ERIC Educational Resources Information Center
Larkin, Douglas B.; Perry-Ryder, Gail M.
2015-01-01
We present the case of Michael, a prospective high school biology teacher, to explore the implications of teacher resistance and avoidance to the topic of evolution. This case is drawn from a year-long qualitative research study that examined Michael's process of learning to teach high school biology and describes how his avoidance of evolution in…
Case Studies of Physics Graduates' Personal Theories of Evolution
ERIC Educational Resources Information Center
Chan, Ke-Sheng
2005-01-01
This paper reports an interview case study with two physics doctoral students designed to explore their conceptions about the theory of evolution. Analysis of interview transcripts reveals that both students mistakenly constructed a "theory of evolution by environmentally driven adaptation" instead of the commonly accepted "theory…
Student Teachers' Approaches to Teaching Biological Evolution
NASA Astrophysics Data System (ADS)
Borgerding, Lisa A.; Klein, Vanessa A.; Ghosh, Rajlakshmi; Eibel, Albert
2015-06-01
Evolution is fundamental to biology and scientific literacy, but teaching high school evolution is often difficult. Evolution teachers face several challenges including limited content knowledge, personal conflicts with evolution, expectations of resistance, concerns about students' conflicts with religion, and curricular constraints. Evolution teaching can be particularly challenging for student teachers who are just beginning to gain pedagogical knowledge and pedagogical content knowledge related to evolution teaching and who seek approval from university supervisors and cooperating teachers. Science teacher educators need to know how to best support student teachers as they broach the sometimes daunting task of teaching evolution within student teaching placements. This multiple case study report documents how three student teachers approached evolution instruction and what influenced their approaches. Data sources included student teacher interviews, field note observations for 4-5 days of evolution instruction, and evolution instructional artifacts. Data were analyzed using grounded theory approaches to develop individual cases and a cross-case analysis. Seven influences (state exams and standards, cooperating teacher, ideas about teaching and learning, concerns about evolution controversy, personal commitment to evolution, knowledge and preparation for teaching evolution, and own evolution learning experiences) were identified and compared across cases. Implications for science teacher preparation and future research are provided.
ERIC Educational Resources Information Center
Dodick, Jeff; Orion, Nir
2003-01-01
Discusses challenges faced in the teaching and learning of evolution. Presents a curricular program and a case study on evolutionary biology. Investigates students' conceptual knowledge after exposure to the program "From Dinosaurs to Darwin," which focuses on fossil records as evidence of evolution. (Contains 32 references.) (YDS)
Corporate Information Management: A Case Study
1991-03-01
SUBJECT TERMS ( FIELD GROUP SUB-GROUP ICorporate Information Management (CIM), Case study, Strategic level decision making, Department Of Defense. 19...ABSTRACT ( This thesis documents in a case format the events, environment and decisions in the genesis and evolution of the Department of Defense’s...case format the events, environment and decisions in the genesis and evolution of the Department of Defense’s Corporate Information Management
ERIC Educational Resources Information Center
Diem, Huynh Thi Thuy; Yuenyong, Chokchai
2018-01-01
History of science (HOS) plays a substantial role in the enhancement of rooted understanding in science teaching and learning. HOS of evolution and genetics has not been included in Vietnamese biology textbooks. This study aims to investigate the necessity of introducing evolution and genetics HOS into Vietnamese textbooks. A case study approach…
The Distance Education Evolution: Issues and Case Studies
ERIC Educational Resources Information Center
Monolescu, Dominique; Schifter, Catherine; Greenwood, Linda
2004-01-01
"The Distance Education Evolution: Case Studies" addresses issues regarding the development and design of online courses, and the implementation and evaluation of an online learning program. Several chapters include design strategies for online courses that range from the specific to the universal. Many authors address pedagogical issues from both…
Clinical management of resistance evolution in a bacterial infection: A case study.
Woods, Robert J; Read, Andrew F
2015-10-10
We report the case of a patient with a chronic bacterial infection that could not be cured. Drug treatment became progressively less effective due to antibiotic resistance, and the patient died, in effect from overwhelming evolution. Even though the evolution of drug resistance was recognized as a major threat, and the fundamentals of drug resistance evolution are well understood, it was impossible to make evidence-based decisions about the evolutionary risks associated with the various treatment options. We present this case to illustrate the urgent need for translational research in the evolutionary medicine of antibiotic resistance. © The Author(s) 2015. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.
Evolution of a Campus Sustainability Network: A Case Study in Organizational Change
ERIC Educational Resources Information Center
Kurland, Nancy B.
2011-01-01
Purpose: The purpose of this paper is to examine the evolution of a sustainability network at a large California public university, as an example of organizational change. Design/methodology/approach: The paper combines participant observation and case study techniques over a three-year period. From 2007 to 2010, the author helped found the…
Barbier, O; Anract, P; Pluot, E; Larouserie, F; Sailhan, F; Babinet, A; Tomeno, B
2010-12-01
Extra-abdominal desmoid fibromatosis (EADF) is a benign tumoral condition, classically managed by more or less radical and sometimes mutilating excision. This treatment strategy is associated with a recurrence rate of nearly 50% according to various reports. EADF may show spontaneous stabilization over time. A retrospective series of 26 cases of EADF managed by simple observation was studied to assess spontaneous favorable evolution and identify possible factors impacting evolution. Eleven cases were of primary EADF with no treatment or surgery, and 15 of recurrence after surgery with no adjuvant treatment. MRI was the reference examination during follow-up. Twenty-four cases showed stabilization at a median 14 months; there were no cases of renewed evolution after stabilization. One primary tumor showed spontaneous regression, and one recurrence still showed evolution at end of follow-up (23 months). The sole factor impacting potential for evolution was prior surgery. No radiologic or pathologic criteria of evolution emerged from analysis. The present series, one of the largest dedicated to EADF managed by observation, confirmed recent literature findings: a conservative "wait-and-see" attitude is reasonable and should be considered when large-scale resection would entail significant functional or esthetic impairment. Level IV, retrospective study. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Evolution of vacuum bubbles embedded in inhomogeneous spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannia, Florencia Anabella Teppa; Bergliaffa, Santiago Esteban Perez, E-mail: fteppa@fcaglp.unlp.edu.ar, E-mail: sepbergliaffa@gmail.com
We study the propagation of bubbles of new vacuum in a radially inhomogeneous background filled with dust or radiation, and including a cosmological constant, as a first step in the analysis of the influence of inhomogeneities in the evolution of an inflating region. We also compare the cases with dust and radiation backgrounds and show that the evolution of the bubble in radiation environments is notably different from that in the corresponding dust cases, both for homogeneous and inhomogeneous ambients, leading to appreciable differences in the evolution of the proper radius of the bubble.
Office of exploration overview
NASA Technical Reports Server (NTRS)
Alred, John
1989-01-01
The NASA Office of Exploration case studies for FY89 are reviewed with regard to study ground rules and constraints. Three study scenarios are presented: lunar evolution, Mars evolution, and Mars expedition with emphasis on the key mission objectives.
Imperfect information facilitates the evolution of reciprocity.
Kurokawa, Shun
2016-06-01
The existence of cooperation demands explanation since cooperation is costly to the actor. Reciprocity has long been regarded as a potential explanatory mechanism for the existence of cooperation. Reciprocity is a mechanism wherein a cooperator responds to an opponent's behavior by switching his/her own behavior. Hence, a possible problematic case relevant to the theory of reciprocity evolution arises when the mechanism is such that the information regarding an opponent's behavior is imperfect. Although it has been confirmed also by previous theoretical studies that imperfect information interferes with the evolution of reciprocity, this argument is based on the assumption that there are no mistakes in behavior. And, a previous study presumed that it might be expected that when such mistakes occur, reciprocity can more readily evolve in the case of imperfect information than in the case of perfect information. The reason why the previous study considers so is that in the former case, reciprocators can miss defections incurred by other reciprocators' mistakes due to imperfect information, allowing cooperation to persist when such reciprocators meet. However, contrary to this expectation, the previous study has shown that even when mistakes occur, imperfect information interferes with the evolution of reciprocity. Nevertheless, the previous study assumed that payoffs are linear (i.e., that the effect of behavior is additive and there are no synergetic effects). In this study, we revisited the same problem but removed the assumption that payoffs are linear. We used evolutionarily stable strategy analysis to compare the condition for reciprocity to evolve when mistakes occur and information is imperfect with the condition for reciprocity to evolve when mistakes occur and information is perfect. Our study revealed that when payoffs are not linear, imperfect information can facilitate the evolution of reciprocity when mistakes occur; while when payoffs are linear, imperfect information disturbs the evolution of reciprocity even when mistakes occur. Imperfect information can encourage the evolution of cooperation. Copyright © 2016 Elsevier Inc. All rights reserved.
China Encounters Darwinism: A Case of Intercultural Rhetoric.
ERIC Educational Resources Information Center
Xiao, Xiaosui
1995-01-01
Explores how influential works of one culture are adapted to the needs, circumstances and thought patterns of another. Analyzes as a case study Yan Fu's "Heavenly Evolution," a rhetorical translation of Thomas Huxley's "Evolution and Ethics," whose publication resulted in a rapid spread of a version of Darwinism in Confucian…
Forward orbital evolution of the Vesta Family with and without the Yarkovsky effect
NASA Astrophysics Data System (ADS)
Wlodarczyk, Ireneusz; Leliwa-Kopystynski, Jacek
2018-02-01
Vesta family members (VFMs), totally 17164, were selected by means of hierarchical clustering method (HCM) from the data base containing 393347 synthetic proper elements of numbered asteroids from the ASTDyS Catalogue (2015) updated in May 5, 2015. Keplerian elements from the Lowell Catalogue (2015) were used for studying orbital evolution of all 17164 VFMs in the time interval 1 Gy forward. Two cases were considered: evolution pass without the Yarkovsky effect (YN) and evolution pass with it (YY). It has been found that swarm of asteroids disperses about 28 times more efficient for the case YY than in the case YN. Efficiency of dispersion was studied versus semiaxis of asteroids relative to Vesta (smaller or larger than semiaxis of Vesta) as well as versus the sizes of asteroids. Weak relationships between size and efficiency of dispersion on YE have been found for the both cases YN and YY. The loss of number of the asteroids from VF weakly depends on their sizes. The total lost by number as well by mass is about 10% per 1 Gy.
Teaching Evolution & the Nature of Science.
ERIC Educational Resources Information Center
Farber, Paul
2003-01-01
The theory of evolution provides direction in many fields, such as ecology, genetics, and embryology. Examines issues concerning the teaching of the subject in the United States. Presents a case study approach to teach about the nature of science using the theory of evolution. (SOE)
A Cross-Course Investigation of Integrative Cases for Evolution Education.
White, Peter John Thomas; Heidemann, Merle K; Smith, James J
2015-12-01
Evolution is a cornerstone theory in biology, yet many undergraduate students have difficulty understanding it. One reason for this is that evolution is often taught in a macro-scale context without explicit links to micro-scale processes. To address this, we developed a series of integrative evolution cases that present the evolution of various traits from their origin in genetic mutation, to the synthesis of modified proteins, to how these proteins produce novel phenotypes, to the related macro-scale impacts that the novel phenotypes have on populations in ecological communities. We postulated that students would develop a fuller understanding of evolution when learning biology in a context where these integrative evolution cases are used. We used a previously developed assessment tool, the ATEEK (Assessment Tool for Evaluating Evolution Knowledge), within a pre-course/post-course assessment framework. Students who learned biology in courses using the integrative cases performed significantly better on the evolution assessment than did students in courses that did not use the cases. We also found that student understanding of evolution increased with increased exposure to the integrative evolution cases. These findings support the general hypothesis that students acquire a more complete understanding of evolution when they learn about its genetic and molecular mechanisms along with macro-scale explanations.
A Cross-Course Investigation of Integrative Cases for Evolution Education †
White, Peter John Thomas; Heidemann, Merle K.; Smith, James J.
2015-01-01
Evolution is a cornerstone theory in biology, yet many undergraduate students have difficulty understanding it. One reason for this is that evolution is often taught in a macro-scale context without explicit links to micro-scale processes. To address this, we developed a series of integrative evolution cases that present the evolution of various traits from their origin in genetic mutation, to the synthesis of modified proteins, to how these proteins produce novel phenotypes, to the related macro-scale impacts that the novel phenotypes have on populations in ecological communities. We postulated that students would develop a fuller understanding of evolution when learning biology in a context where these integrative evolution cases are used. We used a previously developed assessment tool, the ATEEK (Assessment Tool for Evaluating Evolution Knowledge), within a pre-course/post-course assessment framework. Students who learned biology in courses using the integrative cases performed significantly better on the evolution assessment than did students in courses that did not use the cases. We also found that student understanding of evolution increased with increased exposure to the integrative evolution cases. These findings support the general hypothesis that students acquire a more complete understanding of evolution when they learn about its genetic and molecular mechanisms along with macro-scale explanations. PMID:26753023
Evolution of Forms of Representation in a Modelling Activity: A Case Study
ERIC Educational Resources Information Center
Garuti, Rossella; Dapueto, Carlo; Boero, Paolo
2003-01-01
The report describes a mathematical modelling activity of a natural phenomenon (transmission of hereditary characters in a codominance case) using the concept of model as a theoretical instrument. The chosen tool enables us to show how the construction of a link between reality and a model is related to the evolution of the graphical…
ERIC Educational Resources Information Center
Werth, Alexander J.
2009-01-01
An anonymous survey instrument was used for a ten year study to gauge college student attitudes toward evolution. Results indicate that students are most likely to accept evolution as a historical process for change in physical features of non-human organisms. They are less likely to accept evolution as an ongoing process that shapes all traits…
Evolution Education in Policy and Practice: An Ethnographic Perspective
ERIC Educational Resources Information Center
Long, David E.
2012-01-01
Evolution education in the US is conducted unevenly, or in cases is absent. Showing the strength of ethnography as a means of deeper explication in science education, this article explores the interactions of policy and practice in evolution education. Discussing vignettes from a larger ethnographic study, Creationist rationales and practices…
Bacterial flagella and Type III secretion: case studies in the evolution of complexity.
Pallen, M J; Gophna, U
2007-01-01
Bacterial flagella at first sight appear uniquely sophisticated in structure, so much so that they have even been considered 'irreducibly complex' by the intelligent design movement. However, a more detailed analysis reveals that these remarkable pieces of molecular machinery are the product of processes that are fully compatible with Darwinian evolution. In this chapter we present evidence for such processes, based on a review of experimental studies, molecular phylogeny and microbial genomics. Several processes have played important roles in flagellar evolution: self-assembly of simple repeating subunits, gene duplication with subsequent divergence, recruitment of elements from other systems ('molecular bricolage'), and recombination. We also discuss additional tentative new assignments of homology (FliG with MgtE, FliO with YscJ). In conclusion, rather than providing evidence of intelligent design, flagellar and non-flagellar Type III secretion systems instead provide excellent case studies in the evolution of complex systems from simpler components.
Laland, Kevin N
2008-11-12
Genes and culture represent two streams of inheritance that for millions of years have flowed down the generations and interacted. Genetic propensities, expressed throughout development, influence what cultural organisms learn. Culturally transmitted information, expressed in behaviour and artefacts, spreads through populations, modifying selection acting back on populations. Drawing on three case studies, I will illustrate how this gene-culture coevolution has played a critical role in human evolution. These studies explore (i) the evolution of handedness, (ii) sexual selection with a culturally transmitted mating preference, and (iii) cultural niche construction and human evolution. These analyses shed light on how genes and culture shape each other, and on the significance of feedback mechanisms between biological and cultural processes.
System Safety in Early Manned Space Program: A Case Study of NASA and Project Mercury
NASA Technical Reports Server (NTRS)
Hansen, Frederick D.; Pitts, Donald
2005-01-01
This case study provides a review of National Aeronautics and Space Administration s (NASA's) involvement in system safety during research and evolution from air breathing to exo-atmospheric capable flight systems culminating in the successful Project Mercury. Although NASA has been philosophically committed to the principals of system safety, this case study points out that budget and manpower constraints-as well as a variety of internal and external pressures can jeopardize even a well-designed system safety program. This study begins with a review of the evolution and early years of NASA's rise as a project lead agency and ends with the lessons learned from Project Mercury.
Case studies in teaching evolution: The intersection of dilemmas in practice
NASA Astrophysics Data System (ADS)
Fisher, Rachel
Despite recent science education reform documents citing evolution as a core concept to be taught in grades K-12, research shows problems with how it is currently taught. Evolution is often avoided, teachers minimize its importance within biology, infuse misconceptions, and/or interject non-scientific ideologies into lessons. My research focused on how teachers in two geographically and culturally distinct school districts in the southwestern U.S. negotiate dilemmas during an evolution unit. One school district was rural and had a large population of Mormon students, while the other district was urban, with a large majority Mexican/Mexican-American students. Using a case study approach, I observed three biology teachers during their evolution lessons, interviewed them throughout the unit, co-planned lessons with them, and collected artifacts from this unit, including anonymous student work. I also included data from four genetics lessons for each teacher to determine if the issues that arose during the evolution unit were a result of the general practice of the teacher, or if they were unique to evolution. Findings showed teachers' backgrounds and comfort levels with evolution, in addition to their perceptions of community context, affected how they negotiated pedagogical, conceptual, political, and cultural dilemmas. This study's findings will inform in-service teachers' future practice and professional development tools to aid with their teaching---this may include methods to negotiate some of the political (e.g. state standards) or cultural (e.g. religious resistance) issues inherent to teaching evolution.
Adaptive evolution to novel predators facilitates the evolution of damselfly species range shifts.
Siepielski, Adam M; Beaulieu, Jeremy M
2017-04-01
Most species have evolved adaptations to reduce the chances of predation. In many cases, adaptations to coexist with one predator generate tradeoffs in the ability to live with other predators. Consequently, the ability to live with one predator may limit the geographic distributions of species, such that adaptive evolution to coexist with novel predators may facilitate range shifts. In a case study with Enallagma damselflies, we used a comparative phylogenetic approach to test the hypothesis that adaptive evolution to live with a novel predator facilitates range size shifts. Our results suggest that the evolution of Enallagma shifting from living in ancestral lakes with fish as top predators, to living in lakes with dragonflies as predators, may have facilitated an increase in their range sizes. This increased range size likely arose because lakes with dragonflies were widespread, but unavailable as a habitat throughout much of the evolutionary history of Enallagma because they were historically maladapted to coexist with dragonfly predators. Additionally, the traits that have evolved as defenses against dragonflies also likely enhanced damselfly dispersal abilities. While many factors underlie the evolutionary history of species ranges, these results suggest a role for the evolution of predator-prey interactions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Comparative population genomics of maize domestication and improvement
USDA-ARS?s Scientific Manuscript database
Domestication and modern breeding represent exemplary case studies of evolution in action. Maize is an outcrossing species with a complex genome, and an understanding of maize evolution is thus relevant for both plant and animal systems. This study is the largest plant resequencing effort to date, ...
The Effectiveness of a Case Study-Based First-Year Biology Class at a Black Women's College
ERIC Educational Resources Information Center
Pai, Aditi; Benning, Tracy; Woods, Natasha; McGinnis, Gene; Chu, Joanne; Netherton, Josh; Bauerle, Cynthia
2010-01-01
The authors used a case study-based approach in the introductory biology course at Spelman College. The course taught to entering freshmen was divided into three modules--ecology, evolution, and biodiversity, each designed around a case study. They noted that (1) case study teaching was dramatically more effective than the traditional lecture…
NASA Astrophysics Data System (ADS)
Willems, Pierre Dominique
The purpose of this case study was to research how science teachers balance both religion and evolution in the science classroom with as little controversy as possible. In this study I attempted to provide some insight on how teachers are currently teaching evolution in their science classes in light of the religious beliefs of the students as well as their own. The case study was conducted in a school district in Florida where I attempted to answer the following questions: (a) How do science teachers in the Florida School District (FSD) approach the religion--evolution issue in preparing students for a career in a field of science? (b) How do science teachers in the FSD reconcile the subject of evolution with the religious views of their students? (c) How do science teachers in the FSD reconcile their own religious views with the teaching of evolution? (d) How do science teachers in the FSD perceive the relationship between religion and science? The data was collected through interviews with two high school teachers, and one middle school teacher, by observing each participant teach, by collecting site documents and by administering an exploratory survey to student volunteers. Analysis was conducted by open coding which produced four themes from which the research questions were answered and the survey answers were counted to produce the percentages displayed in the tables in chapter four. The teachers avoided discussion on religiously oriented questions or statements by the students and did not reveal their own religious orientation. The topic of microevolution appeared to reduce stress in the classroom environment, as opposed to addressing macroevolution.
ERIC Educational Resources Information Center
Winslow, Mark W.; Staver, John R.; Scharmann, Lawrence C.
2011-01-01
The goal of this study was to explore Christian biology-related majors' perceptions of conflicts between evolution and their religious beliefs. This naturalistic study utilized a case study design of 15 undergraduate biology-related majors at or recent biology-related graduates from a mid-western Christian university. The broad sources of data…
Long-time efficacy of the surface code in the presence of a super-Ohmic environment
NASA Astrophysics Data System (ADS)
López-Delgado, D. A.; Novais, E.; Mucciolo, E. R.; Caldeira, A. O.
2017-06-01
We study the long-time evolution of a quantum memory coupled to a bosonic environment on which quantum error correction (QEC) is performed using the surface code. The memory's evolution encompasses N QEC cycles, each of them yielding a nonerror syndrome. This assumption makes our analysis independent of the recovery process. We map the expression for the time evolution of the memory onto the partition function of an equivalent statistical-mechanical spin system. In the super-Ohmic dissipation case the long-time evolution of the memory has the same behavior as the time evolution for just one QEC cycle. For this case we find analytical expressions for the critical parameters of the order-disorder phase transition of an equivalent spin system. These critical parameters determine the threshold value for the system-environment coupling below which it is possible to preserve the memory's state.
Surface phenomena and the evolution of radiating fluid spheres in general relativity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, L.; Jimenez, J.; Esculpi, M.
1989-10-01
A method used to study the evolution of radiating spheres (Herrera, Jimenez, and Ruggeri) is extended to the case in which surface phenomena are taken into account. The equations have been integrated numerically for a model derived from the Schwarzschild interior solution, bringing out the effects of surface tension on the evolution of the spheres. 17 refs.
Evolving Uses of Technology in Case-Based Teacher Education.
ERIC Educational Resources Information Center
Smith, Janet C.; Diaz, Ricardo
Case study-based teacher education has been advocated since the mid-1980s. The evolution of technology-facilitated, case study-based professional development for adult education professionals may be traced by examining three projects involving the National Center on Adult Literacy and the International Literacy Institute at University of…
Intellectual Initiatives at a Research University: Origins, Evolutions, and Challenges.
ERIC Educational Resources Information Center
Frost, Susan H.; Jean, Paul M.; Teodorescu, Daniel; Brown, Amy B.
This qualitative case study explored the origins, evolutions, and challenges of 12 cross-disciplinary intellectual initiatives at 1 research university. Researchers conducted open-ended interviews with leaders of the 12 initiatives and used program literature to support the data gathered from the interviews. The study found that key factors such…
Evolution. A case of system dynamics.
Apáthy, Z
1990-01-01
It is contended that the Darwinian theory of evolution is merely a special case of the obsolete Newtonian paradigm. A modern vision of reality, consistent with structuralism in biology, is presented. Some well-known neo-Darwinist explanations of the evolutionary process are quoted accompanied by structuralist interpretations of the same cases. These lead to a different 'mechanism' of evolution, based on internal factors, consistent with contemporary science. It is argued that a great number of specialists who dismiss the Darwinian theory of evolution share a common reason for rejecting it, but differ widely in guessing the motivating factor or factors of evolution.
NASA Astrophysics Data System (ADS)
Darussyamsu, R.; Fadilah, M.; Putri, D. H.
2018-04-01
Emotional and spiritual aspect is one of main factors that influence students’ acceptance of a theory. This study aim to measure university students’ acceptance of evolution by learns evolution using emotional and spiritual quotient (ESQ) approach. This is a quasi-experimental research using one shot case study design with the subject 36 biology educational students at Biology Department, Faculty of Mathematics and Natural Science, Universitas Negeri Padang. Data collected using the MATE instrument by Rutledge and Warden (2000) after the students learn evolution for eight meetings since January until March 2017. The result showed that by learning evolution theory combine with ESQ aspects increase students acceptance from very low become moderate acceptance. It concluded that ESQ aspects can improve students’ acceptance of evolution. Any criteria depend on it are discussed.
On the Coplanar Integrable Case of the Twice-Averaged Hill Problem with Central Body Oblateness
NASA Astrophysics Data System (ADS)
Vashkov'yak, M. A.
2018-01-01
The twice-averaged Hill problem with the oblateness of the central planet is considered in the case where its equatorial plane coincides with the plane of its orbital motion relative to the perturbing body. A qualitative study of this so-called coplanar integrable case was begun by Y. Kozai in 1963 and continued by M.L. Lidov and M.V. Yarskaya in 1974. However, no rigorous analytical solution of the problem can be obtained due to the complexity of the integrals. In this paper we obtain some quantitative evolution characteristics and propose an approximate constructive-analytical solution of the evolution system in the form of explicit time dependences of satellite orbit elements. The methodical accuracy has been estimated for several orbits of artificial lunar satellites by comparison with the numerical solution of the evolution system.
Tracking Concept Development through Semiotic Evolution
ERIC Educational Resources Information Center
Ronen, Ilana
2015-01-01
A qualitative research focused on a case study aiming to monitor emergent knowledge in a discourse group by tracking the development of the concept "goal." The analysis, based on "Semiotic Evolution" methodology facilitates the description of interactions between personal perceptions in the group discourse, illustrating the…
ERIC Educational Resources Information Center
Klein, Hans E., Ed.
This book presents a selection of papers from the annual, international, interdisciplinary conference of the World Association for Case Method Research & Application. Papers are categorized into six areas: (1) "Case Studies and Research" (e.g., subjectivity as a source of insight in case study research, evolution of a teaching case,…
Fukunaga, Akiko; Sakoda, Hiroto; Iwamoto, Yoshihiro; Inano, Shojiro; Sueki, Yuki; Yanagida, Soshi; Arima, Nobuyoshi
2013-03-01
Myelodysplastic syndrome (MDS) is a clonal disorder arising from an alteration in multipotent stem cells, which lose the ability of normal proliferation and differentiation. Disease progression occurs in approximately 30% MDS cases. Specific chromosomal alterations seem responsible for each step in the evolution of acute myeloid leukemia (AML). Multiple genetic aberrations occur during the clonal evolution of MDS; however, few studies report the presence of the Philadelphia (Ph) chromosome. We report a rare case of Ph-positive AML, which evolved during the course of low-risk MDS. The patient, a 76-year-old man with mild leukocytopenia, was diagnosed with MDS, refractory neutropenia (RN). After 1.5 yr, his peripheral blood and bone marrow were suddenly occupied by immature basophils and myeloblasts, indicating the onset of AML. A bone marrow smear showed multilineage dysplasia, consistent with MDS evolution. Chromosomal analysis showed an additional t(9;22)(q34;q11) translocation. Because progression occurred concurrently with emergence of the Ph chromosome, we diagnosed this case as Ph-positive AML with basophilia arising from the clonal evolution of MDS. The patient was initially treated with nilotinib. A hematological response was soon achieved with disappearance of the Ph chromosome in the bone marrow. Emergence of Ph-positive AML in the course of low-risk MDS has rarely been reported. We report this case as a rare clinical course of MDS. © 2012 John Wiley & Sons A/S.
The Semantic Drift of Quotations in Blogspace: A Case Study in Short-Term Cultural Evolution.
Lerique, Sébastien; Roth, Camille
2018-01-01
We present an empirical case study that connects psycholinguistics with the field of cultural evolution, in order to test for the existence of cultural attractors in the evolution of quotations. Such attractors have been proposed as a useful concept for understanding cultural evolution in relation with individual cognition, but their existence has been hard to test. We focus on the transformation of quotations when they are copied from blog to blog or media website: by coding words with a number of well-studied lexical features, we show that the way words are substituted in quotations is consistent (a) with the hypothesis of cultural attractors and (b) with known effects of the word features. In particular, words known to be harder to recall in lists have a higher tendency to be substituted, and words easier to recall are produced instead. Our results support the hypothesis that cultural attractors can result from the combination of individual cognitive biases in the interpretation and reproduction of representations. Copyright © 2017 Cognitive Science Society, Inc.
Clerc, Daryl G
2016-07-21
An ab initio approach was used to study the molecular-level interactions that connect gene-mutation to changes in an organism׳s phenotype. The study provides new insights into the evolutionary process and presents a simplification whereby changes in phenotypic properties may be studied in terms of the binding affinities of the chemical interactions affected by mutation, rather than by correlation to the genes. The study also reports the role that nonlinear effects play in the progression of organs, and how those effects relate to the classical theory of evolution. Results indicate that the classical theory of evolution occurs as a special case within the ab initio model - a case having two attributes. The first attribute: proteins and promoter regions are not shared among organs. The second attribute: continuous limiting behavior exists in the physical properties of organs as well as in the binding affinity of the associated chemical interactions, with respect to displacements in the chemical properties of proteins and promoter regions induced by mutation. Outside of the special case, second-order coupling contributions are significant and nonlinear effects play an important role, a result corroborated by analyses of published activity levels in binding and transactivation assays. Further, gradations in the state of perfection of an organ may be small or large depending on the type of mutation, and not necessarily closely-separated as maintained by the classical theory. Results also indicate that organs progress with varying degrees of interdependence, the likelihood of successful mutation decreases with increasing complexity of the affected chemical system, and differences between the ab initio model and the classical theory increase with increasing complexity of the organism. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
Marchionini, Gary
2002-01-01
Describes how user interfaces for the Bureau of Labor Statistics (BLS) web site evolved over a 5-year period along with the larger organizational interface and how this co-evolution has influenced the institution. Interviews with BLS staff and transaction log analysis are the foci of this study, as well as user information-seeking studies and user…
Genomic analysis of the origins and evolution of multicentric diffuse lower-grade gliomas.
Hayes, Josie; Yu, Yao; Jalbert, Llewellyn E; Mazor, Tali; Jones, Lindsey E; Wood, Matthew D; Walsh, Kyle M; Bengtsson, Henrik; Hong, Chibo; Oberndorfer, Stefan; Roetzer, Thomas; Smirnov, Ivan V; Clarke, Jennifer L; Aghi, Manish K; Chang, Susan M; Nelson, Sarah J; Woehrer, Adelheid; Phillips, Joanna J; Solomon, David A; Costello, Joseph F
2018-04-09
Rare multicentric lower-grade gliomas (LGGs) represent a unique opportunity to study the heterogeneity among distinct tumor foci in a single patient and to infer their origins and parallel patterns of evolution. In this study, we integrate clinical features, histology, and immunohistochemistry for 4 patients with multicentric LGG, arising both synchronously and metachronously. For 3 patients we analyze the phylogeny of the lesions using exome sequencing, including one case with a total of 8 samples from the 2 lesions. One patient was diagnosed with multicentric isocitrate dehydrogenase 1 (IDH1) mutated diffuse astrocytomas harboring distinct IDH1 mutations, R132H and R132C; the latter mutation has been associated with Li-Fraumeni syndrome, which was subsequently confirmed in the patient's germline DNA and shown in additional cases with The Cancer Genome Atlas data. In another patient, phylogenetic analysis of synchronously arising grade II and grade III diffuse astrocytomas demonstrated a single shared mutation, IDH1 R132H, and revealed convergent evolution via non-overlapping mutations in ATRX and TP53. In 2 cases, there was divergent evolution of IDH1-mutated and 1p/19q-codeleted oligodendroglioma and IDH1-mutated and 1p/19q-intact diffuse astrocytoma, occurring synchronously in one case and metachronously in a second. Each tumor in multicentric LGG cases may arise independently or may diverge very early in their development, presenting as genetically and histologically distinct tumors. Comprehensive sampling of these lesions can therefore significantly alter diagnosis and management. Additionally, somatic IDH1 R132C mutation in either multicentric or solitary LGG identifies unsuspected germline TP53 mutation, validating the limited number of published cases.
A case study in evolutionary contingency.
Blount, Zachary D
2016-08-01
Biological evolution is a fundamentally historical phenomenon in which intertwined stochastic and deterministic processes shape lineages with long, continuous histories that exist in a changing world that has a history of its own. The degree to which these characteristics render evolution historically contingent, and evolutionary outcomes thereby unpredictably sensitive to history has been the subject of considerable debate in recent decades. Microbial evolution experiments have proven among the most fruitful means of empirically investigating the issue of historical contingency in evolution. One such experiment is the Escherichia coli Long-Term Evolution Experiment (LTEE), in which twelve populations founded from the same clone of E. coli have evolved in parallel under identical conditions. Aerobic growth on citrate (Cit(+)), a novel trait for E. coli, evolved in one of these populations after more than 30,000 generations. Experimental replays of this population's evolution from various points in its history showed that the Cit(+) trait was historically contingent upon earlier mutations that potentiated the trait by rendering it mutationally accessible. Here I review this case of evolutionary contingency and discuss what it implies about the importance of historical contingency arising from the core processes of evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Disentangling the Correlated Evolution of Monogamy and Cooperation.
Dillard, Jacqueline R; Westneat, David F
2016-07-01
Lifetime genetic monogamy, by increasing sibling relatedness, has been proposed as an important causal factor in the evolution of altruism. Monogamy, however, could influence the subsequent evolution of cooperation in other ways. We present several alternative, non-mutually exclusive, evolutionary processes that could explain the correlated evolution of monogamy and cooperation. Our analysis of these possibilities reveals that many ecological or social factors can affect all three variables of Hamilton's Rule simultaneously, thus calling for a more holistic, systems-level approach to studying the evolution of social traits. This perspective reveals novel dimensions to coevolutionary relationships and provides solutions for assigning causality in complex cases of correlated social trait evolution, such as the sequential evolution of monogamy and cooperation. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
During evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer a predictive ap...
Krompecher, T; Bergerioux, C
1988-01-01
The influence of electrocution on the evolution of rigor mortis was studied on rats. Our experiments showed that: (1) Electrocution hastens the onset of rigor mortis. After an electrocution of 90 s, a complete rigor develops already 1 h post-mortem (p.m.) compared to 5 h p.m. for the controls. (2) Electrocution hastens the passing of rigor mortis. After an electrocution of 90 s, the first significant decrease occurs at 3 h p.m. (8 h p.m. in the controls). (3) These modifications in rigor mortis evolution are less pronounced in the limbs not directly touched by the electric current. (4) In case of post-mortem electrocution, the changes are slightly less pronounced, the resistance is higher and the absorbed energy is lower as compared with the ante-mortem electrocution cases. The results are completed by two practical observations on human electrocution cases.
[Evolutive particularities of appendicular plastron in children].
Sabetay, C; Maloş, Anca; Ciobanu, O; Ciucă, M; Kamel, J; Zavate, A; Stoica, A; Cârstoiu, E; Purcaru, I; Sabetay, Eva
2008-01-01
This paper analyses the experience of the Paediatric Surgery Department from the Emergency Hospital in Craiova regarding the clinical and therapeutical evaluation of 55 cases with appendicular plastron admitted in our department between 1997-2006. We analyse both the evolution and the complications in managing these cases, together with particular aspects of differential diagnosis related to this group of age. These 55 cases were children aged between 2 and 15 years with a 15 days average hospitalization period. Applying a standard treatment we had favorable results in 85% of cases with 15% cases underwent surgical treatment from the first admission. Comparative to a study realised in our dept. between 1975-1996, which registered 30 cases with a mortality of 6.70%, the present one revealed in the latest years an important increase of the number of appendicular plastron with a significant low mortality.
Artificial evolution: a new path for artificial intelligence?
Husbands, P; Harvey, I; Cliff, D; Miller, G
1997-06-01
Recently there have been a number of proposals for the use of artificial evolution as a radically new approach to the development of control systems for autonomous robots. This paper explains the artificial evolution approach, using work at Sussex to illustrate it. The paper revolves around a case study on the concurrent evolution of control networks and visual sensor morphologies for a mobile robot. Wider intellectual issues surrounding the work are discussed, as is the use of more abstract evolutionary simulations as a new potentially useful tool in theoretical biology.
Shape Optimization of Rubber Bushing Using Differential Evolution Algorithm
2014-01-01
The objective of this study is to design rubber bushing at desired level of stiffness characteristics in order to achieve the ride quality of the vehicle. A differential evolution algorithm based approach is developed to optimize the rubber bushing through integrating a finite element code running in batch mode to compute the objective function values for each generation. Two case studies were given to illustrate the application of proposed approach. Optimum shape parameters of 2D bushing model were determined by shape optimization using differential evolution algorithm. PMID:25276848
Ji, Xiang; Liu, Li-Ming; Li, Hong-Qing
2014-11-01
Taking Jinjing Town in Dongting Lake area as a case, this paper analyzed the evolution of rural landscape patterns by means of life cycle theory, simulated the evolution cycle curve, and calculated its evolution period, then combining CA-Markov model, a complete prediction model was built based on the rule of rural landscape change. The results showed that rural settlement and paddy landscapes of Jinjing Town would change most in 2020, with the rural settlement landscape increased to 1194.01 hm2 and paddy landscape greatly reduced to 3090.24 hm2. The quantitative and spatial prediction accuracies of the model were up to 99.3% and 96.4%, respectively, being more explicit than single CA-Markov model. The prediction model of rural landscape patterns change proposed in this paper would be helpful for rural landscape planning in future.
Solutions of evolution equations associated to infinite-dimensional Laplacian
NASA Astrophysics Data System (ADS)
Ouerdiane, Habib
2016-05-01
We study an evolution equation associated with the integer power of the Gross Laplacian ΔGp and a potential function V on an infinite-dimensional space. The initial condition is a generalized function. The main technique we use is the representation of the Gross Laplacian as a convolution operator. This representation enables us to apply the convolution calculus on a suitable distribution space to obtain the explicit solution of the perturbed evolution equation. Our results generalize those previously obtained by Hochberg [K. J. Hochberg, Ann. Probab. 6 (1978) 433.] in the one-dimensional case with V=0, as well as by Barhoumi-Kuo-Ouerdiane for the case p=1 (See Ref. [A. Barhoumi, H. H. Kuo and H. Ouerdiane, Soochow J. Math. 32 (2006) 113.]).
Helfrich, O; Crouzet, S; Ruffion, A; Houlgatte, A; Cavillon, C; Gerard, C; Villers, A
2015-03-01
The main objective is the study of the evolution of the number of incident cases of prostate cancer in France from 2001 to 2012 from 5 hospital centers of urology. The secondary objective is to describe the characteristics of the incident cases and to compare them to those of the patients of the national registers of cancer for the period. Prospective observational multicentric study from 01/01/2001 to 31/12/2012 of databases in 5 French, public and private hospital centers of urology. The inclusive centers were selected outside departments with cancer register. The collected data were the prostatic biopsies performed in every center and the number of positive biopsies. The biopsies in cases of already known cancer and in re-evaluation were excluded. The data of age and stage (PSA and Gleason grade) were collected. The estimation of the incidence standardized in France is established after a period of observation of 3 years. The data updated in 2009 show a peak of incidence in 2005 then a decrease from 2006 (64,518 cases) until 2009 (53,465 cases). The median age in the diagnosis was of 70 years in 2005. Overall, 18,392 prostatic biopsies were included in the analysis. The average rate of positive biopsies was stable over the period 51.41% (IQR 0,02). The total number of cases of positive biopsies increased from 2001 to 2007 (482 cases in 1028 cases) in 2007, then decreased from 2008 to 2012 (649 cases). There was no difference in this variation between the centers. The median age in the diagnosis was of 70 years (EIQ=1.5) in 2001 and 68 years (EIQ=2.75) in 2012. PSA at diagnosis was<10ng/mL in 65% of cases and 10 to 20ng/mL in 22% of cases in 2012. The population of patients of the study differed significantly from that of FRANCIM on the distribution by age ranges (year 2005, P<0.0001 and year 2009, P<0.001), which explains the gap of one year (on 2007 instead of 2006) of the peak of incidental cases. The evolution of the number of incidental cases of prostate cancer in France from 2001 to 2012 from hospital data of 5 centers are similar to those of the network of registers representative of the French population. This observed evolution represents data available for cancer registers to estimate incidence variation between 2 publications. 4. Copyright © 2014. Published by Elsevier Masson SAS.
Sound Symbolic Patterns in Pokémon Names.
Kawahara, Shigeto; Noto, Atsushi; Kumagai, Gakuji
2018-04-11
This paper presents a case study of sound symbolism, cases in which certain sounds tend to be associated with particular meanings. We used the corpus of all Japanese Pokémon names available as of October 2016. We tested the effects of voiced obstruents, mora counts, and vowel quality on Pokémon characters' size, weight, strength parameters, and evolution levels. We found that the number of voiced obstruents in Pokémon names correlates positively with size, weight, evolution levels, and general strength parameters, except for speed. We argue that this result is compatible with the frequency code hypothesis of Ohala. The number of moras in Pokémon names correlates positively with size, weight, evolution levels, and all strength parameters. Vowel height is also shown to have an influence on size and weight - Pokémon characters with initial high vowels tend to be smaller and lighter, although the effect size is not very large. Not only does this paper offer a new case study of sound symbolism, it provides evidence that sound symbolism is at work when naming proper nouns. © 2018 S. Karger AG, Basel.
MEvoLib v1.0: the first molecular evolution library for Python.
Álvarez-Jarreta, Jorge; Ruiz-Pesini, Eduardo
2016-10-28
Molecular evolution studies involve many different hard computational problems solved, in most cases, with heuristic algorithms that provide a nearly optimal solution. Hence, diverse software tools exist for the different stages involved in a molecular evolution workflow. We present MEvoLib, the first molecular evolution library for Python, providing a framework to work with different tools and methods involved in the common tasks of molecular evolution workflows. In contrast with already existing bioinformatics libraries, MEvoLib is focused on the stages involved in molecular evolution studies, enclosing the set of tools with a common purpose in a single high-level interface with fast access to their frequent parameterizations. The gene clustering from partial or complete sequences has been improved with a new method that integrates accessible external information (e.g. GenBank's features data). Moreover, MEvoLib adjusts the fetching process from NCBI databases to optimize the download bandwidth usage. In addition, it has been implemented using parallelization techniques to cope with even large-case scenarios. MEvoLib is the first library for Python designed to facilitate molecular evolution researches both for expert and novel users. Its unique interface for each common task comprises several tools with their most used parameterizations. It has also included a method to take advantage of biological knowledge to improve the gene partition of sequence datasets. Additionally, its implementation incorporates parallelization techniques to enhance computational costs when handling very large input datasets.
Microbial Resistance to Triclosan: A Case Study in Natural Selection
ERIC Educational Resources Information Center
Serafini, Amanda; Matthews, Dorothy M.
2009-01-01
Natural selection is the mechanism of evolution caused by the environmental selection of organisms most fit to reproduce, sometimes explained as "survival of the fittest." An example of evolution by natural selection is the development of bacteria that are resistant to antimicrobial agents as a result of exposure to these agents. Triclosan, which…
Researcher, Teacher, Education Researcher: The Evolution of a University Geoscience Instructor
ERIC Educational Resources Information Center
Owens, Katharine D.; Steer, David; McConnell, David
2006-01-01
This case study describes a professor's evolution from geoscience researcher to effective teacher to education researcher. The article details his initial beliefs about teaching, looks at the factors that prompted him to seek a different teaching approach, and enumerates the supports and challenges that he had on his journey. Factors essential to…
Introductory Biology Students' Conceptual Models and Explanations of the Origin of Variation
ERIC Educational Resources Information Center
Bray Speth, Elena; Shaw, Neil; Momsen, Jennifer; Reinagel, Adam; Le, Paul; Taqieddin, Ranya; Long, Tammy
2014-01-01
Mutation is the key molecular mechanism generating phenotypic variation, which is the basis for evolution. In an introductory biology course, we used a model-based pedagogy that enabled students to integrate their understanding of genetics and evolution within multiple case studies. We used student-generated conceptual models to assess…
ERIC Educational Resources Information Center
Wilcox, Lori
2009-01-01
This research explored the relationship of educational entrepreneurism and organizational culture in the creation and evolution of academic centers within one Midwestern land-grant university facing resource constraints. Particular attention was given to: (a) synthesizing current entrepreneurial and organizational culture and evolution theory as…
Polski, Jacek M; Galambos, Csaba; Gale, Gordon B; Dunphy, Cherie H; Evans, H Lance; Batanian, Jacqueline R
2002-01-01
We report a case of transient myeloproliferative disorder (TMD) in a neonate without features of Down syndrome (DS) with clonal karyotype evolution, after apparent spontaneous resolution of TMD, but eventually progressing to acute megakaryoblastic leukemia (AMKL). The patient had petechiae, thrombocytopenia, and blastemia. Trisomy 21 with a satellited Y chromosome (Yqs) was found in proliferating blasts. A stimulated peripheral blood culture confirmed the constitutional origin of the Yqs, but did not reveal the presence of any trisomic 21 cell. By the age of 3 months, clonal chromosome evolution in the form of an interstitial deletion of the long-arm of chromosome 13 [del(13)(q13q31)] was detected along with trisomy 21 in unstimulated bone marrow cultures. However, remission was achieved without treatment at the age of 4 months. Trisomy 21 and del(13)(q13q31) were not identified in either cytogenetics or fluorescence in situ hybridization studies at that time. The child was asymptomatic until the age of 20 months when anemia and thrombocytopenia prompted a bone marrow biopsy, revealing changes consistent with AMKL. The remission proceeded by clonal karyotype evolution in a neonate with TMD demonstrates that clonal karyotype evolution does not indicate an immediately progressive disease. However, the development of AMKL after TMD in this case illustrates the increased risk for leukemia in TMD cases, even without DS. The gradual clonal evolution of the blasts in our patient suggests that "multiple hits" oncogenesis applies to TMD progression to acute leukemia.
Studying the laws of software evolution in a long-lived FLOSS project.
Gonzalez-Barahona, Jesus M; Robles, Gregorio; Herraiz, Israel; Ortega, Felipe
2014-07-01
Some free, open-source software projects have been around for quite a long time, the longest living ones dating from the early 1980s. For some of them, detailed information about their evolution is available in source code management systems tracking all their code changes for periods of more than 15 years. This paper examines in detail the evolution of one of such projects, glibc, with the main aim of understanding how it evolved and how it matched Lehman's laws of software evolution. As a result, we have developed a methodology for studying the evolution of such long-lived projects based on the information in their source code management repository, described in detail several aspects of the history of glibc, including some activity and size metrics, and found how some of the laws of software evolution may not hold in this case. © 2013 The Authors. Journal of Software: Evolution and Process published by John Wiley & Sons Ltd.
Studying the laws of software evolution in a long-lived FLOSS project
Gonzalez-Barahona, Jesus M; Robles, Gregorio; Herraiz, Israel; Ortega, Felipe
2014-01-01
Some free, open-source software projects have been around for quite a long time, the longest living ones dating from the early 1980s. For some of them, detailed information about their evolution is available in source code management systems tracking all their code changes for periods of more than 15 years. This paper examines in detail the evolution of one of such projects, glibc, with the main aim of understanding how it evolved and how it matched Lehman's laws of software evolution. As a result, we have developed a methodology for studying the evolution of such long-lived projects based on the information in their source code management repository, described in detail several aspects of the history of glibc, including some activity and size metrics, and found how some of the laws of software evolution may not hold in this case. © 2013 The Authors. Journal of Software: Evolution and Process published by John Wiley & Sons Ltd. PMID:25893093
NASA Astrophysics Data System (ADS)
Zheng, Zhen-Yu; Li, Peng
2018-04-01
We consider the time evolution of two-point correlation function in the transverse-field Ising chain (TFIC) with ring frustration. The time-evolution procedure we investigated is equivalent to a quench process in which the system is initially prepared in a classical kink state and evolves according to the time-dependent Schrödinger equation. Within a framework of perturbative theory (PT) in the strong kink phase, the evolution of the correlation function is disclosed to demonstrate a qualitatively new behavior in contrast to the traditional case without ring frustration.
Adaptive evolution of a key gene affecting queen and worker traits in the honey bee, Apis mellifera.
Kent, Clement F; Issa, Amer; Bunting, Alexandra C; Zayed, Amro
2011-12-01
The vitellogenin egg yolk precursor protein represents a well-studied case of social pleiotropy in the model organism Apis mellifera. Vitellogenin is associated with fecundity in queens and plays a major role in controlling division of labour in workers, thereby affecting both individual and colony-level fitness. We studied the molecular evolution of vitellogenin and seven other genes sequenced in a large population panel of Apis mellifera and several closely related species to investigate the role of social pleiotropy on adaptive protein evolution. We found a significant excess of nonsynonymous fixed differences between A. mellifera, A. cerana and A. florea relative to synonymous sites indicating high rates of adaptive evolution at vitellogenin. Indeed, 88% of amino acid changes were fixed by selection in some portions of the gene. Further, vitellogenin exhibited hallmark signatures of selective sweeps in A. mellifera, including a significant skew in the allele frequency spectrum, extreme levels of genetic differentiation and linkage disequilibrium. Finally, replacement polymorphisms in vitellogenin were significantly enriched in parts of the protein involved in binding lipid, establishing a link between the gene's structure, function and effects on fitness. Our case study provides unequivocal evidence of historical and ongoing bouts of adaptive evolution acting on a key socially pleiotropic gene in the honey bee. © 2011 Blackwell Publishing Ltd.
ERIC Educational Resources Information Center
Richards, Kari
2017-01-01
This study reports the findings of a qualitative case study that examined how elements of design and organization were conceptualized and enacted in two graduate level online courses, and, how these conceptualizations and enactments evolved. Data was collected through interviews and "think-alouds" with the course instructors and through…
DOT National Transportation Integrated Search
1979-08-01
This case study examines the evolution of the turbocharger from its invention in 1905 by Dr. A. J. Buechi, to its use on passenger cars in the late seventies. The case makes a number of points. The market for turbochargers has changed over time. In t...
The School Superintendent: Theory, Practice, and Cases. Second Edition
ERIC Educational Resources Information Center
Kowalski, Theodore J.
2005-01-01
Now in its Second Edition, "The School Superintendent: Theory, Practice, and Cases," provides reflective summaries, pertinent questions, and case studies at the end of each chapter to encourage the reader to engage in reflection by linking content with personal experiences. The text provides a comprehensive analysis of the evolution of the school…
The evolution of culture (or the lack thereof): mapping the conceptual space.
Gadagkar, Raghavendra
2017-07-01
This short essay is based on a lecture that I gave at short notice on a subject in which I am by no means an expert. The combination of lack of expertise and time for preparation, created an unexpectedly unique opportunity for thinking outside the box. I decided not to try to read up (as there was no time in any case) but instead to organize the little that I already knew about cultural evolution in a systematic schema-I attempted to create a scaffolding, on which I could hang everything I knew about cultural evolution, and hopefully, everything I might ever discover about cultural evolution in the future. I considered three dimensions of the study of cultural evolution, namely (i) the phenomenon of cultural evolution, (ii) production of knowledge in the field of cultural evolution, and (iii) the consequences or applications of an understanding of the evolution of culture.
Mitochondrial gene rearrangements confirm the parallel evolution of the crab-like form.
Morrison, C L; Harvey, A W; Lavery, S; Tieu, K; Huang, Y; Cunningham, C W
2002-01-01
The repeated appearance of strikingly similar crab-like forms in independent decapod crustacean lineages represents a remarkable case of parallel evolution. Uncertainty surrounding the phylogenetic relationships among crab-like lineages has hampered evolutionary studies. As is often the case, aligned DNA sequences by themselves were unable to fully resolve these relationships. Four nested mitochondrial gene rearrangements--including one of the few reported movements of an arthropod protein-coding gene--are congruent with the DNA phylogeny and help to resolve a crucial node. A phylogenetic analysis of DNA sequences, and gene rearrangements, supported five independent origins of the crab-like form, and suggests that the evolution of the crab-like form may be irreversible. This result supports the utility of mitochondrial gene rearrangements in phylogenetic reconstruction. PMID:11886621
Bringing Evolution to a Technological Generation: A Case Study with the Video Game SPORE
ERIC Educational Resources Information Center
Poli, DorothyBelle; Berenotto, Christopher; Blankenship, Sara; Piatkowski, Bryan; Bader, Geoffrey A.; Poore, Mark
2012-01-01
The video game SPORE was found to hold characteristics that stimulate higher-order thinking even though it rated poorly for accurate science. Interested in evaluating whether a scientifically inaccurate video game could be used effectively, we exposed students to SPORE during an evolution course. Students that played the game reported that they…
ERIC Educational Resources Information Center
Luo, Wei; Pelletier, Jon; Duffin, Kirk; Ormand, Carol; Hung, Wei-chen; Shernoff, David J.; Zhai, Xiaoming; Iverson, Ellen; Whalley, Kyle; Gallaher, Courtney; Furness, Walter
2016-01-01
The long geological time needed for landform development and evolution poses a challenge for understanding and appreciating the processes involved. The Web-based Interactive Landform Simulation Model--Grand Canyon (WILSIM-GC, http://serc.carleton.edu/landform/) is an educational tool designed to help students better understand such processes,…
The Evolution and Evaluation of an Online Role Play through Design-Based Research
ERIC Educational Resources Information Center
Beckmann, Elizabeth A.; Mahanty, Sango
2016-01-01
This paper presents selected findings from a 5-year design-based research case study of the evolution of an online role play that allows postgraduate students to explore the complexities inherent in land rights negotiations between indigenous peoples and others. In the context of Laurillard's (2002) conversational framework and a design-based…
Evidence from Biochemical Pathways in Favor of Unfinished Evolution Rather than Intelligent Design
ERIC Educational Resources Information Center
Behrman, Edward J.; Marzluf, George A.
2004-01-01
An argument is made in favor of imperfect or unfinished evolution based on some metabolic pathways in which it seems that intelligent design would have done better. The case studies noted indicate the absence of highly intelligent design and are not intended as comprehensive collection but as a limited sample of inefficient situations in…
Evolution in Action, a Case Study Based Advanced Biology Class at Spelman College
ERIC Educational Resources Information Center
Pai, Aditi
2009-01-01
The Biology department at Spelman, a historically black women's college has undertaken a major curriculum revision in the last few years. A primary goal of this revision is to increase the breadth of topics in biology classes. Historically, classes in the areas of ecology and evolution have been underrepresented whereas Spelman has always offered…
ERIC Educational Resources Information Center
Sambrook, Sally
2001-01-01
Using a contingency framework, three stages in the evolution of human resource development (HRD) in the National Health Service were identified: tell (training enacted within the classical management paradigm); sell (a competence approach to development for all employees); and gel (strategic HRD linked to corporate goals and future needs).…
Using Decision Structures for Policy Analysis in Software Product-line Evolution - A Case Study
NASA Astrophysics Data System (ADS)
Sarang, Nita; Sanglikar, Mukund A.
Project management decisions are the primary basis for project success (or failure). Mostly, such decisions are based on an intuitive understanding of the underlying software engineering and management process and have a likelihood of being misjudged. Our problem domain is product-line evolution. We model the dynamics of the process by incorporating feedback loops appropriate to two decision structures: staffing policy, and the forces of growth associated with long-term software evolution. The model is executable and supports project managers to assess the long-term effects of possible actions. Our work also corroborates results from earlier studies of E-type systems, in particular the FEAST project and the rules for software evolution, planning and management.
Comparison of conservation metrics in a case study of lemurs.
Gudde, Renske; Venditti, Chris
2016-12-01
Conservation planning is important to protect species from going extinct now that natural habitats are decreasing owing to human activity and climate change. However, there is considerable controversy in choosing appropriate metrics to weigh the value of species and geographic regions. For example, the added value of phylogenetic conservation-selection criteria remains disputed because high correlations between them and the nonphylogenetic criteria of species richness have been reported. We evaluated the commonly used conservation metrics species richness, endemism, phylogenetic diversity (PD), and phylogenetic endemism (PE) in a case study on lemurs of Madagascar. This enabled us to identify the conservation target of each metric and consider how they may be used in future conservation planning. We also devised a novel metric that uses a phylogeny scaled according to the rate of phenotypic evolution as a proxy for a species' ability to adapt to change. High rates of evolution may indicate generalization or specialization. Both specialization and low rates of evolution may result in an inability to adapt to changing environments. We examined conservation priorities by using the inverse of the rate of body mass evolution to account for species with low rates of evolution. In line with previous work, we found high correlations among species richness and PD (r = 0.96), and endemism and PE (r = 0.82) in Malagasy lemurs. Phylogenetic endemism in combination with rates of evolution and their inverse prioritized grid cells containing highly endemic and specialized lemurs at risk of extinction, such as Avahi occidentalis and Lepilemur edwardsi, 2 endangered lemurs with high rates of phenotypic evolution and low-quality diets, and Hapalemur aureus, a critically endangered species with a low rate of body mass evolution and a diet consisting of very high doses of cyanide. © 2016 Society for Conservation Biology.
Properties of Galaxies and Groups: Nature versus Nurture
NASA Astrophysics Data System (ADS)
Niemi, Sami-Matias
2011-09-01
Due to the inherently nonlinear nature of gravity cosmological N-body simulations have become an invaluable tool when the growth of structure is being studied and modelled closer to the present epoch. Large simulations with high dynamical range have made it possible to model the formation and growth of cosmic structure with unprecedented accuracy. Moreover, galaxies, the basic building blocks of the Universe, can also be modelled in cosmological context. However, despite all the simulations and successes in recent decades, there are still many unanswered questions in the field of galaxy formation and evolution. One of the longest standing issue being the significance of the formation place and thus initial conditions to a galaxy's evolution in respect to environment, often formulated simply as "nature versus nurture" like in human development and psychology. Unfortunately, our understanding of galaxy evolution in different environments is still limited, albeit, for example, the morphology-density relation has shown that the density of the galaxy's local environment can affect its properties. Consequently, the environment should play a role in galaxy evolution, however despite the efforts, the exact role of the galaxy's local environment to its evolution remains open. This thesis introduction discusses briefly the background cosmology, cosmological N-body simulations and semi-analytical models. The second part is reserved for groups of galaxies, whether they are gravitationally bound, and what this may imply for galaxy evolution. The third part of the thesis concentrates on describing results of a case study of isolated field elliptical galaxies. The final chapter discusses another case study of luminous infra-red galaxies.
On World Religion Adherence Distribution Evolution
NASA Astrophysics Data System (ADS)
Ausloos, Marcel; Petroni, Filippo
Religious adherence can be considered as a degree of freedom, in a statistical physics sense, for a human agent belonging to a population. The distribution, performance and life time of religions can thus be studied having in mind heterogeneous interacting agent modeling. We present a comprehensive analysis of 58 so-called religions (to be better defined in the main text) as measured through their number of adherents evolutions, between 1900 and 2000, - data taken from the World Christian Trends (Barrett and Johnson, "World Christian Trends AD 30 - AD 2200: Interpreting the Annual Christian Megacensus", William Carey Library, 2001): 40 are considered to be "presently growing" cases, including 11 turn overs in the twentieth century; 18 are "presently decaying", among which 12 are found to have had a recent maximum, in the nineteenth or the twentieth century. The Avrami-Kolmogorov differential equation which usually describes solid state transformations, like crystal growth, is used in each case in order to obtain the preferential attachment parameter introduced previously (Europhys Lett 77:38002, 2007). It is not often found close to unity, though often corresponding to a smooth evolution. However large values suggest the occurrence of extreme cases which we conjecture are controlled by so-called external fields. A few cases indicate the likeliness of a detachment process. We discuss a few growing and decaying religions, and illustrate various fits. Some cases seem to indicate the lack of reliability of the data, but others some marked departure from Avrami law. Whence the Avrami evolution equation might be surely improved, in particular, and somewhat obviously, for the decaying religion cases. We point out two major difficulties in such an analysis: (1) the "precise" original time of apparition of a religion, (2) the time at which there is a maximum number of adherents, both information being necessary for integrating reliably any evolution equation.
Linear optics only allows every possible quantum operation for one photon or one port
NASA Astrophysics Data System (ADS)
Moyano-Fernández, Julio José; Garcia-Escartin, Juan Carlos
2017-01-01
We study the evolution of the quantum state of n photons in m different modes when they go through a lossless linear optical system. We show that there are quantum evolution operators U that cannot be built with linear optics alone unless the number of photons or the number of modes is equal to one. The evolution for single photons can be controlled with the known realization of any unitary proved by Reck, Zeilinger, Bernstein and Bertani. The evolution for a single mode corresponds to the trivial evolution in a phase shifter. We analyze these two cases and prove that any other combination of the number of photons and modes produces a Hilbert state too large for the linear optics system to give any desired evolution.
NASA Technical Reports Server (NTRS)
Chang, Jy-Tai; Wetzel, Peter J.
1991-01-01
To examine the effects of spatial variations of soil moisture and vegetation coverage on the evolution of a prestorm environment, the Goddard mesoscale model is modified to incorporate a simple evapotranspiration model that requires these two parameters. The case study of 3-4 June 1980 is of special interest due to the development of a tornado producing convective complex near Grand Island, Nebraska during a period of comparatively weak synoptic-scale forcing. It is shown that the observed stationary front was strongly enhanced by differential heating created by observed gradients of soil moisture, as acted upon by the vegetation cover.
NASA Astrophysics Data System (ADS)
Maneva, Y. G.; Poedts, S.; Araneda, J. A.
2016-02-01
We compare the results from 1.5D and 2.5D hybrid simulations (with fluid electrons, and kinetic/particle-in-cell protons and α particles) to investigate the effect of the solar wind expansion on the evolution of ion relative drifts in collisionless fast wind streams. We initialize the system with initial relative drifts and follow its evolution in time within and without the expanding box model, which takes into account the gradual solar wind expansion in the interplanetary medium. The decay of the differential streaming follows similar pattern in the 1.5D and 2.5D non-expanding cases. For the 1.5D studies we find no difference in the evolution of the initial relative drift speed with and without expansion, whereas in the two-dimensional case the differential streaming is further suppressed once the solar wind expansion is taken into account. This implies that a stronger acceleration source is required to compensate for the effect of the expansion and produce the observed solar wind acceleration rate. The 1.5D case shows stronger oscillations in all plasma properties with higher temperature anisotropies for the minor ions in the first few hundred gyro-periods of the simulations. Yet the preferential perpendicular heating for the minor ions is stronger in the 2.5D case with higher temperature anisotropies at the final stage.
Language at Three Timescales: The Role of Real-Time Processes in Language Development and Evolution.
McMurray, Bob
2016-04-01
Evolutionary developmental systems (evo-devo) theory stresses that selection pressures operate on entire developmental systems rather than just genes. This study extends this approach to language evolution, arguing that selection pressure may operate on two quasi-independent timescales. First, children clearly must acquire language successfully (as acknowledged in traditional evo-devo accounts) and evolution must equip them with the tools to do so. Second, while this is developing, they must also communicate with others in the moment using partially developed knowledge. These pressures may require different solutions, and their combination may underlie the evolution of complex mechanisms for language development and processing. I present two case studies to illustrate how the demands of both real-time communication and language acquisition may be subtly different (and interact). The first case study examines infant-directed speech (IDS). A recent view is that IDS underwent cultural to statistical learning mechanisms that infants use to acquire the speech categories of their language. However, recent data suggest is it may not have evolved to enhance development, but rather to serve a more real-time communicative function. The second case study examines the argument for seemingly specialized mechanisms for learning word meanings (e.g., fast-mapping). Both behavioral and computational work suggest that learning may be much slower and served by general-purpose mechanisms like associative learning. Fast-mapping, then, may be a real-time process meant to serve immediate communication, not learning, by augmenting incomplete vocabulary knowledge with constraints from the current context. Together, these studies suggest that evolutionary accounts consider selection pressure arising from both real-time communicative demands and from the need for accurate language development. Copyright © 2016 Cognitive Science Society, Inc.
Within-Host Evolution of Burkholderia pseudomallei in Four Cases of Acute Melioidosis
Limmathurotsakul, Direk; Max, Tamara L.; Sarovich, Derek S.; Vogler, Amy J.; Dale, Julia L.; Ginther, Jennifer L.; Leadem, Benjamin; Colman, Rebecca E.; Foster, Jeffrey T.; Tuanyok, Apichai; Wagner, David M.; Peacock, Sharon J.; Pearson, Talima; Keim, Paul
2010-01-01
Little is currently known about bacterial pathogen evolution and adaptation within the host during acute infection. Previous studies of Burkholderia pseudomallei, the etiologic agent of melioidosis, have shown that this opportunistic pathogen mutates rapidly both in vitro and in vivo at tandemly repeated loci, making this organism a relevant model for studying short-term evolution. In the current study, B. pseudomallei isolates cultured from multiple body sites from four Thai patients with disseminated melioidosis were subjected to fine-scale genotyping using multilocus variable-number tandem repeat analysis (MLVA). In order to understand and model the in vivo variable-number tandem repeat (VNTR) mutational process, we characterized the patterns and rates of mutations in vitro through parallel serial passage experiments of B. pseudomallei. Despite the short period of infection, substantial divergence from the putative founder genotype was observed in all four melioidosis cases. This study presents a paradigm for examining bacterial evolution over the short timescale of an acute infection. Further studies are required to determine whether the mutational process leads to phenotypic alterations that impact upon bacterial fitness in vivo. Our findings have important implications for future sampling strategies, since colonies in a single clinical sample may be genetically heterogeneous, and organisms in a culture taken late in the infective process may have undergone considerable genetic change compared with the founder inoculum. PMID:20090837
Exact dynamics of a one dimensional Bose gas in a periodic time-dependent harmonic trap
NASA Astrophysics Data System (ADS)
Scopa, Stefano; Unterberger, Jéremie; Karevski, Dragi
2018-05-01
We study the unitary dynamics of a 1D gas of hard-core bosons trapped into a harmonic potential which varies periodically in time with frequency . Such periodic systems can be classified into orbits of different monodromies corresponding to two different physical situations, namely the case in which the bosonic cloud remains stable during the time-evolution and the case where it turns out to be unstable. In the present work we derive in the large particle number limit exact results for the stroboscopic evolution of the energy and particle densities in both physical situations.
Opinion formation in time-varying social networks: The case of the naming game
NASA Astrophysics Data System (ADS)
Maity, Suman Kalyan; Manoj, T. Venkat; Mukherjee, Animesh
2012-09-01
We study the dynamics of the naming game as an opinion formation model on time-varying social networks. This agent-based model captures the essential features of the agreement dynamics by means of a memory-based negotiation process. Our study focuses on the impact of time-varying properties of the social network of the agents on the naming game dynamics. In particular, we perform a computational exploration of this model using simulations on top of real networks. We investigate the outcomes of the dynamics on two different types of time-varying data: (1) the networks vary on a day-to-day basis and (2) the networks vary within very short intervals of time (20 sec). In the first case, we find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the naming game in these networks maintains clusters of coexisting opinions indefinitely leading to metastability. In the second case, we investigate the evolution of the naming game in perfect synchronization with the time evolution of the underlying social network shedding new light on the traditional emergent properties of the game that differ largely from what has been reported in the existing literature.
Constrained evolution in numerical relativity
NASA Astrophysics Data System (ADS)
Anderson, Matthew William
The strongest potential source of gravitational radiation for current and future detectors is the merger of binary black holes. Full numerical simulation of such mergers can provide realistic signal predictions and enhance the probability of detection. Numerical simulation of the Einstein equations, however, is fraught with difficulty. Stability even in static test cases of single black holes has proven elusive. Common to unstable simulations is the growth of constraint violations. This work examines the effect of controlling the growth of constraint violations by solving the constraints periodically during a simulation, an approach called constrained evolution. The effects of constrained evolution are contrasted with the results of unconstrained evolution, evolution where the constraints are not solved during the course of a simulation. Two different formulations of the Einstein equations are examined: the standard ADM formulation and the generalized Frittelli-Reula formulation. In most cases constrained evolution vastly improves the stability of a simulation at minimal computational cost when compared with unconstrained evolution. However, in the more demanding test cases examined, constrained evolution fails to produce simulations with long-term stability in spite of producing improvements in simulation lifetime when compared with unconstrained evolution. Constrained evolution is also examined in conjunction with a wide variety of promising numerical techniques, including mesh refinement and overlapping Cartesian and spherical computational grids. Constrained evolution in boosted black hole spacetimes is investigated using overlapping grids. Constrained evolution proves to be central to the host of innovations required in carrying out such intensive simulations.
New methodology for fast prediction of wheel wear evolution
NASA Astrophysics Data System (ADS)
Apezetxea, I. S.; Perez, X.; Casanueva, C.; Alonso, A.
2017-07-01
In railway applications wear prediction in the wheel-rail interface is a fundamental matter in order to study problems such as wheel lifespan and the evolution of vehicle dynamic characteristic with time. However, one of the principal drawbacks of the existing methodologies for calculating the wear evolution is the computational cost. This paper proposes a new wear prediction methodology with a reduced computational cost. This methodology is based on two main steps: the first one is the substitution of the calculations over the whole network by the calculation of the contact conditions in certain characteristic point from whose result the wheel wear evolution can be inferred. The second one is the substitution of the dynamic calculation (time integration calculations) by the quasi-static calculation (the solution of the quasi-static situation of a vehicle at a certain point which is the same that neglecting the acceleration terms in the dynamic equations). These simplifications allow a significant reduction of computational cost to be obtained while maintaining an acceptable level of accuracy (error order of 5-10%). Several case studies are analysed along the paper with the objective of assessing the proposed methodology. The results obtained in the case studies allow concluding that the proposed methodology is valid for an arbitrary vehicle running through an arbitrary track layout.
ERIC Educational Resources Information Center
Baker, Vicki L.; Baldwin, Roger G.
2015-01-01
We draw upon the evolutionary model of change in order to examine the organizational transformation of three liberal arts colleges (Albion College, Allegheny College, Kenyon College). Relying on our prior research (Baker, Baldwin, & Makker, 2012), we seek to continue our exploration and understanding of the evolution occurring in the important…
Lasting Connections: A Case Study of Relationships Formed during a First-Year Seminar Course
ERIC Educational Resources Information Center
Enke, Kathryn A. E.
2011-01-01
This article investigates the evolution of friendships formed during a first-year seminar for honors students enrolled in a private liberal arts college. Through an electronic survey and interviews with former students who had participated in the seminar course six years prior to the research, this case study examined why some friendships were…
Control systems on Lie groups.
NASA Technical Reports Server (NTRS)
Jurdjevic, V.; Sussmann, H. J.
1972-01-01
The controllability properties of systems which are described by an evolution equation in a Lie group are studied. The revelant Lie algebras induced by a right invariant system are singled out, and the basic properties of attainable sets are derived. The homogeneous case and the general case are studied, and results are interpreted in terms of controllability. Five examples are given.
The Power of Natural Selection: A Guided Investigation of Three Case Studies
ERIC Educational Resources Information Center
Beachly, William
2010-01-01
I describe a quantitative approach to three case studies in evolution that can be used to challenge college freshmen to explore the power of natural selection and ask questions that foster a deeper understanding of its operation and relevance. Hemochromatosis, the peppered moth, and hominid cranial capacity are investigated with a common algebraic…
Socioeconomic School Segregation in a Market-Oriented Educational System. The Case of Chile
ERIC Educational Resources Information Center
Valenzuela, Juan Pablo; Bellei, Cristian; de los Ríos, Danae
2014-01-01
This paper presents an empirical analysis of the socioeconomic status (SES) school segregation in Chile, whose educational system is regarded as an extreme case of a market-oriented education. The study estimated the magnitude and evolution of the SES segregation of schools at both national and local levels, and it studied the relationship between…
OncoNEM: inferring tumor evolution from single-cell sequencing data.
Ross, Edith M; Markowetz, Florian
2016-04-15
Single-cell sequencing promises a high-resolution view of genetic heterogeneity and clonal evolution in cancer. However, methods to infer tumor evolution from single-cell sequencing data lag behind methods developed for bulk-sequencing data. Here, we present OncoNEM, a probabilistic method for inferring intra-tumor evolutionary lineage trees from somatic single nucleotide variants of single cells. OncoNEM identifies homogeneous cellular subpopulations and infers their genotypes as well as a tree describing their evolutionary relationships. In simulation studies, we assess OncoNEM's robustness and benchmark its performance against competing methods. Finally, we show its applicability in case studies of muscle-invasive bladder cancer and essential thrombocythemia.
Helicity evolution at small x : Flavor singlet and nonsinglet observables
Kovchegov, Yuri V.; Pitonyak, Daniel; Sievert, Matthew D.
2017-01-30
We extend our earlier results for the quark helicity evolution at small x to derive the small-x asymptotics of the flavor singlet and flavor nonsinglet quark helicity TMDs and PDFs and of the g 1 structure function. In the flavor singlet case we rederive the evolution equations obtained in our previous paper on the subject, performing additional cross-checks of our results. In the flavor nonsinglet case we construct new small-x evolution equations by employing the large-N c limit. Here, all evolution equations resum double-logarithmic powers of α sln 2(1/x) in the polarization-dependent evolution along with the single-logarithmic powers of αmore » sln(1/x) in the unpolarized evolution which includes saturation effects.« less
Helicity evolution at small x : Flavor singlet and nonsinglet observables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovchegov, Yuri V.; Pitonyak, Daniel; Sievert, Matthew D.
We extend our earlier results for the quark helicity evolution at small x to derive the small-x asymptotics of the flavor singlet and flavor nonsinglet quark helicity TMDs and PDFs and of the g 1 structure function. In the flavor singlet case we rederive the evolution equations obtained in our previous paper on the subject, performing additional cross-checks of our results. In the flavor nonsinglet case we construct new small-x evolution equations by employing the large-N c limit. Here, all evolution equations resum double-logarithmic powers of α sln 2(1/x) in the polarization-dependent evolution along with the single-logarithmic powers of αmore » sln(1/x) in the unpolarized evolution which includes saturation effects.« less
NASA Astrophysics Data System (ADS)
Maneva, Y. G.; Poedts, S.
2017-12-01
Non-thermal kinetic components such as deformed velocity distributions, temperature anisotropies and relative drifts between the multiple ion populations are frequently observed features in the collisionless fast solar wind streams near the Earth whose origin is still to be better understood. Some of the traditional models consider the formation of the temperature anisotropies through the effect of the solar wind expansion, while others assume in situ heating and particle acceleration by local fluctuations, such as plasma waves, or by spacial structures, such as advected or locally generated current sheets. In this study we consider the evolution of initial ion temperature anisotropies and relative drifts in the presence of plasma oscillations, such as ion-cyclotron and kinetic Alfven waves. We perform 2.5D hybrid simulations to study the evolution of observed fast solar wind plasma parcels, including the development of the plasma micro-instabilities, the field-particle correlations and the energy transfer between the multiple ion species. We consider two distinct cases of highly anisotropic and quickly drifting protons which excite ion-cyclotron waves and of moderately anisotropic slower protons, which co-exist with kinetic Alfven waves. The alpha particles for both cases are slightly anisotropic in the beginning and remain anisotropic throughout the simulation time. Both the imposed magnetic fluctuations and the initial differential streaming decrease in time for both cases, while the minor ions are getting heated. Finally we study the effects of the solar wind expansion and discuss its implications for the nonlinear evolution of the system.
Dos Reis, Julio Cesar; Pruski, Cédric; Da Silveira, Marcos; Reynaud-Delaître, Chantal
2013-01-01
Mappings established between Knowledge Organization Systems (KOS) increase semantic interoperability between biomedical information systems. However, biomedical knowledge is highly dynamic and changes affecting KOS entities can potentially invalidate part or the totality of existing mappings. Understanding how mappings evolve and what the impacts of KOS evolution on mappings are is therefore crucial for the definition of an automatic approach to maintain mappings valid and up-to-date over time. In this article, we study variations of a specific KOS complex change (split) for two biomedical KOS (SNOMED CT and ICD-9-CM) through a rigorous method of investigation for identifying and refining complex changes, and for selecting representative cases. We empirically analyze and explain their influence on the evolution of associated mappings. Results point out the importance of considering various dimensions of the information described in KOS, like the semantic structure of concepts, the set of relevant information used to define the mappings and the change operations interfering with this set of information.
Reis, Julio Cesar Dos; Pruski, Cédric; Da Silveira, Marcos; Reynaud-Delaître, Chantal
2013-01-01
Mappings established between Knowledge Organization Systems (KOS) increase semantic interoperability between biomedical information systems. However, biomedical knowledge is highly dynamic and changes affecting KOS entities can potentially invalidate part or the totality of existing mappings. Understanding how mappings evolve and what the impacts of KOS evolution on mappings are is therefore crucial for the definition of an automatic approach to maintain mappings valid and up-to-date over time. In this article, we study variations of a specific KOS complex change (split) for two biomedical KOS (SNOMED CT and ICD-9-CM) through a rigorous method of investigation for identifying and refining complex changes, and for selecting representative cases. We empirically analyze and explain their influence on the evolution of associated mappings. Results point out the importance of considering various dimensions of the information described in KOS, like the semantic structure of concepts, the set of relevant information used to define the mappings and the change operations interfering with this set of information. PMID:24551341
A flowgraph model for bladder carcinoma
2014-01-01
Background Superficial bladder cancer has been the subject of numerous studies for many years, but the evolution of the disease still remains not well understood. After the tumor has been surgically removed, it may reappear at a similar level of malignancy or progress to a higher level. The process may be reasonably modeled by means of a Markov process. However, in order to more completely model the evolution of the disease, this approach is insufficient. The semi-Markov framework allows a more realistic approach, but calculations become frequently intractable. In this context, flowgraph models provide an efficient approach to successfully manage the evolution of superficial bladder carcinoma. Our aim is to test this methodology in this particular case. Results We have built a successful model for a simple but representative case. Conclusion The flowgraph approach is suitable for modeling of superficial bladder cancer. PMID:25080066
Pires, Carla Andréa Avelar; Viana, Viviane Brito; Araújo, Fernando Costa; Müller, Silvia Ferreira Rodrigues; Oliveira, Miguel Saraty de; Carneiro, Francisca Regina Oliveira
2014-01-01
Pemphigusis a bullous, rare and chronic autoimmune disease. There are two major forms of pemphigus: vulgaris and foliaceus. Epidemiological data and clinical outcome in patients diagnosed in the Brazilian Amazon states are still rare. To study the occurrence of the disease during the study period and analyze the epidemiological profile of patients, the most common subtype of pemphigus, and the clinical evolution of patients. Retrospective analysis of medical records of hospitalized patients with pemphigus foliaceus and pemphigus vulgaris in the period from 2003 to 2010 in Dermatology Service of Hospital Fundação Santa Casa de Misericórdia do Pará, Belém, Northern Brazil. We found a total of 20 cases of pemphigus during the study period, 8 of which were of foliaceus pemphigus and 12 of vulgaris pemphigus. Pemphigus foliaceus had the predominance of male patients (75%), showed satisfactory clinical evolution, and was characterized by absence of pediatric cases. Pemphigus vulgaris affected more women (66.7%), showed mean hospital stay of 1 to 3 months (50%), and there were three cases of death (25%). The prescribed immunosuppressive drugs included prednisone with or without combination of azathioprine and/or dapsone. Sepsis was associated with 100% of the deaths. The occurrence of the disease is rare, there are no familiar/endemic outbreaks in the sample. Evolution is usually favorable, but secondary infection is associated with worse prognosis. The choice of best drugs to treat pemphigus remains controversial.
Molecular Dynamics Study of High Symmetry Planar Defect Evolution during Growth of CdTe/CdS Films
Chavez, Jose Juan; Zhou, Xiao W.; Almeida, Sergio F.; ...
2017-12-15
The growth dynamics and evolution of intrinsic stacking faults, lamellar, and double positioning twin grain boundaries were explored using molecular dynamics simulations during the growth of CdTe homoepitaxy and CdTe/CdS heteroepitaxy. Initial substrate structures were created containing either stacking fault or one type of twin grain boundary, and films were subsequently deposited to study the evolution of the underlying defect. Results show that during homoepitaxy the film growth was epitaxial and the substrate’s defects propagated into the epilayer, except for the stacking fault case where the defect disappeared after the film thickness increased. In contrast, films grown on heteroepitaxy conditionsmore » formed misfit dislocations and grew with a small angle tilt (within ~5°) of the underlying substrate’s orientation to alleviate the lattice mismatch. Grain boundary proliferation was observed in the lamellar and double positioning twin cases. Finally, our study indicates that it is possible to influence the propagation of high symmetry planar defects by selecting a suitable substrate defect configuration, thereby controlling the film defect morphology.« less
Molecular Dynamics Study of High Symmetry Planar Defect Evolution during Growth of CdTe/CdS Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavez, Jose Juan; Zhou, Xiao W.; Almeida, Sergio F.
The growth dynamics and evolution of intrinsic stacking faults, lamellar, and double positioning twin grain boundaries were explored using molecular dynamics simulations during the growth of CdTe homoepitaxy and CdTe/CdS heteroepitaxy. Initial substrate structures were created containing either stacking fault or one type of twin grain boundary, and films were subsequently deposited to study the evolution of the underlying defect. Results show that during homoepitaxy the film growth was epitaxial and the substrate’s defects propagated into the epilayer, except for the stacking fault case where the defect disappeared after the film thickness increased. In contrast, films grown on heteroepitaxy conditionsmore » formed misfit dislocations and grew with a small angle tilt (within ~5°) of the underlying substrate’s orientation to alleviate the lattice mismatch. Grain boundary proliferation was observed in the lamellar and double positioning twin cases. Finally, our study indicates that it is possible to influence the propagation of high symmetry planar defects by selecting a suitable substrate defect configuration, thereby controlling the film defect morphology.« less
The Genetics and Evolution of Human Skin Color: The Case of Desiree's Baby
ERIC Educational Resources Information Center
Schneider, Patricia
2004-01-01
This case explores the genetics and evolution of skin color, using a short story by Kate Chopin called "Desiree's Baby" as a starting point. Students read the story and discuss a series of questions probing the genetics of the family in the tale. Students then read an article about the evolution of skin color and write an essay analyzing the…
Making the case for orthogenesis: the popularization of definitely directed evolution (1890-1926).
Ulett, Mark A
2014-03-01
Throughout the history of evolutionary theory a number of scientists have argued that evolution proceeds along a limited number of definite trajectories, a concept and group of theories known as "orthogenesis". Beginning in the 1880s, influential evolutionists including Theodor Eimer, Edward Drinker Cope, and Leo Berg argued that a fully causal explanation of evolution must take into account the origin and nature of variation, an idea that implied orthogenesis in their views. This paper argues that these orthogenesis developed theories that were more than highly technical and theoretically dubious hypotheses accessible only to elite specialists, as certain histories of these ideas might suggest. Some orthogenesists made their case to a non-specialist audience to gain support for their ideas in the face of widespread controversy over evolutionary theory. Through a case study analysis of three major books by Eimer, Cope, and Berg, this paper contends that they sought to re-orient the central tenets of the science of evolution to include the causal impact of variation on evolutionary outcomes. These orthogenesists developed novel and synthetic evolutionary theories in a publishing platform suited for non-specialist audiences in an effort to impact the debates over evolutionary causation prevalent in the late-19th and early 20th centuries. Copyright © 2013 Elsevier Ltd. All rights reserved.
A simple model for the evolution of a non-Abelian cosmic string network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cella, G.; Pieroni, M., E-mail: giancarlo.cella@pi.infn.it, E-mail: mauro.pieroni@apc.univ-paris7.fr
2016-06-01
In this paper we present the results of numerical simulations intended to study the behavior of non-Abelian cosmic strings networks. In particular we are interested in discussing the variations in the asymptotic behavior of the system as we variate the number of generators for the topological defects. A simple model which allows for cosmic strings is presented and its lattice discretization is discussed. The evolution of the generated cosmic string networks is then studied for different values for the number of generators for the topological defects. Scaling solution appears to be approached in most cases and we present an argumentmore » to justify the lack of scaling for the residual cases.« less
[Electrodiagnostic criteria for childhood Guillain-Barre syndrome. Eight years' experience].
Lopez-Esteban, Pilar; Gallego, Isabel; Gil-Ferrer, Victoria
2013-03-01
INTRODUCTION. The Guillan-Barre syndrome is the most frequent case of acute flacid paralysis in children. The diagnostic criteria differ according to the demyelinating or axonal variant and the prevalence by geographical area. The electro-myographic study permits identifying variants, evaluating the prognosis and predicting the evolution, is in addition an objective tool for the monitoring. AIM. To describe the electromyographic characteristics of the Guillain-Barre syndrome evaluated in hospital and its classification by physiopathological pattern. PATIENTS AND METHODS. All the cases diagnosed between 2005 and 2012 are included. Studies of motor and sensitive nervous conduction and F waves in 14 girls and 11 boys between 1 and 13 years of age. RESULTS. 19 cases of acute inflammatory demyelinating polyneuropathy (AIDP) and five of acute motor axonal neuropathy (AMAN) were diagnosed. The electromyogram was performed between 1 and 30 days after the beginning of symptoms. In AIDP cases, multifocal demyelination, four of them with the preserved sural and 13 with alteration and absence of F wave were objectified. In the cases of AMAN, four had low amplitude potential and in one of them they were not evoked. CONCLUSIONS. The demyelinating form of the illness is the most frequent although the high number of AMAN cases stands out, probably related to the population object of study. The evolution was favorable in three cases of motor axonal neuropathy and in 15 accute demyelinating polyneuropathy. In four cases the symptoms became chronic; three of them with persistent demyelination a similar occurrence in other studies with children.
[Colon transverse volvulus; a case report].
Ramírez-Wiella-Schwuchow, G; Villanueva-Sáenz, E; Bolaños-Badillo, L E; García-Hernández, L A
2009-01-01
Colon transverse volvulus is an uncommon pathology which is associate with alterations of the colonic motility, mental disorders and congenital anomalies of the fixation of the colon sistem. Up to 1994, 72 cases has been reported in world-wide literature. To report a case of colon transverse volvulus and the treatment. A female 46 years old who show intense abdominal pain 2 days of evolution. The physical exploration show important abdominal distension and pain in left inferior quadrant. The Rx of abdomen with gas absence in rectal descendent colon and ampula with level and important distension of proximal colon. Colonoscopic study with impossibility to advance endoscopy throw colon transverse by zone of stenosis, wasn't made a contrast study, underwent laparotomy of urgency, it was done right hemicolectomy and ileocoloanastomosis with good evolution and given of discharge fourth postsurgical day. This possibility is due to have in mind diagnoses, the treatment is surgical secondary to a high index of recidivate, nevertheless recommends the colonoscopy study accomplishment in order to discard obstructive injuries mainly cancer.
ERIC Educational Resources Information Center
Washington, Rhianon; Cox, Elaine
2016-01-01
In this paper, we explore how the use of a specific mentoring model focusing on the evolution of the relationship between mentor and mentee, may influence the incidence of failure. In our research we employed a case study methodology to examine a regional public service mentoring scheme in the UK where a developmental relationship mentoring model…
ERIC Educational Resources Information Center
Dervin, Fred
2015-01-01
In this article I use the current (r)evolution of interculturality to examine the logics, discourses and situated practices of internationalization in Finnish Higher Education. Based on a case study in Finland, different policies are analysed to see if and how the construction of internationalization takes place in these documents and what…
Micro-evolution of toxicant tolerance: from single genes to the genome's tangled bank.
van Straalen, Nico M; Janssens, Thierry K S; Roelofs, Dick
2011-05-01
Two case-studies published 55 years ago became textbook examples of evolution in action: DDT resistance in houseflies (Busvine) and the rise of melanic forms of the peppered moth (Kettlewell). Now, many years later, molecular studies have elucidated in detail the mechanisms conferring resistance. In this paper we focus on the case of metal tolerance in a soil-living arthropod, Orchesella cincta, and provide new evidence on the transcriptional regulation of a gene involved in stress tolerance, metallothionein. Evolution of resistance is often ascribed to cis-regulatory change of such stress-combatting genes. For example, DDT resistance in the housefly is due to insertion of a mobile element into the promoter of Cyp6g1, and overexpression of this gene allows rapid metabolism of DDT. The discovery of these mechanisms has promoted the idea that resistance to environmental toxicants can be brought about by relatively simple genetic changes, involving up-regulation, duplication or structural alteration of a single-gene. Similarly, the work on O. cincta shows that populations from metal-polluted mining sites have a higher constitutive expression of the cadmium-induced metallothionein (Mt) gene. Moreover, its promoter appears to include a large degree of polymorphism; Mt promoter alleles conferring high expression in cell-based bioreporter assays were shown to occur at higher frequency in populations living at polluted sites. The case is consistent with classical examples of micro-evolution through altered cis-regulation of a key gene. However, new data on qPCR analysis of gene expression in homozygous genotypes with both reference and metal-tolerant genetic backgrounds, show that Mt expression of the same pMt homozygotes depends on the origin of the population. This suggests that trans-acting factors are also important in the regulation of Mt expression and its evolution. So the idea that metal tolerance in Orchesella can be viewed as a single-gene adaptation must be abandoned. These data, added to a genome-wide gene expression profiling study reported earlier shows that evolution of tolerance takes place in a complicated molecular network, not unlike an internal tangled bank. © The Author(s) 2011. This article is published with open access at Springerlink.com
ERIC Educational Resources Information Center
Chen, Peiying; Wang, Ting
2015-01-01
This article presents findings of a longitudinal case study conducted at a Taiwanese high school from 2006 to 2010. This school participated in the 'High Scope Programme' (HSP), which was sponsored by the Taiwanese National Science Council to promote curricular innovation in science education. Utilising interview data with 11 participating…
Spinor Field Nonlinearity and Space-Time Geometry
NASA Astrophysics Data System (ADS)
Saha, Bijan
2018-03-01
Within the scope of Bianchi type VI,VI0,V, III, I, LRSBI and FRW cosmological models we have studied the role of nonlinear spinor field on the evolution of the Universe and the spinor field itself. It was found that due to the presence of non-trivial non-diagonal components of the energy-momentum tensor of the spinor field in the anisotropic space-time, there occur some severe restrictions both on the metric functions and on the components of the spinor field. In this report we have considered a polynomial nonlinearity which is a function of invariants constructed from the bilinear spinor forms. It is found that in case of a Bianchi type-VI space-time, depending of the sign of self-coupling constants, the model allows either late time acceleration or oscillatory mode of evolution. In case of a Bianchi VI 0 type space-time due to the specific behavior of the spinor field we have two different scenarios. In one case the invariants constructed from bilinear spinor forms become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This case is equivalent to the vacuum solution of the Bianchi VI 0 type space-time. The second case allows non-vanishing massive and nonlinear terms and depending on the sign of coupling constants gives rise to accelerating mode of expansion or the one that after obtaining some maximum value contracts and ends in big crunch, consequently generating space-time singularity. In case of a Bianchi type-V model there occur two possibilities. In one case we found that the metric functions are similar to each other. In this case the Universe expands with acceleration if the self-coupling constant is taken to be a positive one, whereas a negative coupling constant gives rise to a cyclic or periodic solution. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly in time. In case of a Bianchi type-III model the space-time remains locally rotationally symmetric all the time, though the isotropy of space-time can be attained for a large proportionality constant. As far as evolution is concerned, depending on the sign of coupling constant the model allows both accelerated and oscillatory mode of expansion. A negative coupling constant leads to an oscillatory mode of expansion, whereas a positive coupling constant generates expanding Universe with late time acceleration. Both deceleration parameter and EoS parameter in this case vary with time and are in agreement with modern concept of space-time evolution. In case of a Bianchi type-I space-time the non-diagonal components lead to three different possibilities. In case of a full BI space-time we find that the spinor field nonlinearity and the massive term vanish, hence the spinor field Lagrangian becomes massless and linear. In two other cases the space-time evolves into either LRSBI or FRW Universe. If we consider a locally rotationally symmetric BI( LRSBI) model, neither the mass term nor the spinor field nonlinearity vanishes. In this case depending on the sign of coupling constant we have either late time accelerated mode of expansion or oscillatory mode of evolution. In this case for an expanding Universe we have asymptotical isotropization. Finally, in case of a FRW model neither the mass term nor the spinor field nonlinearity vanishes. Like in LRSBI case we have either late time acceleration or cyclic mode of evolution. These findings allow us to conclude that the spinor field is very sensitive to the gravitational one.
Hamiltonian formulation of Palatini f(R) theories a la Brans-Dicke theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olmo, Gonzalo J.; Sanchis-Alepuz, Helios; Institut fuer Physik, Karl-Franzens-Universitaet Graz
2011-05-15
We study the Hamiltonian formulation of f(R) theories of gravity both in metric and in Palatini formalism using their classical equivalence with Brans-Dicke theories with a nontrivial potential. The Palatini case, which corresponds to the {omega}=-3/2 Brans-Dicke theory, requires special attention because of new constraints associated with the scalar field, which is nondynamical. We derive, compare, and discuss the constraints and evolution equations for the {omega}=-3/2 and {omega}{ne}-3/2 cases. Based on the properties of the constraint and evolution equations, we find that, contrary to certain claims in the literature, the Cauchy problem for the {omega}=-3/2 case is well formulated andmore » there is no reason to believe that it is not well posed in general.« less
Modelling of squall with the generalised kinetic equation
NASA Astrophysics Data System (ADS)
Annenkov, Sergei; Shrira, Victor
2014-05-01
We study the long-term evolution of random wind waves using the new generalised kinetic equation (GKE). The GKE derivation [1] does not assume the quasi-stationarity of a random wave field. In contrast with the Hasselmann kinetic equation, the GKE can describe fast spectral changes occurring when a wave field is driven out of a quasi-equilibrium state by a fast increase or decrease of wind, or by other factors. In these cases, a random wave field evolves on the dynamic timescale typical of coherent wave processes, rather than on the kinetic timescale predicted by the conventional statistical theory. Besides that, the generalised theory allows to trace the evolution of higher statistical moments of the field, notably the kurtosis, which is important for assessing the risk of freak waves and other applications. A new efficient and highly parallelised algorithm for the numerical simulation of the generalised kinetic equation is presented and discussed. Unlike in the case of the Hasselmann equation, the algorithm takes into account all (resonant and non-resonant) nonlinear wave interactions, but only approximately resonant interactions contribute to the spectral evolution. However, counter-intuitively, all interactions contribute to the kurtosis. Without forcing or dissipation, the algorithm is shown to conserve the relevant integrals. We show that under steady wind forcing the wave field evolution predicted by the GKE is close to the predictions of the conventional statistical theory, which is applicable in this case. In particular, we demonstrate the known long-term asymptotics for the evolution of the spectrum. When the wind forcing is not steady (in the simplest case, an instant increase or decrease of wind occurs), the generalised theory is the only way to study the spectral evolution, apart from the direct numerical simulation. The focus of the work is a detailed analysis of the fast evolution after an instant change of forcing, and of the subsequent transition to the new quasi-stationary state of a wave field. It is shown that both increase and decrease of wind lead to a significant transient increase of the dynamic kurtosis, although these changes remain small compared to the changes of the other component of the kurtosis, which is due to bound harmonics. A special consideration is given to the case of the squall, i.e. an instant and large (by a factor of 2-4) increase of wind, which lasts for O(102) characteristic wave periods. We show that fast adjustment processes lead to the formation of a transient spectrum, which has a considerably narrower peak than the spectra developed under a steady forcing. These transient spectra differ qualitatively from those predicted by the Hasselmann kinetic equation under the squall with the same parameters. 1. S.Annenkov, V.Shrira (2006) Role of non-resonant interactions in evolution of nonlinear random water wave fields, J. Fluid Mech. 561, 181-207.
Self-organization of the protocell was a forward process
NASA Technical Reports Server (NTRS)
Fox, S. W.; Matsuno, K.
1983-01-01
Yockey's (1981) interpretation of information theory relative to concepts of self-organization in the origin of life is criticized on the ground that it assumes that each amino acid residue type in a given sequence is an unaided information carrier throughout evolution. It is argued that more than one amino acid residue can act as a unit information carrier, and that this was the case in prebiotic protein evolution. Forward-extrapolation should be used to study prebiotic evolution, not backward-extrapolation. Transposing the near-random internal order of modern proteins to primitive proteins, as Yockey has done, is an unsupported assumption and disagrees with the results of experimental models of the primordial type. Studies indicate that early primary information carriers in evolution were mixtures of free alpha amino acids which necessarily had the capability of sequencing themselves.
Simulation of dual carbon-bromine stable isotope fractionation during 1,2-dibromoethane degradation.
Jin, Biao; Nijenhuis, Ivonne; Rolle, Massimo
2018-06-01
We performed a model-based investigation to simultaneously predict the evolution of concentration, as well as stable carbon and bromine isotope fractionation during 1,2-dibromoethane (EDB, ethylene dibromide) transformation in a closed system. The modelling approach considers bond-cleavage mechanisms during different reactions and allows evaluating dual carbon-bromine isotopic signals for chemical and biotic reactions, including aerobic and anaerobic biological transformation, dibromoelimination by Zn(0) and alkaline hydrolysis. The proposed model allowed us to accurately simulate the evolution of concentrations and isotope data observed in a previous laboratory study and to successfully identify different reaction pathways. Furthermore, we illustrated the model capabilities in degradation scenarios involving complex reaction systems. Specifically, we examined (i) the case of sequential multistep transformation of EDB and the isotopic evolution of the parent compound, the intermediate and the reaction product and (ii) the case of parallel competing abiotic pathways of EDB transformation in alkaline solution.
Coherent structures and turbulence evolution in magnetized non-neutral plasmas
NASA Astrophysics Data System (ADS)
Romé, M.; Chen, S.; Maero, G.
2018-01-01
The evolution of turbulence of a magnetized pure electron plasma confined in a Penning-Malmberg trap is investigated by means of a two-dimensional particle-in-cell numerical code. The transverse plasma dynamics is studied both in the case of free evolution and under the influence of non-axisymmetric, multipolar radio-frequency drives applied on the circular conducting boundary. In the latter case the radio-frequency fields are chosen in the frequency range of the low-order azimuthal (diocotron) modes of the plasma in order to investigate their effect on the insurgence of azimuthal instabilities and the formation and evolution of coherent structures, possibly preventing the relaxation to a fully-developed turbulent state. Different initial density distributions (rings and spirals) are considered, so that evolutions characterized by different levels of turbulence and intermittency are obtained. The time evolution of integral and spectral quantities of interest are computed using a multiresolution analysis based on a wavelet decomposition of density maps. Qualitative features of turbulent relaxation are found to be similar in conditions of both free and forced evolution, but the analysis allows one to highlight fine details of the flow beyond the self-similarity turbulence properties, so that the influence of the initial conditions and the effect of the external forcing can be distinguished. In particular, the presence of small inhomogeneities in the initial density configuration turns out to lead to quite different final states, especially in the presence of competing unstable diocotron modes characterized by similar growth rates.
[Multidrug-resistant tuberculosis (MDR-TB) in a black African carceral area: Experience of Mali].
Toloba, Y; Ouattara, K; Soumaré, D; Kanouté, T; Berthé, G; Baya, B; Konaté, B; Keita, M; Diarra, B; Cissé, A; Camara, F S; Diallo, S
2018-02-01
Prison constitutes a risk factor for the emergence of multi-drug resistance of tuberculosis (MDR-TB). The aim of this work was to study MDR-TB in a black African carceral center. Prospective study from January to December 2016 at the central house of arrest for men, Bamako. The study population was composed of tuberculous detainee. The suspicion of MDR-TB was done in any tuberculosis case remained positive in the second month of first-line treatment or in contact with an MDR-TB case. Among 1622 detainee, 21 cases of pulmonary tuberculosis were notified (1.29%), with an annual incidence of 13 cases/1000 detainee, they were 16 cases of SP-PTB (microscopy smear positive tuberculosis) and five cases of microscopy smear negative tuberculosis. The mean age was 28±7 years, extremes of 18 and 46 years. A negative association was found between the notion of smoking and occupation in the occurrence of tuberculosis (OR=0.036, [95% CI: 0.03-0.04], P=0.03. Among the 21 tuberculosis cases notified, one confirmed case of MDR-TB was detected (4.7%). In the first semester of 2016 cohort, we notified a cure rate of 87.5% (7/8 SP-PTB cases), and the confirmed MDR-TB case on treatment (21-month regimen), evolution enameled of pulmonary and hearing sequelae at seven months treatment. It was the first case of MDR-TB detected in a prison in Mali. Late diagnosis, evolution is enameled of sequelae and side effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
ERIC Educational Resources Information Center
Cele, Mlungisi Gabriel
2005-01-01
This case study examines the evolution of the 21-year research partnership between the University of Cape Town (UCT) and the South African Coal Oil and Gas Corporation (SASOL). The study finds that an individual academic has played a significant role in steering transformation research activities and culture in the university?s Chemical…
High levels of sFas and PBMC apoptosis before and after excision of malignant melanoma--case report.
Alecu, M; Coman, Gabriela; Dănăilă, L
2002-01-01
In our study we investigated the level of apoptosis in PBMCs and the serological level of sFas (CD95/APO-1) in 22 patients with malignant melanoma (12 patients with unique cutaneous primary tumour and 10 patients with unique brain metastasis). The first determination was performed before tumour excision and the second at 6-7 months after excision. Results in patients with primary tumour in the first determination: 6 patients with over normal values in PBMCs apoptosis and 5 patients with increased values of sFas. In the second determination: apoptosis was increased in 5 patients and sFas level was increased in 4 cases. In patients with metastases in the first determination apoptosis of PBMC was increased in 7 cases and sFas in 5 cases. In the second determination apoptosis was increased in 4 cases and sFas was increased in 4 cases. Our results show that half of the investigated patients presented elevated values of PBMCs apoptosis and Fas receptor both before and 6-7 months after tumour excision. Apoptosis values for PBMCs and sFas values were with 1/4 higher than normals. There was no difference in clinical evolution of the patients with normal or increased values for studied parameters. Clinical evolution was performed for 1 year. The presence of increased values for PBMCs and sFas after tumour excision, primary or metastasis is surprising and hard to explain. It is possible that tumoral evolution induces a disregulation at PBMCs level or other cells level that persists unexpectedly, after tumour excision or apoptotic processes, in a certain level to be independent and anterior to tumour development.
NASA Astrophysics Data System (ADS)
Winslow, Mark William
The goal of this study was to explore how Christian biology-related majors at a Christian university perceive the apparent conflicts between their understanding of evolution and their religious beliefs, and how their faith, as a structural-developmental system for ordering and making meaning of the world, plays a role in the mediating process. This naturalistic study utilized a case study design of 15 participants specified as undergraduate biology-related majors or recent biology-related graduates from a midwestern Christian university who had completed an upper-level course on evolution. Data were collected through semi-structured interviews that investigated participants' faith and their views on creationism and evolution. Fowler's theory of faith development and Parks' model of college students' faith was extensively used. Additional data were collected through an Evolution Attitudes Survey and a position paper on evolution as an assignment in the evolution course. Data analysis revealed patterns that were organized into themes and sub-themes that were the major outcomes of the study. Most participants were raised to believe in creationism, but came to accept evolution through an extended process of evaluating the scientific evidence in support of evolution, negotiating the literalness of Genesis, recognizing evolution as a non-salvation issue, and observing professors as role models of Christians who accept evolution. Participants remained committed to their personal religious beliefs despite apprehension that accompanied the reconciliation process in accepting evolution. Most participants operated from the perspective that science and religion are separate and interacting domains. Faith played an important role in how participants reconciled their understanding of evolution and their personal religious beliefs. Participants who operated in conventional faith dismissed contentious issues or collapsed dichotomies in an effort to avoid ambiguity and perceived tensions. Participants who operated in young adult and adult faith tended to confront their perceived tensions and worked towards reconciling their understanding of evolution and their personal religious beliefs. The rich description of this naturalistic study lends heuristic insight to researchers and educators seeking an understanding of the complex processes by which Christian biology-related majors approach learning about evolution and seek reconciliation between their understanding of evolution and their personal religious beliefs.
Simplifying Operational Design
2012-05-01
centuries of historical case studies, tracing the 9 evolution and development of what was then in 1997 operational theory. Naveh called his...major cases against operational design is the IDF’s application of SOD in 2006 against Hezbollah in Lebanon. While many blamed Israel’s lack of success...networked centricity.68 This is not the case . War, like ecosystems and economies, is a complex adaptive system. The interactive complexity that comprises
Engen, Steinar; Saether, Bernt-Erik
2017-01-01
In a stable environment, evolution maximizes growth rates in populations that are not density regulated and the carrying capacity in the case of density regulation. In a fluctuating environment, evolution maximizes a function of growth rate, carrying capacity and environmental variance, tending to r-selection and K-selection under large and small environmental noise, respectively. Here we analyze a model in which birth and death rates depend on density through the same function but with independent strength of density dependence. As a special case, both functions may be linear, corresponding to logistic dynamics. It is shown that evolution maximizes a function of the deterministic growth rate r 0 and the lifetime reproductive success (LRS) R 0 , both defined at small densities, as well as the environmental variance. Under large noise this function is dominated by r 0 and average lifetimes are small, whereas R 0 dominates and lifetimes are larger under small noise. Thus, K-selection is closely linked to selection for large R 0 so that evolution tends to maximize LRS in a stable environment. Consequently, different quantities (r 0 and R 0 ) tend to be maximized at low and high densities, respectively, favoring density-dependent changes in the optimal life history. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Evolution of congenital malformations of the umbilical-portal-hepatic venous system.
Scalabre, Aurelien; Gorincour, Guillaume; Hery, Geraldine; Gamerre, Marc; Guys, Jean-Michel; de Lagausie, Pascal
2012-08-01
The objective of this study is to describe the evolution of 8 cases of congenital malformations of the umbilical-portal-hepatic venous system diagnosed before the first month of life. All cases of congenital malformation of the portal and hepatic venous system diagnosed prenatally or during the first month of life in our institution were systematically reviewed since November 2000. Clinical features, imaging, and anatomical findings were reviewed, focusing primarily on clinical and radiologic evolution. Eight cases of congenital malformation of the umbilical-portal-hepatic venous system were studied. Fifty percent of these malformations were diagnosed prenatally. We report 4 portosystemic shunts. Three involuted spontaneously, and the fourth one required surgical treatment. We report a variation of the usual anatomy of portal and hepatic veins that remained asymptomatic, an aneurysmal dilatation of a vitelline vein causing portal vein thrombosis that needed prompt surgical treatment with good result, a complex portal and hepatic venous malformation treated operatively, and a persistent right umbilical vein that remained asymptomatic. Prenatal diagnosis of malformations of the umbilical-portal-hepatic venous network is uncommon. Little is known about the postnatal prognosis. Clinical, biologic, and radiologic follow-up by ultrasonography is essential to distinguish pathologic situations from normal anatomical variants. Copyright © 2012 Elsevier Inc. All rights reserved.
Evolutionary Role of Interspecies Hybridization and Genetic Exchanges in Yeasts
Dujon, Bernard
2012-01-01
Summary: Forced interspecific hybridization has been used in yeasts for many years to study speciation or to construct artificial strains with novel fermentative and metabolic properties. Recent genome analyses indicate that natural hybrids are also generated spontaneously between yeasts belonging to distinct species, creating lineages with novel phenotypes, varied genetic stability, or altered virulence in the case of pathogens. Large segmental introgressions from evolutionarily distant species are also visible in some yeast genomes, suggesting that interspecific genetic exchanges occur during evolution. The origin of this phenomenon remains unclear, but it is likely based on weak prezygotic barriers, limited Dobzhansky-Muller (DM) incompatibilities, and rapid clonal expansions. Newly formed interspecies hybrids suffer rapid changes in the genetic contribution of each parent, including chromosome loss or aneuploidy, translocations, and loss of heterozygosity, that, except in a few recently studied cases, remain to be characterized more precisely at the genomic level by use of modern technologies. We review here known cases of natural or artificially formed interspecies hybrids between yeasts and discuss their potential importance in terms of genome evolution. Problems of meiotic fertility, ploidy constraint, gene and gene product compatibility, and nucleomitochondrial interactions are discussed and placed in the context of other known mechanisms of yeast genome evolution as a model for eukaryotes. PMID:23204364
Yedid, G; Ofria, C A; Lenski, R E
2008-09-01
Re-evolution of complex biological features following the extinction of taxa bearing them remains one of evolution's most interesting phenomena, but is not amenable to study in fossil taxa. We used communities of digital organisms (computer programs that self-replicate, mutate and evolve), subjected to periods of low resource availability, to study the evolution, loss and re-evolution of a complex computational trait, the function EQU (bit-wise logical equals). We focused our analysis on cases where the pre-extinction EQU clade had surviving descendents at the end of the extinction episode. To see if these clades retained the capacity to re-evolve EQU, we seeded one set of multiple subreplicate 'replay' populations using the most abundant survivor of the pre-extinction EQU clade, and another set with the actual end-extinction ancestor of the organism in which EQU re-evolved following the extinction episode. Our results demonstrate that stochastic, historical, genomic and ecological factors can lead to constraints on further adaptation, and facilitate or hinder re-evolution of a complex feature.
Nakagawa, Shinichi; Parker, Timothy H
2015-10-28
We believe that replicating studies in ecology and evolution is extremely valuable, but replication within species and systems is troublingly rare, and even 'quasi-replications' in different systems are often insufficient. We make a case for supporting multiple types of replications and point out that the current incentive structure needs to change if ecologists and evolutionary biologist are to value scientific replication sufficiently.
Barnes, M. Elizabeth; Brownell, Sara E.
2017-01-01
Low acceptance of evolution among undergraduate students is common and is best predicted by religious beliefs. Decreasing students’ perceived conflict between religion and evolution could increase their acceptance of evolution. However, college biology instructors may struggle with trying to decrease students’ perceived conflict between religion and evolution because of differences in the religious cultures and beliefs of instructors and students. Although a large percentage of undergraduate students in evolution courses are religious, most instructors teaching evolution are not. To consider differences between the secular culture of many college instructors and the religious culture of many students, we propose using a lens of cultural competence to create effective evolution education. Cultural competence is the ability of individuals from one culture (in this case, primarily secular instructors who are teaching evolution) to bridge cultural differences and effectively communicate with individuals from a different culture (in this case, primarily religious undergraduate biology students). We call this new framework Religious Cultural Competence in Evolution Education (ReCCEE). In this essay, we describe a suite of culturally competent practices that can help instructors reduce students’ perceived conflict between evolution and religion, increase students’ acceptance of evolution, and help create more inclusive undergraduate biology classrooms. PMID:29167225
The Microevolution of Mathematical Knowledge: The Case of Randomness.
ERIC Educational Resources Information Center
Pratt, Dave; Noss, Richard
2002-01-01
Explores the growth of mathematical knowledge and the relationship between abstraction and context. Builds on work to construct a viable model of the micro-evolution of mathematical knowledge in context whose central feature is the visibility of its mechanisms. Illustrates a case study of 10-11-year-old children's construction of meanings for…
Simulation and control of sediment transport due to dam removal
USDA-ARS?s Scientific Manuscript database
This paper presents two case studies of post dam removal sedimentation in the United States. Two different one-dimensional channel evolution simulation models were used: CCHE1D and CONCEPTS, respectively. The first case is the application of CCHE1D to assess a long-term morphological response to the...
WRF simulation of downslope wind events in coastal Santa Barbara County
NASA Astrophysics Data System (ADS)
Cannon, Forest; Carvalho, Leila M. V.; Jones, Charles; Hall, Todd; Gomberg, David; Dumas, John; Jackson, Mark
2017-07-01
The National Weather Service (NWS) considers frequent gusty downslope winds, accompanied by rapid warming and decreased relative humidity, among the most significant weather events affecting southern California coastal areas in the vicinity of Santa Barbara (SB). These extreme conditions, commonly known as "sundowners", have affected the evolution of all major wildfires that impacted SB in recent years. Sundowners greatly increase fire, aviation and maritime navigation hazards and are thus a priority for regional forecasting. Currently, the NWS employs the Weather Research Forecasting (WRF) model at 2 km resolution to complement forecasts at regional-to-local scales. However, no systematic study has been performed to evaluate the skill of WRF in simulating sundowners. This research presents a case study of an 11-day period in spring 2004 during which sundowner events were observed on multiple nights. We perform sensitivity experiments for WRF using available observations for validation and demonstrate that WRF is skillful in representing the general mesoscale structure of these events, though important shortcomings exist. Furthermore, we discuss the generation and evolution of sundowners during the case study using the best performing configuration, and compare these results to hindcasts for two major SB fires. Unique, but similar, profiles of wind and stability are observed over SB between case studies despite considerable differences in large-scale circulation, indicating that common conditions may exist across all events. These findings aid in understanding the evolution of sundowner events and are potentially valuable for event prediction.
Léglise, M C; Rivière, D; Brière, J
1990-01-01
We present a cytogenetic clonal evolution that correlates morphological and immunological shifts in a case of a patient with a t(4;11) (q21;q23) acute leukemia. We take this opportunity to review 146 cases reported so far, with special reference to morphology, immunophenotyping, cytogenetics, clinical characteristics and evolution. Particular features are underlined, and prognosis, leukemic stem cell origin, chromosomal breakpoints and genes involved are discussed. A relationship between this type of leukemia and exposure to carcinogens is suggested by a high rate of secondary leukemia in adults and a high frequency in newborns and infants.
Nonequilibrium evolution of scalar fields in FRW cosmologies
NASA Astrophysics Data System (ADS)
Boyanovsky, D.; de Vega, H. J.; Holman, R.
1994-03-01
We derive the effective equations for the out of equilibrium time evolution of the order parameter and the fluctuations of a scalar field theory in spatially flat FRW cosmologies. The calculation is performed both to one loop and in a nonperturbative, self-consistent Hartree approximation. The method consists of evolving an initial functional thermal density matrix in time and is suitable for studying phase transitions out of equilibrium. The renormalization aspects are studied in detail and we find that the counterterms depend on the initial state. We investigate the high temperature expansion and show that it breaks down at long times. We also obtain the time evolution of the initial Boltzmann distribution functions, and argue that to one-loop order or in the Hartree approximation the time evolved state is a ``squeezed'' state. We illustrate the departure from thermal equilibrium by numerically studying the case of a free massive scalar field in de Sitter and radiation-dominated cosmologies. It is found that a suitably defined nonequilibrium entropy per mode increases linearly with comoving time in a de Sitter cosmology, whereas it is not a monotonically increasing function in the radiation-dominated case.
Case Histories of Intense Pulsed Light Phototherapy in Dermatology - the HPPL™ and IFL™ Technologies
Martella, Alessandro; Raichi, Mauro
2017-01-01
The intense pulsed light (IPL) and laser technologies are widely used for skin rejuvenation and for treating several dermatological disorders such as skin dyschromia and acne, and for non-ablative dermal remodeling of rhytides and hypertrophic scars. Technological evolution is rapid. The High Power Pulsed Light™ [HPPL™] and Incoherent Fast Light™ technologies [IFL™, Novavision Group S.p.A., 20826 Misinto (MB), Italy] are recent innovations in the field of IPL technologies; IFL™ is a further evolution of the already advanced HPPL™ system. The paper presents a selection of case histories of dermatological lesions treated with the HPPL™ and IFL™ technologies. All study materials were appropriately peer-reviewed for ethical problems. PMID:28652908
NASA Astrophysics Data System (ADS)
Finkelshtein, D.; Kondratiev, Yu.; Kutoviy, O.; Molchanov, S.; Zhizhina, E.
2014-10-01
We consider birth-and-death stochastic evolution of genotypes with different lengths. The genotypes might mutate, which provides a stochastic changing of lengths by a free diffusion law. The birth and death rates are length dependent, which corresponds to a selection effect. We study an asymptotic behavior of a density for an infinite collection of genotypes. The cases of space homogeneous and space heterogeneous densities are considered.
Evolution of a dark soliton in a parabolic potential: Application to Bose-Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brazhnyi, V.A.; Konotop, V.V.
2003-10-01
Evolution of a dark soliton in a one-dimensional Bose-Einstein condensate trapped by a harmonic potential is studied analytically and numerically. In the case of a deep soliton, main characteristics of its motion such as frequency and amplitude of oscillations are calculated by means of the perturbation theory which in the leading order results in a Newtonian dynamics, corrections to which are computed as well.
NASA Astrophysics Data System (ADS)
Rimbert, J. N.; Lafargue, C.; Pachot, M.; Dumas, F.; Eugene, M.; Brunelle, F.; Lallemand, D.
1990-07-01
Biochemical constitution of the hematoma is depending of its evolution. In order to obtain a reliable diagnostic of the NMR images in case of vascular accidents, a systematic study of the time-evolution of hematomas has been performed, using Mössbauer spectrometry and complementary technics (ESR and visible absorption spectrophotometry). The change, in the course of time, of HbO2 in deoxyhemoglobin Hb and other denaturation products (MHb, hemi- and hemochromes,…) are well-recognized on the different spectra. T 1 and T 2 NMR relaxation times are measured in the same time and their shortening is related to the appearance of the paramagnetic denaturation blood compounds.
Molecular evolution tracks macroevolutionary transitions in Cetacea.
McGowen, Michael R; Gatesy, John; Wildman, Derek E
2014-06-01
Cetacea (whales, dolphins, and porpoises) is a model group for investigating the molecular signature of macroevolutionary transitions. Recent research has begun to reveal the molecular underpinnings of the remarkable anatomical and behavioral transformation in this clade. This shift from terrestrial to aquatic environments is arguably the best-understood major morphological transition in vertebrate evolution. The ancestral body plan and physiology were extensively modified and, in many cases, these crucial changes are recorded in cetacean genomes. Recent studies have highlighted cetaceans as central to understanding adaptive molecular convergence and pseudogene formation. Here, we review current research in cetacean molecular evolution and the potential of Cetacea as a model for the study of other macroevolutionary transitions from a genomic perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.
Human exploration mission studies
NASA Technical Reports Server (NTRS)
Cataldo, Robert L.
1990-01-01
This paper describes several case studies of human space exploration, considered by the NASA's Office of Exploration in 1988. Special attention is given to the mission scenarios, the critical technology required in these expeditions, and the extraterrestrial power requirements of significant system elements. The cases examined include a manned expedition to Phobos, the inner Martian moon; a human expedition to Mars; the Lunar Observatory; and a lunar outpost to early Mars evolution.
Nonlinearity Role in Long-Term Interaction of the Ocean Gravity Waves
2012-09-30
3 4 =s We found that in the fetch-limited case the wind forcing index s is similar to the time domain situation, and the wind forcing is given by...of its evolution. Fig.5 gives a graphical summary of four reference cases of self-similar evolution of wind-driven waves. These cases are shown as...different R, tangents of one-parametric dependencies H~TR height-to-period in logarithmic axes. Reference cases of growing wind sea are shown as
Evolution of the Instructional Design in a Series of Online Workshops
ERIC Educational Resources Information Center
Patry, Anne; Brown, Elizabeth Campbell; Rousseau, Rémi; Caron, Jeanette
2015-01-01
This case recounts the story of the design and production of a series of online workshops for French-speaking healthcare professionals in Canada. The project spans a couple of years and, despite encountering some challenges, succeeds in large part because of its strong foundation: the instructional design. This case study features an instructional…
Incorporating the Philosophical Dimension in Technology Education: A Case Study from Greece
ERIC Educational Resources Information Center
Tsirigotis, Georgios; Papadourakis, George M.; Karasavoglou, Anastasios; Hope, Erica
2010-01-01
Science and technology constitute very important parameters in social evolution. The unprecedented rapidity of their development since the last century, in combination with the absence of a philosophical approach and the presence in some cases of criminal usage, poses a danger for humanity and for the planet. In contrast to the classical…
Simulation of sediment transport due to dam removal and control of morphological changes
USDA-ARS?s Scientific Manuscript database
This paper presents two case studies of post dam removal sedimentation in the United States. Two different one-dimensional channel evolution simulation models were used: CCHE1D and CONCEPTS, respectively. The first case is the application of CCHE1D to assess the long-term (up to 10 years) morphologi...
Multispecies reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Aghamohammadi, A.; Fatollahi, A. H.; Khorrami, M.; Shariati, A.
2000-10-01
Multispecies reaction-diffusion systems, for which the time evolution equations of correlation functions become a closed set, are considered. A formal solution for the average densities is found. Some special interactions and the exact time dependence of the average densities in these cases are also studied. For the general case, the large-time behavior of the average densities has also been obtained.
ERIC Educational Resources Information Center
Black, Maggie
The case histories of water and sanitation schemes described in this volume can best be understood by identifying the moments at which critical hurdles were encountered and surmounted. The first case study, which concerns Bangladesh, discusses promising prospects that existed amid the pollution and the technical and managerial expansion of the…
Multiple convergent supergene evolution events in mating-type chromosomes.
Branco, Sara; Carpentier, Fantin; Rodríguez de la Vega, Ricardo C; Badouin, Hélène; Snirc, Alodie; Le Prieur, Stéphanie; Coelho, Marco A; de Vienne, Damien M; Hartmann, Fanny E; Begerow, Dominik; Hood, Michael E; Giraud, Tatiana
2018-05-21
Convergent adaptation provides unique insights into the predictability of evolution and ultimately into processes of biological diversification. Supergenes (beneficial gene linkage) are striking examples of adaptation, but little is known about their prevalence or evolution. A recent study on anther-smut fungi documented supergene formation by rearrangements linking two key mating-type loci, controlling pre- and post-mating compatibility. Here further high-quality genome assemblies reveal four additional independent cases of chromosomal rearrangements leading to regions of suppressed recombination linking these mating-type loci in closely related species. Such convergent transitions in genomic architecture of mating-type determination indicate strong selection favoring linkage of mating-type loci into cosegregating supergenes. We find independent evolutionary strata (stepwise recombination suppression) in several species, with extensive rearrangements, gene losses, and transposable element accumulation. We thus show remarkable convergence in mating-type chromosome evolution, recurrent supergene formation, and repeated evolution of similar phenotypes through different genomic changes.
Global Magnetospheric Evolution Effected by Sudden Ring Current Injection
NASA Astrophysics Data System (ADS)
Park, Geunseok; No, Jincheol; Kim, Kap-Sung; Choe, Gwangson; Lee, Junggi
2016-04-01
The dynamical evolution of the Earth's magnetosphere loaded with a transiently enhanced ring current is investigated by global magnetohydrodynamic simulations. Two cases with different values of the primitive ring current are considered. In one case, the initial ring current is strong enough to create a magnetic island in the magnetosphere. The magnetic island readily reconnects with the earth-connected ambient field and is destroyed as the system approaches a steady equilibrium. In the other case, the initial ring current is not so strong, and the initial magnetic field configuration bears no magnetic island, but features a wake of bent field lines, which is smoothed out through the relaxing evolution of the magnetosphere. The relaxation time of the magnetosphere is found to be about five to six minutes, over which the ring current is reduced to about a quarter of its initial value. Before reaching a quasi-steady state, the magnetosphere is found to undergo an overshooting expansion and a subsequent contraction. Fast and slow magnetosonic waves are identified to play an important role in the relaxation toward equilibrium. Our study suggests that a sudden injection of the ring current can generate an appreciable global pulsation of the magnetosphere.
Global Evolution of the Earth's Magnetosphere in Response to a Sudden Ring Current Injection
NASA Astrophysics Data System (ADS)
No, Jincheol; Choe, Gwangson; Park, Geunseok
2014-05-01
The dynamical evolution of the Earth's magnetosphere loaded with a transiently enhanced ring current is investigated by global magnetohydrodynamic simulations. Two cases with different values of the primitive ring current are considered. In one case, the initial ring current is strong enough to create a magnetic island in the magnetosphere. The magnetic island readily reconnects with the earth-connected ambient field and is destroyed as the system approaches a steady equilibrium. In the other case, the initial ring current is not so strong, and the initial magnetic field configuration bears no magnetic island, but features a wake of bent field lines, which is smoothed out through the relaxing evolution of the magnetosphere. The relaxation time of the magnetosphere is found to be about five to six minutes, over which the ring current is reduced to about a quarter of its initial value. Before reaching a steady state, the magnetosphere is found to undergo an overshooting expansion and a subsequent contraction. Fast and slow magnetosonic waves are identified to play an important role in the relaxation toward equilibrium. Our study suggests that a sudden injection of the ring current can generate an appreciable global pulsation of the magnetosphere.
Research and Development for Technology Evolution Potential Forecasting System
NASA Astrophysics Data System (ADS)
Gao, Changqing; Cao, Shukun; Wang, Yuzeng; Ai, Changsheng; Ze, Xiangbo
Technology forecasting is a powerful weapon for many enterprises to gain an animate future. Evolutionary potential radar plot is a necessary step of some valuable methods to help the technology managers with right technical strategy. A software system for Technology Evolution Potential Forecasting (TEPF) with automatic radar plot drawing is introduced in this paper. The framework of the system and the date structure describing the concrete evolution pattern are illustrated in details. And the algorithm for radar plot drawing is researched. It is proved that the TEPF system is an effective tool during the technology strategy analyzing process with a referenced case study.
Q&A: What is human language, when did it evolve and why should we care?
Pagel, Mark
2017-07-24
Human language is unique among all forms of animal communication. It is unlikely that any other species, including our close genetic cousins the Neanderthals, ever had language, and so-called sign 'language' in Great Apes is nothing like human language. Language evolution shares many features with biological evolution, and this has made it useful for tracing recent human history and for studying how culture evolves among groups of people with related languages. A case can be made that language has played a more important role in our species' recent (circa last 200,000 years) evolution than have our genes.
Gao, Feng; Song, Weibo; Katz, Laura A
2014-08-01
In most lineages, diversity among gene family members results from gene duplication followed by sequence divergence. Because of the genome rearrangements during the development of somatic nuclei, gene family evolution in ciliates involves more complex processes. Previous work on the ciliate Chilodonella uncinata revealed that macronuclear β-tubulin gene family members are generated by alternative processing, in which germline regions are alternatively used in multiple macronuclear chromosomes. To further study genome evolution in this ciliate, we analyzed its transcriptome and found that (1) alternative processing is extensive among gene families; and (2) such gene families are likely to be C. uncinata specific. We characterized additional macronuclear and micronuclear copies of one candidate alternatively processed gene family-a protein kinase domain containing protein (PKc)-from two C. uncinata strains. Analysis of the PKc sequences reveals that (1) multiple PKc gene family members in the macronucleus share some identical regions flanked by divergent regions; and (2) the shared identical regions are processed from a single micronuclear chromosome. We discuss analogous processes in lineages across the eukaryotic tree of life to provide further insights on the impact of genome structure on gene family evolution in eukaryotes. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Uche, E O; Nwankwo, O E; Okorie, E; Nnezianya, I
2015-01-01
Retrospective study. To describe the evolution of care and risk factors for poor outcome in patients with cervical spine injury (CSI) treated at three centers in southeast Nigeria. Nigeria, southeast. A 10-year retrospective multicenter analysis of patients with CSI, managed at three centers in southeast Nigeria, from January 2003 to December 2012. Two hundred and seven patients (55%) had CSI out of 377 spinal injury cases in the three study centers, but 195 cases had complete records and were studied. There were 148 males and 47 females. The age range was 3-74 years with a mean of 32.6 (± 1.9) years 95% CI. Most injuries (149 cases) resulted from motor vehicular accidents (MVA). The C5 spinal level was involved in 75 (38%) cases One hundred and seventeen patients (60%) presented with American Spinal Injury Association A (ASIA A) injury. CSI care evolved from the application of a Minerva jacket or cervical traction only to cervical traction and spinal fusion resulting in a reduction in hospital stay (F = 52.5, DF (2, 3) P < 0.05). When compared to 51 patients with incomplete injuries, who improved in neurologic al status at discharge, only three patients with ASIA grade A experienced some improvement. The mortality rate from our series is 16% (32 patients). Those who died were more likely to have a complete injury (25 patients) or a high cervical injury (X² = 61.2, P < 0.05) among other factors. The cervical spine is the most commonly injured spinal segment in southeast Nigeria. Although treatment evolution has resulted in reduction of hospital stay, the associated mortality risk still remains high.
Interaction of rippled shock wave with flat fast-slow interface
NASA Astrophysics Data System (ADS)
Zhai, Zhigang; Liang, Yu; Liu, Lili; Ding, Juchun; Luo, Xisheng; Zou, Liyong
2018-04-01
The evolution of a flat air/sulfur-hexafluoride interface subjected to a rippled shock wave is investigated. Experimentally, the rippled shock wave is produced by diffracting a planar shock wave around solid cylinder(s), and the effects of the cylinder number and the spacing between cylinders on the interface evolution are considered. The flat interface is created by a soap film technique. The postshock flow and the evolution of the shocked interface are captured by a schlieren technique combined with a high-speed video camera. Numerical simulations are performed to provide more details of flows. The wave patterns of a planar shock wave diffracting around one cylinder or two cylinders are studied. The shock stability problem is analytically discussed, and the effects of the spacing between cylinders on shock stability are highlighted. The relationship between the amplitudes of the rippled shock wave and the shocked interface is determined in the single cylinder case. Subsequently, the interface morphologies and growth rates under different cases are obtained. The results show that the shock-shock interactions caused by multiple cylinders have significant influence on the interface evolution. Finally, a modified impulsive theory is proposed to predict the perturbation growth when multiple solid cylinders are present.
Ulnar nerve injury associated with trampoline injuries.
Maclin, Melvin M; Novak, Christine B; Mackinnon, Susan E
2004-08-01
This study reports three cases of ulnar neuropathy after trampoline injuries in children. A chart review was performed on children who sustained an ulnar nerve injury from a trampoline accident. In all cases, surgical intervention was required. Injuries included upper-extremity fractures in two cases and an upper-extremity laceration in one case. All cases required surgical exploration with internal neurolysis and ulnar nerve transposition. Nerve grafts were used in two cases and an additional nerve transfer was used in one case. All patients had return of intrinsic hand function and sensation after surgery. Children should be followed for evolution of ulnar nerve neuropathy after upper-extremity injury with consideration for electrical studies and surgical exploration if there is no improvement after 3 months.
Expanding the eco-evolutionary context of herbicide resistance research.
Neve, Paul; Busi, Roberto; Renton, Michael; Vila-Aiub, Martin M
2014-09-01
The potential for human-driven evolution in economically and environmentally important organisms in medicine, agriculture and conservation management is now widely recognised. The evolution of herbicide resistance in weeds is a classic example of rapid adaptation in the face of human-mediated selection. Management strategies that aim to slow or prevent the evolution of herbicide resistance must be informed by an understanding of the ecological and evolutionary factors that drive selection in weed populations. Here, we argue for a greater focus on the ultimate causes of selection for resistance in herbicide resistance studies. The emerging fields of eco-evolutionary dynamics and applied evolutionary biology offer a means to achieve this goal and to consider herbicide resistance in a broader and sometimes novel context. Four relevant research questions are presented, which examine (i) the impact of herbicide dose on selection for resistance, (ii) plant fitness in herbicide resistance studies, (iii) the efficacy of herbicide rotations and mixtures and (iv) the impacts of gene flow on resistance evolution and spread. In all cases, fundamental ecology and evolution have the potential to offer new insights into herbicide resistance evolution and management. © 2014 Society of Chemical Industry.
A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels
NASA Astrophysics Data System (ADS)
Sun, Bin; Li, Zhaoxia
2018-05-01
A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.
A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels
NASA Astrophysics Data System (ADS)
Sun, Bin; Li, Zhaoxia
2018-04-01
A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.
Evolution and inheritance of animal mitochondrial DNA: rules and exceptions.
Ladoukakis, Emmanuel D; Zouros, Eleftherios
2017-12-01
Mitochondrial DNA (mtDNA) has been studied intensely for "its own" merit. Its role for the function of the cell and the organism remains a fertile field, its origin and evolution is an indispensable part of the evolution of life and its interaction with the nuclear DNA is among the most important cases of genome synergism and co-evolution. Also, mtDNA was proven one of the most useful tools in population genetics and molecular phylogenetics. In this article we focus on animal mtDNA and discuss briefly how our views about its structure, function and transmission have changed, how these changes affect the information we have accumulated through its use in the fields of phylogeny and population structure and what are the most important questions that remain open for future research.
Variation, differential reproduction and oscillation: the evolution of nucleic acid hybridization.
Suárez-Díaz, Edna
2013-01-01
This paper builds upon Hans-Jörg Rheinberger ideas on the oscillation and intercalation of epistemic things and technical objects in experimental systems, to give a fine-grained analysis of what here is called the problems of "adaptation" between our material and cognitive tools and the phenomena of the material world. To do so, it relies on the case-study of the evolution of nucleic acid hybridization and the stabilization of satellite DNA.
Effects of biases in domain wall network evolution. II. Quantitative analysis
NASA Astrophysics Data System (ADS)
Correia, J. R. C. C. C.; Leite, I. S. C. R.; Martins, C. J. A. P.
2018-04-01
Domain walls form at phase transitions which break discrete symmetries. In a cosmological context, they often overclose the Universe (contrary to observational evidence), although one may prevent this by introducing biases or forcing anisotropic evolution of the walls. In a previous work [Correia et al., Phys. Rev. D 90, 023521 (2014), 10.1103/PhysRevD.90.023521], we numerically studied the evolution of various types of biased domain wall networks in the early Universe, confirming that anisotropic networks ultimately reach scaling while those with a biased potential or biased initial conditions decay. We also found that the analytic decay law obtained by Hindmarsh was in good agreement with simulations of biased potentials, but not of biased initial conditions, and suggested that the difference was related to the Gaussian approximation underlying the analytic law. Here, we extend our previous work in several ways. For the cases of biased potential and biased initial conditions, we study in detail the field distributions in the simulations, confirming that the validity (or not) of the Gaussian approximation is the key difference between the two cases. For anisotropic walls, we carry out a more extensive set of numerical simulations and compare them to the canonical velocity-dependent one-scale model for domain walls, finding that the model accurately predicts the linear scaling regime after isotropization. Overall, our analysis provides a quantitative description of the cosmological evolution of these networks.
Clonal origins and parallel evolution of regionally synchronous colorectal adenoma and carcinoma.
Kim, Tae-Min; An, Chang Hyeok; Rhee, Je-Keun; Jung, Seung-Hyun; Lee, Sung Hak; Baek, In-Pyo; Kim, Min Sung; Lee, Sug Hyung; Chung, Yeun-Jun
2015-09-29
Although the colorectal adenoma-to-carcinoma sequence represents a classical cancer progression model, the evolution of the mutational landscape underlying this model is not fully understood. In this study, we analyzed eight synchronous pairs of colorectal high-grade adenomas and carcinomas, four microsatellite-unstable (MSU) and four-stable (MSS) pairs, using whole-exome sequencing. In the MSU adenoma-carcinoma pairs, we observed no subclonal mutations in adenomas that became fixed in paired carcinomas, suggesting a 'parallel' evolution of synchronous adenoma-to-carcinoma, rather than a 'stepwise' evolution. The abundance of indel (in MSU and MSS pairs) and microsatellite instability (in MSU pairs) was noted in the later adenoma- or carcinoma-specific mutations, indicating that the mutational processes and functional constraints operative in early and late colorectal carcinogenesis are different. All MSU cases exhibited clonal, truncating mutations in ACVR2A, TGFBR2, and DNA mismatch repair genes, but none were present in APC or KRAS. In three MSS pairs, both APC and KRAS mutations were identified as both early and clonal events, often accompanying clonal copy number changes. An MSS case uniquely exhibited clonal ERBB2 amplification, followed by APC and TP53 mutations as carcinoma-specific events. Along with the previously unrecognized clonal origins of synchronous colorectal adenoma-carcinoma pairs, our study revealed that the preferred sequence of mutational events during colorectal carcinogenesis can be context-dependent.
Reactive strategies in indirect reciprocity.
Ohtsuki, Hisashi
2004-04-07
Evolution of reactive strategy of indirect reciprocity is discussed, where individuals interact with others through the one-shot Prisoner's Dilemma game, changing their partners in every round. We investigate all of the reactive strategies that are stochastic, including deterministic ones as special cases. First we study adaptive dynamics of reactive strategies by assuming monomorphic population. Results are very similar to the corresponding evolutionary dynamics of direct reciprocity. The discriminating strategy, which prescribes cooperation only with those who cooperated in the previous round, cannot be an outcome of the evolution. Next we examine the case where the population includes a diversity of strategies. We find that only the mean 'discriminatoriness' in the population is the parameter that affects the evolutionary dynamics. The discriminating strategy works as a promoter of cooperation there. However, it is again not the end point of the evolution. This is because retaliatory defection, which was prescribed by the discriminating strategy, is regarded as another defection toward the society. These results caution that we have to reconsider the role of retaliatory defection much more carefully.
Smith, E N; Ghia, E M; DeBoever, C M; Rassenti, L Z; Jepsen, K; Yoon, K-A; Matsui, H; Rozenzhak, S; Alakus, H; Shepard, P J; Dai, Y; Khosroheidari, M; Bina, M; Gunderson, K L; Messer, K; Muthuswamy, L; Hudson, T J; Harismendy, O; Barrett, C L; Jamieson, C H M; Carson, D A; Kipps, T J; Frazer, K A
2015-04-10
We examined genetic and epigenetic changes that occur during disease progression from indolent to aggressive forms of chronic lymphocytic leukemia (CLL) using serial samples from 27 patients. Analysis of DNA mutations grouped the leukemia cases into three categories: evolving (26%), expanding (26%) and static (47%). Thus, approximately three-quarters of the CLL cases had little to no genetic subclonal evolution. However, we identified significant recurrent DNA methylation changes during progression at 4752 CpGs enriched for regions near Polycomb 2 repressive complex (PRC2) targets. Progression-associated CpGs near the PRC2 targets undergo methylation changes in the same direction during disease progression as during normal development from naive to memory B cells. Our study shows that CLL progression does not typically occur via subclonal evolution, but that certain CpG sites undergo recurrent methylation changes. Our results suggest CLL progression may involve developmental processes shared in common with the generation of normal memory B cells.
Metapopulation dynamics and the evolution of dispersal
NASA Astrophysics Data System (ADS)
Parvinen, Kalle
A metapopulation consists of local populations living in habitat patches. In this chapter metapopulation dynamics and the evolution of dispersal is studied in two metapopulation models defined in discrete time. In the first model there are finitely many patches, and in the other one there are infinitely many patches, which allows to incorporate catastrophes into the model. In the first model, cyclic local population dynamics can be either synchronized or not, and increasing dispersal both synchronizes and stabilizes metapopulation dynamics. On the other hand, the type of dynamics has a strong effect on the evolution of dispersal. In case of non-synchronized metapopulation dynamics, dispersal is much more beneficial than in the case of synchronized metapopulation dynamics. Local dynamics has a substantial effect also on the possibility of evolutionary branching in both models. Furthermore, with an Allee effect in the local dynamics of the second model, even evolutionary suicide can occur. It is an evolutionary process in which a viable population adapts in such a way that it can no longer persist.
Chemical evolution via beta decay: a case study in strontium-90
NASA Astrophysics Data System (ADS)
Marks, N. A.; Carter, D. J.; Sassi, M.; Rohl, A. L.; Sickafus, K. E.; Uberuaga, B. P.; Stanek, C. R.
2013-02-01
Using 90Sr as a representative isotope, we present a framework for understanding beta decay within the solid state. We quantify three key physical and chemical principles, namely momentum-induced recoil during the decay event, defect creation due to physical displacement, and chemical evolution over time. A fourth effect, that of electronic excitation, is also discussed, but this is difficult to quantify and is strongly material dependent. The analysis is presented for the specific cases of SrTiO3 and SrH2. By comparing the recoil energy with available threshold displacement data we show that in many beta-decay situations defects such as Frenkel pairs will not be created during decay as the energy transfer is too low. This observation leads to the concept of chemical evolution over time, which we quantify using density functional theory. Using a combination of Bader analysis, phonon calculations and cohesive energy calculations, we show that beta decay leads to counter-intuitive behavior that has implications for nuclear waste storage and novel materials design.
Chemical evolution via beta decay: a case study in strontium-90.
Marks, N A; Carter, D J; Sassi, M; Rohl, A L; Sickafus, K E; Uberuaga, B P; Stanek, C R
2013-02-13
Using (90)Sr as a representative isotope, we present a framework for understanding beta decay within the solid state. We quantify three key physical and chemical principles, namely momentum-induced recoil during the decay event, defect creation due to physical displacement, and chemical evolution over time. A fourth effect, that of electronic excitation, is also discussed, but this is difficult to quantify and is strongly material dependent. The analysis is presented for the specific cases of SrTiO(3) and SrH(2). By comparing the recoil energy with available threshold displacement data we show that in many beta-decay situations defects such as Frenkel pairs will not be created during decay as the energy transfer is too low. This observation leads to the concept of chemical evolution over time, which we quantify using density functional theory. Using a combination of Bader analysis, phonon calculations and cohesive energy calculations, we show that beta decay leads to counter-intuitive behavior that has implications for nuclear waste storage and novel materials design.
Entanglement evolution across a conformal interface
NASA Astrophysics Data System (ADS)
Wen, Xueda; Wang, Yuxuan; Ryu, Shinsei
2018-05-01
For two-dimensional conformal field theories (CFTs) in the ground state, it is known that a conformal interface along the entanglement cut can suppress the entanglement entropy from to , where L is the length of the subsystem A, and is the effective central charge which depends on the transmission property of the conformal interface. In this work, by making use of conformal mappings, we show that a conformal interface has the same effect on entanglement evolution in non-equilibrium cases, including global, local and certain inhomogeneous quantum quenches. I.e. a conformal interface suppresses the time evolution of entanglement entropy by effectively replacing the central charge c with , where is exactly the same as that in the ground state case. We confirm this conclusion by a numerical study on a critical fermion chain. Furthermore, based on the quasi-particle picture, we conjecture that this conclusion holds for an arbitrary quantum quench in CFTs, as long as the initial state can be described by a regularized conformal boundary state.
THE HISTORY OF TIDAL DISRUPTION EVENTS IN GALACTIC NUCLEI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aharon, Danor; Battisti, Alessandra Mastrobuono; Perets, Hagai B.
The tidal disruption of a star by a massive black hole (MBH) is thought to produce a transient luminous event. Such tidal disruption events (TDEs) may play an important role in the detection and characterization of MBHs, and in probing the properties and dynamics of their nuclear stellar cluster (NSC) hosts. Previous studies estimated the recent rates of TDEs in the local universe. However, the long-term evolution of the rates throughout the history of the universe has been little explored. Here we consider TDE history, using evolutionary models for the evolution of galactic nuclei. We use a 1D Fokker–Planck approachmore » to explore the evolution of MBH-hosting NSCs, and obtain the disruption rates of stars during their evolution. We complement these with an analysis of TDE history based on N -body simulation data, and find them to be comparable. We consider NSCs that are built up from close-in star formation (SF) or from far-out SF/cluster-dispersal, a few pc from the MBH. We also explore cases where primordial NSCs exist and later evolve through additional SF/cluster-dispersal processes. We study the dependence of the TDE history on the type of galaxy, as well as the dependence on the MBH mass. These provide several scenarios, with a continuous increase of the TDE rates over time for cases of far-out SF and a more complex behavior for the close-in SF cases. Finally, we integrate the TDE histories of the various scenarios to provide a total TDE history of the universe, which can be potentially probed with future large surveys (e.g., LSST).« less
NASA Astrophysics Data System (ADS)
Oh, W. S.; Yu, D. J.; Davis, T.; Hillis, V.; Waring, T. M.
2017-12-01
One ongoing challenge to socio-hydrology is the problem of generalization: to what extent do common human-water co-evolutions exist across distinct cases and what are underlying mechanisms of these co-evolutions. This problem stems in part from a lack of unifying theories in socio-hydrology, which hinders the explanation and generalization of results between cases in different regions. Theories help an analyst to make assumptions that are necessary to diagnose a specific phenomenon, to explain the general mechanisms of causation, and, thus, to predict future outcomes. To help address the issue, this study introduces two theories that are increasingly used in the fields of sustainability science and social-ecological systems research: robustness-fragility tradeoff (RFTO) and cultural multi-level selection (CMLS). We apply each of these theories to two distinct cases (water management issues in southwest Bangladesh and the Kissimmee River Basin, Florida) and interpret the phenomena of the levee and adaptation effects. CMLS and RFTO focus on complementary aspects of socio-hydrological phenomena. The theory of RFTO, which is mostly about inherent tradeoffs associated with infrastructure improvements, explains how efforts to increase system robustness can generate hidden endogenous risks. CMLS theory, rooted in the broader theory of cultural evolution, concerns how human cultural dynamics can act as an endogenous driver of system change across multiple levels of social organizations. Using the applied examples, we demonstrate that these two theories can provide an effective way to study social-hydrological systems and to overcome the generalization problem. Our work shows that multiple theories can be synthesized to give a richer understanding of diverse socio-hydrological patterns.
Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence
McLeish, Tom C. B.
2015-01-01
We examine the analogy between evolutionary dynamics and statistical mechanics to include the fundamental question of ergodicity—the representative exploration of the space of possible states (in the case of evolution this is genome space). Several properties of evolutionary dynamics are identified that allow a generalization of the ergodic dynamics, familiar in dynamical systems theory, to evolution. Two classes of evolved biological structure then arise, differentiated by the qualitative duration of their evolutionary time scales. The first class has an ergodicity time scale (the time required for representative genome exploration) longer than available evolutionary time, and has incompletely explored the genotypic and phenotypic space of its possibilities. This case generates no expectation of convergence to an optimal phenotype or possibility of its prediction. The second, more interesting, class exhibits an evolutionary form of ergodicity—essentially all of the structural space within the constraints of slower evolutionary variables have been sampled; the ergodicity time scale for the system evolution is less than the evolutionary time. In this case, some convergence towards similar optima may be expected for equivalent systems in different species where both possess ergodic evolutionary dynamics. When the fitness maximum is set by physical, rather than co-evolved, constraints, it is additionally possible to make predictions of some properties of the evolved structures and systems. We propose four structures that emerge from evolution within genotypes whose fitness is induced from their phenotypes. Together, these result in an exponential speeding up of evolution, when compared with complete exploration of genomic space. We illustrate a possible case of application and a prediction of convergence together with attaining a physical fitness optimum in the case of invertebrate compound eye resolution. PMID:26640648
Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence.
McLeish, Tom C B
2015-12-06
We examine the analogy between evolutionary dynamics and statistical mechanics to include the fundamental question of ergodicity-the representative exploration of the space of possible states (in the case of evolution this is genome space). Several properties of evolutionary dynamics are identified that allow a generalization of the ergodic dynamics, familiar in dynamical systems theory, to evolution. Two classes of evolved biological structure then arise, differentiated by the qualitative duration of their evolutionary time scales. The first class has an ergodicity time scale (the time required for representative genome exploration) longer than available evolutionary time, and has incompletely explored the genotypic and phenotypic space of its possibilities. This case generates no expectation of convergence to an optimal phenotype or possibility of its prediction. The second, more interesting, class exhibits an evolutionary form of ergodicity-essentially all of the structural space within the constraints of slower evolutionary variables have been sampled; the ergodicity time scale for the system evolution is less than the evolutionary time. In this case, some convergence towards similar optima may be expected for equivalent systems in different species where both possess ergodic evolutionary dynamics. When the fitness maximum is set by physical, rather than co-evolved, constraints, it is additionally possible to make predictions of some properties of the evolved structures and systems. We propose four structures that emerge from evolution within genotypes whose fitness is induced from their phenotypes. Together, these result in an exponential speeding up of evolution, when compared with complete exploration of genomic space. We illustrate a possible case of application and a prediction of convergence together with attaining a physical fitness optimum in the case of invertebrate compound eye resolution.
McPherson, Charmaine; Ploeg, Jenny; Edwards, Nancy; Ciliska, Donna; Sword, Wendy
2017-02-01
The purpose of this study was to examine key processes and supportive and inhibiting factors involved in the development, evolution, and sustainability of a child health network in rural Canada. This study contributes to a relatively new research agenda aimed at understanding inter-organizational and cross-sectoral health networks. These networks encourage collaboration focusing on complex issues impacting health - issues that individual agencies cannot effectively address alone. This paper presents an overview of the study findings. An explanatory qualitative case study approach examined the Network's 13-year lifespan. Data sources were documents and Network members, including regional and 71 provincial senior managers from 11 child and youth service sectors. Data were collected through 34 individual interviews and a review of 127 documents. Interview data were analyzed using framework analysis methods; Prior's approach guided document analysis. Three themes related to network development, evolution and sustainability were identified: (a) Network relationships as system triggers, (b) Network-mediated system responsiveness, and (c) Network practice as political. Study findings have important implications for network organizational development, collaborative practice, interprofessional education, public policy, and public system responsiveness research. Findings suggest it is important to explicitly focus on relationships and multi-level socio-political contexts, such as supportive policy environments, in understanding health networks. The dynamic interplay among the Network members; central supportive and inhibiting factors; and micro-, meso-, and macro-organizational contexts was identified.
Lestelle, Valentin; de Coster, Claire; Sarran, Anthony; Poizat, Flora; Delpero, Jean-Robert; Raoul, Jean-Luc
2015-01-01
We report the case of a Caucasian woman, operated on for a solid pseudopapillary tumor of the pancreas in 2009, who recurred 4 years later with multiple liver metastases requiring liver resection. This disease is infrequent, particularly among the Caucasian population, and metastatic evolution is very rare.
Adams, Alyssa; Zenil, Hector; Davies, Paul C W; Walker, Sara Imari
2017-04-20
Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-ended evolution as it appears in biology. We recast the problem as a more general one in dynamical systems theory, providing simple criteria for open-ended evolution based on two hallmark features: unbounded evolution and innovation. We define unbounded evolution as patterns that are non-repeating within the expected Poincare recurrence time of an isolated system, and innovation as trajectories not observed in isolated systems. As a case study, we implement novel variants of cellular automata (CA) where the update rules are allowed to vary with time in three alternative ways. Each is capable of generating conditions for open-ended evolution, but vary in their ability to do so. We find that state-dependent dynamics, regarded as a hallmark of life, statistically out-performs other candidate mechanisms, and is the only mechanism to produce open-ended evolution in a scalable manner, essential to the notion of ongoing evolution. This analysis suggests a new framework for unifying mechanisms for generating OEE with features distinctive to life and its artifacts, with broad applicability to biological and artificial systems.
ERIC Educational Resources Information Center
Reyes, Reynaldo, III; Valles, Estella; Salinas, Cinthia
2011-01-01
This paper is a case study of a Chicana former migrant in her first year of college through CAMP (College Assistance Migrant Program), and how she negotiated the challenges of family, romance, and the desire to reach her goals. Through narrative analysis, the authors examine the thoughts, words, and experiences of Luz's life to provide insight to…
Gross, C G
1993-10-01
In mid-19th century Britain the possibility of evolution and particularly the evolution of man from apes was vigorously contested. Among the leading antievolutionists was the celebrated anatomist and paleontologist Richard Owen and among the leading defenders of evolution was Thomas Henry Huxley. The central dispute between them on human evolution was whether or not man's brain was fundamentally unique in having a hippocampus minor (known today as the calcar avis), a posterior horn in the lateral ventricle, and a posterior lobe. The author considers the background of this controversy, the origin and fate of the term hippocampus minor, why this structure became central to the question of human evolution, and how Huxley used it to support both Darwinism and the political ascendancy of Darwinians. The use of ventricular structures to distinguish humans from other animals appears to reflect an importance given to the ventricles that stretches back to ancient Greek medicine. This account illustrates both the extraordinary persistence of ideas in biology and the role of the political and social matrix in the study of the brain.
NASA Astrophysics Data System (ADS)
Smith, Mike U.; Scharmann, Lawrence
2008-02-01
This investigation delineates a multi-year action research agenda designed to develop an instructional model for teaching the nature of science (NOS) to preservice science teachers. Our past research strongly supports the use of explicit reflective instructional methods, which includes Thomas Kuhn’s notion of learning by ostention and treating science as a continuum (i.e., comparing fields of study to one another for relative placement as less to more scientific). Instruction based on conceptual change precepts, however, also exhibits promise. Thus, the investigators sought to ascertain the degree to which conceptual change took place among students (n = 15) participating in the NOS instructional model. Three case studies are presented to illustrate successful conceptual changes that took place as a result of the NOS instructional model. All three cases represent students who claim a very conservative Christian heritage and for whom evolution was not considered a legitimate scientific theory prior to participating in the NOS instructional model. All three case study individuals, along with their twelve classmates, placed evolution as most scientific when compared to intelligent design and a fictional field of study called “Umbrellaology.”
NASA Astrophysics Data System (ADS)
Kyzer, Peggy Mckewen
Organizations in science and science education call for students to have a thorough understanding of the theory of evolution. Yet many high school biology teachers do not teach evolution and/or include creationism in their instruction (National Academy of Science, 1998). Historically, the controversy surrounding evolution has created tension for teachers. This case study explored the sociocultural influences related to teaching evolution in three Southern 10th-grade public high school biology classrooms. It also explored the socially and culturally embedded influences on teachers' instructional goals and personal perspectives toward evolution as well as modification of instruction when evolution is taught. Theoretically framed using symbolic interactionism and sociocultural theory, data were collected between October 2003 and April 2004 and included classroom observations two to three times per week, artifacts, and in-depth interviews of the participating teachers, their science department chairpersons, their students, and a Protestant minister. The classroom teachers were unaware of the focus of the study until after evolution was taught. The analysis used in this study was an inductive, interpretative approach that allowed exploration of the sociocultural influences that affect how teachers teach evolution. The sociocultural influences and the lived experiences of each teacher created a continuum for teaching evolution. One of the participating teachers who was heavily involved in the community and one of its fundamentalist churches elected to avoid teaching evolution. Another participating teacher at the same school integrated the theory of evolution in every unit. The third teacher who taught in another school elected to teach evolution in a superficial manner to avoid conflict. The data revealed that the participating teachers' sociocultural situatedness influenced their decisions and instruction on evolution. The influence of strong religious beliefs within the Southern culture was a theme that cut across all the teachers' decisions. In particular, religious beliefs made teaching human evolution difficult. Other recurring themes included the influence of the textbook and factors that served as escape routes for the teachers electing to avoid evolution. The escape routes included the pressure of time, the mixed messages from the state board of education, and the double-edged sword of teacher autonomy.
NASA Astrophysics Data System (ADS)
You, Jinjun; Gan, Hong; Wang, Lin; Bi, Xue; Du, Sisi
2010-05-01
The evolution of groundwater is one of the key problems of water cycle study. It is a result of joint effect of natural condition and human activities, but until now the driving forces of groundwater system evolution were not fully understood due to the complexity of groundwater system structures and the uncertainty of affecting factors. Geology, precipitation and human activity are the main factors affecting the groundwater system evolution and interact each other, but the influence of such three factors on groundwater system are not clarified clearly on a macroscopic scale. The precipitation changes the volume of water recharge and the groundwater pumping effect the discharge of groundwater. Another important factor influencing balance of groundwater storage is the underlaying that affects the renewablility of groundwater. The underlaying is decided mainly by geological attributes but also influenced by human activited. The macroscopic environment of groundwater evolves under the natural and anthropic factors. This paper study the general law of groundwater evolution among the factors based on the case study in Haihe River Basin, a typical area with dramatic groundwater change under natural precipitation attenuation and gradually increase of water suuply. Haihe River Basin is located in north-China, covers an area of 320,041 km2 with over 40% plain areas. The plain area of Haihe Basin is densely populated with many large and medium-sized cities, including metropolis of Beijing and Tianjin, and concentrated irrigated areas, playing important roles in China's economy and food production. It is the unique basin where groundwater occupies majority of total water supply in China. Long-term groundwater over-exploitation causes a series of ecological and environmental problems that threats the sustainable development. In this paper, the historical process of groundwater balance in Haihe Basin is divided into three phases by decrease of rainfall and increase of water pumping. The different problems caused by groundwater shrinkage are summarized. The volume of recharge from natural precipitation and artificial water cycle, natural evaporation and groundwater exploitation are analyzed based on water balance. Through the historical data analysis the changing trend of coefficients of groundwater balance discovers the evolution of groundwater. The general law is concluded with deeper analysis displays the contribution of natural and artificial factors causing deterioration of groundwater balance. A general law of groundwater evolution is put forward to describe the affection of both natural and anthropogenic factors with a relation curve. Considering the water demand of future socio-economic development in Haihe River Basin, the prospective of future vision of groundwater cycle is analyzed by the law of groundwater evolution. Iterated scenario analysis based on comparison of ameliorative function on groundwater balance to point out reasonable control on groundwater exploitation and rational water allocation under the condition of completion of South-to-North Water Transfer Project that could bring more than 7 billion m3 into Haihe River Basin from Yantze River. Finally, the advantages and disadvantages are concluded through the case study and the farther research in this field is pointed out.
Trajectory and outcomes of speech language therapy in the Prader-Willi syndrome (PWS): case report.
Misquiatti, Andréa Regina Nunes; Cristovão, Melina Pavini; Brito, Maria Claudia
2011-03-01
The aim of this study was to describe the trajectory and the outcomes of speech-language therapy in Prader-Willi syndrome through a longitudinal study of the case of an 8 year-old boy, along four years of speech-language therapy follow-up. The therapy sessions were filmed and documental analysis of information from the child's records regarding anamnesis, evaluation and speech-language therapy reports and multidisciplinary evaluations were carried out. The child presented typical characteristics of Prader-Willi syndrome, such as obesity, hyperfagia, anxiety, behavioral problems and self aggression episodes. Speech-language pathology evaluation showed orofacial hypotony, sialorrhea, hypernasal voice, cognitive deficits, oral comprehension difficulties, communication using gestures and unintelligible isolated words. Initially, speech-language therapy had the aim to promote the language development emphasizing social interaction through recreational activities. With the evolution of the case, the main focus became the development of conversation and narrative abilities. It were observed improvements in attention, symbolic play, social contact and behavior. Moreover, there was an increase in vocabulary, and evolution in oral comprehension and the development of narrative abilities. Hence, speech-language pathology intervention in the case described was effective in different linguistic levels, regarding phonological, syntactic, lexical and pragmatic abilities.
Entanglement Evolution of Jaynes-Cummings Model in Resonance Case and Non-resonance Case
NASA Astrophysics Data System (ADS)
Cheng, Jing; Chen, Xi; Shan, Chuan-Jia
2018-06-01
We investigate the entanglement evolution of a two-level atom and a quantized single model electromagnetic filed in the resonance and non-resonance cases. The effects of the initial state, detuning degree, photon number on the entanglement are shown in detail. The results show that the atom-cavity entanglement state appears with periodicity. The increasing of the photon number can make the period of quantum entanglement be shorter. In the non-resonant case, if we choose the suitable initial state the entanglement of atom-cavity can be 1.0
The tempo and mode of evolution: body sizes of island mammals.
Raia, Pasquale; Meiri, Shai
2011-07-01
The tempo and mode of body size evolution on islands are believed to be well known. It is thought that body size evolves relatively quickly on islands toward the mammalian modal value, thus generating extreme cases of size evolution and the island rule. Here, we tested both theories in a phylogenetically explicit context, by using two different species-level mammalian phylogenetic hypotheses limited to sister clades dichotomizing into an exclusively insular and an exclusively mainland daughter nodes. Taken as a whole, mammals were found to show a largely punctuational mode of size evolution. We found that, accounting for this, and regardless of the phylogeny used, size evolution on islands is no faster than on the continents. We compared different selection regimes using a set of Ornstein-Uhlenbeck models to examine the effects of insularity of the mode of evolution. The models strongly supported clade-specific selection regimes. Under this regime, however, an evolutionary model allowing insular species to evolve differently from their mainland relatives performs worse than a model that ignores insularity as a factor. Thus, insular taxa do not experience statistically different selection from their mainland relatives. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Sonam, Tenzin
Recent effort to teach Western science in the Tibetan Buddhist monasteries has drawn interest both within and outside the quarters of these monasteries. This novel and historic move of bringing Western science in a traditional monastic community began around year 2000 at the behest of His Holiness the Dalai Lama, the spiritual head of Tibetan Buddhism. Despite the novelty of this effort, the literature in science education about learners from non-Western communities suggests various "cognitive conflicts" experienced by these non-Western learners due to fundamental difference in the worldview of the two knowledge traditions. Hence, in this research focuses on how six Tibetan Buddhist monks were situating/reconciling the scientific concepts like the theory of evolution into their traditional Buddhist worldview. The monks who participated in this study were engaged in a further study science at a university in the U.S. for two years. Using case study approach, the participants were interviewed individually and in groups over the two-year period. The findings revealed that although the monks scored highly on their acceptance of evolution on the Measurement of Acceptance of Theory of Evolution (MATE) survey, however in the follow-up individual and focus group interviews, certain conflicts as well as agreement between the theory of evolution and their Buddhist beliefs were revealed. The monks experienced conflicts over concepts within evolution such as common ancestry, human evolution, and origin of life, and in reconciling the Buddhist and scientific notion of life. The conflicts were analyzed using the theory of collateral learning and was found that the monks engaged in different kinds of collateral learning, which is the degree of interaction and resolution of conflicting schemas. The different collateral learning of the monks was correlated to the concepts within evolution and has no correlation to the monks' years in secular school, science learning or their proficiency of English language. This study has indicted that the Tibetan Buddhist monks also experience certain cognitive conflict when situating Western scientific concepts into their Buddhist worldview as suggested by research of science learners from other non-Western societies. By explicating how the monks make sense of scientific theories like the theory of evolution as an exemplar, I hope to inform the current effort to establish science education in the monastery to develop curricula that would result in meaningful science teaching and learning, and also sensitive to needs and the cultural survival of the monastics.
Evolution of epidemiologic methods and concepts in selected textbooks of the 20th century.
Zhang, Fang F; Michaels, Desireé C; Mathema, Barun; Kauchali, Shuaib; Chatterjee, Anjan; Ferris, David C; James, Tamarra M; Knight, Jennifer; Dounel, Matthew; Tawfik, Hebatullah O; Frohlich, Janet A; Kuang, Li; Hoskin, Elena K; Veldman, Frederick J; Baldi, Giulia; Mlisana, Koleka P; Mametja, Lerole D; Diaz, Angela; Khan, Nealia L; Sternfels, Pamela; Sevigny, Jeffery J; Shamam, Asher; Morabia, Alfredo
2004-01-01
Textbooks are an expression of the state of development of a discipline at a given moment in time. By reviewing eight epidemiology textbooks published over the course of a century, we have attempted to trace the evolution of five epidemiologic concepts and methods: study design (cohort studies and case-control studies), confounding, bias, interaction and causal inference. Overall, these eight textbooks can be grouped into three generations. Greenwood (1935) and Hill (first edition 1937; version reviewed 1961)'s textbooks belong to the first generation, "early epidemiology", which comprise early definitions of bias and confounding. The second generation, "classic epidemiology", represented by the textbooks of Morris (first edition 1957; version reviewed 1964), MacMahon & Pugh (first edition 1960; version reviewed 1970), Susser (1973), and Lilienfeld & Lilienfeld (first edition 1976; version reviewed 1980), clarifies the properties of cohort and case-control study designs and the theory of disease causation. Miettinen (1985) and Rothman (1986)'s textbooks belong to a third generation, "modern epidemiology", presenting an integrated perspective on study designs and their measures of outcome, as well as distinguishing and formalizing the concepts of confounding and interaction. Our review demonstrates that epidemiology, as a scientific discipline, is in constant evolution and transformation. It is likely that new methodological tools, able to assess the complexity of the causes of human health, will be proposed in future generations of textbooks.
NASA Astrophysics Data System (ADS)
Gimenez, M. Cecilia; Paz García, Ana Pamela; Burgos Paci, Maxi A.; Reinaudi, Luis
2016-04-01
The evolution of public opinion using tools and concepts borrowed from Statistical Physics is an emerging area within the field of Sociophysics. In the present paper, a Statistical Physics model was developed to study the evolution of the ideological self-positioning of an ensemble of agents. The model consists of an array of L components, each one of which represents the ideology of an agent. The proposed mechanism is based on the ;voter model;, in which one agent can adopt the opinion of another one if the difference of their opinions lies within a certain range. The existence of ;undecided; agents (i.e. agents with no definite opinion) was implemented in the model. The possibility of radicalization of an agent's opinion upon interaction with another one was also implemented. The results of our simulations are compared to statistical data taken from the Latinobarómetro databank for the cases of Argentina, Chile, Brazil and Uruguay in the last decade. Among other results, the effect of taking into account the undecided agents is the formation of a single peak at the middle of the ideological spectrum (which corresponds to a centrist ideological position), in agreement with the real cases studied.
[Cranial metastasis of thyroid follicular carcinoma. Report of a case].
Calderón-Garcidueñas, A L; González-Schaffinni, M A; Farías-García, R; Rey-Laborde, R
2001-01-01
Thyroid follicular carcinoma is able to produce metastatic lesions before the vanishing of the primary lesion. We present a case of a woman with a lytic, solitary, asymptomatic parietal bone lesion of 2 years of evolution. Autopsy revealed a thyroid gland with two small cystic areas and renal metastasis. Thyroid carcinoma should be included in the differential diagnosis in cases of lytic bone lesions with long evolution in patients 60 years of age or older.
Late-Pleistocene evolution of the continental shelf of central Israel, a case study from Hadera
NASA Astrophysics Data System (ADS)
Shtienberg, Gilad; Dix, Justin; Waldmann, Nicolas; Makovsky, Yizhaq; Golan, Arik; Sivan, Dorit
2016-05-01
Sea-level fluctuations are a dominant mechanism that control coastal environmental changes through time. This is especially the case for the successive regressions and transgressions over the last interglacial cycle, which have shaped the deposition, preservation and erosion patterns of unconsolidated sediments currently submerged on continental shelves. The current study focuses on creating an integrated marine and terrestrial geophysical and litho-stratigraphic framework of the coastal zone of Hadera, north-central Israel. This research presents a case study, investigating the changing sedimentological units in the study area. Analysis suggest these represent various coastal environments and were deposited during times of lower than present sea level and during the later stages of the Holocene transgression. A multi-disciplinary approach was applied by compiling existing elevation raster grids, bathymetric charts, one hundred lithological borehole data-sets, and a 110 km-long sub-bottom geophysical survey. Based on seismic stratigraphic analysis, observed geometries, and reflective appearances, six bounding surfaces and seven seismic units were identified and characterized. These seismic units have been correlated with the available borehole data to produce a chronologically constrained lithostratigraphy for the area. This approach allowed us to propose a relationship between the lithological units and sea-level change and thus enable the reconstruction of Hadera coastal evolution over the last 100 ka. This reconstruction suggests that the stratigraphy is dominated by lowstand aeolian and fluvial terrestrial environments, subsequently transgressed during the Holocene. The results of this study provide a valuable framework for future national strategic shallow-water infrastructure construction and also for the possible locations of past human settlements in relation to coastal evolution through time.
[Tuberculous pyopneumothorax: about 18 cases].
Hicham, Souhi; Hanane, El Ouazzani; Hicham, Janah; Ismaïl, Rhorfi; Ahmed, Abid
2016-01-01
Tuberculous pyopneumothorax is a rare but serious complication of evolutive pulmonary tuberculosis. We report a series of 18 cases with tuberculous pyopneumothorax admitted to the Pneumo-Phthisiology Department of the Mohammed V Military Teaching Hospital in Rabat between January 2005 and December 2009. Our study included 15 men and 3 women, the average age was 35 ± 7 years. 4 patients were diabetic. Smoking was found in 9 cases. Right-sided pneumothorax was found in 13 cases. Chest radiograph showed cavitary lesions in 15 patients and extensive bilateral lesions in 8 cases. The search for Mycobacterium tuberculosis in the fluid from the gastric tube was positive in 16 cases. Chest drainage associated with antituberculosis treatment according to the 2SRHZ/7RH regimen and respiratory kinesitherapy were performed in all cases. The average duration of pleural drainage was 4 weeks. In 3 cases we noted persistent pleural suppuration requiring pleural toilet using thoracoscopy with pleurectomy and limited pulmonary resection to eliminate tuberculous parenchymal lesions and the persistence of a large pleural pocket with restrictive ventilatory defect that required surgery for pleural decortication in two cases. The outcome was favorable with minimal pachypleuritis as sequelae in the remaining cases. Tuberculous pyopneumothorax is a severe form, which is often associated with active cavitary tuberculosis. Evolution is generally progressive despite antituberculosis treatment and thoracic drainage, hence the need for early diagnosis and treatment of all forms of tuberculosis.
Research on Capturing of Customer Requirements Based on Innovation Theory
NASA Astrophysics Data System (ADS)
junwu, Ding; dongtao, Yang; zhenqiang, Bao
To exactly and effectively capture customer requirements information, a new customer requirements capturing modeling method was proposed. Based on the analysis of function requirement models of previous products and the application of technology system evolution laws of the Theory of Innovative Problem Solving (TRIZ), the customer requirements could be evolved from existing product designs, through modifying the functional requirement unit and confirming the direction of evolution design. Finally, a case study was provided to illustrate the feasibility of the proposed approach.
Seizing the Digital High Ground: Military Operations and Politics in the Social Media Era
2015-04-13
divided on the relative threats and opportunities. Through the analysis of social media’s technological evolution, its impact on crowd behaviour , and... Through the analysis of social media’s technological evolution, its impact on crowd behaviour , and using case studies of the Arab Spring and Islamic... arguments and recommendations proposed. Web 2.0 is a term used to describe the way in which software developers and end-users utilize the World Wide Web as
Lestelle, Valentin; de Coster, Claire; Sarran, Anthony; Poizat, Flora; Delpero, Jean-Robert; Raoul, Jean-Luc
2015-01-01
We report the case of a Caucasian woman, operated on for a solid pseudopapillary tumor of the pancreas in 2009, who recurred 4 years later with multiple liver metastases requiring liver resection. This disease is infrequent, particularly among the Caucasian population, and metastatic evolution is very rare. PMID:26557078
Amy de la Bretèque, B; Sanchez, S
2000-01-01
The observation of the vocal evolution of adolescent singers has shown it takes place in two stages, the singing voice changing after the speaking voice. The same pattern has been encountered and made more explicit with a study of 50 non-singer adolescents. It thus appears that the average pitch of the speaking voice deepening by one octave is not by itself the sign that the break of the voice has ended. This study also shows the individual nature of adolescent vocal evolution and its length (up to two years in one out of four cases).
Lessons Learned from the Evolution of an Academic Community Partnership: Creating "Patient Voices".
Chambers, Meghan K; Ireland, Anna; D'Aniello, Rona; Lipnicki, Stephanie; Glick, Myron; Tumiel-Berhalter, Laurene
2015-01-01
Long-term partners received federal funding to develop the Patient Voices Network, a partnership of safety-net family practices and their patients to develop health improvement strategies. The scope and structure of the newly funded grant presented unexpected challenges that threatened the future of the partnership.Purpose of Article: To present a case study of the evolution of an existing partnership and offer lessons learned along with recommendations for future partnerships. Federal funding formalized the partnership in a way that required looking at it through a new lens. Leadership, programmatic, personnel, and financial challenges emerged. Short-term and long-term strategies were applied to address evolving needs. This case study demonstrates how federal funding raises the bar for academic-community partnerships and how challenges can be worked through, particularly if the partnership embraces the key principles of community-based participatory research (CBPR). Recommendations have been applied successfully to future initiatives.
NASA Astrophysics Data System (ADS)
Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin
2018-04-01
In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.
Evolution of egoism on semi-directed and undirected Barabási-Albert networks
NASA Astrophysics Data System (ADS)
Lima, F. W. S.
2015-05-01
Through Monte Carlo simulations, we study the evolution of the four strategies: Ethnocentric, altruistic, egoistic and cosmopolitan in one community of individuals. Interactions and reproduction among computational agents are simulated on undirected and semi-directed Barabási-Albert (BA) networks. We study the Hammond-Axelrod (HA) model on undirected and semi-directed BA networks for the asexual reproduction case. With a small modification in the traditional HA model, our simulations showed that egoism wins, differently from other results found in the literature where ethnocentric strategy is common. Here, mechanisms such as reciprocity are absent.
NASA Astrophysics Data System (ADS)
Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin
2018-03-01
In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.
Morphological evolution, ecological diversification and climate change in rodents.
Renaud, Sabrina; Michaux, Jacques; Schmidt, Daniela N; Aguilar, Jean-Pierre; Mein, Pierre; Auffray, Jean-Christophe
2005-03-22
Among rodents, the lineage from Progonomys hispanicus to Stephanomys documents a case of increasing size and dental specialization during an approximately 9 Myr time-interval. On the contrary, some contemporaneous generalist lineages like Apodemus show a limited morphological evolution. Dental shape can be related to diet and can be used to assess the ecological changes along the lineages. Consequently, size and shape of the first upper molar were measured in order to quantify the patterns of morphological evolution along both lineages and compare them to environmental trends. Climatic changes do not have a direct influence on evolution, but they open new ecological opportunities by changing vegetation and allow the evolution of a specialist like Stephanomys. On the other hand, environmental changes are not dramatic enough to destroy the habitat of a long-term generalist like Apodemus. Hence, our results exemplify a case of an influence of climate on the evolution of specialist species, although a generalist species may persist without change.
Morphological evolution, ecological diversification and climate change in rodents
Renaud, Sabrina; Michaux, Jacques; Schmidt, Daniela N; Aguilar, Jean-Pierre; Mein, Pierre; Auffray, Jean-Christophe
2005-01-01
Among rodents, the lineage from Progonomys hispanicus to Stephanomys documents a case of increasing size and dental specialization during an approximately 9 Myr time-interval. On the contrary, some contemporaneous generalist lineages like Apodemus show a limited morphological evolution. Dental shape can be related to diet and can be used to assess the ecological changes along the lineages. Consequently, size and shape of the first upper molar were measured in order to quantify the patterns of morphological evolution along both lineages and compare them to environmental trends. Climatic changes do not have a direct influence on evolution, but they open new ecological opportunities by changing vegetation and allow the evolution of a specialist like Stephanomys. On the other hand, environmental changes are not dramatic enough to destroy the habitat of a long-term generalist like Apodemus. Hence, our results exemplify a case of an influence of climate on the evolution of specialist species, although a generalist species may persist without change. PMID:15817435
Measuring the Evolution of Ontology Complexity: The Gene Ontology Case Study
Dameron, Olivier; Bettembourg, Charles; Le Meur, Nolwenn
2013-01-01
Ontologies support automatic sharing, combination and analysis of life sciences data. They undergo regular curation and enrichment. We studied the impact of an ontology evolution on its structural complexity. As a case study we used the sixty monthly releases between January 2008 and December 2012 of the Gene Ontology and its three independent branches, i.e. biological processes (BP), cellular components (CC) and molecular functions (MF). For each case, we measured complexity by computing metrics related to the size, the nodes connectivity and the hierarchical structure. The number of classes and relations increased monotonously for each branch, with different growth rates. BP and CC had similar connectivity, superior to that of MF. Connectivity increased monotonously for BP, decreased for CC and remained stable for MF, with a marked increase for the three branches in November and December 2012. Hierarchy-related measures showed that CC and MF had similar proportions of leaves, average depths and average heights. BP had a lower proportion of leaves, and a higher average depth and average height. For BP and MF, the late 2012 increase of connectivity resulted in an increase of the average depth and average height and a decrease of the proportion of leaves, indicating that a major enrichment effort of the intermediate-level hierarchy occurred. The variation of the number of classes and relations in an ontology does not provide enough information about the evolution of its complexity. However, connectivity and hierarchy-related metrics revealed different patterns of values as well as of evolution for the three branches of the Gene Ontology. CC was similar to BP in terms of connectivity, and similar to MF in terms of hierarchy. Overall, BP complexity increased, CC was refined with the addition of leaves providing a finer level of annotations but decreasing slightly its complexity, and MF complexity remained stable. PMID:24146805
Bednar, Drew A; Almansoori, Khaled
2015-10-01
Study Design Case report and review of the literature. Objective To present a unique case of L5 radiculopathy caused by a sacral stress fracture without neurologic compression. Methods We present our case and its clinical evolution and review the available literature on similar pathologies. Results Relief of the unusual mechanical loading causing sacral stress fracture led to rapid resolution of radiculopathy. Conclusion L5 radiculopathy can be caused by a sacral stress fracture and can be relieved by simple mechanical treatment of the fracture.
Foreign body in ear, nose and oropharynx: experience from a tertiary hospital.
Tiago, Romualdo Suzano Louzeiro; Salgado, Daniel Cauduro; Corrêa, Juliano Piotto; Pio, Márcio Ricardo Barros; Lambert, Ernani Edney
2006-01-01
The occurrence of foreign bodies in otorhinolaryngology is reason of constant searches for emergency services. To value the incidence of patients with foreign body, to analyze the clinical situation and the treatment in these cases. The prospective study was realized in 81 patients with diagnosis of foreign body of nose, ear or oropharynx in the otorhinolaryngology service of the Hospital do Servidor Público Municipal de São Paulo between april/2003 and march/2005. 57 cases of foreign body of ear, 13 cases of nose and 11 of oropharynx. These patients, 51.85% were men and 48.15% were women. The age average was 23 years old. The average of the evolution time was 18.36 days, being that 38.27% these cases were taken care in less 24 hours of evolution. Inside the total of patients, 83.95% received initial attendance in the otorhinolaryngology clinic, and 16.05% came of another service after some previous removal attempt. The most common symptom of the foreign bodies cases of oropharynx it was odinofagia present in 90.91% of the cases; in the foreign bodies of nose, the unilateral rhinorrhea and cacosmia were present in 46.15 of the cases; in the foreign bodies of ear, 38.60% evolved without symptoms and 28.07 with hipoacusia. The most frequent foreign body of oropharynx it was the fish spine (54.55%); in the nose it was the paper (30.77%); and in the ear it was the cotton (31.58%). The complications resulting of the presence of foreign body or about the manipulation of these had been found in 13 cases (16.05%). Most cases of foreign body conditions, in which a non-specialist professional or a non-professional person previously handles its removal, have a bad evolution with emerging complications. Such outcomes strengthen the fact that an otorhinolaryngologist using the proper equipment must treat patients with foreign body.
Is a larger refuge always better? Dispersal and dose in pesticide resistance evolution.
Takahashi, Daisuke; Yamanaka, Takehiko; Sudo, Masaaki; Andow, David A
2017-06-01
The evolution of resistance against pesticides is an important problem of modern agriculture. The high-dose/refuge strategy, which divides the landscape into treated and nontreated (refuge) patches, has proven effective at delaying resistance evolution. However, theoretical understanding is still incomplete, especially for combinations of limited dispersal and partially recessive resistance. We reformulate a two-patch model based on the Comins model and derive a simple quadratic approximation to analyze the effects of limited dispersal, refuge size, and dominance for high efficacy treatments on the rate of evolution. When a small but substantial number of heterozygotes can survive in the treated patch, a larger refuge always reduces the rate of resistance evolution. However, when dominance is small enough, the evolutionary dynamics in the refuge population, which is indirectly driven by migrants from the treated patch, mainly describes the resistance evolution in the landscape. In this case, for small refuges, increasing the refuge size will increase the rate of resistance evolution. Our analysis distils major driving forces from the model, and can provide a framework for understanding directional selection in source-sink environments. © 2017 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Evolution of Mass Movements near Epicentre of Wenchuan Earthquake, the First Eight Years
Zhang, Shuai; Zhang, Limin; Lacasse, Suzanne; Nadim, Farrokh
2016-01-01
It is increasingly clear that landslides represent a major cause of economic costs and deaths in earthquakes in mountains. In the Wenchuan earthquake case, post-seismic cascading landslides continue to represent a major problem eight years on. Failure to anticipate the impact of cascading landslides could lead to unexpected losses of human lives and properties. Previous studies tended to focus on separate landslide processes, with little attention paid to the quantification of long-term evolution of multiple processes or the evolution of mass movements. The very active mass movements near the epicentre of the Wenchuan earthquake provided us a unique opportunity to understand the complex processes of the evolving cascading landslides after a strong earthquake. This study budgets the mass movements on the hillslopes and in the channels in the first eight years since the Wenchuan earthquake and verify a conservation in mass movements. A system illustrating the evolution and interactions of mass movement after a strong earthquake is proposed. PMID:27824077
On the Solutions of a 2+1-Dimensional Model for Epitaxial Growth with Axial Symmetry
NASA Astrophysics Data System (ADS)
Lu, Xin Yang
2018-04-01
In this paper, we study the evolution equation derived by Xu and Xiang (SIAM J Appl Math 69(5):1393-1414, 2009) to describe heteroepitaxial growth in 2+1 dimensions with elastic forces on vicinal surfaces is in the radial case and uniform mobility. This equation is strongly nonlinear and contains two elliptic integrals and defined via Cauchy principal value. We will first derive a formally equivalent parabolic evolution equation (i.e., full equivalence when sufficient regularity is assumed), and the main aim is to prove existence, uniqueness and regularity of strong solutions. We will extensively use techniques from the theory of evolution equations governed by maximal monotone operators in Banach spaces.
Analyzing complex networks evolution through Information Theory quantifiers
NASA Astrophysics Data System (ADS)
Carpi, Laura C.; Rosso, Osvaldo A.; Saco, Patricia M.; Ravetti, Martín Gómez
2011-01-01
A methodology to analyze dynamical changes in complex networks based on Information Theory quantifiers is proposed. The square root of the Jensen-Shannon divergence, a measure of dissimilarity between two probability distributions, and the MPR Statistical Complexity are used to quantify states in the network evolution process. Three cases are analyzed, the Watts-Strogatz model, a gene network during the progression of Alzheimer's disease and a climate network for the Tropical Pacific region to study the El Niño/Southern Oscillation (ENSO) dynamic. We find that the proposed quantifiers are able not only to capture changes in the dynamics of the processes but also to quantify and compare states in their evolution.
Landform Erosion and Volatile Redistribution on Ganymede and Callisto
NASA Technical Reports Server (NTRS)
Moore, Jeffrey Morgan; Howard, Alan D.; McKinnon, William B.; Schenk, Paul M.; Wood, Stephen E.
2009-01-01
We have been modeling landscape evolution on the Galilean satellites driven by volatile transport. Our work directly addresses some of the most fundamental issues pertinent to deciphering icy Galilean satellite geologic histories by employing techniques currently at the forefront of terrestrial, martian, and icy satellite landscape evolution studies [e.g., 1-6], including modeling of surface and subsurface energy and volatile exchanges, and computer simulation of long-term landform evolution by a variety of processes. A quantitative understanding of the expression and rates of landform erosion, and of volatile redistribution on landforms, is especially essential in interpreting endogenic landforms that have, in many cases, been significantly modified by erosion [e.g., 7-9].
Genetics of climate change adaptation.
Franks, Steven J; Hoffmann, Ary A
2012-01-01
The rapid rate of current global climate change is having strong effects on many species and, at least in some cases, is driving evolution, particularly when changes in conditions alter patterns of selection. Climate change thus provides an opportunity for the study of the genetic basis of adaptation. Such studies include a variety of observational and experimental approaches, such as sampling across clines, artificial evolution experiments, and resurrection studies. These approaches can be combined with a number of techniques in genetics and genomics, including association and mapping analyses, genome scans, and transcription profiling. Recent research has revealed a number of candidate genes potentially involved in climate change adaptation and has also illustrated that genetic regulatory networks and epigenetic effects may be particularly relevant for evolution driven by climate change. Although genetic and genomic data are rapidly accumulating, we still have much to learn about the genetic architecture of climate change adaptation.
Feedback coupling in dynamical systems
NASA Astrophysics Data System (ADS)
Trimper, Steffen; Zabrocki, Knud
2003-05-01
Different evolution models are considered with feedback-couplings. In particular, we study the Lotka-Volterra system under the influence of a cumulative term, the Ginzburg-Landau model with a convolution memory term and chemical rate equations with time delay. The memory leads to a modified dynamical behavior. In case of a positive coupling the generalized Lotka-Volterra system exhibits a maximum gain achieved after a finite time, but the population will die out in the long time limit. In the opposite case, the time evolution is terminated in a crash. Due to the nonlinear feedback coupling the two branches of a bistable model are controlled by the the strength and the sign of the memory. For a negative coupling the system is able to switch over between both branches of the stationary solution. The dynamics of the system is further controlled by the initial condition. The diffusion-limited reaction is likewise studied in case the reacting entities are not available simultaneously. Whereas for an external feedback the dynamics is altered, but the stationary solution remain unchanged, a self-organized internal feedback leads to a time persistent solution.
[Diabetic retinopathy complications--12-year retrospective study].
Ignat, Florica; Davidescu, Livia
2002-01-01
It is analyzed, on a retrospective study on 12 years, the incidence of diabetus melitus cases, hospitalized in the Ophthalmologic Clinic from Craiova with special mention to the frequency of the diabetic retinopathy, of it's complications and in an accordance to other general diseases, especially cardiovascular's, which contributes to the aggravation of the diabetic ocular in juries evolution. The study underlines the high incidence of the new founded cases with diabetus melitus in complicated diabetes retinopathy stage; the high frequency of ocular complications is explained, according to our statistic facts and through an insufficient treatment, sometimes incorrect and many other cases total neglected by the patients.
Integrated Land - Use , Transportation and Environmental Modeling : Validation Case Studies
DOT National Transportation Integrated Search
2010-08-01
For decades the transportation-planning research community has acknowledged the interactions between the evolution of our transportation systems and our land-use, and the need to unify the practices of land-use forecasting and travel-demand modeling ...
Meléndez-Hevia, E; Waddell, T G; Cascante, M
1996-09-01
The evolutionary origin of the Krebs citric acid cycle has been for a long time a model case in the understanding of the origin and evolution of metabolic pathways: How can the emergence of such a complex pathway be explained? A number of speculative studies have been carried out that have reached the conclusion that the Krebs cycle evolved from pathways for amino acid biosynthesis, but many important questions remain open: Why and how did the full pathway emerge from there? Are other alternative routes for the same purpose possible? Are they better or worse? Have they had any opportunity to be developed in cellular metabolism evolution? We have analyzed the Krebs cycle as a problem of chemical design to oxidize acetate yielding reduction equivalents to the respiratory chain to make ATP. Our analysis demonstrates that although there are several different chemical solutions to this problem, the design of this metabolic pathway as it occurs in living cells is the best chemical solution: It has the least possible number of steps and it also has the greatest ATP yielding. Study of the evolutionary possibilities of each one-taking the available material to build new pathways-demonstrates that the emergence of the Krebs cycle has been a typical case of opportunism in molecular evolution. Our analysis proves, therefore, that the role of opportunism in evolution has converted a problem of several possible chemical solutions into a single-solution problem, with the actual Krebs cycle demonstrated to be the best possible chemical design. Our results also allow us to derive the rules under which metabolic pathways emerged during the origin of life.
The immunohistochemistry aspects in two cases of neurofibromatosis-associated abdominal tumors.
Carşote, Mara; Păun, S; Neamţu, M C; Avramescu, Elena Taina; Iosif, Cristina; Terzea, Dana; Constantinoiu, S; Dănciulescu Miulescu, Ruxandra; Neamţu, Oana Maria; Poiană, Cătălina
2012-01-01
Type 1 neurofibromatosis associates various abdominal tumors as gastrointestinal stromal tumors, duodenal or pancreatic carcinoid, and adrenal tumors like pheochromocytoma. We present the immunohistochemistry report in two cases with different profile regarding the evolution. One case is a 7th decade women diagnosed with unilateral pheochromocytoma and GISTs, with a good prognosis after surgery. The other case is a 41-year-old male diagnosed with duodenal metastatic somatostatinoma after an intestinal occlusive syndrome and later the hormonal profile leaded to the diagnosis of pheochromocytoma. The patient had a fulminate evolution within six months from diagnosis.
Chaw, R. Crystal; Collin, Matthew; Wimmer, Marjorie; Helmrick, Kara-Leigh; Hayashi, Cheryl Y.
2017-01-01
Spiders swath their eggs with silk to protect developing embryos and hatchlings. Egg case silks, like other fibrous spider silks, are primarily composed of proteins called spidroins (spidroin = spider-fibroin). Silks, and thus spidroins, are important throughout the lives of spiders, yet the evolution of spidroin genes has been relatively understudied. Spidroin genes are notoriously difficult to sequence because they are typically very long (≥ 10 kb of coding sequence) and highly repetitive. Here, we investigate the evolution of spider silk genes through long-read sequencing of Bacterial Artificial Chromosome (BAC) clones. We demonstrate that the silver garden spider Argiope argentata has multiple egg case spidroin loci with a loss of function at one locus. We also use degenerate PCR primers to search the genomic DNA of congeneric species and find evidence for multiple egg case spidroin loci in other Argiope spiders. Comparative analyses show that these multiple loci are more similar at the nucleotide level within a species than between species. This pattern is consistent with concerted evolution homogenizing gene copies within a genome. More complicated explanations include convergent evolution or recent independent gene duplications within each species. PMID:29127108
Aguirre, Jacobo; Buldú, Javier M; Manrubia, Susanna C
2009-12-01
Networks of selectively neutral genotypes underlie the evolution of populations of replicators in constant environments. Previous theoretical analysis predicted that such populations will evolve toward highly connected regions of the genome space. We first study the evolution of populations of replicators on simple networks and quantify how the transient time to equilibrium depends on the initial distribution of sequences on the neutral network, on the topological properties of the latter, and on the mutation rate. Second, network neutrality is broken through the introduction of an energy for each sequence. This allows to study the competition between two features (neutrality and energetic stability) relevant for survival and subjected to different selective pressures. In cases where the two features are negatively correlated, the population experiences sudden migrations in the genome space for values of the relevant parameters that we calculate. The numerical study of larger networks indicates that the qualitative behavior to be expected in more realistic cases is already seen in representative examples of small networks.
Dynamics of Fermionic Impurity in One Dimension
NASA Astrophysics Data System (ADS)
Guan, Huijie; Andrei, Natan
2014-03-01
We study the dynamics of a fermionic impurity propagating in a one dimensional infinite line. The system is described by the Gaudin-Yang Model and is exactly solvable by the Nested Bethe Ansatz. Starting from a generic initial state, we obtain the time evolution of the wavefunction by the Yudson Approach in which we expand the initial state with the Nested Bethe Ansatz solutions. One situation that we are interested in is where, initially, the impurity is embedded in host fermions with a lattice configuration and one remove the periodic potential at time zero. We calculate the density profile and correlation functions at a later time. Another situation is to shoot an impurity into a cloud of fermions and calculate the probability for it to pass through. While the repulsive case has been studied already[1], we extend it to the attractive case and study the role of bound states in the evolution. We are also interested in boson impurity problem, where not only impurity interacts with host particles, all host particles interact with each other.
NASA Astrophysics Data System (ADS)
Aguirre, Jacobo; Buldú, Javier M.; Manrubia, Susanna C.
2009-12-01
Networks of selectively neutral genotypes underlie the evolution of populations of replicators in constant environments. Previous theoretical analysis predicted that such populations will evolve toward highly connected regions of the genome space. We first study the evolution of populations of replicators on simple networks and quantify how the transient time to equilibrium depends on the initial distribution of sequences on the neutral network, on the topological properties of the latter, and on the mutation rate. Second, network neutrality is broken through the introduction of an energy for each sequence. This allows to study the competition between two features (neutrality and energetic stability) relevant for survival and subjected to different selective pressures. In cases where the two features are negatively correlated, the population experiences sudden migrations in the genome space for values of the relevant parameters that we calculate. The numerical study of larger networks indicates that the qualitative behavior to be expected in more realistic cases is already seen in representative examples of small networks.
García, Miguel A; Costea, Mihai; Kuzmina, Maria; Stefanović, Saša
2014-04-01
The parasitic genus Cuscuta, containing some 200 species circumscribed traditionally in three subgenera, is nearly cosmopolitan, occurring in a wide range of habitats and hosts. Previous molecular studies, on subgenera Grammica and Cuscuta, delimited major clades within these groups. However, the sequences used were unalignable among subgenera, preventing the phylogenetic comparison across the genus. We conducted a broad phylogenetic study using rbcL and nrLSU sequences covering the morphological, physiological, and geographical diversity of Cuscuta. We used parsimony methods to reconstruct ancestral states for taxonomically important characters. Biogeographical inferences were obtained using statistical and Bayesian approaches. Four well-supported major clades are resolved. Two of them correspond to subgenera Monogynella and Grammica. Subgenus Cuscuta is paraphyletic, with section Pachystigma sister to subgenus Grammica. Previously described cases of strongly supported discordance between plastid and nuclear phylogenies, interpreted as reticulation events, are confirmed here and three new cases are detected. Dehiscent fruits and globose stigmas are inferred as ancestral character states, whereas the ancestral style number is ambiguous. Biogeographical reconstructions suggest an Old World origin for the genus and subsequent spread to the Americas as a consequence of one long-distance dispersal. Hybridization may play an important yet underestimated role in the evolution of Cuscuta. Our results disagree with scenarios of evolution (polarity) previously proposed for several taxonomically important morphological characters, and with their usage and significance. While several cases of long-distance dispersal are inferred, vicariance or dispersal to adjacent areas emerges as the dominant biogeographical pattern.
Fossils and living taxa agree on patterns of body mass evolution: a case study with Afrotheria.
Puttick, Mark N; Thomas, Gavin H
2015-12-22
Most of life is extinct, so incorporating some fossil evidence into analyses of macroevolution is typically seen as necessary to understand the diversification of life and patterns of morphological evolution. Here we test the effects of inclusion of fossils in a study of the body size evolution of afrotherian mammals, a clade that includes the elephants, sea cows and elephant shrews. We find that the inclusion of fossil tips has little impact on analyses of body mass evolution; from a small ancestral size (approx. 100 g), there is a shift in rate and an increase in mass leading to the larger-bodied Paenungulata and Tubulidentata, regardless of whether fossils are included or excluded from analyses. For Afrotheria, the inclusion of fossils and morphological character data affect phylogenetic topology, but these differences have little impact upon patterns of body mass evolution and these body mass evolutionary patterns are consistent with the fossil record. The largest differences between our analyses result from the evolutionary model, not the addition of fossils. For some clades, extant-only analyses may be reliable to reconstruct body mass evolution, but the addition of fossils and careful model selection is likely to increase confidence and accuracy of reconstructed macroevolutionary patterns. © 2015 The Authors.
Fossils and living taxa agree on patterns of body mass evolution: a case study with Afrotheria
Puttick, Mark N.; Thomas, Gavin H.
2015-01-01
Most of life is extinct, so incorporating some fossil evidence into analyses of macroevolution is typically seen as necessary to understand the diversification of life and patterns of morphological evolution. Here we test the effects of inclusion of fossils in a study of the body size evolution of afrotherian mammals, a clade that includes the elephants, sea cows and elephant shrews. We find that the inclusion of fossil tips has little impact on analyses of body mass evolution; from a small ancestral size (approx. 100 g), there is a shift in rate and an increase in mass leading to the larger-bodied Paenungulata and Tubulidentata, regardless of whether fossils are included or excluded from analyses. For Afrotheria, the inclusion of fossils and morphological character data affect phylogenetic topology, but these differences have little impact upon patterns of body mass evolution and these body mass evolutionary patterns are consistent with the fossil record. The largest differences between our analyses result from the evolutionary model, not the addition of fossils. For some clades, extant-only analyses may be reliable to reconstruct body mass evolution, but the addition of fossils and careful model selection is likely to increase confidence and accuracy of reconstructed macroevolutionary patterns. PMID:26674947
Molecular mechanisms of dominance evolution in Müllerian mimicry.
Llaurens, V; Joron, M; Billiard, S
2015-12-01
Natural selection acting on dominance between adaptive alleles at polymorphic loci can be sufficiently strong for dominance to evolve. However, the molecular mechanisms underlying such evolution are generally unknown. Here, using Müllerian mimicry as a case-study for adaptive morphological variation, we present a theoretical analysis of the invasion of dominance modifiers altering gene expression through different molecular mechanisms. Toxic species involved in Müllerian mimicry exhibit warning coloration, and converge morphologically with other toxic species of the local community, due to positive frequency-dependent selection acting on these colorations. Polymorphism in warning coloration may be maintained by migration-selection balance with fine scale spatial heterogeneity. We modeled a dominance modifier locus altering the expression of the warning coloration locus, targeting one or several alleles, acting in cis or trans, and either enhancing or repressing expression. We confirmed that dominance could evolve when balanced polymorphism was maintained at the color locus. Dominance evolution could result from modifiers enhancing one allele specifically, irrespective of their linkage with the targeted locus. Nonspecific enhancers could also persist in populations, at frequencies tightly depending on their linkage with the targeted locus. Altogether, our results identify which mechanisms of expression alteration could lead to dominance evolution in polymorphic mimicry. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
A Case Study of the De Novo Evolution of a Complex Odometric Behavior in Digital Organisms
Grabowski, Laura M.; Bryson, David M.; Dyer, Fred C.; Pennock, Robert T.; Ofria, Charles
2013-01-01
Investigating the evolution of animal behavior is difficult. The fossil record leaves few clues that would allow us to recapitulate the path that evolution took to build a complex behavior, and the large population sizes and long time scales required prevent us from re-evolving such behaviors in a laboratory setting. We present results of a study in which digital organisms–self-replicating computer programs that are subject to mutations and selection–evolved in different environments that required information about past experience for fitness-enhancing behavioral decisions. One population evolved a mechanism for step-counting, a surprisingly complex odometric behavior that was only indirectly related to enhancing fitness. We examine in detail the operation of the evolved mechanism and the evolutionary transitions that produced this striking example of a complex behavior. PMID:23577113
Some insights on the dust properties of nearby galaxies, as seen with Herschel
NASA Astrophysics Data System (ADS)
Galliano, Frédéric
2017-12-01
Nearby galaxies are particularly relevant laboratories to study dust evolution due to the diversity of physical conditions they harbor and to the wealth of data at our disposal. In this paper, we review several recent advances in this field, mainly based on Herschel observations. We first discuss the problems linked with our ignorance of grain emissivities, and show that it can be constrained in some cases. New models are starting to incorporate these constraints. We then present methodological issues encountered when fitting spectral energy distributions, leading to biases in derived dust properties, and some attempts to solve them. Subsequently, we review studies scrutinizing dust evolution: (i) from a global point of view, inferring long term cosmic dust evolution; (ii) from a local point of view, looking for indices of dust processing in the ISM.
Quantum versus classical hyperfine-induced dynamics in a quantum dota)
NASA Astrophysics Data System (ADS)
Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.
2007-04-01
In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.
Intelligent Design and educational policy: The case of Kansas
NASA Astrophysics Data System (ADS)
Jones, John Yoshito
Advocates of an alternative explanation of life's origins, Intelligent Design, have lobbied hard since the 1987 Edwards v. Aguillard decision, which banned "creation science" from public schools, to effect educational policy change through local and state-level school boards. This study examines one such lobbying effort, the 2005 attempt to modify the Kansas Curricular Standards for Science so that biological evolution is actively challenged in the classroom, by analyzing the actions and motivations of several members of the Kansas Board of Education as well as non-Board participants through personal interviews and contemporary media reports. Board minutes from 1999 to 2007 and transcripts from the Board's May, 2005, public hearings on evolution are also analyzed. This study asks, "what strategies have creationists developed in the wake of the 1987 Edwards v. Aguillard Supreme Court decision striking down creation science and how have those strategies been employed?" The question's presumption, that Intelligent Design advocates have employed new strategies to advance a creationist agenda, is validated in the study through coding the language used by the interviewees, the Board minutes, and hearings transcripts, as well as a review of contemporary media coverage. Several themes emerged: the belief of participants on each side of the debate that their opponents were attempting to oppress their views, participants on each side claiming to have the best definition of "good science," the emergence of national-level organizations such as the Discovery Institute in coordinating science-related public advocacy at the state level, evolution's importance as a state-level public policy issue, and the importance of keeping the voting public informed of science-related educational policy. This case study should be useful to state and local-level educational policymakers grappling with debates over the place of evolution in public schools.
Evolution in students' understanding of thermal physics with increasing complexity
NASA Astrophysics Data System (ADS)
Langbeheim, Elon; Safran, Samuel A.; Livne, Shelly; Yerushalmi, Edit
2013-12-01
We analyze the development in students’ understanding of fundamental principles in the context of learning a current interdisciplinary research topic—soft matter—that was adapted to the level of high school students. The topic was introduced in a program for interested 11th grade high school students majoring in chemistry and/or physics, in an off-school setting. Soft matter was presented in a gradual increase in the degree of complexity of the phenomena as well as in the level of the quantitative analysis. We describe the evolution in students’ use of fundamental thermodynamics principles to reason about phase separation—a phenomenon that is ubiquitous in soft matter. In particular, we examine the impact of the use of free energy analysis, a common approach in soft matter, on the understanding of the fundamental principles of thermodynamics. The study used diagnostic questions and classroom observations to gauge the student’s learning. In order to gain insight on the aspects that shape the understanding of the basic principles, we focus on the responses and explanations of two case-study students who represent two trends of evolution in conceptual understanding in the group. We analyze changes in the two case studies’ management of conceptual resources used in their analysis of phase separation, and suggest how their prior knowledge and epistemological framing (a combination of their personal tendencies and their prior exposure to different learning styles) affect their conceptual evolution. Finally, we propose strategies to improve the instruction of these concepts.
Kim, Dong Seon; Hahn, Yoonsoo
2012-11-13
Evolution of splice sites is a well-known phenomenon that results in transcript diversity during human evolution. Many novel splice sites are derived from repetitive elements and may not contribute to protein products. Here, we analyzed annotated human protein-coding exons and identified human-specific splice sites that arose after the human-chimpanzee divergence. We analyzed multiple alignments of the annotated human protein-coding exons and their respective orthologous mammalian genome sequences to identify 85 novel splice sites (50 splice acceptors and 35 donors) in the human genome. The novel protein-coding exons, which are expressed either constitutively or alternatively, produce novel protein isoforms by insertion, deletion, or frameshift. We found three cases in which the human-specific isoform conferred novel molecular function in the human cells: the human-specific IMUP protein isoform induces apoptosis of the trophoblast and is implicated in pre-eclampsia; the intronization of a part of SMOX gene exon produces inactive spermine oxidase; the human-specific NUB1 isoform shows reduced interaction with ubiquitin-like proteins, possibly affecting ubiquitin pathways. Although the generation of novel protein isoforms does not equate to adaptive evolution, we propose that these cases are useful candidates for a molecular functional study to identify proteomic changes that might bring about novel phenotypes during human evolution.
NASA Astrophysics Data System (ADS)
Dias Pinto, JoãO. Rafael; Da Rocha, Rosmeri PorfíRio
2011-07-01
In this paper, the Lorenz energy cycle over a limited area was applied for three cyclones with different origins and evolutions, where each of them was formed in an important cyclogenetic region near southeastern South America. The synoptic conditions and energetics were analyzed during each system's life cycle and showed important relationships between their energy cycle and the evolution of their vertical structure. In the case of the weak baroclinic cyclone which formed on Brazil's south-southeastern coast, the analysis showed that it originated through a midlevel cutoff low with contribution from barotropic instability. Its evolution would indicate potential transition to a hybrid system if the convective activity were stronger. The system that occurred in the La Plata River mouth had features of an oceanic bomb-type cyclogenesis and showed an important contribution from the available potential energy generation term through the latent heat release by the convection. Meanwhile, the system of the southern Argentina coast presented a classical baroclinic development of extratropical cyclogenesis in the energy cycle, from the wave amplification up to the final occlusion of the associated frontal system. These analyses revealed that the development of some cyclones that occur in eastern South America can present different mechanisms that are not related to the classical extratropical cyclogenesis.
The Ecology and Evolution of Cancer: The Ultra-Microevolutionary Process.
Wu, Chung-I; Wang, Hurng-Yi; Ling, Shaoping; Lu, Xuemei
2016-11-23
Although tumorigenesis has been accepted as an evolutionary process ( 20 , 102 ), many forces may operate differently in cancers than in organisms, as they evolve at vastly different time scales. Among such forces, natural selection, here defined as differential cellular proliferation among distinct somatic cell genotypes, is particularly interesting because its action might be thwarted in multicellular organisms ( 20 , 29 ). In this review, selection is analyzed in two stages of cancer evolution: Stage I is the evolution between tumors and normal tissues, and Stage II is the evolution within tumors. The Cancer Genome Atlas (TCGA) data show a low degree of convergent evolution in Stage I, where genetic changes are not extensively shared among cases. An equally important, albeit much less highlighted, discovery using TCGA data is that there is almost no net selection in cancer evolution. Both positive and negative selection are evident but they neatly cancel each other out, rendering total selection ineffective in the absence of recombination. The efficacy of selection is even lower in Stage II, where neutral (non-Darwinian) evolution is increasingly supported by high-density sampling studies ( 81 , 123 ). Because natural selection is not a strong deterministic force, cancers usually evolve divergently even in similar tissue environments.
NASA Astrophysics Data System (ADS)
Ren, Yingying; Zhang, Limu; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng
2018-05-01
In this work, we systematically study the surface modifications of femtosecond (fs) laser irradiated Nd:YAG crystal in stationary focusing case (i.e., the beam focused on the target in the steady focusing geometry) or dynamic scanning case (i.e., focused fs-laser beam scanning over the target material). Micro-sized structures (e.g. micro-craters or lines) are experimentally produced in a large scale of parameters in terms of pulse energy as well as (effective) pulse number. Surface ablation of Nd:YAG surface under both processing cases are investigated, involving the morphological evolution, parameter dependence, the ablation threshold fluences and the incubation factors. Meanwhile, under specific irradiation conditions, periodic surface structures with high-spatial-frequency (<λ/2) can be generated. The obtained period is as short as 157 nm in this work. Investigations on the evolution of nanograting formation and fluence dependence of period are performed. The experimental results obtained under different cases and the comparison between them reveal that incubation effect plays an important role not only in the ablation of Nd:YAG surface but also in the processes of nanograting formation.
NASA Astrophysics Data System (ADS)
Deng, Sili; Mueller, Michael E.; Chan, Qing N.; Qamar, Nader H.; Dally, Bassam B.; Alwahabi, Zeyad T.; Nathan, Graham J.
2015-11-01
A turbulent nonpremixed bluff body ethylene/hydrogen (volume ratio 2:1) flame is studied and compared with the ethylene counterpart [Mueller et al., Combust. Flame, 160, 2013]. Similar to the ethylene buff body flame, a low-strain recirculation zone, a high-strain neck region, and a downstream jet-like region are observed. However, the maximum soot volume fraction in the recirculation zone of the hydrogen diluted case is significantly lower than the ethylene case. Large Eddy Simulation is used to further investigate soot evolution in the recirculation zone and to elucidate the role of hydrogen dilution. Since the central jet Reynolds numbers in both cases are the same (approximately 30,900), the jet velocity of the hydrogen diluted case is higher, resulting in a shorter and leaner recirculation zone. In addition, hydrogen dilution chemically suppresses soot formation due to the reduction of C/H ratio. Consequently, the reduction of the soot volume fraction for the hydrogen diluted ethylene flame is attributed to two major effects: hydrodynamic and chemical effects.
Two case studies in river naturalization: planform migration and bank erosion control
NASA Astrophysics Data System (ADS)
Abad, J. D.; Guneralp, I.; Rhoads, B. L.; Garcia, M. H.
2005-05-01
A sound understanding of river planform evolution and bank erosion control, along with integration of expertise from several disciplines is required for the development of predictive models for river naturalization. Over the last few years, several methodologies have been presented for naturalization projects, from purely heuristic to more advanced methods. Since the time and space scales of concern in naturalization vary widely, there is a need for appropriate tools at a variety of time and space scales. This study presents two case studies at different scales. The first case study describes the prediction of river planform evolution for a remeandering project based on a simplified two-dimensional hydrodynamic model. The second case study describes the applicability of a Computational Fluid Dynamics (CFD) model for evaluating the effectiveness of bank-erosion control structures in individual meander bends. Understanding the hydrodynamic influence of control structures on flow through bends allows accurate prediction of depositional and erosional distribution patterns, resulting in better assessment on river planform stability, especially for the case of natural complex systems. The first case study introduces a mathematical model for evolution of meandering rivers that can be used in remeandering projects. In United States in particular, several rivers have been channelized in the past causing environmental and ecological problems. Following Newton's third law, "for every action, there is a reaction", naturalization techniques evolve as natural reactive solutions to channelization. This model (herein referred as RVR Meander) can be used as a stand-alone Windows application or as module in a Geographic Information System. The model was applied to the Poplar Creek re-meanderization project and used to evaluate re-meandering alternatives for an approximately 800-meter long reach of Poplar Creek that was straightened in 1938. The second case study describes a streambank protection project using bendway weirs. In the State of Illinois, bendway weirs constructed of rock have been installed at hundreds of sites, especially on small streams, to control streambank erosion. Bendway weirs are low hard structures installed in the concave bank of a meander bend. Design criteria for these weirs are approximate and have not been rigorously evaluated for overall effectiveness at low-, medium- and high flows. This initial step of the study attempted to describe the hydrodynamics around the weirs and the influence of the hydrodynamic patterns on sediment transport (near-field and far-field). To do that, a state-of-the-art three-dimensional CFD model was used to simulate flow through meander bends where 3D velocity measurements have been obtained to validate model predictions at low stages. Results indicate that the weirs produce highly complex patterns of flow around the weirs, which in some cases may actually increase erosional potential near the outer bank. These two case studies represent components of an emerging initiative to develop predictive tools for naturalization over a range of spatial and temporal scales
Characteristic density contrasts in the evolution of superclusters. The case of A2142 supercluster
NASA Astrophysics Data System (ADS)
Gramann, Mirt; Einasto, Maret; Heinämäki, Pekka; Teerikorpi, Pekka; Saar, Enn; Nurmi, Pasi; Einasto, Jaan
2015-09-01
Context. The formation and evolution of the cosmic web in which galaxy superclusters are the largest relatively isolated objects is governed by a gravitational attraction of dark matter and antigravity of dark energy (cosmological constant). Aims: We study the characteristic density contrasts in the spherical collapse model for several epochs in the supercluster evolution and their dynamical state. Methods: We analysed the density contrasts for the turnaround, future collapse, and zero gravity in different ΛCDM models and applied them to study the dynamical state of the supercluster A2142 with an almost spherical main body, making it a suitable test object to apply a model that assumes sphericity. Results: We present characteristic density contrasts in the spherical collapse model for different cosmological parameters. The analysis of the supercluster A2142 shows that its high-density core has already started to collapse. The zero-gravity line outlines the outer region of the main body of the supercluster. In the course of future evolution, the supercluster may split into several collapsing systems. Conclusions: The various density contrasts presented in our study and applied to the supercluster A2142 offer a promising way to characterise the dynamical state and expected future evolution of galaxy superclusters.
Hopkins, Robin
2013-03-01
A major goal of evolutionary biology is to understand how diverging populations become species. The evolution of reproductive isolation (RI) halts the genomic homogenization caused by gene flow and recombination, and enables differentiation and local adaptations to become fixed between newly forming species. Selection can favor the strengthening of RI through a process termed reinforcement. Reinforcement occurs when selection favors traits that decrease mating between two incipient species in response to costly mating or the production of maladapted hybrids. Although this process has been investigated more frequently in animals, there is also evidence of reinforcement in plants. There are three strategies for the investigation of the process of reinforcement: case studies of species or diverging taxa; experimental evolution studies; and comparative studies. Here, I discuss how all three strategies find evidence consistent with reinforcement occurring in plants. I focus largely on case studies, and use research on Phlox drummondii to illustrate the importance of testing alternative hypotheses. Although the existing evidence suggests that reinforcement can occur, further investigations, particularly using large-scale comparative studies, are needed to determine the importance of reinforcement in plant speciation.
Aukema, Sietse M; Theil, Laura; Rohde, Marius; Bauer, Benedikt; Bradtke, Jutta; Burkhardt, Birgit; Bonn, Bettina R; Claviez, Alexander; Gattenlöhner, Stefan; Makarova, Olga; Nagel, Inga; Oschlies, Ilske; Pott, Christiane; Szczepanowski, Monika; Traulsen, Arne; Kluin, Philip M; Klapper, Wolfram; Siebert, Reiner; Murga Penas, Eva M
2015-09-01
Typical Burkitt lymphoma is characterized by an IG-MYC translocation and overall low genomic complexity. Clinically, Burkitt lymphoma has a favourable prognosis with very few relapses. However, the few patients experiencing disease progression and/or relapse have a dismal outcome. Here we report cytogenetic findings of seven cases of Burkitt lymphoma in which sequential karyotyping was performed at time of diagnosis and/or disease progression/relapse(s). After case selection, karyotype re-review and additional molecular analyses were performed in six paediatric cases, treated in Berlin-Frankfurt-Münster-Non-Hodgkin lymphoma study group trials, and one additional adult patient. Moreover, we analysed 18 cases of Burkitt lymphoma from the Mitelman database in which sequential karyotyping was performed. Our findings show secondary karyotypes to have a significant increase in load of cytogenetic aberrations with a mean number of 2, 5 and 8 aberrations for primary, secondary and third investigations. Importantly, this increase in karyotype complexity seemed to result from recurrent secondary chromosomal changes involving mainly trisomy 21, gains of 1q and 7q, losses of 6q, 11q, 13q, and 17p. In addition, our findings indicate a linear clonal evolution to be the predominant manner of cytogenetic evolution. Our data may provide a biological framework for the dismal outcome of progressive and relapsing Burkitt lymphoma. © 2015 John Wiley & Sons Ltd.
Numerical simulations of loop quantum Bianchi-I spacetimes
NASA Astrophysics Data System (ADS)
Diener, Peter; Joe, Anton; Megevand, Miguel; Singh, Parampreet
2017-05-01
Due to the numerical complexities of studying evolution in an anisotropic quantum spacetime, in comparison to the isotropic models, the physics of loop quantized anisotropic models has remained largely unexplored. In particular, robustness of bounce and the validity of effective dynamics have so far not been established. Our analysis fills these gaps for the case of vacuum Bianchi-I spacetime. To efficiently solve the quantum Hamiltonian constraint we perform an implementation of the Cactus framework which is conventionally used for applications in numerical relativity. Using high performance computing, numerical simulations for a large number of initial states with a wide variety of fluctuations are performed. Big bang singularity is found to be replaced by anisotropic bounces for all the cases. We find that for initial states which are sharply peaked at the late times in the classical regime and bounce at a mean volume much greater than the Planck volume, effective dynamics is an excellent approximation to the underlying quantum dynamics. Departures of the effective dynamics from the quantum evolution appear for the states probing deep Planck volumes. A detailed analysis of the behavior of this departure reveals a non-monotonic and subtle dependence on fluctuations of the initial states. We find that effective dynamics in almost all of the cases underestimates the volume and hence overestimates the curvature at the bounce, a result in synergy with earlier findings in the isotropic case. The expansion and shear scalars are found to be bounded throughout the evolution.
NASA Technical Reports Server (NTRS)
Barnes, Jeffrey M.
2011-01-01
All software systems of significant size and longevity eventually undergo changes to their basic architectural structure. Such changes may be prompted by evolving requirements, changing technology, or other reasons. Whatever the cause, software architecture evolution is commonplace in real world software projects. Recently, software architecture researchers have begun to study this phenomenon in depth. However, this work has suffered from problems of validation; research in this area has tended to make heavy use of toy examples and hypothetical scenarios and has not been well supported by real world examples. To help address this problem, I describe an ongoing effort at the Jet Propulsion Laboratory to re-architect the Advanced Multimission Operations System (AMMOS), which is used to operate NASA's deep-space and astrophysics missions. Based on examination of project documents and interviews with project personnel, I describe the goals and approach of this evolution effort and then present models that capture some of the key architectural changes. Finally, I demonstrate how approaches and formal methods from my previous research in architecture evolution may be applied to this evolution, while using languages and tools already in place at the Jet Propulsion Laboratory.
Dornburg, Alex; Sidlauskas, Brian; Santini, Francesco; Sorenson, Laurie; Near, Thomas J; Alfaro, Michael E
2011-07-01
Innovations in locomotor morphology have been invoked as important drivers of vertebrate diversification, although the influence of novel locomotion strategies on marine fish diversification remains largely unexplored. Using triggerfish as a case study, we determine whether the evolution of the distinctive synchronization of enlarged dorsal and anal fins that triggerfish use to swim may have catalyzed the ecological diversification of the group. By adopting a comparative phylogenetic approach to quantify median fin and body shape integration and to assess the tempo of functional and morphological evolution in locomotor traits, we find that: (1) functional and morphological components of the locomotive system exhibit a strong signal of correlated evolution; (2) triggerfish partitioned locomotor morphological and functional spaces early in their history; and (3) there is no strong evidence that a pulse of lineage diversification accompanied the major episode of phenotypic diversification. Together these findings suggest that the acquisition of a distinctive mode of locomotion drove an early radiation of shape and function in triggerfish, but not an early radiation of species. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Nonlinear evolution of magnetic flux ropes. 2: Finite beta plasma
NASA Technical Reports Server (NTRS)
Osherovich, V. A.; Farrugia, C. J.; Burlaga, L. F.
1995-01-01
In this second paper on the evolution of magnetic flux ropes we study the effects of gas pressure. We assume that the energy transport is described by a polytropic relationship and reduce the set of ideal MHD equations to a single, second-order, nonlinear, ordinary differential equation for the evolution function. For this conservative system we obtain a first integral of motion. To analyze the possible motions, we use a mechanical analogue -- a one-dimensional, nonlinear oscillator. We find that the effective potential for such an oscillator depends on two parameters: the polytropic index gamma and a dimensionless quantity kappa the latter being a function of the plasma beta, the strength of the azimuthal magnetic field relative to the axial field of the flux rope, and gamma. Through a study of this effective potential we classify all possible modes of evolution of the system. In the main body of the paper, we focus on magnetic flux ropes whose field and gas pressure increase steadily towards the symmetry axis. In this case, for gamma greater than 1 and all values of kappa, only oscillations are possible. For gamma less than 1, however, both oscillations and expansion are allowed. For gamma less than 1 and kappa below a critical value, the energy of the nonlinear oscillator determines whether the flux rope will oscillate or expand to infinity. For gamma less than 1 and kappa above critical, however, only expansion occurs. Thus by increasing kappa while keeping gamma fixed (less than 1), a phase transition occurs at kappa = kappa(sub critical) and the oscillatory mode disappears. We illustrate the above theoretical considerations by the example of a flux rope of constant field line twist evolving self-similarly. For this example, we present the full numerical MHD solution. In an appendix to the paper we catalogue all possible evolutions when (1) either the magnetic field or (2) the gas pressure decreases monotonically toward the axis. We find that in these cases critical conditions can occur for gamma greater than 1. While in most cases the flux rope collapses, there are notable exceptions when, for certain ranges of kappa and gamma, collapse may be averted.
Boussen, H.; Hamba, S. Bach; Benna, F.; Labidi, S.; Afrit, M.; Haddaoui, A.; Jemel, H.; Kchir, N.
2014-01-01
OBJECTIVE: To report the epidemiological and clinical characteristics of a TN serie of GBM treated recently by CC RT-CT then adjuvant with TMZ, according to Stupp protocol(NEJM 2005;352:987-996). PATIENTS AND METHODS: Our retrospective bicentric study included 37 cases of histologically confirmed GBM treated between 2006 and 2012 in Abderrahmen Mami hospital (medical oncology ward) and Taoufik Clinic of Tunis. We collected the following data: age, sex, symptoms, histology, investigations, treatment and evolution. RESULTS: We treated 25 males and 12 females (sex-ratio = 2.08) with a median age of 54 years (13-72). GBM was revealed mainly by deficit symptoms (41%). Surgery consisted in a wide resection in 89% of cases, reported as macroscopically complete in 78% of cases. All our patients received a CC CT-RT and 51% Adj TMZ, 22% receiving the 6 planned cycles. With a median follow-up of 12 months, medican survival was 12 months, 4 remained alive with evolutive disease. 1 and 2 year-actuarial survival were respectively of 77.6% and 38.4%. CONCLUSION: GBM patients in Tunisia have lioblastoma is a rare neoplasm with poor prognosis. Their lower median and overall survivals could be explained by the predominance of high risk cases according to neurofunctional VI-VI RPA classification.
Demographics and Case Studies of Galactic Outflows in the Local Universe
NASA Astrophysics Data System (ADS)
Rupke, David
2017-07-01
Galactic outflows driven by both star formation and active black holes are an important driver of galaxy evolution. The local universe is a sensitive laboratory for understanding the scaling relations that characterize these winds and the physics that govern them. I will review what we know from statistical studies about the prevalance and properties of nearby galactic winds and how these properties depend on those of the host galaxy or power source. I will also highlight detailed case studies of key objects that illustrate the multiphase structure of these winds.
Texture evolution and mechanical behaviour of irradiated face-centred cubic metals
NASA Astrophysics Data System (ADS)
Chen, L. R.; Xiao, X. Z.; Yu, L.; Chu, H. J.; Duan, H. L.
2018-02-01
A physically based theoretical model is proposed to investigate the mechanical behaviour and crystallographic texture evolution of irradiated face-centred cubic metals. This model is capable of capturing the main features of irradiated polycrystalline materials including irradiation hardening, post-yield softening and plasticity localization. Numerical results show a good agreement with experimental data for both unirradiated and irradiated stress-strain relationships. The study of crystallographic texture reveals that the initial randomly distributed texture of unirradiated metals under tensile loading can evolve into a mixture of [111] and [100] textures. Regarding the irradiated case, crystallographic texture develops in a different way, and an extra part of [110] texture evolves into [100] and [111] textures. Thus, [100] and [111] textures become dominant more quickly compared with those of the unirradiated case for the reason that [100] and [111]-oriented crystals have higher strength, and their plastic deformation behaviours are more active than other oriented crystals. It can be concluded that irradiation-induced defects can affect both the mechanical behaviour and texture evolution of metals, both of which are closely related to irradiation hardening.
Dias, Ivan A; Willemart, Rodrigo H; Marques, Antonio C
2012-06-01
Although the theory of evolution is more than 150 years old, a substantial proportion of the world population does not mention it when explaining the origin of human beings. The usual alternative conception is offered by creationism, one of the main obstacles to full acceptance of evolution in many countries. National polls have demonstrated that schooling and religiosity are negatively correlated, with scientists being one of the least religious professionals. Herein we analyzed both (1) the profile of 1st semester undergraduate students and (2), thesis and dissertations, concerning religious and evolutionary thoughts from Biology and Veterinary Schools at the largest university of South America. We have shown that students of Biology are biased towards evolution before they enter university and also that the presence of an evolutionary-thinking academic atmosphere influences the deism/religiosity beliefs of postgraduate students.
What we learn from eclipsing binaries in the ultraviolet
NASA Technical Reports Server (NTRS)
Guinan, Edward F.
1990-01-01
Recent results on stars and stellar physics from IUE (International Ultraviolet Explorer) observations of eclipsing binaries are discussed. Several case studies are presented, including V 444 Cyg, Aur stars, V 471 Tau and AR Lac. Topics include stellar winds and mass loss, stellar atmospheres, stellar dynamos, and surface activity. Studies of binary star dynamics and evolution are discussed. The progress made with IUE in understanding the complex dynamical and evolutionary processes taking place in W UMa-type binaries and Algol systems is highlighted. The initial results of intensive studies of the W UMa star VW Cep and three representative Algol-type binaries (in different stages of evolution) focused on gas flows and accretion, are included. The future prospects of eclipsing binary research are explored. Remaining problems are surveyed and the next challenges are presented. The roles that eclipsing binaries could play in studies of stellar evolution, cluster dynamics, galactic structure, mass luminosity relations for extra galactic systems, cosmology, and even possible detection of extra solar system planets using eclipsing binaries are discussed.
Nonlinear evolution of magnetic flux ropes. I - Low-beta limit
NASA Technical Reports Server (NTRS)
Osherovich, V. A.; Farrugia, C. J.; Burlaga, L. F.
1993-01-01
We study the nonlinear self-similar evolution of a cylindrical magnetic flux tube with two components of the magnetic field, axial and azimuthal. We restrict ourselves to the case of a plasma of low beta. Introducing a special class of configurations we call 'separable fields', we reduce the problem to an ordinary differential equation. Two cases are to be distinguished: (1) when the total field minimizes on the symmetry axis, the magnetic configuration inexorably collapses, and (2) when, on the other hand, the total field maximizes on the symmetry axis, the magnetic configuration behaves analogously to a nonlinear oscillator. Here we focus on the latter case. The effective potential of the motion contains two terms: a strong repulsive term and a weak restoring term associated with the pinch. We solve the nonlinear differential equation of motion numerically and find that the period of oscillations grows exponentially with the energy of the oscillator. Our treatment emphasizes the role of the force-free configuration as the lowest potential energy state about which the system oscillates.
Ghost Dark Energy with Non-Linear Interaction Term
NASA Astrophysics Data System (ADS)
Ebrahimi, E.
2016-06-01
Here we investigate ghost dark energy (GDE) in the presence of a non-linear interaction term between dark matter and dark energy. To this end we take into account a general form for the interaction term. Then we discuss about different features of three choices of the non-linear interacting GDE. In all cases we obtain equation of state parameter, w D = p/ ρ, the deceleration parameter and evolution equation of the dark energy density parameter (Ω D ). We find that in one case, w D cross the phantom line ( w D < -1). However in two other classes w D can not cross the phantom divide. The coincidence problem can be solved in these models completely and there exist good agreement between the models and observational values of w D , q. We study squared sound speed {vs2}, and find that for one case of non-linear interaction term {vs2} can achieves positive values at late time of evolution.
Ullrich, Helen E
2011-01-01
Cultural factors have a significant impact on the manifestation of psychiatric illness and the development of the ego ideal. The evolution of the widow's cultural role in a South India village provides insight on the ego ideal through several generations. As treatment of widows changed so that their appearance became indistinguishable from other women, they no longer became objects of revulsion. A case study approach documents the interrelationship of changes in the cultural ego ideal on psychiatric illness among widows in a South India village over a period of more than four decades.
The Office of Diversity and Inclusion at a Large Texas University: A Cultural Evolution
ERIC Educational Resources Information Center
Curette, Alvin R.
2016-01-01
This single, holistic, instrumental case study investigated the organizational history of the Office of Diversity and Inclusion (ODI) at Lone Star University. The study included an examination of changes to ODI's cultural identity. This study was guided by two principal research questions: a) Why was the office created and how has its cultural…
Landform Evolution Modeling of Specific Fluvially Eroded Physiographic Units on Titan
NASA Technical Reports Server (NTRS)
Moore, J. M.; Howard, A. D.; Schenk, P. M.
2015-01-01
Several recent studies have proposed certain terrain types (i.e., physiographic units) on Titan thought to be formed by fluvial processes acting on local uplands of bedrock or in some cases sediment. We have earlier used our landform evolution models to make general comparisons between Titan and other ice world landscapes (principally those of the Galilean satellites) that we have modeled the action of fluvial processes. Here we give examples of specific landscapes that, subsequent to modeled fluvial work acting on the surfaces, produce landscapes which resemble mapped terrain types on Titan.
NASA Astrophysics Data System (ADS)
Annenkov, Sergei; Shrira, Victor
2016-04-01
We study numerically the long-term evolution of water wave spectra without wind forcing, using three different models, aiming at understanding the role of different sets of assumptions. The first model is the classical Hasselmann kinetic equation (KE). We employ the WRT code kindly provided by G. van Vledder. Two other models are new. As the second model, we use the generalised kinetic equation (gKE), derived without the assumption of quasi-stationarity. Thus, unlike the KE, the gKE is valid in the cases when a wave spectrum is changing rapidly (e.g. at the initial stage of evolution of a narrow spectrum). However, the gKE employs the same statistical closure as the KE. The third model is based on the Zakharov integrodifferential equation for water waves and does not depend on any statistical assumptions. Since the Zakharov equation plays the role of the primitive equation of the theory of wave turbulence, we refer to this model as direct numerical simulation of spectral evolution (DNS-ZE). For initial conditions, we choose two narrow-banded spectra with the same frequency distribution (a JONSWAP spectrum with high peakedness γ = 6) and different degrees of directionality. These spectra are from the set of observations collected in a directional wave tank by Onorato et al (2009). Spectrum A is very narrow in angle (corresponding to N = 840 in the cosN directional model). Spectrum B is initially wider in angle (corresponds to N = 24). Short-term evolution of both spectra (O(102) wave periods) has been studied numerically by Xiao et al (2013) using two other approaches (broad-band modified nonlinear Schrödinger equation and direct numerical simulation based on the high-order spectral method). We use these results to verify the initial stage of our DNS-ZE simulations. However, the advantage of the DNS-ZE method is that it allows to study long-term spectral evolution (up to O(104) periods), which was previously possible only with the KE. In the short-term evolution, we find a good agreement between our DNS-ZE results and simulations by Xiao et al (2013), both for the evolution of frequency spectra and for the directional spreading. In the long term, all three approaches demonstrate very close evolution of integral characteristics of spectra, approaching for large time the theoretical asymptotes of the self-similar stage of evolution. However, the detailed comparison of the spectral evolution shows certain notable differences. Both kinetic equations give virtually identical evolution of spectrum B, but in the case of initially nearly one-dimensional spectrum A the KE overestimates the amplitude of the spectral peak. Meanwhile, the DNS-ZE results show considerably wider spectra with less pronounced peak. There is a striking difference for the rate of spectral broadening, which is much larger for the gKE and especially for the KE, than for the DNS-ZE. We show that the rates of change of the spectra obtained with the DNS-ZE are proportional to the fourth power of nonlinearity, corresponding to the dynamical timescale of evolution, rather than the statistical timescale of both kinetic equations.
The Life Cycle of Academic Management Fads. ASHE Annual Meeting Paper.
ERIC Educational Resources Information Center
Birnbaum, Robert
This study reviewed the literature to trace the evolution and life cycles of seven management techniques related to higher education. The seven case studies involved analysis of a selected sample of periodical, monograph, and technical literature from 1960 to the present. The literature base on each management technique was reviewed in reference…
ERIC Educational Resources Information Center
McKinney, Lyle; Morris, Phillip A.
2010-01-01
This study examined the nature and degree of organizational change that occurs when community colleges offer their own baccalaureate degree programs. Utilizing qualitative research methodology, we investigated how executive administrators at two Florida colleges managed this momentous change process and how this transformation has affected their…
Scientific Creationism: A Case Study.
ERIC Educational Resources Information Center
Pipho, Chris
1981-01-01
Describes the current movement to elevate biblical creationism to a scientific theory to be taught alongside evolution in the public schools. Focuses on the strategies and influence of pro "scientific creationism" groups and reviews pending legislation that would mandate equal teaching time for creationism. (GC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhiming, E-mail: 465609785@qq.com; Situ, Haozhen, E-mail: situhaozhen@gmail.com
In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangledmore » initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.« less
Influence of the turbulent motion on the chiral magnetic effect in the early universe
NASA Astrophysics Data System (ADS)
Dvornikov, Maxim; Semikoz, Victor B.
2017-02-01
We study the magnetohydrodynamics of relativistic plasmas accounting for the chiral magnetic effect (CME). To take into account the evolution of the plasma velocity, obeying the Navier-Stokes equation, we approximate it by the Lorentz force accompanied by the phenomenological drag time parameter. On the basis of this ansatz, we obtain the contributions of both the turbulence effects, resulting from the dynamo term, and the magnetic field instability, caused by the CME, to the evolution of the magnetic field governed by the modified Faraday equation. In this way, we explore the evolution of the magnetic field energy and the magnetic helicity density spectra in the early Universe plasma. We find that the right-left electron asymmetry is enhanced by the turbulent plasma motion in a strong seed magnetic field compared to the pure CME case studied earlier for the hot Universe plasma in the same broken phase.
Lloyd, Graeme T; Wang, Steve C; Brusatte, Stephen L
2012-02-01
Quantifying rates of morphological evolution is important in many macroevolutionary studies, and critical when assessing possible adaptive radiations and episodes of punctuated equilibrium in the fossil record. However, studies of morphological rates of change have lagged behind those on taxonomic diversification, and most authors have focused on continuous characters and quantifying patterns of morphological rates over time. Here, we provide a phylogenetic approach, using discrete characters and three statistical tests to determine points on a cladogram (branches or entire clades) that are characterized by significantly high or low rates of change. These methods include a randomization approach that identifies branches with significantly high rates and likelihood ratio tests that pinpoint either branches or clades that have significantly higher or lower rates than the pooled rate of the remainder of the tree. As a test case for these methods, we analyze a discrete character dataset of lungfish, which have long been regarded as "living fossils" due to an apparent slowdown in rates since the Devonian. We find that morphological rates are highly heterogeneous across the phylogeny and recover a general pattern of decreasing rates along the phylogenetic backbone toward living taxa, from the Devonian until the present. Compared with previous work, we are able to report a more nuanced picture of lungfish evolution using these new methods. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
[Bickerstaff brain encephalitis: case report and literature review].
Guerra, Carolina; Uribe, Carlos Santiago; Guerra, Alejandro; Hernández, Olga H
2013-01-01
We describe the case of a 34-year-old male patient, who was referred to the Instituto Neurológico de Colombia with probable Guillain-Barré syndrome, requiring intensive care management. The presence of cognitive alterations during his evolution, lead the team to reconsider the initial diagnosis for the Bickerstaff's brainstem encephalitis diagnosis. We aim to describe the patient's treatment and evolution, as well as a brief review and discussion.
Epidemiology and evolution of the diagnostic classification of factitious disorders in DSM-5
Caselli, Ivano; Poloni, Nicola; Ielmini, Marta; Diurni, Marcello; Callegari, Camilla
2017-01-01
A systematic search for all case reports and case series of adult patients with factitious disorders (FD) in the databases MEDLINE, Scopus, and PsycINFO was conducted. FD is a psychiatric disorder in which sufferers intentionally fabricate physical or psychological symptoms in order to assume the role of a patient, without any obvious gain. The clinical and demographic profile of patients with FD has not been sufficiently clear. Thus, the aims of this study were to outline a demographic and clinical profile of a large sample of patients with FD and to study the evolution of the position of FD in the Diagnostic and Statistical Manual of Mental Disorders. One thousand six hundred thirty-six records were obtained based on key search terms, after exclusion of duplicate records. Five hundred seventy-seven articles were identified as potentially eligible for the study, of which 314 studies were retrieved for full-text review. These studies included 514 cases. Variables extracted included age, gender, reported occupation, comorbid psychopathology, clinical presentation, and factors leading to the diagnosis of FD. In the sample, 65.4% of patients were females. Mean age at presentation was 33.5 years. A health care profession was reported most frequently (n=113). Patients were most likely to present in psychiatry, neurology, emergency, and internal medicine departments. The broad survey of sociodemographic profile of the sample has highlighted some important points for early diagnosis and early psychiatric treatment. The study showed that the patients did not meet Diagnostic and Statistical Manual of Mental Disorders-5 diagnostic criteria in 11.3% of cases. PMID:29270035
Secular resonances with Ceres and Vesta
NASA Astrophysics Data System (ADS)
Tsirvoulis, Georgios; Novaković, Bojan
2016-12-01
In this work we explore dynamical perturbations induced by the massive asteroids Ceres and Vesta on main-belt asteroids through secular resonances. First we determine the location of the linear secular resonances with Ceres and Vesta in the main belt, using a purely numerical technique. Then we use a set of numerical simulations of fictitious asteroids to investigate the importance of these secular resonances in the orbital evolution of main-belt asteroids. We found, evaluating the magnitude of the perturbations in the proper elements of the test particles, that in some cases the strength of these secular resonances is comparable to that of known non-linear secular resonances with the giant planets. Finally we explore the asteroid families that are crossed by the secular resonances we studied, and identified several cases where the latter seem to play an important role in their post-impact evolution.
The Scopes trial and creation thought since 1925
NASA Astrophysics Data System (ADS)
Spaid, Mark Richard
The purpose of this study was to examine the role of the Scopes Trial of 1925 as the beginning of the battle between Creation Thought and Evolutionary Science in the public school classrooms. Historical analysis of events, legislation and a legal case study was used to synthesize the ideas and philosophies that guided events this century leading up the trial in Dayton, Tennessee during July of 1925. The study examined the development of the concept of a wall of separation between Church and State that began with Thomas Jefferson and James Madison and developed into the key component of the First Amendment to the U. S. Constitution. This concept was applied to the case analysis, legislation and school district policies regarding Creation and Evolution. The concepts of Creation and Evolution were examined and compared as a basis for understanding the conflict that exists between the Religious Right and the scientific community. The main personalities and their motives on both sides were highlighted because of the fact that the conflict still continues. The study sought solutions for practicing administrators who are faced with the controversy of Creation and Evolution in their schools. The question that guided the study was, "Is Accommodation possible or is Separation necessary?" The study examined legislation and court cases seeking the right answer for schools in their constant struggle with the two diametrically opposed philosophies. Analysis of the historical evidence and the events surrounding the issue since the inception of the United States concluded that there is no room for Accommodation with the First Amendment. Separation has been and should continue to be the guiding principle whenever the line between Church and State begins to blur. The collaboration between Church and State can prove harmful for both and the best way to insure their survival and proliferation is to keep them separate.
Evolution method and ``differential hierarchy'' of colored knot polynomials
NASA Astrophysics Data System (ADS)
Mironov, A.; Morozov, A.; Morozov, And.
2013-10-01
We consider braids with repeating patterns inside arbitrary knots which provides a multi-parametric family of knots, depending on the "evolution" parameter, which controls the number of repetitions. The dependence of knot (super)polynomials on such evolution parameters is very easy to find. We apply this evolution method to study of the families of knots and links which include the cases with just two parallel and anti-parallel strands in the braid, like the ordinary twist and 2-strand torus knots/links and counter-oriented 2-strand links. When the answers were available before, they are immediately reproduced, and an essentially new example is added of the "double braid", which is a combination of parallel and anti-parallel 2-strand braids. This study helps us to reveal with the full clarity and partly investigate a mysterious hierarchical structure of the colored HOMFLY polynomials, at least, in (anti)symmetric representations, which extends the original observation for the figure-eight knot to many (presumably all) knots. We demonstrate that this structure is typically respected by the t-deformation to the superpolynomials.
Self-determined mechanisms in complex networks
NASA Astrophysics Data System (ADS)
Liu, Yang; Yuan, Jian; Shan, Xiuming; Ren, Yong; Ma, Zhengxin
2008-03-01
Self-organized networks are pervasive in communication systems such as the Internet, overlay networks, peer-to-peer networks, and cluster-based services. These networks evolve into complex topologies, under specific driving forces, i.e. user demands, technological innovations, design objectives and so on. Our study focuses on the driving forces behind individual evolutions of network components, and their stimulation and domination to the self-organized networks which are defined as self-determined mechanisms in this paper. Understanding forces underlying the evolution of networks should enable informed design decisions and help to avoid unwanted surprises, such as congestion collapse. A case study on the macroscopic evolution of the Internet topology of autonomous systems under a specific driving force is then presented. Using computer simulations, it is found that the power-law degree distribution can originate from a connection preference to larger numbers of users, and that the small-world property can be caused by rapid growth in the number of users. Our results provide a new feasible perspective to understand intrinsic fundamentals in the topological evolution of complex networks.
A comparative study of scramjet injection strategies for high Mach numbers flows
NASA Technical Reports Server (NTRS)
Riggins, D. W.; Mcclinton, C. R.; Rogers, R. C.; Bittner, R. D.
1992-01-01
A simple method for predicting the axial distribution of supersonic combustor thrust potential is described. A complementary technique for illustrating the spatial evolution and distribution of thrust potential and loss mechanisms in reacting flows is developed. Wall jet cases and swept ramp injector cases for Mach 17 and Mach 13.5 flight enthalpy inflow conditions are numerically modeled and analyzed using these techniques. The visualization of thrust potential in the combustor for the various cases examined provides a unique tool for increasing understanding of supersonic combustor performance potential.
Evolution caused by extreme events.
Grant, Peter R; Grant, B Rosemary; Huey, Raymond B; Johnson, Marc T J; Knoll, Andrew H; Schmitt, Johanna
2017-06-19
Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).
Coupling SPH and thermochemical models of planets: Methodology and example of a Mars-sized body
NASA Astrophysics Data System (ADS)
Golabek, G. J.; Emsenhuber, A.; Jutzi, M.; Asphaug, E. I.; Gerya, T. V.
2018-02-01
Giant impacts have been suggested to explain various characteristics of terrestrial planets and their moons. However, so far in most models only the immediate effects of the collisions have been considered, while the long-term interior evolution of the impacted planets was not studied. Here we present a new approach, combining 3-D shock physics collision calculations with 3-D thermochemical interior evolution models. We apply the combined methods to a demonstration example of a giant impact on a Mars-sized body, using typical collisional parameters from previous studies. While the material parameters (equation of state, rheology model) used in the impact simulations can have some effect on the long-term evolution, we find that the impact angle is the most crucial parameter for the resulting spatial distribution of the newly formed crust. The results indicate that a dichotomous crustal pattern can form after a head-on collision, while this is not the case when considering a more likely grazing collision. Our results underline that end-to-end 3-D calculations of the entire process are required to study in the future the effects of large-scale impacts on the evolution of planetary interiors.
A cytogenetic view of sex chromosome evolution in plants.
Armstrong, S J; Filatov, D A
2008-01-01
The recent origin of sex chromosomes in plant species provides an opportunity to study the early stages of sex chromosome evolution. This review focuses on the cytogenetic aspects of the analysis of sex chromosome evolution in plants and in particular, on the best-studied case, the sex chromosomes in Silene latifolia. We discuss the emerging picture of sex chromosome evolution in plants and the further work that is required to gain better understanding of the similarities and differences between the trends in animal and plant sex chromosome evolution. Similar to mammals, suppression of recombination between the X and Y in S. latifolia species has occurred in several steps, however there is little evidence that inversions on the S. latifolia Y chromosome have played a role in cessation of X/Y recombination. Secondly, in S. latifolia there is a lack of evidence for genetic degeneration of the Y chromosome, unlike the events documented in mammalian sex chromosomes. The insufficient number of genes isolated from this and other plant sex chromosomes does not allow us to generalize whether the trends revealed on S. latifolia Y chromosome are general for other dioecious plants. Isolation of more plant sex-linked genes and their cytogenetic mapping with fluorescent in situ hybridisation (FISH) will ultimately lead to a much better understanding of the processes driving sex chromosome evolution in plants. 2008 S. Karger AG, Basel
Incidence and evolution of subretinal precipitates in optic disc pit maculopathy.
Chatziralli, Irini; Theodossiadis, George; Brouzas, Dimitrios; Theodossiadis, Panagiotis
2017-06-26
To study the evolution of subretinal precipitates coexistent with optic disc pit (ODP) maculopathy from their appearance at baseline examination until their absorption after successful treatment. Participants in this retrospective, multicenter study were 42 patients with ODP maculopathy, in whom complete ocular examination was performed, including visual acuity (VA) measurement, slit-lamp examination, color or red-free fundus photography, and optical coherence tomography at baseline after surgical treatment. Out of 42 cases, 17 (40.5%) cases of ODP maculopathy, which were examined between 2002 and 2015, were found to have subretinal precipitates associated with multilayer fluid accumulation at baseline. Precipitates were located at the outer part of the photoreceptor layer and remained for 3-6 months after successful treatment and absorption of subretinal fluid. The mean VA was 0.99 ± 0.21 logMAR at baseline and improved to 0.54 ± 0.25 logMAR at the final examination. Macular precipitates in association with signs of disease chronicity, such as multilayer fluid accumulation, became evident at baseline examination. Precipitates' disappearance in 15 out of 17 cases coincided with the absorption of subretinal fluid. The relative low VA at baseline probably could be attributed to the chronicity of the disease.
NASA Astrophysics Data System (ADS)
McCarville, Douglas A.
2009-12-01
As the commercial aircraft industry attempts to improve airplane fuel efficiency by shifting from aluminum to composites (reinforced plastics), there is a concern that composite processing equipment is not mature enough to meet increasing demand and that delivery delays and loss of high tech jobs could result. The research questions focused on the evolution of composite placement machines, improvement of machine functionality by equipment vendors, and the probability of new inventions helping to avoid production shortfalls. An extensive review of the literature found no studies that addressed these issues. Since the early twentieth century, exploratory case study of pivotal technological advances has been an accepted means of performing historic analysis and furthering understanding of rapidly changing marketplaces and industries. This qualitative case study investigated evolution of automated placement equipment by (a) codifying and mapping patent data (e.g., claims and functionality descriptions), (b) triangulating archival data (i.e., trade literature, vender Web sites, and scholarly texts), and (c) interviewing expert witnesses. An industry-level sensitivity model developed by the author showed that expanding the vendor base and increasing the number of performance enhancing inventions will most likely allow the industry to make the transition from aluminum to composites without schedule delays. This study will promote social change by (a) advancing individual and community knowledge (e.g., teaching modules for students, practitioners, and professional society members) and (b) providing an empirical model that will help in the understanding and projection of next generation composite processing equipment demand and productivity output.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, J.M. Hoff da; Pereira, S.H., E-mail: hoff@feg.unesp.br, E-mail: shpereira@gmail.com
In this paper we present exact solutions to the so-called Elko spinors for three models of expanding universe, namely the de Sitter, linear and the radiation type evolution. The study was restricted to flat, homogeneous and isotropic Friedmann-Robertson-Walker backgrounds. Starting with an Elko spinor we present the solutions for these cases and compare to the case of Dirac spinors. Besides, an attempt to use Elko spinors as a dark energy candidate in the cosmological context is investigated.
Little Mito: The Story of the Origins of a Cell.
ERIC Educational Resources Information Center
Vail, Stephanie; Herreid, Clyde Freeman
2002-01-01
Uses the case study method approach to teach about cell structure, organelle functions, the origin of eukaryotic cells, and evolution. Presents a story in which each structure of the cell is characterized with a personality. Includes teaching notes and classroom management strategies. (YDS)
Access to Corporate Information Systems: Datafiles, Classified Documents, and Information Resources.
ERIC Educational Resources Information Center
Baumgartner, Kurt O.; And Others
1988-01-01
Three articles discuss aspects of corporate information systems: (1) "Packet Switching Networks: Worldwide Access to Corporate Datafiles" (Kurt O. Baumgartner); "Classified Documents in the Corporate Library" (Patricia M. Shores); and "From Library to Information Center: Case Studies in the Evolution of Corporate…
Solitons riding on solitons and the quantum Newton's cradle.
Ma, Manjun; Navarro, R; Carretero-González, R
2016-02-01
The reduced dynamics for dark and bright soliton chains in the one-dimensional nonlinear Schrödinger equation is used to study the behavior of collective compression waves corresponding to Toda lattice solitons. We coin the term hypersoliton to describe such solitary waves riding on a chain of solitons. It is observed that in the case of dark soliton chains, the formulated reduction dynamics provides an accurate an robust evolution of traveling hypersolitons. As an application to Bose-Einstein condensates trapped in a standard harmonic potential, we study the case of a finite dark soliton chain confined at the center of the trap. When the central chain is hit by a dark soliton, the energy is transferred through the chain as a hypersoliton that, in turn, ejects a dark soliton on the other end of the chain that, as it returns from its excursion up the trap, hits the central chain repeating the process. This periodic evolution is an analog of the classical Newton's cradle.
Xia, Cheng-Yi; Meng, Xiao-Kun; Wang, Zhen
2015-01-01
In the research realm of game theory, interdependent networks have extended the content of spatial reciprocity, which needs the suitable coupling between networks. However, thus far, the vast majority of existing works just assume that the coupling strength between networks is symmetric. This hypothesis, to some extent, seems inconsistent with the ubiquitous observation of heterogeneity. Here, we study how the heterogeneous coupling strength, which characterizes the interdependency of utility between corresponding players of both networks, affects the evolution of cooperation in the prisoner’s dilemma game with two types of coupling schemes (symmetric and asymmetric ones). Compared with the traditional case, we show that heterogeneous coupling greatly promotes the collective cooperation. The symmetric scheme seems much better than the asymmetric case. Moreover, the role of varying amplitude of coupling strength is also studied on these two interdependent ways. Current findings are helpful for us to understand the evolution of cooperation within many real-world systems, in particular for the interconnected and interrelated systems. PMID:26102082
Evolution of flexibility and rigidity in retaliatory punishment
MacGlashan, James; Littman, Michael L.
2017-01-01
Natural selection designs some social behaviors to depend on flexible learning processes, whereas others are relatively rigid or reflexive. What determines the balance between these two approaches? We offer a detailed case study in the context of a two-player game with antisocial behavior and retaliatory punishment. We show that each player in this game—a “thief” and a “victim”—must balance two competing strategic interests. Flexibility is valuable because it allows adaptive differentiation in the face of diverse opponents. However, it is also risky because, in competitive games, it can produce systematically suboptimal behaviors. Using a combination of evolutionary analysis, reinforcement learning simulations, and behavioral experimentation, we show that the resolution to this tension—and the adaptation of social behavior in this game—hinges on the game’s learning dynamics. Our findings clarify punishment’s adaptive basis, offer a case study of the evolution of social preferences, and highlight an important connection between natural selection and learning in the resolution of social conflicts. PMID:28893996
Xia, Cheng-Yi; Meng, Xiao-Kun; Wang, Zhen
2015-01-01
In the research realm of game theory, interdependent networks have extended the content of spatial reciprocity, which needs the suitable coupling between networks. However, thus far, the vast majority of existing works just assume that the coupling strength between networks is symmetric. This hypothesis, to some extent, seems inconsistent with the ubiquitous observation of heterogeneity. Here, we study how the heterogeneous coupling strength, which characterizes the interdependency of utility between corresponding players of both networks, affects the evolution of cooperation in the prisoner's dilemma game with two types of coupling schemes (symmetric and asymmetric ones). Compared with the traditional case, we show that heterogeneous coupling greatly promotes the collective cooperation. The symmetric scheme seems much better than the asymmetric case. Moreover, the role of varying amplitude of coupling strength is also studied on these two interdependent ways. Current findings are helpful for us to understand the evolution of cooperation within many real-world systems, in particular for the interconnected and interrelated systems.
Evolution of flexibility and rigidity in retaliatory punishment.
Morris, Adam; MacGlashan, James; Littman, Michael L; Cushman, Fiery
2017-09-26
Natural selection designs some social behaviors to depend on flexible learning processes, whereas others are relatively rigid or reflexive. What determines the balance between these two approaches? We offer a detailed case study in the context of a two-player game with antisocial behavior and retaliatory punishment. We show that each player in this game-a "thief" and a "victim"-must balance two competing strategic interests. Flexibility is valuable because it allows adaptive differentiation in the face of diverse opponents. However, it is also risky because, in competitive games, it can produce systematically suboptimal behaviors. Using a combination of evolutionary analysis, reinforcement learning simulations, and behavioral experimentation, we show that the resolution to this tension-and the adaptation of social behavior in this game-hinges on the game's learning dynamics. Our findings clarify punishment's adaptive basis, offer a case study of the evolution of social preferences, and highlight an important connection between natural selection and learning in the resolution of social conflicts.
Griffith, Oliver W; Blackburn, Daniel G; Brandley, Matthew C; Van Dyke, James U; Whittington, Camilla M; Thompson, Michael B
2015-09-01
To understand evolutionary transformations it is necessary to identify the character states of extinct ancestors. Ancestral character state reconstruction is inherently difficult because it requires an accurate phylogeny, character state data, and a statistical model of transition rates and is fundamentally constrained by missing data such as extinct taxa. We argue that model based ancestral character state reconstruction should be used to generate hypotheses but should not be considered an analytical endpoint. Using the evolution of viviparity and reversals to oviparity in squamates as a case study, we show how anatomical, physiological, and ecological data can be used to evaluate hypotheses about evolutionary transitions. The evolution of squamate viviparity requires changes to the timing of reproductive events and the successive loss of features responsible for building an eggshell. A reversal to oviparity requires that those lost traits re-evolve. We argue that the re-evolution of oviparity is inherently more difficult than the reverse. We outline how the inviability of intermediate phenotypes might present physiological barriers to reversals from viviparity to oviparity. Finally, we show that ecological data supports an oviparous ancestral state for squamates and multiple transitions to viviparity. In summary, we conclude that the first squamates were oviparous, that frequent transitions to viviparity have occurred, and that reversals to oviparity in viviparous lineages either have not occurred or are exceedingly rare. As this evidence supports conclusions that differ from previous ancestral state reconstructions, our paper highlights the importance of incorporating biological evidence to evaluate model-generated hypotheses. © 2015 Wiley Periodicals, Inc.
Rogalski, Mary A; Gowler, Camden D; Shaw, Clara L; Hufbauer, Ruth A; Duffy, Meghan A
2017-01-19
Humans have contributed to the increased frequency and severity of emerging infectious diseases, which pose a significant threat to wild and domestic species, as well as human health. This review examines major pathways by which humans influence parasitism by altering (co)evolutionary interactions between hosts and parasites on ecological timescales. There is still much to learn about these interactions, but a few well-studied cases show that humans influence disease emergence every step of the way. Human actions significantly increase dispersal of host, parasite and vector species, enabling greater frequency of infection in naive host populations and host switches. Very dense host populations resulting from urbanization and agriculture can drive the evolution of more virulent parasites and, in some cases, more resistant host populations. Human activities that reduce host genetic diversity or impose abiotic stress can impair the ability of hosts to adapt to disease threats. Further, evolutionary responses of hosts and parasites can thwart disease management and biocontrol efforts. Finally, in rare cases, humans influence evolution by eradicating an infectious disease. If we hope to fully understand the factors driving disease emergence and potentially control these epidemics we must consider the widespread influence of humans on host and parasite evolutionary trajectories.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).
[Current aspects of systemic lupus erythematosus in Dakar. About 74 cases].
Fall, S; Dia, D; Ka, E F; Diallo, S; Pouye, A; Kane, A; Niang, A; Dieng, M T; Ka, M M; Diouf, B; Ndiaye, B; Moreira, Diop T
2007-01-01
previously reported studies on systemic lupus erythematosus in Senegal were more then ten years old and reported few cases of patients. Our objectives were to update epidemiological, clinical, laboratory and evolutive aspects of systemic lupus erythematosus throughout a study of 74 patients. we conducted a retrospective study in the internal medicine and the dermatology units of the university teaching hospital Aristide Le Dantec from January 1993 to December 2002. All patients with systemic lupus erythematosus according to the ACR criteria were included. Those who didn't meet ACR criteria were excluded. we included 74 patients; their mean age was 32 years and the sex ratio 0.1 (male to female). At the entry general symptoms were constants, and cutaneous signs were found in 96% of cases, joints signs in 58.1% and renal sign in 56.8%. Haematological and immunologic abnormalities were nearly constant. All the patients received corticosteroids and in 35.71% they had in addition immunosuppressive drugs. Shorts term evolution was satisfactory. At the medium term 27.02% of the patients were lost and 10.81% of them died. currents aspects of systemic lupus erythematosus in Dakar are improved by the early diagnosis when the disease is pauci-symptomatic and by the use immunosuppressive drugs in association with corticosteroids.
Menear, Matthew; Stacey, Dawn; Brière, Nathalie; Légaré, France
2016-01-01
Introduction: Healthcare research increasingly focuses on interprofessional collaboration and on shared decision making, but knowledge gaps remain about effective strategies for implementing interprofessional collaboration and shared decision-making together in clinical practice. We used Kuhn’s theory of scientific revolutions to reflect on how an integrated interprofessional shared decision-making approach was developed and implemented over time. Methods: In 2007, an interdisciplinary team initiated a new research program to promote the implementation of an interprofessional shared decision-making approach in clinical settings. For this reflective case study, two new team members analyzed the team’s four projects, six research publications, one unpublished and two published protocols and organized them into recognizable phases according to Kuhn’s theory. Results: The merging of two young disciplines led to challenges characteristic of emerging paradigms. Implementation of interprofessional shared-decision making was hindered by a lack of conceptual clarity, a dearth of theories and models, little methodological guidance, and insufficient evaluation instruments. The team developed a new model, identified new tools, and engaged knowledge users in a theory-based approach to implementation. However, several unresolved challenges remain. Discussion: This reflective case study sheds light on the evolution of interdisciplinary team science. It offers new approaches to implementing emerging knowledge in the clinical context. PMID:28435417
Dogba, Maman Joyce; Menear, Matthew; Stacey, Dawn; Brière, Nathalie; Légaré, France
2016-07-19
Healthcare research increasingly focuses on interprofessional collaboration and on shared decision making, but knowledge gaps remain about effective strategies for implementing interprofessional collaboration and shared decision-making together in clinical practice. We used Kuhn's theory of scientific revolutions to reflect on how an integrated interprofessional shared decision-making approach was developed and implemented over time. In 2007, an interdisciplinary team initiated a new research program to promote the implementation of an interprofessional shared decision-making approach in clinical settings. For this reflective case study, two new team members analyzed the team's four projects, six research publications, one unpublished and two published protocols and organized them into recognizable phases according to Kuhn's theory. The merging of two young disciplines led to challenges characteristic of emerging paradigms. Implementation of interprofessional shared-decision making was hindered by a lack of conceptual clarity, a dearth of theories and models, little methodological guidance, and insufficient evaluation instruments. The team developed a new model, identified new tools, and engaged knowledge users in a theory-based approach to implementation. However, several unresolved challenges remain. This reflective case study sheds light on the evolution of interdisciplinary team science. It offers new approaches to implementing emerging knowledge in the clinical context.
Genomics and Evolution in Traditional Medicinal Plants: Road to a Healthier Life
Hao, Da-Cheng; Xiao, Pei-Gen
2015-01-01
Medicinal plants have long been utilized in traditional medicine and ethnomedicine worldwide. This review presents a glimpse of the current status of and future trends in medicinal plant genomics, evolution, and phylogeny. These dynamic fields are at the intersection of phytochemistry and plant biology and are concerned with the evolution mechanisms and systematics of medicinal plant genomes, origin and evolution of the plant genotype and metabolic phenotype, interaction between medicinal plant genomes and their environment, the correlation between genomic diversity and metabolite diversity, and so on. Use of the emerging high-end genomic technologies can be expanded from crop plants to traditional medicinal plants, in order to expedite medicinal plant breeding and transform them into living factories of medicinal compounds. The utility of molecular phylogeny and phylogenomics in predicting chemodiversity and bioprospecting is also highlighted within the context of natural-product-based drug discovery and development. Representative case studies of medicinal plant genome, phylogeny, and evolution are summarized to exemplify the expansion of knowledge pedigree and the paradigm shift to the omics-based approaches, which update our awareness about plant genome evolution and enable the molecular breeding of medicinal plants and the sustainable utilization of plant pharmaceutical resources. PMID:26461812
Genomics and Evolution in Traditional Medicinal Plants: Road to a Healthier Life.
Hao, Da-Cheng; Xiao, Pei-Gen
2015-01-01
Medicinal plants have long been utilized in traditional medicine and ethnomedicine worldwide. This review presents a glimpse of the current status of and future trends in medicinal plant genomics, evolution, and phylogeny. These dynamic fields are at the intersection of phytochemistry and plant biology and are concerned with the evolution mechanisms and systematics of medicinal plant genomes, origin and evolution of the plant genotype and metabolic phenotype, interaction between medicinal plant genomes and their environment, the correlation between genomic diversity and metabolite diversity, and so on. Use of the emerging high-end genomic technologies can be expanded from crop plants to traditional medicinal plants, in order to expedite medicinal plant breeding and transform them into living factories of medicinal compounds. The utility of molecular phylogeny and phylogenomics in predicting chemodiversity and bioprospecting is also highlighted within the context of natural-product-based drug discovery and development. Representative case studies of medicinal plant genome, phylogeny, and evolution are summarized to exemplify the expansion of knowledge pedigree and the paradigm shift to the omics-based approaches, which update our awareness about plant genome evolution and enable the molecular breeding of medicinal plants and the sustainable utilization of plant pharmaceutical resources.
ERIC Educational Resources Information Center
Vanseveren, Sylvie
2001-01-01
This paper deals with the problem of the casual origin of the Greek infinitives in "-men,""ein," with respect to the "endingless locative" and the casus indefinitus" hypothesis. These assumptions can be connected with the progress made in the linguistic research, especially on the nominal inflection, from a…
ERIC Educational Resources Information Center
Dyson, Anne Haas
A case study traces the evolution of "once-upon-a-time" in a child's classroom story writing, drawing upon data collected in a three-year study of writing development in an urban magnet school. The subject, Mitzi, is observed from kindergarten through second grade. The study assumes that stories are cultural discourse forms that serve…
ERIC Educational Resources Information Center
Freedman, Eric
2010-01-01
A multidisciplinary study abroad program developed by a U.S. journalism school and cosponsored by a college of agriculture and natural resources interweaves the themes of mass media, tourism, environment, and cultural issues in Australia. This article traces the development and evolution of the faculty-led program and discusses its curriculum,…
ERIC Educational Resources Information Center
Dooley, Patricia L.
In an effort to document the historical evolution of journalists' political involvement and determine when it began to affect journalistic behavior, a case study examined the personal and professional lives of journalists in Minnesota practicing in the 1920s and 1930s. The study investigated whether these journalists (1) were elected to public…
ERIC Educational Resources Information Center
Rocksén, Miranda
2017-01-01
This study investigates classroom organisation and interaction focusing on phases of activity. The detailed in-depth case study is based on video recordings of 1 science unit consisting of 11 lessons about biological evolution in a Swedish ninth-grade class (aged 15). The study illuminates the temporality of student participation as a fundamental…
2012-01-01
Background Evolution of splice sites is a well-known phenomenon that results in transcript diversity during human evolution. Many novel splice sites are derived from repetitive elements and may not contribute to protein products. Here, we analyzed annotated human protein-coding exons and identified human-specific splice sites that arose after the human-chimpanzee divergence. Results We analyzed multiple alignments of the annotated human protein-coding exons and their respective orthologous mammalian genome sequences to identify 85 novel splice sites (50 splice acceptors and 35 donors) in the human genome. The novel protein-coding exons, which are expressed either constitutively or alternatively, produce novel protein isoforms by insertion, deletion, or frameshift. We found three cases in which the human-specific isoform conferred novel molecular function in the human cells: the human-specific IMUP protein isoform induces apoptosis of the trophoblast and is implicated in pre-eclampsia; the intronization of a part of SMOX gene exon produces inactive spermine oxidase; the human-specific NUB1 isoform shows reduced interaction with ubiquitin-like proteins, possibly affecting ubiquitin pathways. Conclusions Although the generation of novel protein isoforms does not equate to adaptive evolution, we propose that these cases are useful candidates for a molecular functional study to identify proteomic changes that might bring about novel phenotypes during human evolution. PMID:23148531
Intra-Tumor Genetic Heterogeneity in Wilms Tumor: Clonal Evolution and Clinical Implications.
Cresswell, George D; Apps, John R; Chagtai, Tasnim; Mifsud, Borbala; Bentley, Christopher C; Maschietto, Mariana; Popov, Sergey D; Weeks, Mark E; Olsen, Øystein E; Sebire, Neil J; Pritchard-Jones, Kathy; Luscombe, Nicholas M; Williams, Richard D; Mifsud, William
2016-07-01
The evolution of pediatric solid tumors is poorly understood. There is conflicting evidence of intra-tumor genetic homogeneity vs. heterogeneity (ITGH) in a small number of studies in pediatric solid tumors. A number of copy number aberrations (CNA) are proposed as prognostic biomarkers to stratify patients, for example 1q+ in Wilms tumor (WT); current clinical trials use only one sample per tumor to profile this genetic biomarker. We multisampled 20 WT cases and assessed genome-wide allele-specific CNA and loss of heterozygosity, and inferred tumor evolution, using Illumina CytoSNP12v2.1 arrays, a custom analysis pipeline, and the MEDICC algorithm. We found remarkable diversity of ITGH and evolutionary trajectories in WT. 1q+ is heterogeneous in the majority of tumors with this change, with variable evolutionary timing. We estimate that at least three samples per tumor are needed to detect >95% of cases with 1q+. In contrast, somatic 11p15 LOH is uniformly an early event in WT development. We find evidence of two separate tumor origins in unilateral disease with divergent histology, and in bilateral WT. We also show subclonal changes related to differential response to chemotherapy. Rational trial design to include biomarkers in risk stratification requires tumor multisampling and reliable delineation of ITGH and tumor evolution. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Molecular epidemiology, phylogeny and evolution of Legionella.
Khodr, A; Kay, E; Gomez-Valero, L; Ginevra, C; Doublet, P; Buchrieser, C; Jarraud, S
2016-09-01
Legionella are opportunistic pathogens that develop in aquatic environments where they multiply in protozoa. When infected aerosols reach the human respiratory tract they may accidentally infect the alveolar macrophages leading to a severe pneumonia called Legionnaires' disease (LD). The ability of Legionella to survive within host-cells is strictly dependent on the Dot/Icm Type 4 Secretion System that translocates a large repertoire of effectors into the host cell cytosol. Although Legionella is a large genus comprising nearly 60 species that are worldwide distributed, only about half of them have been involved in LD cases. Strikingly, the species Legionella pneumophila alone is responsible for 90% of all LD cases. The present review summarizes the molecular approaches that are used for L. pneumophila genotyping with a major focus on the contribution of whole genome sequencing (WGS) to the investigation of local L. pneumophila outbreaks and global epidemiology studies. We report the newest knowledge regarding the phylogeny and the evolution of Legionella and then focus on virulence evolution of those Legionella species that are known to have the capacity to infect humans. Finally, we discuss the evolutionary forces and adaptation mechanisms acting on the Dot/Icm system itself as well as the role of mobile genetic elements (MGE) encoding T4ASSs and of gene duplications in the evolution of Legionella and its adaptation to different hosts and lifestyles. Copyright © 2016 Elsevier B.V. All rights reserved.
Introducing time delay in the evolution of new technology: the case study of nanotechnology
NASA Astrophysics Data System (ADS)
Georgalis, Evangelos E.; Aifantis, Elias C.
2013-12-01
Starting with Feynman's "There's Plenty of Room at the Bottom" prophetic lecture at Caltech in the 1960s, the term "nanotechnology" was first coined in the scientific literature in the 1980s. This was followed by the unprecedented growth in the corresponding scientific field in 2000 due to the financial incentive provided by President Clinton in the US, followed up by similar efforts in Europe, Japan, China and Russia. Today, nanotechnology has become a driving force for economic development, with applications in all fields of engineering, information technology, transport and energy, as well as biology and medicine. Thus, it is important to forecast its future growth and evolution on the basis of two different criteria: (1) the government and private capital invested in related activities, and (2) the number of scientific publications and popular articles dedicated to this field. This article aims to extract forecasts on the evolution of nanotechnology, using the standard logistic equation that result in familiar sigmoid curves, as well as to explore the effect of time delay on its evolution. Time delay is commonly known from previous biological and ecological models, in which time lag is either already known or can be experimentally measured. In contrast, in the case of a new technology, we must first define the method for determining time delay and then interpret its existence and role. Then we describe the implications that time delay may have on the stability of the sigmoidal behavior of nanotechnology evolution and on the related oscillations that may appear.
Intra-individual variation and evolution of modular structure in Draba plants.
Grigorieva, Olga V; Cherdantsev, Vladimir G
2014-09-01
We studied the evolution of quantitative traits related to shoot system architecture in a large genus Draba (Brassicaceae) making emphasis on the dynamics of relationship between individual and intra-individual variation. The results suggest that selection leading to origin of different life forms arises mainly from a necessity of moderation of the non-adaptive contest between the egoistic plant modules, taking care of self-reproduction of their own. We separated two evolutionary trends, one leading to the formation of short-lived monocarpic, and the other to long-lived polycarpic forms from the short-lived polycarpic plants. The first trend concerns with transformation of the innovation shoots into the axillary inflorescences by shortening of their vegetative developmental phase, while the second one - with individuation of the plant modules owing to acquisition of the capacity of rooting and separating from the mother plant. In both trends, the turning points of the evolution are those of originating of the negative for individual plants interactions between the plant modules being indirect non-adaptive consequences of the previous adaptive evolution and initiating selection for rebuilding of the plant modular structure. The difference between selection operating on intra-individual and individual variations is that, in the first case, combining of the characters of different individuals is infeasible. This leaves no choice for the evolution but to change the developmental mechanisms. In the case considered in this work, this is a change in shoot architecture using the material afforded by the natural variability of developmental pathways of the plant modules. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
The double-edged sword: How evolution can make or break a live-attenuated virus vaccine
Hanley, Kathryn A.
2012-01-01
Even students who reject evolution are often willing to consider cases in which evolutionary biology contributes to, or undermines, biomedical interventions. Moreover the intersection of evolutionary biology and biomedicine is fascinating in its own right. This review offers an overview of the ways in which evolution has impacted the design and deployment of live-attenuated virus vaccines, with subsections that may be useful as lecture material or as the basis for case studies in classes at a variety of levels. Live- attenuated virus vaccines have been modified in ways that restrain their replication in a host, so that infection (vaccination) produces immunity but not disease. Applied evolution, in the form of serial passage in novel host cells, is a “classical” method to generate live-attenuated viruses. However many live-attenuated vaccines exhibit reversion to virulence through back-mutation of attenuating mutations, compensatory mutations elsewhere in the genome, recombination or reassortment, or changes in quasispecies diversity. Additionally the combination of multiple live-attenuated strains may result in competition or facilitation between individual vaccine viruses, resulting in undesirable increases in virulence or decreases in immunogenicity. Genetic engineering informed by evolutionary thinking has led to a number of novel approaches to generate live-attenuated virus vaccines that contain substantial safeguards against reversion to virulence and that ameliorate interference among multiple vaccine strains. Finally, vaccines have the potential to shape the evolution of their wild type counterparts in counter-productive ways; at the extreme vaccine-driven eradication of a virus may create an empty niche that promotes the emergence of new viral pathogens. PMID:22468165
A graph-based approach to detect spatiotemporal dynamics in satellite image time series
NASA Astrophysics Data System (ADS)
Guttler, Fabio; Ienco, Dino; Nin, Jordi; Teisseire, Maguelonne; Poncelet, Pascal
2017-08-01
Enhancing the frequency of satellite acquisitions represents a key issue for Earth Observation community nowadays. Repeated observations are crucial for monitoring purposes, particularly when intra-annual process should be taken into account. Time series of images constitute a valuable source of information in these cases. The goal of this paper is to propose a new methodological framework to automatically detect and extract spatiotemporal information from satellite image time series (SITS). Existing methods dealing with such kind of data are usually classification-oriented and cannot provide information about evolutions and temporal behaviors. In this paper we propose a graph-based strategy that combines object-based image analysis (OBIA) with data mining techniques. Image objects computed at each individual timestamp are connected across the time series and generates a set of evolution graphs. Each evolution graph is associated to a particular area within the study site and stores information about its temporal evolution. Such information can be deeply explored at the evolution graph scale or used to compare the graphs and supply a general picture at the study site scale. We validated our framework on two study sites located in the South of France and involving different types of natural, semi-natural and agricultural areas. The results obtained from a Landsat SITS support the quality of the methodological approach and illustrate how the framework can be employed to extract and characterize spatiotemporal dynamics.
Experimental Investigation of Spectra of Dynamical Maps and their Relation to non-Markovianity
NASA Astrophysics Data System (ADS)
Yu, Shang; Wang, Yi-Tao; Ke, Zhi-Jin; Liu, Wei; Meng, Yu; Li, Zhi-Peng; Zhang, Wen-Hao; Chen, Geng; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can
2018-02-01
The spectral theorem of von Neumann has been widely applied in various areas, such as the characteristic spectral lines of atoms. It has been recently proposed that dynamical evolution also possesses spectral lines. As the most intrinsic property of evolution, the behavior of these spectra can, in principle, exhibit almost every feature of this evolution, among which the most attractive topic is non-Markovianity, i.e., the memory effects during evolution. Here, we develop a method to detect these spectra, and moreover, we experimentally examine the relation between the spectral behavior and non-Markovianity by engineering the environment to prepare dynamical maps with different non-Markovian properties and then detecting the dynamical behavior of the spectral values. These spectra will lead to a witness for essential non-Markovianity. We also experimentally verify another simplified witness method for essential non-Markovianity. Interestingly, in both cases, we observe the sudden transition from essential non-Markovianity to something else. Our work shows the role of the spectra of evolution in the studies of non-Makovianity and provides the alternative methods to characterize non-Markovian behavior.
Scalar fields in black hole spacetimes
NASA Astrophysics Data System (ADS)
Thuestad, Izak; Khanna, Gaurav; Price, Richard H.
2017-07-01
The time evolution of matter fields in black hole exterior spacetimes is a well-studied subject, spanning several decades of research. However, the behavior of fields in the black hole interior spacetime has only relatively recently begun receiving some attention from the research community. In this paper, we numerically study the late-time evolution of scalar fields in both Schwarzschild and Kerr spacetimes, including the black hole interior. We recover the expected late-time power-law "tails" on the exterior (null infinity, timelike infinity, and the horizon). In the interior region, we find an interesting oscillatory behavior that is characterized by the multipole index ℓ of the scalar field. In addition, we also study the extremal Kerr case and find strong indications of an instability developing at the horizon.
Evolving binary classifiers through parallel computation of multiple fitness cases.
Cagnoni, Stefano; Bergenti, Federico; Mordonini, Monica; Adorni, Giovanni
2005-06-01
This paper describes two versions of a novel approach to developing binary classifiers, based on two evolutionary computation paradigms: cellular programming and genetic programming. Such an approach achieves high computation efficiency both during evolution and at runtime. Evolution speed is optimized by allowing multiple solutions to be computed in parallel. Runtime performance is optimized explicitly using parallel computation in the case of cellular programming or implicitly taking advantage of the intrinsic parallelism of bitwise operators on standard sequential architectures in the case of genetic programming. The approach was tested on a digit recognition problem and compared with a reference classifier.
Chapter 4. New model systems for the study of developmental evolution in plants.
Kramer, Elena M
2009-01-01
The number of genetically tractable plant model systems is rapidly increasing, thanks to the decreasing cost of sequencing and the wide amenability of plants to stable transformation and other functional approaches. In this chapter, I discuss emerging model systems from throughout the land plant phylogeny and consider how their unique attributes are contributing to our understanding of development, evolution, and ecology. These new models are being developed using two distinct strategies: in some cases, they are selected because of their close relationship to the established models, while in others, they are chosen with the explicit intention of exploring distantly related plant lineages. Such complementary approaches are yielding exciting new results that shed light on both micro- and macroevolutionary processes in the context of developmental evolution.
Analysis and IbM simulation of the stages in bacterial lag phase: basis for an updated definition.
Prats, Clara; Giró, Antoni; Ferrer, Jordi; López, Daniel; Vives-Rego, Josep
2008-05-07
The lag phase is the initial phase of a culture that precedes exponential growth and occurs when the conditions of the culture medium differ from the pre-inoculation conditions. It is usually defined by means of cell density because the number of individuals remains approximately constant or slowly increases, and it is quantified with the lag parameter lambda. The lag phase has been studied through mathematical modelling and by means of specific experiments. In recent years, Individual-based Modelling (IbM) has provided helpful insights into lag phase studies. In this paper, the definition of lag phase is thoroughly examined. Evolution of the total biomass and the total number of bacteria during lag phase is tackled separately. The lag phase lasts until the culture reaches a maximum growth rate both in biomass and cell density. Once in the exponential phase, both rates are constant over time and equal to each other. Both evolutions are split into an initial phase and a transition phase, according to their growth rates. A population-level mathematical model is presented to describe the transitional phase in cell density. INDividual DIScrete SIMulation (INDISIM) is used to check the outcomes of this analysis. Simulations allow the separate study of the evolution of cell density and total biomass in a batch culture, they provide a depiction of different observed cases in lag evolution at the individual-cell level, and are used to test the population-level model. The results show that the geometrical lag parameter lambda is not appropriate as a universal definition for the lag phase. Moreover, the lag phase cannot be characterized by a single parameter. For the studied cases, the lag phases of both the total biomass and the population are required to fully characterize the evolution of bacterial cultures. The results presented prove once more that the lag phase is a complex process that requires a more complete definition. This will be possible only after the phenomena governing the population dynamics at an individual level of description, and occurring during the lag and exponential growth phases, are well understood.
ERIC Educational Resources Information Center
Hamilton, Eric; Lesh, Richard; Lester, Frank; Brilleslyper, Michael
2008-01-01
This article introduces Model-Eliciting Activities (MEAs) as a form of case study team problem-solving. MEA design focuses on eliciting from students conceptual models that they iteratively revise in problem-solving. Though developed by mathematics education researchers to study the evolution of mathematical problem-solving expertise in middle…
The Transformation of Federal Education Policy: The Kennedy and Johnson Years.
ERIC Educational Resources Information Center
Graham, Hugh Davis
Archive-based historical analysis brings a perspective to policy studies that is lacking in individual case studies. The recently opened Kennedy and Johnson archives facilitate an internal analysis of the evolution of education policy formulation in the 1960s from the perspective of the executive branch. The central thread of continuity for such…
The clinical and epidemiological evolution of varicella in Romania during 2004 and 2013.
Rafila, A; Pitigoi, D; Arama, A; Stanescu, A; Buicu, F
2015-01-01
Varicella, a vaccine preventable disease (VPD) is one of the most common communicable diseases in Romania. The objectives of our study were to describe the epidemiological evolution of varicella in Romania between 2004 and 2013 and the clinical characteristics of the cases admitted to NIID between 2011 and 2013. An epidemiological retrospective study was conducted by using the information reported quarterly by general practitioners and hospitals at the national level. There is no system for the surveillance of severe cases in Romania, so, to describe the clinical characteristics of varicella cases, a second retrospective study was developed, in which the patients hospitalized in the NIID, within the period 2011-2013, were included. Questionnaires were completed by using data from the clinical observation forms. Collected information included demographic, clinical and laboratory data, complications, date of onset and admission, length of stay, admission and discharge diagnosis. Data were processed and analyzed by using Microsoft Excel program. A total of 504,844 cases were reported of at the national level between 2004 and 2013, with a mean incidence of 238.2/ 100,000 inhabitants. The most affected age group was 5-9 years old (incidence 1362.7/ 100,000 inhabitants). The study conducted in NIID, registered 353 patients hospitalized with varicella between 2011 and 2013. Most of the hospitalized cases (88.8%) were under 10 years old and many (72.6 %) attended a community. The majority of cases had rash (98.6%) and fever (79.9%). The main complications were pneumonia (46.2%), bacterial infection (16.1%) and encephalitis (2.5%). Varicella is a very common disease in Romania, which may develop complications. A specific surveillance system should be introduced in order to provide accurate epidemiological, clinical and laboratory information to assess whether varicella is a public health problem in Romania and if the introduction of vaccination in NIP is recommended. However, given the large number of current cases in Romania, a solution may be a sentinel surveillance system type.
Optimality models in the age of experimental evolution and genomics.
Bull, J J; Wang, I-N
2010-09-01
Optimality models have been used to predict evolution of many properties of organisms. They typically neglect genetic details, whether by necessity or design. This omission is a common source of criticism, and although this limitation of optimality is widely acknowledged, it has mostly been defended rather than evaluated for its impact. Experimental adaptation of model organisms provides a new arena for testing optimality models and for simultaneously integrating genetics. First, an experimental context with a well-researched organism allows dissection of the evolutionary process to identify causes of model failure--whether the model is wrong about genetics or selection. Second, optimality models provide a meaningful context for the process and mechanics of evolution, and thus may be used to elicit realistic genetic bases of adaptation--an especially useful augmentation to well-researched genetic systems. A few studies of microbes have begun to pioneer this new direction. Incompatibility between the assumed and actual genetics has been demonstrated to be the cause of model failure in some cases. More interestingly, evolution at the phenotypic level has sometimes matched prediction even though the adaptive mutations defy mechanisms established by decades of classic genetic studies. Integration of experimental evolutionary tests with genetics heralds a new wave for optimality models and their extensions that does not merely emphasize the forces driving evolution.
Houston managed lanes case study : the evolution of the Houston HOV system
DOT National Transportation Integrated Search
2003-09-01
A nine-mile contraflow High Occupancy Vehicle (HOV) lane on the I-45 North Freeway in Houston, Texas was implemented as a demonstration project in 1979. This demonstration borrowed an off-peak direction traffic lane for use by buses and vanpools in t...
Continuous Curriculum Assessment and Improvement: A Case Study
ERIC Educational Resources Information Center
Hill, Art
2007-01-01
Many factors, including reduced teaching resources, higher student-to-teacher ratios, evolving teaching technologies, and increased emphasis on success skills, have made it necessary for many teaching faculties to become more deliberate about continuous curriculum assessment and improvement. An example is the evolution of food science education…
Promoting Entrepreneurship among Informatics Engineering Students: Insights from a Case Study
ERIC Educational Resources Information Center
Fernandes, João M.; Afonso, Paulo; Fonte, Victor; Alves, Victor; Ribeiro, António Nestor
2017-01-01
Universities seek to promote entrepreneurship through effective education approaches, which need to be in permanent evolution. Nevertheless, the literature in entrepreneurship education lacks empirical evidence. This article discusses relevant issues related to promoting entrepreneurship in the software field, based on the experience of a…
Influence of switches and crossings on wheel profile evolution in freight vehicles
NASA Astrophysics Data System (ADS)
Casanueva, Carlos; Doulgerakis, Emmanouil; Jönsson, Per-Anders; Stichel, Sebastian
2014-05-01
Wheel reprofiling costs for freight vehicles are a major issue in Sweden, reducing the profitability of freight traffic operations and therefore hindering the modal shift needed for achieving reduced emissions. In order to understand the damage modes in freight vehicles, uniform wear prediction with Archard's wear law has been studied in a two-axle timber transport wagon, and simulation results have been compared to measurements. Challenges of wheel wear prediction in freight wagons are discussed, including the influence of block brakes and switches and crossings. The latter have a major influence on the profile evolution of this case study, so specific simulations are performed and a thorough discussion is carried out.
Mourao, Paulo Reis; Domingues Martinho, Vítor
2017-07-01
One of the most serious externalities of agricultural activity relates to greenhouse gas emissions. This work tests this relationship for the Portuguese case by examining data compiled since 1961. Employing cointegration techniques and vector error correction models (VECMs), we conclude that the evolution of the most representative vegetables and fruits in Portuguese production are associated with higher controls on the evolution of greenhouse gas emissions. Reversely, the evolution of the output levels of livestock and the most representative animal production have significantly increased the level of CO 2 (carbon dioxide) reported in Portugal. We also analyze the cycle length of the long-term relationship between agricultural activity and greenhouse gas emissions. In particular, we highlight the case of synthetic fertilizers, whose values of CO 2 have quickly risen due to changes in Portuguese vegetables, fruit, and animal production levels.
Physical Model for the Evolution of the Genetic Code
NASA Astrophysics Data System (ADS)
Yamashita, Tatsuro; Narikiyo, Osamu
2011-12-01
Using the shape space of codons and tRNAs we give a physical description of the genetic code evolution on the basis of the codon capture and ambiguous intermediate scenarios in a consistent manner. In the lowest dimensional version of our description, a physical quantity, codon level is introduced. In terms of the codon levels two scenarios are typically classified into two different routes of the evolutional process. In the case of the ambiguous intermediate scenario we perform an evolutional simulation implemented cost selection of amino acids and confirm a rapid transition of the code change. Such rapidness reduces uncomfortableness of the non-unique translation of the code at intermediate state that is the weakness of the scenario. In the case of the codon capture scenario the survival against mutations under the mutational pressure minimizing GC content in genomes is simulated and it is demonstrated that cells which experience only neutral mutations survive.
Nelson, Jonathan M.; Shimizu, Yasuyuki; Giri, Sanjay; McDonald, Richard R.
2010-01-01
Uncertainties in flood stage prediction and bed evolution in rivers are frequently associated with the evolution of bedforms over a hydrograph. For the case of flood prediction, the evolution of the bedforms may alter the effective bed roughness, so predictions of stage and velocity based on assuming bedforms retain the same size and shape over a hydrograph will be incorrect. These same effects will produce errors in the prediction of the sediment transport and bed evolution, but in this latter case the errors are typically larger, as even small errors in the prediction of bedform form drag can make very large errors in predicting the rates of sediment motion and the associated erosion and deposition. In situations where flows change slowly, it may be possible to use empirical results that relate bedform morphology to roughness and effective form drag to avoid these errors; but in many cases where the bedforms evolve rapidly and are in disequilibrium with the instantaneous flow, these empirical methods cannot be accurately applied. Over the past few years, computational models for bedform development, migration, and adjustment to varying flows have been developed and tested with a variety of laboratory and field data. These models, which are based on detailed multidimensional flow modeling incorporating large eddy simulation, appear to be capable of predicting bedform dimensions during steady flows as well as their time dependence during discharge variations. In the work presented here, models of this type are used to investigate the impacts of bedform on stage and bed evolution in rivers during flood hydrographs. The method is shown to reproduce hysteresis in rating curves as well as other more subtle effects in the shape of flood waves. Techniques for combining the bedform evolution models with larger-scale models for river reach flow, sediment transport, and bed evolution are described and used to show the importance of including dynamic bedform effects in river modeling. For example calculations for a flood on the Kootenai River, errors of almost 1m in predicted stage and errors of about a factor of two in the predicted maximum depths of erosion can be attributed to bedform evolution. Thus, treating bedforms explicitly in flood and bed evolution models can decrease uncertainty and increase the accuracy of predictions.
Formation of supermassive black holes through fragmentation of torodial supermassive stars.
Zink, Burkhard; Stergioulas, Nikolaos; Hawke, Ian; Ott, Christian D; Schnetter, Erik; Müller, Ewald
2006-04-28
We investigate new paths to supermassive black hole formation by considering the general relativistic evolution of a differentially rotating polytrope with a toroidal shape. We find that this polytrope is unstable to nonaxisymmetric modes, which leads to a fragmentation into self-gravitating, collapsing components. In the case of one such fragment, we apply a simplified adaptive mesh refinement technique to follow the evolution to the formation of an apparent horizon centered on the fragment. This is the first study of the onset of nonaxisymmetric dynamical instabilities of supermassive stars in full general relativity.
Effect of Various Parameters on Evolution of 2D Free Jets and their Associated Entrainment Rates
NASA Astrophysics Data System (ADS)
Amin, Mazyar; Dabiri, Dana; Navaz, Homayun
2006-11-01
Refrigerated vertical display cases are extensively used in supermarkets and grocery stores. Cold air is supplied vertically across the open face of the display case from the top, creating a cold air curtain acting as a barrier to separate the cold air within the case from the warm ambient air. Typically, 70-80% of the load on these vertical display cases is due to cooling of infiltrated warm ambient air. Our goal is to understand parameters affecting warm air infiltration into the case so as to minimize the cooling load. Towards this end, steady state behavior of 2D vertical air jets at Reynolds numbers 2,000 to 10,000 with low and high turbulence intensities (0% &10%) at the nozzle exit are experimentally and computationally investigated both within a quiescent ambient and next to an open cavity. Four different velocity profile shapes (top-hat, parabola, skewed parabola and linear) at the jet exit are also studied to determine profile effects on the evolution of and entrainment into the jet. Results will be presented to show the effect of these parameters on the total entrainment into the jet, as well as the variation of entrainment across the jet at different downstream locations. The results of this work can help better understand how to design air curtains as a buffer to minimize infiltration into open refrigerated vertical display cases.
[Merkel cell carcinoma experience in a reference medical center.
Roesch-Dietlen, Federico; Devezé-Bocardi, Raúl; Ruiz-Juárez, Isabel; Grube-Pagola, Peter; Romero-Sierra, Graciela; Remes-Troche, José María; Silva-Cañetas, Carmen Sofía; Lozoya-López Escalera, Hilda
2013-01-01
Background: Merkel cell carcinoma is a rare tumor that occurs on areas exposed to ultraviolet light. It is usually asymptomatic and it is diagnosed late often. The treatment is surgical, associated with adjuvant radiotherapy. The objective was to present the experience in the management of Merkel cell carcinoma in a reference medical center. Methods: all patients with Merkel cell carcinoma treated at the Instituto de Investigaciones Médico-Biológicas of the Universidad Veracruzana during the period 2008 to 2011 were studied. Sex, age, evolution time, tumor localization, size, metastases and treatment were analyzed. Results: of 3217 patients treated, three cases were Merkel cell carcinoma (0.09 %), their age was 52.1 ± 14.17, male predominance of 66.67 %; the evolution time was of 29.66 ± 35.36 months; the tumour localization was on inguinal region, anterior chest and left arm; the noodle size was of 6.0 ± 5.19 cm; two patients had lymph node metastases. In two cases, resection and lymphadenectomy were performed. They all received radiation therapy and chemotherapy in one case. Histologically the medium variant predominated; immunohistochemistry was positive in the three cases. One patient died ten months after the study was done. Conclusions: our experience is similar with others authors, Merkel cell carcinoma is a rare tumor, usually diagnosed late, and it has poor survival.
Muñoz, Esteban; Campdelacreu, Jaume; Ferrer, Isidre; Rey, María J; Cardozo, Adriana; Gómez, Beatriz; Tolosa, Eduardo
2004-06-01
The pathophysiology of white matter involvement in dentatorubropallidoluysian atrophy (DRPLA) is controversial. Moreover, the clinical repercussions and evolution of these lesions have not been well documented. To describe a case of DRPLA with severe cerebellar white matter involvement. Case report. Patient A 62-year-old woman with DRPLA. When the genetic diagnosis was made, the patient manifested severe ataxia, slight dysarthria, and subcortical cognitive impairment. Cranial magnetic resonance imaging showed atrophy of the cerebellum and brainstem and moderate high-intensity signal alterations in the periventricular cerebral white matter in T2-weighted sequences. In the following 5 years, she developed uncontrolled head movements associated with severe bruxism and tetraparesis, and became deeply demented. New magnetic resonance imaging showed severe diffuse cerebral white matter alterations in T2 sequences with only slight progression of brainstem and cerebellar atrophy. After her death at 67 years of age, the autopsy study showed diffuse myelin pallor, axonal preservation, and reactive astrogliosis in the cerebral white matter, with only mild atherosclerotic changes, and moderate neuronal loss in the cerebellum and brainstem. Leukoencephalopathy could be a prominent finding in some patients with DRPLA, explaining, at least in part, their clinical evolution. In our case, the disproportion between the severity of white matter damage and vascular changes does not support a cardinal role for ischemic mechanisms in leukoencephalopathy.
Agrawal, Anurag A
2017-08-01
A charm of biology as a scientific discipline is the diversity of life. Although this diversity can make laws of biology challenging to discover, several repeated patterns and general principles govern evolutionary diversification. Convergent evolution, the independent evolution of similar phenotypes, has been at the heart of one approach to understand generality in the evolutionary process. Yet understanding when and why organismal traits and strategies repeatedly evolve has been a central challenge. These issues were the focus of the American Society of Naturalists Vice Presidential Symposium in 2016 and are the subject of this collection of articles. Although naturalists have long made inferences about convergent evolution and its importance, there has been confusion in the interpretation of the pattern of convergence. Does convergence primarily indicate adaptation or constraint? How often should convergence be expected? Are there general principles that would allow us to predict where and when and by what mechanisms convergent evolution should occur? What role does natural history play in advancing our understanding of general evolutionary principles? In this introductory article, I address these questions, review several generalizations about convergent evolution that have emerged over the past 15 years, and present a framework for advancing the study and interpretation of convergence. Perhaps the most important emerging conclusion is that the genetic mechanisms of convergent evolution are phylogenetically conserved; that is, more closely related species tend to share the same genetic basis of traits, even when independently evolved. Finally, I highlight how the articles in this special issue further develop concepts, methodologies, and case studies at the frontier of our understanding of the causes and consequences of convergent evolution.
Tărcoveanu, E; Vasilescu, A; Hee, R Van; Moldovanu, R; Ursulescu, C; Ciobanu, D; Bradea, C
2015-01-01
Appendicular mucocele, a cystic dilatation of the appendix, is a rare disease, but unfortunately about 1/10 of cases evolves into pseudomyxoma peritonei. We performed a prospective study between 1 January 2010 to 31 December 2014 in order to track the incidence, symptoms, and circumstances of diagnosis, treatment and evolution of these rare tumors. A total of seven patients underwent curative surgery for a mucocele of the appendix: one woman and six men with an average age of 59.71 years. Clinical signs, present in two cases, were uncharacteristic. Ultrasound performed in all cases, could guide diagnosis in 5 cases. CT performed in 5 cases diagnosed only two cases. All cases were operated on: the open approach was used in four cases and a minimally invasive in three cases. We performed two right colectomies, an open appendectomy associated to anterior resection of the rectum, two laparoscopic appendectomies and two appendectomies and cecum resection with stapler, one by open approach and one by a minimally invasive approach. Intraoperative spillage of mucinous tumor did not occur in any case. The mean hospital stay was 5.7 days. Postoperative complications were present in 1 case (14.2%): wound infection. The average follow-up period was 40.28 months. (Range 6 to 48 months). No tumor recurrence or readmission, such as pseudomyxoma peritonei, has occurred. Appendicular mucocele is a rare entity; it can be found incidentally and it can mimic acute appendicitis, appendicular plastron or cecum tumor. Once diagnosed, surgical treatment is required for fear of perforation, tumor evolution and the emergence of the rule of complications. Laparoscopic approach in selected cases can be used, accompanied by safety measures to avoid iatrogenic perforation and peritoneal and parietal seeding. Celsius.
Neonatal peripheral facial paralysis' evaluation with photogrammetry: A case report.
da Fonseca Filho, Gentil Gomes; de Medeiros Cirne, Gabriele Natane; Cacho, Roberta Oliveira; de Souza, Jane Carla; Nagem, Danilo; Cacho, Enio Walker Azevedo; Moran, Cristiane Aparecida; Abreu, Bruna; Pereira, Silvana Alves
2015-12-01
Facial paralysis in newborns can leave functional sequelae. Determining the evolution and amount of functional losses requires consistent evaluation methods that measure, quantitatively, the evolution of clinical functionality. This paper reports an innovative method of facial assessment for the case of a child 28 days of age with unilateral facial paralysis. The child had difficulty breast feeding, and quickly responded to the physical therapy treatment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
History and Philosophy of Science through Models: The Case of Chemical Kinetics
NASA Astrophysics Data System (ADS)
Justi, Rosária; Gilbert, John K.
The case for a greater role for the history and philosophy of science in science education is reviewed. It is argued that such a role can only be realised if it is based on both a credible analytical approach to the history and philosophy of science and if the evolution of a sufficient number of major themes in science is known in suitable detail. Adopting Lakatos' Theory of Scientific Research Programmes as the analytical approach, it is proposed that the development, use, and replacement, of specific models forms the core of such programmes.Chemical kinetics was selected as an exemplar major topic in chemistry. Eight models which have played a central role in the evolution of the study of chemical kinetics were identified by an analysis of the literature. The implications that these models have for the teaching and learning of chemistry today are discussed.
Transformation of follicular lymphoma to plasmablastic lymphoma with c-myc gene rearrangement.
Ouansafi, Ihsane; He, Bing; Fraser, Cory; Nie, Kui; Mathew, Susan; Bhanji, Rumina; Hoda, Rana; Arabadjief, Melissa; Knowles, Daniel; Cerutti, Andrea; Orazi, Attilio; Tam, Wayne
2010-12-01
Follicular lymphoma (FL) is an indolent lymphoma that transforms to high-grade lymphoma, mostly diffuse large B-cell lymphoma, in about a third of patients. We present the first report of a case of FL that transformed to plasmablastic lymphoma (PBL). Clonal transformation of the FL to PBL was evidenced by identical IGH/BCL2 gene rearrangements and VDJ gene usage in rearranged IGH genes. IGH/ BCL2 translocation was retained in the PBL, which also acquired c-myc gene rearrangement. Genealogic analysis based on somatic hypermutation of the rearranged IGH genes of both FL and PBL suggests that transformation of the FL to PBL occurred most likely by divergent evolution from a common progenitor cell rather than direct evolution from the FL clone. Our study of this unusual case expands the histologic spectrum of FL transformation and increases our understanding of the pathogenetic mechanisms of transformation of indolent lymphomas to aggressive lymphomas.
[Leigh syndrome: case report].
Roma, Adriano de Carvalho; Pereira, Paula Resende Aquino de Assis; Dantas, Adalmir Morterá
2008-01-01
The authors describe for the first time in the Country a case of a 10-year-old female child, assisted at the Ophthalmology Clinic of the Hospital Universitário Clementino Fraga Filho UFRJ, with Leigh's syndrome that is part of a metabolic disease group known as mitochondrial encephalomyopathies. It is an hereditary disease transmitted by a different mode of inheritance: mitochondrial, X-linked recessive and autosomal recessive. The beginning of clinical manifestations is varied and occurs usually in the first two years of life, with progressive and insidious evolution and exacerbation periods. Diagnosis is difficult because pleomorphic presentation, based on clinical findings and complementary study related to mitochondrial production of ATP and cytochrome c oxidase deficiencies. Considering that there is no specific treatment, this is based on a palliative procedure. So, the identification of this syndrome is very important to keep it under control, since its evolution is progressive.
Molecular Epidemiology and Evolution of European Bat Lyssavirus 2.
McElhinney, Lorraine M; Marston, Denise A; Wise, Emma L; Freuling, Conrad M; Bourhy, Hervé; Zanoni, Reto; Moldal, Torfinn; Kooi, Engbert A; Neubauer-Juric, Antonie; Nokireki, Tiina; Müller, Thomas; Fooks, Anthony R
2018-01-05
Bat rabies cases in Europe are mainly attributed to two lyssaviruses, namely European Bat Lyssavirus 1 (EBLV-1) and European Bat Lyssavirus 2 (EBLV-2). Prior to the death of a bat worker in Finland in 1985, very few bat rabies cases were reported. Enhanced surveillance in the two subsequent years (1986-1987) identified 263 cases (more than a fifth of all reported cases to date). Between 1977 and 2016, 1183 cases of bat rabies were reported, with the vast majority (>97%) being attributed to EBLV-1. In contrast, there have been only 39 suspected cases of EBLV-2, of which 34 have been confirmed by virus typing and presently restricted to just two bat species; Myotis daubentonii and Myotis dasycneme . The limited number of EBLV-2 cases in Europe prompted the establishment of a network of European reference laboratories to collate all available viruses and data. Despite the relatively low number of EBLV-2 cases, a large amount of anomalous data has been published in the scientific literature, which we have here reviewed and clarified. In this review, 29 EBLV-2 full genome sequences have been analysed to further our understanding of the diversity and molecular evolution of EBLV-2 in Europe. Analysis of the 29 complete EBLV-2 genome sequences clearly corroborated geographical relationships with all EBLV-2 sequences clustering at the country level irrespective of the gene studied. Further geographical clustering was also observed at a local level. There are high levels of homogeneity within the EBLV-2 species with nucleotide identities ranging from 95.5-100% and amino acid identities between 98.7% and 100%, despite the widespread distribution of the isolates both geographically and chronologically. The mean substitution rate for EBLV-2 across the five concatenated genes was 1.65 × 10 -5 , and evolutionary clock analysis confirms the slow evolution of EBLV-2 both between and within countries in Europe. This is further supported by the first detailed EBLV-2 intra-roost genomic analysis whereby a relatively high sequence homogeneity was found across the genomes of three EBLV-2 isolates obtained several years apart (2007, 2008, and 2014) from M. daubentonii at the same site (Stokesay Castle, Shropshire, UK).
ERIC Educational Resources Information Center
Mayer, William V.
1973-01-01
Some court cases and legislative bills have been filed in states to legalize the use of the creationist view (of life forms on earth) in biology textbooks superseding the organic theory of evolution. The law has not yet accepted the religious viewpoint. (PS)
Speedup of quantum evolution of multiqubit entanglement states
Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Tian, Jian-Xiang; Fan, Heng
2016-01-01
As is well known, quantum speed limit time (QSLT) can be used to characterize the maximal speed of evolution of quantum systems. We mainly investigate the QSLT of generalized N-qubit GHZ-type states and W-type states in the amplitude-damping channels. It is shown that, in the case N qubits coupled with independent noise channels, the QSLT of the entangled GHZ-type state is closely related to the number of qubits in the small-scale system. And the larger entanglement of GHZ-type states can lead to the shorter QSLT of the evolution process. However, the QSLT of the W-type states are independent of the number of qubits and the initial entanglement. Furthermore, by considering only M qubits among the N-qubit system respectively interacting with their own noise channels, QSLTs for these two types states are shorter than in the case N qubits coupled with independent noise channels. We therefore reach the interesting result that the potential speedup of quantum evolution of a given N-qubit GHZ-type state or W-type state can be realized in the case the number of the applied noise channels satisfying M < N. PMID:27283757
The current setting of the evolution/creation debate in American public schools
NASA Astrophysics Data System (ADS)
Reynolds, Bradley Doyle
The history of public education in the United States is replete with attempts to secularize public education as well as attempts to sanctify public education. The legal battle between these two opposing concepts of public education has been long and tenacious, and is far from over. One front upon which this philosophical, political, and legal battle has been fought is the teaching of origins in biology classes of public schools. This study sought to address the question of the current status of the creation/evolution debate. Through content analysis of court cases, the study provided a legal framework concerning the teaching of origins in public schools. The study also provided a political/philosophical understanding of the current status through a content analysis of press articles. Further, the study provided an understanding of how current biology textbooks deal with the issue of origins. The findings reveal that the creation/evolution debate is current; however, the theory of Intelligent Design has now entered the foray. Finally, the findings reveal that the debate is taking place in courtrooms, legislative hails, and newspapers, but not in classrooms.
NASA Astrophysics Data System (ADS)
Zhou, Na; Zhang, Chun-Lai; Wu, Xiao-Xu; Wang, Xun-ming; Kang, Li-qiang
2014-11-01
This paper systematically analyzes a valley's aeolian landforms in a semi-humid region and presents a model of its contemporary evolution. Mainling Valley of the Yarlung Zangbo River on the Qinghai-Tibet Plateau was chosen as the case study for the analysis of morphometric characteristics and the evolution sequence of aeolian landforms via field data and remote sensing images. The aeolian landforms were primarily composed of aeolian sand belts on river terraces and dunes (sheets) on hillside slopes. Three types of aeolian sand belts were identified based on their dune types. In type I belts, an erosive air stream combined with relatively high vegetation cover (10%) produced sparsely distributed parabolic dunes with a high variability of dune heights; in type II belts, the continual reworking by the erosive air stream in combination with low vegetation cover (3%) formed more densely distributed barchans and transitional dunes with a moderate variability of dune heights; and in type III belts, the gradual evolution from an erosive sand-laden air stream to a saturated sand-laden air stream in combination with low vegetation cover (2%) produced the densest crescentic dunefields but with the least variability in dune heights. Dune sizes increase, dune shapes become uniform, and dune distribution becomes close from type I to III belts. Lateral linking and merging of the dunes were also observed within the belts. Together this evidence indicates that an evolution sequence may exist. Aeolian dunefields in the belt appear to evolve from embryonic parabolic dunefields to adolescent barchan dunefields and, subsequently, to mature compound crescentic dunefields. As the aeolian sand belt evolves into the mature stage, sand accumulations at the foot of the mountain valley can be steps for sand accumulation on valley-side slopes.
[Risk factors for malignant evolution of gastrointestinal stromal tumors].
Andrei, S; Andrei, Adriana; Tonea, A; Andronesi, D; Becheanu, G; Dumbravă, Mona; Pechianu, C; Herlea, V; Popescu, I
2007-01-01
Gastrointestinal stromal tumors are the most frequent non-epithelial digestive tumors, being classified in the group of primitive mesenchymal tumors of the digestive tract. These tumors have a non predictable evolution and where stratified regarding the risk for malignant behavior in 4 categories: very low risk, low risk, intermediate risk and high risk. We performed a retrospective non randomised study including the patients with gastrointestinal stromal tumors treated in the Department of General Surgery and Liver Transplantation of Fundeni Clinical Institute in the period January 2002 - June 2007, to define the epidemiological, clinico-paraclinical, histological and especially evolutive features of the gastrointestinal stromal tumors from this group, with a special regard to the risk factors for their malignant behavior. The most important risk factors in gastrointestinal stromal tumors are the tumor size and the mitotic index, based on them being realised the classification of Fletcher in the 4 risk categories mentioned above. In our group all the local advanced or metastatic gastrointestinal stromal tumors, regardless of their location, were classified in the group of high risk for the malignant behavior. The gastric location and the epithelioid type were positive prognostic factors, and the complete resection of the tumor, an other important positive prognostic feature, was possible in about 80% of the cases, probably because the gastrointestinal stromal tumors in our study were diagnosed in less advanced evolutive situations, only about one third being metastatic and about 14% being locally advanced at the time of diagnose. The association with other neoplasias was in our cases insignificant, only 5% of the patients presenting concomitant malignant digestive tumors and 7.6% intraabdominal benign tumors. Gastrointestinal stromal tumors remain a challenge for the medical staff, regarding their diagnose and therapeutical management, the stratification of the risk for their malignant behavior being essential for the evolution of these patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanna, T.; Sakkaravarthi, K.; Kumar, C. Senthil
In this paper, we have studied the integrability nature of a system of three-coupled Gross-Pitaevskii type nonlinear evolution equations arising in the context of spinor Bose-Einstein condensates by applying the Painleve singularity structure analysis. We show that only for two sets of parametric choices, corresponding to the known integrable cases, the system passes the Painleve test.
Change and Continuity in Experiential Education: A Case Study.
ERIC Educational Resources Information Center
James, Thomas
1989-01-01
Traces program development at the North Carolina Outward Bound school from 1967 to 1987. Describes changes in the standard three-week challenge course, evolution of short intensive courses, and introduction of tailored contract courses in response to changing market demands. Discusses implications for institutional mission, identity, and…
Evolution of a Learning Theory: A Case Study
ERIC Educational Resources Information Center
Alexander, Patricia A.
2006-01-01
What follows is the presentation given after receiving the E. L. Thorndike Career Achievement in Educational Psychology from Division 15 of the American Psychological Association. This presentation calls for greater respect for and attention to scientific speculation in educational psychology as a critical component in theory development and model…
Problem-Solving Exercises and Evolution Teaching
ERIC Educational Resources Information Center
Angseesing, J. P. A.
1978-01-01
It is suggested that the work of Kammerer provides suitable material, in the form of case studies on which to base discussions of Lamarckism versus Darwinism. A set of structured problems is described as an example of possible problem-solving exercises, and further experiments to extend Kammerer's work are outlined. (Author/MA)
Evolution of Incubation Models: Evidence from the Italian Incubation Industry
ERIC Educational Resources Information Center
Grandi, Alessandro; Grimaldi, Rosa
2004-01-01
This paper addresses the role of incubators in supporting new venture creation. A mapping of four different types of incubator is proposed: corporate private incubators (CPIs), independent private incubators (IPIs), business innovation centres (BICs) and university business incubators (UBIs). This mapping is exemplified through case studies of one…
Development and Evolution of an Interactive HRM Course: A Case Study
ERIC Educational Resources Information Center
McClurg, Lucy A.
2005-01-01
A course in Human Resource consulting ("Human Resources Field Research") was designed and implemented at a university in cooperation with the Society for Human Resource Management (SHRM). Students work with local business executives, SHRM representatives, and the class instructor to complete projects for the client business firms. Trial…
Leadership Styles of a Multigenerational Leader
ERIC Educational Resources Information Center
Welsh, Raymond John, Jr.
2010-01-01
The purpose of this concurrent, nested, mixed-methods case study was to trace the evolution of the multigenerational success of the winningest college football coach of all time, John Gagliardi, to identify potential leadership styles, characteristics, and coaching effectiveness methods that others in a multigenerational leadership role may use.…
Professional Education in Educational Media and Technology: A 75 Year Perspective.
ERIC Educational Resources Information Center
Ely, Donald P.
1997-01-01
Describes the evolution of educational technology curricula and examines its current status. Highlights include graduate curriculum development; the National Defense Education Act; competition between school librarians and media specialists; the inclusion of computer technology; and three case studies of academic programs at Indiana University,…
Admission Policy Evolution in Emerging Professional Programs: A Case Study
ERIC Educational Resources Information Center
Holley, Paul W.
2006-01-01
Professional program admission at U.S. universities has become increasingly competitive in the last 20 years, due to enrollment caps, core class requirements, transfer course acceptance, industry draw, and the appeal of starting salaries. As the competition steadily increases, students often find methods to exploit traditional policy, resulting in…
A Tale of Two Crocoducks: Creationist Misuses of Molecular Evolution
ERIC Educational Resources Information Center
Hofmann, James R.
2014-01-01
Although some creationist objections to evolutionary biology are simplistic and thus are easily refuted, when more technical arguments become widespread it is important for science educators to explain the relevant science in a straightforward manner. An interesting case study is provided by misguided allegations about how cytochrome c data…
The Journey to Authenticity: An Analysis of Undergraduate Personal Development
ERIC Educational Resources Information Center
Scott, Meagan; Whiddon, Ashley S.; Brown, Nicholas R.; Weeks, Penny P.
2015-01-01
This instrumental case study sought to determine how collegiate-level students changed throughout a personal leadership development course. Document analysis of an archived course assignment was employed to analyze the students' perceptions of their personal leadership development. Four themes emerged from the analysis: (a) self-evolution, (b)…
Using Social Science to Improve Children's Television: An NBC Case Study.
ERIC Educational Resources Information Center
Stipp, Horst; And Others
1987-01-01
Describes the evolution and activities of the Social Science Advisory Panel at NBC (National Broadcasting Company) that brings knowledge about children and television to the production of Saturday morning children's television programs. Highlights include self-regulatory aspects of the panel, issues confronted such as violence and stereotyping,…
Specification of Computer Systems by Objectives.
ERIC Educational Resources Information Center
Eltoft, Douglas
1989-01-01
Discusses the evolution of mainframe and personal computers, and presents a case study of a network developed at the University of Iowa called the Iowa Computer-Aided Engineering Network (ICAEN) that combines Macintosh personal computers with Apollo workstations. Functional objectives are stressed as the best measure of system performance. (LRW)
French for Business: A Case Study.
ERIC Educational Resources Information Center
McCullough, Brenda
The paper discusses the development and evolution of the French for Business undergraduate language course at Oregon State University, focusing on: (1) instructor preparation; (2) course structure; (3) course content; (4) the business student as teacher and mentor; (5) cultural exchanges with French-speaking business students; (6) oral and written…
Enthalpy-Based Thermal Evolution of Loops: III. Comparison of Zero-Dimensional Models
NASA Technical Reports Server (NTRS)
Cargill, P. J.; Bradshaw, Stephen J.; Klimchuk, James A.
2012-01-01
Zero dimensional (0D) hydrodynamic models, provide a simple and quick way to study the thermal evolution of coronal loops subjected to time-dependent heating. This paper presents a comparison of a number of 0D models that have been published in the past and is intended to provide a guide for those interested in either using the old models or developing new ones. The principal difference between the models is the way the exchange of mass and energy between corona, transition region and chromosphere is treated, as plasma cycles into and out of a loop during a heating-cooling cycle. It is shown that models based on the principles of mass and energy conservation can give satisfactory results at some, or, in the case of the Enthalpy Based Thermal Evolution of Loops (EBTEL) model, all stages of the loop evolution. Empirical models can lead to low coronal densities, spurious delays between the peak density and temperature, and, for short heating pulses, overly short loop lifetimes.
ERIC Educational Resources Information Center
Labov, Jay B.
2005-01-01
The problem of misconceptions about science is not unique to evolution, of course. In the case of evolution, the problem is compounded because many students have been told that their personal belief systems will be challenged or undermined by engaging in learning about this subject. This concern underlies the angst and anger that some parents,…
Natural and Chemotherapy-Induced Clonal Evolution of Tumors.
Ibragimova, M K; Tsyganov, M M; Litviakov, N V
2017-04-01
Evolution and natural selection of tumoral clones in the process of transformation and the following carcinogenesis can be called natural clonal evolution. Its main driving factors are internal: genetic instability initiated by driver mutations and microenvironment, which enables selective pressure while forming the environment for cell transformation and their survival. We present our overview of contemporary research dealing with mechanisms of carcinogenesis in different localizations from precancerous pathologies to metastasis and relapse. It shows that natural clonal evolution establishes intratumoral heterogeneity and enables tumor progression. Tumors of monoclonal origin are of low-level intratumoral heterogeneity in the initial stages, and this increases with the size of the tumor. Tumors of polyclonal origin are of extremely high-level intratumoral heterogeneity in the initial stages and become more homogeneous when larger due to clonal expansion. In cases of chemotherapy-induced clonal evolution of a tumor, chemotherapy becomes the leading factor in treatment. The latest research shows that the impact of chemotherapy can radically increase the speed of clonal evolution and lead to new malignant and resistant clones that cause tumor metastasis. Another option of chemotherapy-induced clonal evolution is formation of a new dominant clone from a clone that was minor in the initial tumor and obtained free space due to elimination of sensitive clones by chemotherapy. As a result, in ~20% of cases, chemotherapy can stimulate metastasis and relapse of tumors due to clonal evolution. The conclusion of the overview formulates approaches to tumor treatment based on clonal evolution: in particular, precision therapy, prediction of metastasis stimulation in patients treated with chemotherapy, methods of genetic evaluation of chemotherapy efficiency and clonal-oriented treatment, and approaches to manipulating the clonal evolution of tumors are presented.
Reticulate evolution in stick insects: the case of Clonopsis (Insecta Phasmida).
Milani, Liliana; Ghiselli, Fabrizio; Pellecchia, Marco; Scali, Valerio; Passamonti, Marco
2010-08-25
Phasmids show noteworthy abilities to overcome species-specific reproductive isolation mechanisms, including hybridization, polyploidy, parthenogenesis, hybridogenesis and androgenesis. From an evolutionary standpoint, such tangled reproductive interactions lead to the complex phyletic relationships known as "reticulate evolution". Moroccan stick insects of the genus Clonopsis include one bisexual (C. felicitatis) and two closely related parthenogenetic forms (C. gallica, C. soumiae), which represent a polyploid series in chromosome number, but with apparent diploid karyotypes. Moreover, two Clonopsis strains of ameiotic males have been described, C. androgenes-35 and C. androgenes-53. As a consequence, Clonopsis stick insects may have experienced complex micro-evolutionary events, which we try to disentangle in this study. Mitochondrial cox2 analysis supports a recent divergence of Clonopsis, while AFLPs evidence genetic differentiation not linked to karyotypes, so that parthenogenetic C. gallica and C. soumiae appear to be a mix of strains of polyphyletic origin rather than single parthenogenetic species. Moreover, an admixed hybrid origin seems to be confirmed for C. androgenes. On the whole, Clonopsis is an intriguing case of reticulate evolution. Actually, complex cladogenetic events should be taken into account to explain the observed genetic structure, including diploidization of polyploid karyotypes, possibly coupled with hybridization and androgenesis. We also proposed a "working hypothesis" to account for the observed data, which deserves further studies, but fits the observed data very well.
Forecasting waste compositions: A case study on plastic waste of electronic display housings.
Peeters, Jef R; Vanegas, Paul; Kellens, Karel; Wang, Feng; Huisman, Jaco; Dewulf, Wim; Duflou, Joost R
2015-12-01
Because of the rapid succession of technological developments, the architecture and material composition of many products used in daily life have drastically changed over the last decades. As a result, well-adjusted recycling technologies need to be developed and installed to cope with these evolutions. This is essential to guarantee continued access to materials and to reduce the ecological impact of our material consumption. However, limited information is currently available on the material composition of arising waste streams and even less on how these waste streams will evolve. Therefore, this paper presents a methodology to forecast trends in the material composition of waste streams. To demonstrate the applicability and value of the proposed methodology, it is applied to forecast the evolution of plastic housing waste from flat panel display (FPD) TVs, FPD monitors, cathode ray tube (CRT) TVs and CRT monitors. The results of the presented forecasts indicate that a wide variety of plastic types and additives, such as flame retardants, are found in housings of similar products. The presented case study demonstrates that the proposed methodology allows the identification of trends in the evolution of the material composition of waste streams. In addition, it is demonstrated that the recycling sector will need to adapt its processes to deal with the increasing complexity of plastics of end-of-life electronic displays while respecting relevant directives. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reticulate evolution in stick insects: the case of Clonopsis (Insecta Phasmida)
2010-01-01
Background Phasmids show noteworthy abilities to overcome species-specific reproductive isolation mechanisms, including hybridization, polyploidy, parthenogenesis, hybridogenesis and androgenesis. From an evolutionary standpoint, such tangled reproductive interactions lead to the complex phyletic relationships known as "reticulate evolution". Moroccan stick insects of the genus Clonopsis include one bisexual (C. felicitatis) and two closely related parthenogenetic forms (C. gallica, C. soumiae), which represent a polyploid series in chromosome number, but with apparent diploid karyotypes. Moreover, two Clonopsis strains of ameiotic males have been described, C. androgenes-35 and C. androgenes-53. As a consequence, Clonopsis stick insects may have experienced complex micro-evolutionary events, which we try to disentangle in this study. Results Mitochondrial cox2 analysis supports a recent divergence of Clonopsis, while AFLPs evidence genetic differentiation not linked to karyotypes, so that parthenogenetic C. gallica and C. soumiae appear to be a mix of strains of polyphyletic origin rather than single parthenogenetic species. Moreover, an admixed hybrid origin seems to be confirmed for C. androgenes. Conclusion On the whole, Clonopsis is an intriguing case of reticulate evolution. Actually, complex cladogenetic events should be taken into account to explain the observed genetic structure, including diploidization of polyploid karyotypes, possibly coupled with hybridization and androgenesis. We also proposed a "working hypothesis" to account for the observed data, which deserves further studies, but fits the observed data very well. PMID:20738851
Experimental study on the evolution of Peregrine breather with uniform-depth adverse currents
NASA Astrophysics Data System (ADS)
Liao, B.; Ma, Y.; Ma, X.; Dong, G.
2018-05-01
A series of laboratory experiments were performed to study the evolution of Peregrine breather (PB) in a wave flume in finite depth, and wave trains were initially generated in a region of quiescent water and then propagated into an adverse current region for which the current velocity strength gradually increased from zero to an approximately stable value. The PB is often considered as a prototype of oceanic freak waves that can focus wave energy into a single wave packet. In the experiment, the cases were selected with the relative water depths k0h (k0 is the wave number in quiescent water and h is the water depth) varying from 3.11 through 8.17, and the initial wave steepness k0a0 (a0 is the background wave amplitude) ranges between 0.065 and 0.120. The experimental results show the persistence of the breather evolution dynamics even in the presence of strong opposing currents. We have shown that the characteristic spectrum of the PB persists even on strong currents, thus making it a viable characteristic for prediction of freak waves. It was also found that the adverse currents tend to shift the focusing point upstream compared to the cases without currents. Furthermore, it was found that uniform-depth adverse currents can reduce the breather extension in time domain.
NASA Astrophysics Data System (ADS)
Amini, Amirhossein; Homsy, G. M.
2017-04-01
We study the evolution of the profile of a two-dimensional volatile liquid droplet that is evaporating on a flat heated substrate. We adopt a one-sided model with thermal control that, together with the lubrication approximation, results in an evolution equation for the local height of the droplet. Without requiring any presumption for the shape of the drop, the problem is formulated for the two modes of evaporation: a pinned contact line and a moving contact line with fixed contact angle. Numerical solutions are provided for each case. For the pinned contact line case, we observe that after a time interval the contact angle dynamics become nonlinear and, interestingly, the local contact angle goes to zero in advance of total evaporation of the drop. For the case of a moving contact line, in which the singularity at the contact line is treated by a numerical slip model, we find that the droplet nearly keeps its initial circular shape and that the contact line recedes with constant speed.
But it's "Only a Theory!" Responding to Evolution Doubt, Distortion, and Denial.
NASA Astrophysics Data System (ADS)
Miller, K. R.
2014-12-01
Nearly 90 years after the infamous Scopes "monkey trial," resistance to the theory of evolution seems as persistent as ever in American life. Bills endorsing "critical analysis" of the evolution "controversy" or supporting "academic freedom" to question evolution are routinely introduced in state legislatures. Presidential candidates find evolution denial to be a winning strategy, and nearly half of all Americans reject any suggestion that evolution played a role in human origins. What's the best way to respond to such challenges, mingled as they are with elements of cultural warfare, resentment of academic elites, and religious doctrine? As a veteran of the "evolution wars," I will describe a strategy that actually uses each of these lines of attack to make a case for evolution that appeals to popular concern about the honesty, motivation, and validity of the scientific enterprise itself.
Le Scanff, J; Gaultier, J B; Durand, D Vital; Durieu, I; Celard, M; Benito, Y; Vandenesch, F; Rousset, H
2008-11-01
PCR can be used to detect T. whipplei (Tw) in samples from variable tissue types and body fluids. We report clinical, evolutive characteristics and final diagnosis in patients with positive Tw PCR assay. Retrospective study of Tw PCR realized since 10years in a microbiology laboratory. Twenty-five Tw PCR assays were positive among 200 realized. Diagnosis was not confirmed in six cases. One patient was missing for follow up. Eighteen patients presented with Whipple's disease. Among these 18 patients, 14 had a classic Whipple's disease, three patients presented an endocarditis and one patient isolated neurological manifestations. Ten patients presented fever, seven a weight loss and 12 joint involvement. Four patients presented cutaneous manifestations, only six had gastrointestinal symptoms. Neurological involvement was reported in five cases, pulmonary symptoms in four cases, cardiac involvement in six cases and ocular signs in two cases. Anemia was reported in four patients and elevated levels of acute-phase reactants in 14 cases. Positive predictive value of Tw PCR for Whipple's disease diagnosis was 75%. Thirteen patients had a good evolution with antibiotics. Three patients presented recurrence and two cases with cardiovascular involvement died. Whipple's disease is rare but often mentioned in internist experience. The diagnosis should be every time confirmed. Tw PCR assay is an important diagnostic tool but is not sufficient to establish the diagnosis and must be interpreted with histopathology and immunohistochemical testing results.
Natural history collections as windows on evolutionary processes.
Holmes, Michael W; Hammond, Talisin T; Wogan, Guinevere O U; Walsh, Rachel E; LaBarbera, Katie; Wommack, Elizabeth A; Martins, Felipe M; Crawford, Jeremy C; Mack, Katya L; Bloch, Luke M; Nachman, Michael W
2016-02-01
Natural history collections provide an immense record of biodiversity on Earth. These repositories have traditionally been used to address fundamental questions in biogeography, systematics and conservation. However, they also hold the potential for studying evolution directly. While some of the best direct observations of evolution have come from long-term field studies or from experimental studies in the laboratory, natural history collections are providing new insights into evolutionary change in natural populations. By comparing phenotypic and genotypic changes in populations through time, natural history collections provide a window into evolutionary processes. Recent studies utilizing this approach have revealed some dramatic instances of phenotypic change over short timescales in response to presumably strong selective pressures. In some instances, evolutionary change can be paired with environmental change, providing a context for potential selective forces. Moreover, in a few cases, the genetic basis of phenotypic change is well understood, allowing for insight into adaptive change at multiple levels. These kinds of studies open the door to a wide range of previously intractable questions by enabling the study of evolution through time, analogous to experimental studies in the laboratory, but amenable to a diversity of species over longer timescales in natural populations. © 2016 John Wiley & Sons Ltd.
Natural history collections as windows on evolutionary processes
Holmes, Michael W.; Hammond, Talisin T.; Wogan, Guinevere O.U.; Walsh, Rachel E.; LaBarbera, Katie; Wommack, Elizabeth A.; Martins, Felipe M.; Crawford, Jeremy C.; Mack, Katya L.; Bloch, Luke M.; Nachman, Michael W.
2016-01-01
Natural history collections provide an immense record of biodiversity on Earth. These repositories have traditionally been used to address fundamental questions in biogeography, systematics, and conservation. However, they also hold the potential for studying evolution directly. While some of the best direct observations of evolution have come from long-term field studies or from experimental studies in the lab, natural history collections are providing new insights into evolutionary change in natural populations. By comparing phenotypic and genotypic changes in populations through time, natural history collections provide a window into evolutionary processes. Recent studies utilizing this approach have revealed some dramatic instances of phenotypic change over short time scales in response to presumably strong selective pressures. In some instances evolutionary change can be paired with environmental change, providing a context for potential selective forces. Moreover, in a few cases, the genetic basis of phenotypic change is well understood, allowing for insight into adaptive change at multiple levels. These kinds of studies open the door to a wide range of previously intractable questions by enabling the study of evolution through time, analogous to experimental studies in the laboratory, but amenable to a diversity of species over longer timescales in natural populations. PMID:26757135
Comparison of bone and gallium-67 imaging in heroin users' arthritis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bittini, A.; Dominguez, P.L.; Martinez Pueyo, M.L.
1985-12-01
Nine cases of primary septic arthritis in heroin addicts are reported. Fibrous and cartilaginous joint localizations are prominent (four sternoarticular, three sacroiliac, one sacroccocygeal, and one knee). In all patients but one, conventional roentgenographic studies were negative. In six cases the causative agent was Staphylococcus aureus and in two cases, Candida albicans. In one case, it could not be determined. Our clinical observations, correlating the radioisotopic studies, suggest that in the first week of evolution the diagnostic procedure of choice is the (67Ga)citrate scintigram. Indeed, during this period the (99Tc)MDP bone scan is usually negative. The early demonstration and localizationmore » of the disease, together with the rapid bacteriologic diagnosis, allows for an early and more appropriate antibiotic treatment and better results.« less
Juskevicius, D; Lorber, T; Gsponer, J; Perrina, V; Ruiz, C; Stenner-Liewen, F; Dirnhofer, S; Tzankov, A
2016-12-01
Recurrences of diffuse large B-cell lymphomas (DLBCL) result in significant morbidity and mortality, but their underlying genetic and biological mechanisms are unclear. Clonal relationship in DLBCL relapses so far is mostly addressed by the investigation of immunoglobulin (IG) rearrangements, therefore, lacking deeper insights into genome-wide lymphoma evolution. We studied mutations and copy number aberrations in 20 paired relapsing and 20 non-relapsing DLBCL cases aiming to test the clonal relationship between primaries and relapses to track tumors' genetic evolution and to investigate the genetic background of DLBCL recurrence. Three clonally unrelated DLBCL relapses were identified (15%). Also, two distinct patterns of genetic evolution in clonally related relapses were detected as follows: (1) early-divergent/branching evolution from a common progenitor in 6 patients (30%), and (2) late-divergent/linear progression of relapses in 11 patients (65%). Analysis of recurrent genetic events identified potential early drivers of lymphomagenesis (KMT2D, MYD88, CD79B and PIM1). The most frequent relapse-specific events were additional mutations in KMT2D and alterations of MEF2B. SOCS1 mutations were exclusive to non-relapsing DLBCL, whereas primaries of relapsing DLBCL more commonly displayed gains of 10p15.3-p12.1 containing the potential oncogenes PRKCQ, GATA3, MLLT10 and ABI1. Altogether, our study expands the knowledge on clonal relationship, genetic evolution and mutational basis of DLBCL relapses.
ERIC Educational Resources Information Center
Doran, Erin E.
2015-01-01
This study evaluates the recent move toward Tier One by the University of Texas at San Antonio (UTSA) in light of its historical commitment to serve the largely Hispanic population of South Texas. Among the largest Hispanic-serving universities, UTSA provides a useful case study of this type of institution both historically and at the…
ERIC Educational Resources Information Center
Kojour, Masoud Kermani; Heirati, Javad Kia
2015-01-01
This study was framed in the sociocultural theory to look into the evolution of L2 learners' beliefs about the general English course during a term. One hundred ninety-eight male and female university students and their general English course teacher were randomly selected as the participants of the study. Data were gathered through the…
NASA Astrophysics Data System (ADS)
Endo, S.; Fridlind, A. M.; Lin, W.; Vogelmann, A. M.; Toto, T.; Liu, Y.
2013-12-01
Three cases of boundary layer clouds are analyzed in the FAst-physics System TEstbed and Research (FASTER) project, based on continental boundary-layer-cloud observations during the RACORO Campaign [Routine Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations] at the ARM Climate Research Facility's Southern Great Plains (SGP) site. The three 60-hour case study periods are selected to capture the temporal evolution of cumulus, stratiform, and drizzling boundary-layer cloud systems under a range of conditions, intentionally including those that are relatively more mixed or transitional in nature versus being of a purely canonical type. Multi-modal and temporally varying aerosol number size distribution profiles are derived from aircraft observations. Large eddy simulations (LESs) are performed for the three case study periods using the GISS Distributed Hydrodynamic Aerosol and Radiative Modeling Application (DHARMA) model and the WRF-FASTER model, which is the Weather Research and Forecasting (WRF) model implemented with forcing ingestion and other functions to constitute a flexible LES. The two LES models commonly capture the significant transitions of cloud-topped boundary layers in the three periods: diurnal evolution of cumulus layers repeating over multiple days, nighttime evolution/daytime diminution of thick stratus, and daytime breakup of stratus and stratocumulus clouds. Simulated transitions of thermodynamic structures of the cloud-topped boundary layers are examined by balloon-borne soundings and ground-based remote sensors. Aircraft observations are then used to statistically evaluate the predicted cloud droplet number size distributions under varying aerosol and cloud conditions. An ensemble approach is used to refine the model configuration for the combined use of observations with parallel LES and single-column model simulations. See Lin et al. poster for single-column model investigation.
Genetic-evolution-based optimization methods for engineering design
NASA Technical Reports Server (NTRS)
Rao, S. S.; Pan, T. S.; Dhingra, A. K.; Venkayya, V. B.; Kumar, V.
1990-01-01
This paper presents the applicability of a biological model, based on genetic evolution, for engineering design optimization. Algorithms embodying the ideas of reproduction, crossover, and mutation are developed and applied to solve different types of structural optimization problems. Both continuous and discrete variable optimization problems are solved. A two-bay truss for maximum fundamental frequency is considered to demonstrate the continuous variable case. The selection of locations of actuators in an actively controlled structure, for minimum energy dissipation, is considered to illustrate the discrete variable case.
Ord, Terry J.; Garcia-Porta, Joan
2012-01-01
Complex social communication is expected to evolve whenever animals engage in many and varied social interactions; that is, sociality should promote communicative complexity. Yet, informal comparisons among phylogenetically independent taxonomic groups seem to cast doubt on the putative role of social factors in the evolution of complex communication. Here, we provide a formal test of the sociality hypothesis alongside alternative explanations for the evolution of communicative complexity. We compiled data documenting variations in signal complexity among closely related species for several case study groups—ants, frogs, lizards and birds—and used new phylogenetic methods to investigate the factors underlying communication evolution. Social factors were only implicated in the evolution of complex visual signals in lizards. Ecology, and to some degree allometry, were most likely explanations for complexity in the vocal signals of frogs (ecology) and birds (ecology and allometry). There was some evidence for adaptive evolution in the pheromone complexity of ants, although no compelling selection pressure was identified. For most taxa, phylogenetic null models were consistently ranked above adaptive models and, for some taxa, signal complexity seems to have accumulated in species via incremental or random changes over long periods of evolutionary time. Becoming social presumably leads to the origin of social communication in animals, but its subsequent influence on the trajectory of signal evolution has been neither clear-cut nor general among taxonomic groups. PMID:22641820
From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats
Jones, Gareth; Teeling, Emma C.; Rossiter, Stephen J.
2013-01-01
Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a “birth-and death” evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences. PMID:23755015
Ochoa, David; García-Gutiérrez, Ponciano; Juan, David; Valencia, Alfonso; Pazos, Florencio
2013-01-27
A widespread family of methods for studying and predicting protein interactions using sequence information is based on co-evolution, quantified as similarity of phylogenetic trees. Part of the co-evolution observed between interacting proteins could be due to co-adaptation caused by inter-protein contacts. In this case, the co-evolution is expected to be more evident when evaluated on the surface of the proteins or the internal layers close to it. In this work we study the effect of incorporating information on predicted solvent accessibility to three methods for predicting protein interactions based on similarity of phylogenetic trees. We evaluate the performance of these methods in predicting different types of protein associations when trees based on positions with different characteristics of predicted accessibility are used as input. We found that predicted accessibility improves the results of two recent versions of the mirrortree methodology in predicting direct binary physical interactions, while it neither improves these methods, nor the original mirrortree method, in predicting other types of interactions. That improvement comes at no cost in terms of applicability since accessibility can be predicted for any sequence. We also found that predictions of protein-protein interactions are improved when multiple sequence alignments with a richer representation of sequences (including paralogs) are incorporated in the accessibility prediction.
NASA Astrophysics Data System (ADS)
Song, Mei-Xia; Lin, Zhen-Quan; Li, Xiao-Dong; Ke, Jian-Hong
2010-06-01
We propose an aggregation evolution model of two-species (A- and B-species) aggregates to study the prevalent aggregation phenomena in social and economic systems. In this model, A- and B-species aggregates perform self-exchange-driven growths with the exchange rate kernels K (k,l) = Kkl and L(k,l) = Lkl, respectively, and the two species aggregates perform self-birth processes with the rate kernels J1(k) = J1k and J2(k) = J2k, and meanwhile the interaction between the aggregates of different species A and B causes a lose-lose scheme with the rate kernel H(k,l) = Hkl. Based on the mean-field theory, we investigated the evolution behaviors of the two species aggregates to study the competitions among above three aggregate evolution schemes on the distinct initial monomer concentrations A0 and B0 of the two species. The results show that the evolution behaviors of A- and B-species are crucially dominated by the competition between the two self-birth processes, and the initial monomer concentrations A0 and B0 play important roles, while the lose-lose scheme play important roles in some special cases.
Nonlinear dynamic evolution and control in CCFN with mixed attachment mechanisms
NASA Astrophysics Data System (ADS)
Wang, Jianrong; Wang, Jianping; Han, Dun
2017-01-01
In recent years, wireless communication plays an important role in our lives. Cooperative communication, is used by a mobile station with single antenna to share with each other forming a virtual MIMO antenna system, will become a development with a diversity gain for wireless communication in tendency future. In this paper, a fitness model of evolution network based on complex networks with mixed attachment mechanisms is devised in order to study an actual network-CCFN (cooperative communication fitness network). Firstly, the evolution of CCFN is given by four cases with different probabilities, and the rate equations of nodes degree are presented to analyze the evolution of CCFN. Secondly, the degree distribution is analyzed by calculating the rate equation and numerical simulation with the examples of four fitness distributions such as power law, uniform fitness distribution, exponential fitness distribution and Rayleigh fitness distribution. Finally, the robustness of CCFN is studied by numerical simulation with four fitness distributions under random attack and intentional attack to analyze the effects of degree distribution, average path length and average degree. The results of this paper offers insights for building CCFN systems in order to program communication resources.
Gao, Feng; Song, Weibo; Katz, Laura A.
2014-01-01
In most lineages, diversity among gene family members results from gene duplication followed by sequence divergence. Because of the genome rearrangements during the development of somatic nuclei, gene family evolution in ciliates involves more complex processes. Previous work on the ciliate Chilodonella uncinata revealed that macronuclear β-tubulin gene family members are generated by alternative processing, in which germline regions are alternatively used in multiple macronuclear chromosomes. To further study genome evolution in this ciliate, we analyzed its transcriptome and found that: 1) alternative processing is extensive among gene families; and 2) such gene families are likely to be C. uncinata-specific. We characterized additional macronuclear and micronuclear copies of one candidate alternatively processed gene family -- a protein kinase domain containing protein (PKc) -- from two C. uncinata strains. Analysis of the PKc sequences reveals: 1) multiple PKc gene family members in the macronucleus share some identical regions flanked by divergent regions; and 2) the shared identical regions are processed from a single micronuclear chromosome. We discuss analogous processes in lineages across the eukaryotic tree of life to provide further insights on the impact of genome structure on gene family evolution in eukaryotes. PMID:24749903
Hou, Beiwei; Luo, Jing; Zhang, Yusi; Niu, Zhitao; Xue, Qingyun; Ding, Xiaoyu
2017-01-01
The genus Dendrobium was used as a case study to elucidate the evolutionary history of Orchidaceae in the Sino-Japanese Floristic Region (SJFR) and Southeast Asia region. These evolutionary histories remain largely unknown, including the temporal and spatial distribution of the evolutionary events. The present study used nuclear and plastid DNA to determine the phylogeography of Dendrobium officinale and four closely related taxa. Plastid DNA haplotype and nuclear data were shown to be discordant, suggesting reticulate evolution drove the species’ diversification. Rapid radiation and genetic drift appeared to drive the evolution of D. tosaense and D. flexicaule, whereas introgression or hybridization might have been involved in the evolution of D. scoriarum and D. shixingense. The phylogeographical structure of D. officinale revealed that core natural distribution regions might have served as its glacial refuges. In recent years, human disturbances caused its artificial migration and population extinction. The five taxa may have originated from the Nanling Mountains and the Yungui Plateau and then migrated northward or eastward. After the initial iteration expansion, D. officinale populations appeared to experience the regional evolutionary patterns in different regions and follow the sequential or rapid decline in gene exchange. PMID:28262789
Team effectiveness in academic medical libraries: a multiple case study*
Russo Martin, Elaine
2006-01-01
Objectives: The objective of this study is to apply J. Richard Hackman's framework on team effectiveness to academic medical library settings. Methods: The study uses a qualitative, multiple case study design, employing interviews and focus groups to examine team effectiveness in three academic medical libraries. Another site was selected as a pilot to validate the research design, field procedures, and methods to be used with the cases. In all, three interviews and twelve focus groups, with approximately seventy-five participants, were conducted at the case study libraries. Findings: Hackman identified five conditions leading to team effectiveness and three outcomes dimensions that defined effectiveness. The participants in this study identified additional characteristics of effectiveness that focused on enhanced communication, leadership personality and behavior, and relationship building. The study also revealed an additional outcome dimension related to the evolution of teams. Conclusions: Introducing teams into an organization is not a trivial matter. Hackman's model of effectiveness has implications for designing successful library teams. PMID:16888659
NASA Astrophysics Data System (ADS)
Walter, Emily Marie
This study investigated the influence of pedagogical content knowledge (PCK) for teaching macroevolution on non-science majors' knowledge of macroevolution and evolution acceptance. The nature and sources of an experienced faculty member's PCK and instruction as enacted PCK (Park & Oliver, 2008) were examined to consider the influence of these components on students' knowledge of macroevolution and evolution acceptance. The study used a mixed methods approach to understand how PCK influences student outcomes, and is one of the first to examine the influence of PCK on student outcomes at the post-secondary level. In addition, the study is one of few to document a significant relationship between knowledge of evolution and evolution acceptance, including how instruction influenced these outcomes. The case selected for study was a general education biology class: 270 students and their instructor. To examine the nature and sources of the instructor's PCK for teaching macroevolution, the course was observed in its entirety, the instructor was interviewed before, during, and after the evolution unit, and artifacts were collected from the evolution unit. Interview and observational protocols for the instructor were developed based on the Magnussson, Kracjik, & Borko (1999) model of PCK. The instructor was found to have deep knowledge of learners, and this knowledge in turn informed the other components of her PCK. Her knowledge of learners was built through reflecting on student exam outcomes, referencing the pedagogical literature, interactions with students, and discussions with colleagues. These findings have implications for faculty professional development. The influence of the course was examined both quantitatively and qualitatively. Students were surveyed using the Measure of Understanding of Macroevolution (Nadelson & Southerland, 2010a) the Measure of Acceptance of the Theory of Evolution (Rutledge & Warden, 1999, 2007). From pre- to post-test, students became significantly more accepting of evolution (p < .0001) and made significant gains in understanding macroevolution ( p < .0001). Knowledge of macroevolution and evolution acceptance were also significantly correlated (r[268] = .47, p < .01). Twelve students initially scoring low on both instruments also interviewed to examine how the instruction influenced their responses on the instruments. Nine of the students became more accepting of evolution, which they attributed to learning about the volume of evidence for evolution (especially transitional fossils) and learning about the history of life. These findings have important implications for evolution education policy and practice at the post-secondary level.
A systemic approach for modeling biological evolution using Parallel DEVS.
Heredia, Daniel; Sanz, Victorino; Urquia, Alfonso; Sandín, Máximo
2015-08-01
A new model for studying the evolution of living organisms is proposed in this manuscript. The proposed model is based on a non-neodarwinian systemic approach. The model is focused on considering several controversies and open discussions about modern evolutionary biology. Additionally, a simplification of the proposed model, named EvoDEVS, has been mathematically described using the Parallel DEVS formalism and implemented as a computer program using the DEVSLib Modelica library. EvoDEVS serves as an experimental platform to study different conditions and scenarios by means of computer simulations. Two preliminary case studies are presented to illustrate the behavior of the model and validate its results. EvoDEVS is freely available at http://www.euclides.dia.uned.es. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Zhang, Linsheng; Znoyko, Iya; Costa, Luciano J; Conlin, Laura K; Daber, Robert D; Self, Sally E; Wolff, Daynna J
2011-12-01
Chronic lymphocytic leukemia (CLL) is a clinically heterogeneous disease. The methods currently used for monitoring CLL and determining conditions for treatment are limited in their ability to predict disease progression, patient survival, and response to therapy. Although clonal diversity and the acquisition of new chromosomal abnormalities during the disease course (clonal evolution) have been associated with disease progression, their prognostic potential has been underappreciated because cytogenetic and fluorescence in situ hybridization (FISH) studies have a restricted ability to detect genomic abnormalities and clonal evolution. We hypothesized that whole genome analysis using high resolution single nucleotide polymorphism (SNP) microarrays would be useful to detect diversity and infer clonal evolution to offer prognostic information. In this study, we used the Infinium Omni1 BeadChip (Illumina, San Diego, CA) array for the analysis of genetic variation and percent mosaicism in 25 non-selected CLL patients to explore the prognostic value of the assessment of clonal diversity in patients with CLL. We calculated the percentage of mosaicism for each abnormality by applying a mathematical algorithm to the genotype frequency data and by manual determination using the Simulated DNA Copy Number (SiDCoN) tool, which was developed from a computer model of mosaicism. At least one genetic abnormality was identified in each case, and the SNP data was 98% concordant with FISH results. Clonal diversity, defined as the presence of two or more genetic abnormalities with differing percentages of mosaicism, was observed in 12 patients (48%), and the diversity correlated with the disease stage. Clonal diversity was present in most cases of advanced disease (Rai stages III and IV) or those with previous treatment, whereas 9 of 13 patients without detected clonal diversity were asymptomatic or clinically stable. In conclusion, SNP microarray studies with simultaneous evaluation of genomic alterations and mosaic distribution of clones can be used to assess apparent clonal evolution via analysis of clonal diversity. Since clonal evolution in CLL is strongly correlated with disease progression, whole genome SNP microarray analysis provides a new comprehensive and reliable prognostic tool for CLL patients. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bravo, Paulina; Cofré, Hernán
2016-11-01
This work explores how pedagogical content knowledge (PCK) on evolution was modified by two biology teachers who participated in a professional development programme (PDP) that included a subsequent follow-up in the classroom. The PDP spanned a semester and included activities such as content updates, collaborative lesson planning, and the presentation of planned lessons. In the follow-up part, the lessons were videotaped and analysed, identifying strategies, activities, and conditions based on student learning about the theory of evolution. Data were collected in the first round with an interview before the training process, identifying these teachers' initial content representation (CoRe) for evolution. Then, a group interview was conducted after the lessons, and, finally, an interview of stimulated recall with each teacher was conducted regarding the subject taught to allow teachers to reflect on their practice (final CoRe). This information was analysed by the teachers and the researchers, reflecting on the components of the PCK, possible changes, and the rationale behind their actions. The results show that teachers changed their beliefs and knowledge about the best methods and strategies to teach evolution, and about students' learning obstacles and misconceptions on evolution. They realised how a review of their own practices promotes this transformation.
Cortázar, O D; Megía-Macías, A; Vizcaíno-de-Julián, A
2013-09-01
Time resolved electron temperature and density measurements during the decay stage in a hydrogen electron cyclotron resonance (ECR) plasma are presented for a resonance and off-resonance magnetic field configurations. The measurements are conducted on a ECR plasma generator excited at 2.45 GHz denominated test-bench for ion-sources plasma studies at ESS Bilbao. The plasma parameters evolution is studied by Langmuir probe diagnostic with synchronized sample technique developed for repetitive pulsed plasmas with a temporal resolution of 200 ns in typical decay processes of about 40 μs. An afterglow transient is clearly observed in the reflected microwave power signal from the plasma. Simultaneously, the electron temperature evolution shows rebounding peaks that may be related to the interplay between density drop and microwave coupling with deep impact on the Electron Energy Distribution Function. The correlation of such structures with the plasma absorbed power and the coupling quality is also reported.
The dynamic evolution of social ties and user-generated content: a case study on a Douban group
NASA Astrophysics Data System (ADS)
Shan, Siqing; Ren, Jie; Li, Cangyan
2017-11-01
As platforms based on user-generated content (UGC), social media platforms emphasise the social ties between users and user participation, which promote the communication and propagation of ideas and help to build and maintain relationships. However, many researchers have studied only predefined social networks, such as academic social networks. We believe that there are certain characteristics associated with the network's UGC worth evaluating. We conducted research in communities in which content attracts discussion and new members and examined the evolution patterns of social and content networks in a topic-oriented Douban group. Datasets of user and content information in communities of interest were collected through web crawler software. Networks based on social and content ties were constructed and analysed. We chose scale, density, centrality, average path length and cluster coefficient as measures for exploring the evolution and correlation of both types of networks. These findings are valuable for social media marketing and helpful in directing and controlling public opinion.
Musammil, N M; Porsezian, K; Subha, P A; Nithyanandan, K
2017-02-01
We investigate the dynamics of vector dark solitons propagation using variable coefficient coupled nonlinear Schrödinger (Vc-CNLS) equation. The dark soliton propagation and evolution dynamics in the inhomogeneous system are studied analytically by employing the Hirota bilinear method. It is apparent from our asymptotic analysis that the collision between the dark solitons is elastic in nature. The various inhomogeneous effects on the evolution and interaction between dark solitons are explored, with a particular emphasis on nonlinear tunneling. It is found that the tunneling of the soliton depends on a condition related to the height of the barrier and the amplitude of the soliton. The intensity of the tunneling soliton either forms a peak or a valley, thus retaining its shape after tunneling. For the case of exponential background, the soliton tends to compress after tunneling through the barrier/well. Thus, a comprehensive study of dark soliton pulse evolution and propagation dynamics in Vc-CNLS equation is presented in the paper.
Ragsdale, Erik J.; Baldwin, James G.
2010-01-01
Modern morphology-based systematics, including questions of incongruence with molecular data, emphasizes analysis over similarity criteria to assess homology. Yet detailed examination of a few key characters, using new tools and processes such as computerized, three-dimensional ultrastructural reconstruction of cell complexes, can resolve apparent incongruence by re-examining primary homologies. In nematodes of Tylenchomorpha, a parasitic feeding phenotype is thus reconciled with immediate free-living outgroups. Closer inspection of morphology reveals phenotypes congruent with molecular-based phylogeny and points to a new locus of homology in mouthparts. In nematode models, the study of individually homologous cells reveals a conserved modality of evolution among dissimilar feeding apparati adapted to divergent lifestyles. Conservatism of cellular components, consistent with that of other body systems, allows meaningful comparative morphology in difficult groups of microscopic organisms. The advent of phylogenomics is synergistic with morphology in systematics, providing an honest test of homology in the evolution of phenotype. PMID:20106846
Rodrigues, Ana Paula; Sousa-Uva, Mafalda; Fonseca, Rita; Marques, Sara; Pina, Nuno; Matias-Dias, Carlos
2017-11-17
Quantify, for both genders, the correlation between the depression incidence rate and the unemployment rate in Portugal between 1995 and 2013. An ecological study was developed to correlate the evolution of the depression incidence rates estimated by the General Practitioner Sentinel Network and the annual unemployment rates provided by the National Statistical Institute in official publications. There was a positive correlation between the depression incidence rate and the unemployment rate in Portugal, which was significant only for males (R2 = 0.83, p = 0.04). For this gender, an increase of 37 new cases of depression per 100,000 inhabitants was estimated for each 1% increase in the unemployment rate between 1995 and 2013. Although the study design does not allow the establishment of a causal association between unemployment and depression, the results suggest that the evolution of unemployment in Portugal may have had a significant impact on the level of mental health of the Portuguese, especially among men.
Understanding semantic mapping evolution by observing changes in biomedical ontologies.
dos Reis, Julio Cesar; Pruski, Cédric; Da Silveira, Marcos; Reynaud-Delaître, Chantal
2014-02-01
Knowledge Organization Systems (KOSs) are extensively used in the biomedical domain to support information sharing between software applications. KOSs are proposed covering different, but overlapping subjects, and mappings indicate the semantic relation between concepts from two KOSs. Over time, KOSs change as do the mappings between them. This can result from a new discovery or a revision of existing knowledge which includes corrections of concepts or mappings. Indeed, changes affecting KOS entities may force the underline mappings to be updated in order to ensure their reliability over time. To tackle this open research problem, we study how mappings are affected by KOS evolution. This article presents a detailed descriptive analysis of the impact that changes in KOS have on mappings. As a case study, we use the official mappings established between SNOMED CT and ICD-9-CM from 2009 to 2011. Results highlight factors according to which KOS changes in varying degrees influence the evolution of mappings. Copyright © 2013 Elsevier Inc. All rights reserved.
Evolution of biological complexity
Adami, Christoph; Ofria, Charles; Collier, Travis C.
2000-01-01
To make a case for or against a trend in the evolution of complexity in biological evolution, complexity needs to be both rigorously defined and measurable. A recent information-theoretic (but intuitively evident) definition identifies genomic complexity with the amount of information a sequence stores about its environment. We investigate the evolution of genomic complexity in populations of digital organisms and monitor in detail the evolutionary transitions that increase complexity. We show that, because natural selection forces genomes to behave as a natural “Maxwell Demon,” within a fixed environment, genomic complexity is forced to increase. PMID:10781045
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnov, Kirill; Shtanov, Yuri, E-mail: kirill.krasnov@nottingham.ac.uk, E-mail: shtanov@bitp.kiev.ua
We study linear cosmological perturbations in a previously introduced family of deformations of general relativity characterized by the absence of new degrees of freedom. The homogeneous and isotropic background in this class of theories is unmodified and is described by the usual Friedmann equations. The theory of cosmological perturbations is modified and the relevant deformation parameter has the dimension of length. Gravitational perturbations of the scalar type can be described by a certain relativistic potential related to the matter perturbations just as in general relativity. A system of differential equations describing the evolution of this potential and of the stress-energymore » density perturbations is obtained. We find that the evolution of scalar perturbations proceeds with a modified effective time-dependent speed of sound, which, contrary to the case of general relativity, does not vanish even at the matter-dominated stage. In a broad range of values of the length parameter controlling the deformation, a specific transition from the regime of modified gravity to the regime of general relativity in the evolution of scalar perturbations takes place during the radiation domination. In this case, the resulting power spectrum of perturbations in radiation and dark matter is suppressed on the comoving spatial scales that enter the Hubble radius before this transition. We estimate the bounds on the deformation parameter for which this suppression does not lead to observable consequences. Evolution of scalar perturbations at the inflationary stage is modified but very slightly and the primordial spectrum generated during inflation is not noticeably different from the one obtained in general relativity.« less
NASA Astrophysics Data System (ADS)
Kral, Q.; Thébault, P.; Augereau, J.-C.; Boccaletti, A.; Charnoz, S.
2014-12-01
LIDT-DD is a new hybrid model coupling the collisional and dynamical evolution in debris discs in a self-consistent way. It has been developed in a way that allows to treat a large number of different astrophysical cases where collisions and dynamics have an important role. This interplay was often totally neglected in previous studies whereas, even for the simplest configurations, the real physics of debris discs imposes strong constraints and interactions between dynamics and collisions. After presenting the LIDT-DD model, we will describe the evolution of violent stochastic collisional events with this model. These massive impacts have been invoked as a possible explanation for some debris discs displaying pronounced azimuthal asymmetries or having a luminosity excess exceeding that expected for systems at collisional steady-state. So far, no thorough modelling of the consequences of such stochastic events has been carried out, mainly because of the extreme numerical challenge of coupling the dynamical and collisional evolution of the released dust. We follow the collisional and dynamical evolution of dust released after the breakup of a Ceres-sized body at 6 AU from its central star. We investigate the duration, magnitude and spatial structure of the signature left by such a violent event, as well as its observational detectability. We use the GRaTer package to estimate the system's luminosity at different wavelengths and derive synthetic images for the SPHERE/VLT and MIRI/JWST instruments.
Selmecki, Anna M.; Dulmage, Keely; Cowen, Leah E.; Anderson, James B.; Berman, Judith
2009-01-01
The evolution of drug resistance is an important process that affects clinical outcomes. Resistance to fluconazole, the most widely used antifungal, is often associated with acquired aneuploidy. Here we provide a longitudinal study of the prevalence and dynamics of gross chromosomal rearrangements, including aneuploidy, in the presence and absence of fluconazole during a well-controlled in vitro evolution experiment using Candida albicans, the most prevalent human fungal pathogen. While no aneuploidy was detected in any of the no-drug control populations, in all fluconazole-treated populations analyzed an isochromosome 5L [i(5L)] appeared soon after drug exposure. This isochromosome was associated with increased fitness in the presence of drug and, over time, became fixed in independent populations. In two separate cases, larger supernumerary chromosomes composed of i(5L) attached to an intact chromosome or chromosome fragment formed during exposure to the drug. Other aneuploidies, particularly trisomies of the smaller chromosomes (Chr3–7), appeared throughout the evolution experiment, and the accumulation of multiple aneuploid chromosomes per cell coincided with the highest resistance to fluconazole. Unlike the case in many other organisms, some isolates carrying i(5L) exhibited improved fitness in the presence, as well as in the absence, of fluconazole. The early appearance of aneuploidy is consistent with a model in which C. albicans becomes more permissive of chromosome rearrangements and segregation defects in the presence of fluconazole. PMID:19876375
Engineering the evolution of self-organizing behaviors in swarm robotics: a case study.
Trianni, Vito; Nolfi, Stefano
2011-01-01
Evolutionary robotics (ER) is a powerful approach for the automatic synthesis of robot controllers, as it requires little a priori knowledge about the problem to be solved in order to obtain good solutions. This is particularly true for collective and swarm robotics, in which the desired behavior of the group is an indirect result of the control and communication rules followed by each individual. However, the experimenter must make several arbitrary choices in setting up the evolutionary process, in order to define the correct selective pressures that can lead to the desired results. In some cases, only a deep understanding of the obtained results can point to the critical aspects that constrain the system, which can be later modified in order to re-engineer the evolutionary process towards better solutions. In this article, we discuss the problem of engineering the evolutionary machinery that can lead to the desired result in the swarm robotics context. We also present a case study about self-organizing synchronization in a swarm of robots, in which some arbitrarily chosen properties of the communication system hinder the scalability of the behavior to large groups. We show that by modifying the communication system, artificial evolution can synthesize behaviors that scale properly with the group size.
Using White Dwarf Companions of Blue Stragglers to Constrain Mass Transfer Physics
NASA Astrophysics Data System (ADS)
Gosnell, Natalie M.; Leiner, Emily; Geller, Aaron M.; Knigge, Christian; Mathieu, Robert D.; Sills, Alison; Leigh, Nathan
2018-06-01
Complete membership studies of old open clusters reveal that 25% of the evolved stars follow pathways in stellar evolution that are impacted by binary evolution. Recent studies show that the majority of blue straggler stars, traditionally defined to be stars brighter and bluer than the corresponding main sequence turnoff, are formed through mass transfer from a giant star onto a main sequence companion, resulting in a white dwarf in a binary system with a blue straggler. We will present constraints on the histories and mass transfer efficiencies for two blue straggler-white dwarf binaries in open cluster NGC 188. The constraints are a result of measuring white dwarf cooling temperatures and surface gravities with HST COS far-ultraviolet spectroscopy. This information sets both the timeline for mass transfer and the stellar masses in the pre-mass transfer binary, allowing us to constrain aspects of the mass transfer physics. One system is formed through Case C mass transfer, leaving a CO-core white dwarf, and provides an interesting test case for mass transfer from an asymptotic giant branch star in an eccentric system. The other system formed through Case B mass transfer, leaving a He-core white dwarf, and challenges our current understanding of the expected regimes for stable mass transfer from red giant branch stars.
NASA Astrophysics Data System (ADS)
Mitchell, David L.
1988-11-01
Based on the stochastic collection equation, height- and time-dependent snow growth models were developed for unrimed stratiform snowfall. Moment conservation equations were parameterized and solved by constraining the size distribution to be of the form N(D)dD = N0 exp(D)dD, yielding expressions for the slope parameter, , and the y-intercept parameters, NO, as functions of height or time. The processes of vapor deposition and aggregation were treated analytically without neglecting changes in ice crystal habits, while the ice particle breakup process was dealt with empirically.The models were compared against vertical profiles of snow-size spectra, obtained from aircraft measurements, for three case studies. The predicted spectra are in good agreement with the observed evolution of snow-size spectra in all three cases, indicating the proposed scheme for ice particle aggregation was successful. The temperature dependence of aggregation was assumed to result from differences in ice crystal habit. Using data from an earlier study, the aggregation efficiency between two levels in a cloud was calculated. Finally, other height-dependent, steady-state snowfall models in the literature were compared against spectra from one of the above case studies. The agreement between the predicted and observed spectra regarding these models was less favorable than was obtained from the models presented here.
The evolution of a binary in a retrograde circular orbit embedded in an accretion disk
NASA Astrophysics Data System (ADS)
Ivanov, P. B.; Papaloizou, J. C. B.; Paardekooper, S.-J.; Polnarev, A. G.
2015-04-01
Aims: Supermassive black hole binaries may form as a consequence of galaxy mergers. Both prograde and retrograde orbits have been proposed. We study a binary with a small mass ratio, q, in a retrograde orbit immersed in and interacting with a gaseous accretion disk in order to estimate the time scales for inward migration that leads to coalescence and the accretion rate to the secondary component. Methods: We employed both semi-analytic methods and two-dimensional numerical simulations, focusing on the case where the binary mass ratio is small but large enough to significantly perturb the disk. Results: We develop the theory of type I migration in this case and go on to determine the conditions for gap formation. We find that when this happens inward migration occurs on a time scale equal to the time required for one half of the secondary mass to be accreted through the unperturbed accretion disk. The accretion rate onto the secondary itself is found to only play a minor role in the orbital evolution as it is of the order of q1/3 of that to the primary. We obtain good general agreement between the semi-analytic and fully numerical approaches and note that the former can be applied to disks with a wide dynamic range on long time scales. Conclusions: We conclude that inward migration induced by interaction with the disk can enable the binary to migrate inwards, alleviating the so-called final parsec problem. When q is sufficiently small, there is no well-pronounced cavity inside the binary orbit, unlike the prograde case. The accretion rate to the secondary does not influence the binary orbital evolution much, but can lead to some interesting observational consequences, provided the accretion efficiency is sufficiently large. In this case the binary may be detected as, for example, two sources of radiation rotating around each other. However, the study should be extended to consider orbits with significant eccentricity and the effects of gravitational radiation at small length scales. Also, torques acting between a circumbinary accretion disk, which has a non-zero inclination with respect to a retrograde binary orbit at large distances, may cause the inclination to increase on a time scale that can be similar to, or smaller than, the time scale of orbital evolution, depending on the disk parameters and binary mass ratio. This is also an aspect for future study. The movies are available in electronic form at http://www.aanda.org
Evolution of tag-based cooperation with emotion on complex networks
NASA Astrophysics Data System (ADS)
Lima, F. W. S.
2018-04-01
We study the evolution of the four strategies: Ethnocentric, altruistic, egoistic and cosmopolitan in one community of individuals through Monte Carlo simulations. Interactions and reproduction among computational agents are simulated on undirected Barabási-Albert (UBA) networks and Erdös-Rènyi random graphs (ER).We study the Hammond-Axelrod model on both UBA networks and ER random graphs for the asexual reproduction case. We use a modified version of the traditional Hammond-Axelrod model and we also allow the agents’ decisions about one of the strategies to take into account the emotion among their equals. Our simulations showed that egoism and altruism win, differently from other results found in the literature where ethnocentric strategy is common.
Modeling Co-evolution of Speech and Biology.
de Boer, Bart
2016-04-01
Two computer simulations are investigated that model interaction of cultural evolution of language and biological evolution of adaptations to language. Both are agent-based models in which a population of agents imitates each other using realistic vowels. The agents evolve under selective pressure for good imitation. In one model, the evolution of the vocal tract is modeled; in the other, a cognitive mechanism for perceiving speech accurately is modeled. In both cases, biological adaptations to using and learning speech evolve, even though the system of speech sounds itself changes at a more rapid time scale than biological evolution. However, the fact that the available acoustic space is used maximally (a self-organized result of cultural evolution) is constant, and therefore biological evolution does have a stable target. This work shows that when cultural and biological traits are continuous, their co-evolution may lead to cognitive adaptations that are strong enough to detect empirically. Copyright © 2016 Cognitive Science Society, Inc.
Human exploration mission studies
NASA Technical Reports Server (NTRS)
Cataldo, Robert L.
1989-01-01
The Office of Exploration has established a process whereby all NASA field centers and other NASA Headquarters offices participate in the formulation and analysis of a wide range of mission strategies. These strategies were manifested into specific scenarios or candidate case studies. The case studies provided a systematic approach into analyzing each mission element. First, each case study must address several major themes and rationale including: national pride and international prestige, advancement of scientific knowledge, a catalyst for technology, economic benefits, space enterprise, international cooperation, and education and excellence. Second, the set of candidate case studies are formulated to encompass the technology requirement limits in the life sciences, launch capabilities, space transfer, automation, and robotics in space operations, power, and propulsion. The first set of reference case studies identify three major strategies: human expeditions, science outposts, and evolutionary expansion. During the past year, four case studies were examined to explore these strategies. The expeditionary missions include the Human Expedition to Phobos and Human Expedition to Mars case studies. The Lunar Observatory and Lunar Outpost to Early Mars Evolution case studies examined the later two strategies. This set of case studies established the framework to perform detailed mission analysis and system engineering to define a host of concepts and requirements for various space systems and advanced technologies. The details of each mission are described and, specifically, the results affecting the advanced technologies required to accomplish each mission scenario are presented.
ERIC Educational Resources Information Center
Kawasaki, Keiko; Rupert Herrenkohl, Leslie; Yeary, Sherry
2004-01-01
The purpose of this paper is to carefully examine the evolution of students' theory building and modeling, critical components of scientific epistemologies, over a unit of study on sinking and floating in one third/fourth grade classroom. The study described in this paper follows in the tradition of Design Experiments ( Brown 1992 , Collins 1990 )…
[Fulminant Wilson's disease in Costa Rica. Clinico-pathological study of 7 cases].
Herra, S A; Hevia, F J; Vargas, M; Schosinsky, K
1990-01-01
In the last eighteen years, from 1972 to 1989, around 150 cases of Wilson's disease have been diagnosed in Costa Rica (6/100.000 inhabitants). In the San Juan de Dios Hospital, 120 cases have been studied during this period, seven of whom died with a picture of acute hepatic insufficiency, hemolytic anemia, encephalopathy, intestinal bleeding and renal insufficiency. In four of the cases, postmortem histopathologic studies were done with high resolution microscopy, which revealed extensive submassive necrosis of the liver, with severe cholestatic, lytic and acidophilic necrosis with nodular, irregular regeneration and specially microvacuolar steatosis, different from that observed in other forms of fulminant hepatitis. With the clinical, laboratory and histopathologic findings, we concluded that fulminant Wilson's disease is a well-defined pathological clinical entity of fatal evolution with no response to therapy, including early treatment with penicillamine and steroids.
Phenotypic Heterogeneity and the Evolution of Bacterial Life Cycles.
van Gestel, Jordi; Nowak, Martin A
2016-02-01
Most bacteria live in colonies, where they often express different cell types. The ecological significance of these cell types and their evolutionary origin are often unknown. Here, we study the evolution of cell differentiation in the context of surface colonization. We particularly focus on the evolution of a 'sticky' cell type that is required for surface attachment, but is costly to express. The sticky cells not only facilitate their own attachment, but also that of non-sticky cells. Using individual-based simulations, we show that surface colonization rapidly evolves and in most cases leads to phenotypic heterogeneity, in which sticky and non-sticky cells occur side by side on the surface. In the presence of regulation, cell differentiation leads to a remarkable set of bacterial life cycles, in which cells alternate between living in the liquid and living on the surface. The dominant life stage is formed by the surface-attached colony that shows many complex features: colonies reproduce via fission and by producing migratory propagules; cells inside the colony divide labour; and colonies can produce filaments to facilitate expansion. Overall, our model illustrates how the evolution of an adhesive cell type goes hand in hand with the evolution of complex bacterial life cycles.
Hogeweg, Paulien
2012-01-01
Most of evolutionary theory has abstracted away from how information is coded in the genome and how this information is transformed into traits on which selection takes place. While in the earliest stages of biological evolution, in the RNA world, the mapping from the genotype into function was largely predefined by the physical-chemical properties of the evolving entities (RNA replicators, e.g. from sequence to folded structure and catalytic sites), in present-day organisms, the mapping itself is the result of evolution. I will review results of several in silico evolutionary studies which examine the consequences of evolving the genetic coding, and the ways this information is transformed, while adapting to prevailing environments. Such multilevel evolution leads to long-term information integration. Through genome, network, and dynamical structuring, the occurrence and/or effect of random mutations becomes nonrandom, and facilitates rapid adaptation. This is what does happen in the in silico experiments. Is it also what did happen in biological evolution? I will discuss some data that suggest that it did. In any case, these results provide us with novel search images to tackle the wealth of biological data.
Molecular evolution: concepts and the origin of disciplines.
Suárez-Díaz, Edna
2009-03-01
This paper focuses on the consolidation of Molecular Evolution, a field originating in the 1960s at the interface of molecular biology, biochemistry, evolutionary biology, biophysics and studies on the origin of life and exobiology. The claim is made that Molecular Evolution became a discipline by integrating different sorts of scientific traditions: experimental, theoretical and comparative. The author critically incorporates Timothy Lenoir's treatment of disciplines (1997), as well as ideas developed by Stephen Toulmin (1962) on the same subject. On their account disciplines are spaces where the social and epistemic dimensions of science are deeply and complexly interwoven. However, a more detailed account of discipline formation and the dynamics of an emerging disciplinary field is lacking in their analysis. The present essay suggests focusing on the role of scientific concepts in the double configuration of disciplines: the social/political and the epistemic order. In the case of Molecular Evolution the concepts of molecular clock and informational molecules played a central role, both in differentiating molecular from classical evolutionists, and in promoting communication between the different sorts of traditions integrated in Molecular Evolution. The paper finishes with a reflection on the historicity of disciplines, and the historicity of our concepts of disciplines.
Interspecific Plastome Recombination Reflects Ancient Reticulate Evolution in Picea (Pinaceae).
Sullivan, Alexis R; Schiffthaler, Bastian; Thompson, Stacey Lee; Street, Nathaniel R; Wang, Xiao-Ru
2017-07-01
Plastid sequences are a cornerstone in plant systematic studies and key aspects of their evolution, such as uniparental inheritance and absent recombination, are often treated as axioms. While exceptions to these assumptions can profoundly influence evolutionary inference, detecting them can require extensive sampling, abundant sequence data, and detailed testing. Using advancements in high-throughput sequencing, we analyzed the whole plastomes of 65 accessions of Picea, a genus of ∼35 coniferous forest tree species, to test for deviations from canonical plastome evolution. Using complementary hypothesis and data-driven tests, we found evidence for chimeric plastomes generated by interspecific hybridization and recombination in the clade comprising Norway spruce (P. abies) and 10 other species. Support for interspecific recombination remained after controlling for sequence saturation, positive selection, and potential alignment artifacts. These results reconcile previous conflicting plastid-based phylogenies and strengthen the mounting evidence of reticulate evolution in Picea. Given the relatively high frequency of hybridization and biparental plastid inheritance in plants, we suggest interspecific plastome recombination may be more widespread than currently appreciated and could underlie reported cases of discordant plastid phylogenies. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Diogo, Rui; Smith, Christopher M; Ziermann, Janine M
2015-11-01
We introduce a new subfield of the recently created field of Evolutionary-Developmental-Anthropology (Evo-Devo-Anth): Evolutionary-Developmental-Pathology-and-Anthropology (Evo-Devo-P'Anth). This subfield combines experimental and developmental studies of nonhuman model organisms, biological anthropology, chordate comparative anatomy and evolution, and the study of normal and pathological human development. Instead of focusing on other organisms to try to better understand human development, evolution, anatomy, and pathology, it places humans as the central case study, i.e., as truly model organism themselves. We summarize the results of our recent Evo-Devo-P'Anth studies and discuss long-standing questions in each of the broader biological fields combined in this subfield, paying special attention to the links between: (1) Human anomalies and variations, nonpentadactyly, homeotic transformations, and "nearest neighbor" vs. "find and seek" muscle-skeleton associations in limb+facial muscles vs. other head muscles; (2) Developmental constraints, the notion of "phylotypic stage," internalism vs. externalism, and the "logic of monsters" vs. "lack of homeostasis" views about human birth defects; (3) Human evolution, reversions, atavisms, paedomorphosis, and peromorphosis; (4) Scala naturae, Haeckelian recapitulation, von Baer's laws, and parallelism between phylogeny and development, here formally defined as "Phylo-Devo parallelism"; and (5) Patau, Edwards, and Down syndrome (trisomies 13, 18, 21), atavisms, apoptosis, heart malformations, and medical implications. © 2015 Wiley Periodicals, Inc.
CoRoT-2b: a Tidally Inflated, Young Exoplanet?
NASA Astrophysics Data System (ADS)
Guillot, Tristan; Havel, M.
2009-09-01
CoRoT-2b is among the most anomalously large transiting exoplanet known. Due to its large mass (3.3 Mjup), its large radius ( 1.5 Rjup) cannot be explained by standard evolution models. Recipes that work for other anomalously large exoplanets (e.g. HD209458b), such as invoking kinetic energy transport in the planetary interior or increased opacities, clearly fail for CoRoT-2b. Interestingly, the planet's parent star is an active star with a large fraction (7 to 20%) of spots and a rapid rotation (4.5 days). We first model the star's evolution to accurately constrain the planetary parameters. We find that the stellar activity has little influence on the star's evolution and inferred parameters. However, stellar evolution models point towards two kind of solutions for the star-planet system: (i) a very young system (20-40 Ma) with a star still undergoing pre-main sequence contraction, and a planet which could have a radius as low as 1.4 Rjup, or (ii) a young main-sequence star (40 to 500 Ma) with a planet that is slightly more inflated ( 1.5 Rjup). In either case, planetary evolution models require a significant added internal energy to explain the inferred planet size: from a minimum of 3x1028 erg/s in case (i), to up to 1.5x1029 erg/s in case (ii). We find that evolution models consistently including planet/star tides are able to reproduce the inferred radius but only for a short period of time ( 10 Ma). This points towards a young age for the star/planet system and dissipation by tides due to either circularization or synchronization of the planet. Additional observations of the star (infrared excess due to disk?) and of the planet (precise Rossiter effect, IR secondary eclispe) would be highly valuable to understand the early evolution of star-exoplanet systems.
A Model to Guide the Evolution of a Multiprofessional Group into an Interprofessional Team
ERIC Educational Resources Information Center
Varagona, Lynn; Nandan, Monica; Hooks, Dwayne; Porter, Kandice Johnson; Maguire, Mary Beth; Slater-Moody, Judith
2017-01-01
The focus on multiple disciplines coming together to provide services, create products, and solve problems is growing worldwide. Higher education is no exception. This case study illustrates how academic disciplines can transition from a silo mentality to working collaboratively across disciplinary lines. A multiprofessional group of faculty…
Win-Win: A Case Study of Collaborative Structures between Labor and Management
ERIC Educational Resources Information Center
Noggle, Matthew K.
2009-01-01
While society has begun its evolution from the industrial age to the information age, most teacher unions continue to pattern their behavior after the industrial model of unionism focusing almost exclusively on salary, benefits and working conditions. In some school systems, though, teacher unions and management are questioning the legitimacy of…
Participatory Exploration: The Role of the User Contribution System
NASA Technical Reports Server (NTRS)
Skytland, Nicholas G.
2009-01-01
This viewgraph presentation explores how NASA can apply the global shift in demographics, the popularity of collaborative technology and the desire for participation to the future of space exploration. Included in this is a review of the evolution of work, the engagement gap, user contribution systems and a case study concerning the "digital astronaut".
College Consortia: Engaging in and Sustaining Community Collaboration Efforts
ERIC Educational Resources Information Center
Arvelo, Wildolfo
2012-01-01
This historical case-study examines the evolution of the Colleges of Worcester Consortium during its "community engagement period" from 2004 to 2008, which coincided with the formation of the Worcester UniverCity Partnership, a broad attempt to bring the colleges in Worcester, the City, the business community, and the neighborhoods into…
Reaction of Vietnam Veterans to the Persian Gulf War.
ERIC Educational Resources Information Center
Kobrick, Felice R.
1993-01-01
Reviews evolution of the concept of combat-related posttraumatic stress disorder and analyzes reports of Vietnam veterans' reactions to the Persian Gulf War. Presents case study of Vietnam veteran whose traumatic memories were reawakened with the onset of the Persian Gulf War, and discusses implications for social work practice. (Author/NB)
Deutero-Learning: Implications for Managing Public Health Change
ERIC Educational Resources Information Center
Rowe, Patricia A.; Boyce, Rosalie A.
2009-01-01
Purpose: The purpose of this paper is to apply an allied health subculture model to clarify key contextual factors that can emerge in the evolution of an allied health subculture as a consequence of deutero-learning. Design/methodology/approach: Two case studies are compared to illustrate these two extreme variations in deutero-learning. Findings:…
Corporate and Higher Education Collaboration to Improve Teaching: A Case Study.
ERIC Educational Resources Information Center
Bloom, Darrell; Koenig, Pam
This paper explores an innovative approach to funding school improvement programs. It looks at a series of programs initiated by the National College of Education in collaboration with several corporations and foundations in the Chicago metropolitan area. The evolution of the College's participation in these endeavors is reported as well as the…
Evolution of Internal Quality Assurance at One University--A Case Study
ERIC Educational Resources Information Center
O'Sullivan, David
2017-01-01
Purpose: Quality assurance (QA) at one University has evolved over the past 15 years through emerging National and European standards, various leadership initiatives and through the engagement of key stakeholders in co-designing and implementing internal QA processes. In 2000, the QA process was focussed mainly on quality review (QR) that involved…
ERIC Educational Resources Information Center
Trenbath, Thien-Kim Leckie
2012-01-01
This dissertation shows the evolution of five undergraduate students' ideas of natural and anthropogenic climate change throughout a lecture hall course on climate change. This research was informed by conceptual change theory and students' inaccurate ideas of climate change. Subjects represented different levels of climate change understanding at…
ERIC Educational Resources Information Center
Szymczak, Conrad C.; Walker, Derek H. T.
2003-01-01
The evolution of the Boeing Company illustrates how to achieve an enterprise project management culture through organizational learning. Project management can be a survival technique for adapting to change as well as a proactive mechanism. An organizational culture that supports commitment and enthusiasm and a knowledge management infrastructure…
ERIC Educational Resources Information Center
Crawford, Caroline M.; Willis, Jana
The continual evolution of the national technology standards creates a continual state of flux within the world of instructional technology. However, this creative online environment offers the possibilities that may not be available within other specialization areas; namely, the opportunity to reinvent conceptual frameworks of understanding and…
Negotiating Competing Progressive Era Reform Impulses at Teachers College, 1889-1927
ERIC Educational Resources Information Center
Murrow, Sonia; McCarthy, Mary Rose
2017-01-01
This case study situates the evolution of Teachers College as a negotiation between two strands of Progressive Era social reform--one that emphasized direct service and one that emphasized the development of education as a profession. While in the early years of Teachers College efforts at professionalizing education were privileged, the…
Graduate Development, Discursive Resources and the Employment Relationship at BAE Systems
ERIC Educational Resources Information Center
Jenner, Shirley
2008-01-01
Purpose: The purpose of this paper is to examine the evolution of an employee opinion survey and to evaluate its impact on the graduate training programme and associated employment relationships. Design/methodology/approach: The paper provides a detailed, longitudinal case study of one large-scale UK organisation. The approach recognises that…
Thinking about Evolution: Combinatorial Play as a Strategy for Exercising Scientific Creativity
ERIC Educational Resources Information Center
Wingate, Richard J. T.
2011-01-01
An enduring focus in education on how scientists formulate experiments and "do science" in the laboratory has excluded a vital element of scientific practice: the creative and imaginative thinking that generates models and testable hypotheses. In this case study, final-year biomedical sciences university students were invited to create and justify…
Effectively managing partnership evolution: a case study from Chicago.
Tishuk, Brian S
Given the continued proliferation of public/ private partnerships as vehicles for sharing best practices, lessons learned and actionable information, the keys to their success become more important to identify. Effective partnerships enhance the resilience of their respective members, which, in turn, improves community resilience. Thus, identifying the attributes of a successful partnership should be a high priority for those looking to foster collaboration between the public and private sectors. This paper will illustrate with two case studies how successful partnerships creatively leverage opportunities and manage the evolution of public/private relationships, while always seeking to institutionalise these collaborative efforts. The first will discuss briefly the development of the most important national partnership within the financial sector. The other focuses on a public/private task force in Chicago, composed of public safety agencies and representatives of critical infrastructure, which owes its existence to an unexpected research project and that needed to be restructured in light of experience. The manner in which the task force formed and evolved yields many lessons for partnerships interested in remaining relevant and effective.
Student Agency in Negotiating the Relationship Between Science and Religion
NASA Astrophysics Data System (ADS)
Tang, Kok-Sing; Yang, Xiangyu
2017-08-01
Research examining the relationship between science and religion has often painted a narrative of conflict for students with various religious beliefs. The purpose of this paper is to present a counter-narrative based on a study carried out in Singapore, which provides a unique multi-ethnic and multi-religious environment and geopolitical context to study the phenomenon. Informed by the theories of collateral learning, situated cognition and agency, the study examined how a group of high school biology students viewed and negotiated the relationship between biological evolution and their beliefs in Christianity. Case study methodology and semi-structured interviews were used to generate thick descriptions of their views. Findings from the study illustrate how the students exhibited agency in deliberately creating multiple resolution mechanisms as they recognised and negotiated the conceptual and social tensions between the worldviews of evolution and creationism. The findings suggest that the students exhibited more agency in resolving the perceived conflict between science and religion than we tend to ascribe based on previous interpretative accounts that emphasised confrontation, alienation and marginalisation. The implication is that students' agency in negotiating the differing worldviews between science and religion should be seen as a resource for the learning of evolution, rather than a hindrance.
Burns, Kevin J; Shultz, Allison J; Title, Pascal O; Mason, Nicholas A; Barker, F Keith; Klicka, John; Lanyon, Scott M; Lovette, Irby J
2014-06-01
Thraupidae is the second largest family of birds and represents about 4% of all avian species and 12% of the Neotropical avifauna. Species in this family display a wide range of plumage colors and patterns, foraging behaviors, vocalizations, ecotypes, and habitat preferences. The lack of a complete phylogeny for tanagers has hindered the study of this evolutionary diversity. Here, we present a comprehensive, species-level phylogeny for tanagers using six molecular markers. Our analyses identified 13 major clades of tanagers that we designate as subfamilies. In addition, two species are recognized as distinct branches on the tanager tree. Our topologies disagree in many places with previous estimates of relationships within tanagers, and many long-recognized genera are not monophyletic in our analyses. Our trees identify several cases of convergent evolution in plumage ornaments and bill morphology, and two cases of social mimicry. The phylogeny produced by this study provides a robust framework for studying macroevolutionary patterns and character evolution. We use our new phylogeny to study diversification processes, and find that tanagers show a background model of exponentially declining diversification rates. Thus, the evolution of tanagers began with an initial burst of diversification followed by a rate slowdown. In addition to this background model, two later, clade-specific rate shifts are supported, one increase for Darwin's finches and another increase for some species of Sporophila. The rate of diversification within these two groups is exceptional, even when compared to the overall rapid rate of diversification found within tanagers. This study provides the first robust assessment of diversification rates for the Darwin's finches in the context of the larger group within which they evolved. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Samaras, Achilleas G.; Koutitas, Christopher G.
2014-04-01
Coastal morphology evolves as the combined result of both natural- and human- induced factors that cover a wide range of spatial and temporal scales of effect. Areas in the vicinity of natural stream mouths are of special interest, as the direct connection with the upstream watershed extends the search for drivers of morphological evolution from the coastal area to the inland as well. Although the impact of changes in watersheds on the coastal sediment budget is well established, references that study concurrently the two fields and the quantification of their connection are scarce. In the present work, the impact of land-use changes in a watershed on coastal erosion is studied for a selected site in North Greece. Applications are based on an integrated approach to quantify the impact of watershed management on coastal morphology through numerical modeling. The watershed model SWAT and a shoreline evolution model developed by the authors (PELNCON-M) are used, evaluating with the latter the performance of the three longshore sediment transport rate formulae included in the model formulation. Results document the impact of crop abandonment on coastal erosion (agricultural land decrease from 23.3% to 5.1% is accompanied by the retreat of ~ 35 m in the vicinity of the stream mouth) and show the effect of sediment transport formula selection on the evolution of coastal morphology. Analysis denotes the relative importance of the parameters involved in the dynamics of watershed-coast systems, and - through the detailed description of a case study - is deemed to provide useful insights for researchers and policy-makers involved in their study.
KvN mechanics approach to the time-dependent frequency harmonic oscillator.
Ramos-Prieto, Irán; Urzúa-Pineda, Alejandro R; Soto-Eguibar, Francisco; Moya-Cessa, Héctor M
2018-05-30
Using the Ermakov-Lewis invariants appearing in KvN mechanics, the time-dependent frequency harmonic oscillator is studied. The analysis builds upon the operational dynamical model, from which it is possible to infer quantum or classical dynamics; thus, the mathematical structure governing the evolution will be the same in both cases. The Liouville operator associated with the time-dependent frequency harmonic oscillator can be transformed using an Ermakov-Lewis invariant, which is also time dependent and commutes with itself at any time. Finally, because the solution of the Ermakov equation is involved in the evolution of the classical state vector, we explore some analytical and numerical solutions.
Are Adonis and Hephaistos "Extinct" Comets?
NASA Astrophysics Data System (ADS)
Babadzhanov, P. B.
The investigation of the evolution of Earth-approaching asteroids with the aim of revealing their meteor streams is one of the ways to determine if these asteroids are extinct comets. The orbital evolution of asteroids 2101 Adonis and 2212 Hephaistos studied, respectively, by AlfanGoryachev and Everhart methods shows that these asteroids cross the Earth's orbit four times. Their possible meteoroid swarms may therefore produce four meteor showers each. In this work, the theoretically predicted orbital elements and radiants of these streams are compared to the available observational data. In the cases of both Adonis and Hephaistos, all four meteor showers are shown to be active. Most likely, these asteroids are extinct comets.
NASA Astrophysics Data System (ADS)
Montoux, Nadege; David, Christine; Klekociuk, Andrew; Pitts, Michael; di Liberto, Luca; Snels, Marcel; Jumelet, Julien; Bekki, Slimane; Larsen, Niels
2010-05-01
The project ORACLE-O3 ("Ozone layer and UV RAdiation in a changing CLimate Evaluated during IPY") is one of the coordinated international proposals selected for the International Polar Year (IPY). As part of this global project, LOLITA-PSC ("Lagrangian Observations with Lidar Investigations and Trajectories in Antarctica and Arctic, of PSC") is devoted to Polar Stratospheric Clouds (PSC) studies. Indeed, understanding the formation and evolution of PSC is an important issue to quantify the impact of climate changes on their frequency of formation and, further, on chlorine activation and subsequent ozone depletion. In this framework, three lidar stations performed PSC observations in Antarctica during the 2006, 2007, and 2008 winters: Davis (68.58°S, 77.97°E), McMurdo (77.86°S, 166.48°E) and Dumont D'Urville (66.67°S, 140.01°E). The data are completed with the lidar data from CALIOP ("Cloud-Aerosol Lidar with Orthogonal Polarization") onboard the CALIPSO ("Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation") satellite. Lagrangian trajectory calculations are used to identify air masses with PSCs sounded by several ground-based lidar stations with the same method, called MATCH, applied for the first time in Arctic to study the ozone depletion with radiosoundings. The evolution of the optical properties of the PSCs and thus the type of PSCs formed (supercooled ternary solution, nitric acid trihydrate particles or ice particles) could thus be linked to the thermodynamical evolution of the air mass deduced from the trajectories. A modeling with the microphysical model of the Danish Meteorological Institute allows assessing our ability to predict PSCs for various environmental conditions. Indeed, from pressure and temperature evolution, the model allows retrieving the types of particles formed as well as their mean radii, their concentrations and could also simulate the lidar signals. In a first step, a case in August 2007 around 17-18 km, involving the three ground-based lidar stations and CALIOP has been selected. Trajectories with different models (gscf and ecmwf), grids and initializations have been computed to test the robustness of the MATCH. Then the DMI model has been used with these different trajectories to test its ability to reproduce the observations. For a same case, the temperature differences (~2-3 K) between the trajectories have a strong impact on the number density of the particles formed (factor 1000). This case is presented here in detail and a statistical comparison is planned with the numerous MATCH cases identified during the three winters and which involve most of the time two ground-based lidar stations with CALIOP.
Computational evolution: taking liberties.
Correia, Luís
2010-09-01
Evolution has, for a long time, inspired computer scientists to produce computer models mimicking its behavior. Evolutionary algorithm (EA) is one of the areas where this approach has flourished. EAs have been used to model and study evolution, but they have been especially developed for their aptitude as optimization tools for engineering. Developed models are quite simple in comparison with their natural sources of inspiration. However, since EAs run on computers, we have the freedom, especially in optimization models, to test approaches both realistic and outright speculative, from the biological point of view. In this article, we discuss different common evolutionary algorithm models, and then present some alternatives of interest. These include biologically inspired models, such as co-evolution and, in particular, symbiogenetics and outright artificial operators and representations. In each case, the advantages of the modifications to the standard model are identified. The other area of computational evolution, which has allowed us to study basic principles of evolution and ecology dynamics, is the development of artificial life platforms for open-ended evolution of artificial organisms. With these platforms, biologists can test theories by directly manipulating individuals and operators, observing the resulting effects in a realistic way. An overview of the most prominent of such environments is also presented. If instead of artificial platforms we use the real world for evolving artificial life, then we are dealing with evolutionary robotics (ERs). A brief description of this area is presented, analyzing its relations to biology. Finally, we present the conclusions and identify future research avenues in the frontier of computation and biology. Hopefully, this will help to draw the attention of more biologists and computer scientists to the benefits of such interdisciplinary research.
Classical and quantum dynamics of a kicked relativistic particle in a box
NASA Astrophysics Data System (ADS)
Yusupov, J. R.; Otajanov, D. M.; Eshniyazov, V. E.; Matrasulov, D. U.
2018-03-01
We study classical and quantum dynamics of a kicked relativistic particle confined in a one dimensional box. It is found that in classical case for chaotic motion the average kinetic energy grows in time, while for mixed regime the growth is suppressed. However, in case of regular motion energy fluctuates around certain value. Quantum dynamics is treated by solving the time-dependent Dirac equation with delta-kicking potential, whose exact solution is obtained for single kicking period. In quantum case, depending on the values of the kicking parameters, the average kinetic energy can be quasi periodic, or fluctuating around some value. Particle transport is studied by considering spatio-temporal evolution of the Gaussian wave packet and by analyzing the trembling motion.
Atmospheric Characterization of Giant Exoplanets in Extreme Environments
NASA Astrophysics Data System (ADS)
Wilkins, Ashlee
The study of planets around other stars has entered a science-rich era of characterization, in which detailed information about individual planets can be inferred from observations beyond discovery and confirmation, which only yield bulk properties like mass or radius. Characterization probes more revealing quantities such as chemical abundances, albedo, and temperature/pressure profiles, allowing us to address larger questions of planet formation mechanisms, planetary evolution, and, eventually, presence of biosignature gases. The primary method for characterization of close-in planets is transit spectroscopy. My dissertation comprises transiting exoplanet case studies using the Hubble Space Telescopes Wide-Field Camera-3 (HST/WFC3) as a tool of exoplanet characterization in a near-infrared band dominated by broad water absorption. Much of my efforts went toward a characterization of the WFC3 systematic effects that must be mitigated to extract the incredibly small (tens to 200 parts per million) signals. The case study subjects in this dissertation are CoRoT-2b (in emission), WASP-18b (in transmission and emission), and HATS-7b (in transmission), along with some partial/preliminary analyses of HAT-p-3b and HD 149026b (both in transmission). I also present an analysis of transit timing of WASP-18b with HST and other observatories as another clue to its evolution as a close-in, extremely massive planet purported to be spiraling in to its host star. The five planets range from super Neptunes to Super-Jupiter in size/mass. The observability of such planets--i.e. giants across a continuum of mass/size in extreme local environments close to their respective host stars,--is a unique opportunity to probe planet formation and evolution, as well as atmospheric structures in a high-irradiation environment. This genre of observations reveal insights into aerosols in the atmosphere; clouds and/or hazes can significantly impact atmospheric chemistry and observational signatures, and the community must better understand the phenomenon of aerosols in advance of the next generation of space observatories, including JWST and WFIRST. In conducting these case studies as part of larger collaborations and HST observing campaigns, my work aids in the advancement of exoplanet atmosphere characterization from single, planetby-planet, case studies, to an understanding of the large, hot, gaseous planets as a population.
NASA Astrophysics Data System (ADS)
Guan, Ben; Zhai, Zhigang; Si, Ting; Lu, Xiyun; Luo, Xisheng
2017-03-01
The characteristics of three-dimensional (3D) Richtmyer-Meshkov instability (RMI) in the early stages are studied numerically. By designing 3D interfaces that initially possess various identical and opposite principal curvature combinations, the growth rate of perturbations can be effectively manipulated. The weighted essentially nonoscillatory scheme and the level set method combined with the real ghost fluid method are used to simulate the flow. The results indicate that the interface development and the shock propagation in 3D cases are much more complicated than those in 2D case, and the evolution of 3D interfaces is heavily dependent on the initial interfacial principal curvatures. The 3D structure of wave patterns induces high pressure zones in the flow field, and the pressure oscillations change the local instabilities of interfaces. In the linear stages, the perturbation growth rate follows regularity as the interfacial principal curvatures vary, which is further predicted by the stability theory of 2D and 3D interfaces. It is also found that hysteresis effects exist at the onset of the linear stages in the 3D case for the same initial perturbations as the 2D case, resulting in different evolutions of 3D RMI in the nonlinear stages.
ERIC Educational Resources Information Center
Andersson, Dan; And Others
This report, one of a series of country studies on higher education and employment, particularly in the humanities and social sciences, looks at employment for social science and humanities graduates in Sweden. Following an introduction in section 1, section 2 offers a short description of the evolution of humanities and social sciences in Swedish…
ERIC Educational Resources Information Center
McClanahan, Constance Stolark
2012-01-01
The primary purpose of this study was to examine the perceptions of two male students and their teacher who participated in a Teacher Cadet Program over the 2010-2011 academic year. The qualitative case study took place at the Royal Fern High School (RFHS) (pseudonym) in Cypress Grove County (pseudonym), located outside of Charleston, SC. The…
Principles of time evolution in classical physics
NASA Astrophysics Data System (ADS)
Güémez, J.; Fiolhais, M.
2018-07-01
We address principles of time evolution in classical mechanical/thermodynamical systems in translational and rotational motion, in three cases: when there is conservation of mechanical energy, when there is energy dissipation and when there is mechanical energy production. In the first case, the time derivative of the Hamiltonian vanishes. In the second one, when dissipative forces are present, the time evolution is governed by the minimum potential energy principle, or, equivalently, maximum increase of the entropy of the universe. Finally, in the third situation, when internal sources of work are available to the system, it evolves in time according to the principle of minimum Gibbs function. We apply the Lagrangian formulation to the systems, dealing with the non-conservative forces using restriction functions such as the Rayleigh dissipative function.
A Case-by-Case Evolutionary Analysis of Four Imprinted Retrogenes
McCole, Ruth B; Loughran, Noeleen B; Chahal, Mandeep; Fernandes, Luis P; Roberts, Roland G; Fraternali, Franca; O'Connell, Mary J; Oakey, Rebecca J
2011-01-01
Retroposition is a widespread phenomenon resulting in the generation of new genes that are initially related to a parent gene via very high coding sequence similarity. We examine the evolutionary fate of four retrogenes generated by such an event; mouse Inpp5f_v2, Mcts2, Nap1l5, and U2af1-rs1. These genes are all subject to the epigenetic phenomenon of parental imprinting. We first provide new data on the age of these retrogene insertions. Using codon-based models of sequence evolution, we show these retrogenes have diverse evolutionary trajectories, including divergence from the parent coding sequence under positive selection pressure, purifying selection pressure maintaining parent-retrogene similarity, and neutral evolution. Examination of the expression pattern of retrogenes shows an atypical, broad pattern across multiple tissues. Protein 3D structure modeling reveals that a positively selected residue in U2af1-rs1, not shared by its parent, may influence protein conformation. Our case-by-case analysis of the evolution of four imprinted retrogenes reveals that this interesting class of imprinted genes, while similar in regulation and sequence characteristics, follow very varied evolutionary paths. PMID:21166792
Bickel, Balthasar; Witzlack-Makarevich, Alena; Choudhary, Kamal K; Schlesewsky, Matthias; Bornkessel-Schlesewsky, Ina
2015-01-01
Do principles of language processing in the brain affect the way grammar evolves over time or is language change just a matter of socio-historical contingency? While the balance of evidence has been ambiguous and controversial, we identify here a neurophysiological constraint on the processing of language that has a systematic effect on the evolution of how noun phrases are marked by case (i.e. by such contrasts as between the English base form she and the object form her). In neurophysiological experiments across diverse languages we found that during processing, participants initially interpret the first base-form noun phrase they hear (e.g. she…) as an agent (which would fit a continuation like … greeted him), even when the sentence later requires the interpretation of a patient role (as in … was greeted). We show that this processing principle is also operative in Hindi, a language where initial base-form noun phrases most commonly denote patients because many agents receive a special case marker ("ergative") and are often left out in discourse. This finding suggests that the principle is species-wide and independent of the structural affordances of specific languages. As such, the principle favors the development and maintenance of case-marking systems that equate base-form cases with agents rather than with patients. We confirm this evolutionary bias by statistical analyses of phylogenetic signals in over 600 languages worldwide, controlling for confounding effects from language contact. Our findings suggest that at least one core property of grammar systematically adapts in its evolution to the neurophysiological conditions of the brain, independently of socio-historical factors. This opens up new avenues for understanding how specific properties of grammar have developed in tight interaction with the biological evolution of our species.
The role of tandem duplicator phenotype in tumour evolution in high-grade serous ovarian cancer.
Ng, Charlotte K Y; Cooke, Susanna L; Howe, Kevin; Newman, Scott; Xian, Jian; Temple, Jillian; Batty, Elizabeth M; Pole, Jessica C M; Langdon, Simon P; Edwards, Paul A W; Brenton, James D
2012-04-01
High-grade serous ovarian carcinoma (HGSOC) is characterized by genomic instability, ubiquitous TP53 loss, and frequent development of platinum resistance. Loss of homologous recombination (HR) is a mutator phenotype present in 50% of HGSOCs and confers hypersensitivity to platinum treatment. We asked which other mutator phenotypes are present in HGSOC and how they drive the emergence of platinum resistance. We performed whole-genome paired-end sequencing on a model of two HGSOC cases, each consisting of a pair of cell lines established before and after clinical resistance emerged, to describe their structural variants (SVs) and to infer their ancestral genomes as the SVs present within each pair. The first case (PEO1/PEO4), with HR deficiency, acquired translocations and small deletions through its early evolution, but a revertant BRCA2 mutation restoring HR function in the resistant lineage re-stabilized its genome and reduced platinum sensitivity. The second case (PEO14/PEO23) had 216 tandem duplications and did not show evidence of HR or mismatch repair deficiency. By comparing the cell lines to the tissues from which they originated, we showed that the tandem duplicator mutator phenotype arose early in progression in vivo and persisted throughout evolution in vivo and in vitro, which may have enabled continual evolution. From the analysis of SNP array data from 454 HGSOC cases in The Cancer Genome Atlas series, we estimate that 12.8% of cases show patterns of aberrations similar to the tandem duplicator, and this phenotype is mutually exclusive with BRCA1/2 carrier mutations. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Wood, Benjamin A; LeBoit, Philip E
2013-08-01
To study the clinical and pathological features of cases of apparent solar purpura, with attention to the recently described phenomenon of inflammatory changes within otherwise typical lesions. We studied 95 cases diagnosed as solar purpura and identified 10 cases (10.5%) in which significant neutrophilic inflammation was present, potentially simulating a leukocytoclastic vasculitis or neutrophilic dermatosis. An additional three cases were identified in subsequent routine practice. The clinical features, including follow-up for subsequent development of vasculitis and histological features were studied. In all cases the histological features were typical of solar purpura, with the exception of inflammatory changes, typically associated with clefting of elastotic stroma. Clinical follow-up information was available for all patients and none developed subsequent evidence of a cutaneous or systemic vasculitis or neutrophilic dermatosis. Inflammatory changes appear to be more frequent in solar purpura than is generally recognised. Awareness of this histological variation and correlation with the clinical findings and evolution is important in avoiding misdiagnosis.
Lee, Jong-In; Kim, Young-Taek; Shin, Sungwon
2014-01-01
This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees), and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall. PMID:25254260
Lee, Jong-In; Kim, Young-Taek; Shin, Sungwon
2014-01-01
This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees), and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall.
NASA Astrophysics Data System (ADS)
Doualle, T.; Gallais, L.; Cormont, P.; Donval, T.; Lamaignère, L.; Rullier, J. L.
2016-06-01
We investigate the effect of different heat treatments on the laser-induced damage probabilities of fused silica samples. Isothermal annealing in a furnace is applied, with different temperatures in the range 700-1100 °C and 12 h annealing time, to super-polished fused silica samples. The surface flatness and laser damage probabilities at 3 ns, 351 nm are measured before and after the different annealing procedures. We have found a significant improvement of the initial laser damage probabilities of the silica surface after annealing at 1050 °C for 12 h. A similar study has been conducted on CO2 laser-processed sites on the surface of the samples. Before and after annealing, we have studied the morphology of the sites, the evolution of residual stress, and the laser-induced damage threshold measured at 351 nm, 3 ns. In this case, we observe that the laser damage resistance of the laser created craters can reach the damage level of the bare fused silica surface after the annealing process, with a complete stress relieve. The obtained results are then compared to the case of local annealing process by CO2 laser irradiation during 1 s, and we found similar improvements in both cases. The different results obtained in the study are compared to numerical simulations made with a thermo-mechanical model based on finite-element method that allows the simulation of the isothermal or the local annealing process, the evolution of stress and fictive temperature. The simulation results were found to be very consistent with experimental observations for the stresses evolution after annealing and estimation of the heat affected area during laser-processing based on the density dependence with fictive temperature. Following this work, the temperature for local annealing should reach 1330-1470 °C for an optimized reduction of damage probability and be below the threshold for material removal, whereas furnace annealing should be kept below the annealing point to avoid sample deformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doualle, T.; Gallais, L., E-mail: laurent.gallais@fresnel.fr; Cormont, P.
We investigate the effect of different heat treatments on the laser-induced damage probabilities of fused silica samples. Isothermal annealing in a furnace is applied, with different temperatures in the range 700–1100 °C and 12 h annealing time, to super-polished fused silica samples. The surface flatness and laser damage probabilities at 3 ns, 351 nm are measured before and after the different annealing procedures. We have found a significant improvement of the initial laser damage probabilities of the silica surface after annealing at 1050 °C for 12 h. A similar study has been conducted on CO{sub 2} laser-processed sites on the surface of the samples. Before andmore » after annealing, we have studied the morphology of the sites, the evolution of residual stress, and the laser-induced damage threshold measured at 351 nm, 3 ns. In this case, we observe that the laser damage resistance of the laser created craters can reach the damage level of the bare fused silica surface after the annealing process, with a complete stress relieve. The obtained results are then compared to the case of local annealing process by CO{sub 2} laser irradiation during 1 s, and we found similar improvements in both cases. The different results obtained in the study are compared to numerical simulations made with a thermo-mechanical model based on finite-element method that allows the simulation of the isothermal or the local annealing process, the evolution of stress and fictive temperature. The simulation results were found to be very consistent with experimental observations for the stresses evolution after annealing and estimation of the heat affected area during laser-processing based on the density dependence with fictive temperature. Following this work, the temperature for local annealing should reach 1330–1470 °C for an optimized reduction of damage probability and be below the threshold for material removal, whereas furnace annealing should be kept below the annealing point to avoid sample deformation.« less
Punctuated equilibrium and shock waves in molecular models of biological evolution.
Saakian, David B; Ghazaryan, Makar H; Hu, Chin-Kun
2014-08-01
We consider the dynamics in infinite population evolution models with a general symmetric fitness landscape. We find shock waves, i.e., discontinuous transitions in the mean fitness, in evolution dynamics even with smooth fitness landscapes, which means that the search for the optimal evolution trajectory is more complicated. These shock waves appear in the case of positive epistasis and can be used to represent punctuated equilibria in biological evolution during long geological time scales. We find exact analytical solutions for discontinuous dynamics at the large-genome-length limit and derive optimal mutation rates for a fixed fitness landscape to send the population from the initial configuration to some final configuration in the fastest way.
76 FR 11940 - Airworthiness Directives; Turbomeca Model Arriel 1E2, 1S, and 1S1 Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-04
... discrepancies led to a ``one-off'' abnormal evolution of gas generator (NG) rating during engine starting. In... evolution of gas generator (NG) rating during engine starting. In one of these cases, this resulted in an...
Improving Food Safety by Understanding the Evolution of Egg-contaminating Salmonella Enteritidis
USDA-ARS?s Scientific Manuscript database
Improving Food Safety by Understanding the Evolution of Egg-contaminating Salmonella Enteritidis Jean Guard, Veterinary Medical Officer U. S. Department of Agriculture, Athens, GA USA (jean.guard@ars.usda.gov) The curious case of egg contamination by Salmonella enterica serovar Enteritidis S. ...
Recurrent specialization on a toxic fruit in an island Drosophila population
Yassin, Amir; Debat, Vincent; Bastide, Héloïse; Gidaszewski, Nelly; David, Jean R.; Pool, John E.
2016-01-01
Recurrent specialization on similar host plants offers a unique opportunity to unravel the evolutionary and genetic mechanisms underlying dietary shifts. Recent studies have focused on ecological races belonging to the same species, but it is hard in many cases to untangle the role of adaptive introgression versus distinct mutations in facilitating recurrent evolution. We discovered on the island of Mayotte a population of the generalist fly Drosophila yakuba that is strictly associated with noni (Morinda citrifolia). This case strongly resembles Drosophila sechellia, a genetically isolated insular relative of D. yakuba whose intensely studied specialization on toxic noni fruits has always been considered a unique event in insect evolution. Experiments revealed that unlike mainland D. yakuba strains, Mayotte flies showed strong olfactory attraction and significant toxin tolerance to noni. Island females strongly discriminated against mainland males, suggesting that dietary adaptation has been accompanied by partial reproductive isolation. Population genomic analysis indicated a recent colonization (∼29 kya), at a time when year-round noni fruits may have presented a predictable resource on the small island, with ongoing migration after colonization. This relatively recent time scale allowed us to search for putatively adaptive loci based on genetic variation. Strong signals of genetic differentiation were found for several detoxification genes, including a major toxin tolerance locus in D. sechellia. Our results suggest that recurrent evolution on a toxic resource can involve similar historical events and common genetic bases, and they establish an important genetic system for the study of early stages of ecological specialization and speciation. PMID:27044093
Woźniak, Natalia Joanna; Sicard, Adrien
2018-07-01
Flowers represent a key innovation during plant evolution. Driven by reproductive optimization, evolution of flower morphology has been central in boosting species diversification. In most cases, this has happened through specialized interactions with animal pollinators and subsequent reduction of gene flow between specialized morphs. While radiation has led to an enormous variability in flower forms and sizes, recurrent evolutionary patterns can be observed. Here, we discuss the targets of selection involved in major trends of pollinator-driven flower evolution. We review recent findings on their adaptive values, developmental grounds and genetic bases, in an attempt to better understand the repeated nature of pollinator-driven flower evolution. This analysis highlights how structural innovation can provide flexibility in phenotypic evolution, adaptation and speciation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Clonal evolution and devolution after chemotherapy in adult acute myelogenous leukemia
Parkin, Brian; Ouillette, Peter; Li, Yifeng; Keller, Jennifer; Lam, Cindy; Roulston, Diane; Li, Cheng; Shedden, Kerby
2013-01-01
The frequent occurrence of persistent or relapsed disease after induction chemotherapy in AML necessitates a better understanding of the clonal relationship of AML in various disease phases. In this study, we used SNP 6.0 array-based genomic profiling of acquired copy number aberrations (aCNA) and copy neutral LOH (cnLOH) together with sequence analysis of recurrently mutated genes to characterize paired AML genomes. We analyzed 28 AML sample pairs from patients who achieved complete remission with chemotherapy and subsequently relapsed and 11 sample pairs from patients with persistent disease after induction chemotherapy. Through review of aCNA/cnLOH and gene mutation profiles in informative cases, we demonstrate that relapsed AML invariably represents re-emergence or evolution of a founder clone. Furthermore, all individual aCNA or cnLOH detected at presentation persisted at relapse indicating that this lesion type is proximally involved in AML evolution. Analysis of informative paired persistent AML disease samples uncovered cases with 2 coexisting dominant clones of which at least one was chemotherapy sensitive and one resistant, respectively. These data support the conclusion that incomplete eradication of AML founder clones rather than stochastic emergence of fully unrelated novel clones underlies AML relapse and persistence with direct implications for clinical AML research. PMID:23175688
The effects of diffusion in hot subdwarf progenitors from the common envelope channel
NASA Astrophysics Data System (ADS)
Byrne, Conor M.; Jeffery, C. Simon; Tout, Christopher A.; Hu, Haili
2018-04-01
Diffusion of elements in the atmosphere and envelope of a star can drastically alter its surface composition, leading to extreme chemical peculiarities. We consider the case of hot subdwarfs, where surface helium abundances range from practically zero to almost 100 percent. Since hot subdwarfs can form via a number of different evolution channels, a key question concerns how the formation mechanism is connected to the present surface chemistry. A sequence of extreme horizontal branch star models was generated by producing post-common envelope stars from red giants. Evolution was computed with MESA from envelope ejection up to core-helium ignition. Surface abundances were calculated at the zero-age horizontal branch for models with and without diffusion. A number of simulations also included radiative levitation. The goal was to study surface chemistry during evolution from cool giant to hot subdwarf and determine when the characteristic subdwarf surface is established. Only stars leaving the giant branch close to core-helium ignition become hydrogen-rich subdwarfs at the zero-age horizontal branch. Diffusion, including radiative levitation, depletes the initial surface helium in all cases. All subdwarf models rapidly become more depleted than observations allow. Surface abundances of other elements follow observed trends in general, but not in detail. Additional physics is required.
Tidal evolution of the Galilean satellites - A linearized theory
NASA Technical Reports Server (NTRS)
Greenberg, R.
1981-01-01
The Laplace resonance among the Galilean satellites Io, Europa, and Ganymede is traditionally reduced to a pendulum-like dynamical problem by neglecting short-period variations of several orbital elements. However, some of these variations that can now be neglected may once have had longer periods, comparable to the 'pendulum' period, if the system was formerly in deep resonance (pairs of periods even closer to the ratio 2:1 than they are now). In that case, the dynamical system cannot be reduced to fewer than nine dimensions. The nine-dimensional system is linearized here in order to study small variations about equilibrium. When tidal effects are included, the resulting evolution is substantially the same as was indicated by the pendulum approach, except that evolution out of deep resonance is found to be somewhat slower than suggested by extrapolation of the pendulum results. This slower rate helps support the hypothesis that the system may have evolved from deep resonance.
Entanglement negativity after a local quantum quench in conformal field theories
NASA Astrophysics Data System (ADS)
Wen, Xueda; Chang, Po-Yao; Ryu, Shinsei
2015-08-01
We study the time evolution of the entanglement negativity after a local quantum quench in (1 + 1)-dimensional conformal field theories (CFTs), which we introduce by suddenly joining two initially decoupled CFTs at their end points. We calculate the negativity evolution for both adjacent intervals and disjoint intervals explicitly. For two adjacent intervals, the entanglement negativity grows logarithmically in time right after the quench. After developing a plateau-like feature, the entanglement negativity drops to the ground-state value. For the case of two spatially separated intervals, a light-cone behavior is observed in the negativity evolution; in addition, a long-range entanglement, which is independent of the distance between two intervals, can be created. Our results agree with the heuristic picture that quasiparticles, which carry entanglement, are emitted from the joining point and propagate freely through the system. Our analytical results are confirmed by numerical calculations based on a critical harmonic chain.
NASA Astrophysics Data System (ADS)
Yuvchenko, S. A.; Tzyipin, D. V.; Isaeva, A. A.; Isaeva, E. A.; Ushakova, O. V.; Macheev, M. S.; Zimnyakov, D. A.
2018-04-01
The temporal evolution of the metastable and unstable foams had been studied. Diffusion wave spectroscopy was chosen as the diagnostic method, with calculation of the correlation time of the fluctuations in the intensity of the probing radiation. It was established that the correlation time increases with the time according to the power law with different parameters, depending on the type of the evolution and was found to be equal to 0.5 for the case of the metastable and to 2,52 for the unstable foam. It was also determined that the behaviour of the correlation time agrees well with the evolution of the characteristic dimensions of the scatterers in the form of bubbles in the medium, which can be used for contactless monitoring of the foaming processes in the production of the foam-like materials for various applications, for example, in the synthesis of the biocompatible polymer matrices - scaffolds.
Dynamics of symmetry breaking during quantum real-time evolution in a minimal model system.
Heyl, Markus; Vojta, Matthias
2014-10-31
One necessary criterion for the thermalization of a nonequilibrium quantum many-particle system is ergodicity. It is, however, not sufficient in cases where the asymptotic long-time state lies in a symmetry-broken phase but the initial state of nonequilibrium time evolution is fully symmetric with respect to this symmetry. In equilibrium, one particular symmetry-broken state is chosen as a result of an infinitesimal symmetry-breaking perturbation. From a dynamical point of view the question is: Can such an infinitesimal perturbation be sufficient for the system to establish a nonvanishing order during quantum real-time evolution? We study this question analytically for a minimal model system that can be associated with symmetry breaking, the ferromagnetic Kondo model. We show that after a quantum quench from a completely symmetric state the system is able to break its symmetry dynamically and discuss how these features can be observed experimentally.
Cavitary Pulmonary Sporotrichosis: Case Report and Literature Review.
Rojas, Florencia D; Fernández, Mariana S; Lucchelli, Juan Manuel; Lombardi, Dora; Malet, José; Vetrisano, María Eugenia; Cattana, María Emilia; Sosa, María de Los Ángeles; Giusiano, Gustavo
2017-12-01
A case of cavitary pulmonary sporotrichosis without mucocutaneous involvement caused by Sporothrix schenckii is reported in a sexagenarian woman with a long smoking history. The patient was hospitalized for septic shock with multiorgan failure from a respiratory focus. The diagnosis was delayed due to the fungal etiological agent was not initially considered in the differential diagnosis. A good clinical and radiological evolution was obtained with the antifungal therapy. Occasional cases of primary pulmonary sporotrichosis have been reported in the literature. Due to its low incidence, this is a less-known and underestimated clinical form. Both clinical suspicion and microbiological studies are needed to reach pulmonary sporotrichosis diagnosis.
A second-order modelling of a stably stratified sheared turbulence submitted to a non-vertical shear
NASA Astrophysics Data System (ADS)
Bouzaiane, Mounir; Ben Abdallah, Hichem; Lili, Taieb
2004-09-01
In this work, the evolution of homogeneous stably stratified turbulence submitted to a non-vertical shear is studied using second-order closure models. Two cases of turbulent flows are considered. Firstly, the case of a purely horizontal shear is considered. In this case, the evolution of the turbulence is studied according to the Richardson number Ri which is varied from 0.2 to 2.0 when other parameters are kept constant. In the second case, two components of shear are present. The turbulence is submitted to a vertical component Sv = partU1/partx3 = S cos(thgr) and a horizontal component Sh = partU1/partx2 = S sin(thgr). In this case, we study the influence of shear inclination angle thgr on the evolution of turbulence. In both cases, we are referred respectively to the recent direct numerical simulations of Jacobitz (2002 J. Turbulence 3 055) and Jacobitz and Sarkar (1998 Phys. Fluids 10 1158-68) which are, to our knowledge, the most recent results of the above-mentioned flows. Transport equations of second-order moments \\overline{u_{i} u_{j}} , \\overline{u_{i} \\rho } , \\overline{\\rho^{2}} are derived. The Shih-Lumley (SL) (Shih T H 1996 Turbulence Transition and Modeling ed H D S Henningson, A V Johansson and P H Alfredsson (Dordrecht: Kluwer); Shih and Lumley J L 1989 27th Aerospace Meeting 9-12 January, Center of Turbulent Research, Nevada) and the Craft-Launder (CL) (Craft T J and Launder B E 1989 Turbulent Shear Flow Stanford University, USA, pp 12-1-12-6 Launder B E 1996 Turbulence Transition and Modeling ed H D S Henningson, A V Johansson and P H Alfredsson (Dordrecht: Kluwer)) second-order models are retained for the pressure-strain correlation phgrij and the pressure-scalar gradient correlation phgrirgr. The corresponding models are also retained for the dissipation egr of the turbulent kinetic energy and an algebraic model is retained for the dissipation egrrgrrgr of the variance of the scalar. A fourth-order Runge-Kutta method is used for the numerical integration of the closed systems of non-linear dimensionless differential equations. A good agreement between the predictions of second-order models and values of direct numerical simulation of Jacobitz has been generally observed for the principal component of anisotropy b12. A qualitative agreement has been observed for the ratios K/E and Krgr/E of the kinetic and potential energies to the total energy E.
Evolution of IPv6 Internet topology with unusual sudden changes
NASA Astrophysics Data System (ADS)
Ai, Jun; Zhao, Hai; Kathleen, M. Carley; Su, Zhan; Li, Hui
2013-07-01
The evolution of Internet topology is not always smooth but sometimes with unusual sudden changes. Consequently, identifying patterns of unusual topology evolution is critical for Internet topology modeling and simulation. We analyze IPv6 Internet topology evolution in IP-level graph to demonstrate how it changes in uncommon ways to restructure the Internet. After evaluating the changes of average degree, average path length, and some other metrics over time, we find that in the case of a large-scale growing the Internet becomes more robust; whereas in a top—bottom connection enhancement the Internet maintains its efficiency with links largely decreased.
Míguez, A; Iftimi, A; Montes, F
2016-09-01
Epidemiologists agree that there is a prevailing seasonality in the presentation of epidemic waves of respiratory syncytial virus (RSV) infections and influenza. The aim of this study is to quantify the potential relationship between the activity of RSV, with respect to the influenza virus, in order to use the RSV seasonal curve as a predictor of the evolution of an influenza virus epidemic wave. Two statistical tools, logistic regression and time series, are used for predicting the evolution of influenza. Both logistic models and time series of influenza consider RSV information from previous weeks. Data consist of influenza and confirmed RSV cases reported in Comunitat Valenciana (Spain) during the period from week 40 (2010) to week 8 (2014). Binomial logistic regression models used to predict the two states of influenza wave, basal or peak, result in a rate of correct classification higher than 92% with the validation set. When a finer three-states categorization is established, basal, increasing peak and decreasing peak, the multinomial logistic model performs well in 88% of cases of the validation set. The ARMAX model fits well for influenza waves and shows good performance for short-term forecasts up to 3 weeks. The seasonal evolution of influenza virus can be predicted a minimum of 4 weeks in advance using logistic models based on RSV. It would be necessary to study more inter-pandemic seasons to establish a stronger relationship between the epidemic waves of both viruses.
Studies on shock interactions with moving cylinders using immersed boundary method
NASA Astrophysics Data System (ADS)
Luo, Kun; Luo, Yujuan; Jin, Tai; Fan, Jianren
2017-06-01
The process of shock interaction with a rigid cylinder is studied using a compressible immersed boundary method combined with a high-order weighted essentially nonoscillatory scheme. Movement of the cylinder is coupled to the flow field. First, the accuracy of the numerical scheme is validated. Then the influences of the incident shock Mach number and the cylinder diameter are discussed. The results are compared with those from cases with stationary cylinders. It is found that variation of either the incident shock Mach number or the cylinder diameter can cause different schlieren images. At a given dimensionless time, the trajectory of the upper triple point varies nonmonotonically with the incident shock Mach number while the primary reflected shock gets closer to the cylinder with increasing incident shock Mach number. For any moving case with a given incident shock Mach number and cylinder diameter, the trajectory of the upper triple point, the time evolution of the normalized vertical distance from the highest point of the primary reflected shock to the centerline of the cylinder, and the time evolution of the normalized shock detachment distance can all be predicted by linear correlation. As for the time evolution of the force exerted on the cylinder, the peak of the moving cylinder appears earlier than the stationary one in dimensionless time, with much lower value. Correlations to predict the occurrence of the peak drag and its value under different shock Mach numbers and cylinder diameters are proposed. The resulting cylinder movement is also briefly discussed.
The December 2010 outbreak of a major storm in Saturn's atmosphere: Observations and models
NASA Astrophysics Data System (ADS)
Sanchez-Lavega, A.; Del Río-Gaztelurrutia, T.; Hueso, R.; Gómez-Forrellad, J. M.; Sanz-Requena, J. F.; Legarreta, J.; García-Melendo, E.; Colas, F.; Lecacheux, J.; Fletcher, L. N.; Barrado-Navascués, D.; Parker, D.
2011-10-01
On December 5, 2010, a major storm erupted in Saturn's northern hemisphere at a planetographic latitude of 37.7 deg [1]. These phenomena are known as "Great White Spots" (GWS) and they have been observed once per Saturn year since the first case confidently reported in 1876. The last event occurred at Saturn's Equator in 1990 [2]. A GWS differs from similar smaller-scale storms in that it generates a planetary-scale disturbance that spreads zonally spanning the whole latitude band. Studies of the 1990 case indicated that the storm produced a long-term substantial change in the cloud and haze structure around the tropopause level, and in the equatorial winds. We report on the evolution and motions of the new GWS and its associated disturbance during the months following the outbreak, based mainly on high quality images obtained in the visual range submitted to the International Outer Planet Watch PVOL database [3], with the 1m telescope at Pic-du-Midi Observatory and 2.2 m telescope at Calar Alto Observatory. The high temporal sampling and coverage allowed us to study the dynamics of the GWS in detail and the multi-wavelength observations provide information on its cloud top structure. We present non-linear simulations using the EPIC code of the evolution of the potential vorticity generated by an impulsive and localized Gaussian heat pulse that compare extraordinary well to the observed cloud field evolution.
ERIC Educational Resources Information Center
Kawasaki, Keiko; Herrenkohl, Leslie Rupert; Yeary, Sherry A.
2004-01-01
The purpose of this paper is to carefully examine the evolution of students' theory building and modeling, critical components of scientific epistemologies, over a unit of study on sinking and floating in one third/fourth grade classroom. The study described in this paper follows in the tradition of Design Experiments (Brown 1992, Collins 1990)…
Numerical study on tilting salt finger in a laminar shear flow
NASA Astrophysics Data System (ADS)
Zhang, Xianfei; Wang, Ling-ling; Lin, Cheng; Zhu, Hai; Zeng, Cheng
2018-02-01
Salt fingers as a mixing mechanism in the ocean have been investigated for several decades, together with a key issue being focused on their convective evolution and flux ratio variation. However, related studies on tilting fingers in the ocean produced by shear flow have been ignored by previous researchers. In this paper, a 2-D numerical model is presented to study the evolution of the double-diffusion salt finger in a two-layer thermohaline system with laminar shear flow. The model is divided into a steady-state solver and double-diffusion convection system, aimed to reveal the effect of shear flow on salt fingers and analyze the mechanism behind the shear and fingers. Several cases are conducted for Re = 0 ˜ 900 to study the evolution of salt fingers in a laminar shear flow and the variation of salt flux with Re. The results show that salt fingers exist and tilt in the presence of laminar shear flow. The mass transport in the vertical direction is weakened as the Reynolds number increases. An asymmetric structure of the salt finger is discovered and accounts for the morphological tilt and salt flux reduction.
Evolution of African swine fever virus genes related to evasion of host immune response.
Frączyk, Magdalena; Woźniakowski, Grzegorz; Kowalczyk, Andrzej; Bocian, Łukasz; Kozak, Edyta; Niemczuk, Krzysztof; Pejsak, Zygmunt
2016-09-25
African swine fever (ASF) is a notifiable and one of the most complex and devastating infectious disease of pigs, wild boars and other representatives of Suidae family. African swine fever virus (ASFV) developed various molecular mechanisms to evade host immune response including alteration of interferon production by multigene family protein (MGF505-2R), inhibition of NF-κB and nuclear activating factor in T-cells by the A238L protein, or modulation of host defense by CD2v lectin-like protein encoded by EP402R and EP153R genes. The current situation concerning ASF in Poland seems to be stable in comparison to other eastern European countries but up-to-date in total 106 ASF cases in wild boar and 5 outbreaks in pigs were identified. The presented study aimed to reveal and summarize the genetic variability of genes related to inhibition or modulation of infected host response among 67 field ASF isolates collected from wild boar and pigs. The nucleotide sequences derived from the analysed A238L and EP153R regions showed 100% identity. However, minor but remarkable genetic diversity was found within EP402R and MGF505-2R genes suggesting slow molecular evolution of circulating ASFV isolates and the important role of this gene in modulation of interferon I production and hemadsorption phenomenon. The obtained nucleotide sequences of Polish ASFV isolates were closely related to Georgia 2007/1 and Odintsovo 02/14 isolates suggesting their common Caucasian origin. In the case of EP402R and partially in MGF505-2R gene the identified genetic variability was related to spatio-temporal occurrence of particular cases and outbreaks what may facilitate evolution tracing of ASFV isolates. This is the first report indicating identification of genetic variability within the genes related to evasion of host immune system which may be used to trace the direction of ASFV isolates molecular evolution. Copyright © 2016 Elsevier B.V. All rights reserved.
Negru, Irina; Pricop, C; Costăchescu, Gh
2010-01-01
Renal colic in pregnant women is a serious condition, mainly when is associated with fever. Our retro-prospective study analyzes 111 cases managed conservatively or with endourological procedures for renal colic--insertion of JJ stents and percutaneous nephrostomy. Clinical evolution determined the insertion of JJ stents in 60 cases and the failure of this procedure imposed percutaneous nephrostomy in 5 cases. In 56 cases urinary tract infection was associated and in 2 cases, despite all efforts, the patients deceased due to sever sepsis. The immediate drainage of the upper urinary tract for renal colic in pregnancy is the recommended treatment, especially when the pain is associated with fever. JJ stens were well tolerated, even when they were replaced after 3 months. Pregnant women with a history of UTI or stone disease should be carefully followed-up.
Ontogeny and Phylogeny from an Epigenetic Point of View.
ERIC Educational Resources Information Center
Lovtrup, Soren
1984-01-01
The correlation between ontogeny and phylogeny is analyzed through the discussion of four theories on the reality, history, epigenetic, and ecological aspects of the mechanism of evolution. Also discussed are historical and creative aspects of evolution and three epigenetic mechanisms instantiated in the case of the amphibian embryo. (Author/RH)
Rewriting evolution--"been there, done that".
Penny, David
2013-01-01
A recent paper by a science journalist in Nature shows major errors in understanding phylogenies, in this case of placental mammals. The underlying unrooted tree is probably correct, but the placement of the root just reflects a well-known error from the acceleration in the rate of evolution among some myomorph rodents.
Schmalhofer, F J; Tschaitschian, B
1998-11-01
In this paper, we perform a cognitive analysis of knowledge discovery processes. As a result of this analysis, the construction-integration theory is proposed as a general framework for developing cooperative knowledge evolution systems. We thus suggest that for the acquisition of new domain knowledge in medicine, one should first construct pluralistic views on a given topic which may contain inconsistencies as well as redundancies. Only thereafter does this knowledge become consolidated into a situation-specific circumscription and the early inconsistencies become eliminated. As a proof for the viability of such knowledge acquisition processes in medicine, we present the IDEAS system, which can be used for the intelligent documentation of adverse events in clinical studies. This system provides a better documentation of the side-effects of medical drugs. Thereby, knowledge evolution occurs by achieving consistent explanations in increasingly larger contexts (i.e., more cases and more pharmaceutical substrates). Finally, it is shown how prototypes, model-based approaches and cooperative knowledge evolution systems can be distinguished as different classes of knowledge-based systems.
Hierarchical Spatio-temporal Visual Analysis of Cluster Evolution in Electrocorticography Data
Murugesan, Sugeerth; Bouchard, Kristofer; Chang, Edward; ...
2016-10-02
Here, we present ECoG ClusterFlow, a novel interactive visual analysis tool for the exploration of high-resolution Electrocorticography (ECoG) data. Our system detects and visualizes dynamic high-level structures, such as communities, using the time-varying spatial connectivity network derived from the high-resolution ECoG data. ECoG ClusterFlow provides a multi-scale visualization of the spatio-temporal patterns underlying the time-varying communities using two views: 1) an overview summarizing the evolution of clusters over time and 2) a hierarchical glyph-based technique that uses data aggregation and small multiples techniques to visualize the propagation of clusters in their spatial domain. ECoG ClusterFlow makes it possible 1) tomore » compare the spatio-temporal evolution patterns across various time intervals, 2) to compare the temporal information at varying levels of granularity, and 3) to investigate the evolution of spatial patterns without occluding the spatial context information. Lastly, we present case studies done in collaboration with neuroscientists on our team for both simulated and real epileptic seizure data aimed at evaluating the effectiveness of our approach.« less
The evolution of dispersal conditioned on migration status
Asaduzzaman, Sarder Mohammed; Wild, Geoff
2012-01-01
We consider a model for the evolution of dispersal of offspring. Dispersal is treated as a parental trait that is expressed conditional upon a parent’s own “migration status,” that is, whether a parent, itself, is native or nonnative to the area in which it breeds. We compare the evolution of this kind of conditional dispersal to the evolution of unconditional dispersal, in order to determine the extent to which the former changes predictions about population-wide levels of dispersal. We use numerical simulations of an inclusive-fitness model, and individual-based simulations to predict population-average dispersal rates for the case in which dispersal based on migration status occurs. When our model predictions are compared to predictions that neglect conditional dispersal, observed differences between rates are only slight, and never exceed 0.06. While the effect of dispersal conditioned upon migration status could be detected in a carefully designed experiment, we argue that less-than-ideal experimental conditions, and factors such as dispersal conditioned on sex are likely to play a larger role that the type of conditional dispersal studied here. PMID:22837829
Unifying time evolution and optimization with matrix product states
NASA Astrophysics Data System (ADS)
Haegeman, Jutho; Lubich, Christian; Oseledets, Ivan; Vandereycken, Bart; Verstraete, Frank
2016-10-01
We show that the time-dependent variational principle provides a unifying framework for time-evolution methods and optimization methods in the context of matrix product states. In particular, we introduce a new integration scheme for studying time evolution, which can cope with arbitrary Hamiltonians, including those with long-range interactions. Rather than a Suzuki-Trotter splitting of the Hamiltonian, which is the idea behind the adaptive time-dependent density matrix renormalization group method or time-evolving block decimation, our method is based on splitting the projector onto the matrix product state tangent space as it appears in the Dirac-Frenkel time-dependent variational principle. We discuss how the resulting algorithm resembles the density matrix renormalization group (DMRG) algorithm for finding ground states so closely that it can be implemented by changing just a few lines of code and it inherits the same stability and efficiency. In particular, our method is compatible with any Hamiltonian for which ground-state DMRG can be implemented efficiently. In fact, DMRG is obtained as a special case of our scheme for imaginary time evolution with infinite time step.
Cultural diversification promotes rapid phenotypic evolution in Xavánte Indians
Hünemeier, Tábita; Gómez-Valdés, Jorge; Ballesteros-Romero, Mónica; de Azevedo, Soledad; Martínez-Abadías, Neus; Esparza, Mireia; Sjøvold, Torstein; Bonatto, Sandro L.; Salzano, Francisco Mauro; Bortolini, Maria Cátira; González-José, Rolando
2012-01-01
Shifts in social structure and cultural practices can potentially promote unusual combinations of allele frequencies that drive the evolution of genetic and phenotypic novelties during human evolution. These cultural practices act in combination with geographical and linguistic barriers and can promote faster evolutionary changes shaped by gene–culture interactions. However, specific cases indicative of this interaction are scarce. Here we show that quantitative genetic parameters obtained from cephalometric data taken on 1,203 individuals analyzed in combination with genetic, climatic, social, and life-history data belonging to six South Amerindian populations are compatible with a scenario of rapid genetic and phenotypic evolution, probably mediated by cultural shifts. We found that the Xavánte experienced a remarkable pace of evolution: the rate of morphological change is far greater than expected for its time of split from their sister group, the Kayapó, which occurred around 1,500 y ago. We also suggest that this rapid differentiation was possible because of strong social-organization differences. Our results demonstrate how human groups deriving from a recent common ancestor can experience variable paces of phenotypic divergence, probably as a response to different cultural or social determinants. We suggest that assembling composite databases involving cultural and biological data will be of key importance to unravel cases of evolution modulated by the cultural environment. PMID:22184238
Distinguishing Between Convergent Evolution and Violation of the Molecular Clock for Three Taxa.
Mitchell, Jonathan D; Sumner, Jeremy G; Holland, Barbara R
2018-05-18
We give a non-technical introduction to convergence-divergence models, a new modeling approach for phylogenetic data that allows for the usual divergence of lineages after lineage-splitting but also allows for taxa to converge, i.e. become more similar over time. By examining the 3-taxon case in some detail we illustrate that phylogeneticists have been "spoiled" in the sense of not having to think about the structural parameters in their models by virtue of the strong assumption that evolution is tree-like. We show that there are not always good statistical reasons to prefer the usual class of tree-like models over more general convergence-divergence models. Specifically we show many 3-taxon data sets can be equally well explained by supposing violation of the molecular clock due to change in the rate of evolution along different edges, or by keeping the assumption of a constant rate of evolution but instead assuming that evolution is not a purely divergent process. Given the abundance of evidence that evolution is not strictly tree-like, our discussion is an illustration that as phylogeneticists we need to think clearly about the structural form of the models we use. For cases with four taxa we show that there will be far greater ability to distinguish models with convergence from non-clock-like tree models.
Hubble Case Studies of Transiting Giant Exoplanets
NASA Astrophysics Data System (ADS)
Wilkins, Ashlee N.; Deming, Drake; Barker, Adrian; Benneke, Björn; Delrez, Laetitia; Gillon, Michaël; Hamilton, Douglas P.; Jehin, Emmanuel; Knutson, Heather; Lewis, Nikole K.; Madhusudhan, Nikku; Mandell, Avi; McCullough, Peter R.; Wakeford, Hannah R.
2017-01-01
The study of planets around other stars has entered a science-rich era of characterization, in which detailed information about individual planets can be inferred from observations beyond mere detection, which only yields bulk properties like mass or radius. Characterization probes more revealing quantities such as chemical abundances, albedo, and temperature/pressure profiles, which allow us to address larger questions of planet formation mechanisms, planetary evolution, and, eventually, habitability and presence of biosignature gases. The primary method for characterization of close-in planets is transit spectroscopy. This dissertation talk will focus on transiting exoplanet case studies with the Hubble Space Telescope’ Wide-Field Camera-3 (WFC-3) as a tool of exoplanet characterization in a near-infrared band dominated by strong water features. I will first present a characterization the WFC-3 systematic effects that must be mitigated to extract the incredibly small (tens to 200 parts per million) signals, and then a study of four transiting giant planets (HATS-7b, HAT-p-3b, HD 149026b, and WASP-18b) in transmission, and two (WASP-18b and CoRoT-2b) in eclipse. Finally, I will discuss the role of transit timing monitoring of WASP-18b with HST and other observatories as another clue to its evolution as a close-in, massive planet. The five planets range from Neptune-class to Super-Jupiter-class in size/mass. Though these planets may be relatively rare, their observability represents a unique opportunity to probe planet formation and evolution, as well as atmospheric structures in a high-irradiation environment. These observations also yield insights into aerosols (i.e. clouds/hazes) in the atmosphere; clouds and/or hazes should significantly impact atmospheric chemistry and observational signatures, and we as a community must get a better handle on the phenomenon of aerosols in advance of the next generation of space observatories, including JWST and WFIRST. Further, as part of a large Hubble program, we are working to advance the state of exoplanet atmosphere observations from single, planet-by-planet, case studies, to an understanding of the large, hot, gaseous planets as a population.
Guzmán González, Eduardo; Gaviño Gaviño, Fernando; Valero Origel, Alberto; Deschamps Díaz, Horacio; Ramírez Fernández, María Antonieta; Miranda Lamadrid, Mario
2009-03-01
The double twin pregnancy with complete hydatidiform mole and coexistent fetus is a rare event and perinatal treatment complex. Presents a significant case of this unusual partnership and describes their evolution. Patient of 33 years, secondary infertility factor-peritoneal tube and pregnancy achieved by in vitro fertilization and embryo transfer. An ultrasound early pregnancy reported twice, a sack was a complete mole, another bag was a fetus and placenta previa unchanged total. The case is carefully monitored and uterine inhibitors were administered at different stages of gestation. It settled the case by caesarean section at 37 weeks and obstetric hysterectomy for placenta previa percreta molar involution of the placenta and newborn health. The evolution of the mother and the child was appropriate.
Dislocation evolution in 316 L stainless steel during multiaxial ratchetting deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Yawei; Kang Guozheng, E-mail: guozhengkang@yahoo.com.cn; Liu Yujie
2012-03-15
Dislocation patterns and their evolutions in 316 L stainless steel during the multiaxial ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations indicate that the dislocation evolution presented during the multiaxial ratchetting with four kinds of multiaxial loading paths is similar to that in the uniaxial case [G. Z. Kang et al., Mater Sci Eng A 527 (2010) 5952]. That is, dislocation networks and dislocation tangles are formed quickly by the multiple-slip and cross-slip of dislocation activated by applied multiaxial stress; and then polarized patterns such as dislocation walls and elongated incipient dislocation cells are formed atmore » the last stage of multiaxial ratchetting. The dislocation patterns evolve more quickly from the modes at low dislocation density to the ones at high density during the multiaxial ratchetting than that in the uniaxial case, and some traces of multiple-slip are observed in the multiaxial ones. The dislocation evolution during the multiaxial ratchetting deformation is summarized by comparing the observed dislocation patterns with those presented in the multiaxial strain-controlled and symmetrical stress-controlled cyclic tests. The multiaxial ratchetting of 316 L stainless steel can be microscopically and qualitatively explained by the observed evolution of dislocation patterns. - Highlights: Black-Right-Pointing-Pointer Dislocation patterns change from lines and nets to tangles, walls and cells. Black-Right-Pointing-Pointer Dislocation patterns evolve quicker in the multiaxial case. Black-Right-Pointing-Pointer Aligned dislocation arrays and some traces of multiple slips are observed. Black-Right-Pointing-Pointer Heterogeneous dislocation patterns result in the multiaxial ratchetting.« less
ERIC Educational Resources Information Center
Rosselli, Hilda, Ed.; Girod, Mark, Ed.; Brodsky, Meredith, Ed.
2011-01-01
As accountability in education has become an increasingly prominent topic, teacher preparation programs are being asked to provide credible evidence that their teacher candidates can impact student learning. Teacher Work Samples, first developed 30 years ago, have emerged as an effective method of quantifying the complex set of tasks that comprise…
Accounting in the Context of Its Environment: The Colombian Case.
ERIC Educational Resources Information Center
Laribee, Stephen F.; Laribee, Janet F.
This paper provides a study of the evolution of the accounting system in the country of Columbia, South America, in light of the conflict between cultural values, other environmental factors, and the financial information generated. The paper begins with an overview of Colombia's political history as well as its economic and social changes during…
ERIC Educational Resources Information Center
Munn, Jamie E.
2017-01-01
Military leaders, both active duty and General Schedule (GS), must understand cyber warfare with its environmental connections and rapid evolution while finding ways to develop strategies that may lessen threats and attacks to government infrastructure. The Department of Defense (DoD) sought training and certification programs from the civilian…
Thermal conduction and gravitational collapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, L.; Jimenez, J.; Esculpi, M.
1987-11-15
A method used to study the evolution of radiating spheres, reported some years ago by Herrera, Jimenez, and Ruggeri, is extended to the case in which thermal conduction within the sphere is taken into account. By means of an explicit example it is shown that heat flow, if present, may play an important role, affecting the final outcome of collapse.
Movements vary according to dispersal stage, group size, and rainfall: The case of the African lion
Nicholas B. Elliot; Samuel A. Cushman; Andrew J. Loveridge; Godfrey Mtare; David W. Macdonald
2014-01-01
Dispersal is one of the most important life-history traits affecting species persistence and evolution and is increasingly relevant for conservation biology as ecosystems become more fragmented. However, movement during different dispersal stages has been difficult to study and remains poorly understood. We analyzed movement metrics and patterns of autocorrelation from...
The Functions of Reflection in High-Stakes Assessment of World Language Teacher Candidates
ERIC Educational Resources Information Center
Troyan, Francis J.; Kaplan, Carolyn Shemwell
2015-01-01
In response to the call for improving teacher candidates' familiarity with the assessment tasks and format of the edTPA (Hildebrandt & Swanson, 2014), this single case study investigated the reflective writing development of Jena, a K-12 Spanish teacher candidate, and her evolution in a pedagogy that focused on the development of writing two…
Semistable extremal ground states for nonlinear evolution equations in unbounded domains
NASA Astrophysics Data System (ADS)
Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro
2008-02-01
In this paper we show that dissipative reaction-diffusion equations in unbounded domains posses extremal semistable ground states equilibria, which bound asymptotically the global dynamics. Uniqueness of such positive ground state and their approximation by extremal equilibria in bounded domains is also studied. The results are then applied to the important case of logistic equations.
Kuo, Ming-Chuan; Ball, Marion; Skiba, Diane J; Marin, Heimar; Shaw, Toria; Chang, Polun
2018-01-01
This session will describe the TIGER Initiative journey, its evolution and accomplishments nationally and internationally. A powerful demonstration of the TIGER Virtual Learning Environment (VLE) will be highlighted along with case studies from around the world, with emphasis on global competencies and opportunities for engagement in all current TIGER activities and future plans.
ERIC Educational Resources Information Center
Baird, Irene C.; Towns, Kathryn
PROBE (Potential Reentry Opportunities in Business and Education), a program conducted in Harrisburg and Lebanon, Pennsylvania, incorporated technological training with effective communication skills preparation for single female welfare parents. Goals of the program were to provide 20 single-parent welfare women with marketable computer and…
Chapter 5: Tertiary Short-Cycle Education in Bulgaria--In Search of Identity
ERIC Educational Resources Information Center
Slantcheva-Durst, Snejana; Ivanov, Stanislav
2010-01-01
This chapter traces the development of short-cycle higher education in Bulgaria. An emphasis is placed on (a) the evolution of nonuniversity short-cycle institutes and (b) the challenges of bridging the gap between secondary and higher education and creating links between vocational and academic learning pathways. The case study of Bulgaria may…
ERIC Educational Resources Information Center
Tavani, Herman T.
2002-01-01
Discusses the debate over intellectual property rights for digital media. Topics include why intellectual property should be protected; the evolution of copyright law; fair use doctrine; case studies; the philosophical theories of property, including labor theory, utilitarian theory, and personality theory; natural law theory; the social role of…
Money, Sex, and Drugs: A Case Study to Teach the Genetics of Antibiotic Resistance
ERIC Educational Resources Information Center
Cloud-Hansen, Karen A.; Kuehner, Jason N.; Tong, Lillian; Miller, Sarah; Handelsman, Jo
2008-01-01
The goal of the work reported here was to help students expand their understanding of antibiotic resistance, the Central Dogma, and evolution. We developed a unit entitled "Ciprofloxacin Resistance in "Neisseria gonorrhoeae,"" which was constructed according to the principles of scientific teaching by a team of graduate students, science faculty,…
A Smart Partnership: Integrating Educational Technology for Underserved Children in India
ERIC Educational Resources Information Center
Charania, Amina; Davis, Niki
2016-01-01
This paper explores the evolution of a large multi-stakeholder partnership that has grown since 2011 to scale deep engagement with learning through technology and decrease the digital divide for thousands of underserved school children in India. Using as its basis a case study of an initiative called integrated approach to technology in education…
A Case Study of Unfounded Concepts Underpinning Controversial Practices: Lost in "Space Dyslexia"
ERIC Educational Resources Information Center
Stephenson, Jennifer
2009-01-01
Although many are critical of the uptake of unproven practices by teachers and families in their search for treatment for children with reading difficulties, there has been little examination of the specific conditions that persuade teachers and families to adopt such practices. This article traces the emergence and evolution of a particular meme,…
ERIC Educational Resources Information Center
Bess, Jennifer
2013-01-01
Through his many works calling for the evolution of indigenous theory, Duane Champagne has emphasized the importance of recovering indigenous voices such as Chilocco Indian Industrial School graduate Mack Setima's and documenting forms of cultural continuity. According to Champagne, case studies such as K. Tsianina Lomawaima's scholarship on…
The Evolution of a Children's Domestic Violence Counseling Group: Stages and Processes
ERIC Educational Resources Information Center
Thompson, E. Heather
2011-01-01
The purpose of this qualitative case study is to illuminate the lived experiences of 4 young children between 6 and 7 years old who witnessed domestic violence while revealing the complex relationship between group process and stage development in their 18-week counseling group. Data revealed that processes occurring between and among group…
Aid Effectiveness in Education: Why It Matters
ERIC Educational Resources Information Center
Bermingham, Desmond; Christensen, Olav Rex; Mahn, Timo Casjen
2009-01-01
This article introduces the special issue of "Prospects" on "Aid effectiveness in education". It brings together case studies of attempts in several very different contexts to improve the effectiveness of the use of aid in the education sector. By drawing on the historical evolution of the new paradigm over the last 20 years, the authors make the…
The Evolution of Software Pricing: From Box Licenses to Application Service Provider Models.
ERIC Educational Resources Information Center
Bontis, Nick; Chung, Honsan
2000-01-01
Describes three different pricing models for software. Findings of this case study support the proposition that software pricing is a complex and subjective process. The key determinant of alignment between vendor and user is the nature of value in the software to the buyer. This value proposition may range from increased cost reduction to…
ERIC Educational Resources Information Center
National Medical Audiovisual Center of the National Library of Medicine, Atlanta, GA.
The evolution of medical schools from their post-Renaissance Italian prototypes to present modern facilities has been marked by a variety of philosophies, methodologies, and pedagogical styles. Pressures to improve medical curriculum led to the educational media movement of the 1950's. By 1970, the Association of Professors of Gynecology and…
NASA Astrophysics Data System (ADS)
Wang, Yueyang; Bao, Biwen; Yang, Chuyuan; Zhang, Li
2018-05-01
The dynamical properties of supernova remnants (SNRs) evolving with different interstellar medium structures are investigated through performing extensive two-dimensional magnetohydrodynamic (MHD) simulations in the cylindrical symmetry. Three cases of different interstellar medium structures are considered: the uniform medium, the turbulent medium and the cloudy medium. Large-scale density and magnetic fluctuations are calculated and mapped into the computational domain before simulations. The clouds are set by random distribution in advance. The above configuration allows us to study the time-dependent dynamical properties and morphological evolution of the SNR evolving with different ambient structures, along with the development of the instabilities at the contact discontinuity. Our simulation results indicate that remnant morphology deviates from symmetry if the interstellar medium contains clouds or turbulent density fluctuations. In the cloudy medium case, interactions between the shock wave and clouds lead to clouds' fragmentation. The magnetic field can be greatly enhanced by stretching field lines with a combination of instabilities while the width of amplification region is quite different among the three cases. Moreover, both the width of amplification region and the maximum magnetic-field strength are closely related to the clouds' density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Neeraj; Büchner, Jörg; Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen
Nonlinear evolution of three dimensional electron shear flow instabilities of an electron current sheet (ECS) is studied using electron-magnetohydrodynamic simulations. The dependence of the evolution on current sheet thickness is examined. For thin current sheets (half thickness =d{sub e}=c/ω{sub pe}), tearing mode instability dominates. In its nonlinear evolution, it leads to the formation of oblique current channels. Magnetic field lines form 3-D magnetic spirals. Even in the absence of initial guide field, the out-of-reconnection-plane magnetic field generated by the tearing instability itself may play the role of guide field in the growth of secondary finite-guide-field instabilities. For thicker current sheetsmore » (half thickness ∼5 d{sub e}), both tearing and non-tearing modes grow. Due to the non-tearing mode, current sheet becomes corrugated in the beginning of the evolution. In this case, tearing mode lets the magnetic field reconnect in the corrugated ECS. Later thick ECS develops filamentary structures and turbulence in which reconnection occurs. This evolution of thick ECS provides an example of reconnection in self-generated turbulence. The power spectra for both the thin and thick current sheets are anisotropic with respect to the electron flow direction. The cascade towards shorter scales occurs preferentially in the direction perpendicular to the electron flow.« less
Evolution of ethnocentrism on undirected and directed Barabási-Albert networks
NASA Astrophysics Data System (ADS)
Lima, F. W. S.; Hadzibeganovic, Tarik; Stauffer, Dietrich
2009-12-01
Using Monte Carlo simulations, we study the evolution of contingent cooperation and ethnocentrism in the one-shot game. Interactions and reproduction among computational agents are simulated on undirected and directed Barabási-Albert (BA) networks. We first replicate the Hammond-Axelrod model of in-group favoritism on a square lattice and then generalize this model on undirected and directed BA networks for both asexual and sexual reproduction cases. Our simulations demonstrate that irrespective of the mode of reproduction, the ethnocentric strategy becomes common even though cooperation is individually costly and mechanisms such as reciprocity or conformity are absent. Moreover, our results indicate that the spread of favoritism towards similar others highly depends on the network topology and the associated heterogeneity of the studied population.
Molecular Epidemiology and Evolution of European Bat Lyssavirus 2
McElhinney, Lorraine M.; Zanoni, Reto; Kooi, Engbert A.; Neubauer-Juric, Antonie; Nokireki, Tiina; Müller, Thomas; Fooks, Anthony R.
2018-01-01
Bat rabies cases in Europe are mainly attributed to two lyssaviruses, namely European Bat Lyssavirus 1 (EBLV-1) and European Bat Lyssavirus 2 (EBLV-2). Prior to the death of a bat worker in Finland in 1985, very few bat rabies cases were reported. Enhanced surveillance in the two subsequent years (1986–1987) identified 263 cases (more than a fifth of all reported cases to date). Between 1977 and 2016, 1183 cases of bat rabies were reported, with the vast majority (>97%) being attributed to EBLV-1. In contrast, there have been only 39 suspected cases of EBLV-2, of which 34 have been confirmed by virus typing and presently restricted to just two bat species; Myotis daubentonii and Myotis dasycneme. The limited number of EBLV-2 cases in Europe prompted the establishment of a network of European reference laboratories to collate all available viruses and data. Despite the relatively low number of EBLV-2 cases, a large amount of anomalous data has been published in the scientific literature, which we have here reviewed and clarified. In this review, 29 EBLV-2 full genome sequences have been analysed to further our understanding of the diversity and molecular evolution of EBLV-2 in Europe. Analysis of the 29 complete EBLV-2 genome sequences clearly corroborated geographical relationships with all EBLV-2 sequences clustering at the country level irrespective of the gene studied. Further geographical clustering was also observed at a local level. There are high levels of homogeneity within the EBLV-2 species with nucleotide identities ranging from 95.5–100% and amino acid identities between 98.7% and 100%, despite the widespread distribution of the isolates both geographically and chronologically. The mean substitution rate for EBLV-2 across the five concatenated genes was 1.65 × 10−5, and evolutionary clock analysis confirms the slow evolution of EBLV-2 both between and within countries in Europe. This is further supported by the first detailed EBLV-2 intra-roost genomic analysis whereby a relatively high sequence homogeneity was found across the genomes of three EBLV-2 isolates obtained several years apart (2007, 2008, and 2014) from M. daubentonii at the same site (Stokesay Castle, Shropshire, UK). PMID:29303971
The status of evolutionary medicine education in North American medical schools.
Hidaka, Brandon H; Asghar, Anila; Aktipis, C Athena; Nesse, Randolph M; Wolpaw, Terry M; Skursky, Nicole K; Bennett, Katelyn J; Beyrouty, Matthew W; Schwartz, Mark D
2015-03-08
Medical and public health scientists are using evolution to devise new strategies to solve major health problems. But based on a 2003 survey, medical curricula may not adequately prepare physicians to evaluate and extend these advances. This study assessed the change in coverage of evolution in North American medical schools since 2003 and identified opportunities for enriching medical education. In 2013, curriculum deans for all North American medical schools were invited to rate curricular coverage and perceived importance of 12 core principles, the extent of anticipated controversy from adding evolution, and the usefulness of 13 teaching resources. Differences between schools were assessed by Pearson's chi-square test, Student's t-test, and Spearman's correlation. Open-ended questions sought insight into perceived barriers and benefits. Despite repeated follow-up, 60 schools (39%) responded to the survey. There was no evidence of sample bias. The three evolutionary principles rated most important were antibiotic resistance, environmental mismatch, and somatic selection in cancer. While importance and coverage of principles were correlated (r = 0.76, P < 0.01), coverage (at least moderate) lagged behind importance (at least moderate) by an average of 21% (SD = 6%). Compared to 2003, a range of evolutionary principles were covered by 4 to 74% more schools. Nearly half (48%) of responders anticipated igniting controversy at their medical school if they added evolution to their curriculum. The teaching resources ranked most useful were model test questions and answers, case studies, and model curricula for existing courses/rotations. Limited resources (faculty expertise) were cited as the major barrier to adding more evolution, but benefits included a deeper understanding and improved patient care. North American medical schools have increased the evolution content in their curricula over the past decade. However, coverage is not commensurate with importance. At a few medical schools, anticipated controversy impedes teaching more evolution. Efforts to improve evolution education in medical schools should be directed toward boosting faculty expertise and crafting resources that can be easily integrated into existing curricula.
Vaccine-derived poliovirus from long term excretors and the end game of polio eradication.
Martín, Javier
2006-06-01
Seven cases of long-term poliovirus excretion in the UK and Ireland are reviewed in this paper. They include a rare case of long-term virus excretion by a healthy child recently found in Ireland and the case with the longest period of vaccine-derived poliovirus excretion by an immunodeficient individual ever known, 18 years. The evolution of viral properties such as antigenic structure, neurovirulence, sensitivity for growth at high temperatures, and differences in nucleotide sequence from the Sabin vaccine strains were studied in detail. The relevance of these cases in the context of the global polio eradication initiative and the design of vaccination strategies for the last stages of eradication and the post-eradication era are discussed.
Analytical approach to Eigen-emittance evolution in storage rings
NASA Astrophysics Data System (ADS)
Nash, Boaz
This dissertation develops the subject of beam evolution in storage rings with nearly uncoupled symplectic linear dynamics. Linear coupling and dissipative/diffusive processes are treated perturbatively. The beam distribution is assumed Gaussian and a function of the invariants. The development requires two pieces: the global invariants and the local stochastic processes which change the emittances, or averages of the invariants. A map based perturbation theory is described, providing explicit expressions for the invariants near each linear resonance, where small perturbations can have a large effect. Emittance evolution is determined by the damping and diffusion coefficients. The discussion is divided into the cases of uniform and non-uniform stochasticity, synchrotron radiation an example of the former and intrabeam scattering the latter. For the uniform case, the beam dynamics is captured by a global diffusion coefficent and damping decrement for each eigen-invariant. Explicit expressions for these quantities near coupling resonances are given. In many cases, they are simply related to the uncoupled values. Near a sum resonance, it is found that one of the damping decrements becomes negative, indicating an anti-damping instability. The formalism is applied to a number of examples, including synchrobetatron coupling caused by a crab cavity, a case of current interest where there is concern about operation near half integer betatron tune. In the non-uniform case, the moment evolution is computed directly, which is illustrated through the example of intrabeam scattering. Our approach to intrabeam scattering damping and diffusion has the advantage of not requiring a loosely-defined Coulomb Logarithm. It is found that in some situations there is a small difference between our results and the standard approaches such as Bjorken-Mtingwa, which is illustrated by comparison of the two approaches and with a measurement of Au evolution in RHIC. Finally, in combining IBS with the global invariants some general statements about IBS equilibrium can be made. Specifically, it is emphasized that no such equilibrium is possible in a non-smooth lattice, even below transition. Near enough to a synchrobetatron coupling resonance, it is found that even for a smooth ring, no IBS equilibrium occurs.
Finarelli, John A; Goswami, Anjali
2013-12-01
Reconstructing evolutionary patterns and their underlying processes is a central goal in biology. Yet many analyses of deep evolutionary histories assume that data from the fossil record is too incomplete to include, and rely solely on databases of extant taxa. Excluding fossil taxa assumes that character state distributions across living taxa are faithful representations of a clade's entire evolutionary history. Many factors can make this assumption problematic. Fossil taxa do not simply lead-up to extant taxa; they represent now-extinct lineages that can substantially impact interpretations of character evolution for extant groups. Here, we analyze body mass data for extant and fossil canids (dogs, foxes, and relatives) for changes in mean and variance through time. AIC-based model selection recovered distinct models for each of eight canid subgroups. We compared model fit of parameter estimates for (1) extant data alone and (2) extant and fossil data, demonstrating that the latter performs significantly better. Moreover, extant-only analyses result in unrealistically low estimates of ancestral mass. Although fossil data are not always available, reconstructions of deep-time organismal evolution in the absence of deep-time data can be highly inaccurate, and we argue that every effort should be made to include fossil data in macroevolutionary studies. © 2013 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Morphology and behaviour: functional links in development and evolution
Bertossa, Rinaldo C.
2011-01-01
Development and evolution of animal behaviour and morphology are frequently addressed independently, as reflected in the dichotomy of disciplines dedicated to their study distinguishing object of study (morphology versus behaviour) and perspective (ultimate versus proximate). Although traits are known to develop and evolve semi-independently, they are matched together in development and evolution to produce a unique functional phenotype. Here I highlight similarities shared by both traits, such as the decisive role played by the environment for their ontogeny. Considering the widespread developmental and functional entanglement between both traits, many cases of adaptive evolution are better understood when proximate and ultimate explanations are integrated. A field integrating these perspectives is evolutionary developmental biology (evo-devo), which studies the developmental basis of phenotypic diversity. Ultimate aspects in evo-devo studies—which have mostly focused on morphological traits—could become more apparent when behaviour, ‘the integrator of form and function’, is integrated into the same framework of analysis. Integrating a trait such as behaviour at a different level in the biological hierarchy will help to better understand not only how behavioural diversity is produced, but also how levels are connected to produce functional phenotypes and how these evolve. A possible framework to accommodate and compare form and function at different levels of the biological hierarchy is outlined. At the end, some methodological issues are discussed. PMID:21690124
NASA Astrophysics Data System (ADS)
Soosaar, E.; Maljutenko, I.; Uiboupin, R.; Skudra, M.; Raudsepp, U.
2015-10-01
Satellite remote sensing imagery and numerical modelling were used for the study of river bulge evolution and dynamics in a non-tidal sea, the Gulf of Riga (GoR) in the Baltic Sea. Total suspended matter (TSM) images showed a clearly formed anti-cyclonically rotating river bulge from Daugava River discharge during the studied low wind period. In about 7-8 days the bulge grew up to 20 km in diameter, before being diluted. Bulge growth rate was estimated as rb ~ t 0.31± 0.23 (R2 = 0.87). A high resolution (horizontal grid step of 125 m) General Estuarine Transport Model (GETM) was used for detailed description of the development of the river plume in the southern GoR over the period when satellite images were acquired. In the model simulation, the rb ~ t 0.5± 0.04 (R2 = 0.90). Both the model simulation and the satellite images showed that river water was mainly contained in the bulge and there were numerous intrusions at the outer perimeter of the bulge. We made numerical sensitivity tests with actual bathymetry and measured river runoff without wind forcing: (1) having initial 3-dimensional density distribution, (2) using initially a homogeneous ambient density field. In the first case, the anti-cyclonic bulge did not develop within the course of the model simulation and coastal current was kept offshore due to ambient density-driven circulation. In the second case, the river plume developed steadily into an anti-cyclonically recirculating bulge and a coastal current. This showed a significant effect of the wind in the evolution of the river bulge, even if the wind speed was moderate (3-4 m s-1). In the second case, rb ~ t 0.28± 0.01 (R2 = 0.98). While previous studies conclude that mid-field bulge region is governed by balance between centrifugal, Coriolis and pressure gradient terms, our study showed that geostrophic balance is valid for the entire mid-field of the bulge. In addition, while there is discharge into the homogenous GoR in case of high inflow Rossby number, the river inflow might split into two jets, with strong mixing zone in-between, in the plume near field region.
Vázquez García, Rubén Eduardo; Hernández Bautista, Víctor; Espinosa Padilla, Sara
2006-01-01
The superantigens cause a massive polyclonal activation of T-cells, producing an immense liberation of proinflamatory cytokines, which induces the clinical data of toxic shock syndrome. In international studies the administration of polyclonal intravenous gammaglobulin has been observed to diminish the mortality 50 to 20%. But at the present it has not been reported in Mexico the clinical effectiveness of this therapeutic modality in toxic shock syndrome. We report three cases of toxic shock syndrome treated with gammaglobulin intravenous, and we describe their favorable clinical evolution.
Case A and B evolution towards electron capture supernova
NASA Astrophysics Data System (ADS)
Siess, L.; Lebreuilly, U.
2018-06-01
Context. Most super-asymptotic giant branch (SAGB) stars are expected to end their life as oxygen-neon white dwarfs rather than electron capture supernovae (ECSN). The reason is ascribed to the ability of the second dredge-up to significantly reduce the mass of the He core and of the efficient AGB winds to remove the stellar envelope before the degenerate core reaches the critical mass for the activation of electron capture reactions. Aims: In this study, we investigate the formation of ECSN through case A and case B mass transfer. In these scenarios, when Roche lobe overflow stops, the primary has become a helium star. With a small envelope left, the second dredge-up is prevented, potentially opening new paths to ECSN. Methods: We compute binary models using our stellar evolution code BINSTAR. We consider three different secondary masses of 8, 9, and 10 M⊙ and explore the parameter space, varying the companion mass, orbital period, and input physics. Results: Assuming conservative mass transfer, with our choice of secondary masses all case A systems enter contact either during the main sequence or as a consequence of reversed mass transfer when the secondary overtakes its companion during core helium burning. Case B systems are able to produce ECSN progenitors in a relatively small range of periods (3 ≲ P(d) ≤ 30) and primary masses (10.9 ≤ M/M⊙≤ 11.5). Changing the companion mass has little impact on the primary's fate as long as the mass ratio M1/M2 remains less than 1.4-1.5, above which evolution to contact becomes unavoidable. We also find that allowing for systemic mass loss substantially increases the period interval over which ECSN can occur. This change in the binary physics does not however affect the primary mass range. We finally stress that the formation of ECSN progenitors through case A and B mass transfer is very sensitive to adopted binary and stellar physics. Conclusions: Close binaries provide additional channels for ECSN but the parameter space is rather constrained likely making ECSN a rare event.
Pre-inflationary universe in loop quantum cosmology
NASA Astrophysics Data System (ADS)
Zhu, Tao; Wang, Anzhong; Cleaver, Gerald; Kirsten, Klaus; Sheng, Qin
2017-10-01
The evolutions of the flat Friedmann-Lemaître-Robertson-Walker universe and its linear perturbations are studied systematically in the dressed metric approach of loop quantum cosmology. When it is dominated by the kinetic energy of the inflaton at the quantum bounce, the evolution of the background can be divided into three different phases prior to the preheating: bouncing, transition and slow-roll inflation. During the bouncing phase, the evolution is independent of not only the initial conditions, but also the inflationary potentials. In particular, the expansion factor can be well described by the same exact solution in all the cases considered. In contrast, in the potential-dominated case such a universality is lost. It is because of this universality that the linear perturbations are also independent of the inflationary models and obtained exactly. During the transition phase, the evolutions of the background and its linear perturbations are found explicitly, and then matched to the ones given in the other two phases. Hence, once the initial conditions are imposed, the linear scalar and tensor perturbations will be uniquely determined. Considering two different sets of initial conditions, one imposed during the contracting phase and the other at the bounce, we calculate the Bogoliubov coefficients and find that the two sets yield the same results and all lead to particle creations at the onset of the inflation. Due to the preinflationary dynamics, the scalar and tensor power spectra become scale dependent. By comparing our results with the Planck 2015 data, we find constraints on the total number of e -folds since the bounce, in order to be consistent with current observations.
Wiley, R H
2013-02-01
Recognition of conspecifics occurs when individuals classify sets of conspecifics based on sensory input from them and associate these sets with different responses. Classification of conspecifics can vary in specificity (the number of individuals included in a set) and multiplicity (the number of sets differentiated). In other words, the information transmitted varies in complexity. Although recognition of conspecifics has been reported in a wide variety of organisms, few reports have addressed the specificity or multiplicity of this capability. This review discusses examples of these patterns, the mechanisms that can produce them, and the evolution of these mechanisms. Individual recognition is one end of a spectrum of specificity, and binary classification of conspecifics is one end of a spectrum of multiplicity. In some cases, recognition requires no more than simple forms of learning, such as habituation, yet results in individually specific recognition. In other cases, recognition of individuals involves complex associations of multiple cues with multiple previous experiences in particular contexts. Complex mechanisms for recognition are expected to evolve only when simpler mechanisms do not provide sufficient specificity and multiplicity to obtain the available advantages. In particular, the evolution of cooperation and deception is always promoted by specificity and multiplicity in recognition. Nevertheless, there is only one demonstration that recognition of specific individuals contributes to cooperation in animals other than primates. Human capacities for individual recognition probably have a central role in the evolution of complex forms of human cooperation and deception. Although relatively little studied, this capability probably rivals cognitive abilities for language. © 2012 The Author. Biological Reviews © 2012 Cambridge Philosophical Society.
Heinz, Eva; Lithgow, Trevor
2013-02-01
Mitochondria are present in all eukaryotes, but remodeling of their metabolic contribution has in some cases left them almost unrecognizable and they are referred to as mitochondria-like organelles, hydrogenosomes or, in the case where evolution has led to a great deal of simplification, as mitosomes. Mitochondria rely on the import of proteins encoded in the nucleus and the protein import machinery has been investigated in detail in yeast: several sophisticated molecular machines act in concert to import substrate proteins across the outer mitochondrial membrane and deliver them to a precise sub-mitochondrial compartment. Because these machines are so sophisticated, it has been a major challenge to conceptualize the first phase of their evolution. Here we review recent studies on the protein import pathway in parasitic species that have mitosomes: in the course of their evolution for highly specialized niches these parasites, particularly Cryptosporidia and Microsporidia, have secondarily lost numerous protein functions, in accordance with the evolution of their genomes towards a minimal size. Microsporidia are related to fungi, Cryptosporidia are apicomplexans and kin to the malaria parasite Plasmodium; and this great phylogenetic distance makes it remarkable that Microsporidia and Cryptosporidia have independently evolved skeletal protein import pathways that are almost identical. We suggest that the skeletal pathway reflects the protein import machinery of the first eukaryotes, and defines the essential roles of the core elements of the mitochondrial protein import machinery. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Castro, Edgar Oscar
2013-01-01
A 30-year contribution of the Space Shuttle Program is the evolution of NASA's social actions through organizational learning. This study investigated how NASA learned over time following two catastrophic accidents. Schwandt's (1997) organizational Learning System Model (OLSM) characterized the learning in this High Reliability…