot behaviors to be controlled with mind. We present the individual impact of each subject on N200 potentials and discuss how to deal with individuality to obtain a high accuracy. The study results document the off-line average accuracy of 93% for hitting targets across over five subjects, so we use this major component of the motion-onset visual evoked potential (mVEP) to code people's mental activities and to perform two types of on-line operation tasks: navigating a humanoid robot in an office environment with an obstacle and picking-up an object. We discuss the factors that affect the on-line control success rate and the total time for completing an on-line operation task. PMID:25620918
Emotional body-word conflict evokes enhanced n450 and slow potential.
Ma, Jianling; Liu, Chang; Zhong, Xin; Wang, Lu; Chen, Xu
2014-01-01
Emotional conflict refers to the influence of task irrelevant affective stimuli on current task set. Previously used emotional face-word tasks have produced certain electrophysiological phenomena, such as an enhanced N450 and slow potential; however, it remains unknown whether these effects emerge in other tasks. The present study used an emotional body-word conflict task to investigate the neural dynamics of emotional conflict as reflected by response time, accuracy, and event-related potentials, which were recorded with the aim of replicating the previously observed N450 and slow potential effect. Results indicated increased response time and decreased accuracy in the incongruent condition relative to the congruent condition, indicating a robust interference effect. Furthermore, the incongruent condition evoked pronounced N450 amplitudes and a more positive slow potential, which might be associated with conflict-monitoring and conflict resolution. The present findings extend our understanding of emotional conflict to the body-word domain.